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in 
this 

investigation, the quast-vortex-lattics, method is used to

predict the aerodynamic characteristics of vlt-'& with leading-edge vortex

separation. The method is based on a flow model with free vortex ele-

amts which are allowed to merge Into a concentrated core. The calculated

pressure distribution Is more accurate than that predicted by methods with

^'	

discrete vortex filaments alone. Tji addition, the computer time is reduced

approximately by half.
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1. Introduction

Recently, lifting-surface methods have been applied to the calculation

of wing aerodynamics with edge vortex separation. Two popular methods are

of the doublet-panel type (Refs. 1 and 2) and the free vortices (Refs. 3 and

4). The panel method can predict accurate results. However, the computing

time involved is lengthy and it has not been extended to treat complex

geometries, such as wings with strakes and interacting surfaces. On the

other hand, it is easier to extend the method of free vortices to complex

geometries. However, the predicted pressure distribution is not accurate.

In addition, the leading-edge Kutta condition is not exactly satisfied

in the method of Ref. 3.

In Ref. 4, the quasi-vortex-lattice method was used, together with

discrete vortex filaments to model vortex flow effects. The leading-edge

Kutta condition is exactly satisfied and partial vortex separation is

allowed. But the predicted AC  distribution is more "diffused" than the

data show. This is because the effect of a concentrated vortex core in

the real flow cannot be accurately represented by a number of free vortices.

The objectives of this investigation are to improve the pressure predic-

tion of Ref. 4 by introducing a concentrated vortex core and to reduce the

computer time.

2. Description of Present Method

For convenience,Mehrotra's method (Ref. 4) will be called vortex-

filament model and the present method the core model. In the present

analysis, the basic assumptions are: (1) the wing is represented by a

bound vortex sheet, across which there exists a pressure difference;
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(2) the separated flog along leading-edges is represented by forcrfree

leading-edge vortex elements which feed vorticity into a concentrated

core. During the iteration process, the following boundary conditions are

Imposed on both vortex-filament and core models: (1) The wing surface =at

be 3apesasahle; (2) gutta conditions are imposed along the leading- and

trailing-edges of the ping; (3) in the vortex-filament model, force-free

condition., is applied on the leading-edge vortex filaments and trailing

wake elements; (d) in the core model, force-free condition is applied on

the free vortex elements, concentrated core and trailing wake elements.

	

't.	 The computational procedures of the present method are as follows:

(1) Establish the leading-edge vortex filament_system.^rtth Iiehrotra's

method in two iterations.
i

(2) Find the centroid of the established leading-edge vortex filament system.

Note that to calculate the centroid of the leading-edge vortex filament

System, a series of cross flaw planes are considered, proceeding from

the wing apex toward the trailing-edge. The centroids of the vortex
f

filaments penetrating these planes are given by

4
Y	 ^,.j

r̂

where yyj, 
z  

are the centroid position in the 
jth plane,

*ij, 2 i are the intersection position of the i th vortex filament

with 
jth 

plane,

ri is the circulation around the 
ith vortex filament,

r j is the concentrated line vortex strength at the jth 
pie,

	

_.	 c

nj is the number of vortex filaments penetrating the j th plane.
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(3) Allow the isading-edge vortex elements to merge and feed vorticity

into the core through connecting segments.

(4) In order to have reasonable starting solution so that computer time

can be reduced, the initial a coordinates of concentrated core from

step 2 are modified to take the experimental values summarized by

t-	 Smith (Ref. S).

zv = 0. ts4 w t 0. 1

z V n 0. lass a + 0.1s8

a < 1.2

RZ G a c t. 2	 (3)

r

:i

2v s o. 13 a f 0.132

where,

= 4W" a l( A/c,) 
	

(4)

A is the aspect ratio, c  the root chord, and z  is the nondimensional

z-coordinate of the concentrated core, referring to the local semispan.

(S) During the iteration process, the new locations of the free vortex

elements, concentrated core and trailing wake are determined by satis-

fying the force free condition. Note that the force free condition

is not applied on both the feeding segments and the free sheet along

the very first vortex strip. The new locations of free vortex

elements and the core along the first vortex strip are obtained by

linear interpolation.

(6) From the starting solution of the core model, the core is forced to

move downward and outward twice, to obtain the force gradients. In each

case, relaxation paramters ( ay , A z) for determining new core coordinates

are assumed empirically as follows (See step 9):



Cts	 ^iK

second time
to

300
ms=s s — o.o2S'• .

 

	{T)_
K

71	 (8)
^k

In sq. (S), Z% is the total force acting on the core in the s direction

and EF is the total force.	 In Sq. (6), CL is the initially calculated

lift coefficient and CL	is the lift coefficient by suction analogy.

-^ s

•

Note that A	 and A z are assumed constant along the entire core.
y

-' (7)	 In the next iteration, A
y 

and Az of each segment of core are computed,

based on the difference of segment force in the proceeding two

Iterations.

-
" Cy; -	 —'Fa 1	 Cry (= o, r ^g	 (9)1 Fsz 	̂ !^	 ^	 1	 Xs^

CX_ : ^ FVJ
where the signs of Cyt and 

Czi 
are the same as those of F z2 and Fy2,

respectively.	 The physical idea is that the core should be moved in

the direction of reducing force magnitude.
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(S) The new positions of free vortex elements in each iteration are

determined by the following equations,

^1 ^,	 (11)
C4X!	 Vx

	

vs 	(12)

x

where Vx, Vy, VE are the total velocity components in the respective

coordinate directions. The new slopes of each segment of free vortex

elements are

(:tL 
/ raw = 

S. (iz), + 4 t	 (13)4x oid

rfaz 1	 aZ 11^.^ o. ^ °Z-	 (14)

Since the length of each segment is conserved, therefore

as • eX ( t ^.AY 2. ^ 4z	 (15)
ox + x

S	 (16)

1+ rrAV 1s + 4Z
4;	 x W

It follows, that

ay	
(17)C°Y)new (4 X),.,, X ^,aw

(4Z^*sw = ^4x^++sW ` Xft 	 (18)

S



6



Assume that

V	 V
V ^tV3x

Yr

Yx	 V;

L
Combining Eqs. (23). (25) and (26), (26) yields the following equation

for the ith segment:
f

F:[ 	 o	 ;r_{ 
X /ohl	 r(Ax (27)

F.
ta ' 	 es	 y ^

t •x +x-1
	 +^ 	 riiVxl

(28)

Then new slopes of ith segment of concentrated core are determined by:

^j	 rrr -1	 s	 + —	 y o	 f'4►x /rww	 r^l•x^ ^^	 Y  
(29)

(	 r ^s 1 '^

*eM

(30)

Combining Egsi (27) through (30) results in

`

GY—x)%W

	 y;i

e; 	 eE	 Fyj	 (32)( 
J	

(

^
X ^y l •x eld 'f' A s r4

^,, Vxj

Since the segment length is conserved, it follows that

as s ax 1+ (It )16♦ 
x !	 (33)
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per	
I+ {t

son",	 `

I

(. Y)%W in {Axe,, • (*).

Ax
aw 7x

Thus, the now positions of concentrated core are found as follows,

X4 wsw ! X,C f °X,O,	 (37)

Y4%awe
Ix

 yti t Y*ew

(10) The now positions fo trailing wake in each iteration are determined

in the sans manner as described in Ref. 4.

Note that the segment length is preserved along the free vortex

avant, concentrated core and trailing Wake. In addition, the

affect of the secondary vortices has not been included in the present

analysis.

30 Numerical Results

To show the improvement, those cases shows in Ref. 4 were re-calculated

and compared in Figures 1 through 12. The following observations can be

made:

(1) For the over-all aerodynamic characteristics (Figures 1 through S), the

results from both methods are similar, swept that the present results

are slightly more accurate at high angles of attack.

r

c

r:

(33)

(36)

Ev
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(2) Thera are significant improvements in the predicted AC p distribution,

In particular, at moderate to high angles of attack. Diffizoulty exists

at 1r,v angles of attack, because free vertex shvets from Mehrotra's

modal are relatively flat and the initial configurations in the present

model are more difficult to determine.

In most cases, final results can be obtained with two iterations in

Mehrotra's model and three iterations in the present model. The computer time is

approximately reduced by half as compared ddtth Ref. 4.
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