NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA TECHNICAL MEMORANDUM

NASA TM-78252

TORQUE EQUILIBRIUM ATTI TUDE CONTROL FOR SKYAB REENTRY

By John R. Glaese and Hans F. Kennel
Systems Dynamics Laboratory

November 1979
(NASA-TM-78252) TORQOE EQOILIBRIUM ATTITUDE N80-14169 CONTROL FOR SKYLAE REENTRY (NASA) 173 p HC A08/MF A01

CSCL 22B

TECHNICAL REPORT STANDARD TITLE PAGE

ACKNOWLEDGMENTS

We hereby express our appreciation for the excellent support we received in the simulation area from the MSFC simulation division, especially Mr. Jack Lucas and Dr. Frank Hay of MSFC and Mr. Ray Nix of Honeywell.

TABLE OF CONTENTS

Page
INTRODUCTION 1
COORDINATE SYSTEMS 3
Orbital Coordinate System (O) 3
Vehicle Coordinate System (V) 4
Attitude Reference Coordinate System (A) 4
Solar Inertial Coordinate System (I) 5
Z-Local Vertical Coordinate System (L) 5
SKYLAB ATTITUDE AND POINTING CONTROL SYSTEM (APCS) 5
CMG CONTROL SYSTEM 6
BANK, ATTACK, AND ROLL ANGLES 7
TORQUE EQUILIBRIUM ATTITUDES 9
TEA SEEKING METHOD 14
STRAPDOWN DRIFT CORRECTION 17
TEA OPERATION AND PERFORMANCE 19
CONCLUSIONS 44
APPENDIX A - AERODYNAMIC TOROUE MODEL 45
APPENDIX B - GRAVITATIONAL TORQUE MODEL 67
APPENDIX C - DETERMINATION OF TORQUE EQUILIBRIUM ATTITUDES 71
APPENDIX D - STRAPDOWN ERROR ESTIMATION 73
APPENDIX E - QUATERNIONS - A BRIEF EXPOSITION 77
APPENDIX F - STEREO VISUALIZATION WITHOUT OPTICAL AIDS 93
APPENDIX G - COMPLETE TEA SET 97
APPENDIX H - TEA SIMULATION AND GROUND SUPPORT 113
REFERENCES 165

LIST OF ILLUSTRATIONS

Figure Title Page

1. Skylab 2
2. Coordinate Systems 4
3. CMG mounting arrangement 7
4. Combined zero torque contours 10
5. T121P 12
6. T121G (no angular momentum) 13
7. T275 (no angular momentum) 14
8. Actual BAR angles (DOY 172:03:21/172:06:12) 24
9. BAR angles 26
10. Actual BAR angles (DOY 187:16:56/187:20:56) 32
11. Bank angle evaluation for QBL18716 33
12. Angle-of-attack evaluation for QBL18716 34
13. Roll angle evaluation for QBL18716 35
14. Circle chart 36
15. Format 8 37
16. Sun elevation angle beta (April 1978/August 1979) 39
17. Skylab altitude and Sun elevation angle for DOY 171/192, 1979 40
18. History of rate gyro biasing 41
19. History of slope matrix updates, momentum error limit changes, and ETLN $1,2,3$ changes 42
20. History of strapdown updates 43
A1. X torque contours 55

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
A2. Y torque contours 56
A3. Z torque contours 57
A4. X torque contours (stereo double) 58
A5. Y torque contours (stereo double) 59
A6. Z torque contours (stereo double) 60
A7. X torque contours (unit sphere view A) 61
A8. Y torque contours (unit sphere view A) 62
A9. Z torque contours (unit sphere view A) 63
A10. X torque contours (unit sphere view B) 64
A11. Y torque contours (unit sphere view B) 65
A12. Z torque contours (unit sphere view B) 66
F1. Stereo projection 95
F2. Stereo reconstruction by cross-eyed viewing 95
F3. Projection geometry 97
G1. TEA - SU or T121P 98
G2. TEA - ND 101
G3. TEA - UN or T121G 102
G4. TEA - DS 103
G5. TEA - BU or T275 104
G6. TEA - BD 105
G7. TEA - BN 106
G8. TEA - BS 107

LIST OF ILLUSTRATIONS (Concluded)

Figure Title Page
G9. TEA - DN 108
G10. TEA - US 109
G11. TEA - NU 110
412. TEA - SD 111

LIST OF TABLES

Table Title Page

1. Mapping of Vehicle Axes 11
2. TEA's for $\delta=3.11 \mathrm{E}-10 \mathrm{~kg} / \mathrm{m}^{3}$ 11
3. Nominal Flight Parameters 20
4. Slope Matrix Update Log 22
5. Slope Generation Parameters 23
6. Representative QBL Set (DOY 187:16:56/187:20:56) 30
7. BAR Arigles for Representative QBL Set 31
A1. Force and Moment Coefficients 46
A2. Nominal Center of Mass Location 53
A 3. Center of Pressure Location 53
A4. Contour Number Multiplication Factors 54

TORQUE EQUILIBRIUM ATTITUDE CONTROL FOR SKYLAB REENTRY

INTRODUCTION

With the decision in December 1978 to discontinue efforts to keep the Skylab Space Station (Fig. 1) in orbit cume the decision to terminate the highly successful end-on-velocity-vector (EOVV) mode of operation [1] and to reestablish the solar inertial (SI) mode as soon as practical. This would put the spacecraft in an ideal power attitude and greatly reduce ground management of systems. It would also increase the drag on the spacecraft and cause it to reenter sooner. Unfortunately the SI attitude was not going to be maintainable much below 280 km ($150 \mathrm{n} . \mathrm{mi}$.) since the growing density of the atmosphere was going to cause the aerodynamics to prow to the point where the storage capacity of the control moment gyroscopes (CMG's) for angular momentum was inadequate. Since control of attitude to 150 km or below would be required to be able to influence reentry and the amount of thruster gas was far too low to consider control with thrusters, another new attitude control scheme had to be developed. Aerodynamic torques are proportional to density and become nearly overwhelming at 150 km , and therefore any attitude control scheme which would work at 150 km would have to accurately take into account the aerodynamic disturbances. Thus it became clear that we must look at the torque equilibrium attitudes (TEA's) if any existed and plan our control schemes about these. Thus the important early questions were:

1) Are there equilibrium attitudes?
2) If so, is adequate solar power available?

An investigation with the mathematical aerodynamic model of the Skylab vehicle indicated there were no aerodynamic trim or equilibrium attitudes but there may be attitudes where aerodynamic, gravity gradient, and gyroscopic torques balance. Indeed. 12 such attitudes were found. Most were not useable as control attitudes since there would be insufficient solar energy available to power the spacecraft and battery power would be completely insdequate for the several weeks required. Only 3 of the 12 TEA's appeared viable if a control scheme could be developed for them. So work began on a TEA control scheme. A candidate scheme which was promising was developed, but there were large uncertainties

Figure 1. Skylab.
because of lack of confidence in the aerodynamic coefficients. This lack of confidence was due to the lack of test data confirming the aero moment model. As a result we did not have high confidence that the new TEA scheme would work. Later flight performance would show that our models were much better than we expected. The various mathematical models and tools needed for TEA control are described here. The operational aspects (time lines, command history, etc.) of TEA control as well as more complete background information and descriptions of the other essential Skylab systems (power, telemetry, etc.) are contained in Reference 2.

COORDINATE SYSTEMS

The coordinate systems which are pertinent to Skylab TEA control are defined in this section. Each system has some special geometrical or physical feature which simplifies the solution of a particular problem.

The following coordinate systems are described in this section: Orbital, Vehicle, Attitude Reference, Solar Inertial, and Z-Local Vertical. Each coordinate system consists of a set of mutually orthogonal axes exhibiting right-handedness.

An inertial (with respect to rotation only) coordinate system is a system which retains its orientation with respect to the celestial sphere, although the origin may be moving along any general curvilinear path in space. Similarly, a vehicle fixed system retains its orientation with respect to the vehicle.

Orbital Coordinate System (0)

The Orbital Coordinate System (X_{0}, Y_{0}, Z_{o}) is a precessing coordinate system with its origin at the Earth center of mass. The rate of precession about the Earth's north pole is approximately -5 (\%..ecs/day. The z_{0} axis lies in the orbital plane, positive through the ascending node of the orbit. The X_{0} axis also lies in the orbital plane 90 degrees ahead of the Z_{o} axis. Since the Skylab orbit was in the $X_{o} Z_{o}$ plane at all times, the Y_{C} unis was parallel to the orbital angular momentum vector. completing the right-handed system (Fig. 2).

Figure 2. Coordinate systems.

Vehicle Coordinate System (V)

The Vehicle Coordinate System (X_{V}, Y_{V}, Z_{V}) is a vehicle-fixed system with its origin at the center of mass. The X_{V} axis lies along the long axis of Skylab and is positive in the direction of the Multiple Docking Adapter (MDA). The Z_{V} axis is positive toward the Apollo Telescope Mount (ATM) and the Y_{V} axis completes the right-handed system.

Attitude Reference Coordinate System (A)

The Attitude Reference Coordinate System (X_{A}, Y_{A}, Z_{A}) is a movable system with its origin coincident with the Vehicle Coordinate System origin. The axes of this system represent the instantaneous desired orientation of the Vehicle Coordinate System axes.

Solar Inertial Coordinate System (I)

The Solar Inertial Coordinate System (X_{1}, Y_{1}, Z_{1}) is only a pseudoinertial system since it makes one revolution per year, it was used during the Skylab mission to $\mathrm{i}=\mathrm{int}$ the instrumente in the desired direction. The origin is coincident with the origin of the Vehicle Coordinate System origin. The $?_{I}$ axis is positive toward the center of the Sun. The X_{1} axis lies at an angle v_{2} from the orbital plane (this angle is calculated on-board such that the principal X axis is in the orbital plane to minimize the build-up of angular momentum) and is positive toward the sunset terminator.

Z-l ocal Vertical Coordinate System (L)

The Z-Local Vertical Coordinate System (X_{L}, Y_{L}, Z_{L}) is a rotating system with its origin at the center of mass of Skylab (the rate of rotation is one revolution erer orbit). The X_{i}, axis is positive in the direction of flight and lies in the orbital plane. The Z_{1}, axis is parallel to the local vertical direction and is positive outward, away from the Earth. The Y_{1} axis is parallel to the orbit normal and is positive toward orbital North. ${ }^{1}$

SKYLAB ATTITUDE AND POINTING CONTROL SYSTEM (APCS)

The actual control of the Skylab attitude to the attitude reference was done exactly as in the original mission \{3]. However, only the pointing control system (PCS) of the APCS was used: the experiment pointing control system (EPCS) was disabled. The maior parts of the APCS were the rate gyros, the sun sensors, the star tracker (it had faled during the original Skylat mission), the Apollo Telescope Mount Digital Computer (ATMDC). the Workshop Computer Interface Unit (WCIU). double-gimbaled CMO's, and cold-gas (compressed nitrogen) Thruster Attitude Control System ('TACS).

Six control modes were addressable: (1) STANDHY, (2), SOLAK INERTIAL. (SI), (3) EXPERIMENT POINTING, (4) ATTTTUDI: HOLD/CM(i, (5) ATTITUDE HOLD/TACS, and (6; ZLV. TEA control was programmed to be a substate of the ZLV mode. The basic ZLV (for $\%$ axis along the local vertical) attitude was with the Z axis along the local vertical, pointing up, and the X axis in the orbitul plane, pointing in the direction of
the velocity vector. Any angular offset from the basic ZLV attitude (offset identified by the quaternion $Q_{A L}$) could be commanded via a set of three Euler angles (χ) with a 2-3-1 rotation sequence. Changes in the TEA attitude reference were achieved by commanding changes to $Q_{A L}$,
$\left.[\mathrm{AL}]=\left[X_{x}\right]_{1}\left[X_{z}\right]_{3} \mathrm{X}_{X_{y}}\right]_{2} \quad{ }^{1}$

Since none of the original APCS capabilities were eliminated by the addition of the TEA control, the torque equilibrium attitude control could also be held by TACS only (this option was contemplated for low-drag attitude at low altitudes in case low-drag was needed for reentry control, but active TEA control had proven impossible).

This TACS consisted of software plus six cold-gas thrusters, two uncoupled ones for control about the Y axis (one would be fired for $+Y$, the other for $-Y$ control); four other thrusters for coupled X and Z control [4].

CMG CONTROL SYSTEM

The CMG control system was composed of three orthogonally mounted, double-gimbaled CMG's with angular momentum magnitude H of 3050 Nms ($2280 \mathrm{ft}-\mathrm{lb}-\mathrm{sec}$) as shown in Figure 3. The CMG control law utilized three normalized torque commands and the CMG momentum status to generate proper CMG gimbal rate commands [5]. The CMG control law consisted of three parts: CMG steering law, rotation law, and gimbal stop avoidance logic. There also were some other routines for specialized situations like caging the CMG's to a desired momentum state [4].

1. []-quantities are usually 3×3 rotation matrices, with the further definitions (where X_{i} represents any angle; $s=\sin , c=c o s$):

$$
\begin{aligned}
& \left.i \chi_{x}\right]_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathbf{c} \chi_{x} & s \chi_{x} \\
0 & -s \chi_{x} & c \chi_{x}
\end{array}\right] ; \quad\left[\chi_{y}\right]_{2}=\left[\begin{array}{ccc}
c \chi_{y} & 0 & -s \chi_{y} \\
0 & 1 & 0 \\
s \chi_{y} & 0 & c \chi_{y}
\end{array}\right] ; \\
& {\left[\chi_{2}\right]_{3}=\left[\begin{array}{ccc}
c \chi_{z} & s \chi_{z} & 0 \\
-s \chi_{z} & c \chi_{z} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Figure 3. CMG mounting arrangement.

The CMG control law had the ability to operate with either three or two CMG's for redundancy. Since CMG No. 1 had failed during the original Skylab mission, the CMG control law was always in the two-CMG option.

BANK, ATTACK, AND ROLL ANGLES

The aerodynamic forces and torques are dependent on the aerodynamic angle of attack and roll angles. To complete the specification of an arbitrary attitude, a third rotation angle is required. This angle is the so-called bank angle. The sequence is

$$
\begin{equation*}
[V L]=[\rho]_{1}[\alpha]_{2}[\beta]_{1} \tag{1}
\end{equation*}
$$

These angles are obtained from the following relations:

$$
\left.\begin{array}{l}
\alpha=\arccos \left(\mathrm{VL}_{11}\right) \\
\beta=\arctan \left(\mathrm{VL}_{12} /-\mathrm{VL}_{13}\right) \tag{3}\\
\rho=\arctan \left(\mathrm{VL}_{21} / \mathrm{VL}_{31}\right)
\end{array}\right\}
$$

four quadrant .

The Skylab onboard computer works in quaternions so that the matrix [VL] must be computed from the given quaternions $\mathbf{Q}_{V I}, Q_{V A}, Q_{A L}$:

$$
\begin{equation*}
Q_{V L}=\overline{\bar{Q}}_{V A} Q_{A L} \quad{ }^{2} \tag{5}
\end{equation*}
$$

The matrix [VL] is derived from $Q_{V L}$ by taking the upper left 3×3 matrix from

$$
\begin{equation*}
\text { [VL] }=\text { (upper left } 3 \times 3 \text { of) } \tilde{Q}_{V L}^{-1} \tilde{\tilde{Q}}_{V L} \quad{ }^{2} \tag{6}
\end{equation*}
$$

The physical bank, attack, and roll (BAR) angles will differ slightly from those above, because the orbit of Skylab is not truly circular and the air tends to move with the Earth surface so that the velocity of Skylab relative to the air is not exactly just the orbital velocity. Thus when equations (A2) and (A3) are used, values slightly different from those in equations (2) and (3) must be used. These values were only used for evaluation purposes and proved to be quite useful, so the differences were insignificant.
2. See Appendix E for nomenclature.

TORQUE EQUILIBRIUM ATTITUDES

As mentioned previously the aerodynamic coefficients are only a function of the roll angle and the angle-of-attack. Figure 4 shows the zero-moment curves for the three components with respect to these angles (see Table 1 for mapping of the vehicle axes). As can be seen, there is no set of angles, where all three curves intersect. However, they come close in several areas. To get a true three-axis equilibrium, other external torques are required. Gravity gradient (GG) torques and gyroscopic torques were found to be sufficiently large for all altitudes of concern to create 12 TEA's altogether. Gyroscopic torques come into play, since the aerodynamic and GG torques are constant with respect to the rotating local vertical coordinate system, and the total angular momentum of the Skylab was selectable within certain limits (imposed by the finite storage capacity of the CMG system). Since the aerodynamic torques do not change (relative to body-fixed axes) when the Skylab is rotated about the relative wind velocity vector and GG torques do not change in body-fixed axes for a rotation of 180 degrees about any axis perpendicular to the local vertical, there is always a pair of TEA's with the same angle-of-attack/roll angle combination, but with bank angles differing by 180 degrees, i.e., there were actually only six basically different TEAs with respect to the aerodynamic torques (they are indicated in Fig. 4 by asterisks). The TEA's are shown for an altitude of 200 km ($108 \mathrm{n} . \mathrm{mi}$.) and zero total angular momentum (Table 2).

From solar panel power considerations a sun-pointing, inertially fixed attitude, as given in the SI mode, is the best and TEA is rather bad. Nine of the TEAs were completely hopeless when it was established that 28 percent of full Sun illumination was required, on the average, to supply the needed power (100 percent is the power received when the Sun is perpendicular to the solar panels and the vehicle is in an alldaylight orbit, as is the case for high Sun elevation angles with respect to the orbital plane). Only the remaining three TEA's were usable, and these only when the optimum angular momentum was used (each of the TEA's exists in a volume of the BAR angle space when the total angular momentum is varied within its available volume). Even then, some of the TEAs did not have enough power for certain Sun elevation angles. The three TEA's were named T121P, T121G, and T275, and they are shown in Figures 5, 6, and 7 where the point of view is slightly south of the orbital plane and the vehicle is moving from the front lower left to the back upper right. T275 was a low-drag attitude (the ballistic coefficient was approximately 275) with the MDA trailing; T121G and T121P were high-drag attitudes (the ballistic coefficients were about 121). In T121G the Skylab was approximately in a GG equilibrium attitude with the MDA pointing upward (the same attitude which Skylab had been left in when it was deactivated in early 1974); in T121P the MDA was almost perpendicular to the orbital plane and pointing South. For T121G and T121P
ancle of attack us. poll ancle

Figure 4. Combined zero torque contours.

TABLE 1. MAPPING OF VEHICLE AXES

Axis	Angle of Attack (deg)	Roll Angle (deg)
$+x$	0	any
$-x$	180	any
$+y$	90	90
$-y$	90	-90
$+z$	90	0
$-z$	90	± 180

TABLE 2. TEA'S FOR $\delta=3.11 \mathrm{E}-10 \mathrm{~kg} / \mathrm{m}^{3}$ (200 km or $108 \mathrm{n} . \mathrm{mi}$.)

No.	ID	Bank Angle (deg)	Angle of Attack (deg)	Roll Angle (deg)	CD	BC
1	$\begin{gathered} \mathrm{T} 121 \mathrm{P} / \mathrm{SU} \\ \mathrm{ND} \end{gathered}$	$\begin{array}{r} -78.6 \\ +101.4 \end{array}$	106.0	+124.9	6.66	132.5
3 4	$\begin{gathered} \text { T121G/UN } \\ \text { DS } \end{gathered}$	-173.2 +6.8	93.8	+124.0	6.94	127.3
5	$\begin{gathered} \mathrm{T} 275 / \mathrm{BU} \\ \mathrm{BD} \end{gathered}$	$\begin{array}{r} +70.2 \\ -109.8 \end{array}$	147.8	1-89.2	3.52	250.5
7 8	BN BS	-51.4 +128.6	168.1	-117.6	2.72	324.9
9 10	DN	$\begin{array}{r} -11.9 \\ +168.1 \end{array}$	110.6	-60.7	6.37	138.9
11 12	NU SD	$\begin{aligned} & +86.4 \\ & -93.6 \end{aligned}$	71.8	-51.2	7.11	124.2

Note: These TEA's are for zero angular momentum and a CP offset of $[+0.06,-0.07,-0.11]^{T} \mathrm{~m}$. See Appendix G for nomenclature.

a. No angular momentum.

b. -1H angular momentum in the Z axis .

Figure 5. T12:IP.

c. $+0.5 H$ angular momentum in the X axis.

Figure 5. (Concluded).

Figure 6. T121G (no angular momentum).

Figure 7. T275 (no angular momentum).
the solar panels were trailing and they were statically stable with respect to aerodynamic torques. T121G was also statically stable with respect to the GG torques (therefore stable in all axes) whereas T121P was in an unstable GG equilibrium.

IEA SEEKING METHOD

The assumption is made that the total external torque, $T_{\text {ext }}$, acting on Skylab is changing linearly with the attitude offset, $\Delta \phi_{\text {off }}$, and that the partial derivatives of the torque with respect to the offset are known.

$$
\begin{equation*}
\underline{T}_{\text {ext }}=\left[\frac{\partial T_{i}}{\partial \phi_{j}}\right] \Delta_{\text {off }} \tag{7}
\end{equation*}
$$

3. An underlined quantity ($\mathrm{E} \mathrm{T}_{\mathrm{e} \times \mathrm{t}}$) is a vector with three components.
where

$$
\left[\frac{\partial T_{i}}{\partial \phi_{j}}\right] \triangleq\left[\begin{array}{lll}
\frac{\partial T_{1}}{\partial \phi_{1}} & \frac{\partial T_{1}}{\partial \phi_{2}} & \frac{\partial T_{1}}{\partial \phi_{3}} \\
\frac{\partial T_{2}}{\partial \phi_{1}} & \frac{\partial T_{2}}{\partial \phi_{2}} & \frac{\partial T_{2}}{\partial \phi_{3}} \\
\frac{\partial T_{3}}{\partial \phi_{1}} & \frac{\partial T_{3}}{\partial \phi_{2}} & \frac{\partial T_{3}}{\partial \phi_{3}}
\end{array}\right]
$$

Evaluation of the on-board total angular momentum change over the desaturation interval, $\mathrm{T}_{\text {des }}$, results in an estimate of the total external torques,

$$
\begin{equation*}
\underline{T}_{\text {ext }}=\left(\underline{H}_{-H_{p}}\right) / T_{\text {des }} \text {, } \tag{8}
\end{equation*}
$$

where \underline{H} is the present total angular momentum and ${\underset{\mathrm{H}}{\mathrm{p}}}^{\text {is }}$ its past value. The attitude offset from the torque equilibrium attitude, assuming the offset is constant, is then

$$
\begin{equation*}
\Delta \phi_{\text {off }}=\left[\frac{\partial T_{i}}{\partial \phi_{j}}\right]^{-1} \underline{T}_{\text {ext }} . \tag{9}
\end{equation*}
$$

Changing the attitude reference by $-\Delta \phi_{\text {off }}$ would, ideally, eliminate a further angular momentum change. However, the previously accumulated angular momentum away from a desired momentum state, $H_{n o m}$, has to be eliminated during the next desaturation interval by

$$
\begin{equation*}
\Delta \Phi_{\text {mom }}=-\left[\frac{\partial T_{i}}{\partial \phi_{j}}\right]^{-1}\left(\underline{H}-H_{\text {nom }}\right) / T_{\text {des }} . \tag{10}
\end{equation*}
$$

The total required attitude change is therefore

$$
\begin{align*}
& \Delta \phi=\Delta \phi_{\text {mom }}-\Delta \phi_{\text {off }} \\
& \Delta \phi=\frac{-1}{T_{\text {des }}}\left[\frac{\partial T_{i}}{\partial \phi_{j}}\right]^{-1}\left[\left(\underline{H}-\underline{H}_{\text {nom }}\right)+\left(\underline{H}-\underline{H}_{p}\right)\right] . \tag{11}
\end{align*}
$$

This method for attitude change eliminates, ideally, any initial condition within two desaturation intervals. [The parenthetical expressions in equation (11) were not combined since these quantities had to be limited separately.]

In the Skylab software, all angular momentum quantities were normalized by the nominal angular momentum magnitude, H, of one CMG, and they were called e. Equation (11) then becomes

$$
\begin{equation*}
\Delta \Phi=[\text { SLOPE }]\left(\underline{\Delta e}_{m}+\Delta e-\Delta e_{p}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { [SLOPE] }=\frac{-H}{T_{\text {des }}}\left[\frac{\partial T_{i}}{\partial \phi_{j}}\right]^{-1} \\
& \underline{\Delta e}=\left(\underline{H}-\underline{H}_{-n o m}\right) / H \\
& \underline{\Delta e}=\text { the limited value of } \underline{\Delta e} \\
& \underline{\Delta e}_{p}=\text { the past unlimited value of } \Delta e .
\end{aligned}
$$

The reorientation capability of Skylab was limited and therefore $\Delta \phi$ had to be limited also. To avoid the possibility of a large momentum offset overcoming the signal due to a momentum change, Δe_{m} is limited to a value which cannot command more than approximately 80 percent of the limit on $\Delta \phi$.

The actual reference change is done by generating a quaternion

$$
\begin{equation*}
\Delta Q_{A L}=\left[\Delta \phi / 2, \sqrt{1-0.25 \Delta \phi^{2}}\right]^{T} \tag{13}
\end{equation*}
$$

and upwing the reference quaternion ${ }^{4}$

$$
\begin{equation*}
\mathbf{Q}_{A L}(\text { new })=\overline{\bar{\Delta} \overline{\mathbf{Q}}_{A L}} \mathbf{Q}_{A L}^{(\text {old })} \tag{14}
\end{equation*}
$$

STRA.PDOWN DRIFT CORRECTION

The TEA control mode contrins a provision for strapdown updating from the ground. This capability was used extensively to maintai TEA control. The error in the strapdown was estimated by several te iniques which gave either the strapdown error components in the orbit \mathfrak{p} : ne or along the orbit normal. The only source of data for strapdown error about the orbit normal (or orbital Y axis) is data from the Sun sensor or the solar arrays. These data are available only occasionally from the Sun sensor when its line of sight along the vehicle Z axis comes within approximately 18 degrees of the Sun over a ground station. Strapdown error along orbit normal was estimated from the timing error of solar passage through the vehicle XZ plane. This event happened once per orbit on the daylight side. Passage occurred when the X Sun sensor output passed through null. Null passage was too indistinct to be reliable when the Sun was greater than 18 degrees away from the vehicle Z axis at passage. For those periods, the solar array power angle or the aerodynamic roll angle deviation was used to estimate the strapdown error. These latter techniques were less reliable and were used only when a consistent trend was established or when more than one indicator was telling the same story.

The strapdown is the onboard vehicle attitude reference, The vehicle angular rates are integrated using quaternions as attitude parameters. Since the rate data contains errors which are integrated into these quaternions, they must be corrected periodically to eliminate offsets from the true reference. Such corrections are referred to as updates. These strapdown updates are applied through an update quaternion which is quaternion multiplied onto the strapdown quaternion. The vehicle strapdown quaternion is called $Q_{V I}$, and the update quaternion is $\triangle_{V I}$. This quaternion is constructed from the vector angle $\Delta \theta_{L}$:

$$
\begin{equation*}
\Delta Q_{V I}=\left[0.5[V L] \Delta \theta_{L}, \sqrt{1-0.25 \Delta \theta_{L}^{2}}\right] T . \tag{15}
\end{equation*}
$$

4. See Appendix E for nomenclature.

The quaternion update multiplication is performed as shown

$$
\begin{equation*}
Q_{V I}(\text { new })=\overline{\bar{\Delta}}_{V 1} \mathbf{Q}_{V I}(\text { old }) \tag{16}
\end{equation*}
$$

The onboard computer computes the quaternion $Q_{L I}$ and from this comes

$$
\begin{equation*}
\mathbf{Q}_{\mathbf{A I}}=\boldsymbol{\Phi}_{\mathbf{A L}} \mathbf{Q}_{\mathbf{L I}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{V A}=\bar{Q}_{V I} Q_{A I}^{-1} \tag{18}
\end{equation*}
$$

The quaternion $Q_{A L}$ is the commanded attitude of the vehicle relative to the local vertical reference. The quaternion $Q_{V A}$ is the attitude error quaternion which is maintained close to identity by the onboard control system. A method for estimating the strapdown correction angle $\Delta \theta_{L}$ is given in Appendix D.

Originally, an automatic on-board in-the-orbital-plane strapdown update (with only updates perpendicular to the orbital plane from the ground) had been considered. It was assumed that the active TEA control had brought the V system into allgnment with the TEA at the start of the desaturation interval. At the end of the next desaturation interval any misalignment about the X_{L} axis then results in a first order offset from the ideal TEA about the Z_{L} axds. Using part of the $\Delta \phi$ correction about the Z_{L} axds for a strapdown update should bring the estimate of the orbital Y_{L} axis into alignment with the actual orbital Y_{L} axis, since the misalignment is inertially fixed and the X_{L} misalignment sweeps the whole orbital plane. This scheme worked as long as the assumption was made that the relative wind direction is always colitsar with the vehicle velocity vector. However, the atmosphere rotates vith the Earth and therefore the relative wind direction oscillates approximately two degrees about the vehicle velocity vector. The result was that the onboard strapdown update settled out at an offset which was furthermore dependerit upon the TEA used. Since the ground update method (which did not have these shortcomings) was developed at that time, the onboard update was disabled by setting its gain to zero. (There was not enough rime available to take it completely out of the ATMDC software [2]. Therefore the ground update method was used through the already existing ground command capability, eliminating the need for any further software changes).

IEA OPERATION AND PERFORMANCE

Nominal flight parameters had to be continuously generated for several days in advance since the conditions tended to change (for example: estimated density, estimated CP location, etc.). The data were given to the fight controllers in the form of tables (Table 3^{5} shows the data for DOY 171.5 through DOY 174.5 or $6 / 20 / 79$ to $6 / 23 / 79$ at noon GMT). Since the altitude decreased slowly and everybody needed time to get used to the TEA operation, the SLOPE was not changed during this time. ETLN (with components ETLN1, ETLN2, ETLN3 in the L system) is the normalized nominal angular momentum. Z-AXIS BETA is the elevation angle of the vehicle Z axis with respect to the orbital plane. $C D$ and BC are the drag and the ballistic coefficients, respectively. CMG MOM is the angular momentum in the CMG system and it is in percent of 3 H . ETSF is the normalized and filtered iotal system momentum in vehicle components. QBINOM is the nominal attitude reference quaternion $Q_{A L}$ (a QBL was existing already and could be used; therefore, the subscrips A and B are equivalent here).

Table 4 shows the Slope Matrix Update Log. The first three columns show the date when the Slope was updated (DOY 171 corresponds to $6 / 20$ and DOY 192 to 7/11). The first entry is the start of TEA control rather than the time when the initial Slope was loaded. The index in the fourth column is added to facilitate correlation with Table 5. Columns 5 through 13 show the components of the Slope as indicated by the heading. Table 5 shows what data were used to generate the slopes. The slope generation parameters for index 2 and 3 are the same; the transpose of Slope 3 had ieen sent up (Slope 2) by mistake, whereupon control was promptly lest. Slope 3 was sent as soon as attitude control had been regained. Slope 13 was used for a higher altitude than the one for which it was calculated, since 46 hr gap in the gound coverage eliminated an additional slope change and it was considered better to have the proper slope at a lower altitude and take a reduced gain at the higher altitudes.

Figure 8 shows the actual BAR angles for DOY 172:03:21 to DOY 172:06:12 versus time in seconds and the predicted BAR angles are shown as horizontal lines. It can also be noted that the BAR angle traces zig-zagged. indicating that the gain was too high. As a consequence the slope gain was later reduced to 0.5 from 1.0 , resulting in a much smoother trace. The actual BAR angles are only correct to within the strapdown error, which, due to the availability of acquisition Sun Sensor (ACQ SS) information, was less than 1 degree. A very good correspondence between the nominal and the actual BAR angles can be seen, indicating that the prediction of the $C M$ and $C P$ locations, as well
5. In the APL computer language, a minus sign is a superscript minus (to distinguish it from the subtraction operation).
table 3. NOMINAL FLIGHT PARAMETERS

	ALTITUDE	
INDEX	KM	NH
	262.925	141.968
1	260.825	140.8 .34
2	259.493	140.115
3	257.671	139.131

BETA
18.20
13.40
8.60
4.10

TABLE 3. (Concluded)

DAY	$\begin{gathered} \text { DATE } \\ \text { HR } \end{gathered}$	MIN	IND	1.1	1.2	1.5	$\begin{aligned} & \text { LOPE MA1 } \\ & 2.1 \end{aligned}$	$\begin{gathered} \text { RIX COn } \\ 2.2 \end{gathered}$	$\begin{gathered} \text { ONENTS } \\ 2.3 \end{gathered}$	3.1	3.2	3.3
171	13	17	1	2.838	2.171	4.271	0.791	0.410	1.129	1.466	1.398	1.557
175	16	14	2	1.975	1.058	2.125	1.719	0.249	1.513	3.702	1.244	1.982
175	19	21	3	1.975	1.719	3.702	1.058	0.249	1.244	2.125	1.513	1.982
176	15	57	4	2.598	1.309	2.803	1.421	0.122	1.782	2.805	2.066	2.925
177	15	43	5	1.664	0.319	0.711	0.756	0.215	1.101	1.478	1.218	1.684
180	13	45	6	1.904	0.004	0.072	0. 759	0.215	0.825	0.973	0.873	0.716
181	13	32	7	1.522	0.137	0.212	1.010	0.197	0.880	1.383	0.842	0.683
183	20	52	8	1.088	0.093	0.130	0.662	0.050	0.732	1.167	0.736	0.736
186	13	50	9	0.784	0.853	0.024	0.239	0.880	0.520	0.555	0.515	0.379
189	20	21	18	0.378	0.073	0.056	0.006	0.193	0.351	1. 246	0.328	178
190	13	42	11	0.283	0.079	0.861	0.046	. 212	0.319	204	0.294	
191	4	9	12	0.208	0.084	0.065	0.175	0.232	0.295	. 178	0.269	
191	17	57	13	0.189	0.189	0.145	0.236	0.531	0. 539	.288	- 48	
192	3	33	14	0.106	0.204	0.187	0.276	. 678	0. 541	1.279	0.48	

TABLE 5. SLOPE GENERATION PARAMETERS

Figure 8. Actual BAR angles (DOY 172:03:21/172:06:12).
as the aerodynamic coefficients, was much better than anticipated. The nominal BAR angles were generated assuming that the relative wind velocity is antiparallel to the vehicle velocity vector, but reduced by an amount appropriate for the Earth rate. The nominal BAR angles are therefore the nominal average of the actual BAR angles. Some of the good correspondence is due to the fact that changes in ETLN 1 were used to influence the roll angle. Initially, a roll angle smaller than nominal was very detrimental since the slope matrix changed drastically such that a roll angle of less than 90 degrees was found to be unstable: The actual slope components had changed sign. An initial unfavorable rate gyro bias could have changed the actual roll angle by that much long before the ground would have had enough data to detect and correct for it. To eliminate this possibility, a favorable rate gyro bias compensation was introduced into the software such that if we had had the bad gyro drift, the compensation would have eliminated it. As it turned out, the real rate gyro bias was in a good direction and the compensation had to be changed to the opposite polarity (as always, Skylab seemed to refute Murphy's Law, since anything that could go right, would; also see the last paragraph of this section). The great sensitivity to the rate-gyro introduced drift about orbital North was due to the relatively large negative angular momentum bias in the Z axis (ETLN $3=-1 H$) which then was resolved into the actual X_{L} axis thereby changing the equilibrium position drastically. This resolution also suggested the (at least temporary) remedy: Buck it with an appropriate amount of momentum bias in the X_{L} axis.

An overview of the BAR angles for the three weeks of TEA operation is given in Figure 9. The bank angle is the lowest trace, the angle of attack is in the middle, and the roll angle is the highest. The horizontal scale is in days, the numbers indicate the start of a day. Only BAR angles from the auxiliary storage and playback recorder (ASAP) tapes are shown, since they were saved in our ground computer.

TEA control was initiated on DOY 171:13:17 GMT ($6 / 20 / 79$) and Skylab impact occurred on DOY 192:16:37 GMT (7/11/79). During the latter half of DOY 171 , it can be seen that the average roll angle steadily increased. This was due to the initial rate gyro bias (intentional compensation and basic bias). After corrective action was taken the angles settled close to their predicted values. Figures $9 a$ and $9 b$ show the BAR angles during the shift in ETLN 3 from -1 H to 0 between DOY 175.5 and DOY 180.5. With the gradual removal of the ETLN3 the sensitivity to rate gyro drift was removed; however, the excellent control capability over the roll angle (and with it, the drag) also vanished. In fact, the actual roll angle could later not be influenced at all (the indicated roll angle also showed the effect of strapdown error about orbit North and this fact in conjunction with the fact that the actual roll arigle was steady, allowed the use of the indicated roll angle for strapdown update about orbit North).

a. First week.
Figure 9. BAR angles.

b. Second week.
Figure 9. (Continued)

c. Third week.
Figure 9. (Concluded)

To illustrate the evaluation of the information on the ASAP tapes, DOY 187:16:56:30 to DOY 187:20:56:30 are taken as an example. Table 6 shows the basic QBL/time ($Q B L=Q_{A L}$) information, the equivalent
BAR angles are shown in Table 7 and graphed in Figure 10. The BAR angles were always evaluated for their average and a sinusoid of orbital frequency. The latter was fitted by a least-square fit, after the average had been subtracted. The results for our example are shown in Figures 11, 12, and 13. In the lower left quadrant of each figure there is a table of expected angle values (right column) as a function of the orbital angle (left column). Since the circle charts (Fig. 14) show this orbital angle, the tables were used to check the actual BAR angles (live; from telemetry) against these reference angles.

The sinusoids in the angle-of-attack and roll angle were due to the relative wind direction oscillating about the vehicle velocity direction (since the atmosphere rotates with the Earth). The sinusoid in the bank angle was due to the in the orbital-plane strapdown error and the appropriate strapdown update is shown in the upper left hand corner of Figure 11, both with respect to orbital midnight and with respect to the actual time; the update is to be telemetered. For the latter a resolution of the error with respect to midnight had to be made.

Application of the various methods was severely hampered by lack of data and large delays between the occurrence and the receipt of the data. If the strapdown arror had drifted substantially there would have been no way to correct it in time to prevent loss of control. Fortunately, the rate gyro drift components in the orbital plane (if constant) integrate to exactly zero in one revolution and generally TEA control was not very sensitive to the drift components along the orbit normal. In-plane strapdown errors resulted from inaccurate navigation updates and from the Sun motion of about 1 degree/day. For data on strapdown errors, the onboard ASAP tape recorder had to be run for at least one full orbit (more consecutive orbits were desired for noise content reduction) during a quiet state; i.e., the last slope update had to be done two orbits before and no other strapdown correction was permitted. Once the ASAP tape was dumped over a ground station, it took at least another half hour of data processing and parameter extraction. The results were 18 sets of $Q_{A L}$ per orbit, which then had to be fed into our Sigma 5 computer to be evaluated with the appropriate programs. The actual updating of the parameters had to wait until the next ground station. The bottom line was, that the delay in the actual onboard happening and the corrective action amounted to at least two orbits, sometimes more.

The ground support operations were aided by the "circle charts" (Fig. 14) and telemetry formats (Format 8 for TEA parameters is shown in Fig. 15). The data on Format 8 changed every second provided the Skylab was over a ground station; the circle charts were applicable for one orbit.

888 ק曰я

 NNMNNNNNNNNFनエNNNNNNNNNN

BAR ANGLES FOR OBL18716

Figure 10. Actual BAR angles (DOY 187:16:56/187:20:56).

DETHL WRT MIBNIGHT 0.99947
 SUGGESTED DETML 2.8723 -0.21296
 THE AUERAGE DANK ANGLE IS 79.186
 2.8012

$180: 5: 278$
$187: 17: 2180.00$
$187816: 56: 30.08$
$187: 28: 56: 30.00$
Figure 11. Bănk angle evaluation for QBL18716.

THE AUERAGE ANGLE OF ATTACK IS 101.51
THE AHPLITUDE IS 6.41

Figure 12. Angle-of-attack evaluation for QBL18716.
THE AUERAGE ROLL ANGLE IS 121.47 ∞
0
0
0
M

Figure 13. Roll angle evaluation for QBL18716

evaluation for QBL18716.

1
STATION ACQUISITION PERIODS FQR SKYLAB
TIME OF NORAD ELEMENT SET $\begin{gathered}12: 09: 17 \\ 7-5: 79\end{gathered}$
$\begin{array}{ll}\text { DATE } & 7-7-79 \text { (FIRST AOS) } \\ \text { ORBIT NUMBER } \\ \text { DAY NUMBER } & 188\end{array}$

$$
\begin{aligned}
& \text { DAY NUMBER } \\
& \text { BETA ANGLE }
\end{aligned}
$$

01:28:43.48

-25.4709 DEG

$$
\begin{array}{ll}
1 \text { REU DELTATIME } & 01: 28: 43.48 \\
\text { ORBITAL MIDNIGHT } & 05: 15: 45.59 \\
\text { ORRTTAI GIINRISE } & 05: 33: 52.81
\end{array}
$$

$\underset{\substack{\text { ORBI } \\ \text { NOAL }}}{ }$
neOM
Figure 14. Circle chart.

The circle chart has midnight at the 6 o'clock position; the outer numbers are minutes from midnight; the inner ones are orbital degrees from midnight. Orbital night time is indicated by the heavy part of the circle. The boxes on the outside of the circle indicate the ground station coverage; the ground stations are Ascension (ACN), Bermuda (BDA), Goldstone (GDS), Madrid (MAD), and Santiago (AGO).

Format 8 showed the present and the past Δe, the present attitude reference change $\Delta \phi$, and any impending strapdown update $\Delta \theta$. Also shown were the filtered total system momentum (in units of \bar{H}), the CMG momentum (in percent of 3 H), and the inner and outer gimbal angles (to the nearest degree) plus their gimbal rates.

Of further interest are the quaternions $Q_{A L}(Q B L), Q_{V A}$, and $Q_{V I}$. The first allowed evaluation of the current BAR angles, the second showed how well the vehicle was following the attitude reierence, and the third indicated the attitude with respect to the SI system (useful for determining the closest approach of the Sun line to the center of the ACN SS which then was used for strapdown update information).

The history of the TEA control parameters as well as the solar elevation angle with respect to the orbital plane are shown in Figures 16 through 20. The biasing history of the rate gyros is shown in Figure 18. Only one rate gyro was still operating in the Y axis (Y3), two each were averaged for the other two axes (X1 and X3; Z1 and Z2). As mentioned before (cf. middle of 3rd paragraph of this section), the initially introduced beneficial bias had to be taken out and replaced with a bias of the opposite sign. The fact that in two axes two rate gyro outputs were averaged allowed us to work effectively with half least significant bits (LSBs) by biasing only one of the averaged gyros with a full LSB. A trimming of the rate gyros to within about 0.25 degree/ orbit drift was therefore possible.

The relatively many changes in ETLN1 (Fig. 19) reflect our effort in controlling the roll angle to acceptable values. ETLN 2 did not influence the TEA since it was parallel to the orbital velocity, but it affected the CMG gimbal angles and was therefore changed once (in two steps, to minimize the transients) to improve the actual gimbal angle traces.

Simulation predicted that TEA control in T121P was possible down to about 140 km ($75 \mathrm{n} . \mathrm{mi}$.) and in T 275 down to 130 km ($70 \mathrm{n} . \mathrm{mi}$.). At these altitudes the GG and precessional torques were no longer large enough to achieve zero external torques in all axes simultaneously. Very fortunately, Skylab was about to reenter on the most desirable orbit, one with the least population density beneath it. This orbit, however, did go over the United States, the southern part of Canada and over Australia, but most of it was over water. Therefore, only a slight

Figure 17. Skylab altitude and Sun elevation angle for DOY 171/192, 1979.

Figure 18. History of rate gyro biasing.

Figure 19. History of slope matrix updates, momentum error limit changes, and ETLN $1,2,3$ changes.

DOY

Figure 20. History of strapdown updates.
adjustment of the nominal impact point (which was in the Atlantic Ocean) was indicated, and there was no need to maneuver to the low-drag T275 attitude (this attitude was on an unstable equilibrium in all axes, and the equilibria were much more precarious than the ones in T121P). The slight impact point adjustment could be achieved by going to a random tumble (with somewhat less average drag than T121P) at an altitude of 150 km ($81 \mathrm{n} . \mathrm{ml}$.). This was done by commanding a delayed maneuver from the T121P attitude to the solar inertial attitude. The latter, due to the high aerodynamic torques, could not be held, and a random tumbling resulted. On the average this random tumbling had the desired drag, which then lengthened the lifetime sufficiently to place the nominal impact at the desired location. The vehicle broke apart later and, therefore, lower than expected. As a consequence the drag was reduced, shifting the reentry point farther downrange.

CONCLUSIONS

The TEA control was most successful in performing the mission that was originally laid out for it. The experience gained from the TEA control effort in particular and the Skylab Reactivation in general will be valuable in all future space activities. We found out that we could, in fairly short order, come up with new control methods, new procedures, and new tools to perform tasks and accomplish goals that would have been considered impossible prior to the original mission. However, this fast reaction capability was due to the fact that we were able to use APL on a Sigma V computer with interactive terminals. We can flatly state that without APL the development of the new Skylab control methods (EOVV and TEA control) would not have been possible in the extremely short time available (EOVV control [1] was conceived, developed, simulated, implemented, and flowr in less than three months). In many respects TEA control was more successful and went more smoothly than the previous phase with EOVV. This may have been due in part to the greater efforts in preparation and time available for TEA. It seems also likely that the experience gained from EOVV carried over to TEA and sustained our confidence. The demonstrated use of aerodynamic torques for spacecraft attitude control seems destined to be of value for design of future, low altitude spacecraft or tethered vehicles.

APPENDIX A

AEROD YNAMIC TORQUE MODEL

A set of six coefficients were developed to express forces and torques in body coordinates as a function of the velocity of the vehicle relative to the air. If this velocity is V , then the forces and torques relative to the origin of coordinates are

$$
\begin{align*}
& \underline{\mathrm{F}}=0.5 \delta \underline{\mathrm{~V}}^{2} \mathrm{~A} \underline{\mathrm{C}}_{\mathrm{F}} \tag{A1a}\\
& \underline{\mathrm{~T}}=0.5 \delta \underline{\mathrm{~V}}^{2} \mathrm{AD} \underline{\mathrm{C}}_{\mathrm{T}} \tag{A1~b}
\end{align*}
$$

where $\delta\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ is the density and

$$
\begin{aligned}
& \mathrm{A}=79.46 \mathrm{~m}^{2}\left(855.3 \mathrm{ft}^{2}\right) \text { reference area } \\
& \mathrm{D}=10.06 \mathrm{~m}(396 \mathrm{in} .) \text { reference diameter } \\
& \underline{C}_{\mathrm{F}}=[-\mathrm{CA}, \mathrm{CY},-\mathrm{CN}]^{\mathrm{T}} \text { force coefficients } \\
& \underline{C}_{T}=[\mathrm{CL}, \mathrm{CM}, \mathrm{CEN}]^{\mathrm{T}} \text { moment (torque coefficients). }
\end{aligned}
$$

The force and moment coefficients had been calculated by Northrop [6] with a computer program generated by Lockleed [7] and are given in Table A1. These coefficients depend only on the direction of V (it is to be noted that the density is assumed to be small enough that free molecular flow assumptions apply). This direction is customarily expressed as aerodynamic roll angle and angle of attack, p and a respectively. These are defined in the Skylab vehicle as (cf. Eqs. 3 and 4):

$$
\begin{align*}
& \alpha=\arccos \left(V_{x} /|\underline{V}|\right) \tag{A2}\\
& \mu=\arctan \left(V_{y} / V_{z}\right) \quad \text { (four quadrant) } \tag{A3}
\end{align*}
$$

TABLE A1．FORCE AND MOMENT COEFFICIENTS

RHO＝

RHO $=360$.	ALIHA	CA
	\checkmark	2401
	くi。	3．156
	40	4.124
	$66!$	3． 356
	80	1.433
	96	．001
	1（1）	－！529
	120.	－4．142
	：41：．	－5 136
	： 6 h ．	－4106
	180	－ 290

CY	$C \mathrm{C}$
－UB2	． 612
． 619	2．314
－Elob	3.771
－ 600	6.235
CHO	\％． 578
．VOO	4.330
－idivi	9.153
光も0	7.665
06！ 6	4644
． 614	1．703
－to ！	． 6 （i）

CL	CM	CEN
046	－ 332	－． 298
109	－1 578	－． 421
65\％	－3．628	－． 719
958	－5．041	－． 522
1． 458	－6 132	－． 244
1.762	－6 423	－．nol
1.745	－5．767	291
1.430	－4．362	776
HSti	－2．161	． 943
314	－ 487	． 731
－1゙いい	364	． 435

$$
\begin{gathered}
C Y \\
-612 \\
-4118 \\
-1.143 \\
-1.947 \\
-2.646 \\
-2.857 \\
-262! \\
-2.335 \\
-4426 \\
-565 \\
-401
\end{gathered}
$$

$$
\begin{gathered}
C N \\
.622 \\
1.225 \\
3.172 \\
5.657 \\
7.626 \\
6.237 \\
8.332 \\
6.757 \\
4.181 \\
1.552 \\
1.16 U
\end{gathered}
$$

CL	CM	CEN
－bitiot	－ 332	－ 298
249	－1． 492	－． 143
465	－3． 294	． 15
3．315	－6．677	479
2.6162	－5．639	2． 625
2.242	－5． 80.17	2．4．11
2275	－5．25］	2253
1． 1035	－3．842	2.414
1.1195	－1．445	1.944
34：	－． 414	2．112
Wel！	364	436

$C Y$	
-1612	
	－ 724
	1445
	3375
	4．49：
	4．674
	d． 495
－． 3	3752
	2 340
	－ 34%
	－nhl

CN
.1622
464
2.365
4.279
5.647
5.874
5.659
4.745
3.473
3.243
.604

Cl	CM	CEN
	－ 332	－． 298
270	－1． 249	． 121
75：1	－2．496	． 910
2．54\％	－3．778	1．97：
2．457	－4．170	2.925
2．：62	－4．445	3.273
2．1495	－3．564	3.345
3．71！	－2．578	3．36！
1 02 H	－1． 326	2.537
357	－199	1．26！
． 4 is 0	3：14	436

RHO $=66 . \Lambda$

ALYHA	CA	CY
4	2 4bl	－いい2
20	2.787	－ 929
40.	3036	－2．24
60	2．566	－3 931
His	． 497	－4 459
9 iz	． 163	－5．163
106	－． 493	－4．973
126	－2 725	－4．169
1411	－3．591	－2．663
166	－3．201	－2． 1143
180	－2 590	－． $\mathrm{k} \geqslant 1$

$C N$
.412
.669
1.419
2.415
3.126
3.175
3.046
2.578
1.695
.716
.614

CI，	CM	CFN
$1 i) 6$	-332	-.248
199	-.937	.527
519	-1.632	1.583
.491	-2.263	2.744
1.296	-2.284	3.434
1.354	-2.124	3.666
1.319	-1.854	3.599
1.696	-1.353	3.459
.648	-.693	2634
.265	-.149	1.356
.164	.364	.436

TABLE A1. (Continued)

RHO $=80$.	ALPHA	CA	CY	CN	CL	CM	CEN
	θ	2.401	-. 002	.002	.000	-. 332	-. 298
	24.	2.600	- 994	. 227	. 126	-. 497	. 728
	40.	2.669	-2.295	. 468	. 256	. .695	2.049
	64.	2.110	-3.711	.733	.475	-. 874	3.243
	80.	. 812	-4.615	. 903	. 64 年	-.9?9	3.899
	98.	. 064	-4.715	. 922	. 664	-. 738	3.984
	100.	-.801	-4.600	. 900	. 639	-. 593	3.862
	120.	-2.111	-3.7n3	. 734	.474	-. 329	3.255
	140.	-2.760	-2.348	. 491	. 265	-. 155	2.373
	166.	-2.700	-1.011	. 248	. 141	. 891	1.225
	180.	-2.594	-.und	. 000	. 008	. 3164	. 436
RHO $=90$.	alpila	CA	cy	CN	CL	CM	CEN
	v.	2.401	-. 002	. 002	.0n0	-. 332	-. 298
	20.	2.707	-1.048	-.001	. 117	- 317	. 786
	40.	2.687	-2.346	- 801	. 227	-. 269	2.062
	60.	1.998	-3.551	-.001	. 332	-. 192	3.221
	86.	. 741	-4.281	. H 4 A	. 386	-. 868	3.865
	96.	. 004	-4 348	. 000	. 391	. H ¢	3.948
	140.	-. 730	-4.269	. 800	. 385	. 468	3.844
	120	-1 988	-3.545	. 000	. 333	. 193	3.257
	146.	-2.742	-2.372	.000	. 223	. 265	2.378
	164.	-2.813	-1.066	-.b41	. 112	. 305	1.350
	180	-2.590	- 001	. 000	.000	.304	. 436
RHO = 10w.	ALPHA		CY	CN	CI.	CM	CEN
	Δ.	$2.40\}$	-. 002	. 002	. Ong	.. 332	-. 298
	20.	2.517	- 966	-. 224	.118	-. 150	. 788
	40.	2.718	-2.330	- 472	. 248	. 1486	2.961
	60.	2.154	-3 778	-. 751	. 433	. 355	+3.280
	84.	. 832	-4.721	-. 933	. 567	. 652	4.032
	910.	. 1604	-4 457	-. 961	. 575	. 785	4.181
	1190	-.827	-4.734	-. 938	. 552	. 872	4.164
	124.	-2.186	-3.825	-. 768	. 395	.,904	3.503
	146.	-2.810	-2.392	-. 508	. 199	. 735	2.422
	164.	-2.638	- 948	-. 245	.084	. 518	1. 125
	180.	-2.59b	-. 101	. 060	.006	. 364	. 436
RHO $=12 \mathrm{v}$.	ALPha	CA	cy	CN	CL	CM	Cte
	0.	2.411	-. 102	. 1102	.n@y	-. 332	-. 298
	26.	2.952	-. 985	-. 663	. 133	-. 836	. 663
	41.	3.522	-2.637	-1. 555	. 297	. 606	1.926
	66.	2.854	-4.367	-2.691	. 654	1.525	3.279
	46.	2.122	-5.576	-3.422	. 722	2.423	4.279
	96.	. 864	-5.826	-3.578	. 668	2.755	4.572
	108.	-1.128	-5.637	-3.465	. 626	2.875	4.554
	121.	-2.943	-4 494	-2.778	. 445	2.722	3.977
	149.	-3.513	-2.613	-1.643	. 204	1.923	2.634
	160.	-3.1044	-. 998	- 678	.063	1.435	1.218
	180.	-2.590	- 061	. 046	.060	. 384	. 436

TABLE A1. (Continued)

$\mathrm{RHO}=14 k$.	altila	CA	Cy	CN	CL	CM^{M}	CEN
	3.	2.461	-. 6.02	.622	. 06.19	- 332	-. 298
	20	3.344	-. 821	-2.095	. 1995	. 675	. 413
	40	4.262	-2.322	-2.953	. 313	1.117	1.379
	60.	3.423	-3.476	-4.853	. 352	2.804	2.552
	86.	1.315	-4.846	-5.129	. 363	4.122	3.427
	90.	.60) 4	-5.1472	-6. 320	. 264	4.593	3.735
	did.	-1.317	-4.971	-6. 666	. 223	4.746	3.798
	220.	-3.298	-3.731	-4 661	. 129	4.323	3388
	146.	-3.981	-2.194	-2.777	1488	3.6112	2.315
	16t.	-3.269	-. 783	-1.1041	-. 023	2. 376	1.496
	140	-2.590	- 0,41	. 100	. 0614	. 364	. 436
RHO $=164$.	Aleya	CA	Cy	Cod	Cl .	CM	CEN
	:	2.46:	-.802	Hu2	. Wea	-. 332	-. 298
	$2 \dot{8}$	3.536	-. 473	-1.434	-. 621	. 154	. 638
	46	4.713	-1. 384	-4.122	-. 219	1.598	. 449
	66	3.857	-2.320	-6.5.58	-. 365	3.719	1.121
	8.	1.471	-2.8.76	-4.215	- 582	5.471	1.839
	yi,	. 095	-2.423	-4.339	-. 683	$5.94 i$	2.231
	16.4	-1 399	-2.754	-7.853	-. 549	5.988	2.216
	120.	-3.566	-2.148	-6.146	-. 453	5.358	2.146
	146.	-4.344	-1.254	-3.653	-. 324	3. 712	1. 652
	156.	-3.313	- 429	-1.298	-. 122	1.548	. 846
	286.	-2 598	- 610	. 40 a	. 698	. 364	. 436
$R 130=188$.	ALPIA	ca	CY	C!	CL.	CH^{4}	CEN
	,	2.46	- 162	. 462	. 6041	-. 332	$-.298$
	2i.	3866	- w1	-1.618	-. 231	. 335	-. 536
	ab.	4.873	- !al	-4.416	-. 632	1.784	-. 686
	66.	4.137	- 801	-7 368	-1. 252	4.023	-. 674
	8 B	2.5:8	-. 0151	-8.945	-1. 573	5.782	-. 264
	9%.	. 865	- [b]	-9.236	-1.671	6.373	. 604
	161.	$-1.4 .16$	- 6n!	-8.640	-1.488	6.346	. 248
	126.	-3.515	- Hin	-5.438	-1.1124	5334	. 556
	146.	-4.3t:	- vn!	-3.886	-. 706	3.821	. 767
	162.	-3.344	- M62	-1.390	-. 225	1.731	. 519
	180.	-2.590	- 081	. 670	. 000	. 3 3/ 4	. 436
RHO $=26 \mathrm{Vi}$.	Altha	CA	cy	CN	CL.	ClM	CEM
	,	2. 4615	-.tn2	1142	. 0141	-. 332	-. 298
	20.	3.554	. 450	-1.464	-. 237	.115	-. 665
	46.	4.672	1. 369	-3.989	-. 885	1.568	-1.59n
	61	3.441:	2.307	-6. 529	-1.764	3.678	-2.284
	8 \%.	1.436	2807	-3.615	-2.171	5.214	-2.234
	9 w .	. 6 (\%)	2.875	-8.213	-2.230	5.757	-2.643
	360.	-1. 359	2.674	-7.625	-1.968	5.746	-1.687
	328.	-3.321	1.999	-5.715	-1. 352	4.938	- 976
	146.	-3.882	1. 136	-3.295	- 826	3.383	-. 236
	160.	-3.246	. 418	-1.271	-. 288	1.536	. 136
	18%.	-2.5981	- led	. 660	. neo	. 384	. 436

table al. (Continued) Ohamachation on the

$\mathrm{RHO}=226$.	Alpha.	CA	CY	CN	CL	CM	CEN
	1.	2.401	-. 002	. 002	. 000	-. 332	-. 298
	20.	3.212	. 779	-1.058	- 260	. 089	-. 824
	40.	3.9189	2.137	-2.759	-. 832	. 832	-1.830
	60	3.187	3.585	-4.532	-1.591	2.383	-3.015
	84.	1.224	4.482	-5.615	-2.897	3.532	-3.302
	96.	. 004	4.714	-5.902	-2.244	4.025	-3.252
	100.	-1.225	4510	-5.655	-2.148	4.192	-2.918
	126	-2.767	3.114	-3.928	-1. 397	3.662	-1.96.9
	146.	-3.255	1.778	-2.281	-. 771	2.585	-. 983
	160	-3.029	. 733	-. 982	-. 302	1.318	-. 138
	180.	-2.590	-. 001	. 000	. 108	. 304	. 436
RHO $=246$.	Alpha	CA	CY	CN	CL	CM	CEN
	0	2.4111	-.002	. 002	. H 0 y	- 332	-. 298
	20.	2.798	. 920	-. 632	-. 222	-. 086	-. 908
	40.	3.063	2.264	-1.456	-. 588	. 346	-1.769
	60.	2.473	3.748	-2.357	-1.014	1.082	-2.788
	80.	. 976	4.809	-2.993	-1.344	1.828	-3.403
	90.	.005	5.065	-3.149	-1.423	2.166	-3.531
	100.	-. 974	4.832	-3.020	-1.373	2.317	-3.321
	120.	-2.419	3.659	-2.312	-1.022	2.292	-2.657
	146.	-2.962	2.179	-1.406	-. 587	1.727	-1.575
	166.	-2.901	. 946	-. 649	-. 246	1.013	-. 501
	180	-2.591	-.001	. 000	. 000	. 304	. 436
RHO $=26 y$.	ALPHA	CA	CY	CN	CL	CM	CEN
	θ.	2.481	-. 002	. 002	.000	-. 332	-. 298
	20.	2.378	. 898	-. 212	-. 126	-. 175	-. 836
	40.	2.480	2.189	-. 440	-. 281	037	-1.836
	60.	1.986	3.445	-. 702	-. 500	. 277	-2.874
	80.	. 786	4.423	-. 893	-. 667	. 594	-3.664
	90.	. 005	4.626	-. 935	. 781	. 747	-3.858
	160.	-. 779	4.431	-. 900	-. 671	. 833	-3.698
	120.	-1.999	3.464	-. 717	-. 507	. 884	-3.870
	146.	-2.595	2.186	-. 468	-. 290	. 732	-2.037
	160.	-2.556	. 951	-. 239	-. 143	. 518	-. 745
	180.	-2.590	-.001	. 000	.000	. 384.	. 436
RHO $=270$.	ALPHA	CA	cy	CN	CL	CM	CEN
	θ.	2.401	-. 102	. 082	. 000	-. 332	-. 293
	20.	2.625	1.005	.006	-. 121	-. 339	-1.134
	40.	2.628	2.269	. 610	-. 234	-. 292	-2.149
	66.	1.988	3.516	. 009	-. 333	-. 203	-3.251
	81.	. 763	4.360	.004	-. 370	-. 069	-4.011
	94.	. 605	4.515	.001	-. 362	-. 001	-4.164
;	180.	-. 754	4359	. 003	-. 367	. 061	-3.969
	120.	-2.049	3.615	. 007	-. 317	. 177	-3.281
	140.	-2.829	2.424	. 006	-. 212	. 246	-2.117
	160.	-2.858	1.074	. 002	-. 110	. 297	-. 659
	180.	-2.590	- 001	. 000	. 1000	. 304	. 436

TABLE A1．（Concluded）

RHO $=280$.	$\underset{6}{A L E H A}$	$\begin{gathered} C A \\ 2.4 m] \end{gathered}$	$\begin{gathered} c . Y \\ -.062 \end{gathered}$	CN $.012$	Cl． ．H14	$\begin{gathered} C M \\ -.332 \end{gathered}$	$\begin{gathered} \text { CEN } \\ -.298 \end{gathered}$
	26.	2.576	． 977	． 235	－． 105	－．515	－1．056
	46.	2.706	2.307	． 493	－． 226	－． 729	－2．227
	60	2.154	3.775	780	－． 428	－． 435	－3 411
	81.	． 847	4.776	． 976	－． 553	－． 925	－4．168
	90	．W4， 5	4.445	1．409	－． 555	－． 846	－4．285
	± 66	－． 839	4.78 il	． 991	－． 542	－． 708	－4．078
	126.	－2．204	3.834	． H \％ 6	－． 378	－． 426	-3.291
	：46．	－2．865	2.421	． 526	－． 165	－． 201	－2．484
	： 68.	－2．760	1.127	． 257	－．07\％	． 1076	－． 690
	284	-2.594	－k．6） 1	viub	－ 30%	． $3!4$	． 436
RHO $=3: 0$.	ALFHA	$C \cdot$	CY	CN	Cl，	Cid	CES
	\％．	2.401	－－\％	． 062	． 6.6%	－． 332	－． 298
	20．	2302	． 943	． 624	－．1196	－． 953	－1． 13
	46.	3.255	2457	1．548	－． 296	－1． 774	－2．271
	6iv．	2．r2\％	4．323	2.678	－ 536	－2．577	－3．571
	8 bi．	2．325	5.56%	3.436	－． 659	－2．945	－4．401
	90.	． 1 iñ 4	5.866	3.544	－． 644	－2．772	－4．579
	$\underline{10}$ \％	-1.136	5． 528	3.679	－． 506	－2．469	－4．287
	120.	－2．487	4.548	2.438	－． 420	－1．721	－3．314
	246.	－3 769	2.744	1.785	－． 2602	－． 824	－1． .46
	$16 a$.	－3．299	1．674	． 734	－． 049	－． 122	－． 519
	¢ EV．	－2 59.1	－6ibl	－bita	． 11414	． 344	． 436
$\mathrm{RHO}=320$.	ALEITA	$C A$	CI	Cu:	$C \cdot L$	$C: 1$	CEN
	\％	2.401	$- \text {. } 142$	$.012$	Cut	$-.332$	－． 298
	26．	2945	726	． 9.51	－． 445	－1． 235	－． 827
	$4 i!$ ．	3.699	2．033	2.625	－．162	－2．778	－1．954
	60.	3.187	3.589	4.558	－． 231	－4．119	－3．12
	86.	1．29．4	4.746	5.971	$-.295$	－4．5，27	－3． 5.56
	Y6．	－！4］	4.490	6.291	－． 185	－4 529	－3．723
	160.	-1.323	4.846	5.114	－．167	－4．17！	－3．393
	120	－3．535	3.473	5.1437	－． 73	－2．977	－2．472
	： 4 k ．	－4 533	2.476	3．289	．43	－1．462	－1．191
	166．	－3．6， 05	． 874	1．18y	． 441	－． 250	－． 137
	180	－2．59x	－bid		． 1000	． 314	． 435
RHO $=340$.	ALPiA	C＇A	UV	Cl：	CL	$C 1$.	CFW
	b．	2.401	－\％！2	． $10 \% 2$	．Ata	－． 332	－． 209
	20.	3.103	． 465	1.208	． 1454	－1．-454	－． 651
	40.	4.145	2．249	3.566	． 268	－3．533	－1．522
	60.	3． $46: 7$	2．1：37	5.923	． 393	－5．011	－1．972
	$8 i 9$.	1．371	2.546	7.762	． 493	-5.830	－2．132
	9 jij ．	－．．． 3	2933	8.46%	．719	－6．6．51	－2．125
	200.	－1． 492	2.911	8.393	． 755	－5．535	－1．814
	126.	－3．971	2．374	6.457	672	－4．bes	－1．634
	146.	－4．956	2．442	4． 224	． 033	－1．433	－．192
	169.	－4．1．67	． 510	1.566	178	－． 439	． 276
	186.	－2． 590	－081	－もいい	－69\％	． 364	． 436

The aero data provided us consisted of six coefficients $\mathbf{C}_{\mathbf{F}}$ and \mathbf{C}_{T} for each of 231 directions defined by $\rho=0,20, \ldots, 360,90,270$ and $a=0,20$, $\ldots 18^{n}$ an To get forces and torques for other directions we had to interpolate and initially we used a linear interpolation scheme. This was satisfactory at first but later caused problems in the calculation of TEA control coefficients. Ultimately a Fourier fit of the data was used. This model was set up such that each table value was reproduced and since the in-between values were now produced by a sinusoidal series, the variations were extremely smooth and computation problems were eliminated. The coefficients $C_{i}\left(\alpha_{j}, \rho_{k}\right)$ can be expressed as a finite series of sines and cosines in a two-step process.

$$
C_{i}\left(\alpha_{j}, \rho_{k}\right)=\sum_{m=0}^{10} a_{i m}\left(\alpha_{j}\right) \cos m \rho_{k}+\sum_{m=1}^{10} b_{i m}\left(\alpha_{j}\right) \sin m \rho_{k} .
$$

It can be observed that the given set of angles for ρ is equivalent to the following more convenient set: $\rho=0, \pm 20, \ldots, \pm 180, \pm 90$. We can simplify our task by defining two auxiliary functions G and H such that

$$
\begin{align*}
& \mathbf{G}(\alpha, p)=0.5[\mathbf{C}(\alpha, \rho)+\mathbf{C}(\alpha,-\rho)] \tag{A5}\\
& \mathbf{H}(\alpha, \rho)=0.5[\mathbf{C}(\alpha, p)-\mathbf{C}(\alpha,-\rho)] \tag{A6}
\end{align*}
$$

These functions can be expressed as

$$
\begin{align*}
& G_{i}\left(\alpha_{j}, \rho_{k}\right)=\sum_{m=0}^{10} a_{i m}\left(\alpha_{j}\right) \cos m \rho_{k} \\
& H_{i}\left(\alpha_{j}, \rho_{k}\right)=\sum_{m=1}^{10} b_{i m}\left(\alpha_{j}\right) \sin m \rho_{k} .
\end{align*}
$$

The functions $G_{i}\left(\alpha_{j}, \rho_{k}\right)$ and $H_{i}\left(\alpha_{j}, \rho_{k}\right)$ can be computed for each α_{j} and equations (A7) and (A8) inverted to obtain $a_{i m}$ and $b_{i m}$. In turn these coefficients can be expressed as a fourier series in α. Since the given
set of a's only range from 0 to 180 , we can make the assumption that $a_{i m}$ and $b_{i m}$ are symmetric in α. This means we can express $a_{i m}$ and b_{im} as cosine series:

$$
\begin{align*}
& a_{i m}\left(\alpha_{j}\right)=\sum_{n=0}^{10} \bar{a}_{i m} \cos n \alpha_{j} \tag{A9}\\
& b_{i m}\left(\alpha_{j}\right)=\sum_{n=1}^{10} \bar{b}_{i m} \cos n \alpha_{j} .
\end{align*}
$$

Using equations (A7) through (A10) the coefficients $\bar{a}_{i m}$ and $\bar{b}_{i m}$ can be determined. Inspection of the above will reveal that the solution procedure only requires inversion of the 11×11 matrix ($\cos m \alpha_{j}$), where $m=0,1, \ldots, 10$ and $\alpha_{j}=0,20, \ldots, 180,90$; and the 10×10 matrix (sin $m \alpha_{j}$), where m and α_{j} are as before except the 0 is removed. The final form of the resulting expansion is

$$
\begin{equation*}
C_{i}(\alpha, \rho)=\sum_{n=0}^{10} \cos n \alpha\left(\sum_{m=0}^{10} \bar{a}_{i m n} \cos m \rho+\sum_{m=1}^{10} \bar{b}_{i m n} \sin m \rho\right) . \tag{A11}
\end{equation*}
$$

The subscript i ranges over the values $x y z$ for torques and $x y z$ for forces. Thus there are six components of C_{i} and for each component there are $121 \overline{\mathrm{a}}_{\mathrm{imn}}$ and $110 \overline{\mathrm{~b}}_{\mathrm{imn}}$ for a total of 231 per axis which makes 1386 total Fourier coefficients.

The uncertainty in the aero torques are represented by a center of pressure (CP) offset. The nominal set of soefficients are computed for the given coordinate axes and origin. Torques are computed about the origin and the total force is assumed to act through it. The torque about the center of mass is

$$
\begin{equation*}
\underline{T}_{\mathrm{n}}=\underline{T}_{0}-\underline{R}_{\mathrm{cm}} \times \underline{F}_{0} \tag{A12}
\end{equation*}
$$

in the nominal case. If the center of pressure is moved by Λ, the torque becomes

$$
\begin{equation*}
\underline{T}_{-\mathrm{ae}}=\mathrm{T}_{\mathrm{n}}+\Lambda \times \underline{F}_{0} . \tag{A13}
\end{equation*}
$$

The vector $T_{\text {ae }}$ is the torque vector required for the aero model we used. The nominal center of mass location, $\underline{R}_{c m}$, was taken from Reference 8. Details are given in Tables A2 and A3. The units are m(in.).

TABLE A2. NOMINAL CENTER OF MASS LOCATION

	Moment Reference Point, m (in.)	Nominal CM Location, m (in.)	CM, m (in.)
X	$\begin{aligned} & 90.037 \\ & (3544.765) \end{aligned}$	$\begin{aligned} & 81.892 \pm 0.155 \\ & (3224.1 \pm 6.1) \end{aligned}$	$\begin{aligned} & -8.145 \pm 0.155 \\ & (-320.665 \pm 6.1) \end{aligned}$
Y	0	$\begin{aligned} & -0.107 \pm 0.053 \\ & (-4.2 \pm 2.1) \end{aligned}$	$\begin{aligned} & -0.107 \pm 0.053 \\ & (-4.2 \pm 2.1) \end{aligned}$
Z	0	$\begin{aligned} & +0.838 \pm 0.064 \\ & (33.2 \pm 2.5) \end{aligned}$	$\begin{aligned} & +0.838 \pm 0.064 \\ & (33.2 \pm 2.5) \end{aligned}$

TABLE A3. CENTER OF PRESSURE LOCATION

	$\Delta \mathrm{CP}_{\mathrm{est}}, \mathrm{m}(\mathrm{in})$.	$\Delta \mathrm{CP}_{\text {act }}, \mathrm{m}(\mathrm{in})$.	$\Delta \mathrm{CM}_{\text {eff }}, \mathrm{m}(\mathrm{in})$.
x	$0 \pm 1.524(0 \pm 60)$	$0.06(+2.36)$	$-8.205(-323.03)$
Y	$0 \pm 0.762(0 \pm 30)$	$-0.07(-2.76)$	$-0.037(-1.46)$
Z	$0 \pm 0.762(0 \pm 30)$	$-0.11(-4.33)$	$+0.948(+37.32)$

As can be seen in Table A3 the tolerance on the CP location is an order of magnitude larger than the uncertainty in the center of mass location. Both have the same effect on the predicted aerodynamic torques and as a consequence, the CM tolerance can be ignored. Before actual flight data were available, the large CP tolerance was used to assess the sensitivity of the TEA seeking method (see TEA Seeking Method). After flight data were available, the actual estimate given in column 2 of Table A3 was used to give the effective $\triangle C M$ given in column three.

Zero contours for the three torque components are shown in Figure 4. Asterisks indicate all TEA's (the feasible ones are also labeled). Individual contour maps for the torque components are given in Figures A1, A2, and A3. The contour numbers signify actual aerodynamic torques in Nm for a density of $3.11 \mathrm{E}-10 \mathrm{~kg} / \mathrm{m}^{3}$, corresponding roughly to an altitude of 200 km ($108 \mathrm{n} . \mathrm{mi}$.) and nominal solar activity. 7 Table A4 shows contour number multiplication factors for other altitudes (contour number times multiplication factor equals torque).

Stereo doubles (see Appendix F for an explanation) of Figures A1, A2, and A3 are given in Figures A4, A5, and A6. Stereo projections of the contours on unit spheres are shown in Figures A7 through A12.

TABLE A4. CONTOUR NUMBER MULTIPLICATION FACTORS

Altitude			
(km)	(n.mi.)	Density (kg/m ${ }^{3}$)	Multiplication Factor
278	150	$5.310 \mathrm{E}-11$	0.17
259	140	$7.855 \mathrm{E}-11$	0.25
241	130	$1.197 \mathrm{E}-10$	0.38
222	120	$1.885 \mathrm{E}-10$	0.61
204	110	$3.110 \mathrm{E}-10$	1.00
185	100	$5.485 \mathrm{E}-10$	1.80
167	90	$1.065 \mathrm{E}-09$	3.40
148	80	$2.505 \mathrm{E}-09$	8.10
130	70	$8.920 \mathrm{E}-09$	28.70

7. Nominal data for $6 / 15 / 79$ with sun spot activity number 136.2 , $F 10=181.66$ and $A_{p}=17.96$.
híge-of-attack us. roll angle

Figure A1. X torque contours.
nNG. E-OF-ATTACK US. ROLL ANGLE

Figure A2. Y torque contours.

Figure A3. Z torque contours.

Figure A4. X torque contours (stereo double).

Figure A5. Y torque contours (stereo double).

Figure A6. Z torque contours (stereo double).

Figure A8. \mathbf{Y} torque contours (unit sphere view A).

Figure A11. Y torque contours (unit sphere view B).

APPENDIX B

GRAVITATIONAL TORQUE MODEL

The gravitational torques on a satellite produced by a large, spherical primary body are important contributors to its rotational dynamics. The force on a point mass m exerted by the primary M is

$$
\begin{equation*}
F_{i}=-\frac{G M m}{\left|R_{i}\right|^{3}}{\underset{R}{i}} ; G=6.672 \mathrm{E}-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2} \tag{B1}
\end{equation*}
$$

The satellite can be viewed as a collection of point masses. The net torque on this collection of masses about the origin of satellite coordinates is

$$
\begin{equation*}
\underline{T}_{\mathbf{g}}=-\sum_{\mathbf{i}} \underline{r}_{\mathbf{i}} \times \underline{F}_{\mathbf{i}} \tag{B2}
\end{equation*}
$$

The vector r_{i} is the position of m_{i} relative to the origin which is at \underline{R}_{0} relative to the primary center. Thus

$$
\begin{equation*}
\underline{R}_{i}=\underline{R}_{0}+\underline{r}_{i} \tag{B3}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{T}_{g}=-\sum_{i} \underline{r}_{i} \times G M m_{i} \frac{\underline{R}_{0}+\underline{r}_{i}}{\left|\underline{R}_{0}+\underline{r}_{i}\right|^{3}} \tag{B4}
\end{equation*}
$$

In general $\left|\underline{r}_{\mathfrak{i}}\right| \ll\left|\underline{R}_{\mathbf{o}}\right|$ and hence an expansion of $\underline{T}_{\mathrm{g}}$ keeping only low order terms becomes sufficient for most purposes. Now

$$
\begin{equation*}
\frac{R_{0}+\underline{r}_{i}}{\left|R_{0}+r_{i}\right|^{3}}=\frac{\underline{R}_{0}}{\left|R_{0}\right|^{3}}+\frac{r_{i}}{\left|R_{0}\right|^{3}}-3 \underline{R}_{0} \frac{R_{0} \cdot r_{i}}{\left|R_{0}\right|^{3}}+\text { h.o.t. } \tag{B5}
\end{equation*}
$$

Using the expansion of equation (B5) in (B4),

$$
\begin{equation*}
\underline{T}_{\mathrm{g}}=-\underline{r}_{\mathrm{cm}} \times \frac{G M m}{\left|\underline{R}_{0}\right|^{3}} \underline{R}_{0}+3 \frac{G M}{\left|\underline{R}_{0}\right|^{3}} \sum_{i} m_{i} \underline{r}_{i} \times \underline{R}_{0} \frac{\underline{R}_{0} \cdot \underline{r}_{i}}{\left|R_{0}\right|^{3}}+\text { h.o.t. } \tag{B6}
\end{equation*}
$$

We have used the definition $m r_{-c m}=\sum m_{i} r_{i}$. Rearranging and grouping
equation (B6) we obtain equation (B6) we obtain $-\mathrm{cm} \quad i$

$$
\begin{equation*}
\underline{T}_{\mathbf{g}}=-\underline{r}_{-\mathrm{cm}} \times \frac{\mathbf{G M m}}{\left|\mathbf{R}_{0}\right|^{3}} \underline{R}_{0}+\frac{3 G M}{\left|R_{0}\right|^{3}} \frac{\underline{R}_{0}}{\left|\underline{R}_{0}\right|^{3}} \times\left(-\sum_{i} m_{i} r_{i} \underline{r}_{i}\right) \cdot \frac{\underline{R}_{o}}{\left|\underline{R}_{0}\right|}+\text { h.o.t. } \tag{B7}
\end{equation*}
$$

The term in parentheses in equation (B7) occurs in the definition of the moment of inertia dyadic (or tensor)

$$
\begin{equation*}
\underline{\underline{\mathbf{I}}}=\sum_{i} m_{i}\left(\underline{r}_{i}^{2} \underline{\underline{1}}-\underline{r}_{i} \underline{r}_{i}\right) \tag{B8}
\end{equation*}
$$

Using this definition in equation (B7) and dropping the higher order terms yields the gravity gradient torque expression

$$
\begin{equation*}
\underline{T}_{\mathrm{gg}}=-\underline{\mathrm{r}}_{\mathrm{cm}} \times \frac{\mathrm{GMm}}{\left|\underline{R}_{\mathrm{o}}\right|^{3}} \underline{R}_{\mathrm{o}}+3 \frac{\mathrm{GM}}{\left|\underline{\mathrm{R}}_{\mathrm{o}}\right|^{3}} \frac{\mathrm{R}_{\mathrm{o}}}{\left|\mathrm{R}_{\mathrm{o}}\right|} \times \underline{\underline{\underline{I}}} \cdot \frac{\underline{R}_{\mathrm{o}}}{\left|\underline{R}_{0}\right|} \tag{B9}
\end{equation*}
$$

As can be seen, if the origin is positioned at the center of mass the more familiar gravity gradient torque expression results:

$$
\begin{equation*}
\underline{T}_{\mathrm{gg}}=3 \frac{\mathrm{GM}}{\left|\underline{R}_{0}\right|^{3}} \frac{\underline{R}_{0}}{\left|\underline{R}_{0}\right|} \times \underline{\underline{I}} \cdot \frac{\underline{R}_{0}}{\left|\underline{R}_{0}\right|} \tag{B10}
\end{equation*}
$$

For an orbiting body m, the orbital angular velocity magnitude is given by

$$
\begin{equation*}
\omega_{0}^{2}=G M /\left|\underline{R}_{0}\right|^{3} \tag{B11}
\end{equation*}
$$

Noting that $\underline{R}_{0} /\left|\underline{\underline{R}}_{0}\right|$ is a unit ventor \underline{u}_{R}, we finally write

$$
\begin{equation*}
\underline{T}_{\mathrm{Gg}}=3 \omega_{0}^{2} \underline{u}_{R} \times \underline{\underline{I}} \cdot \underline{u}_{R} \tag{B12}
\end{equation*}
$$

The torque of equation (B12) is what is commonly referred to as the gravity gradient torque.

APPENDIX C

determination of torque equilibrium attitudes

The torque equation for a rotating vehicle in vehicle fixed coordinates is

$$
\begin{equation*}
\underline{\dot{\mathrm{H}}}-\underline{\omega} \times \underline{\mathrm{H}}=\underline{\mathrm{T}}_{\underline{g}}+\underline{\mathrm{T}}_{\mathrm{ae}} \tag{C1}
\end{equation*}
$$

The equilibria we seek are those which satisfy $\dot{\mathrm{H}}=0$. In the case of Skylab, the momentum H is not only from vehicle rotation at orbital velocity but also includes vehicle fixed CMG momentum. Since the disturbance torques on the right hand side of equation (C1) are smooth functions, we can use Newton's method to determine equilibrium positions. The technique starts from the assumption that

$$
\begin{equation*}
\underline{\dot{H}}=\underline{F}([V L]) ; \tag{C2}
\end{equation*}
$$

i.e., the rate of change of angular momentum in body axes depends upon the relative attitude only. The symbol [VL] is the direction cosine matrix or transformation which takes a vector from the L (local vertical) coordinate system to the V (vehicle fixed) system:

$$
\begin{equation*}
\underline{\mathbf{F}} \approx \underline{\mathbf{F}}_{-}([\mathrm{VL}])+\Delta \theta \cdot \nabla \underline{\mathbf{F}}_{0} ; \mid \underline{\Delta \theta} \text { small } . \tag{C3}
\end{equation*}
$$

The basic algorithm then is

1) Select $[\mathrm{VL}]_{p}$
2) $\mathrm{F}_{\mathrm{p}}=\underline{F}\left([V L]_{\mathrm{p}}\right)$
3) $\underline{\Delta \theta}=\lim \left[-(\nabla{\underset{F}{p}})^{-1}{\underset{F}{p}}\right]$
4) $[\mathrm{VL}]_{\mathrm{n}}=\left[\Delta \theta_{\mathbf{z}}\right]_{3}\left[\Delta \theta_{\mathrm{y}}\right]_{2}\left[\Delta \theta_{\mathrm{x}}\right]_{1}[\mathrm{VL}]_{p}$
5) If $|\underline{\Delta \theta}|<\varepsilon$, set $[V L]=[V L]_{n}$ and terminate.
6) Otherwise, set $[V L]_{p}=[V L]_{n}$ and loop to step 2).

The limit in step 3) is a component limit which limits the changes of attitude permitted in the iteration procedure above and improves convergence. With this procedure 12 equilibrium attitudes were found. Others may exist and an exhaustive search was not conducted. These equilibria could be shifted somewhat by varying the momentum stored in the CMG's. The total momentum H was held constant in the L frame to $\mathrm{H}_{\text {nom }}$. The gradient of the vector function F was computed numerically.

APPENDIX D

STRAPDOWN ERROR ESTIMATION

The strapdown correction angle $\Delta \theta_{L}$ was estimated from Skylab attitude history over one or more ortits in TEA. The assumption is that the strapdown error changes slowly over an orbit, especially the components of the error in the orbital plane. This assumption is justified by the observation that, since the vehicle orientation stays nearly fixed relative to the local vertical, the gyro drift resolved into the orbital plane is nearly sinusoidal and hence averages to near zero over an orbital period. The out-of-plane drift remains essentially constant and hence out-of-plane strapdown error grows linearly with time. The three angles $\theta_{e 1}, \theta_{e 2}$, and $\theta_{e 3}$ represent the strapdown offset error. The error matrix is

$$
\begin{equation*}
\left[O O_{k}\right]=\left[\theta_{e 1}\right]_{1}\left[\theta_{e 2}\right]_{2}\left[\theta_{e 3}\right]_{3} \tag{D1}
\end{equation*}
$$

where a k subscript signifies the true quantity and O is the estimate of the real orbital coordinate system O_{k}. The coordinate system O is defined such that O coincides with L when the vehicle crosses the ascending node and is inertially fixed except for orbit regression. We shall assume orbit regression is too small to have a significant effect on strapdown error determination. We further assume $\theta_{e 1}$ and $\theta_{e 3}$ are small angles. The position of the vehicle is then

$$
\begin{equation*}
\left[V O_{k}\right]=[V L]\left[\omega_{o} t\right]_{2}\left[\theta_{e 1}\right]_{1}\left[\theta_{e 2}\right]_{2}\left[\theta_{e 3}\right]_{3} . \tag{D2}
\end{equation*}
$$

Using the small angle assumntinn, we can write

$$
\begin{equation*}
\left[V O_{k}\right]=[V L]\left[1-\tilde{\partial}_{e}^{t}\right]\left[\omega_{0} t+\theta_{e 2}\right]_{2} \tag{D3}
\end{equation*}
$$

where

$$
\begin{equation*}
\ddot{\theta}_{\mathrm{e}}^{\prime}=\left[\omega_{\mathrm{o}} t\right]_{2}\left[\theta_{e 1}, 0, \theta_{e 3}\right]^{\mathrm{T}} \tag{D4}
\end{equation*}
$$

We can also write

$$
\begin{equation*}
\left[V O_{k}\right]=\left[V L_{k}\right]\left[\omega_{0} t\right]_{2} . \tag{D5}
\end{equation*}
$$

In this expression [VL_{k}] is assumed to remain constant. We can now equate equations (D3) and (D5) to obtain

$$
\begin{equation*}
[V L]=\left[V L_{k}\right]\left[-\theta_{e 2}\right]_{2}\left[1-\tilde{\theta}_{e}^{\prime}\right] \tag{D6}
\end{equation*}
$$

We must also assume that the gyro drift and other drift yates are small so $\theta_{\mathrm{e} 2}$ does not change significantly over an orbit. With this assumption $\left[\mathrm{VL}_{\mathbf{k}}\right]\left[1-\hat{\theta}_{\mathbf{e}}^{\prime}\right]$ remains essentially constant. Since the location of the TEA is not known precisely, [VL_{k}] is unknown and of course at this point ${ }^{\theta} 2{ }^{\text {is also unknown so that we may as well : }}$

$$
\begin{equation*}
\left[V L_{k}^{\prime}\right]=\left[V L_{k}\right]\left[-\theta_{e 2}\right]_{2} \tag{D7}
\end{equation*}
$$

Thus all that is known is that [LL_{k}]] is constant, that θ_{e}^{\prime} varies sinusoidally, and that [VL] is available over one or more orbits from telemetry. This matrix is used to compute BAR angles. Intuitively it would seem that the bank angle would contain the most direct information on the in plane strapdown error, so let us look first at it,

$$
\begin{equation*}
\left.\tan \beta=\frac{\left(V L_{k 12}^{\prime} /-V L_{k 13}^{\prime}\right)-\theta_{e_{1}}^{\prime}+\left(V L_{k 11}^{\prime} / V L_{k}^{\prime} 13\right.}{}\right) \theta_{e_{3}^{\prime}}^{\prime} . \tag{D8}
\end{equation*}
$$

For high drag TEA, $\mathrm{VL}_{\mathrm{k} 11}$ is small (the angle of attack is near 90 degrees). Thus the inverse tangent of equation (D8) yields

$$
\begin{align*}
\beta & =\beta_{k}^{\prime}-\theta_{e 1}^{\prime}=\beta_{k}^{\prime}-\theta_{e 1} \cos \left(\omega_{0} t\right)+\theta_{e 3} \sin \left(\omega_{0} t\right) \tag{D9}\\
& =\beta_{0}+\beta_{C} \cos \left(\omega_{o} t\right)+\beta_{S} \sin \left(\omega_{o} t\right) \tag{D10}
\end{align*}
$$

We can extract the strapdow: in-plane errors from equation (D10) and construct the update vector:

$$
\begin{equation*}
\underline{\theta}_{e}^{\prime}=\left\{\theta_{e 1}, 0, \theta_{e 3}\right\}^{T}=\left[-\beta_{c}, 0, \beta_{s}\right]^{T} . \tag{D11}
\end{equation*}
$$

The strapdown correction $\frac{\Delta \theta}{}$ is developed from ${ }_{e}$ is

$$
\begin{equation*}
\Delta \theta_{L}=\left[\omega_{0} t\right]_{2} \theta_{e}^{\prime} . \tag{D12}
\end{equation*}
$$

The time 1 is the time of the update relative to the time of data.
The out of-plane strapdown error could only be determined from timing and sun passage data. The basic procedure for this was the same whether Sun sensor or solar array data were used. In either case it was assumed the strapdown error was along the orbit normal, i.e., $0_{e 1}=\theta_{e 3}=0$. The timing events used occurred when the Sun made a known angle from a known body-fixed direction. This can be expressed mathematically as

$$
\begin{equation*}
\underline{U}_{\mathbf{s}} \cdot \underline{U}_{V}=C_{s r a} \tag{D13}
\end{equation*}
$$

This was most easily solved in the L coordinate system:

$$
\begin{align*}
& \underline{\mathrm{u}}_{\mathrm{s}}=[\mathrm{LI}][0,0,1]^{\mathrm{T}} \tag{D14a}\\
& \underline{\mathrm{u}}_{\mathrm{v}}=[\mathrm{VL}]^{\mathrm{T}} \underline{\mathrm{u}}_{\mathrm{F}} \tag{D14b}
\end{align*}
$$

where \underline{U}_{F} is a vehicle-fixed unit vector (see below, after equation D17e). The matrices [LI] and [VL] are computed at the timing event instant. At this instant we car determine e^{0} :

$$
\begin{equation*}
C_{s r a}=\left[U_{s x}, U_{s y}, U_{s z}\right]\left[-U_{e 2}\right]_{2} \underline{U}_{v} . \tag{D15}
\end{equation*}
$$

From equation (D15) we obtain

$$
\theta_{e 2}=\operatorname{arc} \sin \left[\left(C_{s r a}-U_{s y} U_{v y}\right) / \sqrt{s \phi^{2}+C \phi^{2}}\right]-\phi
$$

or

$$
\begin{equation*}
\theta_{e 2}=\pi-\operatorname{arc} \sin \left[\left(C_{s r a}-U_{s y} U_{v y}\right) / \sqrt{S \phi^{2}+C \phi^{2}}\right]-\phi \tag{D16}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathrm{S} \phi=\mathrm{U}_{\mathbf{s x}} \mathrm{U}_{\mathbf{v x}}+\mathrm{U}_{\mathbf{s z}} \mathrm{U}_{\mathbf{v z}} \tag{D17a}\\
& \mathbf{C \phi}=\mathrm{U}_{\mathbf{s x}} \mathrm{U}_{\mathbf{v z}}-\mathrm{U}_{\mathbf{s z}} \mathrm{U}_{\mathbf{v x}} \tag{D17b}\\
& \phi=\arctan (\mathrm{S} \phi / C \phi) . \tag{D17c}
\end{align*}
$$

The Sun sensor null crossing occurred when $\underline{U}_{F}=[0,1,0]^{T}$ and $C_{s r a}=0$. The power angle was determined from sunrise on the solar arrays so that $\underline{U}_{F}=[0,0,1]^{\mathrm{T}}$ and for various values of $\mathrm{C}_{\text {sra }}$ depending on which array was chosen.

APPENDIX E

QUATERNIONS - A BRIEF EXPOSITION

Complex numbers of the form $z=a+i b$ have proven to be a valuable concept in the study of many physical phenomena. A gereralization of this concept which proves useful in the study of rotational motion is the quaiernion. Recall that the imaginary unit $\mathrm{i}=\sqrt{ }-1$. Let us define additional units j and k together with the product operation o :

$$
\begin{align*}
& \mathrm{ioi}=\mathrm{joj}=\mathrm{kok}=-1 \\
& \mathrm{ioj}=-\mathrm{joi}=\mathrm{k} \tag{E1}\\
& \mathrm{jok}=-\mathrm{koj}=\mathrm{i} \\
& \mathrm{koi}=-10 \mathrm{k}=\mathrm{j}
\end{align*}
$$

We shall define a quaternion as any quantity of the form

$$
\begin{equation*}
Q=Q 4+i Q 1+j Q 2+k Q 3 \tag{E2}
\end{equation*}
$$

(See Note 1 at end of Appendix E.) By analogy to the complex number teiminology Q41: referred to as the real or scalar part of Q . It will also be convenient to think of the remaining part of Q as the imaginary or vector part. The reason for this will become clear as we proceed. Let $R=R 4+i R 1+j R 2+k R 3$. The sum of quaternions Q and R is defined as

$$
\begin{align*}
S=Q+R= & (Q 4+R 4)+i(Q 1+R 1) \\
& +j(Q 2+R 2)+k(Q 3+R 3) \tag{E3}
\end{align*}
$$

From this uefinition we can see that the sum operation is commutative and associative. We can now give the complete defirition of the product operation o:

$$
\begin{align*}
\mathbf{P}=\mathbf{Q} \circ \mathrm{R}= & (\mathrm{Q} 4 \mathrm{R} 4-\mathrm{Q} 1 \mathrm{R} 1-\mathrm{Q} 2 \mathrm{R} 2-\mathrm{Q} 3 \mathrm{R} 3) \\
& +\mathrm{i}(\mathrm{Q} 4 \mathrm{R} 1+\mathrm{Q} 1 \mathrm{R} 4+\mathrm{Q} 2 \mathrm{R} 3-\mathrm{Q} 3 \mathrm{R} 2) \\
& +\mathrm{j}(\mathrm{Q} 4 \mathrm{R} 2+\mathrm{Q} 2 \mathrm{R} 4+\mathrm{Q} 3 \mathrm{R} 1-\mathrm{Q} 1 \mathrm{R} 3) \\
& +\mathrm{k}(\mathrm{Q4R3}+\mathrm{Q} 3 \mathrm{R} 4+\mathrm{Q} 1 \mathrm{R} 2-\mathrm{Q} 2 \mathrm{R} 1) . \tag{E4}
\end{align*}
$$

With this definition we can show that 0 is associative and distributive but not commutative, i.e., $Q \circ R \neq R \circ Q$. We shall call any quaternion having zero imaginary part a scalar and, obviously, the algebra of scalars is just the algebra of real numbers. Thus, multiplication of a quaternion by a scalar simply results in a quaternion whose elements are multiplied by that scalar according to definition E4. We can now define the difference operation as

$$
\begin{equation*}
\mathbf{D}=\mathbf{Q}-\mathbf{R}=\mathbf{Q}+(-1) \circ \mathbf{R} \tag{E5}
\end{equation*}
$$

For convenience, we shall always omit the o when multiplying a quaternion by a scalar so that (-2) $\circ Q=-2 Q$.

By analogy to complex algebra, let us define the conjugate quaternion to Q. The conjugation operation will be denoted by ()*. Thus

$$
\begin{equation*}
\mathbf{Q}^{*}=\mathbf{Q} 4-\mathrm{i} \mathbf{Q} 1-\mathrm{j} \mathbf{Q} 2-\mathrm{k} \mathbf{Q} 3 . \tag{E6}
\end{equation*}
$$

So far all of our definitions have been extensions of those for complex numbers as can be seen by assuming $\mathbf{Q 2}=\mathbf{Q} 3=R 2=R 3=0$. Thus the complex number system is a subset of the quaternions. It can be easily seen that

$$
\begin{equation*}
\mathbf{Q}^{*} \circ \mathbf{Q}=\mathbf{Q} \circ \mathbf{Q}^{*}=\mathbf{Q} 1 \mathbf{Q} 1+\mathbf{Q} 2 \mathbf{Q} 2+\mathbf{Q} 3 \mathbf{Q} 3+\mathbf{Q} 4 \mathbf{Q} 4 . \tag{E7}
\end{equation*}
$$

Note that $Q^{*} O Q$ is a pure real number or scalar. With this observation we can define the inverse:

$$
Q^{-1}=\left(1 /\left(Q^{*} \circ Q\right)\right) Q^{*}=Q^{*} /\left(Q^{*} \circ Q\right) ; Q^{*} \circ Q \neq 0 . \text { (E8) }
$$

Finally then, we can define a division operation:

$$
\begin{equation*}
Q \div R=Q \circ R^{-1} \tag{E9}
\end{equation*}
$$

We can see that $Q: Q=Q \circ Q^{-1}=Q^{-1} \circ Q=1$ so that Q^{-1} satisfies the necessary properties of an inverse as long as $Q \neq 0$. This will be useful later.

We need some additional results and definitions. First we can show that

$$
\begin{equation*}
(Q \circ R)^{*}=R^{*} \circ Q^{*} . \tag{E10}
\end{equation*}
$$

If the quaternion $Q=Q^{*}$, then Q is necessarily a scalar. Also, if $Q=$ $-Q^{*}, Q$ is purely imaginary or a vector quaternion. If V is a vector quaternion, we shall designate this by an underline as is also used to designate a 3 -space vector, i.e., (i, j, and k will not be underlined)

$$
\begin{equation*}
\underline{V}=i V 1+j V 2+k V 3 \tag{E11}
\end{equation*}
$$

For compactness of our notation we shall let

$$
\begin{equation*}
\mathrm{Q}=\underline{\mathrm{Q}} 4+\underline{\mathrm{Q}}, \tag{E12}
\end{equation*}
$$

where

$$
\underline{Q}=i Q 1+j Q 2+k Q 3 .
$$

Thus

$$
\begin{equation*}
\mathrm{Q} \circ \mathrm{R}=(\mathrm{Q} 4 \mathrm{Q} 4-\underline{\mathrm{Q}} \cdot \underline{\mathrm{R}})+\mathrm{Q} 4 \underline{\mathrm{R}}+\mathrm{R} 4 \underline{\mathrm{Q}}+\underline{\mathrm{Q}} \times \underline{\mathrm{R}} . \tag{E13}
\end{equation*}
$$

The operations and \times are defined as for 3 -space vectors so that

$$
\begin{equation*}
\underline{\mathrm{Q}} \cdot \underline{\mathrm{R}}=\mathrm{Q} 1 \mathrm{R} 1+\mathrm{Q} 2 \mathrm{R} 2+\mathrm{Q} 3 \mathrm{R} 3 \tag{E14}
\end{equation*}
$$

and

$$
\begin{align*}
\underline{Q} \times \underline{R}= & i(Q 2 R 3-O 3 R 2)+j(Q 3 R 1-Q 1 R 3) \\
& +k(Q 1 R 3-Q 3 R 1) \tag{E15}
\end{align*}
$$

For vectors $\underset{A}{A}$ and \underline{B},

$$
\begin{equation*}
\underline{A} \circ \underline{B}=-\underline{A} \cdot \underline{B}+\underline{A} \times \underline{B} . \tag{E16}
\end{equation*}
$$

In general the product of quaternions mixes scalar and vector parts together so that this produce is not very interesting in the study of rotational motion in 3 -space. The triple product

$$
\begin{equation*}
V^{\prime}=Q^{*} \circ V \circ \mathbf{Q} \tag{E17}
\end{equation*}
$$

is more interesting since it does preserve scalar and vector parts of V without mixing them. This property is trivial for the scalar part of V and follows for the vector part $\mathrm{sla}_{\mathrm{L}} \mathrm{\approx}=$

$$
\begin{equation*}
\underline{\mathrm{V}}^{*}=\left(\mathrm{Q}^{*} \circ \underline{\mathrm{~V}} \circ \mathrm{Q}\right)^{*}=-\mathrm{Q}^{*} \circ \underline{\mathrm{~V}} \circ \underline{\mathrm{Q}}=-\underline{\mathrm{V}} . \tag{E18}
\end{equation*}
$$

Hence as noted the triple quaternion product (E17) takes a scalar into a scalar and a vector into a vector for any quaternion Q. Furthermore, the length of the vector $|\underline{V}|=\sqrt{\underline{V} \cdot \underline{V}}$ and

$$
\begin{align*}
\underline{V}^{\prime} \cdot \underline{V}^{\prime} & =\underline{V}^{\prime} \circ \underline{V}^{\prime *}=Q^{*} \circ \underline{V} \circ Q \circ\left(Q^{*} \circ \underline{V} \circ Q\right) \\
& =\left(Q^{*} \circ Q\right) \underline{V} \circ \underline{V}^{*} . \tag{E19}
\end{align*}
$$

Equation (E19) indicates the triple product (E1") multiplies vector length by the factor $Q^{*} \circ Q$ which is a real number. We note that if $Q^{*} \circ \mathbf{Q}=$ 1 , vector length is preserved and the vector mapping $\underline{V} \rightarrow \underline{V}^{\prime}$ looks like a rotation operator. It is a linear operator in that $a A^{-}+b B^{-} \rightarrow a A^{\prime}+b B^{\prime}$. Restricting ourselves to normalized quaternions which preserve length, we see that E 17 is equivalent to a rotation of vector \underline{V} into V '. Since we are looking only at normalized quaternions, we can without loss of generality, represent Q as

$$
\begin{equation*}
Q=\cos \phi / 2+\sin \phi / 2 \underline{\mathbf{u}} ; \text { where } \underline{\mathbf{u}} \cdot \underline{\mathbf{u}}=1 \text {. } \tag{E20}
\end{equation*}
$$

The triple product equation (E17) can be combined with equation (E20) to give

$$
\begin{equation*}
\underline{V}^{\prime}=\cos \phi \underline{V}-\sin \phi \underline{\mathbf{u}} \times \underline{\mathbf{V}}+(1-\cos \phi) \underline{\mathbf{u}} \underline{\mathbf{u}} \cdot \underline{\mathbf{V}} . \tag{E21}
\end{equation*}
$$

Equation (E21) is the general form of the rotation of a vector V about axis \underline{u} through the angle $-\phi$. That this is true is seen by examining the rotation operation. Clearly any vector along the rotation axis \underline{u} is not changed by the rotation so that if the vector V is broken into parts parallel to and normal to \underline{u}; i.e.

$$
\begin{equation*}
\underline{v}=\underline{v}_{\|}+\underline{v}_{1} \text {, where } \underline{v}_{\|}=\underline{v} \cdot \underline{u} \underline{u} \text { and } \underline{v}_{1} \cdot \underline{u}=0 \text {. } \tag{E22}
\end{equation*}
$$

We must also have $\underline{V}^{\prime}=\underline{V}_{\|}+\underline{V}_{1}^{\prime}$; where $\underline{V}_{1}^{\prime} \cdot \underline{u}=0$ and $\underline{V}_{\|}=\underline{V}_{\|}^{\prime}$. Since \underline{V}_{\perp} and $\underline{V}_{\perp}^{\prime}$ are normal to \underline{u}, we can express $\underline{V}_{1}^{\prime}$ as

$$
\begin{equation*}
\underline{V}_{1}^{\prime}=x \underline{u} \times \underline{v}_{1}+y \underline{u} \times\left(\underline{u} \times \underline{v}_{1}\right) \tag{23}
\end{equation*}
$$

No: $\underline{V}^{\prime} \cdot \underline{V}_{1}=\left|\underline{V}_{1}\right|^{2} \cos \alpha=-\mathrm{y}\left|\underline{\mathrm{V}}_{1}^{2}\right| \rightarrow \mathrm{y}=\cos \alpha$ and $\underline{\mathrm{V}}_{1} \times \underline{\mathrm{V}}_{1}^{\prime}=$ i $\left.\underline{V}_{\perp}\right|^{2} \sin \alpha \underline{u}$ and thus $x=\sin \alpha$; where α is the rotation angle. Combining, we obtain

$$
\begin{equation*}
\underline{v}_{1}^{\prime}=\sin \alpha \underline{\mathbf{u}} \times \underline{v}_{1}-\cos \alpha \underline{u} \times\left(\underline{\mathbf{u}} \times \underline{v}_{1}\right) \tag{E24}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{V}^{\prime}=\underline{\mathbf{u}} \underline{\mathbf{u}} \cdot \underline{\mathrm{V}}+\sin \alpha \underline{\mathbf{u}} \times \underline{\mathrm{V}}-\cos \alpha \underline{\mathbf{u}} \times(\underline{\mathrm{u}} \times \underline{\mathrm{V}}) \tag{E25}
\end{equation*}
$$

The equivalence between equations (E21) and (E25) for $\alpha=-\phi$ is established. Thus, the mapping (E17) is equivalent to a rotation operator in a vector 3-space. Since the coordinate directions are also vectors, we can rotate the coordinate system instead of the vector. Rotating the vector through $-\phi$ yields the same components \underline{V}^{\prime} as rotating the coordinate axes through ϕ. Thus we can 100 k at V^{\prime} as a new vector formed from V by rotation and expressed in the old axis system or as the old vector expressed in new axes rotated relative to the old. We have now demonstrated that any coordinate system rotation can be represented by a quaternion. Note that if Q satisfies equation (E17), then so does $-Q$. Looking back at equation (E20) tells us that $-Q$ corresponds to $\phi+360$ degrees which represents the same attitude ϕ does.

We now look at the time variations of Q. Since Q is constrained to be nornialized, we necessarily have

$$
\begin{equation*}
\mathrm{d} / \mathrm{dt}\left(Q^{*} \circ Q\right)=0=\dot{Q}^{*} \circ Q+Q^{*} \circ \dot{Q} . \tag{E26}
\end{equation*}
$$

We see from equation (E26) that $Q^{*} \circ \dot{Q}=-\left(Q^{*} \circ \dot{\hat{Q}}\right)^{*}$ and hence must be a vector. Let us define this vector by

$$
\begin{align*}
& Q * \circ \dot{Q}=1 / 2 \underline{\omega} \tag{E27}\\
& \rightarrow \dot{Q}=1 / 2 Q \circ \underline{\omega} \quad\left(\text { since } Q \circ Q^{*}=Q^{*} \circ Q=1\right) \tag{E28}
\end{align*}
$$

We shall see the reason for the $1 / 2$ factor later. When we evaluate the rate of change of a vector with time in two reference frames, we find

$$
\begin{equation*}
\underline{\dot{V}}=Q \circ \dot{V}^{\prime} \circ Q^{*}+\dot{Q} \circ \underline{V}^{\prime} \circ Q^{*}+Q \circ \underline{V}^{\prime} \circ \dot{Q}^{*} \tag{E29}
\end{equation*}
$$

Using equations (E28) in (E29),

$$
\begin{align*}
& \dot{\dot{V}}=Q \circ\left[\dot{V}^{\prime}+1 / 2\left(\underline{\omega} \circ \underline{V}-\underline{V}^{\prime} \circ \underline{\omega}\right)\right] \circ Q^{*} \tag{E30}\\
& \underline{\dot{V}}=Q \circ\left[\underline{V}^{\prime}+\underline{\underline{\omega}} \times \underline{V}\right] \circ Q^{*} . \tag{E31}
\end{align*}
$$

Now the reason for the factor $1 / 2$ becomes clear. It is so that we can identify ω. Equation (E31) is exactly like the corresponding equation for 3 -space vectors if we identify ω as the angular velocity of the primed reference frame expressed in primed coordinates. This identification follows from the fact that equation (E31) holds for an arbitrary vector V. Thus, w is identified as the relative angular velocity of the primed axes with respect to the unprimed.

The above discussion completes the basic development of our quaternion tools. We now turn to the problem of developing a more convenient notation. The most logical choice which comes to mind is a matrix representation. The quaternion Q would logically become

$$
Q=\left[\begin{array}{l}
Q 1 \tag{E32}\\
Q 2 \\
Q 3 \\
Q 4
\end{array}\right]
$$

Looking back to the definition equation (E4) of the quaternion product o, we see that for $P=Q \circ R$ we have

$$
\mathrm{P}=\left[\begin{array}{rrrr}
\mathrm{Q} 4 & -\mathrm{Q} 3 & \mathrm{Q} 2 & \mathrm{Q} 1 \tag{E33}\\
\mathrm{Q} 3 & \mathrm{Q} 4 & -\mathrm{Q} 1 & \mathrm{Q} 2 \\
-\mathrm{Q} 2 & \mathrm{Q} 1 & \mathrm{Q} 4 & \mathrm{Q} 3 \\
-\mathrm{Q} 1 & -\mathrm{Q} 2 & -\mathrm{Q} 3 & \mathrm{Q} 4
\end{array}\right]\left[\begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3 \\
\mathrm{R} 4
\end{array}\right] \triangleq \widetilde{\mathrm{Q}} \mathrm{R}
$$

(See Notes at end of Appendix E.) Similarly, if $D=A \circ B \circ C$, then

$$
\begin{equation*}
D=\overline{\bar{A} O B} C=\overline{\widetilde{\widetilde{A}} B C}=\widetilde{\widetilde{A}} \widetilde{\widetilde{B}} C . \tag{E34}
\end{equation*}
$$

This result shows that the set of matrices of the form $\widetilde{\widetilde{Q}}$ have the properties of the quaternions and in fact comprise a matrix representation of quaternion algebra with matrix multiplication corresponding to o. We can also express the quaternion product in the alternate form

$$
\mathrm{P}=\left[\begin{array}{rrrr}
\mathrm{R} 4 & \mathrm{R} 3 & -\mathrm{R} 2 & \mathrm{R} 1 \tag{E35}\\
-\mathrm{R} 3 & \mathrm{R} 4 & \mathrm{R} 1 & \mathrm{R} 2 \\
\mathrm{R} 2 & -\mathrm{R} 1 & \mathrm{R} 4 & \mathrm{R} 3 \\
-\mathrm{R} 1 & -\mathrm{R} 2 & -\mathrm{R} 3 & \mathrm{R} 4
\end{array}\right]\left[\begin{array}{l}
\mathrm{Q} 1 \\
\mathrm{Q} 2 \\
\mathrm{Q} 3 \\
\mathrm{Q} 4
\end{array}\right] \triangleq \overline{\overline{\mathrm{R}}} \mathrm{Q}
$$

(See Notes at end of Appendix E.) Here the mapping also yields a matrix representation except the order of the factors must be reversed. Thus, we have

$$
\begin{align*}
& P=\overline{\widetilde{Q}} R=\overline{\bar{R}} Q \\
& D=\tilde{\widetilde{A}} \widetilde{\widetilde{B}} C=\overline{\overline{\mathrm{C}}} \overline{\overline{\mathrm{~B}}} \mathrm{~A} \tag{E36}\\
& \overline{\mathrm{~B} O \mathrm{C}}=\overline{\overline{\mathrm{C}}} \overline{\overline{\mathrm{~B}}}
\end{align*}
$$

According to these definitions and results, we have

Thus, an interesting and sometimes useful result is that $\widetilde{\bar{A}} \bar{C}=\overline{\bar{C}} \tilde{\tilde{A}}$. Let us now look at our previous work and make use of these new definitions:

$$
\begin{equation*}
\underline{V}^{\prime}=Q^{*} 0 \underline{V} \circ \mathbf{Q} \rightarrow \underline{V}^{\prime}=\underline{\widetilde{Q}} * \underline{\widetilde{V}} \mathbf{Q}=\tilde{\widetilde{Z}}_{\underline{Q}} * \underline{\bar{Q}} \underline{V} \tag{E38}
\end{equation*}
$$

Note that we now have a matrix formed from Q which rotates coordinate axes and produces \underline{V}^{\prime} from \underline{V}. Linear vector spaces are also represented by matrices. The $\overline{3}$-space vectors, \underline{V} and \underline{V} are related as

$$
\begin{equation*}
\underline{V}^{\prime}=M \underline{V} . \tag{E39}
\end{equation*}
$$

Here M is a 3×3 matrix which transforms components of V to primed coordinates. Referring back to equation (E25) and replacing α by $-\phi$ we see that

$$
\begin{equation*}
\mathrm{M}=\underline{\mathrm{u}}^{\underline{\mathbf{u}}}{ }^{\mathrm{T}}-\sin \phi \tilde{\mathrm{u}}+\cos \phi\left(1-\underline{\mathrm{u}}^{\underline{\mathbf{u}}}{ }^{\mathrm{T}}\right) \tag{E40}
\end{equation*}
$$

(See Notes at end of Appendix E.) The matrix \tilde{u} is the so-called cross product matrix and just happens to be the upper 3×3 formed by dropping the final row and column of $\widetilde{\tilde{u}}$. The matrix 1 is the identity matrix of the appropriate size to fit the current application. We have already shown the equivalence between M and $\mathbb{Z} * \underset{\sim}{\hat{Z}}$. Let us look more closely at the latter since it is 4×4. We can partition the double-tilde or double-bar matrices as

$$
\tilde{\tilde{Q}}=Q 41+\left[\begin{array}{c:c}
\tilde{Q} & Q \tag{E41}\\
\hdashline-Q & 0
\end{array}\right] ; \quad \overline{\bar{Q}}=Q_{4} 1+\left[\begin{array}{c:c}
-\widetilde{Q} & \underline{Q} \\
\hdashline-Q^{T} & 0
\end{array}\right]
$$

Since $Q^{*} \circ Q=1, Q^{*}=Q^{-1}$ so that $Q^{*} Q=1$. Also, $Q^{*}=Q$ (transpose) so that

$$
\tilde{\tilde{Q}}^{*} \bar{Q}=\left[\begin{array}{c:c}
Q 4^{2} 1-2 Q 4 \tilde{Q}+\widetilde{Q} \tilde{Q}+\underline{Q}^{T} \underline{Q}^{T} & 0 \tag{E42}\\
\hdashline 0 & 1
\end{array}\right]
$$

Hence $M=Q 4^{2} 1-2 Q 4 \tilde{Q}+2 \underline{Q} \underline{Q}^{T}-Q^{2} 1$. In expanded form

$$
M=\left[\begin{array}{l:l|l}
Q 1^{2}-Q 2^{2}-Q 3^{2}+Q 4^{2} & 2(Q 1 Q 2+Q 3(Q 4) & 2(Q 1 Q 3-Q 2(Q 4) \tag{E43}\\
2(Q 2 Q 1-Q 3 Q 4) & Q 1^{2}+Q 2^{2}-Q 3^{2}+Q 4^{2} & 2(Q 2 Q 3+Q 1(Q 4) \\
2(Q 3 Q 1+Q 2 Q 4) & 2(Q 3 \times 2-Q 1(Q) & -Q 1^{2}-Q 2^{2}+Q 3^{2}+Q 4^{2}
\end{array}\right]
$$

From equation (E28)

$$
\dot{Q}=\frac{1}{2} \mathbf{Q} \circ \underline{\omega}=\frac{1}{2} \underline{\omega} \mathbf{Q}=\frac{1}{2}\left[\begin{array}{cccc}
0 & \omega 3 & -\omega 2 & \omega 1 \tag{E44}\\
-\omega 3 & 0 & \omega 1 & \omega 2 \\
\omega 2 & -\omega 1 & 0 & \omega_{3} \\
-\omega 1 & -\omega 2 & -\omega 3 & 0
\end{array}\right]\left[\begin{array}{l}
\text { Q1 } \\
\text { Q2 } \\
\text { Q3 } \\
\text { Q4 }
\end{array}\right]
$$

Equations (E43) and (E44) summarize the useful results from our discussion.

We are now ready to consider the question of successive rotations applied to a coordinate reference. A coordinate frame rotation is a rigid displacement of all the points in the system with a fixed axis passing through the origin. Thus, it would seem that several successive rotations should displace every point except the origin. Let us now consider the coordinate frame as a rigid body and determine the most general displacement of it which keeps one point fixed. We must first explain what is meant by a rigid body displacement. A rigid bociy displacement is one which preserves distances between evory possitle pair of points in the body. The displacement is mathematics!ly represented as a vector function f. This function then has two basic ? ?roperties:

1) $\underline{f}(0)=0$
2) $\left|\underline{f}\left(\underline{r}_{A}\right)-\underline{f}\left(\underline{r}_{B}\right)\right|=\left|\underline{r}_{A}-\underline{r}_{-B}\right|$.

To study this in more detail, we define two additional points \underline{r}_{1} and \underline{r}_{2} together with their images under $\underline{f}, \underline{f}\left(\underline{r}_{1}\right)$ and $\left.\underline{f}_{-2}\right)$. Let $\underline{f}_{1}=\underline{f}\left(\underline{r}_{1}\right)$ and $\left.\underline{f}_{2}=\underline{f}^{\mathrm{f}} \underline{\mathrm{r}}_{2}\right)$. Let us define unit vectors.

$$
\begin{align*}
& \mathrm{i}=\underline{\mathbf{r}}_{1} /\left|\underline{\mathbf{r}}_{1}\right| \quad ; \quad \underline{\mathrm{u}}_{1}=\underline{\mathbf{f}}_{-1} /\left|\underline{\mathbf{f}}_{1}\right| \\
& j=\frac{\underline{r}_{2}-\underline{r}_{2} \cdot \underline{i} \underline{i}}{\left|\underline{\mathbf{r}}_{2}-\underline{r}_{2} \cdot \underline{i} \underline{i}\right|} \quad ; \quad \underline{u}_{2}=\frac{\underline{f}_{2}-\underline{f}_{2} \cdot \underline{u}_{1} \underline{u}_{1}}{\left|\underline{f}_{2}-\underline{f}_{2} \cdot \underline{u}_{1} \underline{u}_{1}\right|} . \tag{E46}
\end{align*}
$$

The vectors $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and $\underline{u}_{1}, \underline{\mathrm{u}}_{2}, \underline{u}_{3}$ each form orthonormal bases for 3 dimensional space. An arbitrary vector \underline{r} can be expressed as

$$
\begin{equation*}
\underline{\mathrm{r}}=\mathrm{x} \dot{\mathrm{i}}+\mathrm{y} j+\mathrm{zk} \tag{E47}
\end{equation*}
$$

The corresponding $\underline{f}(\underline{r})=f_{x} \underline{u}_{1}+f_{y} \underline{u}_{2}+f_{z} \underline{u}_{3}$. Condition 2 of equation (E45) can only be satisfied if

$$
\begin{equation*}
\underline{f}(\underline{r})=x \underline{u}_{1}+y \underline{u}_{2} \pm z \underline{u}_{3} . \tag{E48}
\end{equation*}
$$

Thus we can define two functions $\mathrm{f}+$ and f - that both satisfy equation (E45) and map ${\underset{-1}{1}}$ into ${\underset{-1}{-1}}$ and ${\underset{-1}{2}}$ into f_{-2}. The function f - can be viewed as the reflection $(x, y, z) \rightarrow(x, y,-z)$ followed by $f+$. We are only interested in continuous transitions from an initial position to a final position and thus reflections must be eliminated since it is not possible to go from (x, y, z) to ($x, y,-z$) continuously without violating condition 2 of equation (E45). Thus continuous rigid displacements can only occur in the form $\mathrm{f}+$. This function can be written out as

$$
\begin{align*}
& \underline{\mathbf{f}^{\prime}(\underline{r})}=x \underline{u}_{1}+y \underline{u}_{2} \cdot z \underline{u}_{3}=\alpha_{x} i+\alpha \alpha_{y} j+a_{z} k \tag{E49}\\
& \alpha_{x}=x \underline{u}_{1} \cdot i+y \underline{u}_{2} \cdot i+z \underline{u}_{3} \cdot i \\
& \alpha_{y}=x \underline{u}_{1} \cdot j+y \underline{u}_{2} \cdot j+z \underline{u}_{3} \cdot j \tag{E50}\\
& \alpha_{z}=x \underline{u}_{1} \cdot k+y \underline{u}_{2} \cdot k+z \underline{u}_{3} \cdot k
\end{align*}
$$

Equation (E50) can be rewritten in the matrix form

$$
\begin{equation*}
\underline{\alpha}=\mathbf{M} \underline{\mathbf{r}} . \tag{E51}
\end{equation*}
$$

The vectors α and \underline{r} are of the same length and since this must hold for all pairs $\underline{\alpha}$ and \underline{r} we must have that

$$
\begin{equation*}
\mathrm{M}^{\mathrm{T}} \mathrm{M}=1 \tag{E52}
\end{equation*}
$$

Equation (E52) also implies all eigenvalues of M are of unit magnitude. The eigenvalues and eigenvectors of M may be complex so that if $M \underline{x}=$ $\lambda \underline{\mathbf{x}}$, then $\underline{x}^{T}{ }_{\mathbf{M}}{ }^{T} \mathbf{M} \underline{x}=1=\lambda^{*} \lambda \mathbf{x}^{T} * \mathbf{x}$. For 3 -dimensional space \mathbf{M} must have at least one real eigenvalue. Since M is real, its eigenvalues must occur in complex pairs. Therefore at least one eigenvalue of M must be equal to 1 . The value -1 could not be acceptable since it would imply $\mathrm{M} \underline{u}=-\underline{u}$ which would be a reflection and already ruled out. Thus, we have that det $\mathrm{M}=1$.

The matrix M is now looking very much like 9 rotation since the eigenvector \underline{u} is an eigenaxis. All we must do now is to determine the angle of rotation. Along with the eigenvector \underline{u}, let us define unit vectors \underline{v} and \underline{w} such that $\underline{u}, \underline{v}, \underline{w}$ is an orthonormal basis set. Also, we assume $\underline{w}=\underline{\bar{u}} \times \underline{v}$. With these definitions we can express the matrix M as

From the fact that $M \underline{u}=\underline{u}$ and that $M^{T} M=1$ equation (E53) reduces to

$$
\begin{equation*}
M=\underline{u}^{\underline{u}} \underline{u}^{T}+p\left(\underline{v} \underline{v}^{T}+\underline{w}^{\underline{w}} \underline{w}^{T}\right)+q\left(\underline{v} \underline{w}^{T}-\underline{w} \underline{v}^{T}\right) ; p^{2}+q^{2}=1 \tag{E54}
\end{equation*}
$$

We can now eliminate the vectors \underline{v} and \underline{w} from this equation by use of the proper function of \underline{u}. Thus

$$
\begin{equation*}
\mathrm{M}=\underline{u}_{\underline{u}} \underline{\mathrm{u}}^{\mathrm{T}}+\mathrm{p}\left(1 \cdots \underline{u}_{\underline{u^{2}}} \underline{\mathrm{~T}}^{2}-\mathbf{q} \tilde{\mathrm{u}}\right. \tag{E55}
\end{equation*}
$$

This completes the proof that the matrix is a rotation matrix. This is now obvious from inspection of equation (E55) by comparing it to equation (E40) with $p=\cos \phi$ and $q=\sin \phi$. Thus the most general displacement of a rigid body (or transformation of a coordinate system) in which at least 1 point remains fixed is a rotation about a fixed axis i.e., the final orientation can be obtained from the original by a single rctation about the axis u through the angle ϕ (u and ϕ are determined from M) even though the actual motion from initial to final may have been more complex.

What all the previous discussion boils down to is that the product of a pair of rotations is itself a rotation. Thus, if M_{1} and M_{2} are rotations about \underline{u}_{1} and $\underline{\underline{u}}_{2}$ respectively, then $M_{1} M_{2}=M_{3}$ is also a rotation through some angle ϕ_{3} about some axis \underline{u}_{3}. In fancier terms the set of rotations forms a group under matrix multiplication.

The results of our previous discussions now suggest some new notation that may aid us in keeping up with the multiplicity of coordinate systems that must usually be dealt witr, in analysis of spacecraft rotational dynamies. To vemain completely general, let us consider three coordinate frames A. B. C. We shall let the symbol [BA] represent the rotation matrix which transforms a vector expressed in the A frame to a vector expressed in the 13 frame.

$$
\begin{equation*}
\underline{v}^{(B)}=|B A| \underline{v}^{(A)} \text {. } \tag{E56}
\end{equation*}
$$

For convenience we use the notation superscript (A) or (B) etc. to indicate which coordinate frames the vectors are being expressed in. If the superscripts are not specified. it weans that the coordinate frame is implicit in the definition of tie symbol or the it doesn't matter as long as all vectors are in the same frame. Pie are we more interested
 $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$. From our previous work

$$
\begin{equation*}
[C A]=[C B][B A] . \tag{E57}
\end{equation*}
$$

Corresponding to equation (E 57) is a quaternion relation of similar form. First, since $\underline{V}^{(C)}=[C A] \underline{V}^{(A)}$, we have

$$
\begin{equation*}
\underline{V}^{(C)}=Q_{C A} * \circ \underline{V}^{(A)} \circ Q_{C A} . \tag{E58}
\end{equation*}
$$

Here, $Q_{C A}$ is the quaternion corresponding to [CA]. Thus analogous to equation (E57) we have

$$
\begin{equation*}
\underline{V}^{(C)}=Q_{C B}^{*} \circ Q_{B A}{ }^{*} \circ \underline{V}^{(A)} \circ Q_{B A} \circ Q_{C B} \tag{E59}
\end{equation*}
$$

Interestingly, we see that $Q_{C A}=Q_{B A} \circ Q_{C B}$ so that the factors occur in reverse order from equation (E57). However, if we use the doublebar operator we can multiply in the same order, i.e.

$$
\begin{equation*}
\mathbf{Q}_{\mathbf{C A}}=\overline{\overline{\mathbf{Q}}}_{\mathbf{C B}} \mathbf{Q}_{\mathbf{B A}} \tag{E60}
\end{equation*}
$$

This result is the one which we wish to use analogous to equation (E57). Equations (E 57) and (E 60) have an easily remembered form and in fact behave as if multiplication cancelled the terms appearing on the inside. This makes it quite casy to construct chains of transformations to any desired system. In this notation we see that

$$
\begin{align*}
& {\left[B A \mid=[A B]^{T}=[A B]^{-1} ;\right. \text { also }} \\
& Q_{B A}=Q_{A B}{ }^{*}=Q_{A B}^{-1} . \tag{E61}
\end{align*}
$$

Finally, there are some useful tricks with the new notation we have detinea. Referring to equation (E28) and adding the subscripts we have
 angular velocity of B relative to A with components in B. Consider the quaternion ${ }^{Q}{ }_{\mathrm{CB}}$.

$$
\begin{aligned}
& ={ }_{2}^{1} Q_{\mathrm{CB}} 0{ }_{-\mathrm{CA}}^{(\mathrm{C})}-\frac{1}{2} Q_{\mathrm{CB}} \circ\left(Q_{\mathrm{CB}}{ }^{*}{ }_{-\mathrm{BA}}^{(\mathrm{B})} \circ \mathrm{Q}_{\mathrm{CB}}\right) \\
& =\frac{1}{2} Q_{\mathrm{CB}}{ }^{0}\left(\mathrm{HCA}(\mathrm{C})-\frac{1}{2} \underset{-1 \mathrm{BA}}{ }{ }^{(B)} \text { ० } Q_{\mathrm{CB}}\right.
\end{aligned}
$$

or in matrix form

$$
\dot{Q}_{\mathrm{CB}}=\frac{1}{2}\left(\begin{array}{cc}
=(0) & \approx(B) \tag{E62}\\
-\mathrm{CA} & -B A
\end{array}\right) Q_{\mathrm{CB}}
$$

The utility of equation (EG2) is most apparent when we use it to compute the attitude error of a spacecraft relative to a moving or moveable reference. Note that the components of (C) and (B) are expressed in different frames. Normally, (C) would come from rate sensors which are body fixed while ${ }_{\text {BA }}$ (Bf is a commanded mancuver rate which is naturally defined in the moveable reference. This equation then allows us to use both quantities direc:ly without either being transformed.

It often becomes neesssary to compute the quaternion corresponding to a given rotation matrix. i.e.. find Q given [BA]. We have developed a computer algorithm to do this.

1) Define matrix

A is the given rotation.
2) $s^{\prime}-s+s^{\prime}+(1-t(A) 1$.
3) $1=$ max s^{\prime} ii (index $0^{\prime \prime}$ largest element along diagonat of S^{\prime}).
4) $u_{j}=s_{1 j} / 2 B_{11}^{\prime}$.
5) $Q_{j}^{\prime}=Q_{j} \operatorname{sgn} Q_{4}: \operatorname{sgn}=\left\{\begin{array}{l}1 \text { for } \Theta_{4}<0 \\ +1 \text { for } Q_{4} \geq 0\end{array}\right.$.

Another useful and perhap: ohvious technique is the expression of the quaternion resulting from a sequance of Euler rotations (rotations about coordinate axes):

$$
\begin{aligned}
& Q_{B A}=\left(C \frac{\phi_{1}}{2}+u_{1} S \frac{\phi_{1}}{2}\right) 0\left(C \frac{\phi_{2}}{2}+\underline{u}_{2} S \frac{\phi_{2}}{2}\right) 0 \\
& 0\left(C \frac{\phi_{n}}{2} \div u_{n} S \frac{\phi_{n}}{2}\right)
\end{aligned}
$$

where $\mathrm{S} \triangleq \sin$ and $\mathrm{C} \triangleq \cos$. The corresponding rotation is [BA] and is given by

$$
[B A]=\left[\phi_{n}\right]_{i_{n}} \ldots\left[\phi_{2}\right]_{i_{2}}\left[\phi_{1}\right]_{i_{1}}
$$

The vectors \underline{u} can be any of the three coordinate axes $[1,0,0]$, $[0,1,0]^{T}$ or $[0,0,1]^{T}$. If $\underline{u}=[1,0,0]^{T}$, then $i_{1}=1$, etc. We have added the convention that a rotation bracket with a subscript is an Euler rotation about the indicated axis. As an example consider the quaternion formed when $i_{1}=1, i_{2}=2, i_{3}=3$:

$$
\begin{aligned}
Q_{B A}= & \left(\mathrm{C} \frac{\phi_{1}}{2}+\mathrm{i} \mathrm{~S} \frac{\phi_{1}}{2}\right) \circ\left(\mathrm{C} \frac{\phi_{2}}{2}+\mathrm{j} \mathrm{~S} \frac{\phi_{2}}{2}\right) \circ\left(\mathrm{C} \frac{\phi_{3}}{2}+\mathrm{k} \mathrm{~S} \frac{\phi_{3}}{2}\right) \\
= & \mathrm{C} \frac{\phi_{1}}{2} \mathrm{C} \frac{\phi_{2}}{2} \mathrm{C} \frac{\phi_{3}}{2}-\mathrm{S} \frac{\phi_{1}}{2} \mathrm{~S} \frac{\phi_{2}}{2} \mathrm{~S} \frac{\phi_{3}}{2} \\
& +\mathrm{i}\left(\mathrm{~S} \frac{\phi_{1}}{2} \mathrm{C} \frac{\phi_{2}}{2} \mathrm{C} \frac{\phi_{3}}{2}+\mathrm{C} \frac{\phi_{1}}{2} \mathrm{~S} \frac{\phi_{2}}{2} \mathrm{~S} \frac{\phi_{3}}{2}\right) \\
& +\mathrm{j}\left(\mathrm{C} \frac{\phi_{1}}{2} \mathrm{~S} \frac{\phi_{2}}{2} \mathrm{C} \frac{\phi_{3}}{2}-\mathrm{S} \frac{\phi_{1}}{2} \mathrm{C} \frac{\phi_{2}}{2} \mathrm{~S} \frac{\phi_{3}}{2}\right) \\
& +\mathrm{k}\left(\mathrm{C} \frac{\phi_{1}}{2} \mathrm{C} \frac{\phi_{2}}{2} \mathrm{~S} \frac{\phi_{3}}{2}+\mathrm{S} \frac{\phi_{1}}{2} \mathrm{~S} \frac{\phi_{2}}{2} \mathrm{C} \frac{\phi_{3}}{2}\right)
\end{aligned}
$$

the corresponding [BA] is

$$
\left[\begin{array}{c:c:c}
\mathrm{C} \phi_{2} \mathrm{C} \phi_{3} & \mathrm{~S} \phi_{1} \mathrm{~S} \phi_{2} \mathrm{C} \phi_{3}+\mathrm{C} \phi_{1} \mathrm{~S} \phi_{3} & -\mathrm{C} \phi_{1} \mathrm{~S} \phi_{2} \mathrm{C} \phi_{3}+\mathrm{S} \phi_{2} \mathrm{~S} \phi_{3} \\
-\mathrm{C} \phi_{2} \mathrm{~S} \phi_{3} & -\mathrm{S} \phi_{1} \mathrm{~S} \phi_{2} \mathrm{~S} \phi_{3}+\mathrm{C} \phi_{1} \mathrm{C} \phi_{3} & \mathrm{C} \phi_{1} \mathrm{~S} \phi_{2} \mathrm{~S} \phi_{3}+\mathrm{S} \phi_{2} \mathrm{C} \phi_{3} \\
\mathrm{~S} \phi_{2} & -\mathrm{S} \phi_{1} \mathrm{C} \phi_{2} & \mathrm{C} \\
\hline \mathrm{C} \phi_{2}
\end{array}\right]
$$

In this brief exposition, we have developed a number of useful quaternion results and notations. This by no means exhausts the possibilities. The available quaternion literature does not present the material in an easily applicable form and thus this short development is presented to fill that gap.

NOTES: The following notes apply to the previous discussion:

1) We use Q_{4} rather than Q_{0} for convenience. Since these quaternion equations will be adapted for the computer and since 0 is not usually allowed as a subscript it becomes necessary to use something else. We desire to use $1,2,3$ for the vector components, hence Q_{4} is the real part;
2) The symbol \sim is called double tilde and the symbol $=$ is called double bar;
3) We shall define

$$
\widehat{\mathbf{Q}}=\left[\begin{array}{ccc}
0 & -\mathrm{Q}_{3} & \mathrm{Q}_{2} \\
\mathrm{Q}_{3} & 0 & -\mathrm{Q}_{1} \\
-\mathrm{Q}_{2} & \mathrm{Q}_{1} & 0
\end{array}\right]
$$

which is the tilde or cross product matrix for the 3 -vector \underline{Q}.

APPENDIX F

STEREO VISUALIZATION WITHOUT OPTICAL AIDS

(Cross-eyed Stereo)

On many occasions in engineering and physical analysis it would be useful to be able to sketch in three dimensions. This would be especially helpful in the study of the rotational motion of spacecraft. To fulfill this wish in many cases, we have used a convenient technique which requires no optical devices other than one's eyes and some graph paper. All that is required is a stereoscopic pair of images. One additional capability is necessary. The observer must be able to cause the lines of sight of his eyes to converge; i.e., one must cross one's eyes. The stereo projections are formed as shown in Figure F1. The images are reversed and viewed as in Figure F2. With a little practice, one can easily learn to reconstruct mentally, the 3 -dimensional scene from the reversed stereo pairs. In Appendix G there are several stereo views of the various equilibrium attitudes for the Skylab vehicle. The Skylab is represented as an idealized "wire-frame" model which is transparent. The interested reader should try several viewing distances (the farther away the page the less crossing of the eyes is required and the easier it becomes to focus the images). Squinting may also help as it increases one's depth of focus. When one first looks at a stereo pair, one focuses on the page and sees two similar but separate images. As one begins to cross his eyes, the two images become four. Continue crossing the eyes until the interior pair of images come together. Since the line connecting corresponding points on the images must be at the same angle about the line of sight as the line connecting the eyes, it may be necessary to rotate the page or rock the head until these two images become superimposed and seem to merge into a stereo image. This technique does require some practice but once mastered it can be very useful for easy visualization in 3 dimensions.

If a computer with plot capability is available to us, we can construct the necessary stereo projections from a set of points and lines that represent the object of interest. We have referred to such a representation as a wire frame model because of the appearance of the image. Let P be a representative point of the model. Each point P is projected into the picture plane S as shown in Figure $F 3$. The point P is projected to the eyepoint E and the line PE intersects the picture plane S at P^{\prime}. P^{\prime} is the projection of P onto S. The set of all points P^{\prime} projected from object points P together with the connecting lines form the desired projection. We set up a reference frame in the plane S. To do this, we must specify which way is up (so to speak). Let \underline{u}_{u} be a
unit vector in this direction and $\underline{u}_{r}=\underline{u}_{u} \times \underline{\ell}$ is a unit vector in S pointing to the right. We place the origin of the S coordinate reference at O. Observe that ${\underset{-}{o}}=\underline{r}_{\mathrm{E}}+\mathrm{d} \ell$; where ${\underset{-}{\mathrm{r}}}$ and $\underline{\mathrm{r}}_{\mathrm{E}}$ are position vectors of O and E respectively. From the geometry shown in Figure F3, we can see that

From this we can compute

$$
\begin{aligned}
& x_{P^{\prime}}=\left(\underline{r}_{P^{\prime}}-\underline{r}_{0}\right) \cdot \underline{u}_{r} \\
& y_{P^{\prime}}=\left(\underline{r}_{p^{\prime}}-\underline{r}_{0}\right) \cdot \underline{u}_{u}
\end{aligned}
$$

Since $\ell \cdot \underline{u}_{u}=\ell \cdot{\underset{u}{u}}^{\ell}=0$,

$$
\begin{aligned}
& x_{P^{\prime}}=\left(\underline{r}_{P^{\prime}}-\underline{r}_{L^{\prime}}\right) \cdot \underline{u}_{\mathrm{r}} \\
& \mathrm{y}_{\mathrm{P}^{\prime}}=\left(\underline{r}_{\mathrm{P}^{\prime}}-\underline{r}_{\mathrm{E}^{\prime}}\right) \cdot \underline{u}_{\mathrm{u}}
\end{aligned}
$$

The set of points ($x_{P^{\prime}}, y_{P^{\prime}}$) plotted conventionally forms the desired projection. Size cim be altered by seale adjustments. These projections are then placed as desired. Also, the values used for d and eye separation s are arbitrary and can be adjusted for convenience or eye comfort. In real life $s=65 \mathrm{~mm}$ and $\mathrm{d}=250 \mathrm{~mm}$ for comfortable reading; however, it may be more comfortable for d to be larger. Some initial experimentation with this technique should establish desireable settings.

We have developed some APL software to produce such images. This software was used on our Sigma V computer and is presented for the benefit of the interested reader with a background in APL (See listing at end of Appendix H.).

The software consists of three functions: 1. STSETUP; 2. STROT; and STEREO. STSETUP allows the user to specify the various parameters for the obscrver such as d, s, \quad, etc. STROT allows the user to rotate the line of sight and the observer position to view the object from a
different angle without changing the viewing distance or eye separation. STEREO is the function which takes a set of points connected by straight lines and forms the stereoscopic projections. Usually these functions are driven by another function which is set up to draw the object of interest. A function called SKYLAB does this for us in this case.

Figure F1. Stereo projection.

Figure F2. Stereo reconstruction by cross-eyed viewing.

Figure li3. Projection geometry.

APPENDIX G

COMPLETE TEA SET

(Cross-eyed Stereo Doubles)

Figures G1 through G12 show all the available TEA's for an altitude of about 200 km ($108 \mathrm{n} . \mathrm{mi}$.). The nomenclature is derived from the general directions of the vehicle X axis (first letter) and the vehicle Z axis (second letter) with respect to the L system.

The axes can point
N north
S south
U up
D down
F forward
B backward
The top set of 3×3 numbers ${ }^{7}$ in each figure is the direction cosine matrix from the L system to the A system. Further the BAR angles and the X 's are given. The vehicle Z axis beta is the elevation angle of the vehicle Z axis with respect to the orbital plane.

The point of view is from behind the vehicle, slightly south of the orbital plane. The axes shown are these of the L system. The Y axis points to the north, the Z axis points up, and the X axis points forward (into the paper plane). The vehicle is moving from the lower left to the upper right.
7. In APL computer language the minus sign is a superscript minus (to distinguish it from the subtraction operation).
ALSU
BANK, ATTACK, ROLL ANGLE -78.6123105 .986124 .924
CHIX, CHIY, CHIZ 178.744145 .425178 .4592
UEH Z-AXIS BETA -0.41992

a. No momentum.
Figure G1. TEA - SU or T121P.
ALSUZM1

b. - 1 H momentum in Z axis.
Figure G1. (Continued)

c. $+\mathbf{0 . 5 H}$ momentum in X axis.
Figure G1. (Concluded)

Figure G3.
0.99084
0.120814
0.0603313

ALUN

UN or T121G.

ALDS

Figure 64.

Figure G5. TEA - BU or T275.

UEH Z-AXIS BETA -20.5273

Figure G6. TEA - BD.

Figure G7. TEA - BN.

Figure G8. TEA - BS.

Figure G9. TEA - DN.

ALUS				
-0.351053	-0.193692	0.916103		
-8.816755	-0.541789	-0.198432		
0.4579	0.017892	0.340396		

Figure G10. TEA - US.
ALNU
BANK, ATTACK, ROLL ANGLE 86.4089 71.8006 - 51.2331
CHIX, CHIY, CHIZ 27.40510 .786571 .4615
UEH Z-AXIS BETA 8.41498

Figure G11. TEA - NU.
ALS

Figure G12. TEA - SD.

APPENDIX H

TEA SIMULATION AND GROUND SUPPORT

To assess the feasibility and refine the techniques of TEA control, we had to develop a simulation. Simulation tools already existed to some extent as a result of our work on EOVV control. These were modified and extended for TEA. The details of the theoretical background for most of the development of TEA control are presented elsewhere. We shall concentrate on a few additional areas.

IBM also had Skylab simulations left over frem original Skylab days. These were used to verify the control schemes we developed and also to verify the resulting new flight computer code. In addition, they were used to confirm our ground procedures and to predict TACS propellant usage [2].

The computer and the programming language are of fundamental importance to the success of this effort. The computer used was a Xerox/Honeywell Sigma V. We were most fortunate to have ready access to this machine together with timesharing hardware and software. The language used was APL, a high order, interpretive language which offers high computing power together with a relatively simple syntax. Since the language operates on the tensor or array level, it is a highly compressed language, allowing one or two lines of APL code to be equivalent to dozens of lines of Fortran. TEA control and EOVV control could not have been successfully accomplished in such a short time and low manpower effort without the efficient use of APL and the Sigma V. As an example, we were able to assemble virtually from scratch within one week a complete dynamic simulation of Skylab EOVV with 3-axis rotational dynamics and CMG control.

For TEA we modified the Skylab EOVV simulation primarily by redefining the momentum desaturation technique. Since we had to simulate many orbits of TEA operation to assess its behavior, we had to adopt a somewhat modified approach. To speed running time of the simulation functions, it was desireable to lengthen the integration step being used by an order of magnitude. This was done by sacrificing the body rotational dynamics. A slow running version of the TEA simulation was maintained with rotational dynamics in it to spot check this fast version but was not used much because it proved too slow. We assumed the vehicle control was perfect in maintaining the vehicle at its commanded attitude and that small maneuvers were made instantaneously. These changes in attitude were made at the beginning of the integration period and afterwards only gyro drift caused attitude changes relative
to the local vertical reference. To improve accuracy the vehicle torque was computed twice during each cycle: at the beginning and at the end of each step. The attitude maneuver made to desaturate the angular momentum was assumed to be made at the beginning of each step. The torque was calculated for the new attitude at the beginning. Since the position may have changed at the end of the interval it is calculated again and averaged. With this technique we were able to obtain good results using a 300 -sec integration step which was also the TEA desaturation interval. This allowed us to simulate 1 day of orbits in about 5 min , if we had priority demand on machine time. This was provided in the month prior to initiating TEA control and allowed us to develop and refine our operating procedures including those used to initiate TEA control.

In addition to the simulation, we developed many analysis tools. As can be noted by examining the listings at the end of this appendix, there are many functions including simulation functions, support functions, ploiting functions and auxilliary functions. This set constitutes the library that was used in developing the TEA control schemes and in maintaining TEA control once it was established. Various subsets of these functions were used, depending on the application.

Attitude dynamies in the slow simulation was simulated using the Newton-Euler rigid body rotational equations

$$
\dot{\mathrm{H}}_{\mathrm{Tk}}=\mathrm{T}_{\mathrm{Ek}}-\underline{-V}_{\mathrm{Vk}} \times \underline{H}_{\mathrm{Tk}}
$$

The total system angular momentum $H_{T k}$ was made from the sum of vehicle and CMG momentum. The CMG momentum was computed from the gimbal angles which were determined by integration of the rate commands coming from the CMG stecring law of Reference 5 . These rate commands were assumed to be provided by the CMG gimbal dynamics except for gimbal rate limits and stops on the angles. The vehicle position was determined by integrating the vehicle angular rate. This rate was obtained from the vehicle angular momentum by use of the inverse moment of inertia tensor or in dyadic form,

$$
v_{\mathrm{Vk}}=\underline{\mathrm{I}}_{\mathrm{Vk}}^{-1} \cdot\left(\underline{\mathrm{H}}_{\mathrm{Tk}}-\underline{\mathrm{H}}_{\mathrm{CMGK}}\right)
$$

In the fast simulation, measured body rate was assumed controlled to orbital rate and the true rate $\underline{W}_{\mathrm{Vk}}$ was then determined by subtracting the gyro drift and dividing by the scale factors as in

$$
\underline{\omega}_{V k}=\underline{\underline{F}}_{S k}^{-1} \cdot\left(\underline{\omega}_{0}-\underline{\omega}_{D k}\right)
$$

The CMG momentum was then

$$
\underline{H}_{\mathrm{CMGk}}=\underline{\underline{H}}_{\mathrm{Tk}}-\underline{\underline{I}}_{\mathrm{Vk}} \cdot \underline{\omega}_{\mathrm{Vk}}
$$

The total torque from external sources, $T_{E k}$, is made up of aerodynamic and gravity gradient torques as developed in previous appendices. The position variables used were quaternions as explained in Appendix E.

After the TEA control was developed but before it was initiated in flight, the simulation was modified to convert it to a tool for the training of ourselves and the JSC and MSFC flight controllers who would be interfacing with the vehicle when the time came. We were able to run many practice sessions prior to actual TEA initiation. We had not been able to do this for EOVV and paid the price for this on several occasions. As a result of these training and practice sessions, we learned much on how to maintain TEA even in the face of large simulated errors between data in the flight computer models and the real vehicle. As a result we put ourselves in a much more favorable position to enhance the probability of successful initiation of TEA control. We learned how to prebias the rate gyros so that the strapdown would intentionally drift in a favorable direction. This gain in experience was crucial to overall success.

On the following pages, the simulation functions are listed. The first four ($\triangle C R, \triangle F M T, \triangle G R F, \triangle W M$) are proprietary and cannot be listed. Only $\triangle G R F$ and $\triangle F M T$ are used by the simulation to support graphics and data formatting. $\wedge C R$ and $\triangle W M$ are used only for listing all functions in an APL workspace and are not otherwise required.

DATE

```
WOKKSEACE GLAESE TEASUF
    TIVE= 10 39.7 DATE= 11 9 79
```

)FNS

$\triangle C K \triangle E$	$\triangle G F F$		$\triangle W M \underline{X}$	ADEG	AECONST	AETO	UE	$A F E A$$B A R$	
AFQ ALTED	DOY ANYA	OOT	ATAN	ATMDC	AXES BAI	BAIRS	OW		
bafangs	EAFAV	BARS	BOX	BFREANK	CHI CHRPO	OL C	CP CPA	CPAS	SUP
$D \triangle E$ DA	UAKAOW	dATE	DBAN	K DEAN	KPAR DEA	CBANK	KSUP	DBAR	
DEAKA	dBAKAFAR		dBakasje	DCD	DDDDER D	dECMG	DEGA		DEGQ
DELG	LENS	DESA	T DET	DFDOY	DFHEX D	DFOCT	DFE	DH	
DOYEALT	DPH LPWh		UFWRA	DR DKAW	DRAWN		DRAWNS	DKIFT	
DKO DTQ	EAF'A	EDIT	GEL ETGV	EC ENC	ERASE E	EUL E	EUL1	EUL2	
EUL3	FCFEILL	tabs	EIND	QR EIX	FORMAI'8	FPWR	GACC	EL GBP	
GEFA	gseasut	GETS	SUPE	gGtorque	HBAES		HELP	HESSEN	
HEXFO	hMatk	home	IC	IEGEN	JACOBIAN		LIMC	LIMM	
LOUY	LSTALL	MAG	HAEK	NaVUE	NOM NORM		NRMLIZ		
Ohbliakk	uUtFut	tAh	HFR IOWE	F PKIC	PUT	PWRAN	NGLE	QBLCHECK	
QULSET	QBLSETSH		GDE PDEG	QDT	QFA QIN	QRALG	QUAD		QUADM
quantize	hANI		fanpak	hotafe	fEF REFRE	ESH RE	REPRIC	RUN	RUNON
SCALE	SEEK	SETS	stations	SETUP	SFD SKYLA	$A B \quad S$	SLUPDAT		SPIN
SHLIT	SSANGLE	SSAN	OLEO	StaXes	STEREO S	STPAR	Stra	APIS	STROT
St'SETUK	tacs	teas	$V A L T E X P$	SPET TOP	translate		TRG UPD	ATE	
Whatscalt	W What	WIND	DOW WIND	OW		XPLO			

 VLSMGLL[!]V
 \(\checkmark\) LSTALL NLE; I; FHS:UN; \(\triangle W M ; \triangle F M T ; \triangle C F ; N L K ; N L F ; N F L ; \triangle A V\)
 [1] a Lietc auromaticaley all unlocked functions in a workspace
[2] A allowivg ilf lines of listing on each page.

[4] FNS $3 \quad \triangle N M 5 ; \triangle W M+1476 ; \triangle F M T+1470 ; \Delta C R+1475$
[5] $L: N L K+N L P$
[C] L3: $1+\mathrm{FNi}: 2$ 2 21
[7] $\rightarrow(12 I) / 0$
[8] FN+KG[iI-1];NLF+0
[9] $N L F+3++(2113)=1 \Delta C K E N$
$[10] \rightarrow(i 1 / H>N L h) / M$
[11] 2413

[13] L5:HAS+1+HN:
[14] \rightarrow L3; NLA+inLh-NLE-1
[15] M: ', <422
[16] $\rightarrow L$:
∇
Léthli ju

```
    \(\nabla C+A X B\)
[1] A NORNALIZED CROSS PRODUCT
[2] \(C+\left(A\left[\begin{array}{lll}2 & 3 & 1\end{array}\right] \times B\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]\right)=A\left[\begin{array}{lll}3 & 1 & 2\end{array}\right] \times B\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]\)
[3] \(\quad C+C+(+/ C \times C) * 0.5\)
    \(\nabla\)
    \(\nabla K+A D E G A ; H A N G ; Q ; S\)
[1] A MAKES DIRECTION COSINES OUT OF EIGENANGLE IN DEGREES.
[2] \(\quad[-4 D 0\)
[3] \(Q[4]+2 O H A N G-0.5 \times F F D \times M A G A\)
[4] \(S+10\) HANG
[5] \(Q\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]+S \times A+M A G A\)
[6] \(K+A F Q Q\)
    \(\nabla\)
    \(\nabla\) AECONST
        - COMFUTES AERODYNAMIC CONSTANTS REQUIRED FOR AERO TORQUE CO
        NPUTATIONS.
[2] \(K T A E-0.5 \times 79.46 \times 10.06\)
[3] LE 2 DENS ALT - RNAG-FEA
[4] \(\rightarrow(I B N=1) / L\)
[5] \(\hbar H O A V-D B[1] ; K B U L G E-D B[2] \times S E E K F L=0\)
[6] \(\rightarrow 0\)
[7] L:RHOAV \(-R H O B A S E \times 1+0.5 \times A M P \times 2 * 342\)
    \(\nabla\)
    \(\nabla\) AETOfQUE;U;CMA;CNB;SNB
[1] \(\quad\) COMPUTES AERODYNAMIC TORQUE FROM RELATIVE VELOCITY AND ALT
    ITUDE.
[2] \(V A E+1000 \times V E K+. \times R D-O M G E X X R\)
[3] U+VAE+MAG VAE
[4] \(A A N G+2 O U[1]\)
[5] FANG+U[2]ATAN U[3]
[6] CMA+20AANG×0.110
[7] \(C N B+20 K A N G \times 0.110\)
[8] \(S N E+10 K A N G \times 110\)
[9] \(A E C O E F E+(C N B+. \times(C M A+. \times A N))+S N B+\ldots(C M A+\ldots E N)\)
[10] \(\rightarrow(I B M=1) / L 1\)
[11] \(F H O+(1-K b U L G E \times 2 O O M O T-T H B U L G E+01) \times R H O A V\)
[12] \(\rightarrow L 2\)
[13] L1: \(B U L G E+1+A M P \times(1+20 O M O T-T H B U L G E+01) \star 3+2\)
[14] KHO \(-(B U L G E \times K H O B A S F \times E E E K F L=0)+R H O A V \times S E E K F L=1\)
```



```
[16] TAEK+(3+TAEK)-( \(\triangle C G+\triangle C G N O M) X F A E K+(+10.06) \times 3+T A E K\)
    \(\nabla\)
    \(\nabla F+I A F E A A\)
    A ROIATION MATRIX FRON EULEG ANGLES IN THE SEQUENCE I GOING
[2] A EROM RIGHT TO LEFT EROM THE OLD TO THE NEW.
[3] \(K+(I[3] E U L A[3])+. \times(I[2] E U L A[2])+. \times I[1] E U L A[1]\)
\(\nabla\)
```

```
    \nablaA+AEQQ
[1] A DIF CUS MATKIX FROM QUATERNION
[2] A+3 3+A+(A+(QQDT Q)+.XQDE Q)[4;4]
    \nabla
    \nablaALT+ALTFDOY UUY;XI;YI;I
[1] A INTEhFOLATES TABULATED DATA TO ESTIMATE ALTITUDE FROM GIVE
        N -OY.
[2] YI+TABDOY
[3] XI+OTAEALTNM
[4] I+1\Gamma(+/DOYo.>TABDOY)\10
[5] ALT + *\lambdaI[I]+(LOY-YI[I])\times(XI[I+1]-XI[I])+YI[I+1]-YI[I]
    \nabla
    \nablaA+X ANYhOOT Y;I;N;P;Q
[1] A YIELDS POLYNOMIAL WITH SPECIEIED FOOTS WITH REAL PART X
[2j A AND IVAGINAKY IART Y.
[3] A+11;1+1;N+DX;X+,X
[4] L1:->L2\times:0=Y[1]:Y+,Y
[5] H*-2x\ddot{A}[I];{+(X[i]*2)+Y[I]*2
[6] A+(A,0,0)+(1. (0,A,0))+Q\times(0,C,A)
[7] ->L3
[8] L2:A+(-X[Ij\times(0,A))+A,0
[9] L3:I+I+1
[10] +L1\times1(15iv)
    v
    VA+S ACAN
        A 4 GUA/aANG INVKh&E \ANGENT EUNCTION
        A*(* %OC\div((S*2)+C*2)*0.5) *S* S S
    V
    V ATMLC;L:KNF;AGMK!
[1] A STMULALGS GHE SK:LAB ATADC.
[2] }+(7<7!1/)/
\3\ I!LKY+iAKA:ETYKY+ETYK:BETAF+BETA;NUZEKP+NUZEK
```



```
[12] LH:A.
[13] IACUS EJ+(:IG)\timesIV+. XOMV THD
```

[1]
∇ Q+AXES
∇
∇ KTS BAIKSTOW $A ; N ; M ; E ; P ; Q ; K ; J ; C ; Q ; \Delta Q ; B ; D ; \triangle P$
[1]
$[2] \quad \rightarrow(2 \quad 3=\rho C+1 \quad 0,1 \cdot 3+\rho B+0 \quad 1,1 N) / 1413$
[3] $\quad B[2]+A[2]+(-P \times 1 \rho B)-Q, 0 \rho B[1]+A[1]-P, 0 \rho K+J+3$
[4] $\rightarrow+4 \times 1 N>1+K+K+\rho, B[K]+A[K]+(-P \times B[K-1])-Q \times B[K-2]$
[5] $C[2]+B[2]+(-P \times 1 \rho C)-Q, 0 \rho C[1]+B[1]-P$
[6] $\rightarrow 6 \times 1 N>J+J+\rho, C[J]+B[J]+(-P \times C[J-1])-Q \times C[J-2]$
[7] $\rightarrow 9 \times 1 N=2+\rho, C+C[N-1]-B[N-1]$
$[8] \quad \rightarrow 10, P+P+\Delta P+((B[N-1] \times C[N-2])-B[N])+D+(C[N-2] * 2)-C$
[9] $\quad P+F+\Delta F+((B[N-1] \times C[N-2])-B[N] \times C[N-3])+D+(C[N-2] * 2)-\varepsilon \times C[N-3]$
$[10] \quad Q+Q+\Delta Q+((B[N] \times C[N-2])-B[N-1] \times \varrho)+D$
$[11] \rightarrow((200<M+M+1), E<(\mid \Delta Q)+\mid \Delta P) / 163$
$[12]+((1=N), 3 \leq N+N-2) / 14 \quad 3,0 \rho A+B, 0 \rho P+3-Q+2+M+0,0 \rho R T S+R T S, Q U A D P, Q$
[13] $\rightarrow 0 \times R T S+E T S, Q U A D 2 p A$
[14] a LINE DELETED HERE
[15] $\rightarrow 0 \times R T S+K T S,(-A[1]), 0$
[16] 'SLOW OK NON CONVEFGENCE.
[17] A 'A' CONTAINS the coefficients of the n'th degree polynomial
[18] a SUBROUTINE QUAD' CALCULATES ROOTS FROM QUADRATIC FACTORS
[19] A AN EXAMPLE WOULD BE SOLVING THE ROOTS FOR THE POLYNOMIAL
[20] A $(X * * 5)+(2 \times X * * 4)-(4 \times X * * 3)-(20 \times X * * 2)-(33 \times X)-18$; INPUT WOULD BE
[21] A BAIRSTOW 1 2-4-20-33 -18
[22] A PKOGRAMMED BY JOHN RICHARSON, O.C.C.,C.S.7,SPRING•70 ∇
∇ KOUT+EAK KIN;S;C;Q1;Q2;Q3;Q4 A COMPUTES THE BANK, ATTACK AND ROLL ANGLES FROM QUATERNION SET.
[2] $Q 1+S+F I N ; S+(\rho K I N+, K I N) \div 4$
[3] $Q 2+S+S+R I N$
[4] $Q 3+S+(2 \times S)+E I N$
[5] $64+(-S) \uparrow E I N$
[6] ROUT + DFR× $20(Q 1 * 2)+(-Q 2 * 2)+(-Q 3 * 2)+Q 4 * 2$
[7] ROUT+ROUT,[0.1](DFR×((Q1×Q2)-Q3×Q4)ATAN (Q1×Q3)+Q2×Q4)
[8] ROUT $+(D F R \times((Q 1 \times Q 2)+Q 3 \times Q 4) \operatorname{ATAN}(Q 2 \times Q 4)-Q 1 \times Q 3),[1] R O U T$
∇
∇ BAKANGS
[1] A LISTS bar angles calculated by bak function in tabular for M.
∇

∇ BARAV:A

[1] A ALLOWS GRAPHICAL DETERMINATION OF AYERAGE BAR ANGLES ARD
[2] A AUTOMATICALLY CALLS TEXPERT.
[3] MARK ANGLES IN BAR ORDER.
[4] $A \div 0[2]$
[5] $A+A, 0[2]$
[6] $A+A, 0[2]$
[7] $D+A ; Q A L+Q F A 121$ AFEA RFDKA
[8] TEXPERT
∇
∇ EARS INT;T;SC;TSTOP
[1] A DRAWS VERTICAL LINES ON A PLOT AT SPECIFIED INTERVAL.
[2] SC+WHATSCALE
[3] $T+I N T \times[S C[1]+I N T$.
[4] TSTOP $4 N T \times L S C[2] \approx I N T$
[5] L:MAKK T
[6] $\rightarrow(T S T O P \geq T+T+I N T) / L$
∇
$\nabla Q+E O X$
Q+9 $\triangle G R F$ 'A DRAWS A BOX AKOUND GRAPHICS WINDON. ∇
$\nabla B P K B A N K$
[1] A BUILDS ARRAY PRBANK USED TO SIMULATE ASAP DATA.
[2] PRBANK+3-18个BAR FRQAL
[3] PKATT $+\operatorname{PRBANK[2;]}$
[4] PRROLL $+\operatorname{PKBANK[3;]}$
[5] PRBANK $+(-18+P R T),[0.1] \operatorname{PRBANK}[1 ;]$
∇
$\nabla K O+C H I K I ; S ; C ; Q 1 ; Q 2 ; Q 3 ; Q 4$
[1] A COMPUTES CHI ANGLES FRO
[2] $Q 1+S+R I ; S+(\rho F I \leftarrow, R I) \div 4$
[3] $Q 2 \leftarrow S \uparrow S+R I$
[4] $Q 3+S+(2 \times S) \downarrow F I$
[5] $\quad Q 4+(-S) \uparrow R I$
[6] $K O+(2 \times(Q 1 \times Q 4)-Q 2 \times Q 3) A T A N(-Q 1 \times Q 1)+(Q 2 \times Q 2)+(-Q 3 \times Q 3)+Q 4 \times Q 4$
[7] $K O+R O,[0.1](2 \times(Q 2 \times Q 4)-Q 1 \times Q 3) A T A N(Q 1 \times Q 1)+(-Q 2 \times Q 2)+(-Q 3 \times Q 3)+Q 4 \times$ Q 4
[8] $R O+D E K \times R O,[1] \cdot 102 \times(Q 1 \times Q 2)+Q 3 \times Q 4$
∇

∇ PGCHRPOL A;AKiKillisis

[1]
n THIS PUNCTIOM USES LEXERIER'S NETHOD TO OBTAIH COEPFICIEMTS
[2] OF THE CBARACYERISTIC SQUATIOM OF MATRIX A. THE COEPFICIEM
T
[3] OP TES MIGHEST PONER IS MORNALIEED TO UMITY.
[4] A WRITTEM BY ZOWARD B. WILSOM, U. OF ALABANA
[5] $P+S++/, A \times E+(1 N) \cdot,=1 H ; 0 \rho K+1+0 \times N+1+\rho A K+A$
[6] $\quad[1: P+P,(+K+K+1) \times(-14 S)=+/ P \times \phi-1+S+S,+/, E \times A K+A K+, \times A$
[7] \rightarrow L $1 \times 1 K<n$
[8] $p+1,-P$
∇
∇ RX+CP EA;SEEKPL;R;RD;VLK;ONGEX;FAEX;TAEK;TGGX;TO;PO; $\triangle C G$ A ESTIMATES CP OFPSET FROM FLIGBT DETERNINED EQUILIBRIA. $S E E K P L+1 ; R+(R E A+A L T) \times L E K[3 ;] ; R D+O N O K \times(R E A+A L T) \times L E X[1 ;] ; V L K+1$ 21 AFEA EA
[3] ONGEK+ONGK×(2OLAZK) \times LEK[2:]
[4] TO+TRQ VLK: $\triangle C G+000$
[5] PO FAEK
[6] $R X+-\triangle C G+(4 P 0+. \times P O) \times F O X T O$
[7] 'NEW SLOPE'
[8] D+HEWSLOPE+GETSLOPE EA
[9] CP OFFSET i:RX
∇
∇ RX + CPA;SEEKFL;R;RD;OMGEX;FAEX;TAEK;TGGK;TO;PO; $\triangle C G ; V L K ; E A$
A ESTIMATES CP OFFSET PROM SIMULATION DATA.
[1] A ESTINATES CF $\operatorname{SEEKFL+1;RMAG+MAG\quad R+(REA+ALT)\times LEK[3:];RD+OMO}$
[2] SEEKFL+1;RMAG+MAG R+(REA+ALT) $\times L E K[3 ;] ; R D+O M O K \times(R E A+A L T) \times L E K[1$;];VLK+VL
[3] OMGEK+OMGK×(2OLAZK) $\times L E K[2 ;]$
[4] TO+TRQ VLK; $\triangle C G+000$
[5] $F 0+E A E K$
[6] $R X+-\triangle C G+(+F 0+, \times F O) \times F O X T O$
[7] 'NEW SLOPE'
[8] D+NEWSLOPE+GETSLOPE EA+1 21 EAFA VLK
[9] CP OFFSET : RX

```
    \nabla \triangleCP+CPASUP;VL;EROSIG;ONOK;ALT;ETLMON
[1] A GROUND SUPPORI FUNCTION USED TO SSTIMATE CP OFFSERS FRON F
    LIGHT DATA.
[2] A THIS EUNCTION CONVERTS DATA TO PROPER FORNAT FOR CPA.
[3] 'INPUT ALTITUDE IN NAUTICAL MILES'
[4] ALT +KFN\times\square
[5] 'INPUT ASCENDING NODE PERIOD IN HMS*
[6] OMOK+02+24 60 6010
[7] "INPUT ESTIMATED SOLAR SIGMA*
[8] FHOSIG*\square
[9] 'INPUT ETLNOM*
[10] ETLNOM+\square
[11] 'INPUT ESTIMATED L2 STRAPDOWN OFFSET IN DEG*
[12] ETLNOM+ETLNOM+. XEUL2 RFDX\square
[13] THE TRUE MOMENTUM BIAS IS '; ETLNOM
[14] 'INPUT QBL'
[15] VL&AFQ\square
[16] TTHE BAR ANGLES ARE ;DFRx1 2 1 BAFA VL
[17] }\triangleCP+CP
    \nabla
    \nabla D\triangleE
    1 DRAWN'PK\triangleE'A DRAWS \triangleE'VS TIME PLOT.
    \nabla
    \nabla DA
        1 DFAWN'PRA'A DRAWS STRAPDOWN OFESET FROM SIMULATION VS TIME
        PLOTS.
    \nabla
    \nabla S DARROW A
[1] STEREO F'P+A+. }ARAROW\timesSA DREWS A STEKEO ARRON FOR A 3-SPACE VE
    CTOR.
    \nabla
    \nabla DATE
[1] ERASEA ERASES PAGE AND LABELS PAGE HEADING.
[2] - WORKSPACE ',(I29),5 \triangleWM 1
3] 'TIME= ';24 60T(L(I20) +360)+10;" DATE= ';100 100 100TI25
    \nabla
```

∇ DBANK;PRT;AV;TSTOP;N;S;C;ANP;BNP;PO;PC;PS;S2;C2;SC;CI;SI; PRTP ASAP DUNP.
[2] $N+\rho P R T+P R B A N K[1 ;]$
[3] $P R T+D P R \times O M O \times P R T-(P R T[1]-T O R B \mid P R T[1]-T M I D)$
[4] TSTOP + TOP PRT
[5] SI-10RFD×PRT;CI-2ORED×PRT
[6] $\quad \operatorname{Oc++} / \operatorname{PRBANX[2;];PC++/PRBANX[2;]\times CI;PS++/PRBANK[2;]\times SI}$
[7] C++/CI;S++/SI;C2++/CI×CI;S2++/SI×SI;SC++/SI×CI
[8] MAT+ (N,C,S),[1](C,C2,SC),[0.1]S,SC,S2
[9] C+NAT+. $\times(F O, F C, F S)$
[10] $A V+C[1] ; A N P+C[2] ; B M P+C[3]$
[11] 1 DRAWHS ${ }^{\circ}$ PRBANK[2;]-AV'
[12] 0 DRAW (C+(ANP×20RFD×PRTF)+BNP×10RPD×PRTF)VS PRTF+30×0,il TSTOP4 30
[13] DETHL WRT MIDMIGHT : (-ANP), O,BNP
[14] -
[15] SUGGESTED DETRL ; $(E U L 2$ OMOT + OMO $\triangle \triangle T)+. \times(-A N P), O, B N P$
[16] ••
[17] THE AVERAGE BANK AMGLE IS :AV
[18] THE AMPLITUDE IS : $((A M P \times A N P)+B N P \times B N P) * 0.5$
[19] THE PHASE IS : 3601 DPRx (-ANP)ATAN BNP
[20] •
[21] DBANKPAR
[22] -
[23] I5,P9.1' \triangle PMT 13 2^PRTE,[1.1]C+AV
[24] $\operatorname{F0++} /$ PRATT; $F C++/ P R A T T \times C I ; F S++/ P R A T T \times S I ; \square$
[25] C + MAT+. $\times F O, F C, F S$
[26] $A V+C[1] ; A N \cdot P+C[2] ; B N P+C[3]$
[27] 1 DRAWNS'PRATT-AV ${ }^{\circ}$
[28] $0 \operatorname{DFAW}(C+(A N P \times 20 R F D \times P R T F)+B N P \times 10 R F D \times P R T F) V S ~ P R T F$
[29] THE AVERAGE ANGLE OF ATTACK IS ': AV
[30] THE AMPLITUDE IS ; ((ANP×ANP)+BNP×BNP)*0.5
[31] THE PHASE IS •;360|DFR×(-ANP)ATAN BNP
[32] DBANKPAR
[33] •
[34] - I5,F9.1• \triangle PMT 13 24PRTF,[1.1]C+AV
[35] $F 0++/ P R R O L L ; F C++/ P R R O L L \times C I ; F S++/ P R R O L L \times S I ; D$
[36] C + MAT $+\times F O, F C, F S$
[37] $A V+C[1] ; A N P+C[2] ; B N P+C[3]$
[38] 1 DRAWNS ${ }^{\circ}$ PRROLL-AV'
[39] 0 DRAW $(C+(A N P \times 20 R F D \times P R T F)+B N P \times 10 R F D \times P R T F) V S$ PRTF
[40] THE AVERAGE ROLL ANGLE IS ':AV
[41] \quad THE AMPLITUDE IS $:((A N P \times A N P)+B N P \times B N P) * 0.5$
[42] THE PHASE IS ';360|DER×(-ANP)ATAN BNP
[43] DBANKPAR
[44] -
[45] I5,F9.1' $\triangle F M T$ 13 $2 \uparrow P R T E,[1.1] C+A V$

```
    \nabla DBANKPAR
    A PRINTS DATA BLOCK FOR STRAPDOWN ERROR ESTIMATE
[4] CDDESIFED UPDATE
    DFS T
[5] DMIDNIGHT TIME
    DFS TMID
[6] '\1 KEV DELTA TIME
    TOFB
    -OFIkST QBL TIME
    QBL
[8] CDLAST QEL TIME
    QBL
    \nabla DBANKSUP;NAME;\triangleT;OMO;OMOT;TGMTO;GMTO;QAL;T;PRQAL;PRT;PRBANK;
    TMID;TORB;PRATT;PRROLL
    A GROUND SUPFORT FUNCTION USED TO ESTIMATE. STRAPDOWN ERROR F
    ROM
    f ASAP DATA. THIS PROGRAM SETS UP dATA IN PROPER FORMAT FOR
        DBANK.
[3] 'HAS QBLSET fuNCTION BEEN EXECUTED WITH LATEST DATA?'
[4] 'ENTER Y OR N FOR YES OR NO'
[5] ->('YN'\epsilon巴)/LY,LN
[6] LY:'INPUT GMT OF DESIKED UPDATE IN DHMS'
[7] T+365 24 60 601D
[8] OBTAIN FOLLOWING FROM CIRCLE CHART.
[9] INPUT MIDNIGHT GMT OF QBL SET.
[10] TMID+SFDD
[11] 'INPUT 1 REV DE'LTA TIME'
[12] TORB+SFD 0,口
[13] -TO GET PLOTS OF BANK, ATTACK AND ROLL ANGLES •
[14] 'INPUT CARFIAGE RETURNS'
[15] PRQAL+=4 0+QBL;D
[16] PRT+SFD 4 0+QBL
[17] OMO+02:TORB
[18] OMOT+OMOXTORB\T-TMID
[19] }\DeltaT+
[20] PRBANK+PFT,[1](BAK PRQAL)
[21] PRATT}4\mathrm{ PRBANK[3;]
[22] PRROLL+PREANK[4;]
[23] PFBANK+•2 0 PRBANK
[24] DBANK
[25] ->0
[26] LN:'EXECUTE EUNCTION QBLSET BEFORE USING THIS FUNCTION.
\nabla
```


V DEAR:INDEX;IMAX:ST:I; PRBAR

[1] A dRAWS bar angles. ssescts propsr orbit to plot.
[2] 1 DEAWN'BAR (4,ILEG) $+P R Q A L$.
[3] GMARK 114
[4] GMARK 93
[5] amark -98.5
[6] $I+0$
[7] IMAX++/ILEGSPRST[2;]
[8] $S T+(-I M A X)+P R S T[2 ;]$
[9] $L: I+I+1$
[10] $\operatorname{INDEX}+(S T[I]-1), S T[I], S T[I]+1$
[11] $0 \operatorname{DRAW}(P R B A R+B A R ~ P R Q A L[; I N D E X])[1 ;] V S ~ P R T[I N D E X] ~$
[12] 0 DRAW PRBAR[2;]VS PRT[INDEX]
[13] 0 draw pabar[3;]vs PRT[INDEX]
[14] $\rightarrow($ I<IMAX-1)/L
[15] $I+I+1$
[16] INDEX+•1+(ST[I]-1),ST[I],ST[I]+1
[17] 0 DKAW(PRBAK $-B A K$ PRQAL[;INDEX])[1;]VS PRT[INDEX]
[18] 0 DRAW PRBAR[2;]VS PKT[INDEX]
[19] O DKAW PRBAR[3;]VS PRT[INDEX]

∇

∇ DBARA
[1] \quad DRAWS BAR ANGLES FOR ALL SIMULATION DATA
[2] 1 DRAWNS'BAR PRQAL.
[3] DBARAPAR
[4] BARANGS
∇
∇ DBATAPAR
[1] a data block placed on bar angle plots.
[2] 271313
[3] DMIDNIGHT TIME DFS TMID
[4] D1 REV DELTA TIME TORB


```
    \nabla DBARASUP;NAMEQAL;PRQAL;PRT;TNID;TORB;TSTOP
[1]
    G GROUAD SUPPORT RUNCTION FOR PLOTRIMG ABAP BAR AMGLE DATA.
[2] 'GAS QBLSET FUHCTION BESA EXECUTBD NITR LATESE DATAG'
[3] 'ENTER I OR N POR IES OR MO'
[4] *("YN'C⿴)/LI,LN
[5] LY:'OBTAIM FOLLONIHG FRON CIRCLE CHART'
[6] 'IMPUT MIDHIGAT GNT OF QBL SET'
[7] TMID&SFDD
[8] "IMPUT 1 EEV DELTA TIME*
[9] TORB+SED O,D
[10] 'TO GET A PLOT OF T&E BAR AROLES'
[11] 'INPUT A CARRIAGE RETURN'
[12] PRQAL+*4 0+QBL:口
[13] PRT+SED 4 O+QBL
[14] TSTOP+TOP PRT+PRT-PRT[1]-TORB|PRT[1]-TMID
[15] DBARA
[16] }->
[17] LN:'EXECUTE FUHCTION QBLSET BERORE USIMG THIS EUACTION*
    \nabla
    \nablaDCD
[1]
    1 DRAWN'PRCD*A DRAWS DRAG COEREICIEMT VS IINE PLOT.
    \nabla
    \nabla X RD DDDDER R
[1] A COMPUTES 3RD DERIVATIVE OF AR POR IMTEGRATIOM OR ORBIT DYN
        ANICS.
[2] X (-GME+R2\timesRNAG) }\timesRDD-ONOK\timesRMAG\timesEX
[3] X X X +((3\timesGME +R2\timesR2\timesRMAG) }\timesR)+(DELGR)+. XR
    \nabla
    \nabla DECNG
[1]
    1 DRAWN'PRECMG'A DRAWS ECMG VS TIME PLOT.
    \nabla
    \nabla A DEGA R;P
[1] P&QFA RA CONPUTES EIGENANGLE FRON DIRECTION COSIAES.
[2] A+2\timesDFEx(-2OP[4])\times(34P)&MAG 34P
    \nabla
    \nablaA&DEGQ R
[1] A CONPUTES EIGENANGLE FRON INPUT QUATERNION.
[2] A+2\timesDFR\times(-20F[4])\times(34R)4MAG 34R
    \nabla
```

∇ DG DELG R;GNOM;ONOK; KGGG
[1] \quad CONPUTES HUMERTGAE GRADIEWF OF GRAVIEAEIONAL ACCELERAEIOM.
[2] $D G+1000000 \times(G A C C E L R+18-6,00)-G M O N+C N C E E K$
[3] $D G+D G,[1.1] 1000000 \times(G A C C E L .1+0,18-6,0)-G M O M$
[4]:DG+DG. $1000000 \times(G A C C E L R+00,18 \cdot 6)-G M O M$
∇

V R \rightarrow DEAS $A ; B L ; B U$
[1] R+20On IATERPOLATES DERSITI FRON TABLE OF DEASITY VS ALEIFUD 8.
[2] $B L+2 \int B L+/ B \leq A L T T A B$
[3] $A U-R C+1$
$[4] \quad\{[1]+R H O T A B[B L] \times *((O R H O T A B[B U]+R H O T A B[B L])+A L T T A B[B U]-A L T T A B[$ $H L]) \times H-A L T T A B[A L]$
[5] $\mathcal{F}[2]+B U L G E T A B[A L]+((B U L G E T A B[\sharp U]-B U L G E T A B[B L]) \& A L T M A B[B U]-$ $A L T G A B[B L]) \times B-A L T T A B[B L]$
∇
∇ DESAT;A;A1;A2
[1] A APL VERSIOR OE TEA SEEKIMG NETHOD USED POR DESATURATIOA.
[2] $\triangle E P+\Delta E$
[3] $\triangle E N P \leftarrow \triangle E N$
[4] ETVMON $-A L+, \times B T L N O N$
[5] ETACS $5 V L K+. \times K O T+. x(Q V L K)+. \times E T A C S$
[6] $\triangle E+E T S+E T A C S-E T V M O N$
[7] $\triangle E N+\Delta E L I M L I M C ~ \triangle E$
[8] $\triangle P H H+0.5 \times \triangle P H L I N ~ L I N C S L O P E+. \times \Delta E N+\triangle E-\triangle E P$
[9] $\triangle T H H+0.5 \times A L+. \times \Delta T H L-K \Delta T H \times \triangle T H L I N L(A L[; 3]+. \times S L O P E+. \times \Delta E M P+\Delta E-\Delta E P)$
「- $\triangle T H L I M$
[10] $\triangle T H L+000$
[11] $\triangle Q A L+\triangle P T,(1-\triangle P T+. \times \triangle P T+\triangle P H H+\Delta T B A) * 0.5$
[12] $V L+A L+A F Q \quad Q A L+(Q D B \quad \triangle Q A L)+. \times Q A L$
[13] ETACS +000
[14] $\triangle Q V E K+\triangle P H H,(1-\triangle P G H+. \times \triangle P H H) \star 0.5$
[15] $V E K+A F Q ~ Q V E K+(Q D B \quad \triangle Q V E K)+. \times Q V E K$

[17] A PRINTOUT
∇
$\nabla Y+D E T X ; I ; K ; V$
[1] $I+(\rho X)[K+1]$
$[2] \rightarrow(X[K ; K]=0) / 7$
[3] $V+(K \rho O),(\phi(I-K)+\phi X[; K])+X[K ; K]$
[4] $X+X-V \circ, \times X[K ;]$
[5] $\rightarrow(I>K+K+1) / 2$
[6] $\quad \rightarrow 0, Y++x / 1$ 1 $Q X$
[7] $Y+X[K+1 I-K ; K] \neq 0$
[8] $\rightarrow(0=+/ Y) / 10$
$[9] \rightarrow 3, X[K ;]+X[K ;]-(Y /[1] X[K+1 I-K ;])[1 ;]$
$[10] \quad Y \leftarrow 0$
[11] A COMPUTES DETERMINANT OF AKBITRARY SQUARE MATRIX. ∇

```
    \nabla.B+DPDOY A
[1] A COMPUTES DENS PRON DOY IM DECIMAL PORN.
[2] B+365 24 60 60T86400xA
    \nabla
    \nabla R-DFAEX X
[1] R+16 16 16 1610440 0 0 0,XA COMVERTS EEX DATA IMTO DECIMAL
    \nabla
    \nabla R+DFOCT X
[1] }\mp@subsup{|}{}{R+8 8 8 81-440 0 0 0,XA DECINAL ERON OCTAL CORVERSIOM.
    \nabla I+DFS X
[1] Y+365 24 60 60TXA CONVERTS SECONDS IMTO DAMS.
    \nabla
    \nablaDA
[1] 1 DRAWN'OEK+. XPRHTEK'A DRANS ITEK IN O FRAME VS TIME.
    \nabla
    \nabla DOY&DOYFALT ALT;XI;YI;I
[1] n IMTERPOLATES dOY VS ALT TABLE TO ESTIMATE DOY PRON GIVE| A
        LT.
[2] YI+@TABALTMN
[3] XI+TABDOY
[4] I+1[(+/ALT\bullet.STABALTMN)L10
[5] DOY+XI[I]+((\odotALT)-YI[I])\times(XI[I+1]-XI[I])+YI[I+I]-YI[I]
    \nabla
    \nabla DPH
[1] 1 DRAWN'PR\trianglePH'n DRAWS \trianglePH VS TIME.
    \nabla
    D DPWF
[1] 1 DRAWN'PGENK[1;]'A DRAWS SOLAR ARRAY ENERGY VS TINE PLOT.
    \nabla
    \nabla DPWRA;PRT
[1] A DRAWS POWER ANGLE VS TINE FOR SINULATED ASAP DATA.
[2] 1 DRAWN'PRPWRA[2;]';PRT*PRPWRA[1;]
    \nabla
```

$\nabla D R$
［1］\quad
［2］DTQ
［3］DH：D
［4］XH：D
［5］DA；D
［6］XA：
［7］DPH：ロ
［8］DRO：D
［9］DPWR：】
∇
∇ Q L L DEAW R：C

［2］ $2 \Delta G R F L$
［3］$\rightarrow 0, p \mathrm{D}+\mathrm{R}$

［5］G GRAPHICS FOR DRAWING 2 OR 3 DIMEMSIOMAL PLOTS．
∇
∇ P DRAWN NAME；L； $\mathbb{f} ; I ; N ; N I ; S ; A ; Y 1$
［1］A LABELS，SCALES，AND DRAWS MULTIPLE PLOTS ON A PAGE．
［2］AteNAME
［3］$I+\cdot 1+\rho A$
［4］$A+, A$
［5］$N+(D A)+I$
［6］$N I+[I+P$
［7］$S+(E \times 1 N I)-P-1$
［8］STRAPIS 5
［9］DATE
［10］2ヶ21 21

［12］WINDOW 0．5 7．75 0．5 5．5
［13］BOX
［14］SCALE（－TSTOP×0．1），（TOP TSTOP），（－Y1），Y1＋TOP（（H，I）○A）［；S］
［15］AXES
［16］L1：0 DRAN A［S］VS PRT［S］
［17］$A+I+A$
［18］$\rightarrow(0 \neq \rho A) / L 1$
∇P DRAWHS MAME; $L_{i} R_{i} I_{i} W_{i} M_{i} I 1 ; A_{i} 8$
[1] A+cllansa plots manso variable (s) vs gims on simges plot in s MALL HIMDOH
[2] Y1+YOP A
[3] $I+24 \rho A$
[4] $A+, 1$
[5] $\quad 1+(0 A)+I$
[6] $M+1 I+P$
[7] $S+(P \times 1 \| I)-P-1$
[8] STAAPIS 5
[9] DATE

[11] $:(H, 1) p A[I \times 1 / 1)]$
[12]
[13] HINDOW 3.8 7.80 .254 .25
[14] BOX
[15] SCALE(-TSTOP×0.1).(TOP 5850P), (-11), I1
[16] AxEs
[17] L1:0 DRAW a[s]VS PRT[8]
[18] $A+I+A$
[19] $+(0 p p A) / L_{1}$
∇
∇ D DRIFT
[1] A CONPUTES ACTUAL STRAPDOWM ERROR PROM SIMULATIOM DATA.
$[2]$ D $+-O B K+. x(D E G A(Q Y L K)+, X V L)+. \times L E X$
∇
∇ DRO
[1] \quad DRAWS ALTITUDE VS TINE WITA IMITIAL ALTITUDE AS REFEREMCE.
[2] 1 DRAWH'-REA+ALTIC-MAG PRR'
∇
∇ DTQ
[1] 1 DRAWM'PRTGGK+ERTAEK'A DRAWS TOTAL EXTERMAL TORQUE VS TIME. ∇

```
    V BA+I EARA A&U&8
        #SMI8 PROGRAM COMPUSB8 EULSR AMOLES FHON DIR GOSTHE MASRICES.
```

 5 HEW
[8] $\operatorname{La}[1]$ [8 ADOUS AXIS [[1] E2C.
[4] जPROGRAMMRD DI JOAN OLAB85 1-28-79.
[5] $U-3$ 301 000
$[6] \rightarrow([1]=[[3]) / \Sigma$
[7] $s \rightarrow D E$ U[; $[\{2], I[2], I[3]]$
[8] BA+eiosxA[\{[3]if[1]]
[9] $E A+((-8 m A[I[8] ; I[2]]) A E A M$ A[I[8]; [[8]]), BA
[10] EA-EA, (-8xA[I[2];I[1]])ASAM A[I[1];I[1]]
[11] $\rightarrow 0$
$[12] L: I[3]+6-I[1]+I[2]$
[19] BA+-20A[I[1];I[1]]
[14] s+DET U[sI[1],I[2],I[s]]

[16] SA+(A[I[1];I[2]]ATAM-SmA[I[1];I[3]]).EA ∇

- EDIEQAL;
 EEM EnTERED.

$[3] \rightarrow\left(" A I D^{\circ} \in(D) / L A, L I, L D\right.$
[4] LA: "IMPUT MEN QUATBRMIOM AMD GME'
[5] QBL+QBL.D
[6] $\rightarrow 0$
[7] LI: BMTER MUNEER OF COLUMMS AREAD OF LIME TO ES IMSEAYED'
[8] $08 L+(I+0) \oplus[2] 08 L$
[Q] 'EMTER MEW QUATERHION AWD GME'
[10] QBL-QBL.D
$[11]$ QBL-(-I+1) [2]QBL
[12] $\rightarrow 0$
[18] LD: EMSER WUNAER OF COLUNW TO DE DEESESD'
$[14] Q 8 L+((8, I-1)+Q E L),(0, I+\square)+Q 8 L$

[2] $I+(M, W) \circ 1, M_{\rho} K+0 \times N+14 \rho A$
[8] \quad 0 0 0.002×-501 + PMp1001
[4] \rightarrow REALxiR[2]=0
[5] CONPEEX:Y0+0.002世-501 4 P1/p1001
[6] $C 0+((M \times A[2] * 2)++1, A \times A+A-R[2] \times I) * 0.5$
[7] $M-I(I \approx A[2] * 2)+A+, x A+A-I \times 1 E=9 \times C 0$
[8] $M-R[2] \times M,(M, 0) \rho L+A+, n M$

[10] $K+K+1,0 \rho Z 0+M+V, 00 Y 0+M+V, 0 \rho 5+(+/(V-X 0, Y 0) * 2) * 0.5$
[12] $\rightarrow((x>100),(820.0001), 1) / F A L L, L 00 P 1$.FIMIBM1
[12] PAIL $1+0, . V+(2, H) \rho 0$
[13] FIMISA1: $+0, ., V+(2, n) \circ V$
[14] REALiN-RA-In0.0001~C0+(+1.A×A+A-R[1]nI)*0.5

0.5
$[16] \rightarrow((x>100),(5 \geq 15-6), 1) /$ FAIL, LOOP2, FINI8R2
[17] EINISE2:V+(2.W)OV.HDO
-
∇ R-ENC M:I
[1] I+16n EMCODES DECIMAL DAEA IMSO UPLIMX OCSAL.
[2] $\quad 11 \times 2 \times 1-5$
[3] $\rightarrow(1120) / L$
[4] $U+H+2 * I$

[6] $E+(608) r(18 p 2) \perp(1800.001) \backslash R$

∇
∇ g-ERASE
[1] $\mathrm{Q}^{+8} \triangle G R F$ in ERASES PAGE FOR GRAPHICS FUMCTIOHS.
∇
∇ RoI EUL A
[1] $\rightarrow(I=123) / L 1, L 2, L 3 n$ constructs sulsa rotatiol mataix about
AXIS I = 1.2.3.
[2] L1: $\rightarrow 0 ; R+$ EULI A
[3] $22:+0: R+E U L 2$ A
[4] L3: +0 ; $k+$ EUL3 1
∇
V F F EULI A
[1] $R+3$ 300n
COMPUEES EULER ROTAEIOL MAFRIX ABOUY X AXIS.
[2] $A[1 ; 1]+1$
[3] $R[2 ; 2]+R[3 ; 3]+20 A$
[4] $R[3 ; 2]+-R[2 ; 3]+10 A$
∇

```
    \nablaR+EUL2 A
[1] R+3 300A COMPUTES EULER ROTATION NATRIX ABOUT I AXIS.
[2] R[2;2]+1
[3] R[3;3]+R[1;1]+20A
[4] R[1;3]+-R[3;1]+;OA
    \nabla
    \nabla R+EUL3 A
[1] R+3 3\rhoOA
                COMPUTES EULER ROTATION MATRIX ABOUT Z AXIS.
[2] R[3;3]+1
[3] R[1;1]+R[2;:]-20A
[4] R[2;1]+-R[1;O|+10A
    \nabla
    \nabla A+FCF Y;X;C1;S1;CK;SK;K;Q;N
[1]
    N+0.5\times-1+DYA COMPUTES FOURIER COEPRICIENTS POR DATA Y.
[2] X O O(0,12\timesN)+N+0.5
[3] S1+10X;C1+20X
[4] CK+1+SK+(1+2\timesN)\rho0
[5] K+0;A+2 000
```



```
[7] Q+(CK\timesC1)-SK\timesS1
[8] SK+(C1\timesSK)+S1\timesCK
[9] CK+Q
[10] }->(N\geqK+K+1)/
[11] A+\triangleTOUT\times(+/[1]A\timesA)*0.5
[12] A+((*\triangleTOUT\times1+2\timesN)\times0,iN),[0.1]A
    \nabla
    \nabla FILLTABS;I;N;RTS
[1] A DEVELOPS DATA TO FILL STANDARDIZED TABLES OF TEA ATTITUDE,
        BIAS, ETC.
[2] ค VS TIME.
[3] I 1 1;TABSL&0 3 3\rho0;TABSERTS+TABEAT<3 0\rho0
[4] N+\rhoTABALTSU
[5] L:ALT&ALTIC <KFM\timesTABALTSU[D\leftarrowI]
[6] IC
[7] TABSL+TABSL,[1]SLOPE
[8] RTS+QRALG SLOPE
[9] TABSLRTS&TABSLRTS,RTS[ARTS[;1];1]
[10] TABEAT TTABEAT,,BAR QAL
[11] }->(N\geqI+I+1)/
```


[1] I+1;IDN+3 3p1 000 O PERPORNS QR TRAMSFORNATION IM QR ALGORI THN.
[2] $N+1+\rho A+A+, \times A+B$
[3] $\rightarrow(N \leq 2) / 0 ; B+H-(A \times 2 \times T R[1])-(+/ T R \times T R) \times(N, N) \rho 1, N \rho O$
[4] $\quad Z+(H,(M, 2) \rho 0),[1](2, N+2) \rho 0 ; A+(A,(M, 2) \rho 0),[1](2, H+2) \rho 0$
[5] $L: \rightarrow(E P Z / / A S+B[S+I+0$ 1 2;I])/LPP
[6] $X K 0+((+/ A S * 2) * 0.5) \times(A S[1] \geq 0)-A S[1]<0$
[7] $N U I+(1+A S)+X K O+A S[1]$
[8] LAI $+2+1++/ M U I \times M U I$
[9] QI+IDN-LAI×(1,NUI)•. $\times 1, M U I$
$[10] ~ A[; S]+A[; S]+\times Q I$
[11] $A[S ;]+Q I+. \times A[S ;]$
$[12] \quad \forall[S ;]+Q I+. \times H[S ;]$
[13] $L P P:+(I<3) / L P$
[14] $A[I ; 1 I-2]+0$
[15] $\quad L P:+(N>I+I+1) / L$
[16] $A[N ; 2 N-2]+0$
[17] $A+\cdots 2+2$
∇
$\nabla R X+I N$ FIX X
[1] athis function substitutes cairacters in character vectors.
[2] AIN[1] IS TBE OLD CHAFACTER AND IM[2] IS TEE NEW.
[3] AE.G.•-. FIX X SUBSTITUTES AN APL MINUS (•) POR TBE SUBTRAC T
[4] AOPEFATOR MINUS (-) FOR ALL OCCURRENCES OF - IN X.
[5] ACODED BY JOBN R GLAESE, 1/15/79
$[6] \quad L: \rightarrow(\sim I N[1] \in R X+X) / 0$
[7] $\rightarrow L ; X[X 1 I N[1]]+I N[2]$D.3F10.6' $\triangle F N T 1$ 3p 1 ES

D,3F10.6 \triangle PMT $13 p 2 \times \triangle P H B$

- MDELTA TH
D. $3 F 10.6^{\circ} \triangle F K T 13 D 2 \times D R R \times \triangle T R E$

D,3F10.6号 \triangle FMT $13 \rho E T S$
D, $3 F 10.0^{\circ} \triangle F M T 13 \rho(100+3) \times E T S-(+H) \times I V+. \times V L+. \times 0$
[18]
[21] ${ }^{\circ} \mathrm{WH}$ SPD.
[22] 'X10, DDMIBD,I5,D MIBD,I5,D JET 1234560' \triangle DMT $12040,2633+$ MIBSUM
[23] 'X22, DFO D.I5' $\triangle F M T$ O
[24]
[25] DQQBL D,4F12.7' $\triangle F A T 1$ 4PQAL
[26] 'OQVA D,4F12.7' $\triangle F M T 14 \rho 0001$

∇
$\nabla C 0+E P W R$ P; $F 0 ; F P ; \triangle C$
[1] CO+EA THIS FUNCTION COMPUTES ANGLE OE INCIDENCE OF SUNRISE.
[2] $L: F O+(0.308 \times C O \times C 0 \times C 0)+(-0.924 \times C 0 \times C 0)+(1.924 \times C O)-P+0.308$
[3] $F P+(0.924 \times C O \times C 0)+(-1.848 \times C 0)+1.924$
[4] $\triangle C+-F O+F P$
[5] $C 0+C 0+\Delta C$
[6] $\rightarrow(0.0001<\mid \Delta C) / L$
∇
$\nabla A+G A C C E L R$
a computes the acceleration of gravity vS r.
$E R+R+R M A G+(R 2+R+. \times R) * 0.5$
[3] $A+(G M E \times J 2+R 2 \times R 2) \times(E R \times(7.5 \times E R[2] * 2)-1.5)-3 \times E R[2] \times 010$
[4] $K T G G+3 \times O M O K \times O M O K+(G M E+R 2 \times R M A G) * 0.5$
∇ PORNAT8
∇ GBP B
[1] n COMPUTES GYRO bIASES REQUIRED TO CANCEL OBSERVED DRIPT.
[2] $B+V L[; 2] \times R P D \times B+T O R B$
[3] $B+B+0.510 .5 \times 0.1 \times R P D \times 2 *=10$
[4] GBIAS $11110 . \times B+0.5110 .5 \times 1 B+0.5$
[5] ONBIAS $+(0.1 \times R P D \times 2 * \cdot 10) \times \square+B$
[6] Trus bias about orbital y :onbias+. $\times V L \times$ Yorbxdpr

∇

∇ GBPA;B:I;PWRA;S
[1]
a conputes required gyro biases fron data in simulation
[2] A USING POWER AMGLE OR SUM SEMSOR AMGLE DATA.
[3] I+PRPWRA[1;]:-1+PRPWRA[1;];PHRA+-1+PRPWRA[2;]
[4] $I+(I-1), I$
[5] $\rightarrow(I[1]>0) / L 1$
[6] 'Insufficient power data to change bias.
[7] $+L 2$
[8] L1:B+VLi;2]×RPL×(OMBIAS+.×VL×DPR)[2]+S+(-/PRPWRA[2;I])+-1 PKPWRA[1;I]
[9] DETGL2 UPDATE $=\cdot: D R R \times \triangle T H L[2]+R F D \times P H R A+S \times T-P R P W R A[1 ; I[2]]$
[10] $B+B+0.510 .5 \times 0.1 \times R P D \times 2 *=10$
[11] GBIAS $+1110 . \times B+0.510 .5 \times L B+0.5$
[12] OMBIAS $+(0.1 \times R P D \times 2 \pi \cdot 10) \times D+B$
[13] L2:'TRUE bIAS about orbital y ':OMBIAS+..xVL×TORB×DPR ∇
∇ GBPASUP;T;PRPNRA;QAL;QVA;VL;TORB;ALT
[1]
A GEOUMD SUPPORT PUWCTIOM TO COMPUTE REQUIRED GYRO BIASES
[2] a from polier angle or sun sensor angee fligat data.
[3] infut time of desired update.
[4] T+365 24606010
[5] 'InPUT DMID IN amS'
[6] TORB $2460601 \square$
[7] 'INPUT LATEST POWBR ANGLE AND GMT•
[8] PRPWRA+(365 $24 \quad 606011+A$), A[1]; A+1]
[9] 'INPUT PREVIOUS POWER ANGLE AND ITS GMT'
[10] PRPWRA+((365 $24606011+A), A[1]),[1.1] P R P W R A ; A+\square$
[11] 'input current average biases to nearbst half lsbs'
[12] GBIAS[1 2 3;]+1 1 10. \times D
[13] OMBIAS $+(0.1 \times R F D \times 2 * \cdot 10) \times G B I A S[1 ;]$
[14] INPUT QBL.
[15] QAL+D
[16] VL+APQ QAL
[17] GBPA
∇

```
    \nabla RES+GETSLOPE BAR;N;VLK;R;RD;SEERPL;OMGEK
[1]
    A CONPUTES SLOPE MATRIX APPROPRIATE TO IMPUT BAR ARGLES.
[2] VLK+1 2 1 APEA BAR;SEEXPL+1
[3] ONGEK+(2OLAZK)\timesONGX\timesO 1 O+.*LEX
[4] R+(REA+ALT)\timesLEK[3;]
[5] RD+(REA+ALT)\timesONOX\timesLEX[1;]
[6] M+1E*6 JACOBIAN VLK
[7] RES+-(H+\DeltaT)\timesMM
    \nabla
    \nabla GGTORQUE;UOV 3
        A COMPUTES GRAVITY GRADIEMT TORQUE ON VEBICLE.
[2] TGGK+KTGG\timesUOV3 X IVK+.XUOV 3+VLK[;3]
    \nabla
    \nabla HBARS INT;T;SC;TSTOP
[1] A DRAWS HORIZONTAL BARS ON GRAPG AT DESIRED IMTERVALS.
[2] SC+WBATSCALE
[3] T+IUT\timesTSC[3]+INT
[4] TSTOP+INT\timesLSC[4]&INT
[5] L:HMARK T
[6] }->(TSTOP\geqT+T+IMT)/
    \nabla
    \nabla BELP
[1] A THIS PUNCTION ABORTS ANY SUSPEADED APL PUNCTIONS AND ALLOW
        S THE USER
[2] A TO REGAIN CONTROL AND START ARY INTERRUPTED OPERATION OVER
[3] 'REENTER EUNCTION AND START OVER'
[4] E*)SI CLEAR .
    \nabla
    \nabla H+HESSEN A;N;I;R;RI;IDN;LI;S
[1] I+1ATRANSFORMS INPUT MATRIX TO GESSENBURG PORM.
[2] N+1+pH+A
[3] L:LI+(\imathI),I+||H[I+\imathN-I;I]
[4] }H+B[LI;LI
[5] R+H[S;I]+甘[I+1;I];S+1+I+2N-I+1
[6] }H[S;]+H[S;]-R\bullet.\timesH[I+1;
[7] }H[;I+1]+H[;I+1]+B[;S]+,\times
[8] }B[S;I]+
[9] }->(N>I+I+1)/
    \nabla
    \nabla R+HEXFD X
    R+16 16 16 16TXa CONVERTS DECIMAL TO EEX DATA.
    \nabla
```


∇ GMARK X
 [1] 0 DRAW $(x, X, x) Y S$ 10 1 2 4WHATSCALE
 ∇ Q HONE
 [1] $Q^{+8} \triangle G R F$ 2A HOMES CURSOR POR GRAPEIGS USE.

[1] A A INITIALIZES ALL PARANETERS POR START OP SINULATION RUN.
[2] TTAPE $+M I B S U N+T+0$
[3] $O M B I A S+\triangle T H L+E T A C S+\triangle E+\triangle E P+\triangle E M+\triangle E M P+\triangle P B H+\triangle T H Z+000$
[4] OMOT + OMOTIC
[5] $\triangle T D 2+\triangle T+2 ; E T L N O N+E T L N O N O$
[6] OMO 6 OMOK $+(G M E:(R E A+A L T+A L T I C) * 3) * 0.5$
[7] TADN+OMO $-(((O M O \times O M O)-(L A D Y \times 2 O L A Z K) * 2) * 0.5)-L A D Y \times 1 O L A Z K$
[8] TORB+(O2)+ONO
[9] KTGG*3×OMOK*2
[10] TMID 4 TMID-TORB $\times T M I D>0$;TMID $-($ ONOTIC-ETTM) +OMO
[11] $E N+(O E K+(E U L 3 L A Z K)+\times E U L 2$ LAYK $[2 ;]$
[12] IEGEN;ENK 5 ENKIC;USEK $+(E U L 3-P H Z)+. \times(10 G A Y K), 0,20 G A Y K+G A Y K I C+$ OMSUN×T
[13] LEK+(EUL2 OMOT+ETYK+0-1)+.×OEK
[14] RMAG $+M A G R+(R E A+A L T) \times L E K[3 ;] ; R D+(O M O K+\triangle O M O K \times S E E K F L=0) \times(E E A+$ $A L T) \times L E K[1 ;]$
[15] A RANIC
[16] $\rightarrow(S E E K F L=0) / L 2$
[17] VLKO SEEK VLKO
[18] SLOPE $0+-(H * \Delta T) \times$ (M
[19] $L 2: V L K+A F Q(Q D B$ QFA VLKO).$+ \times Q V L K O F F$
[20] $E R+R+R M A G+(R 2++/ R \times R) * 0.5$
[21] $E N+E N+M A G E N+R X R D$
[22] EXTEN X EK
[23] QVEK+QFA VEK+VLK+. $\times L E K$
[24] POWEK
[25] VLEST $+V L+A L+A F Q$ QAL+(QDE QFA VLKO).$+ \times Q A L O P F$
[26] ETS $+E T S O F F+V L+. \times E T L N O M$
[27] THD $+T H D M \times A L[2]$
[28] $H V+I V+. \times O M V+V L+\times 0, O M O, 0$
[29] OMVK+(OMV+SE)-OMDK
[30] $H V K+I V K+. \times O M V K$
[31] $H C M G K+H \times E T+E T S-H V \div H$
[32] $H T E K+(H T V K+B V K+H C M G K)+. \times V E K$
[33] PRIC
[34] $\triangle E+E T S-A L+. \times E T L N O M$
[35] GGTORQUE
[36] AETORQUE;AECONST;OMGEK+OMGK×O 1 0;RHOTAB+RHOTABO+RHOSIGK× RHOTAB1-RHOTABO
[37] $D E R D D+(G A C C E L R)+(F A E K+M S K Y)+. \times V E K$
[38] DERDDD + RD DDDDER R
[39] TEKP+TEK+(QVEK)+.×TAEK+TGGK
[40] OUTFUT; $\triangle T H R A W+0$
[41] STATIONTAB STATIONTABIC
[42] STATIONTAB+86220|STATIONTAB+((STSH-GMT0),0)•. $\times 25 \rho 1$
[43] STATIONTAB+STATIONTAB[;ASTATIONTAB[1;]]
[44] GBIAS+3 3ро
[45] SLOPE $+S L O P E 0$
[46] ILEG+1

```
    \nabla IEGEM;US1;US2;US3;SBE;CBE
[1] n CONPUTES [IE] FRON GIVEM SIMULAFIOM DAFA.
[2] US3+USEX
[3] US1+US1+MAG US1+ENM X USEX
[4] US2+US3 X US1
[5] CBE+US2+.\timesEN:BETA DFRX=10SBE+US3+.NEM
[B] UUEEK+(-030X[1;2]+K[1;1])+010-K[1;3]\timesSBE+CBE\times((K[1;1]*2)+K[1;
        2]*2)*0.5
[7] UINK+(US1\times2OUUESK)+US2\times10NUESK
[8] UI2X+USEX X UINK
[9] IKEK+UI1K,[1]UI2K,[0.1]USEK
[10] OEX+OEX+NAG OEX+O 10 X EM
[11] OBX+EN,[0.1]OSK
[12] OBX+(EX X OBX[2;]),[1]OSK
[13] STYX+(USEX+.*OEX[1;])ATAM USEX +.*OEX[3;]
[14] DAEX+-((((REA+ALT)*2)-REA*2)*0.5)+REA+ALT
    \nabla
    \nabla RES+A JACOBIAN VLK;AVLK;TO;T
[1] n NunERICALLY COMPUTES GRADIEMY of aERODYNANIC + GRAVITY GRA
    DIENT
[2] a torqus with respect to small rotations about body axes.
[3] TO+TRQ VLK
[4] \triangleVLK+EUL1 A
[5] T+TRQ AVLK+.xVLK
[6] RES+(+A)\timesT-T0
[7] \triangleVLK+EUL2A
[8] T+TRQ \triangleVLK+.xVLK
[9] RES+RES,[1.1](+A)\timesT-T0
[10] AVLK+EUL3 A
[11] T+TRQ \triangleVLK+.xVLK
[12] RES+RES,[2](+A)\timesT-T0
    \nabla
    \nabla R+L LINC A
[1] R+A+\Gamma/1,|A+La proportional limit on largest component.
    \nabla
    \nabla R+L LIMM A
[1] R+A+[/1,MAG a+LA proportIONAL lIMIT ON magMITUDE.v
```

```
    FLOOP
[1] N MAI# SIMULAEION DRIVER TUHGEION.
[2] E1:OGFORQUE
[3] AETORQUE
[4] PONSR
[5] DERDDD*RD DDDDER R
```



```
    MSKI) +(FAEK+MSXY) +. YVEX
[7] TEK+(TAEX+TGGK)+. NYEX
[8] ONV }+VL+.\times0.ONO.
[9] ONVK+(ONV+8F)-ONDX+ONBIAS
[10] QVEK+ONVX UPDATE QVEX
[11] ONOS+ONOT+AS\timesONO
[12] D+ECF+AE
[13] DERD+DERD+\triangleFD2*(2\timesDERDD) + AF\timesDSRDDD
```



```
[15] DER+ASD2\timesDSRDP+DERD
[16] R+(RNAGX(ER*2OONOKxAT)+EX*10ONOKxAZ)+DER
[17] RD+DERD+ONOKxSL X R-DER
[18] REF
[19] USEA+(EULS-PAZ)+.x(10GAYX).0.2OCAYK+GAIKIC+OMSUAKT
[20] POWEA;ENDXP4EMDK
[21] BHK+25OOLEAK+\triangleTD2\timesEHDK+EADKP-2\timesPNRDR
[22] AETORQUE;AECONST
[23] GGTORQUS
[24] TEKPP&TEKP
[25] TEXP4TEK
[26] TEK+(TAEK+TGGK)+.xVEK
[27] ATEK+HTEK+\triangleTD2\timesTEX+TEKP-PEECXTEKP-TEXPP
[28] BTVK+VEK+.xMTEX
[29] EVK+IVK+.xONVX
[30] BCNGX-RTVK-RVK
[31] ATNDC
[32] OUTPUT
[33] }->(T<TSTOP[STATIOHTAB[1;1])/L
[34] }->(T\geqTSTOP)/
[35] TTAPE-TTAPE,STATIOMTAB[1;1]
[36] STMAME+STATIOMTAB[2;1]
[37] STATIONTAB40 1+STATIOMTAB,STATIOMTAB[;1]+86220.0
[38] +((+/PRERK[1;]<0)=0)/0
[39] 'ATTITUDE COMTROL LOST DUE TO LOSS OF PONER'
[40] }
\nabla
```

```
    | N-MAG V
[1] N+(+/[1]VxV)*0.5ACOMPUTSS MAGMITUDSS OF A SES OF COLUNM VEGTO
        RS.
    \nabla
    \nabla NARK N
[1] 0 DRAN(1 0 1\•24WHATSCALE)VS IA DRAHS VERTICAL LIAE OL GRAPG
        AT H.
    \nabla
    \nabla NAVUP
[1] A SINULATES A MAV UPDATE FOR SINULATIOHS OVER SEVERAL DAYS.
[2] ONO+(((ONOK\timesONOK)-(LADY*2OLAZK)*2)*0.5)-LADY*1OLAZK
[3] TORB+O2+ONO
    \nabla
    \nabla HON
[1] A RETURNS RANDOMIZED PARANETERS TO THEIR MONIMAL VALUES.
[2] SP+1 1 1
[3] QVLKOPF+0 0 0 1
[4] }\triangleCG+0 0 
[5] RHOSIGK&RHOSIG
[6] STSH+0
[7] ETSOFE+0 0 0
[8] ETLNONO&ETLNONNOM
    \nabla
```

```
    | R+|IORN X
    [1] A SELECTS sEY OF samE shaps as x yRON mormal disfaibugion wI
        TA O NEAM
    [2] a AND 1 STAMDARD DEVIAFIOM.
    [3] R+(+/(9X\rho1000),-9Xp1000)+912.87:X+(\rhoX).5
    \nabla
```



```
    [1] n MORNALIEES COMPLEX BIGENEBGIOR TO UNIF MAGHISUDE.
    [2] J+1+TR+(XXX)+IXY+IIXI,00X+M+XI.00IH+0.EX0XI
```



```
    [4] R+R*(+/,R\timesR)*0.5
    \nabla
    \nabla R+OCTPD X
[1] R+8 8 8 btXa CONVERTS DEGIMAL DAFA IO OCTAL.
    \nabla
    \nabla ORBMARK;T
[1] A marks tiNE plots at 1 ORBIT IMTERVAls:
[2] T+TOKB-ONOTIC+ONO
[3] L:MARKT
[4] }->(TSTOPZT+T+TORB)/L
    \nabla
    \nabla ourpur
[1] n sBlECTS PARANETERS fROM sIMULATIOM yO sAVE FOR plotying.
[2] PRT+PRT,T
[3] PRTGGX+PRTGGK,TGGK
[4] PRTAEK+PRTAEK,TAEK
[5] PRATEK+PRATEX,ATEX
[6] PRECMG+PRECMG,ACMGX+B
[7] PRONVK+PRONVK,ONVK
[8] PRA+PRA,OSK+,x(QLEK)+,X-DSGA(QVLK)+,XVL
[9] PRAPG+PR\trianglePG,DRR\times2\times\trianglePBE
[10] PRONOK+PRONOK, (RD+.KEX)&RNAG
[11] PRCD+PRCD.MAG ASCOSRT[4 5 6]
[12] PRR +PRR,R
[13] PRRD+PRRD,RD
[14] PRENX+PRSNK,ENK,BHDXP
[15] PRQAL+PRQAL.QAL
[16] PRAE+PRAE,AE
    \nabla
```


∇ PAR;LLK

 | LIST
 .
 [3]
[4] b ':MANE
[5] ! '
[8] - '
[7] 'ALT =';ALT;'KN, ':ALTXMRK:' IN'
[8] ETLEMON = :ETLNON
[g] - AELIN = ':\triangleELIN
[10] 'K\DeltaTE = 'R\DeltaTA
[11] '\trianglePHLIN = '\triangle\trianglePHLIN;' RAD. ';DFRx\trianglePRLIN;' DEG'
[12] '\triangleTHLIN = ';\triangleTHLIN;' RAD, ';DPRx\trianglePALIM;' DEO'
[13] 'VLKO = iVLKO
[14] 'SLOPE = :SLOPE
[15] 'QAL = ':QAL
[16] 'QVLK = ':QFA VLK
[17] 'QVLKO = ':QFA VLKO
[18] 'LLK = :ILK,NAG LLK+DGGA(QVL)+.MVLK
[19] -QALOFF = :OALOPF
[20] 'QVLKOFE= ':QVLKOFE
[21] EETVK = :HTVK+H
[22] 'ETLK = 'i(QVLK)+.XHTVX\&B

```

```

[24] 'ONDK = :ONDK:' PAD/S ':DFRXONDK:' DEG/S'
[25] 'SF = i:SF
[26] '\triangleT ,TSTOP,ONOTIC =':\triangleT,TSTOP,DRR×ONOTIC
[27] 'SEEKFL,IBM =':SEEKFL.IBM
$\nabla P \rightarrow P R R \quad R$
panag ka conputes spherical polar ffom rectamgular represent
ATION.
[2] $P+P,-=10 R[3]+P$
[3] $P+P, R[2] A T A N R[1]$
∇
∇ POWER
[1] \quad thIS EUNCTION SUPPLIED BY ROY LAWIER 3-2514
[2] A IT COMPUTES THE NORMALIZED SOLAR ARRAY POWER POR GIVEM SUN
[3] a POSITION IN VEHICLE REFERENCE.
[4] ENDK+USVK[3]×DARK<VLK[;3]+, ×USVK+VEK+, ×USEK
[5] ENDK+OTENDK-0.308×(1-ENDK)*3
∇

```
    P PRIC
        * IMIETALI8ES PLOS 8g0RAOS ARRAT8.
[2] PROMOK PRCD +PLE+10
```



```
[4] PAPNEA+PA85+PRKNK+2 000
[8] PRRD+PRR+8 0p0
[8] PRQAE-4 0p0
    \nabla
    O-F PUS B
```



```
[2] O+4 AGRE 0pO+R.4 AGRE &
    7
```



```
        8MAK
[1] A CONPUYES PONER ANGLE PRON PLIGRT DAEA.
[2] "ImPUT OSL"
[8] AL+\square
[4] "IMPUT QVA"
[5] AL+AZQ(QDDD)*.mAL
[6] 'I#PUT QVI'
[7] [8+(AAL)+.x(APQD)
[8] U8+LS[;8]
[8] U30-AL[3:]
[10] "IMPUT ANGLE OF IMCIDSMCE IN DSGREES"
[11] CSRA+2ORPD*D
[12] SPR+(U8[1]\timesUSO[1])+US[8]\timesUSO[8]
[18] CPR+(US[1]\timesU30[3])-U8[3]\timesU30[1]
```



```
    )*((CPA=CPA)+8PAn8PA)*0.5)f\bullet1
```



```
[16] GPONER AMOLS Q.FE. 2'AFME TMOE[14\IGMOS]
    \nabla
    P QBLCRECK;I
[1] ค TAIS EUHCYION DISPLAYS THE CUAREHS QEL SET TO CRECX FOR ER
    RORS.
[2] THE CURREMT QEL SET IS AS POLLONS:'
[3] THE COLUNMS ARS DISPLAYSD AS ROW8 IOR COMCISEMESS'
[4] - .
[5] I*1*14008L
```



```
\nabla
```

```
\nabla QBLSET;PQALL;PQALI;I
        n THIS RUNGTION IS USED AS AM AID IM EMTERIMO ASAP QEL DAFA
        USED
```

(9] $1+10.01-11-+1 P Q A L[$
[10] PQALL-PQALL.PQALI
[11] 'ENTER NEXT COLUNN, D TO DELETE LIME JUSE EHESRED'
[12] OK T TO TEANINATE INPUT'
[13] $\rightarrow\left({ }^{\prime 2} D^{\prime} \in P Q A L I-(I) / L T, L D\right.$
[14] \rightarrow L-1

```

```

[16] QBL+PQALL
[17] 'DO YOU WISH TO SAVE THIS QBL SET?'
[18] 'IR YES, ENTER Y, OTHERHISE JUST RETURN'
[19] $\rightarrow\left(\sim y^{\prime} \in, 0\right) / 0$
[20] QBLS + QBLS.QBL
[21] 'QELS CONTAINS ':*140QBLS;' COLUMNS'
[22] (')SAVE.
[23] $\rightarrow 0$
[24] N:'INVALIC DATA, REEMTER'
[25] $\rightarrow L+2$
[26] LD: ${ }^{\circ}$ ENTER INDEX OF LINE TO BE DELETED'
[27] PQALL $+((B, I-1) 4 P Q A L L),(0, I+D)+P Q A L L$
[28] CDLINE D.I3.D DELETEDD'AFMT I
[29] $\rightarrow L+2$
∇
∇ QBLSETSH:T:Q
[2] 'ENTER INITIAL TIME IN DHNS'
[3] $T+-300+S F D D$
[4] QBL 4000
[5] 'ENTER FIfST THAEE COMPONENTS OE QBL'
[6] 'ENTER O WHEN FINISHED'
[7] $L 1:+(0=+/ Q+\square) / L 2$
[8] QBL-QBL.Q.(1-Q+. $8 Q) * 0.5$
[s] $\rightarrow L 1$
[10] L2:T+T+300×1(DQBL)[2]
[11〕 T + DFS T
[12] $Q B L+Q(Q Q B L) . Q T$

```
    \nabla P+QDB Q
[1] A FORMS Q DOUBLE BAR.
[2] P+(Q,-Q)[SDB]
    \nabla
    \nabla Q+QDEG A;EARG;S
[1] Q+4DON TAIS PUMGTION CONPUTES QUATERMION PROM IMPUT EIGEMAMG
        LE.
[2] Q[4]+20HANG+0.5\timesRFD\timesMAG A
[3] S+10HANG
[4] Q[12 3]+S\timesAtMAG A
    \nabla
    \nabla P+QDT Q
[1] A FORMS Q DOUBLE TILDE.
[2] P+(Q,-Q)[SDT]
    \nabla
    \nabla Q+QFA A;S;TRA;I
[1] aCOMPUTES QUATERNIOMS FRON DIRECTIOM COSIMES
[2] ACODED BY J GLAESE 5-12-78
[3] S+(A,[1]-A[3;2],A[1;3],A[2;1]),A[2;3],A[3;1],A[1;2],TRA++/1 1
        QA
[4] I+(\(1 1фS+S+\emptysetS)+1-TRA)[1]
[5] Q+(S[I;]+(-I)ф0 0 0,1-TRA)+2\times(1+S[I;I]-TRA)*0.5
[6] Q+Q\timesQ[4]+|Q[4]
    \nabla
    \nabla R+QIN Q
[1] R+Q\times1 -1 1 1A TAKES INVERS OF Q.
    \nabla
    \nabla RTS+QRALG A;日;EP
[1] A DRIVER FOR QR ALGORITGM.
[2] a thIS VERSION OF THE QR ALGORITHM WAS CODED BY JOHN GLAESE
        3-20-79
[3] A TO USE TEIS ALGORITAM YOU ALSO NEED THE FOLLOWING FUNCTION
        S:
    [4] A FINDQR, BESSEN, MAG, QUADM, SPLIT.
    [5] H+HESSEN A;EP+1E\bullet12
    [6] RTS+SPLIT H
    \nabla
    \nabla Z+QUAD A;B;W
[1] }\quad3\times10<W+A[2]-A[1]\times(-B+-A[1]+2)+2,2+2
[2] }->0,Z+(B+W),0,(B-W+(|W)*0.5),
[3] 2+B,(-W),B,W+(|W)*0.5
[4] A COMPUTES ROOTS FROM QUADRATIC EACTORS.
    \nabla
```

$\nabla R+Q U A D M \quad M_{i} D$
[1] COMPUTES EIGENVALUES EOR 2×2 MATRICES.
[2] $R++/ 119 M$
$[3] \quad R+R,(N[1 ; 1] \times M[2 ; 2])-M[1 ; 2] \times M[2 ; 1]$
[4] $D+(R[1] * 2)-4 \times R[2]$
$[5] \rightarrow(D \geq 0) / L$
[6] $R+0.5 \times R[1], D, R[1],-D+(-D) * 0.5$
[7] $\rightarrow 0$
$[8] L: R+0.5 \times(R[1]-D), 0,(R[1]+D+((R[1] \geq 0)-R[1]<0) \times(\mid D) * 0.5), 0$ ∇
∇ KrLSB QUANTIZE X
[1] A QUANTIZES INPUT INTO MULTIPLES OF LSB.
[2] $R+L S B \times L 0.5+X+L S B$
∇
∇ RANIC:R
[1] a COMPUTES RANDOM INITIAL CONDITIONS ON SELECTED PARAMETERS
[2] a to test our ability to maintain tea control in face of
[3] A UNCERTAIN DATA.
[4] SF+1 $11+0.01 \times 1-0.02 \times ? 3 \rho 100$
[5] QVLKOFF+FFD×0.5×(LEK+.×USEK×NORM 1) $+0.5 \times(L E K+. \times I K E K[1 ;] \times N O R M$ 1) $+L E K+. \times I K E K[2 ;] \times N O R M 1$
[6] QVLKOFF+QVLKOFF,(1-+/QVLKOFF*2)*0.5
[7] $\triangle C G+211 \times 0.0254 \times 15 \times N O R M 111$
[8] RHOSIGK+NORM 1
[9] ETSOFF $+0.1 \times 1-0.002 \times 2100010001000$
∇
∇ RANPAR
[1] a DISPLAYS VALUES OF RANDOMIZED PARAMETBRS
[2]
[3]
[4]
[5]
[6]

∇

[1]

 n SImULATES READIMG ASAP fapE dafa alld conputing sull sensor 08
[2] a ponsr amgle data as well as qBL dafa.
[3] T++/TFAPSST-1800; NANE +1 Sp ${ }^{\prime}$ POWER': $I^{+} P+0$
[4] $\rightarrow(I>0) / L 1$
[5] 'mo taps data available'
[6] .
[7] \rightarrow [4
[8] $L 1: T T+T T A P E[I]$
[9] I++/PRTsTT-TORB
[10] $\rightarrow(I>0) / L 3$
[11] 'ho tape data available yef.
$[12] \rightarrow[4$
[13] L3:I+I,ILEG++/PRTSTT
$[14] S+P R E N K[2 ; I[1]+0,1 I[2]-I[1]] ; \operatorname{PRBANX}+\operatorname{PRT}[I[1]+0,1 I[2]-I[1]],[$ 0.1](BAR PRQAL[;I[1]+0.1I[2]-I[1]])[1;]
[15] I1+S $10 ; 1+I-1$
[16] $\quad I 1+(I 1-1)+(((I 1-1) \phi S)=0): 1$
[17] $\rightarrow((I 1<P S) \times I 1>1) / L 2$
[18] 'MO SUMRISE DETECTED'
[19] \rightarrow [4
[20] L2:TH0+0;CSRA+PPWR S[I1]
[21] $L E+P R R[$; $I[1]+[1-1]$
[22] $L E+L E+M A G L E$
[23] $L E+(L E X P R R D[$ [[1] 1 I1-1]),[0.1]LE
[24] $L E[1 ;]+L E[1 ;]+\operatorname{MAG} L E[1 ;]$
[25] LE $L(L E[1 ;] X L E[2 ;]),[1] L E$
[26] U30 $4 L[3 ;] ; A L+(B U L 1$ AL[3]) $+\times(E U L 2$ AL[2]).$+ \times E U L 1(A L+R F D \times, B A R$ PRQAL[:I[1]+I1-1])[1]
[27] US LLE $+\times(E U L 3-P H Z)+\times(10 G A Y K), 0,20 G A Y K+G A Y K I C+O M S U Y \times P R T[I[1]+$ [1-1]
[28] $S P H+(U S[1] \times U 30[1])+U S[3] \times U 30[3]$
[29] $C P A+-(-U S[1] \times U 30[3])+U S[3] \times U 30[1]$
[30] TBOE $+D F R \times(-S P B ~ A T A N ~ C P H)+(001)+1-1 \times 10(C S R A-U S[2] \times U 30[2])+($ $(C P H * 2)+S P H * 2) * 0.5$
[31] $T H O E+T H O E[1+1 \mid T H O E]$
 $\triangle E M T(N A M E ; 1$ 5PTHOE,DRS GMTO+TLDT+PRT[I[1]+11-1])
[33] PRPWRA+PRPWRA, $\operatorname{PRT}[I[1]+[1], T H O E-T H 0$
[34] $L 4:+(U S V K[3]<0.94) / 0$
[35] CSRA+USVK[2]
[36] LE $+L E K$
[37] U30+AL[2;];AL+(EUL1 AL[3])+.x(BUL2 AL[2])+.×BUL1(AL+RFDx,BAR PRQAL[:-1+pPRT])[1]
[38] US $+L E+. \times U S E K$
[39] $S P H+(U S[1] \times U 30[1])+U S[3] \times U 30[3]$
[40] $C P H+(U S[1] \times U 30[3])-U S[3] \times U 30[1]$
[41] THOB+DFR×(-SPB ATAN CPB) $+(0.01)+1 \cdot 1 \times 101 L((C S R A-U S[2] \times U 30[2]$ $)+((C P H \times C P H)+S P H \times S P H) * 0.5) \Gamma \cdot 1$
[42] 'LIVE SUN SENSOR DATA'
[43] $T H O E+(360 \times T H O E<-180)+(\cdot 360 \times T H O B>180)+T E O E$

∇ REF
[1] A GENEFATES ALL REQUIRED ROTATIORAL TRAMSFORMATIOMS POR SINU LATION.
[2] $E R+R+R M A G+(R 2++/ R \times R) * 0.5$
[3] EN+EN+MAGEN+R X RD
[4] EX $\mathrm{E}+E N \mathrm{XER}$
[5] LEK $5 E X,[1] E N,[0.1] E R$
[6] VEK+AFQ QVEK
[7] VLK+VEK+.×QLEK
∇
∇ REFFESH
[1] A erases the display and puts latest data evaluation block U P.
[2] ERASE
[3] TEAEVAL
[4] RDTAPE
∇
∇ REPRIC;N
[1] A THROWS AWAY OLD DATA FROM PLOT ARRAYS SO THAT EROUGH MEMOR Y IS
[2] a is alailable to continue.
[3] $N++/ E R T<T-2 \times T O R B$
[4] $\quad P R T+N+P R T$
[5] $P R C D+N+P R C D$
[6] PROMOK $+N+P R O M O K$
[7] PRHTEK $+N+$ PRHTEK; $N+0, N$
[8] PRECMG $+N+P R E C M G$
[9] PRTAEK $+N+P R T A E K$
[10] PRTGGK+N+FRTGGK
[11] PROMVK $+N+P R O M V K$
[12] $P R A+N+P R A$
[13] $P R \triangle P H+N+P R \Delta P H$
[14] PRENK+N+PRENK
[15] $P R R+N+P R R$
[16] $P R R D+N+P R R D$
[17] $P R Q A L \leftarrow N+P R Q A L$
[18] $P R \Delta E+N+P R \Delta E$
[19] $N++\operatorname{PRST}[1 ;]<T-2 \times T O R B ; \operatorname{PRST}[2 ;]+\operatorname{PRST}[2 ;]-N[2]$
[20] $\operatorname{PRST}+(0, N) \downarrow P R S T$
n TO SIMPLIFY RUMAIMG THE SIMULATIOM FOR TRAIWIMG PURPOSES A THIS PUMCTIOL SERVES AS AM EXECUTIVE TO DRIVE ALL THE VARI OUS
A SUBPUMCFIONS REQUIRED SO PHAT THE USER DOES MOT HAVE TO BE All APL EXPERT.
[5] IC LOOP
- DO YOU WIS甘 TO CHAMGE ABY PARAMETERS HOW OR TBRMIMATE RUM.'
ION.
[12] IF yoU terminate, you may resume by typing runon and return
- ir lo chabge is desirbd, hit carriage return to continue..
[13] IR NO CHAHGE IS DESIRED, EIT CARRIAGE RETURN TO
[14] IR AN ERROR IS EMCOUHTERED, TYPE $\rightarrow 6$ AMD RETURN.
[15] ••

[17] $\rightarrow\left({ }^{\circ} T Y F^{\circ} \in \operatorname{MAME}\right) / 0, L 1, L 2$
[18] $\rightarrow 2$
[19] L1:'ENTER NAME OF VARIABLE TO BE CBAMGED'
[20] NAME+EU
[21] $\rightarrow\left(0=(1+N A M E) \in \triangle A B C D E F G I J K L M H O P Q R S T U V W X Y Z^{\circ}\right) / E R R O R$
[22] .
[23] eENTER NEW VALUE(S)•
[24] •
[25] $\operatorname{cNAME},{ }^{\circ}+\square^{\prime}$
[26] OMBIAS[1]+(0.1×RFD×2*-10) $\times 0.5 \times \operatorname{GBIAS}[1 ; 1]+\operatorname{GBIAS}[3 ; 1]$
[27] OMBIAS[2]+(0.1×RPD×2**10)×GBIAS[3;2]
[28] OMBIAS[3]+(0.1×RFD×2*-10)×0.5×GBIAS[1;3]+GBIAS[2;3]
[29] 'ARY OTHER CHARGES? ${ }^{\circ}$
[30] $\rightarrow 7$
[31] ERFOR:'IMPROPER VARIABLE NAME'
[32] 'DO YOU WANT TO STOP OR GO ON?'
[33] .
[34] $\rightarrow 7$
[35] L2:'ENTER FUNCTION WITE INPUT OR OTBER EXPRESSION.'
[36] AFTER fUNCTION COMPLETION, HIT CARRIAGE RETURN TO RESUME SIM
ULATION.'
[37] 'IF AN ERROR IS MADE $B E R E, T Y P E \rightarrow L 2$ AND RETURN.'
[38] YOU MAY HAVE TO EXECUTE RUNON•
[39] $\in \square$
[40] 'any othef changesi'; ${ }^{\circ}$
[41] $\rightarrow 7$
[42] L3:'ENTRIES RESTRICTED TO T. Y OR P.'
[43] \rightarrow LO
∇

- RUMOR: HAME

[1] A THIS FUNCTION DOES SAME AS RUM EXCEPT THE RAMDOMIEED PARAM ETERS ARE
[2] A MOT CAANGED FROM TAEIR CURREAT VALUES.
[3] - IC
[4] LOOP
[5] $\rightarrow(T \geq T S T O P) / 0$
[6] : RDTAPE;TEAEVAL
[7]
[8] - DO YOU WISH TO CHANGE ANY PARAMETERS NOW OR TERMINATE RUM?'
[9] IF YES, ENTER T, Y OR E TO TERNINATE,CHAMGE OR BVAL. A PUMCT ION.
[10] IF yOU terminate, you may resume by typing rumon and return [11] IF NO CHANGE IS DESIRED, HIT CARRIAGE RETURN TO COMTIAUE.'
[12] -IF AN ERROR IS ENCOUNTERED, TYPE $\rightarrow 6$ AND RETURN.'
[13] •
[14] $L 0: \rightarrow\left((1<\rho N A M E) \vee i\left(N A M E+,[) \epsilon \cdot T Y F^{\bullet}\right)=0\right) / L 3$
[15] $\rightarrow\left({ }^{\prime} T Y F^{\prime} \in N A M E\right) / 0, L 1, L 2$
[16] $\rightarrow 2$
[17] L1: 'ENTER NAME OF VARIABLE TO BE CHAMGED'
[18] NAME+CD
[19] $\rightarrow\left(0=(1+N A M E) \epsilon^{\circ} \triangle A B C D E F G H I J K L M N O P Q R S T U V W X Y 2^{\circ}\right) / E R R O R$
[20] .
[21] e ENTER NEW Value(S)•
[22] •
[23] $\operatorname{ENAME,'+\square '}$
[24] OMBIAS[1]+(0.1×RFD×2*-10) $\times 0.5 \times G B I A S[1 ; 1]+G B I A S[3 ; 1]$
[25] OMBIAS[2]+(0.1×RFD×2*-10)×GBIAS[3;2]
[26] OMBIAS[3]+(0.1×RFD×2*-10) $\times 0.5 \times G B I A S[1 ; 3]+G B I A S[2 ; 3]$
[27] 'ANY OTHER CHANGES? ${ }^{\circ}$
[28] $\rightarrow 7$
[29] ERROR:'IMPROPER VARIABLE NAME'
[30] 'DO YOU WANT TO STOP OR GO ON?'
[31] -
[32] $\rightarrow 7$
[33] L2:'ENTER FUNCTION WITH INPUT OR OTHER EXPRESSION.'
[34] AFTER FUNCTION COMPLETION, HIT CARRIAGE RETURN TO RESUME SIM ULATION.
[35] 'IF AN ERROR IS MADE HERE, TYPE \rightarrow L2 AND RETURN.'
[36] • you may have to execute runon •
[37] ϵ [
[38] 'ANY OTHER CHANGES?';D
[39] $\rightarrow 7$
[40] L3:'ENTRIES RESTRICTED TO T, Y OR F.'
[41] $\rightarrow L 0$
[2] $\rightarrow 0 . Q+3 \quad \triangle G R P R$
[3] Q+0pG+64' ERRORSCALE '. (2 60° LEHGTADONAIM')[211;]
[4] A ALLOUS USER TO SET SGALE POR GRAPAICS PROGRAMS.
∇

V RESHSEEX VLK;TO

[1] \quad THIS PUBCTIOMS DRIVES THE ITERATIVE PROCESS WHICH SEEXS A TEA.
[2] ONGEK+(2OLAZK)×ONGK×O 1 O+. $\times L E K$
[3] $K+1 E=6$ JACOBIAA VLX
[4] T04RQ VLK
[5] D+ $\mathrm{ATH}+-\mathrm{FO} \mathrm{BH}$
[6] RES $+V L K+(B U L 1 \quad \Delta T B[1])+\ldots(E U L 2 \quad \triangle T H[2])+. x(B U L 3 \quad \triangle T H[3])+. x V L K$
[7] $\rightarrow(1 E \cdot 8 \leq M A G \Delta T H) / 1$ ∇

- SETSTATIOAS; RAME
[1] A SETS UP A SERIES OP SIMULATED GROUHD STATIOMS OVER WHICH
[2] A dATA IS AVAILABLE EROM THE SIMULATION: MO DATA IS AVAILAB LE
[3] A ELSEWHERE. THIS IS FOR GROUAD COMTROLLER TRAIMIHG.
[4] 'IHPUT STATION AOS TIME IA HRS MIMS SBCS•
[5] NAME+D
[6] $A A M E+(365246060 \perp D O Y, \operatorname{HAME}[12], 0)$, NAME[3]
[7] STATIONTABIC+STATIONTABIC,NAME
[8] $\rightarrow 1$
∇

```
    \nabla SETUP
[1] A SIMPLIFIES SETTIMG UP SINULATIOM TO NATCB ELIGET COMDITION
        S.
    [2] 'Input lambda y'
    [3] LAYK+RFDXD
    [4] 'INPUT ganNa Y.
    [5] GAYK+GAYKIC+RFDXD
    [6] [INPUT GNT tGMT AND TMID CORRESPONDING TO abOVE data'
    [7] 'INPUT GMT'
[8] GNT00+SFDD
[9] 'IMPUT CuRRENT altituds IN MN'
[10] ALTIC +KFN\timesD
[11] 'INPUT TGNTO.
[12] TGMTO-SFDD
[13] 'INPUT TMID'
[14] TMID+SFDD
[15] TMID+TMID+GMT00-TGMTO
[16] 'INPUT REGRESSION RATE dEG/DAY'
[17] LADY+RFD\timesD+86400
[18] -INPUT DESIRED GMT'
[19] GMTO+SFDD
[20] LAYK+LAYK+LADY×GMTO-GMTOO
[21] GAYKIC+GAYK+GAYKIC+OMSUNXGMTO-GMTOO
    \nabla
    \nabla R+SFD DHMS
[1] a COmputes time in SECONDS fROM INPUT dhmS.
[2] R+365 24 60 60IDHMS
    \nabla
```

- SXYLAB ARANE:I;A
[1] n dRANS IDEALIEED SEYLAE VEAIGLE IN BFEREO PROJECTIOMS.
[2] STRAPIS 5
[8] scale sc
[4] DATE:A+HCAMANE
[5] STEREO XAXIS
[B] STERSO LETFERX +3 6p(6p6).g200
[7] STEREO YAXIS
[8] STEREO LETFERY+3 6p(6pO).(6p6).6pO
[9] STEREO zaxIS
[10] STEREO LETTERZ+3 6p(12pO),6p6
[11] STEREO A+.MPXEMD
[12] STEREO A+. KNXEMD
[13] [+1
[14] L:STEREO A+.x(EULI IxOt4)+.xSIDE1
[15] $\rightarrow(82 I+I+1) / L$
[16] STERSO A+.xATM
[17] SEEREO A+.xBASE
[18] STEREO A+.xOWS
[19] .
[20] EQUILIBRIUN ATTITUDE •, AMANE;QA
[21] - .
[22] BAMK AHGLE, AMGLE OP ATLACX. ROLL AMGLE = idPRx1 21 EAFAQ A
∇ KSL SLUPDATE I;S;M;H:SL
[1] G GEAERATES SLOPS MATRIX UPDATE DATA IM PROPER FORMAT FOR UP LINK.
[2] DATE
[3] DETLH1.2.3 = D,3F6.2.ロ DOY = D.F6.2.ロ ALT = D.F5.0.D BETA : D.F6.2 ${ }^{\prime} \triangle E N T 1$ 6pTABBIAS[I;].TABDOY[I].TABALTEM[I], TABEETA[I]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11] SL-TABSL[I;:]×KSL
[12] $S L+(L 0.5+1000 \times S L)+1000$
[13] $N+1$
[14] LN: $H+1$
[15] LH:S+EMC SL[M;H]
 SL[M;H])
[17] $\times 29.15^{\circ} \triangle E N T S[2]$
[18] •
$[19] \rightarrow(32\|+\|+1) / L \|$
[20] $\rightarrow(32 M+N+1) / L M$
SLOPS MATRIX UPDATS DCS COMMAMD 52002 UPDATED SLOPE ${ }^{\circ}$
∇ SPIM IIX:I
[1] I T 1 : TEIS FUMCTIOR ADJUSTS TAE SEED FOR TAE RAMDOM NUNBER GE HERATOR
[2] $X+81000000$
[3] $\rightarrow(1 / 2 I+I+1) / 2$
∇

[1] A SPLITS OFF LINEAR OR QUADRATIC PAGTORS POR TAE QR ALGORITH \boldsymbol{N}.
[2] $R+0200$
[3] $T O P:+(012=A) / 0, L 3, L 1 ; I+0 ; M+(\rho A)[1] ; T R+T R T+00$
[4] L0: $B+E I B D Q R \quad B ; I+I+1$
[5] $\rightarrow(I>30) i L 4$
[6] LD*-2+1 1中1 $0+B$
[7] $\rightarrow(E P>\mid L D) / L 1, L 3$
[8] $\rightarrow(</ \mid L D) / L L 1$
[9] $T R T+T R+A[H ; N], 0 ; T R P+T R T$
$[10] \rightarrow(0.25)($ (NAG $T R-T R P)+M A G T R) / L O$
[11] $T R+00$
[12] \rightarrow LO
[13] LL1:TR+2 2DQUADM - 2 - $24 A: T R P-T R T$
[14] $T R T+T R+, T R[1+| | T R[1]-A[R ; N] ;]$
[15] $\rightarrow(0.25>($ NAG TR-TRP) + NAG TR)/LO
[16] TR-0 0
[17] \rightarrow L0
[18] L3: \rightarrow TOP; $A+\cdots 1-1+B ; R+R,[1] B[N: N], 0$

[20] L4: SLOW OR NONCONVERGENCE'
[21] OP THE NATRIX H': H
[22] $R+(N, 2) \rho O$

∇ SsAHGLE：SiA

［1］\quad CONPUTES SUM SEWSOR AMGLE FROM FLIGRT DATA．
［2］\quad TALS PUHCTIOM ALLOWS IMTERPOLATIOM BETHEAK MORE TAAM OME T INE
［3］ค POIMT POR IMCREASED ACCURACX．
［4］＇IMPUT QUATERMIOI DATA AS REQUIRED＇
［5］＇IMPUZ X SUM SEMSOR READIMG＇
［6］$S+\square$
［7］A＋SSAMGLE0
［8］＇IF YOU WISA TO IMTERPOLATE SUM SEMSOR AMGLES．＇
［9］＇HIT CARRIAGE RETURMI OTAERWISE EHEER TO TERNIMATE＇
［10］$\rightarrow\left(\sim T^{\prime} \in, \square\right) / L I$
［11］＇SUA SEMSOR AMGLS＇：A
［12］$\rightarrow 0$
［13］LI：＇INPUT 2ND SET OF DATA＇
［14］＇IMPUT X SUA SENSOR READOUT PRON PORNAT 7＇
［15］$S+S, 0$
［16］$A+A, S S A M G L E O$
$[17] A+A[1]+(A[2]-A[1]) x-8[1]+S[2]-8[1]$
［18］IMTERPOLATED SU日 SEHSOR AMGLE＇；A

จ THOE－SSANGLEO；I；TT；S；II；I1P；TRO；US；U30；SPA；CPA；AL；LE；HANE； SNAX
［1］\quad THIS FUNCTION CONPUTES TAE SUM SEMSOR AMGLE ERON PLIGAT DA $T A$ ．
［2］＇INPUT QBL＇
［3］$A L+\square$
［4］＇INPUT QVA＇
［5］$A L+A F Q(Q D B[)+. \times A L$
［6］＇InPUT QVI＇
［7］$L E+(Q A L)+. x(A F G D)$
［8］US $-L E[$ ； 3$]$
［9］U30－AL［2；］
［10］CSRA +0
［11］SPA $+($ US［1］×1J30［1］）+ US［3］×U30［3］
［12］$C P A+(U S[1] \times U 30[3])-U S[3] \times U 30[1]$
 $)+((C P H \times C P B)+S P A \times S P A) * 0.5) P \cdot 1$

［15］THOE $\mathrm{THOE}[1+\mid 1$ THOE］
∇ STAXES
［1］\cap THIS FUMCTION DRAWS THE STEREO AXES AMD LABELS THEM HITH S TEREO LETTERS．
［2］STEREO XAXIS
［3］STEREO LETTERX＋3 60（606）．1200
［4］STEREO YAXIS
［5］STEREO LETTERY＋3 60（600）．（606）．600
［6］STEREO 2AXIS
〔7〕STEREO LETTER2＋3 6p（1200）．6p6

```
\nabla STERSO P;S;XR;XL;Y;N
[1] D DRANS STEREO PROSECTIOMS OF POIMT SET P USIMG PREVIOUSLY S
    PECIPIED
[2] A EYE LOCATION, SEPARATION, LIME OF SIORI, ETC.
[3] P+(RT,[1]UR.[0.1]LQS)+.xP
[4] N+(P[3;]-EXE[3])&D
[5] XL-(P[1;]+E-EXE[1])+M;XR+(P[1;]-E+EXE[1])+M
[6] Y (P[2;]-RXE[2]) +M
[7] WIMDOW 3.58 0.5 5
[8] O DRAN Y VS XL
[9] WIMDON 0 4.5 0.5 5
[10] O DRAN Y VS XR
    \nabla
    \nabla STPAR
[1] A PRIHTS OUT CURSEMT STEREO PARANETERS.
[2] 'LINE ORSIGAT 
[2] [LINE ORSIGHT 
[4] OBSERVERS UP UQUP
[5] MAEFAGE EYE POSITION
[6] EYE SEPARATIOM
    :ELENLRS
    GEYE SEPARATIOM OS
    'PAGE DISTAMCE ':D
    \nabla
    | Q+STRAPIS R
        SETS UP PROPER STRAPPIHG IOR GRAPGICS FU#CTIONS AT A| IMST
        ALLATION.
    [2] A AT NSFC IT SHOULD BE SET TO 5 AMD NUST BE EXECUTED OMCE AT
        LEAST
    [3] A POR EACH TERNIMAL SESSION.
    [4] }->ERR\times1(7<R)v5>R+14R;Q+1
    [5] }->0;Q+11 \triangleGRF 
    [6] ERR:'MO SUCH STRAPPING*
    \nabla
    \nabla STROT;TR;TR1;TH
    [1] MOVES LOS AND
```



```
    [2] 'INPUT DESIRED AZIMUTH AHD ELEVATION OF LOS'
    [3] 'OBSECT TO OBSERVER, AMGLES IM DEGREES'
    [4] TR-RFDX*1 1×@D
    [5] TH-1+PFR-LQS
    [6] TR1+(EUL2TH[1])+.XEUL3 TG[2]
    [7] TK+&(EUL2 TR[1])***EUL3 TR[2]
    [8] TR+TR+. KTKI
    [9] LOS+TR+.xIOS
    [10] UP+TR+.XUR
    [11] RT+TR+.xRT
        \nabla
```


V 85852UP

[1] $\quad 8598$ OSEERVER PARAMETERS TOR 8FTREO VIFWIMG.

[5] LOS-LOStMAG ERE

〔7] UP+ME+MAG ZE

[10] D-ELE[3]AEYE-SGRESN DISTAMCE

acs

 - tais punction simulates tas skylab facs blafmo logic
 $[2] \rightarrow(1.92>$ NAG ETS $) / 0$
[3] PIRE+6 3pO
[4] $\rightarrow(((\mid E T S[2])>(\mid E T S[3])+$ E3B $) A(\mid E T S[2])>\mid E T S[1]) / L 1$
$[5] \rightarrow((((\mid B T S[3])+E 3 B) \geq \mid E T S[2]) V(\mid E T S[1]) \geq \mid E T S[2]) / L 3$
[6] $\rightarrow 0$
$[7] \quad L 1_{1} \rightarrow(E T S[2] 20) / L 2$
[8] PIRE[4:]+1 11
[9] \rightarrow 'JBT 4°
[10] \rightarrow L7
[11] L2:PIRE[1:]+1 11
[12] \quad-JET 1^{1}
[13] \rightarrow L7
[14] $L 3:+(E T S[1]<E B[1]) / L 5$
[15] $\rightarrow(E T S[3] 20) / L 4$
[16] PIRE[5;]+1 11
[17] \rightarrow - ${ }^{(15 T} 6^{\circ}$
[18] $\rightarrow L 7$
[19] L4:PIRE[2;]-1 11
[20] \quad-JET 2^{-}
[21] $\rightarrow L 7$
[22] L5: $\rightarrow(E T S[3] 20) / L 6$
[23] $\operatorname{FIRE}[3 ;]+111$
[24] \quad.JET 3.
[25] +27
[26] L6:PIRE[5;]+1 11
[27] $\quad{ }^{\circ} J E T$ 5.
[28] L7:ATEX+(QVEX)+.XATVK+ATVK+DATVK++/MIBXLSVS X MIBS×母FIRE

[30] ETACS-ETACS- $\mathrm{AHTVK}+A$
[31] ETS E ETS $+\triangle A T V X+H$
[32] D+NIBSUM+NIBSUN+1
[33] n MIBSz'imIBSUM
[34] $\rightarrow 1$
∇

∇ teabval

[1] \quad THIS
function primts a station block of data to ablp syalu ats
[2]. TEA CONTROL PERFORMANCE.
[3] . .
 \therefore SMT $140 D F S$ GMTO + T)
[5] DTIME til next Station D,12.0:0.12.0:0.P6.2.0 present a LTD.P6.0 - \triangle PMT 1 4D(24 60 60TSTATIOMTAB[1:1]-F), MFXXALT
[6] DELAPSED SIM TIME = D.I3.D:D.I2.D:D.I2.D:O.F6.2. AFNT 140 DFS T

[8] PRST+PRST,T,PRTIT
 ∇

```
    \nabla TEXPERT;T; \triangleCG;SLP;A;ONGEX;R;RD;SEEKFL
[1] A TGIS PU&CTION ESTIMATED THS CP OPFSET AND RECOMNENDED A MO
    NEHTUN GIAS
[2] A TO RELP US AGRIEVE OUR DESIRED ATTITUDE.
[3] SEEXFL+1
[4] OMGEK+(2OLAZK)\timesONGK\timesLEK[2;];R+(REA+ALT)\timesLEK[3;];RD+ONOKx(REA+
    ALT)\timesLEK[1;]
[5] \triangleCG+-CPASUP
[6] A 'IMPUT CURREMT Slope matrix'
[7] A SLP+D
[8] BTLMOM+O O O
[9] T+TRQ AL+1 2 1 APEA RPDNEATMOM
[10] 'SUGGESTED MONEHTUN BLAS'
[11] D L ETL+-(tH)\times(&ONO)\timesO 1 0 X T+.×AL
    \nabla
    \nabla F-TOP A;L;P
[1] A DETERMINES RAMGE OF VARIATIOM AND ROUNDS OFF TO CONVENIENT
        NUMBER.
[2] R+P+L+10*L100P+[/|,A
[3] P+1.5 2 2.5 3 4 5 6 7 8 9 10
[4] R+P[1++/R\geqP]\timesL
```


∇ TRANSLATE

```
[1]
    A PROVIDES CONVERSION TABLE TO CONVERT SKYLAB TERNIMOLOGY
        20
        [2]
        SIMULATION TERMINOLOGY.
        [3] ETLN1= .ETLN1
    [4] BTEN2 = ',ETLN2
    [5] ETLN3 = ',ETLN3
    [6]
    'KDETHX= `,KDETHX
    -KDETHZ= !,KDETHZ
    [8] -DETHL1=, DETHL1
    [9] DETHL2= ',DETAL2
    [10] DETHL3= ',DETHL3
    [11] -DEPBL1= •,DEPAL1
    [12] DEPHL2= ',DEPBL2
    [13] DEPHL3= ',DEPGL3
    [14] DEL1 = ',DEL1
    [15] 'DEL2 = ',DEL2
    [16] 'DEL3 = ',DEL3
    [17] TTDESAT = •,TDESAT
    [18] 'DEPHC3L=`,DEPHC3L
    [19] 'PHD1DX= ',PHD1DX
    [20] -PHD1DY = ',PHD1DY
    [21] PPHD1DZ = ',PHD1DZ
    [22] 'PHD2DX = ',PED2DX
    [23] 'EHD2DY = ',PHD2DY
    [24] PPHD2DZ = ',PHD2DZ
    [25] PPHD3DX = ',PHD3DX
    [26] PPHD3DY= ',PHD3DY
    [27] *PHD3DZ = ',PHD3DZ
    \nabla RES TRRQ VLK;OMVK;HVK;VEK;RHOTAB
    [1] A COMPUTES EXTERNAL TORQUES. USED IN SEEK AND JACOBIAN.
    [2] RHOTAB RHOTABO+RHOSIG\timesRHOTAB1-RHOTABO
    [3] AETORQUE;GGTORQUE;VEK+VLK+.. LEK;AECONST
    [4] OMVK+VLK+, * O,OMOK,O
    [5] HVK+IVK+.×OMVK
    [6] RES+TGGK+TAEK-OMVK X H\timesVLK+.×ETLHOM
        \nabla
    \nabla QNEW+OMA UPDATE QOLD;QOM;\trianglePHI;MAGOM
    [1] A QUATERNION INTEGRATION FUNCTION.
    [2] UOM+OMA:MAGOM+MAG OMA
    [3] }\trianglePHI+MAGOM\times\triangleTD
        QOM+(UOM\times10\trianglePHI),20\trianglePHI
[5] QNEW+(QDB QOM)+.XQOLD
```

 V Q+L VS R:C:D;E
    ```

```

PR
[2]
[3] (2 370'AN ARGUNENT OF VS IS OF IMPROPER RANKARGUNENTS OF VS
ARE MOT CONPORNABLE ')[(\$G):1:]
[4] A TAKES 2 vECTORS OF SAME LEMGTH AND CONSTRUCTS 2\times| NATRIX F
OR PLOTTING.
\nabla
\nabla g+WHATSCALE
Q+11 \triangleGRF 1A DISPLAYS CURREMT SCALE SETTIMG.
\nabla
\nabla g+WIATWINDOW
[1] Q+11 \triangleGRF 2A DISPLAYS GURRENT WIMDON SETTING.
\nabla
\nabla Q+WINDON R
[1] }+2+v/g+(A/0 4*\rhoR),N/</2 2\rho(R+,R). 24
[2] +pQ+2 \triangleGRFR
[3] Q+0\rho(\#+6¢' ERRORWINDOW ',.(2 60'LENGTHDONAIN')[Q:1;]
[4] A ALLOWS USER TO SET NEW WINDOW SPECIFICATION.
\nabla
\nabla C+A X B
[1] A CROSS PRODUCT
[2] C+((1\phi[1]A)\times(-1\phi[1]B))-(1\phi[1]B)\times-1\phi[1]A
\nabla
\nabla XA
[1] a CONSTRUCTS CROSSPLOTS OF THE IN PLANE STRAPDOWN ERROR.
[2] 1 XPLOT'PRA[3 1;]'
\nabla
\nabla XH
[1] A CROSSPLOTS IN PLANE COMPONENTS OF HTEK.
[2] 1 XPLOT'(OEK+.xPRHTEK)[3 1;]'

```
    \(\nabla\)

V P XPLOT NANE:S;N:I;NI:Y1
[1] A MAKES CROSS PLOT OF DESIRED DATA ON SQUARE WIMDOW.
[2] STRAPIS 5
[3] DATE
[4] I \(+(p \in N A M E)[2]\)
[5] \(N I+[I+P\)
[6] \(S+(P \times 1 N I)-P-1\)
[7] WINDOW 270.255 .25
[8] BOX
[9] SCALE \((-Y 1), Y 1,(-Y 1), Y 1+\) TOP \(/[1] \mid \in N A M E\)
[10] AXES
[11] O DRAW(ENAME)[;S]
[12]
[13] \({ }_{\nabla}\) FINAL VALUE \(\cdot, N A M E, \cdot=\cdot ;(\in N A M E)[; \cdot 1+\rho \in N A M E]\)

\section*{REFERENCES}
1. Glaese, J. R. and Kennel, H. F.: Low Drag Attitude Control for Skylab Orbital Lifetime Extension. NASA TM X-
2. Skylab Final Report.
3. Chubb, W. B., et al.: Flight Performance of Skylab Attitude and Pointing Control System. NASA TN D-8003, June 1975.
4. ATMDC Program Definition Document. IBM No. 70-207-0002, 10 May 1973.
5. Kennel, H. F.: A Control Law for Double-Gimbaled Control Moment Gyros Used for Space Vehicle Attitude Control. NASA TM X-64536, August 7, 1970.
6. Gyorfi, R. A.: Orbital Aerodynamic Data for the Updated Skylab I In-Orbit Configuration. M-9230-73-197, Northrop Services, Inc., July 11, 1973.
7. Parrott, J. D. and Warr, J. W., III: Orbital Aerodynamic Data for the Skylab Configuration and the Skylab Configuration and End-Docked Command and Service Module. LMSC-HREC D162857, TN 54/20-136, Lockheed Research and Engineering Center, Huntsville, Alabama, January 1971.
8. Thomason, H. E.: Skylab Center of Gravity, NASA MSFC, Memo EL01(411-78), December 1978.

\section*{APPROVAL}

\title{
TORQUE EQUILIBRIUM ATTITUDE CONTROL FOR SKYLAB REENTRY
}

\author{
By John R. Glaese and Hans F. Kennel
}

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.```

