General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

PHASE-LOCKED TELEMETRY SYSTEM FOR ROTARY INSTRUMENTATION OF TURBOMACHINERY PHASE

By Alan Adler and Bas Hoeks

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared Under Contract No. NAS3-20290 by Acurex Corporation/Autodata Division

485 Clyde Avenue Mountain View, California 94042
for
National Aeronautics and Space Administration

```
(NASA-CR-159453) PHASE-LCCKED TELEMETRY
SYSTEM POR ROTARY INSTRUMENTATION OF
TURBOMACHINERY, PHASE 1 Final RepCrt
(Acurex Corp., Mountain View, Calif.) 192 p Unclas
HC A09/MF A01 CSCL 09F G3/17 44237
```

"Page missing from available version"
"Page missing from available version"

ABSTRACT

This report describes Phase I design of a telemetry systen for use in making strain and temperature measurements on the rotating components of high speed turbomachines. The system described here represents a new systems approach, employing phase-locked transmitters, which offers greater measurement channel capacity and reliability than existing systems -- which all employ L-C carrier oscillators. A prototype transmitter module was tested at $175^{\circ} \mathrm{C}$ combined with $40,000 \mathrm{~g}$'s acceleration.

SUMMARY

This report details Phase I design work performed by AcurexAutodata under contract from NASA Lewis Research Center. The goal of this program is to develop an improved rotating telemetry system for strain and temperature measurements on the rotating components of operating gas turbine engines. Although such rotating telemetry systems have been in use for nearly 10 years, a recent study, sponsored by the Air Force Aero Propulsion Laboratory, identified propulsion industry requirements for several improvements in these systems. These desired improvements are listed (in approximate order of importance):

- An increase in the capacity for simultaneous dynamic strain measurements from the present 40 channels to 100 channels
- An increase in the maximum transmitter ambient temperature from $+125^{\circ} \mathrm{C}$ (present) to $+175^{\circ} \mathrm{C}$
- Addition of capability for static strain measurements

Furthermore, it was desired to standardize the transmitter package design and take advantage of developments in microelectronic circuitry in order to improve performance and reliability.

Acurex had (previous to contract initiation) conceived of a system to meet these requirements and applied for a patent. This patent was subsequently granted (U.S. pat. no. 4,011,551). The system employs a number of independent transmitters, each phase-locked to a 200 kHz
inductively coupled clock signal which is also rec ${ }^{\text {ified }}$ and regulated to provide power for the transmitters and transducers.

The work performed under this, Phase I, program has included:

- Systems analysis of the "communications link" (channel carrier spacing, crosstalk, signal-to-noise ratio, etc.)
- Design and testing of typical antenna systems
- Circuit design and breadboard testing of:
-- Two alternate receivers
-- Three alternate static strain modulators
-- A phase-locked FM transmitter
- Transmitter package design including development of fabrication techniques and component selection for operation at up to $175^{\circ} \mathrm{C}$ and $50,000 \mathrm{~g}$'s centrifugal force
- Fabrication of a prototype transmitter and testing at $175^{\circ} \mathrm{C}$ combined with $40,000 \mathrm{~g}$'s

The prototype transmitter was tested incomplete because of outside delays in obtaining a monolythic integrated circuit frequency-synthesizer.

The overall results of the program were quite successful. All analyses and tests validated the basic phase-locked concept and demonstrated performance in excess of minimum requirements.

Phase II of the program is scheduled to result in completion of the detailed design and the fabrication and testing of a small prototype system.
Section Page
1 INTRODUCTION 1
1.1 Objective 1
1.2 System Concept 2
1.2.1 Rotating Electronics 5
1.2.2 Stationary Electronics 7
2 ROTARY ELECTRONICS 9
2.1 Introduction 9
2.2 Module A -- Dynamic Strain Transmitter 9
2.3 Module B -- Static Strain Transmitter 12.
2.4 Module C -- Temperature Transmitter. 20
2.5 Transmitter Package Design 20
2.5.1 Prototype Module Fabrication and Tist. 25
2.5.2 Screening of Electronic Components for Improved Operation at $175^{\circ} \mathrm{C}$ in hybrid microelectronic circuits 31
3 STATIONARY ELECTRONICS 35
3.1 Introduction 35
3.2 Dynamic Strain Receiver. 35
3.2.1 Performance Specifications 35
3.2.2 Theoretical Considerations 37
3.2.3 The Superheterodyne Receiver 43
3.2.4 The Tracking Phase-Locked Loop Receiver 47
3.2.5 FM Detector 49
4 CONCLUSIONS 53
APPENDIX A -- FM DISTORTION BY TRANSMISSIOHi NETWORKS 55
APPENDIX B -- COMMON-CHANNEL AND ADJACENT-CHANNEL INTERFERENCE 69
APPENDIX C -- SIGNAL-TO-NOISE RATIOS FOR AM, PM and FM 95
APPENDIX D -- NONLINEAR FREQUENCY DETECTOR 107
APPENDIX E -- COMB FREQUENCY SPECTRUM Gc̈NERATOR 113

TABLE OF CONTENTS (Concluded)

Section Page
APPENDIX F -- STRESS ANALYSIS OF TRANSMITTER PACKAGE 117
APPENDIX G -- TRANSMITTER RELIABILITY ANALYSIS 125
APPENDIX H -- THEORY OF OPERATION OF TRANSMITTER AND RECEIVER SIGNAL CONDITIONING CIRCUITRY. 144
APPENDIX I -- TESTS ON CAPACITIVE ANTENNA 153
APPENDIX J -- ENVIRONMENTAL TEST ON HYBRID TANTALUM CAPACITORS 157
APPENDIX K -- ADDITIONAL DRAWINGS 159
REFERENCES 183
Figure Page
1-1 System block diagram 4
1-2 Module locations 6
2-1 Block diagram of module A (dynamic strain transmitter) 10
2-2 Basic data link (shown for dynamic strain using a single active gage) 11
2-3(a) Schemetic diagram breadboard phase-locked transmitter. 13
2-3(b) Frequency response of breadboard phase-locked transmitter-receiver link 14
2-3(c) Oscilloscope photos of actual receiver signal from "breadboard) phase-locked transmitter-receiver link 15
2-3(d) Spectral analysis of multiple frequency settings of phase-locked transmitter 17
2-4 Static strain transmitter 19
2-5 Six-channel thermocouple multiplexer/modulator 21
2-6 Module design and installation 23
2-7(a) Exterior view of module 27
2-7(b) Interior view of module 29
3-1 RF spectrum 38
3-2 Superheterodyne receiver block diagram 45
3-3 Phase-lock loop receiver block diagram 48
3-4 FM detector (FMD) block diagram 50

LIST OF TABLES

Table Page
1-1 Table of Performance Goals 3
1-2 Frequency Allocations 7
3-1 Receiver Input Specifications 36
3-2 Receiver Output Spec ifications 36
3-3 Crosstalk Effects 42
3-4 Typical Frequency Assignments for a Four-Track 102-Channel System 44
3-5 Frequency Detector Characteristics 47

SECTION 1

INTRODUCTION

This report describes phase I of the rotary instrumentation system deve lopment.

The developments include:

- System design
- Transinitter circuit design
- Receiver circuit design
- Transmitter packaging design for high accelerations and temperature
- Construction and testing of a prototype transmitter m dule Results from Air Force Contract F33615-75-C-2055 (which was a study of industry and government requirements, and of high temperature circuitry feasibility) have contributed to this design.

1.1 OBJECTIVE

The Air Force sponsored study contract F33615-75-C-2055 identified increased channel capacity for simultaneous dynamic strain data as a primary objective. Present systems are limited to a maximum of 40 charinels. Government and industry requirements in the next decade are for up to 120 channels.

Other objectives included increased transmitter operating temperatures, the addition of static strain capability, improved reliability, and moduldrity
of design. Finally, enhanced ease of operation was desirable so that existing test personnel would be able to cope with the tasks of monitoring the greatly increased number of measurement channels.

Performance goals for the system are given in Table 1-1. This table accounts for error sources such as internal wire, resolution, common mode rejection, zero drift, input inipedance, excitation voltage stability, and channel crosstalk (including crosstalk during conditions of extreme transducer signais such as intermittance of strain gages). Additional error sources, also accounted for, include effects of ambient temperature, centrifugal force, vibration, and eccentricity in mounting.
1.2 SYSTEM CONCEPT

As with previous rotating instrumentation systems, this system consists of two subsystems (See Figure 1-1):

1. Rotating Subsystem Shaft-mounted electronics which interface with the transducers (strain gages, thermocouples or pressure transducers) and encode their signals onto carriers and/or subcarriers for transmission to a stationary subsystem.
2. Stationary Subsystem

Receivers and demodulators which decode the signals from the rotating system and resture them to amplified analogs of the original transducer outputs

The stationary systern also includes a 200 kHz power suipily which couples power inductively (without physical contact) to the electromics uf the rotating system.

The must important difference between this new system, and previuus systems is that the inductively coupled power is alsu employed as a
table 1-1. TABLE OF PERFORMANCE GOALS

Characteristic	Limit	Strain or Pressure		Temperature
		Dynamic	Static	
Accuracy	Minimum Design Goal	$+5 \%$ $+2 \%$	$\begin{aligned} & \pm 2^{\prime \prime} \\ & \pm 1 \% \end{aligned}$	+0.5\%
Frequency Range	---	$10 \mathrm{~Hz}-30 \mathrm{kHz}$	O-500 Hz	$0-25 \mathrm{~Hz}$
Most, Sensitive FullScale Range	--	500 ij strain	500 strain	20 mV
Phase Correlation (Channel-to-Channel)	$\begin{gathered} \text { Minimum } \\ \text { Design Goal } \end{gathered}$	$\begin{gathered} +10^{\circ} \\ (\text { to } 0 \mathrm{kHz}) \\ \left(\text { to }{ }^{+5} 30 \mathrm{kHz}\right) \end{gathered}$		---
Anbient Temperature Range	Minimum Design Goa:		$\begin{aligned} & 0^{\circ} \mathrm{C}-150^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}-175^{\circ} \mathrm{C} \end{aligned}$	
Centrifugal Force Limit	Minimum		$\begin{aligned} & 40,000 \mathrm{~g} \text { 's } \\ & 50,000 \mathrm{~g} \text { 's } \end{aligned}$	

Figure 1-1. System block diagram.
reference clock to syinchronize the carrier frequancy of each transmitter. Furthermore this same 200 kHz signal is employed as a reference to the receivers of the stationary system.

This permits precise digital tuning by merely selecting the desired channel number on the receiver.

1.2.1 Rotating electronics

The system includes three basic types of transmitter modules:

- Module A .- Dynamic straín transmitier
- Module B -- Static strain transmitter
- Module C -- Temperature transmitter containing six time-division multiplexed thermocouple channels

The physical locations of the modules in relation to the engine shaft and the capacitive antenna tracks is shown in Figure d-2. In this example there are four layers of modules. Each layer may consist of up to 24 RF channels and is sensed a small distance away by a narrow conducting circular strip which acts as an antenna track. The four tracks are mounted on a stationary insulated disc with a grounded plane on its opposite side. In addition, grounded guard bands are placed between the tracks in order to reduce crosstalk. Further reduction of crosstalk between adjacent tracks is achieved by alternating the tracks with oddand even-numbered channels. The channel frequency allocations are shown in Table 1-2.

Each channel carrier is frequency modulated with a nominal frequency deviation of $\pm 75 \mathrm{kHz}$. The modulating frequency band ranges from 20 Hz to 40 kHz .

Figure 1-2. Module locatiors.

TABLE 1-2.

CHANNEL NUMBER	CARRIER FREQUENCY (MHz)
1	10.4
2	10.6
3	10.8
1	1
1	1
51	20.4
52	20.6

1.2.2 Stationary Electronics

Referring to Figure 1-1, note that each group of up to 24 dynamic strain receivers is preceded by a bandpass filter (BP1). Bandwidth and group delay characteristics should be such that the fundamental frequency components of all incoming frequency-modulated carriers are passed virtually distortion free.

Its purpose is twofold:

- Prevention of receiver input saturation due to crosstalk from the inductive power system
- Reduction of the receiver image frequency response due to transmitter carrier harmonics

Each receiver frequency is digitally programmable. Any of its outputs may be selected for either dynamic strain, static strain or temperature measurements.

For dynamic strain, which employs direct frequency modulation, the outputs of the receivers are ready-to-use analogs of the original strain gage signals.

For static strain or temperature the D.C. data is encoded onto a 6 kHz subcarrier and additional signal processing is performed by static strain or temperature demodulating cards which restore the signals to analogs of the original sensor signals. These demodulator cards are plugged-in (when required) to the receiver. The receiver chassis is 19 inches wide, rack-mountable, and accepts up to 12 plug-in cards which may be receivers, demodulators or mixes of each.

SECTION 2

ROTARY ELECTRONICS

2.1 INTRODUCTION

In this section the following modules will be discussed:

- Module A -- Dynamic strain transmitter
- Module B -- Static strain transmitter
- Module C -- Temperature transmitter
2.2 MODULE A -- DYNAMIC STRAIN TRANSMITTER

Referring to Figure 2-1 and 2-2, Module A contains:

- An isolated, regulated $D C$ power supply, operating from the 200 kHz induced power. The isolation permits accurate measurements on grounded strain gages
- An AC coupled amplifier for amplifying low level dynamic strain signals

The 3 db frequency response of each basic $A C$ transmitter, when used alone is 10 Hz to 40 kHz

- A synchronized FM transmitter, responding to the AC amplifier, driving a capacitively coupled antenna
- A 40 kHz self-test signal injection circuit
管
Figure 2-1. Block diagram of Module A (Dynamic strain transmitter).

Figure 2-2. Basic data link (shown for dynamic strain using a single active gage).
- An open gage detection circuit. The strain amplifier is designed to bias itself into saturation if the strain gage circuit becomes open. This cuts off transmission of the 40 kHz self-test signal and permits positive differentiation between open and "quiet" gages.

The FM transmitter incorporates a phase-lock circuit which maintains its center frequency at a digitally preset multiple of the induced power frequency.

It was planned to employ a new RCA circular-CMOS integrated circuit frequency sysnthesizer to implement this phase-locked transmitter in the final product. However development delays at RCA combined with market changes eventually caused the cancellation of this I.C. development.

A new I.C., employing an RCA, Silicon-on-Saphire (SOS) universal gate array is currently on order and will be tested during Phase II of the telemetry program.

Schematic and test results of an initial breadboard design are shown in Figures 2-3(a) to 2-3(d). A schematic of the dynamic strain transmitter is included in Appendix K.
2.3 MODULE B -- STATIC STRAIN TRANSMITTER

Referring to Figure 2-4, the static strain transmitter operates as follows.

First, a differential chopper converts the static strain signal ($D C-500 \mathrm{~Hz}$) to an amplitude modulated square wave of 3.125 kHz . Additionally, a 6.25 kHz calibration signal of amplitude equal to approximately 30 percent of the full-scale strain signal is superimposed. Next, these signals are transmitted by an AC FM transmitter which is identical to Module A.

Figure 2-3(a). Schematic diagram breadboard phase-locked iransmitter.

Figure 2-3(b). Frequency response of breadboard phase-locked transmitter-receiver link.

20 Hz - Sine Wave

2 KHz - Sine Wave

20 KHz - Sine Wave

2 KHz - Square Wave

Figure 2-3(c).

Oscilloscope photos of actual received signals from "Breadboard" phase-locked transmitter-receiver link.

$$
\begin{aligned}
& \text { OR/GIN} \\
& =646,2
\end{aligned}
$$

Un-modulated

FM Modulated
+75 KHz deviation
象

$$
\begin{aligned}
\text { Scale }= & 200 \mathrm{KHz/division} \mathrm{(horizontal)} \mathrm{and} \\
& 10 \mathrm{DB} / \text { division (vertical) }
\end{aligned}
$$

Figure 2-3(d). Spectral analysis of multiple frequency conttings of phase-locked transmitter.

Figure 2-4. Static strain transmitter.

2.4 MODULE C -- TEMPERATURE TRANSMITTER

This module, when used in conjunction with Module A, provides six channeis of temperature measurement.

Referring to figure 2-5, it consists of an analog scanner which sequentially selects 10 separate voltage levels for transmission. Six of the levels are thermocouple outputs. The remaining levels are synchronization, zero, a calibration voltage and a voltage proporiional to the module's internal temperature which is used to derive information for automatic cold junction compensation. In order to provide isolation between the channels both the positive and the negative thermocouple leads are switched by the scanner. Each channel is scanned once every 2 milliseconds, which provides a frequency response of $D C$ to 25 Hz for each channel.
2.5 TRANSMITTER PACKAGE DESIGN

Prior experience with Acurex model $218 \mathrm{H}, 218 \mathrm{a}$ and 215 H transmitters had indicated that hybrid microelectronic circuit fabrication methods were suitable for operation in gas turbine engines. Additional studies under Air Force contract number F33615-75-C-2055 probed the feasibility of operating hybrid circuits at temperatures up to $175^{\circ} \mathrm{C}$. This study showed 175° operation to be feasible but identified reliability as a significant problem for any type of circuitry at high temperature.

When considering the various circuit construction techniques available today, hybrids coli" "inue to be the choice for the gas turbine environment. Perhaps in the future these hybrids may be simplified by greater application of monolithic l.C.'s. But considering the limitations of the monolithic process (such as capacitor size) it is unlikely that the hybrids will be totaliy replaced.

Figure 2-5. Six-channel thersocouple multiplexer/modulator.

The package design of the new transmitter module marks the first case of a design tailored to contain a hybrid circuit. (Note that earlier hybrid transmitter modules were adaptations of existing non-hybrid form-factors.) The hybrid substrate is of a relatively thin, flat configuration. Thus a flat package houses it most efficiently.

The packaging scheme is illustrated in Figure 2-6 which shows a group of transmitters mounted in an engine. Drawings E25506 and E25507 (see Appendix K) show details of the package desigli. It consists of a shallow metal cavity which houses two hybrid substrates. A support wall in the central area is necessary to reduce stress in the bottom at high centrifugal force (up to $50,000 \mathrm{~g}$'s). Some of the sidewalls of the package are drilled to receive feedthrough terminals which connect the circuit to the external transducers, power coil, antenna, and carrier frequency programming jumpers.

Normally these feedthrough terminals would be set in fuzed glass or brazed ceramic sleeves, however, cast epozy sleeves were developed for this application for several reasons:

1. Stress analysis indicated that heat-treated steel was essential. The thermal processes of glass or ceramic sealing and heat-treating are incompatible.
2. Stress analysis indicated that elastic deformation of the metal sidewalls (under high centrifugal loads) would be likely to crack a brittle (glass or ceramic) seal and cause a leak

The epoxy sealing process is performed at $165^{\circ} \mathrm{C}$ and does not interfere with the (prior) heat-treating of the steel. Furthermore the epoxy seal is relatively elastic and less likely to crack under high g's.

Fiqure 2-6. Module design and installation.

Although an epoxy seal is not truly hermetic, epoxy lid-seals have proven to be acceptable in other Acurex transmitters which operate in the gas turbine environment.

Pin sealing was performed by temporarily supporting the pin in the center of the hole with a sleeve of glass filled Teflon (Fluorocarbon Corp. "Fluorogold") which extended about halfway into the hole. Epoxy was then applied around the pin and heat cured. After cure the Teflon sleeve was extracted and a second application of epoxy filled the remaining portion of the hole.

Two general families of epoxies were treated for this purpose:

1. High Adhesion Epoxy DGEBA resin prereacted with 12 percent CTBN (nitrile rubber) and cured with dicyandiamide. Small amounts of accelerator were also included, to improve high temperature strength rather than to speed up the cure. Also various fillers were tested to enhance high temperature strength.

All seals made with these materials developed small cracks after the hot spin test $\left(40,000 \mathrm{~g}\right.$'s and $175^{\circ} \mathrm{C}$ for 2 hours). Soldering (to the pins) was also tried with good results.
2. High Temperature -- Low Adhesion Epoxy DGEBA resin prereacted with 12 percent CTBN and cured with 50 PHR FMDA (pyromellitic dianhydride). This results in an extremenly hard and temperature resistant cured epoxy, but of relatively low adhesion (as compared to the previous family).

All seals made with this material successfully passed the hot spin and soldering tests and thus this material was eniployed in the prototype module and subsequently passed additional hot spin and solder testing.

Despite the initial successful results with this material Acurex still has some reservations about its ability to withstand repeated abuse and soldering and thus further testing and development may be conducted during phase II of this development program.

Appendix F provides details of the stress analysis on this package.

2.5.1 Prototype Module Fabrication and Test

The prototype module was fabricated without the phase-locked VCO due to inavailability of the RCA frequency synthesizer I.C. Figure 2-7 is a photograph of the completed module.

The following environmental tests were conducted.
Spin Test Schedule

Step	Temperature	$\mathrm{G}^{\prime} \mathrm{s}$	Duration
1	$20^{\circ} \mathrm{C}$	40,000	1 hr
2	$120^{\circ} \mathrm{C}$	40,000	1 hr
3	$150^{\circ} \mathrm{C}$	40,000	1 hr
4	$175^{\circ} \mathrm{C}$	40,000	1 hr
5	$175^{\circ} \mathrm{C}$	40,000	4 hrs

Module performance recorded after each step was as follows:
Dynamic Strain Module Spin Test Data

Step	DC Supply	Self Test	Amplifier Response		
	Voltage	Signal Output	Gain Stability	$f_{L}(-3 \mathrm{db})$	$f_{H}(-3 \mathrm{db})$
1	+10.010	0.727 vrms	1	15 Hz	32 kHz
2	+10.016	0.881 vrms	-0.4%	15 Hz	32 kHz
3	+10.013	0.838 vrms	-0.272%	15 Hz	32 kHz
4	+10.013	0.762 vrms	-0.272%	15 Hz	32 kHz
5	-	-	-	-	-

Fiqure 2-7(a). Exterior view of module.

3680－H
1最1月

Figure 2－7（b）．Interior view of module．

During step 5 the modules' voltage regulator I.C. (A723) lost its internal reference voltage. Subsequent visual inspection revealed that a microscopic (foreign) metal particle had penetrated the device's protective coating and shorted two conductor traces together. The transmitter cover was not sealed during these tests thus this type of failure was not deemed to be characteristic of the overall design and thus the test was judged to be successful. The mechanical integrity of the module was excellent throughout the entire test. Specifically the components, component attachments, wire bonds and feedthrough seals were not visibly affected by the enviromental stress.

After replacement of the A723 voltage regulator, an operational amplifier (CA3130) was discovered to be electrically bad. It is not known if this failure occurred during step 5 testing or during subsequent rework handling. However a group of ten CA3130's were subsequently subjected to extensive testing, including 144 hours burn-in at $175^{\circ} \mathrm{C}$, with no failures.

2.5.2 Screening of electronic components for improved operation at

$175^{\circ} \mathrm{C}$ in hybrid microelectronic circuits

Assuming that a certain type of component has been determined to be capable of functioning satisfactorily at $175^{\circ} \mathrm{C}$ and thus designed into a transmitter circuit, a problem remains regarding how to screen these components for use in production assemblies. With conventional "discrete" circuit assemblies, burn-in (active aging at elevated temperature) has been proven to be the most effective screening method. Unfortunately burn-in is not possible with chip components which are used in hybrid microelectronic circuit assemblies. This is because there is no satisfactory method of applying voltages to the chips during aging.

Many manufacturers of hybrid circuits assemble un-screened chip components onto the circuit substrates prior to performing any tests. If a defective component is discovered at this stage it can be replaced, or (rarely) the entire substrate can be discarded.

Other manufacturers test selected critical components by making temporary electronic contact with delicate probes. While probing systems are the industry standard for testing groups of semiconductor devices in wafer form (prior to scribing), their use on individual chips is far more tedious and thus limited. Some people even recommend against the testing of individual chips because this represents a second probing of the delicate aluminum pads (the first probing was performed while the chips were joined together in the wafer) which could cause mechanical degradation. These people somet imes test chips on a lot sample basis only.

Others have developed the art of probing the delicate pads with extreme care and find it worthwhile to perform 100 percent testing on chips. The most notable hybrid manufacturer doing this is Teledyne Microelectronics in Culver City, California. Their large volume of 1 million chips per week has permitted them to develop the chip probing process to a fine art. However, although they are willing to test chips for other manufacturers (such as Acurex) their present methods are limited to $125^{\circ} \mathrm{C}$. Also, the cost of setting up screening programs would have to be borne by a relatively small number of devices.

The cost of testing and screening electronic components can easily add orders of magnitude to the component's base price (with standard testing). At present the economics of rotary instrumentation programs can not justify these high added costs. Also the relatively small production volume of these rotary instrumentation systems further hinders the
development of optimal screening methods. Acurex has tried to induce semiconductor manufacturers to perform special high temperature screens during wafer probing but when they learn that the quantities required represent less than 0.01 percent of their annual voiume they suddenly become very uninterested.

At the present time Acurex employs a variety of screening methods for chips used in hybrid circuits. These methods include:

1. Rigid 100 percent visual inspection
2. Lot sample testing
3. One hundred percent probe testing on critical or problem components
4. Special acceptance criteria during the manufacturer's wafer probe-test (or final test for components other than semiconductors)
(In addition to these component tests, assembled circuits are burned-in.)

Test 3 (chip probe-tests) offers an opportunity for further development tailored to high temperature screening. For example chips might be probed at extreme temperatures $\left(200-300^{\circ} \mathrm{C}\right)$ and voltages well in excess of normal. This test, nicknamed the "zap test", would be an attempt at condensing the time of a burn-in (normally 168 hours) down to a few seconds (or minutes). However, it is beyond the scope of this present instrumentation development program to pioneer such new testing technologies which would require costly large samples and subsequent life testing to establish meaningful evidence of their value.

SECTION 3

STATIONARY ELECTRONICS

3.1 INTRODUCTION

The units to be discussed are:

- Dynamic strain receiver
- Static strain signal conditioner
- Temperature signal conditioner

Tentative performance specifications for the receiver will be given.

3.2 DYNAMIC STRAIN RECEIVER

A study of several receiver types indicated that the frequency-synthesized superheterodyne and the tracking phase-locked receivers are the most likely candidates. Both have advantanes and disadvantages. Briefly, the superheterodyne receiver requires less circuitry but high quality passive filters. On the other hand, the tracking phase-locked receiver utilizes simple filters but a fairly large amount of digital circuitry. It is estimated that the cost of either system is about the same, although the power consumption of the tracking phase-locked receiver may be somewhat higher. Further details will be discussed in the next sections.

3.2.1 Performance Specifications

Tentative dynamic strain receiver performance specifications are shown in Tables 3-1 and 3-2. Whereas the monitor output contains strain
table 3-1. RECEIVER INPUT SPECIFICATIONS

Channel Input	Number of channe is Adjacent channel spacing Carrier frequency range Single carrier rms level Combined carrier peak level Type of modulation Frequency deviation Audio frequency range	52 0.2 MHz 10.4 MHz to 20.6 MHz 0.1 mV to 10 mV 400 mV maximum Frequency +75 kHz nominal DC -50 kHz
Digital Inputs	Number of channel select line Type of code	```2\times4 2 -- digit comple- ment of 9's comple- ment```

TABLE 3-2. RECEIVER OUTPUT SPECIFICATIONS

Analog Outputs	Signal to noise ratio (20 Hz to 50 kHz) $>40 \mathrm{~dB}$ Harmonic distortion <1 percent Voltage level stability percent Output peak voltage $2 V$
Composite Output	Frequency range \quad DC -- $40 \mathrm{kHz}(-3 \mathrm{~dB})$
Monitor Output	Frequency range \quad DC -- $20 \mathrm{kHz}(-3 \mathrm{~dB})$
Digital Outputs	Carrier strength indicator: yields an "INVALID DATA" output when the desired rms carrier level drops below 0.1 mV
	Gage failure indicator: yields an "INVALID DATA" output for open gages Level detection of a 40 kHz self-test signal is used for this purpose

Note: At the time this report was prepared, minor changes of specifications are expected to occur.
data only, the composite output contains aiso the 40 kHz self-test signal. It is intended that the monitor output be used for visual monitoring only and that the composite output be recorded for analysis after the test. Thus the 40 kHz test signal is also recorded and available for post-test verification of gage continuity and transmitter integrity.

3.2.2 Theoretical Considerations

In ;elation to the reception of phase or frequency modulated RF carriers, theoretical consideration has been given to the following topics:

- Signal-to-noise (S / N) ratios of phase modulation (PM) versus frequency modulation (FM) (Appendix C)
- Transmission bandwidth (Appendix A)
- Adjacent channel interference (Appendix B)
- Common channel interference (Appenidix B)

Referring to Figure 3-1, it is assumed that the carriers on a given antenna track are separated by 0.4 MHz and that f_{c} and f_{p} represent the desired and the undesired channel frequencies, respectively.

Furthermore we define:

$$
\begin{aligned}
& f_{c}=\omega_{c} /(2 \pi) \\
& f_{p}=\omega_{p} /(2 \pi) \\
& f_{b}=\omega_{b} /(2 \pi)=\text { half of the receiver bandwidth } \\
& \Delta f=\Delta \omega /(2 \pi)=\text { adjacent channel frequency difference } \\
& \Delta f_{c}=\Delta \omega_{c} /(2 \pi)=\text { frequency deviation of } f_{c} \\
& \Delta f_{p}=\Delta \omega_{p} /(2 \pi)=\text { frequency deviation of } f_{p} \\
& F_{c}=s_{p} /(2 \pi)=\text { modulating frequency of } f_{c} \\
& F_{p}=s_{p} /(2 \pi)=\text { modulating frequency of } f_{p} \\
& B_{c}=\Delta f_{c} / F_{c}=\text { modulation index of } f_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{p}=f_{p} / F_{p}=\text { modulation index of } f_{p} \\
& F_{v}=\Delta \Omega_{y} /(2 \pi)=\text { receiver audio bandwidth }
\end{aligned}
$$

Figure 3-1. RF Spectrum

3.2.2.1 S/N Ratios of PM Versus FM

It has been shown in Appendix C that when the receiver input consists of an angle modulated carrier and white noise of constant spectral density, the S / N ratio of $P M$ is higher than the S / N ratio of $F M$ without frequency deemphasis of the receiver (and emphasis at the transmitter). With deemphasis, however, there exists a value of the modulating (audio) frequency beyond which FM yields an improvement over PM. This value is determined by the total audio bandwidth and by the roll-off frequency of the deemphasis network. FM has been selected over PM due to its simpler implementation and proven performance in these systems.

3.2.2.2 Transmission Bandwidth

It may be shown that when an RF carrier is frequency modulated with a single sinusoidal signal, an infinite array of side bands are generated. Since the actual bandwidth muct be finite, it is evident that harmonic distortion of the modulating signal is introduced.

The mathematical determination of this distortion is a complex affair and has not been attempted here. Instead, we utilize an empirical formula known as Carson's rule in which case the half bandwidth is given by:
$f_{b} \geq F_{c}+\Delta f_{c}$
For $F_{c}=30 \mathrm{kHz}$ and $\Delta f_{c}=75 \mathrm{kHz}$, we find $f_{b} \geq 105 \mathrm{kHz}$.
This bandwidth is normally ased for high wality FM broadcast receivers.

3.2.2.3 Adjacent Channel Interference

Referring to Figure 3-1, let the recefver be tuned to f_{c} and consider the interference of the side bands of f_{p} with the side bands of f_{c}. It is assumed that f_{c} is modulated with a very low audio frequency so that virtually all side bands of f_{c} are contained within a bandwidth which is equal to twice the frequency deviation of f_{c}.

With F_{C} and F_{p} being the modulating (audio) frequencies, the signal-to-noise ratio is defined by:
$\left.S / N=\frac{\text { RMS audio voltage output due to } F_{c}}{\text { RMS noise voltage output due to } F_{p}} \right\rvert\, F_{C} \rightarrow 0$
It is shown in Appendix B that with equal carrier amplitudes, 400 kHz channel separation, $\pm 75 \mathrm{kHz}$ frequency deviations and a receiver audio frequency range of $D C=40 \mathrm{kHz}$, the S / N ratios amount to 1000 db with $F_{p}=20 \mathrm{~Hz}$ and 146 db with $F_{p}=30 \mathrm{kHz}$.

Hence, adjacent channel interference may be neglected.

It should be realized that the above results are valid for an ideal discriminator only. Assuming, however, that the discriminator saturates beyond a maximum frequency deviation of $\pm 75 \mathrm{kHz}$, it is evident that the adjacent carriers lscated at $\pm 400 \mathrm{kHz}$ will cause distortion. Requiring that the discrimi `ator output voltage at 400 kHz amounts to less than one percent of the voltage at 75 kHz , it is found from Appendix B that a bandpass filter is required with an attenuation of more than 50 dB at 800 kHz bandwidth

3.2.2.4 Corion Channel Interference

Presently, the undesired (f_{p}) and desired (f_{c}) carrier frequencies are assumed to be equal. We distinguish two cases, e.g., Case I: Desired carrier modulated and undesired carrier unmodulated, and Case II: Desired carrier unmodulated and undesired carrier modulated. The analysis assumes that in either case the modulating signals are sinusoidal and that the frequency deviation is $\pm 75 \mathrm{kHz}$.

Case I
This case is the most important of the two since it enables us to study the capture effect of an FM receiver. Let us suppose that the desired carrier amplitude and its modulating signal is held constant and that the undesired carrier amplitude is increased from zero to a value which is less than but near to the value of the desired carrier amplitude. Let us also suppose that the receiver is ideal, i.e., it possesses an infinite RF bandwidth and a linear frequency discriminator of unrestricted dynamic range.

It is then found that the audio output consists of two components. The first component consists of the modulating sinewave. It is essential to note that its amplitude remains constant. The second component
consists of a beat frequency whose amplitude increases. The beat frequency depends on both the modulation index and the modulating frequency. Since the average value of the beat frequency is zero and the beat frequency is usually higher than the modulating frequency, it can be renoved by lowpass filtering.

This way, the receiver has "captured" the stronger carrier and ignores the weaker carrier. Let us now assume that the discriminator saturates beyond a certain signal level and that the beat frequency peaks are being clipped bejond this level. The results are that the average value of the beat frequency is no longer zero and that the amplitude of the modulating sine wave is reduced by this.

In order to obtain a measure for the capture ability of the receiver, let us define the capture ratio as A / B where A is the desired carrier amplitude and B is the undesired carrier amplitude at which the modulating signal reduces by 1 percent.

In view of the above it can be concluded that the desired small capture ratios can be achicved by:

- Large receiver bandwidth and linear phase response
- Large discriminator bandwidth with good linearity

Further details can be found in Appendix B.

Case II

In this case we consider the maximum allowable crosstalk that can exist betweer two adjacent antenna tracks operating at the same carrier frequency. It is assumed that only the undesired carrier is modulated. Let D and U represent the amplitudes of the desired and undesired carriers, respectively. Using a sinusoidal modulating signal, the signal-to-noise ratio will be defined as S / N where S and N are the peak audio
voltage values at the receiver output with the presence of U and $D+U$, respectively. Using the standard receiver (Acurex Model 149 with 30 kHz cut-off frequency) and 100 Hz modulating frequency, the measured S / N values as a function of the modulating frequency deviation are given in Table 3-3.

TABLE 3-3. CROSSTALK EFFECTS

Frequency Deviation (kHz)	Audio Output S / N	R.F. Input D / U
± 75	$20: 1$	$10: 1$
50	$10: 1$	$10: 1$
25	$7.5: 1$	
10	$6: 1$	$10: 1$

An approximate mathematical analysis (see Appendix B) as well as additional measurements generally showed that:

- $S / N \approx D / U$ when the modulating frequency deviation is less than the receiver audio cut-off frequency
- $S / N \approx(D / U)$. (frequency deviation/cut-off frequency) when the frequency deviation is larger than the receiver audio cut-off frequency. The value of S / N is practically unaffected by the value of the modulating frequency.

Let us now assume that each of the two adjacent antenna tracks is fed with a carrier of equal amplitude and frequency. It is evident from the above that D / U then represents the required attenuation factor for a given value of S / N. Since the required value of S / N should amount to at least $100(40 \mathrm{db})$ in the present system, the minimum attenuation should be
equal to this number. Unfortunately, this amount is difficult to achieve for two adjacent tracks.

Thus it was decided to avoid using identical carrier frequencies on adjacent tracks. This is easily accomplished by selecting odd-numbered carrier frequencies for one level or tracks and even-numbered carriers for adjacent levels or tracks. An example of carrier allocations is shown in Table 3-4. With this method of channel separation it was found experimentally with the Model 149 receiver that the undesired carrier amplitude (modulated with $\pm 100 \mathrm{kHz}$ frequency deviation) need be only 6 db below the desired carrier amplitude in order to eliminate crosstalk. Twenty-one db is the least signa? difference we have ever measured between adjacent tracks, with the preferred antenna design, thus adequate signal separation is easily achieved. (See Appendix I.)

3.2.3 The Superheterodyne Receiver

Referring to Figure 3-2, the operation is as follows. Consider a single channel carrier at frequency $f \pm \Delta f$, where f is the center frequency and Δf is the frequency deviation. After mixing this carrier with $\mathrm{f}+10 \mathrm{MHz}$ at MIX 1 and bandpass filtering with BP2, the difference frequency $\mp f+10 \mathrm{MHz}$ results. The frequency $f+10 \mathrm{MHz}$ is a multiple of the 0.2 MHz reference clock. Its value is determined by the frequency division ratio N of a digital counter which forms part of a phase-locked loop. The remaining part of this loop consists of a frequency/phase detector FPD, a lowpass filter LP1, and a voltage - controlled oscillator vCO.

After limiting the amplitude of the output of BP2 at LIM, the signal is mixed with 9.5 MHz at MIX2. The resulting difference frequency $\bar{\mp} \mathrm{f}+0.5 \mathrm{MHz}$ is then fed to a frequency detector FMD which will

TABLE 3-4. TYPICAL FREQUENCY ASSIGNMENTS FOR A FOUR-TRACK 102-CHANNEL SYSTEM

Carrier Number Track				
1	10.2 MHz		10.2 MHz	
2		10.4 MHz		10.4 MHz
3	10.6 MHz		10.6 MHz	
4	1	10.8 MHz		10.8 MHz
\dagger	1	1	1	
49	19.8 MHz	1	19.8 MHz	+
50		20.0 MHz		20.0 MHz
51	20.2 MHz		20.2 MHz	

Figure 3-2. Superheterodyne receiver block diagram.
be discussed in Section 3.2.5. In order to optimize the S / N ratio and to prevent overloading, an automatic gain control consisting of AGC and variable gain amplifier Al is required for each receiver.

3.2.3.1 Analysis

Although this type of receiver is fairly easy to implement, there are a number of items that need careful consideration. These are:

- Image frequency response
- Filter phase and amplitude response

The image frequency response can be reduced by a proper choice of the selectivity of bandpass filters BP1 (see Figure 1-1) and BP2 as well as the value of the intermediate frequency (assumed to be 10 MHz at the present). More work will be required to determine the optimal choice. In order to minimize nonlinear distortion of the frequency modulated signal, the pass band phase and amplitude resporise of $B P 1$ and $B P 2$ must also be considered. As shown in Appendix A, distortionless transmission requires a constant amplitude and linear phase response (constant group delay). Approximate expressions have been derived which relate third harmonic distortion to the following parameters (defined in the pass band):

- Number of amplitude ripples and ripple amplitude
- Number of phase (or group delay) ripples and ripple amplitude
- Frequency deviation
- Modulating frequency

As an example, consider a bandpass filter with a constant amplitude response and a 0.5 micro-second peak-to-peak group delay ripple amplitude. The ripple consists of a single period of a sinusoid. At modulating frequencies of 15 kHz and 30 kHz , the third harmonic distortions were found to be 1.5 percent and 3 percent, respectively.

3.2.4 The Tracking Phase-Locked Loop Receiver

Referring to Figure 3-3, this receiver essentially consists of three loops.

Loop 1 is a phase-locked loop and consists of voltage-controlled oscillator VCO1, analog phase detector PD1 and lowpass filter LP1. It's purpose is to obtain a digital signal at the output of VCO1 whose instantaneous frequency ($f \pm \Delta f$) is equal to that of the selected channel frequency.

The selection of this frequency is accomplished by loop 2 which consists of VCO1, digital frequency dividers $\div 32$ and $\div N$, digital frequency detector FD, and lowpass filters LP1 and LP2. As shown in Table 3-5, this loop has nonlinear characteristics, i.e., whenever the frequency of VCO1 is withir a 0.2 NHz frequency band centered about the selected channel frequency f_{0}, it is uncontrolled by loop 2. Control is then taken over by loop i.

TABLE 3-5. FREUUENCY DETECTOR CHARACTERISTICS

VCO1 Frequency f (MHz)	FD Output Voltage	FD Output Impedance
$f<\left(f_{0}-0.1\right)$	Low	Low
$\left(f_{0}-0.1\right)<f<\left(f_{0}+0.1\right)$	X	High
$\left(f_{0}+0.1\right)<f$	High	Low

Further details of loop 2 are given in Appendix D.

Figure 3-3. Phase-lock loop receiver block diagram.

Phase-locked loop 3 serves the purpose of generating frequency f 0.5 MHz . It consists of $\mathrm{VCO2}$, digital divider $\div(2 \mathrm{~N}-5)$, digital frequency/phase detector FPD and lowpass filter LP3.

By subtracting the frequency at the output of VCO2 from that at the output of VCO1 by means of digital mixer MIX 2, there results the frequency $\pm \Delta f+0.5 \mathrm{MHz}$, where Δf is the frequency deviation of the modulating signal. Next, this signal is sent to frequency detector FMD which will be discussed in Section 3.2.5.

Since the closed-loop bandwidth of $\operatorname{loop} 1(D C-50 \mathrm{kHz})$ is proportional to the carrier input level of PD 1, it is essential that automatic gain control is included. This part of the receiver consists of phase shifter PS, analog phase detector PD2, gain control circuitry AGC, and variable gain amplifier Al.

Finally, voltage level detector LD1 is included in order to sense the presence of a valid carrier.

3.2.4.1 Test Data

Tentative test data has been obtained by subjecting the receiver to a frequency comb spectrum. Spectrum details and its generation are discussed in Appendix E. The receiver was tuned to either 15.4 MHz or 15.8 MHz . Each carrier was independently modulated by a sine wave and a square wave, respectively. The peak voltage signal-to-noise ratio for either channel amounted to 32 db . It is believed that the S / N ratio can be improved to at least 40 db by applying better lowpass filtering at the audio output.

3.2.5 FM Detector

The frequency detector shown in Figure 3-4 forms part of the dynamic strain receiver. It is indicated by FMD in Figures 3-2 and 3-3. The operation is as follows.

Figure 3-4. FM detector (FMD) block diagram.

A frequency modulated 0.5 MHz carrier enters monostable multivibrator $O S$ and is converted to a pulse train of constant pulse width. After passing through switching precision current source CS and lowpass filter LP 4, the average value thus obtained is proportional to the frequency deviation Δf. The composite output signal, consists of both the strain data ($20 \mathrm{~Hz}-40 \mathrm{kHz}$) and a 40 kHz self-test signal. Strain data and the self-test signal are separated by lowpass filter LP5 (20 kHz cut-off frequency) and by bandpass filter BP3 (40 kHz center frequency), respectively.

In order to avoid the need for tuning, a commutating-type filter has been chosen for BP3. This way, its center frequency is governed by the 0.16 MHz reference clock.

Finally, level detector LD2 provides a digital output indicating the presence of the self-test signal.

Receiver schematics are shown in Appendix K.

CONCLUSION

Analysis and testing or the critical aspects of this phase-locked te lemetry system concept have proven it to be well suited to the rotary instrumentation application. No basic system problems have arisen and testing has demonstrated performance in excess of all minimum requirements.

Phase II of the program is scheduled to result in completion of the detailed system design and fabrication and testing of a small protyotype system.

APPENDIX A

FM DISTORTION BY TRANSMISSION NETWORKS

It is well known (Reference 1) that when a frequency modulated carrier is passed through a ilnear bandpass filter harmonic distortion will result due to:

- Rejection of sidebands outside the passband
- Amplitude and phase variations within the passband

Since the first item has already been discussed in Section 3.2.2 we restrict our attention in this Appendix to the latter item.

Let the filter differential equation

be given by

$$
\begin{equation*}
v_{2}(t)=f(p) v_{1}(t) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
F(p)=\sum_{i=0}^{\infty} a_{i} p^{i}, p \equiv \frac{d}{d t}, p^{(n)} \equiv \frac{d^{n}}{d t^{n}} \tag{2}
\end{equation*}
$$

It should be noted that when p is replaced by $j \omega, F(j \omega)$ becomes the complex transfer function.

Furthermore, let

$$
\begin{equation*}
v_{2}(t)=v_{2}(t) e^{j \theta_{2}}, v_{1}(t)=e^{j \theta_{1}} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \theta_{1}(t)=\omega_{c} t+\int \omega_{d}(t) d t \\
& \vartheta_{1}^{(1)}(t)=p \theta_{1}=\omega_{1}(t)=\omega_{c}+\omega_{d}(t), \theta_{2}^{(1)}=\omega_{2}(t) \tag{4}
\end{align*}
$$

and
$\omega_{2}(t)=$ instantaneous output carrier frequency ($\mathrm{rad} / \mathrm{sec}$)
$\omega_{1}(t)=$ instantaneous input carrier frequency ($\mathrm{rad} / \mathrm{sec}$)
$\omega_{d}(t)=$ instantaneous input frequency deviation (rad/sec)
$\omega_{\mathrm{C}}=$ constant carrier center frequency ($\mathrm{rad} / \mathrm{sec}$)
In order to proceed we require the following relation:

$$
\begin{equation*}
F(p) e^{f(t)}=e^{f(t)} F(p+\dot{f}), \dot{f}=p f=\frac{d f}{d t} \tag{5}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& p^{0} e^{f(t)}=e^{f(t)}=e^{f(t)}(p+\dot{f})^{0}, \text { Since }(p+\dot{f})^{0}=1 \\
& p^{1} e^{f(t)}=\dot{f} e^{f(t)}=e^{f(t)}(p+\dot{f}), \text { Since } p \text { operates on zero } \\
& p^{2} e^{f(t)}=\left(\ddot{f}+\dot{f}^{2}\right) e^{f(t)}=e^{f(t)}[p(p+\dot{f})+\dot{f}(p+\dot{f})]=e^{f(t)}(p+\dot{f})^{2} \\
& p^{n} e^{f(t)}=e^{f(t)}(p+\dot{f})^{n}
\end{aligned}
$$

thence,

$$
F(p) e^{f(t)}=\sum_{i=0}^{n} a_{i} p^{i} e^{f(t)}=e^{f(t)} \sum_{i=0}^{\infty} a_{i}(p+\dot{f})^{i}=e^{f(t)} F(p+\dot{f}) \text { QED }
$$

From (1), (3) and (5) we then have

$$
v_{2}(t) e^{j \theta_{2}}=F(p) e^{j\left(\omega_{c} t+\int \omega_{d} d t\right)}
$$

8

$$
=e^{j \omega_{c} t} F\left(p+j \omega_{c}\right) e^{j \int \omega_{d} d t}
$$

t.

$$
\begin{align*}
& =e^{j \omega_{c} t} \sum_{n=0}^{n} n!\left[\frac{d^{n} F(j \omega)}{(d j \omega)^{n}}\right]_{\omega_{c}} p^{n} e^{j \int \omega_{d} d t} \\
& \left.=e^{j\left(\omega_{c} t\right.}+\int \omega_{d} d t\right) \bigcup_{n=0}^{\infty} \frac{1}{n!} F^{(n)}\left(j \omega_{c}\right)\left(p+j \omega_{d}\right)^{n} \tag{6}
\end{align*}
$$

Hence

$$
\begin{align*}
& \begin{aligned}
& v_{2}(t) e^{j v_{2}}=e^{j\left(\omega_{c} t+\int u_{d} d t\right)} F\left(p+j \omega_{d}\right) \\
&=\left|F\left(p+j \omega_{d}\right)\right| e^{j\left(\omega_{c} t+\int \omega_{d} d t+\phi\right)} \\
& V_{2}(t)=\left|F\left(p+j \omega_{d}\right)\right| \\
& \phi\left(\omega_{d}\right)=\tan ^{-1} \frac{\operatorname{Im} F\left(p+j \omega_{d}\right)}{\operatorname{Re} F\left(p+j \omega_{d}\right)}
\end{aligned},
\end{align*}
$$

From (2), (6) and (8) we also have
$\phi\left(\omega_{d}\right)=\tan ^{-1} \frac{\operatorname{Im} \sum_{i=0}^{\infty} a_{i}\left(p+j \omega_{d}\right)^{i}}{\operatorname{Re} \sum_{i=0}^{\infty} a_{i}\left(p+j \omega_{d}\right)^{i}}$
$a_{n}=\frac{1}{n!}\left[\frac{d^{n} F(j \omega)}{(d j \omega)^{n}}\right]_{\omega_{c}}=\frac{1}{n!}\left[\frac{d^{n} F\left(j \omega_{d}\right)}{\left(d j \omega_{d}\right)^{n}}\right]_{\omega_{d}}=0$
Evaluating $\left(p+j \omega_{d}\right)^{n}$ in (9) we have
$\left(p+j \omega_{d}\right)^{0}=1$
$\left(p+j \omega_{d}\right)^{l}=j \omega_{d}$
$\left(p+j \omega_{d}\right)^{2}=-\omega_{d}^{2}+j \omega_{d}(1)$
$\left(p+j \omega_{d}\right)^{3}=-3 \omega_{d} \omega_{d}^{(1)}+j\left(\omega_{d}^{(2)}-\omega_{d}^{3}\right)$
$\left(p+j \omega_{d}\right)^{4}=\left(\omega_{d}{ }^{4}-3 \omega_{d}(1) 2-4 \omega_{d} \omega_{d}^{(2)}\right)+j\left(\omega_{d}(3)-6 \omega_{d}{ }^{2} \omega_{d}(1)\right)$

Evaluation of a_{i}
Let
$F\left(j \omega_{d}\right)=K\left(\omega_{d}\right) e^{j \phi\left(\omega_{d}\right)}=e^{\ln K+j \phi}$
then from (10) and using (5) we have
$n \cdot a_{n}=\left[\frac{d^{n} F\left(j \omega_{d}\right)}{\left(d j \omega_{d}\right)^{n}}\right]_{\omega_{d}}=0$
$=\left\{e^{\ln K+j \phi}\left[\frac{d}{d j \omega_{d}}-j \frac{d K / d \omega_{d}}{K}+\frac{d \phi}{d \omega_{d}}\right]^{n}\right\}_{\omega_{d}=0}$
$n!a_{n}=F(0)\left[T-j \frac{d}{d \omega_{d}}\right]_{\omega_{d}}^{n}=0$
where
$T\left(\omega_{d}\right)=T_{\phi}-j T_{k}$
$T_{\phi}\left(\omega_{d}\right)=\frac{d \phi}{d \omega_{d}}=$ group delay time due to phase,
$T_{K}\left(\omega_{d}\right)=\frac{d K / d \omega_{d}}{K\left(\omega_{d}\right)}=$ group delay time due to gain

Now iet (See Figures $A-1$ to $A-3$)
$K\left(\omega_{d}\right)=1+a \cos \left(\omega_{d} \tau_{K}\right)$
$\phi\left(\omega_{d}\right)=\omega_{d} \tau_{0}+b \sin \left(\omega_{d} \tau_{\phi}\right)$,

Figure A-1. Gain $K(\omega)$.

Figure $A-2 . \quad$ Phase $\phi(\omega)$.

Figure $A-3$. Phase group delay time $T_{\phi}(\omega)$.
where

$$
\begin{aligned}
& \tau_{K}=2 m \pi / \omega_{b}=\text { ripple period of } K\left(\omega_{d}\right) \\
& \tau_{0}=\text { constant part of } T_{\phi}\left(\omega_{d}\right) \\
& \tau_{\phi}=2 n \pi / \omega_{b}=\text { ripple period of } \phi\left(\omega_{d}\right) \\
& a=\text { ripple amplitude of } K\left(\omega_{d}\right) \\
& b=\text { ripple amplitude of } \phi\left(\omega_{d}\right) \\
& b \tau_{\phi}=\text { ripple amplitude of } T_{\phi}\left(\omega_{d}\right) \\
& m=\text { number of ripple periods per } \omega_{b} \text { for } K\left(\omega_{d}\right) \\
& n=\text { number of ripple periods per } \omega_{b} \text { for } \phi\left(\omega_{d}\right) \\
& \omega_{b}=\text { half bandwidth (rad/sec) }
\end{aligned}
$$

Noting that

$$
F(0)=\left\{\left[1+a \cos \left(\omega_{d} \tau_{K}\right)\right] e^{j\left[\omega_{d} \tau_{0}+b \sin \left(\omega_{d} \tau_{\phi}\right)\right]}\right\}_{\omega_{d}=0} \approx 1
$$

we have from (13),
$a_{0}=1$

$$
a_{1}=T(0)
$$

$2!a_{2}=T^{2}-j T^{(1)}$
$3!a_{3}=T^{3}-3 j T T^{(1)}-T^{(2)}$
$4!a_{4}=T^{4}-6 j T^{2} T^{(1)}-4 T T^{(2)}-3 T^{(3) 2}+j T^{(3)}$

Since the term $\omega_{d} \tau_{0}$ merely delays the waveform and causes no distortion, we shall set $\tau_{0}=0$ in (16).

From (14) and (15) - (16) we then have
$T(0)=b \tau_{\phi}$
$T^{(1)}(0)=\operatorname{ja\tau }_{K}{ }^{2}$
$T^{(2)}(0)=-b \tau_{\phi}^{3}$
$T^{(3)}(0)=-j a \tau_{K}{ }^{4}$

Entering (18) into (17) then yields

$$
a_{0}=1
$$

$a_{1}=b \tau_{\phi}$

2: $a_{2}=\left(b \tau_{\phi}\right)^{2}+a \tau_{k}{ }^{2}$

3! $a_{3}=\left(b \tau_{\phi}\right)^{3}+3 a b \tau_{k}{ }^{2} \tau_{\phi}+b \tau_{\phi}{ }^{3}$

4: $a_{4}=\left(b \tau_{\phi}\right)^{4}+6 a b^{2} \tau_{K}{ }^{2} \tau_{\phi}{ }^{2}+4 b^{2} \tau_{\phi}{ }^{4}+3 a^{2} \tau_{K}{ }^{4}+a \tau_{K}{ }^{4}$
In view of (9) and (11) the phase is given by
$\phi\left(\omega_{d}\right)=\tan ^{-1} \frac{a_{1} \omega_{d}+a_{2} \omega_{d}^{(1)}+a_{3}\left(\omega_{d}{ }^{(2)}-\omega_{d}^{3}\right)+a_{4}\left(\omega_{d}^{(3)}-6 \omega_{d}{ }^{2} \omega_{d}^{(1)}\right)}{1-a_{2} \omega_{d}{ }^{2}-3 a_{3} \omega_{d} \omega_{d}^{(1)}-a_{4}\left(4 \omega_{d} \omega_{d}{ }^{(2)}+3 \omega_{d}^{(1) 2}-\omega_{d}{ }^{4}\right)}$
In order to get an ided of the magnitude of the terms in (20) let for the time being $\mathrm{a}=0 \mathrm{in}$ (18)
and
$\omega_{d}=\omega_{a} f(\Omega t)$
$\omega_{d}(1)=\frac{d \omega_{d}}{d t}=\omega_{d} \Omega \frac{d f(\Omega t)}{d(\Omega t)}=\omega_{d} \Omega f(1)$
$\omega_{d}^{(n)}=\omega_{a} \Omega^{n} f^{(n)}$
Let us also define the peak-to-peak group delay time variation (See Figure A-3) as
$T_{0}=2 b \tau_{\phi}$

Then with $\mathrm{a}=0$ Eqs (19) become

$$
\begin{align*}
& a_{0}=1 \\
& a_{1}=T_{0} \\
& a_{2}=\frac{1}{8} T_{0}^{2} \\
& a_{3}=\frac{1}{48}\left(1+\frac{1}{b^{2}}\right) T_{0}^{3} \\
& a_{4}=\frac{1}{384}\left(1+\frac{4}{b^{2}}\right) T_{0}^{4} \tag{22}
\end{align*}
$$

Assuming 5% error, the denominator of (20) may be set equal to unity provided
$0.05 \geq a_{2} \omega_{d}{ }^{2}=\frac{T_{0}^{2}}{8} \omega_{a}{ }^{2}$, or

$$
\begin{equation*}
0.63 \geq \mathrm{T}_{0} \omega_{a} \tag{23}
\end{equation*}
$$

Considering the numerator of (20) we retain only the first term and the largest term generating a third harmonic, i.e., (20) becomes
$\phi\left(\omega_{d}\right) \approx \tan ^{-1}\left[a_{1} \omega_{d}-a_{3} \omega_{d}^{3}\right]$
$\frac{d \phi}{d t} \approx a_{1} \omega_{d}(1)-3 a_{3} \omega_{d}^{2} \omega_{d}(1)$

$$
\approx T_{0} \omega_{a} \Omega f^{(1)}-\frac{1}{16}\left(1+\frac{1}{b^{2}}\right) T_{0}^{3} \omega_{a}^{3}{ }_{\Omega \Omega} f^{2}(1)
$$

Letting

l

$$
f(\Omega t)=\sin \Omega t
$$

$$
f^{(1)}(\Omega t)=\cos \Omega t
$$

$$
f^{2} f^{(1)}=\left(\frac{1}{2}-\frac{1}{2} \cos 2 \Omega t\right) \cos \Omega t=\frac{1}{4} \cos \Omega t-\frac{1}{4} \cos 3 \Omega t
$$

$$
\frac{d \phi}{d t}=T_{0} \omega_{a} \Omega\left[1-\frac{T_{0}^{2} \omega_{a}^{2}}{64}\left(1+\frac{1}{b^{2}}\right)\right] \cos \Omega t+
$$

$$
\begin{equation*}
+\frac{T_{0}^{3} \omega_{a}^{3} \Omega}{64}\left(1+\frac{1}{b^{2}}\right) \cos 3 \Omega t \tag{24}
\end{equation*}
$$

Hence from (6a) and (24) the total instantaneous frequency at the output of the network is
$\omega_{2}=\omega_{c}+\omega_{d}+\frac{d \phi}{d t}$

$$
\begin{align*}
=\omega_{c}+\omega_{a} \sin \Omega t & +T_{0} \omega_{a} \Omega\left[1-\frac{T_{0}^{2} \omega_{a}^{2}}{64}\left(1+\frac{1}{b^{2}}\right)\right] \cos \Omega t \\
& +\frac{T_{0}^{3} \omega_{a}^{3} \Omega}{64}\left(1+\frac{1}{b^{2}}\right) \cos 3 \Omega t \tag{25}
\end{align*}
$$

One observes that the third term on the right of (25) merely changes the phase of the modulating signal but does not contribute to distortion.

The third harmonic distortion factor is given by
$D_{3}=\frac{\text { factor of } \cos 3 \Omega t}{\text { factor of } \sin \Omega t}=\frac{T_{0}{ }^{3} \omega_{a}{ }^{2} \Omega}{64}\left(1+\frac{1}{b^{2}}\right)$
$\frac{1}{b}=\frac{2 \tau_{\phi}}{T_{0}}=\frac{4 n \pi}{T_{0} \omega_{b}}$
$D_{3}=\frac{\left(T_{0} \omega_{a}\right)^{3}}{64} \frac{\Omega}{\omega_{a}}\left[1+160\left(\frac{\omega_{a}}{\omega_{b}}\right)^{2}\left(\frac{n}{T_{0} \omega_{a}}\right)^{2]}\right]$
T_{0} (sec) = peak-to-peak group delay variations
$\omega_{a}(\mathrm{rad} / \mathrm{sec})=$ frequency deviation
$\Omega(\mathrm{rad} / \mathrm{sec})=$ modulating frequency
$\omega_{b}(\mathrm{rad} / \mathrm{sec})=$ half bandwidth
$n \quad=$ number of ripple periods per half bandwidth

Since
$\frac{\omega_{\mathrm{a}}}{\omega_{\mathrm{b}}}=\frac{75 \mathrm{kHz}}{100 \mathrm{kHz}}=0.75$,
$T_{0}{ }^{\omega} \mathrm{a}=(0.5 \mu \mathrm{sec}) \times(2 \pi \times 75 \mathrm{kHz})=0.236$,
the second term inside the bracket of (26) is much larger than the first. Hence (26) may be simplified to

$$
\begin{equation*}
D_{3} \approx 2.5\left(T_{0} \omega_{a}\right)\left(\frac{\Omega}{\omega_{a}}\right)\left(\frac{\omega_{a}}{\omega_{b}}\right)^{2} n^{2} \tag{27}
\end{equation*}
$$

With
1

$$
\dot{i}
$$

$$
\mathrm{s}
$$

$$
\begin{aligned}
T_{0} & =0.5 \mu \mathrm{sec} \\
\omega_{\mathrm{a}} / 2 \pi & =75 \mathrm{kHz} \\
\omega_{\mathrm{b}} / 2 \pi & =100 \mathrm{kHz} \\
\Omega / 2 \pi & =30 \mathrm{kHz} \\
n & =\frac{1}{2}
\end{aligned}
$$

Figure A-4.
$\mathrm{D}_{3}=0.03$, or 3% third harmonic distortion assuming constant amplitude over the passband

When amplitude variations are included the third harmonic distortion is given by
$D_{3}=\frac{\left(T_{0} \omega_{a}\right)^{3}}{64}\left(\frac{\Omega}{\omega_{a}}\right)\left[1+\frac{160 n^{2}}{\left(T_{0} \omega_{a}\right)^{2}}\left(\frac{\omega_{a}}{\omega_{b}}\right)^{2}+\frac{480 a m^{2}}{\left(T_{0} \omega_{a}\right)^{2}}\left(\frac{\omega_{a}}{\omega_{b}}\right)^{2}\right]$

If $\left(T_{0} \omega_{\mathrm{a}}\right)$ is small, (28) reduces to
$D_{3} \approx\left(T_{0} \omega_{a}\right)^{2}\left(\frac{\Omega}{\omega_{a}}\right)\left(\frac{\omega_{a}}{\omega_{b}}\right)^{2}\left[2.5 n^{2}+3.75(2 a) m^{2}\right]$
where
$n=$ no. of phase ripple periods per half bandwidth ω_{b}
$m=$ no. of amplitude ripple periods per half bandwidth ω_{b}
$2 \mathrm{a}=$ peak-to-peak amplitude variation
$T_{0}=$ peak-to-peak group delay variation due to phase
$\Omega=$ modulation frequency ($\mathrm{rad} / \mathrm{sec}$)
$u_{b}=$ half bandwidth (rad/sec)
$\omega_{a}=$ freq. deviation (rad/sec)

Figure B-1
Referring to Figure B-1 the desired carrier $e_{c}(t)$ and the undersired carrier $e_{p}(t)$ enter a bandpass filter of bandwidth $2 \omega_{b}$. After limiting and linear frequency detection the audio signal enters a lowpass filter of cutoff frequency Ω_{v}. It is assumed that $\omega_{b}>\Omega_{v}$ and $\omega_{b} \approx\left(\Delta_{c}+\Omega_{c} \max \right)$ where $\Delta \omega_{c}$ is the frequency deviation (75 kHz) and Ω_{c} max is the maximum modulating frequency (30 kHz) of the desired carrier. See References 1, 2 and 3. 8-1 Adjacent-Channel Interference

Figure B-2.

Referring to Figure 8-2 let
$e_{c}=\cos v_{c}$
$\theta_{c}=\omega_{c} t+\beta_{c} \sin \Omega_{c} t$
$e_{p}=\rho_{p} \cos \theta_{p}$

$$
\begin{equation*}
\theta_{p}=\omega_{p} t+\beta_{p} \sin \Omega_{p} t+\phi_{p} \tag{2}
\end{equation*}
$$

where
$\omega_{c}=$ desired carrier frequency (rad/sec)
$\omega_{p}=$ undesired carrier frequency (rad/sec)
$\beta_{C}=\frac{\Delta \omega_{C}}{\delta_{C}}=$ modulation index of desired carrier
$B_{p}=\frac{\Delta \omega_{p}}{\Omega_{p}}=$ modulation index of undesired carrier
$\Delta \omega_{c}, \Delta \omega_{p}=$ frequency deviations (rad/sec)
$\Omega_{c}, \Omega_{p}=$ modulating frequencies (rad/sec)
$\phi_{p}=$ constant phase shift (radians)
Expanding $e_{p}(t)$ we have

$$
\begin{aligned}
e_{p}(t) & =\rho_{p} \cos \theta_{p} \\
& =\rho_{p} \operatorname{Re}\left\{e^{j\left(\omega_{p} t+\phi_{p}\right)} e^{j \beta_{p} \sin \Omega_{p} t}\right\} \\
& =\rho_{p} \operatorname{Re}\left\{e^{j\left(\omega_{p} t+\phi_{p}\right)} \cdot \sum_{-\infty}^{m} \cdot J_{m}\left(\beta_{p}\right) e^{j m \Omega_{p} t}\right\}
\end{aligned}
$$

$$
\begin{equation*}
{ }_{p} \sum_{\substack{m \\ m}}^{\cdots} J_{m 1}\left(\beta_{p}\right) \cos \left(\omega_{p} t+\cdots 1 m s_{p}+\psi_{p}\right) \tag{3}
\end{equation*}
$$

where $J_{m}\left(\beta_{p}\right)$ is a Bessel function of the first kind and order m. Adding
(3) and (1) the signal $e(t)$ entering the bandpass filter is

$$
\begin{align*}
& e(t)=e_{c}(t)+e_{p}(t) \\
& =\cos \theta_{c}(t)+\rho_{p} \cos \theta_{p} \\
& =\cos \theta_{c}+\rho_{p} \sum_{-\infty}^{\infty} \cdot J_{m}\left(\beta_{p}\right) \cos \left(\omega_{p} t+m \Omega_{p} t+\phi_{p}\right) \\
& =R e\left\{e^{j v_{c}}\left[1+\rho_{p} \sum_{-\frac{\infty}{m}}^{\infty} J_{m}\left(\beta_{p}\right) e^{j\left(\omega_{p} t+m \Omega_{p} t+\phi_{p}-\theta_{c}\right.}\right]\right\} \\
& =\left(1+A_{p}\right) \cos \theta_{c}-B_{p} \sin \theta_{c}, \tag{4}\\
& =r \cos \left(0_{c}+\phi\right), \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
A_{p} & =\rho_{p} \sum_{i n}^{\cdots} J_{m}\left(\beta_{p}\right) \cos \left[\left(\omega_{p}+m \Omega_{p}-\omega_{c}\right) t+\phi_{p}-\beta_{c} \sin \Omega_{c} t\right] \tag{5}\\
& =\rho_{p} \sum_{-i m}^{\infty} \cdot \sum_{-i n}^{\infty} J_{m}\left(\beta_{p}\right) J_{n}\left(\beta_{c}\right) \cos \left[\left(\omega_{p}+m \Omega_{p}-\omega_{c}-n \Omega_{c}\right) t+\phi_{p}\right] \tag{5a}\\
B_{p} & =\rho_{p} \sum_{-i m}^{\infty} J_{m}\left(\beta_{p}\right) \sin \left[\left(\omega_{p}+m \Omega_{p}-\omega_{c}\right) t+\phi_{p}-\beta_{c} \sin \Omega_{c} t\right] \tag{6}
\end{align*}
$$

$$
\begin{align*}
& =o_{p} \check{-i m}_{\infty}^{\sum_{-m}^{m}} \sum_{-m}^{\infty}\left(\sigma_{p}\right) J_{n}\left(B_{c}\right) \sin \left[\left(\omega_{p}+m s_{p}-\omega_{c}-n s s_{c}\right) t+\phi_{p}\right] \tag{6a}\\
r^{2} & =\left(1+A_{p}\right)^{2}+B_{p}^{2} \tag{7}\\
\phi & =\tan ^{-1} \frac{p}{1+A_{p}} \tag{8}
\end{align*}
$$

A possible expansion for ϕ is
$\psi=\frac{\left(1+A_{p}\right) B_{p}}{r^{2}}\left\{1+\frac{2}{3} \frac{B_{p}^{2}}{r^{2}}+\frac{2.4}{3.5} \frac{B_{p}^{4}}{r^{4}}+\ldots\right\}$
Assuming $\left|A_{p}\right|<1$ and $\left|B_{p}\right| / 1$ so that $r \approx 1$,
Eq. (8) reduces to

$$
\begin{equation*}
\phi=B_{p} \tag{9}
\end{equation*}
$$

Hence in view of (6a)
$\dot{\phi}=\dot{B}_{p}$
where
$\Delta \omega u=\omega_{p}-\omega_{c}=$ beat frequency (rad $/ \mathrm{sec}$)

Now let the bandpass filter be given by
$F(j \omega)=K(\omega) \quad e^{-j \phi(\omega)}$
where $\phi(\omega)$ is the nonlinear part of the phase shift (the linear part merely delays the signal undistorted).

Defining
$\omega_{m n}=\Delta \omega+m \Omega_{p}-n \Omega_{c}$
$K_{m n}=K\left(\omega_{m n}\right)$
$\phi_{m n}=\phi\left\langle\omega_{m n}\right\rangle$,

Eq. (10) should be modified to
$\dot{\phi}=\rho_{p} \sum_{-\infty}^{\infty} \sum_{m}^{\infty} \sum_{n}^{\infty} J_{m}\left(\beta_{p}\right) J_{n}\left(\beta_{c}\right) k_{m n} \omega_{m n} \cos \left[\omega_{m k} t+\phi_{p}-\phi_{m n}\right]$
Assuming a linear discriminator and an ideal audio lowpass filter with
cutoff frequency $\Omega_{v}(\mathrm{rad} / \mathrm{sec})$, the audio output is given by $v(t)=\dot{\theta}_{c}+\dot{\phi}-\omega_{c}$
$\approx \Delta \omega_{c} \cos \Omega_{c} t+\rho_{p} \sum_{m} \sum_{n} J_{m}\left(\beta_{p}\right) J_{n}\left(\beta_{c}\right) K_{m n} \omega_{m n} \cos \left[\omega_{m n} t+\phi_{p}-\phi_{m n}\right]$
where
$\Omega_{c}<\Omega_{v}=$ audio filter bandwidth ($\mathrm{rad} / \mathrm{sec}$)
$\Delta \omega_{c}<\omega_{b}=$ bandpass filter half bandwidth (rad/sec)
$-\Omega_{v} \leq \omega_{m n} \leq \Omega_{v}, \omega_{b}>\Omega_{v}$

Equivalent statements of (16a) are
$\left(\Delta \omega-\Omega_{v}\right) \leq\left(n \Omega_{c}-i n \Omega_{p}\right) \leq\left(\Delta \omega+\Omega_{v}\right)$
$\frac{\Delta \omega+m \Omega_{p}-\Omega_{v}}{\Omega_{c}} \leq n \leq \frac{\Delta \omega+m \Omega_{p}+s i_{v}}{\Omega_{c}}$
$\frac{n \Omega_{c}-\Delta \omega-\Omega_{v}}{\Omega_{p}} \leq m \leq \frac{n \Omega_{c}-\Delta u+\Omega_{v}}{\Omega_{p}}$

In what follows we shall assunic that
a) the desired carrier modulating frequency is very low so that

$$
\Omega_{c} \approx 0, \quad n \approx 0, \text { and }
$$

b) the undesired carrier e_{p} is modulated with Ω_{p}. Eqs. (16) and (16d) then reduce to
$v(t) \approx \Delta \omega_{c} \cos \Omega_{c} t+\rho_{p} \sum_{\text {ill }} J_{m}\left(\beta_{p}\right) K_{m} \omega_{m} \cos \left(\omega_{m} t+\phi_{p}-\phi_{m}\right)$,
where
$\therefore \quad K_{m}=K\left(\omega_{m}\right), \phi_{m}=\phi\left(\omega_{m}\right)$

$$
\begin{align*}
& \omega_{m}=\Delta \omega+m \Omega_{p} \tag{17a}\\
& \frac{-\Delta \omega-\Omega_{v}}{\Omega_{p}} \leq m \leq \frac{-\lambda_{(1)}+\Omega_{v}}{\Omega_{p}}
\end{align*}
$$

The RMS signal/noise ratio is given by
$S / N=\frac{\text { RMS value of } \Delta \omega_{c} \cos \Omega_{c} t}{\text { RMS value of } \dot{\phi}(t)}$

Using (17) we have

As an example let
$K_{m}=1$ (uniform gain in the pass band),
$\rho_{p}=1$ (equal carrier amplitudes),
$\Lambda \omega /(2 \pi)=0.4 \mathrm{MHz}$,
$\Delta \omega_{c} /(2 \pi)=\Delta \omega_{p} /(2 \pi)=75 \mathrm{kHz}$,
$\Omega_{v} /(2 \pi)=40 \mathrm{kHz}$,
$\Omega_{c} /(2 \pi)=0 \mathrm{~Hz}$,
and consider the following two cases.
Case I: $\Omega_{p} /(2 \pi)=20 \mathrm{~Hz}$
$\beta_{p}=\frac{\Delta \omega_{p}}{\Omega_{p}}=\frac{75000}{20}=3750$

From (17b), (19) and (20)
$\frac{-400-40}{0.02} \leq m \leq \frac{-400+40}{0.02}$
$-22000 \leq m \leq 18000$
From (18), (21) and (22),

$$
\begin{align*}
S / N & =\frac{75}{\left\{\sum_{m=18000}^{22000}\left[J_{m}(3750) \cdot 1 \cdot(400-m \times 0.02)\right]^{2}\right\}^{1 / 2}} \\
& =-\frac{75}{\left.\left\{\left[J_{18000}(3750) \times 40\right]^{2}+\cdots+\left[J_{22000}(3750) \times 40\right]^{2}\right\}\right\}^{1 / 2}} \tag{23}
\end{align*}
$$

Now, for m is large,
$J_{m}(m x) \approx \frac{x^{m} e^{m} \sqrt{1-x^{2}}}{\sqrt{2 \pi m}\left(1-x^{2}\right)^{1 / 4}\left[1+\sqrt{1-x^{2}}\right]^{m}}$
Since $m x=\beta_{p}, x=\frac{\beta_{p}}{m} \approx \frac{3750}{20000}=0.19$

Therefore, (24) reduces to

$$
\begin{align*}
& J_{m}(\operatorname{lix} x) \approx \frac{1}{\sqrt{2 \pi m}}\left(\frac{x e}{2}\right)^{m}, \text { or } \\
& J_{m}\left(\beta_{p}\right) \approx \frac{1}{\sqrt{2 \pi m}}\left(\frac{\beta_{p} e}{2 m}\right)^{m} \tag{25}
\end{align*}
$$

For $i_{p}=3750$ and $m=18000$,

$$
\begin{align*}
J_{m}\left(\beta_{p}\right) & =\frac{1}{\sqrt{2 \pi \times 18000}}\left(\frac{3750 \times 2.718}{18000}\right)^{18000} \\
& =\frac{(0.566)^{18000}}{\sqrt{2 \pi \times 18000}} \ll 1 \tag{26}
\end{align*}
$$

Hence values for m greater than 18000 need not be considered so that from (23) and (26)

$$
\begin{aligned}
\frac{S}{N} & \approx 1.9 \sqrt{2 \pi \times 18000} \cdot(1.765)^{18000} \\
& =640 \times(1.765)^{18000}
\end{aligned}
$$

$$
\begin{equation*}
\frac{S}{N} \gg 1000 \mathrm{~dB} \tag{27}
\end{equation*}
$$

Case 11: $\Omega_{p} /(2 \pi)=30 \mathrm{kHz}$
$\beta_{p}=\frac{A \omega_{p}}{-\frac{s}{2}}=\frac{75}{30}=2.5$

From (17b), (19) and (28)
$\frac{-400-40}{30} \leq m \leq \frac{-400+40}{30}$, or
$-14 \leq m \leq-12$

From (18) and (29),
$\frac{S}{N}=\frac{75}{\left\{\sum_{m=12}^{14}\left[J_{m}(2.5)(400-m \times 30)\right]^{2}\right\}^{1 / 2}}$
or

$$
\begin{equation*}
\frac{S}{N}=\frac{75}{\left\{\left[J_{12}(2.5) \times 40\right]^{2}+\left[J_{13}(2.5) \cdot 10\right]^{2}+\cdots+\left[J_{14}(2.5) \cdot 20\right]^{2}\right\}^{1 / 2}} \tag{30}
\end{equation*}
$$

In order to see if we can make the large order approx. we have

$$
\begin{align*}
J_{n}(x) & =\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(n+r)!}\left(\frac{x}{2}\right)^{n+2 r} \\
& =\frac{1}{n!}\left(\frac{x}{2}\right)^{n}-\frac{1}{(n+1)!}\left(\frac{x}{2}\right)^{n+2}+\cdots \tag{31}
\end{align*}
$$

The ratio of the second and first terms is
$y=\frac{x^{2}}{4(n+1)}=\frac{6.25}{4(12+1)}=\frac{6.25}{52}<0.2$.

We can therefore keep only the first term.

Using Stirling's approx., we have for large n,
$n:=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ (which is already 1.5 percent accurate for $n=4$)
1
so that (31) becomes
$J_{n}(x)=\frac{1}{\sqrt{2 \pi n}}\left(\frac{x e}{2 n}\right)^{n}$
which is the usual approx. of $J_{n}(x)$ for large n.
Hence
$J_{12}(2.5)=\frac{1}{\sqrt{24 \pi}}\left(\frac{2.5 \times 2.718}{24}\right)^{12}=\frac{1}{\sqrt{24 \pi(3.54)^{12}}}$
Referring to (30) and (33) orders larger than 12 may be omitted
so that (30) becomes
$\frac{S}{N}=16.5 \times(3.54)^{12}$, or

$$
\begin{equation*}
\frac{S}{N}=146 \mathrm{~dB} \tag{34}
\end{equation*}
$$

We conclude that adjacent channel interference may be neglected.

B-2 Bandpass Filter Selectivity

In what follows we consider the approximate attenuation the bandpass filter should have at ω_{p} (see Figure B-2). Neglecting the sidebands of the interfering carrier, it follows from (17) that the discriminator output is given by

$$
\begin{equation*}
v(t)=\Delta \omega_{c} \cos \delta_{c} t+J_{0}\left(\beta_{p}\right) K_{0} \Delta \omega \cos \left(\Delta \omega t+\phi_{p}-\phi_{0}\right) \tag{35}
\end{equation*}
$$

where we have set $\rho_{p}=1$ and where
$K_{0}=$ Bandpass attenuation factor at ω_{p}.

The maximum value of $v(t)$ will occur when
$\beta_{p}=0$ (i.e., e_{p} unmodulated), $t=0$ and $\phi_{p}-\phi_{0}=0$,
i.e.,
$v_{\text {max }}=\Delta \omega_{c}+K_{0} \Delta \omega$

Figure B-3

Since most discriminators saiturate beyond $\omega_{c} \pm \omega_{b}$ as shown in Figure B-3
it is in view of (36) essential that $\left|K_{0} \Delta \omega\right| \leq 0.01\left|\Delta \omega_{c}\right|$, i.e.,
$K_{0}=0.01 \frac{\Delta \omega_{C}}{\Delta \omega}=\frac{0.01 \times 75 \mathrm{kHz}}{400 \mathrm{kHz}} \sim-50 \mathrm{~dB}$

3-3 Common-Channel Interference

The S / N ratio as given by Equation (18) can also be used in this case provided $\rho_{p} \ll 1$. But because ρ_{p} can be near unity a different derivation must be considered. Also, we are presently more interested in the capture ratio than in the S / N ratio. Hence Equation (18) will no longer be considered.

B-3.1 Desired Channel Modulated

Let us again have (See Figure B-1)
$e(t)=e_{c}(t)+e_{p}(t)$

$$
\begin{equation*}
=\cos \theta_{c}+\rho_{p} \cos \theta_{p}, \tag{38}
\end{equation*}
$$

where
$\rho_{p}=$ amplitude of undesired carrier
$\theta_{c}=\omega_{c} t+\beta_{c} \sin \Omega_{c} t$
$\theta_{p}=\omega_{p} t+\phi_{p}$
$\omega_{c}=$ desired carrier freq. (rad/sec)
$\omega_{p}=$ undesired carrier freq. (rad/sec)
$\phi_{p}=$ constant phase shift (rads)
$\beta_{c}=\frac{{ }^{\omega} \omega_{c}}{\Omega_{c}}=$ modulation index
$\Delta \omega_{c}=$ freq. deviation (rad/sec)
$\Omega_{c}=$ modulating freq. $(\mathrm{rad} / \mathrm{sec})$

From (38) we have

$$
\begin{align*}
e(t) & =\operatorname{Re} e^{j \theta_{c}}\left[1+\rho_{p} e^{j\left(\theta_{p}-\theta_{c}\right)}\right] \\
& =\operatorname{Re} e^{j \theta_{c}}\left\{\left[1+\rho_{p} \cos \left(\theta_{p}-\theta_{c}\right)\right]+j\left[\rho_{p} \sin \left(\theta_{p}-\theta_{c}\right)\right]\right\} \\
& =\left[1+\rho_{p} \cos \left(\theta_{p}-\theta_{c}\right)\right] \cos \theta_{c}-\left[\rho_{p} \sin \left(\theta_{p}-\theta_{c}\right)\right] \sin \theta_{c} \tag{40}\\
& =r \cos \phi \cos \theta_{c}-r \sin \phi \sin \theta_{c} \tag{40a}\\
& =r \cos \left(\theta_{c}+\phi\right) \tag{40b}
\end{align*}
$$

where
$\theta_{p}-\theta_{c}=\Delta \omega t+\phi_{p}-\beta_{c} \sin \Omega_{c} t$
$\Delta \omega=\omega_{p}-\omega_{c}$
$r=\left[1+2 \rho_{p} \cos \left(\theta_{p}-\theta_{c}\right)+\rho_{p}^{2}\right]^{1 / 2}$
$\phi=\tan ^{-1} \frac{\rho_{p} \sin \left(\theta_{p}-\theta_{c}\right)}{1+\rho_{p} \cos \left(\theta_{p}-\theta_{c}\right)}$
Using a perfect limiter, the discriminator output is given by

$$
\begin{align*}
v_{1}(t) & =\dot{\theta}_{c}+\dot{\phi}-\omega_{c} \\
& =\Delta \omega_{c} \cos \omega_{c} t+\left(\Delta \omega-\Delta \omega_{c} \cos \Omega_{c} t\right) \frac{\rho_{p} \cos \left(\theta_{p}-\theta_{c}\right)+\rho_{p}^{2}}{1+2 \rho_{p} \cos \left(\theta_{p}-\theta_{c}\right)+\rho_{p}^{2}} \tag{44}
\end{align*}
$$

In what follows we shall assume that
$\Delta \omega=\omega_{p}-\omega_{c}=0, \phi_{p}=0$

Hence (42) and (44) become
$r=\left[1+2 \rho_{p} \cos \left(\beta_{c} \sin \Omega_{c} t\right)+\rho_{p}^{2}\right]$,
$v_{p}(t)=\Delta w_{c} \cos \Omega_{c} t-\Delta \omega_{c} \cos \Omega_{c} t \cdot \dot{f}_{y}(t)$,
b.
where
$f_{1}(t)=\frac{\rho_{p} \cos \left(\beta_{c} \sin \Omega_{c} t\right)+\rho_{p}^{2}}{1+2 \rho_{p} \cos \left(\beta_{c} \sin \Omega_{c} t\right)+\rho_{p}{ }^{2}}$

Let us first consider the carrier envelope r.

From (45) we have
$r_{\text {max }}=1+\rho_{p}$
$r_{\min }=1-p_{p}$
For $P_{p}=0.95$, the limiter should be capable of covering a dynamic range of at least $\frac{r_{\max }}{r_{\min }}=\frac{1+\rho_{p}}{1-\rho_{p}}=40$, or 32 dB .

A plot of r vs. $\Omega_{c} t$ (Eq. 45) has been given by Corrington (Reference 2) in

Figure $B-4$ for $\beta_{C}=10$ and several values of ρ_{p}.

Figure B-4.
Let us next consider (46a) and (46b). Values of $v(t)$ vs. $\Omega_{c} t$ for $\rho_{p}=0.5$ and several values of ε_{C} are aiso given by Corrington in Figures $B-5$ and B-6. Now suppose that the waveform of Figure B-6 is passed through a lowpass filter which passes Ω_{c} but rejects the indicated high frequency waveform. It will then be found that the output of the lowpass filter anounts to

$$
v(t)=\Delta \omega_{c} \cos \omega_{c} t+\Delta \omega_{c} f f_{a v g} \cos \omega_{c} t=\Delta \omega_{c} \cos \omega_{c} t
$$

because it has beer, shown by Corririgton that
$f_{1 \text { avg }}=\frac{1}{\pi} \int_{0}^{\pi} f_{1}(\theta) d \theta=0$ for $\rho_{p} \leqslant 1$.

It may further be found that
$\left|f^{\max }\right|=\frac{\rho_{p}}{1-\rho_{p}}$,
$\left|\rho_{1 \min }\right|=\frac{\rho_{p}}{1+\mu_{p}}$,

Figure B-5

Figure B-6.

Therefore, the maximum and minimum values of the envelopes in
Figure B-6 are
$\left|v_{\operatorname{lmax}}\right|=\left|\Delta \omega_{c}\left(1+\frac{\rho_{p}}{1-\rho_{p}}\right)\right|=\Delta \omega_{c} \frac{1}{1-\rho_{p}}$,
$\left|v_{\operatorname{lmin}}\right|=\left|\Delta \omega_{c}\left(1-\frac{\rho_{p}}{1+\rho_{p}}\right)\right|=\Delta \omega_{c} \frac{1}{1+\rho_{p}}$,
Let us now suppose that the bandwidth of the bandpass filter is sufficiently large so that $v_{p}(t)$ is passed without distortion but that the discriminator saturates beyond $\pm \omega_{1}$ as shown in Figures B-6 and B-7.

Figure B-7.

It is evident that when
$\Delta \omega_{c}<\omega_{p}<\frac{\Delta \omega_{c}}{1-\rho_{p}}$
a portion of the high frequency waveform is clipped and (47) no longer holds, i.e., a reduction of the average amplitude of $\cos \Omega_{c} t$ results. In order to obtain an approximate expression for the amplitude reduction we make two assumptions:
q. of the superimposed frequency,
b) replace the superimposed waveform by a waveform which is square below the axis and triangular above the axis (see Figure B-7) and which has zero average value, i.e.,
f_{1} avg $=-\frac{1+\rho_{p}}{3-\rho_{p}} \frac{\rho_{p}}{1+\rho_{p}}+\frac{2\left(1-\rho_{p}\right)}{2\left(3-\rho_{p}\right)} \frac{\rho_{p}}{1-\rho_{p}}=0$
for
$\omega_{1} \geq \frac{\Delta \omega_{c}}{1-\rho_{p}}$

Now when

$$
\begin{equation*}
\Delta \omega_{c} \leq \omega_{1} \leq \frac{\Delta \omega_{c}}{1-\rho_{p}} \tag{53a}
\end{equation*}
$$

it may be found that

$$
\begin{equation*}
f_{a v g}=-\frac{\left[1-\left(1-\rho_{p}\right) \frac{\omega_{1}}{\Delta \omega_{c}}\right]^{2}}{\rho_{p}\left(3-\rho_{p}\right)} \tag{53b}
\end{equation*}
$$

After lowpass filtering the audiv ,utput is thus given by
$v(t)=\Delta \omega_{c}\left[1+f_{a v g}\right] \cos \Omega_{c} t$

Let us now define the capture ratio R as follows.
$R(d B)=$ (Desired Carrier Amplitude)/(Undesired Carrier Amplitude at which the frequency deviation amplitude $\Delta \omega_{c}$ reduces by $K \mathrm{~d} B$)

Hence,
$R=20 \log \left(\frac{1}{\rho_{p}}\right)$
$K=20 \log \frac{\Delta \omega_{c}}{\Delta \omega_{c}\left[1+f_{a v g}\right]}=-20 \log \left[1+f_{a v g}\right]$
where $f_{a v g}$ is given by (53b).
Hence from a knowledge of R and K, ω, can be approximately determined.
So far it has been assumed that the bandpass filter has a large bandwidth.
Unfortunately the calculation of the response due to the waveform in
Figuire B-7 is a complicated affair. We can say at best that if the frequency of this waveform is relatively low, a quasi-static approximation may be used. In this case Figure B-7 may also be used except that ω_{p} is replaced by ω_{b}, where ${ }^{\prime} \mathrm{b}$ is the half bandwidth of the IF filter.

It is evident that if $\omega_{b}<\omega_{1}, \omega_{1}$ should be replaced by is in Figure B-7 and Equations (53b) and (55). We conclude this section by stating that small capture ratios can be achieved by having:
a) large IF bandwidth with uniform ampiitude and linear phase response, and
b) large discriminator bandwidth with good linearity.

B-3.2 Undesired Channel Modulated
Instead of (39a) and (39b) we set
$\theta_{c}=\omega_{c}{ }^{t}$
$\theta_{p}=\omega_{c} t+\beta_{p} \sin \Omega_{p} t+\phi_{p}$
We now find a Fourier expansion for (43) as follows.

Comparing (40) and (40a) we have
$1+\rho_{p} \cos \left(\theta_{p}-\theta_{c}\right)=r \cos \phi$

$$
\begin{equation*}
\rho_{p} \sin \left(\theta_{p}-\theta_{c}\right)=r \sin \phi \tag{58}
\end{equation*}
$$

Multiplying (58) by $j=\sqrt{-1}$ and adding the result to (57) yields
$1+o_{p} e^{j\left(\theta_{p}-\theta_{c}\right)}=r e^{j \phi}$,
or
$\ln \left[1+\rho_{p} e^{j\left(\theta_{p}-\theta_{c}\right)}\right]=\ln r+j \phi$
Since
$\ln (1+x)=-\sum_{k=1}^{\infty} \frac{(-x)^{k}}{k},-1<x \leq 1$,
we have from (59) and by equating the imaginary parts,
$\phi=-\sum_{k=1}^{\infty} \frac{\left(-\rho_{p}\right)^{k}}{k} \sin k\left(\phi_{p}+\beta_{\rho} \sin \Omega_{p} t\right)=0 \leq \rho_{p} \leq 1$

Hence the discriminator output is given by
$v_{1}(t)=\dot{\theta}_{c}+\dot{\phi}-\omega_{c}$

$$
\begin{equation*}
=-\Delta \omega_{p} \cos \left(\Omega_{p} t\right) \sum_{k=1}^{\infty}\left(-\rho_{p}\right)^{k} \cos k\left(\phi_{p}+\beta_{p} \sin \Omega_{p} t\right) . \tag{61}
\end{equation*}
$$

Without the presence of the desired unmodulated carrier, the discriminator output is
$v_{1 p}(t)=\dot{\theta}_{p}-\omega_{c}$

$$
\begin{equation*}
=\Delta \omega_{p} \cos \left(\Omega_{p} t\right) \tag{62}
\end{equation*}
$$

In order to obtain an approximate expression for*
$\frac{v_{p \max }}{v_{\max }}=\frac{\text { receiver peak output without desired carrier }}{\text { receiver peak output with desired carrier }}$
we shall assume that
$\rho_{p}=\frac{\text { amplitude of undesired carrier }}{\text { amplitude of desired carrier }} \leq 0.1$

Thus, (61) reduces to
$v_{p}(t) \approx \Delta \omega_{p} \quad \rho_{p} \cos \left(\Omega_{p} t\right) \cos \left(\phi_{p}+\beta_{p} \sin \Omega_{p} t\right)$.
*Al though $v_{p \text { max }} / v_{\text {max }}$ represents a receiver output level reduction factor due to the presence of the unmodulated desired carrier, it may (for small values of ρ_{p}) also be interpreted as a signal-to-noise ratio for the case the desired carrier is modulated and the frequency deviations of the desired and undesired carriers are equal.

As shown in Figure $B-8, v_{1}(t)$ comprises a variable frequency of period T_{2} with an envelope of period T_{1}.

After lowpass filtering $v(t)$ as shown in Figure $B-9$ is obtained.

Figure B-8.

Figure B-9. Band limited version of Figure B-8.

We proceed by assuming that
$\Omega_{p}<\Omega_{v}$,
where
$\Omega_{\mathrm{p}}=$ angular modulating frequency, and
$\Omega_{v}=$ angular lowpass cutoff frequency.
From (62) we then have
$v_{p \text { max }}=v_{p_{p \max }}=\Delta \omega_{p}$
Referring to (63) we consider two cases.

Case I: $\Delta \omega_{p}>\Omega_{v}$
Assuming a steep lowpass filter rolloff it may be seen from Figure B-8 that
$\frac{1}{T_{2}}=\frac{\Delta \omega_{p} \cos \Omega_{p} t_{1}}{2 \pi}=\frac{\Omega_{v}}{2 \pi}$, or
$\cos \Omega_{\mathrm{p}} \mathrm{t}_{1}=\frac{\Omega_{v}}{\Delta \omega_{\mathrm{p}}}<1$
But according to (63), the positive value of the envelope at t_{1} equals
$v_{\text {max }}=v_{1 \text { max }}=\Delta \omega_{p} \rho_{p} \cos \left(\Omega_{p} t_{1}\right)$.
Hence from (65) and (66)
$v_{\text {max }} \approx \Omega_{v} \rho_{p}$,
and from (67) and (64)
$\frac{v_{p \text { max }}}{v_{\text {max }}} \approx \frac{\Lambda_{u^{\prime \prime}}}{\Omega_{v} \rho_{p}}$

Case 11: $\Delta \omega_{p} \leq \Omega_{v}$

As a first-order approximation we may assume that all frequencies of $v_{1}(t)$ pass the lowpass filter, i.e.,
$v(t) \approx v_{p}(t)$

The maximum positive value of the envelope is in view of (63)
$v_{\max }=\Delta \omega_{p} \rho_{p}$.
Hence, from (70) and (64) we have

$$
\begin{equation*}
\frac{v_{p \max }}{v_{\max }}=\frac{1}{\rho_{p}} \tag{71}
\end{equation*}
$$

Experimental Observations

It should be evident that (68) and (71) are only approximate due to the fact that we neglected
a) the response sluggishness of the IF bandpass and audio
lowpass filter, and
b) the effects of the higher-order sidebands.

Referring to (68) it is found that with
$\frac{1}{2 \pi} \Delta \omega_{p}=75 \mathrm{kHz}$,
$\frac{1}{2 \pi} \Omega_{v}=30 \mathrm{kHz}$,
$\frac{1}{2 \pi} \Omega_{p}=100 \mathrm{~Hz}$

$$
\rho_{p}=0.225,
$$

the calculated and measured values are 11 and 6 , respectively.
It was also found that (68) showed very little dependency upon the value of the modulating frequency Ω_{p}.

APPENDIX C

SIGNAL-TO-NOISE RATIOS FOR AM, PM AND FM

In this report we derive expressions (References 1, 3) for the signal-to-noise power ratios for amplitude (AM), phase (PM) and frequency (FM) modulated receivers. Effects of frequency empahsis at the transmitter and de-emphasis at the receiver will be included. It is assumed that the receiver input contains white noise with uniform spectral density and zero mean value.

Let in what follows:
$C=$ carrier power (Watts),
$S=$ signal power (Watts),
$N=$ noise power (Watts),
\therefore - mnise spectral density (Watts/Hz),
$e=R \prime$ signal voltage (Volts),
\therefore. nodulãting signal, and
$n=$ noise voltage (Volts).
It is further assumed that $g(t)$ is band-limited and of zero mean value.

C-1 Amplitude Modulation

Figure C-1

Referring to Figure $C-1$, video signal $g(t)$ enters pre-emphasis filter $1 / F(\omega)$ and is then amplitude modulated, i.e.,
$e(t)=E[1+m f(t)] \cos \left(\omega_{c} t+\phi_{c}\right)$,
where
$E=$ carrier amplitude (Volts),
in = modulation factor,
$\omega_{c}=$ carrier frequency ($\mathrm{rad} / \mathrm{sec}$),
$\phi_{C}=$ constant phase shift (rads) and
$|f(t)| \leq 1$.

For reasons of simplicity ω_{c} has been made equal to the center frequency of the IF bandpass filter of the receiver whose idealized magnitude characteristics are shown in Figure C-2. Assuming that $f(t)$ is band-limited, the signal power after the IF filter equals

Fiqure C-2

$$
s_{1}=\frac{E^{2}}{2}+E \bar{f} \overline{f(t)}+\frac{E^{2}}{2} m^{2} \overline{f^{2}(t)}
$$

$$
\begin{equation*}
=\frac{E^{2}}{\hat{c}}\left[1+m^{2} \overline{f^{2}(t)}\right] \tag{2}
\end{equation*}
$$

where
$\overline{f(t)}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(t) d t=0$
is the mean value of $f(t)$ which is zero when $f(t)$ contains no $D C$ component and
$\overline{f^{2}(t)}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f^{2}(t) d t$
is the fower of $f(t)$.
Let the noise voltage $n(t)$ possess a constant spectral density n. Then after the bandpass filter, the spectral density equals (See Figure C-2)

$$
\begin{equation*}
W_{1}(\omega)=n\left[u\left(\omega-\omega_{c}+\omega_{b}\right)-u\left(\omega-\omega_{c}-\omega_{b}\right)\right], \tag{5}
\end{equation*}
$$

where $u(x)$ is a step function defined by

$$
u(x)=0 \text { for } x<0
$$

$$
u(x)=1 \text { for } x \geq 0
$$

The power N_{1} is then given by

$$
\begin{align*}
N_{1} & =\frac{1}{2 \pi} \int_{0}^{\infty} W_{1}(\omega) d \omega \tag{6}\\
& =\frac{1}{2 \pi} \int_{0}^{\infty} n\left[u\left(\omega-\omega_{c}+\omega_{b}\right)-u\left(\omega-\omega_{c}-\omega_{b}\right] d \omega\right. \\
& =\frac{\eta}{2 \pi} \int_{\omega_{c}}^{\omega_{c}+\omega_{b}} d \omega_{b}, \text { or } \\
N_{1} & =2 \eta \frac{\omega_{b}}{2 \pi} \tag{7}
\end{align*}
$$

From (2) and (7) we then have

$$
\begin{equation*}
\frac{S_{1}}{N_{1}}=\frac{E^{2} / 2}{2 \eta \frac{w_{b}}{2 \pi}}\left[1+m^{2} \overline{f^{2}(t)}\right]=\frac{c}{N_{1}}\left[1+m^{2} \overline{f^{2}(t)}\right] \tag{8}
\end{equation*}
$$

where the carrier-to-noise ratio is
$\frac{c}{N_{1}}=\frac{E^{2} / 2}{2 \eta \frac{\omega_{b}}{2 \pi}}$

Referring to Figure $C-1$ it is evident that after envelope detection and de-emphasis with $F(\omega)$, the modulating signal $f(t)$ is converted back to the original signal $g(t)$.

$$
c-2
$$

Hence in view of (1) the signal power at the receiver output equals

$$
\begin{equation*}
S_{o A}=E^{2} m^{2} \overline{g^{2}(t)} \tag{10}
\end{equation*}
$$

In order to determine the noise power output, the noise spectral density at the receiver output must be known. In terms of $W_{1}(\omega)$ we have
$W_{O A}(\omega)=|F(\omega)|^{2} W_{1}(\omega)$

Making use of (5) and (11) yields
$N_{o A}=\frac{\eta}{2 \pi} \int_{\omega_{c}-\omega_{b}}^{\omega_{c}+\omega_{b}}|F(\omega)|^{2} d \omega=\frac{\eta}{2 \pi} \int_{-\omega_{b}}^{\omega_{\mathrm{E}}}|F(\Omega)|^{2} d \Omega$
Hence

$$
\begin{equation*}
\frac{S_{o A}}{N_{o A}}=2 \frac{\frac{\frac{5}{2}^{2} m^{2} \overline{g^{2}(t)}}{\frac{\omega_{b}}{2 \pi} \int_{-\omega_{b}}^{\omega_{b}}|F(\Omega)|^{2} d \Omega}=\frac{c}{N_{1}} \frac{2 m^{2} \overline{g^{2}(t)}}{\omega_{b}}}{\frac{1}{2 \omega_{b}} \int_{-\omega_{b}}|F(\Omega)|^{2} d \Omega} \tag{13}
\end{equation*}
$$

where C / N_{1} is defined by (9). In the above as well as in the next derivations it has been assumed that $\mathrm{C} / \mathrm{N}_{1}$ is large.

C-2 Phase and Frequency Modulation

Figure C-3

In the block diagram of Figure C-3 we may now either have phase or frequency modulation and demodulation. It is assumed that perfect limiting occurs. The RF signals are given by
$e_{p}(t)=E \cos \left[\omega_{c} t+\phi_{c}+\Delta \phi_{c} f(t)\right] \quad$ for $P M$,
$e_{F}(t)=E \cos \left[\omega_{C} t+\phi_{C}+\Delta \omega_{c} \int_{0}^{t} f(t) d t\right]$ for $F M$,
where
${ }^{{ }^{\omega}}{ }_{c}=$ carrier frequency $=$ IF center frequency ($\mathrm{rad} / \mathrm{sec}$)
$\phi_{C}=$ constant phase shift (radians)
$\Delta \phi_{C}=$ phase deviation amplitude (radians)
$\Delta \omega_{c}=$ frequency deviation amplitude (rad/sec)
$|f(t)| \leq 1$.

Without noise and by taking the de-emphasis filter $F(\omega)$ into account, the audio output power is given by
$S_{o P}=\overline{\left[\Delta \phi_{C} g(t)\right]^{2}}=\left(\Delta \phi_{C}\right)^{2} \overline{g^{2}(t)} \quad$ for $P M$
$S_{o F}=\overline{\left[\Delta \omega_{c} g(t)\right]^{2}}=\left(\Delta \omega_{c}\right)^{2} \overline{g^{2}(t)} \quad$ for $F M$

In order to find the noise power N_{1} after the discrimator we must first determine the special density $W_{1}(\omega)$. We start by considering the noise contribution of the narrow strip in Figure C-4.

It lias been shown elsewhere that for this case the noise voltage may be represented by

Figure C-4
$e_{n}(t)=E_{n}(t) \cos \left(\omega_{n} t+\phi_{n}\right)$,
where $E_{n}(t)$ is a slowly varying function.
Furthermore,
$\overline{e_{n}^{2}(t)}=\frac{1}{2} E_{n}^{2}=\frac{1}{\dot{c} \pi} \int_{\omega_{n}}^{\omega_{n}+d \omega} n d \omega=\frac{n d \omega}{2 \pi}$
where η is the constant spectral density of the noise.

Let us now add the unmodulated carrier voltage $e(t)$ to the noise voltage $e_{n}(t)$. Hence in view of (14) and (18)

$$
\begin{align*}
e(t)+e_{n}(t) & =E \cos \left(\omega_{c} t+\phi_{c}\right)+E_{n} \cos \left(\omega_{n} t+\phi_{n}\right) \\
& =V_{n} \cos \left[\omega_{c} t+\phi_{c}+\theta_{n}(t)\right] \tag{20}
\end{align*}
$$

where
where
$V_{n}=E\left[1+2 \frac{E_{n}}{E} \cos \psi_{n}+\frac{E_{n}{ }^{2}}{E^{2}}\right]^{\frac{1}{2}}$,
$\theta_{n}=\tan ^{-1} \frac{E_{n} \sin \psi_{n}}{E+E_{n} \cos \psi_{n}}$, and
$\psi_{n}=\left(\omega_{n}-\omega_{c}\right) t+\phi_{n}-\phi_{c}$.

Now for $E_{n} / E \ll 1$, (20b) reduces to
$\theta_{n}=\frac{E_{n}}{E} \sin \psi_{n} \quad$ for $P M$
so that
$\dot{\theta}_{n}=\frac{E_{n}}{E}\left(\omega_{n}-\omega_{c}\right) \cos \psi_{n}, \quad$ for $F M$
where (21) and (22) represent the noise outputs at the phase and frequency discriminators, respectively. Hence for the infinitesimal frequency band in Figure C-4, the corresponding infinitesimal noise powers are
$d N_{p}=\overline{\theta_{n}{ }^{2}}=\frac{1}{2} \frac{E_{n}{ }^{2}}{E^{2}}=\frac{\eta}{E^{2}} \frac{d \omega}{2 \pi}$, and for $P M$
$d N_{F}=\overline{\dot{\theta}_{n}^{2}}=\frac{1}{2} \frac{E_{n}{ }^{2}}{E^{2}}\left(\omega_{n}-\omega_{c}\right)^{2}=\frac{\eta}{E^{2}}\left(\omega_{n}-\omega_{c}\right)^{2} \frac{d \omega}{2 \pi}$ for $F M$
where we have made use of (19).
Since the spectral density amounts to
$W(\omega)=2 \pi \frac{d N}{d \omega}$,
we have from (23) - (25) iust after the discriminator,
$W_{1 P}(\omega)=\frac{\eta}{E^{2}}$
for PM
$W_{1 F}(\omega)=\frac{\eta}{E^{2}}\left(\omega-\omega_{C}\right)^{2}$
for FM

The spectral densities after the de-emphasis filter
$F(\omega)$ are
$W_{o P}(\omega)=\frac{\eta}{E^{2}}\left|F\left(\omega-\omega_{c}\right)\right|^{2} \quad$ for $P M$
$W_{o F}(\omega)=\frac{\eta}{E^{2}}\left(\omega-\omega_{C}\right)^{2}\left|F\left(\omega-\omega_{C}\right)\right|^{2}$ for $F M$

With ω_{b} being half the bandpass filter bandwidti: the output noise power will generally be given by

$$
N_{0}=\frac{1}{2 \pi} \int_{\omega_{c}-\omega_{b}}^{\omega_{c}+\omega_{b}} W_{0}(\omega) d \omega=\frac{1}{2 \pi} \int_{-\omega_{b}}^{\omega_{b}} W_{0}\left(\omega_{c}+\Omega\right) d \Omega
$$

Using (28) - (30) the noise power output is

$$
\begin{array}{ll}
N_{o P}=\frac{\eta}{2 \pi E^{2}} \int_{-\omega_{b}}^{\omega_{b}}|F(\Omega)|^{2} d \Omega & \text { for } P M \\
N_{o F}=\frac{\eta}{2 \pi E^{2}} \int_{-\omega_{b}}^{\omega_{b}} \Omega^{2}|F(\Omega)|^{2} d \Omega . & \text { for } F M \tag{32}
\end{array}
$$

Recalling from (9) that the carrier-to-noise ratio amounts to

$$
\begin{equation*}
\frac{C}{N_{1}}=\frac{E^{2} / 2}{2 \eta \frac{\omega_{b}}{2 \pi}}, \tag{9}
\end{equation*}
$$

it may be found from (16), (17), (31) and (32) that

$$
\begin{equation*}
\frac{S_{o P}}{N_{o P}}=\frac{C}{N_{1}} \cdot \frac{2\left(\Delta \phi_{c}\right)^{2} \overline{g^{2}(t)}}{\frac{1}{2 \omega_{b}} \int_{-\omega_{b}}^{\omega_{b}}|F(\Omega)|^{2} d \Omega} \text {, for } P M \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\frac{S_{o F}}{N_{o F}}=\frac{C}{N_{1}} \cdot \frac{2\left(\Delta \omega_{c}\right)^{2} \overline{g^{2}(t)}}{\frac{1}{2 \omega_{b}} \int_{-\omega_{b}}^{\omega_{b}} \Omega^{2}|F(\Omega)|^{2} d \Omega} \text {. for } F M \tag{34}
\end{equation*}
$$

C-3 Comparison of PM and FM

From (33) and (34) it follows that
$\left(S_{O P} / N_{O P}\right) /\left(S_{O F} / N_{O F}\right)=$
$\left(\Delta \phi_{c} / \Delta \omega_{c}\right)^{2}\left[\int_{-\omega_{b}}^{\omega_{b}} \Omega^{2}|F(\Omega)|^{2} d \Omega\right] /\left[\int_{-\omega_{b}}^{\omega_{b}}|F(\Omega)|^{2} d \Omega\right]$

In order to evaluate (35) let us first assume that the output of the receiver contains an ideal lowpass filter with radian cutoff frequency Ω_{v}, i.e., we
set $\omega_{b}=\Omega_{v}$. Assuming a sinusoidal modulating signal we also set $\Delta \omega_{C}=\Omega \Delta \phi_{C}$ where Ω is the radian signal frequency.

Without frequency de-emphasis we then obtain from (35) with

$$
|F(\Omega)|=1
$$

$$
\begin{equation*}
\left.\mathrm{S}_{\mathrm{OP}} / N_{O P}\right) /\left(\mathrm{S}_{\mathrm{OF}} / N_{O F}\right)=\Omega_{V}^{2} /\left(3 \Omega^{2}\right) \tag{36}
\end{equation*}
$$

With frequency de-emphasis we set

$$
\begin{equation*}
|F(\Omega)|^{2}=1 /\left[1+\left(\Omega / \Omega_{d}\right)^{2}\right] \tag{37}
\end{equation*}
$$

where Ω_{d} is the radian cutoff frequency. Assuming $\Omega_{c} \ll \Omega_{v}$ we obtain

$$
\begin{equation*}
\left(S_{O P} / N_{O P}\right) /\left(S_{O F} / N_{O F}\right) \approx\left(2 \Omega_{d} \Omega_{V}\right) /\left(\pi \Omega^{2}\right) \tag{38}
\end{equation*}
$$

Expressions (36) and (38) show that the S/N ratios of PM are higher than FM provided
$\Omega<\left(\Omega_{v} / \sqrt{3}\right)$, without de-emphasis,
and
$\Omega<\left(2 \Omega_{\mathrm{d}} \Omega_{v} / \pi\right)^{\frac{1}{2}}$, with ue-emphasis

NONLINEAR FREQUENCY DETECTOR

It is the objective of this detector to digitally program the frequency $f_{V}=1 / T_{V}$ of a voltage-controlled oscillator (VCO) as shown in Table D-1 where
$f_{R}=1 / T_{R}=$ reference frequency,
$N_{1}=$ channel select number, and
$\mathrm{N}_{2}=$ dead zone select number.

TABLE D-1

Region	VOC Frequency		Detector	
	f_{V}	Output Voltage $E(v)$	Output Impedance $Z(\Omega)$	
1	$2\left(N_{1}+N_{2}\right) f_{R}<f_{V}{ }^{\prime}$	High	Low	
2	$2\left(N_{1}-N_{2}\right) f_{R}<f_{V}{ }^{\prime \prime}<2\left(N_{1}+N_{2}\right) f_{R}$	X	High	
3	$f_{V}^{\prime \prime \prime}<2\left(N_{1}-N_{2}\right) f_{R}$	Low	Low	

One observes from the conditions of the detector output voltage and impedance that the VCO is controlled only in regions 1 and 3 and that in region 2 (the dead zone) the VCO can assume any frequency within the band $4 N_{2} f R$. The center frequency of this band is given by $2 N_{1} f_{R}$.

Referring to Figures $\mathrm{D}-1$ and $\mathrm{D}-2$, the operation is as follows: Note first that delay flip-fiops FF1, FF2 and synchronous up-counters CR1, CR2 clock on the positive edges of output V of the voltage-controlled oscillator (VCO). The period of V equals $\mathrm{T}_{\mathrm{V}}=$ $1 / f_{V}$. Next, consider the reference clock R of half-period $T_{R} / 2$ which is shifted through FF1 and FF2. By combining Q_{1} and $Q_{2}=D_{3}$ at gate G1 a load pulse L of width T_{V} is generated. When L is low, a channel select number is loaded into counter CR1. After N_{1} up-counts, CR1 stops counting and D_{4} goes high. This is accomplished by feeding the carry output back to its T input. Furthermore, by combining $Q_{2}=D_{3}$ and D_{4} at gate $G 2$, a second load pulse H of variable width T_{H} is generated. When H is low, a dead zone select number is loaded into counter CR2. After $I_{.2}$ up-counts CR2 stops counting by feeding back its carry output to its P input. At this instant K goes high and both delay flip-flops FF3 and FF4 are being ciocked at CK. The states of Q_{3} and \bar{Q}_{4} therefore depend on the states of D_{3} and D_{4} prior to the arrival of the positive edge of K. An inspection of Figure $D-2$ is facilitated by consulting Tatile D--2 simultaneously. This table has been derived from Table D-1 by using the relations $T_{R}=1 / f_{R}$ and $T_{V}=1 / f_{V}$. One observes that the output states of Q_{3} and $\overline{\mathrm{Q}}_{4}$ are directly related to the inequality signs.

As an example, a detailed description of region 1 will now be given.
After the positive edge of load sulse L, cutput D_{4}^{\prime} of counter CR1 remains high during N_{1} counts, i.e., $T_{4}{ }^{\prime}=N_{1} T_{V}{ }^{\prime}$. Next, load pulse H^{\prime} of length T_{H} ' is obtained from D_{3} and D_{4}^{\prime}. Since T_{3} is

Figure D-2. Timing diagram.

TABLE D-2.

Region	T_{3}		$T_{K}=T_{4}+N_{2} T_{V}$		T_{4}	T_{H}	23	$\overline{0} 4$
1	$T_{R} / 2$	$>$	$\left(N_{1}+N_{2}\right) T_{V}{ }^{\prime}$	$>$	$N_{1} T_{V}{ }^{\prime}$	$N_{1} T_{V}{ }^{\prime}$	1	1
$2 a$	$T_{R} / 2$	$<$	$\left(N_{1}+N_{2}\right) T_{V}{ }^{\prime \prime}$	$>$	$N_{1} T_{V}{ }^{\prime \prime}$	$N_{1} T_{V}{ }^{\prime \prime}$	0	1
$2 b$	$T_{R} / 2$	$<$	$\left(T_{R} / 2\right)+N_{2} T_{V}{ }^{\prime \prime}$	$>$	$N_{1} T_{V}{ }^{\prime \prime}$	$T_{R} / 2$	0	1
3	$T_{R} / 2$	$<$	$\left(T_{R} / 2\right)+N_{2} T_{V}{ }^{\prime \prime \prime}$	$<$	$N_{1} T_{V}{ }^{\prime \prime \prime}$	$T_{R} / 2$	0	0

greater than $T_{4}{ }^{\prime}$, it follows that $T_{H}{ }^{\prime}=T_{4}{ }^{\prime}=N_{1} T_{V}{ }^{\prime}$. After the positive edge of H^{\prime}, output K^{\prime} of counter CR2 goes r.igh after N_{2} counts, i.e.,

$$
T_{K}^{\prime}=T_{H}^{\prime}+N_{C} T_{V}^{\prime}=\left(N_{1}+N_{2}\right) T_{V}^{\prime}
$$

Now since $T_{3}=T_{R} / 2$ is greater than $T_{K}{ }^{\prime}, D_{3}$ will be high when FF3 is clocked, i.e., Q_{3} goes high. Furthermore, since $T_{4}{ }^{\prime}=$ $N_{1} T_{V}{ }^{\prime}$ is smaller than T_{K}^{\prime}, D_{4} will be low when FF4 is clocked, i.e., \bar{Q}_{4} goes high. This completes the description of region 1 . It remains to be shown how the states of Q_{3} and \bar{Q}_{4} of Table $D-2$ are related to the voltage and impedance requirements of Tabie D-1.

In region 1 both Q_{3} and \bar{Q}_{4} are high so that dicide D_{1} conducts (low impedance) and E goes high. In region 2, Q_{3} is low and \bar{Q}_{4} is high. As lons as the value of E remains between the high and low voltage values of Q_{3} and \bar{Q}_{4}, neither diode D_{1} or D_{2} conducts so that the impedance is high. Finally, in region 3 both Q_{3} and \bar{Q}_{4} are low so that now only diode D_{2} conducts and E becomes low.

APPENDIX E

COMB FREQUENCY SPECTRUM GENERATOR

Figure E-2):

- All 'A' and 'a' carriers simultaneously frequency modulated by audio input 1
- 'B' carrier frequency modulated by audio input 2
- Maximum frequency deviation: $\pm 200 \mathrm{kHz}$
- Audio response: 10 Hz to $150 \mathrm{kHz}, \pm 1 \mathrm{~dB}$
- Carrier response: 10.4 MHz to $20.6 \mathrm{MHz}, \pm 1 \mathrm{~dB}$
- Load impedance: ',0 Ohms

Referring to Figure E-2, the comb frequency spectrum generator operates as follows.

Legend
$\begin{aligned} A, B & =\text { Primary Carriers } \\ a & =\text { Secondary Carriers }\end{aligned}$
Amplitude of 'a' adjustable from -15 dB to -35 dB.
Carriers ' A ' and 'a' modulated by audio input 1.
Figure E-1. Frequency Spectrum

First, the 0.2 MHz reference clock frequency is multiplied by a factor 154 in oroer to obtain the 30.8 MHz carriers at the outputs of voltage-controlled oscillators VCO 1 and VCO 2. This is accomplished by two phase-lock loops. One loop consists of VCO 1, the digital frequency dividers D1, D2, frequency and phase detector FPD and lowpass filter LP1. The other loop contains VCD2, frequency dividers D5, D6, frequency and phase detector FPD and lowpass filter LP2. The two loops serve also as frequency modulators. Audio input 1 modulates carriers ' A ' and 'a' and Audio input 2 modulates carrier ' B '.

Next, the discrete ' A ' (odd harmonics) and 'a' (even harmonics) spectra are generated from the square wave at the output of D2. Lowpass filter LP3 serves to control the amplitude of the 'a' carriers.

Before the ' B ' carrier at the output of $D 5$ can be added to the ' A ' spectrum, it is evident that the 15.4 MHz component of this spectrum must be removed first. In the present design this has been accomplished by subtracting the 15.4 MHz carrier at the output of $D 4$ from the ' A ' spectrum by means of analog adders \sum_{3} and \sum_{4} and analog attenuator A.

Finally, highpass filter HP shapes the spectrum for uniform response between 10.4 MHz and 20.6 MHz and provides a frequency rolloff of 12 dB/octave outside this band.

APPENDIX F STRESS ANALYSIS OF TRANSMITTER PACKAGE

INTRODUCTION
As part of the design task, the transmitter cases were stress analyzed for operation in a stacked configuration at acceleration levels of $50,000 \mathrm{~g}$'s. The direction of the acceleration is normal to the case (vertical) and in a downward configuration, such that circuit components are pressed against their supporting substrates. The calculations are made for the transmitter at the bottom of the stack. The most severely stressed areas of the transmitter were analyzed for stress and deflection. Areas whose stress leveis were obviously lower were not included in the calculations.

A. Basic Case Configuration and Material Properties

Material: 17-4PH SST (H900)

$$
\begin{aligned}
& E=3 \times 10^{7} \\
& \mu=.3
\end{aligned}
$$

$$
\sigma_{\text {yield }}=165 \mathrm{ksi}
$$

$$
\sigma_{u l t}=190 \mathrm{ksi}
$$

B. Bottom of Large Compartment, Bending Stresses

$$
\begin{aligned}
& a_{r}=\text { Radial acceleration, } g^{\prime} \mathrm{s} \\
& W_{B}=\text { Effective weight of bottom } \\
& W_{B}=2 \omega t \rho a_{r} \\
& W_{B}=0.73(0.80) 0.085(0.287) 50000=712 \mathrm{lbs} \\
& W_{B}=\frac{W}{A}=\rho t a_{r}=0.287(0.085) 50000=1220 \mathrm{psi}
\end{aligned}
$$

Effective substrate Weight $W_{S}=0.63(0.70) 0.034(0.137) 50000=106 \mathrm{lbs}$ $w_{s}=\frac{W}{A}=\rho t a_{r}=0.137(0.035(50000=240 \mathrm{psi}$

Assuming a uniform load and simply supported edges, the maximum bending stress in the bottom, $\sigma_{\max }$ is:

$$
\begin{aligned}
& w=w_{B}+w_{S}=1220+240=1460 \mathrm{psi} \\
& b=.73 \text { in } \quad \alpha=\frac{a}{b}=\frac{.73}{.80}=.9125 \\
& \sigma_{\max }=\frac{0.75 w b^{2}}{t^{2}\left(1+1.61 \alpha^{3}\right)} \\
& =\frac{.75(1460) \cdot .73^{2}}{.085^{2}\left(1+1.61(.9125)^{3}\right)}=36,327 \mathrm{psi}
\end{aligned}
$$

$\sigma_{\text {yield }}=165 \mathrm{ksi}$
Safety factor $=\frac{165}{36.3}=4.55$

However, the thickness of the bottom must be determined by its maximum deflection, since a crack in the alumina substrate of the hybrid circuit will fail the transmitter.

The maximum deflection, $y_{\text {max }}$, of the case bottom
$y_{\text {max }}=\frac{.1422 \omega b^{4}}{E t^{3}\left(1+2.21 \alpha^{3}\right)}=\frac{.1422(1460) .73^{4}}{3 \times 10^{7}(.085)^{3}\left(1+2.21(.9125)^{3}\right)}=.00119 \mathrm{in}$.
It is felt that deflections on the order of . $001-.002$ inches could be safely tolerated withouit substrate damage.
C. Wall Stresses for Bottom Xmitter in a Stack of Four

i. Effective Weights © $50,000 \mathrm{~g}$'s

Xmitter bottom: $\quad 1.5(.88) .085(.287) 50000=1610 \mathrm{lbs}$
Substrates: $\quad[.63(.70)+.38(.63)] .035(.137) 50000=163$
Walls:
5.07(.140).075(.287)50000 $=764$

Top:
1.5(.88).040(.287)50000 $=758$

Shelf:
$\left[.10(.035)+7.73 \times 10^{-4}\right] 1.9(.287) 50000=117$ TOTAL XMITTER WT 3412
2. Load carried by walls of bottom xmtr

$$
\begin{aligned}
& 3 \text { imtrs @ } 3412=10236 \mathrm{lbs} \\
& 1 \text { wall }+1 \text { top @ } 1522=\frac{1522}{11758 \mathrm{lbs}} \\
& \text { TOTAL LOAD }
\end{aligned}
$$

Assuming a uniform distribution of load over the 5.07 inches of wall length, the distributed load, w, is:
$w=\frac{11758}{5.07}=2319 \mathrm{lbs} / \mathrm{in}$
3. End Wall Compressive Stresses

For the end wall containing 5 electrical feedthroughs,

$$
\ell=.73 \mathrm{in}, \mathrm{~W}=2319(.73)=1693 \mathrm{lbs}
$$

Effects of Stress Concentration on Compressive Wall Stresses

B

B

Net area along plane $B-B=[.73-5(.063)] .075=.03113 \mathrm{in}^{2}$.

Hole Spacing
$c=\frac{.73-5(.063)}{5}=.083$
$b=.083+.063=.146$
$a=.063, \frac{a}{b}=\frac{.063}{.146}=.431$

For an infinite wall with uniformly spaced holes, $\frac{a}{b}=.431$,

$$
K_{\text {tn }}=1.8 \quad \sigma_{\max }=K_{\operatorname{tn}} \frac{W}{A_{\text {net }}}=1.8 \frac{1693}{.03113}=\underline{97,893 \mathrm{psi}}
$$

$\sigma_{\text {yield }}=165 \mathrm{ksi}$
Safety factor $=\frac{165}{97.9}=1.69$
4. Side Wall Compressive Stresses

Repeating the same calculations on the side wall containing 6 electrical feedthroughs

Supported load, $W=2319(.80)=1855 \mathrm{lbs}$
Net area, $A_{\text {net }}=[.80-6(.063)] .075=.03165$

Hole Spacing Parameters
$c=\frac{.80}{6}-.378=.070$
$b=.070+.063=.133$
$\frac{a}{b}=\frac{.063}{.133}=.474$

Effects of Stress Concentration

For an infinitely long wall with uniformly spaced holes,
$K_{t n}=1.68$
$\sigma_{\max }=1.68 \frac{1855}{.03165}=\underline{.98,464 \mathrm{psi}}$

Safety factor $=\frac{165}{98.5}=1.68$
D. Top Cover Stresses

Material thickness, $t=.040$ inches
Largest unsupported span $=.73 \times .80, \omega=\rho t a_{r}=.287(.040) 50000=574 \mathrm{psi}$
$W=574(.73 \times .80)=335 \mathrm{lbs}$
$\sigma_{\text {max }}=\frac{.75(574) \cdot 73^{2}}{.04^{2}\left(1+1.61(.9125)^{3}\right)}=\underline{64,492 \text { psi }}(74 \mathrm{~K}$ psi if .035 thk $)$
$y_{\text {max }}=\frac{.1422(574) .73^{4}}{3 \times 10^{7}(.04)^{3}\left(1+2.21 \alpha^{3}\right)}=\frac{.00451 \text { in }}{(.0052 \text { if } .035 \text { thk })}$

Max Shear Stress, $\tau=\frac{W}{2(\ell+W) t}=\frac{335}{2(.08+.73) .040}=2736 \mathrm{psi}, \tau_{\text {yield }}=94 \mathrm{ksi}$

E. Shelf Bending Stresses

(Maximum stress occurs at Point a)

Per unit width. $M=.035(?) \times .287(50000) \frac{x}{2}=502.3 \frac{x^{2}}{2} 1 b-$ in

For $0 \leq x \leq 0.04$ in
$I=\frac{1(.035)^{3}}{12}=3.57 \times 10^{-6} \mathrm{in}^{4}$
$0 x=.04$ in $M=502.3 \frac{(.04)^{2}}{2}=.4018 \mathrm{lb}-$ in

For a beam in bending with fillet radius r,
For $\frac{r}{d}=\frac{.06}{.035}=1.71, K_{t}<1.4$

Maximum Bending Stress, $\sigma_{\max }=\mathrm{K}_{\mathrm{t}} \frac{\mathrm{Mc}}{\mathrm{I}}<1.4 \frac{.4018(.0175)}{3.57 \times 10^{-6}}=1970 \mathrm{psi}$
Safety Factor $=83$

APPENDIX G

TRANSMITTER RELIABILITY ANALYSIS

Note:
Failure rate calculations in this report make no al! Jwance for centrifugal force. Acurex experience indicates that centrifugal force is considerably less of a factor than ambient temperature (which is factored into tiese calculations) - provided that appropriate packaging techniques and components are employed.

MULTICHANNEL WIRELESS DATA TRANSMITTER RELIABILITY PREDICTION

 25 APRIL, 1977

 25 APRIL, 1977
 FOR
 NASA

BY

ACUREX CORPORATION
485 Clyde Avenue Mountain View, California 94042

1.0 SCOPE

This Reliability Prediction Report has been prepared at the request of San, Toy, Project Engineer on the Multichannel Wirsless Data Transmitter (MwDT).

2.0 APPLICABLE DOCUMENTS

The following documents, of the issue in effect on the date of contract award, form a part of the requirements of this document to the extent specified herein:

RADC-TR-67-108 RADC Reliability Notebook (1967, Vol. II).
RADAC Tymshare Tymcom-IX Manual.

3.0 REQUIREMENTS

There are no definitive reliability requirements for the MWDT. However, it is important that it survive a 30 -hour test period with a high probability of success.

4.0 RELIABILITY PREDICTION MODEL

A reliability model for the MWDT is shown in Figure 1 . This mudel is a conservative series model; i.e., if any one component within the system fails, the entire system is considered failed. Ir addition, each of the components within the Hybrid Circuit Modules were considered in series.

5.0 FAILURE RATES

The part failure rates used in this prediction are from RADC Reliability No iebook RADC-TR-67-108. The failure rates were calculated at 25% stress for temperatures of $125^{\circ} \mathrm{C}, 150^{\circ} \mathrm{C}$, and $175^{\circ} \mathrm{C}$. A list of the part types, quantities and failure rates used is shown for each module in Tables I, II, and III. For the chip components used in the Hybrid Modules, the nearest standaru component equivalent failure rate was used. This approach should result in a slightly conservative estimate since the standard components are slightly mora complex and, therefore, should have a higher failure rate than the chip component. All failure rates were calculated by a TYMSHARE computer program called "RADAC" which is a computerized version of the RADC Reliability Notebook RADC-TR-67-108. The failure rates were calculated considering both upper quality and lower quality parts. Upper quality parts are defined as those that receive burn-in and parts screening including 100\% hightemperature screening. Lower quality parts are defined as those which do not receive burn-in or 100% high-temperature testing. Acurex
is burning in and 100% high-temperature testing the hybrid circuits used in the MW'J and, therefore, the upper quality grade failure rates and MTBF should apply.

6.0 RELIABILITY PREDICTION

A parts count estimate for each module at $125^{\circ} \mathrm{C}, 150^{\circ} \mathrm{C}$, and $175^{\circ} \mathrm{C}$ is shown in Tables I, II, and III. Combining these failure rates in accordance with the reliability prediction model shown in Figure 1, the predicted MTBF's for each module was calculated as shown in Figure 2 at $125^{\circ} \mathrm{C}, 150^{\circ} \mathrm{C}$, and $175^{\circ} \mathrm{C}$. The total MTBF for the three hybrid modules as a system is $1,462,784$ and 125 hours at temperatures of $125^{\circ} \mathrm{C}, 150^{\circ} \mathrm{C}$, and $175^{\circ} \mathrm{C}$, respertively.

The probability of success for a 30-hour test from Figure 2 is 97.9\% (@ $125^{\circ} \mathrm{C}$) , 96.2% (@ $150^{\circ} \mathrm{C}$), and 78.7% (@ $175^{\circ} \mathrm{C}$).

ASSEMBLY		MTBF - Hours		
		$\underline{125}{ }^{\circ} \mathrm{C}$	$\underline{150}{ }^{\circ} \mathrm{C}$	$\underline{175}{ }^{\circ} \mathrm{C}$
1.	Static Strain Modulator	4,486	2,748	503
2.	Thermocouple Scanner	5,524	2,121	239
3.	Dynamic Strain Transmitter	3,573	2,269	549
	TOTAL SYSTEM	1,462	784	125
	Probability of Success where	$=\operatorname{Reli}$	ity	$e^{-\lambda T}$
		$=$ Fail	Rate	$\frac{1}{\text { MTBF }}$
		$=$ Test		
			eliabil	
	ASSEMBLY	$125^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$
1.	Static Strain Modulator	99.3\%	98.9\%	94.2\%
2	Thermocouple Scanner	99.4\%	98.6\%	88.2\%
3.	Dynamic Strain Transmitter	99.2\%	98.7\%	94.7\%
	TOTAL SYSTEM*	97.9\%	96.2\%	78.7\%

[^0]Figure G-2. MWDT MTBF and Reliability Summary.

TABLE G-1. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $125^{\circ} \mathrm{C}$

$\begin{aligned} & \text { CIPCUIT } \\ & \text { REF } \end{aligned}$	PART
IESIG	cane
R1	RNSOC
Fe	RN50C
R3	RN50C
R4	RNS0C
R5	RNS0C
R6	RN50C
R7	RH500
Fe	RC05
$\mathrm{F9}$	RC05
F10	RCOS
F11	RCOS
R 12	PC0S
R13	RC05
F14	RNSOC
F15	RCOS
R16	RNSOC
F17	RC05
F18	RNSOC
R19	FCOS
Fed	FC05
Fel	FNS 00
Fee	FC05
Fe 3	FNSOC
C1	CSR
02	ESR
$\underline{\square}$	CK
C.4	ESP
C5	ESR
06	CK
07	CK
C8	ESR
69	ESR
E10	CK
C11	CSR
L12	CK
013	ESR
C14	CSR
C15	LSR
016	OSP
617	CK
C18	CK
01	FET
92	FET
03	FET
H1	IC
He	IT
A3	IC
H4	IC
HS	IC

FAILURESMILLIDN HFS QUANTITY UPFER QUAL LIWEF QUAL

DERATING
STRESS

TABLE G-1. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $125^{\circ} \mathrm{C}$ (continued)

MODULE * 2
CIRCUIT
REF
DESIG

PART
CODE
RC05
CK
FET
OSP
IC
IC

1.000	.162807
1.000	.162807
1.000	.162807
1.000	.162807
1.000	.162807
1.000	.162807
1.000	.162807
1.000	.162807
1.000	.162807
1.000	.168807
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	.173601
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	10.436877
1.000	4.018585
1.000	2.633198
1.000	3.510931

FAILURES/MILLIGN HRS QUANTITY UPPER QUAL LDWER QUAL
DERATING STRESSRS

. 437016	. 250	. 250
. 437016	. 250	. 250
. 437016	. 250	. 250
. 437016	. 250	. 250
. 437016	. 250	. 250
. 437016	. 2550	. 250
. 437016	. 250	. 250
. 437016	. 250	. 250
. 437016	. 250	. 250
. 437016	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 388005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
. 888005	. 250	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5. 137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
5.137543	. 917	. 250
9.735852	.917	. 250
9.748987	1.020	1.020
6.331983	1.020	1.020

TABLE G-1. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $125^{\circ} \mathrm{C}$ (continued)

MODULE : 3

CIRCUIT

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	PART CODE
P1	RN500
Re	RN500
R 3	RC05
P4	RNS00
R5	RN500
R6	RC05
Fs	RNS00
F9	RC05
P10	RC05
F11	RN500
R12	RN500
F13	RNS 00
R14	RN500
F17	RCOS
R18	RCOS
F19	RC05
Re0	RN500
Re1	RC05
Ree	RN500
Fe 3	12NSOC
Fe5	RC05
E1	CSR
Ce	CSR
Ls	CSF
C4	ESR
Ls	CSR
CE	CK
07	CSR
Ce	CK
09	ESR
L10	SSE
E11	EK
C12	EK
C13	CSR
C15	CSF
C16	OK
Q1	QSF
I1	CFS
IE	ERS
H2	2EN
[14.	VHF
H1	IL
He	10
H3	IC
A4	IO
H5	IL

DYMAMIC STRAIN TRANSMITTER

FAILURES MILLIUN HRS QUANTITY UPFER QUAL LDIEER QUAL
DERATING STRESS

TABLE G-1. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $125^{\circ} \mathrm{C}$ (continued)

C
<<< EQUIPMENT FAILURE TABLE >>>

\author{

- EQUIPMENT NAME
 MULTICHANNEL WIRELESS DATA TRANSMITTER
 - ENVIRZNMENTAL SERVICE CDNDITIAN
 AIRBDRNE UNINHABITED
 MIDDILE NAME RUAMTITY
 FAILURE MILLIDN HRS RUALITY GRADE (UQE) (LQE)
 STATIC STRAIN MODULATOR 1
 THERMDCDUPLE SCANMER DY'NAMIC STRAIN TRANSMITTER
 | MODULE NAME | | QUARHT ITY' | FAILURE/MILLIUN HRS RUALITY GRADE | |
| :---: | :---: | :---: | :---: | :---: |
| STATIC STRAIN MODULATAR | | 1 | 2e2.91098 | 2039.18587 |
| THERMDCDUPLE SCANNER | | 1 | 181.03763 | 3383.93174 |
| DY'NAMIE STRAIN TRANSMITTER | | 1 | 279.88485 | 2031.34984 |
| | TETAL | 3 | 683.83346 | 7454.46-45 |

UQG - 1.462 HRS $\quad 134$ HRS

```
<<< FHILURE RATE DISTRIRUTIDN >>>
                            (RANKED DRDER, UQG)
```

FART		FAILURE	FERCENT
CDDE	QUANTITY	RATE	CONTRIBUTIDN

IC	12.000	437.98865	64.049%
FET	19.000	198.30067	28.998%
VAR	1.000	26.25096	3.839%
QSP	2.000	8.03717	1.175
RC05	30.000	4.83420	. 714%
CK	25.000	4.34003	. 635%
ZEN	1.000	2. 05960	. 301%
RNS 00	24.000	1.23623	. 181%
CRS	- 2.000	. 46612	. 068%
CSR	21.000	. 26984	. 039%
tatal	137.000	683.83346	100.000%

TABLE G-2. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF © $150^{\circ} \mathrm{C}$

TABLE G-2. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $150^{\circ} \mathrm{C}$ (continued)

TABLE G－2．MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF＠ $150^{\circ} \mathrm{C}$（continued）

MODULE ： 3 DYMAMIC STRAIN TRANSMITTER

$\begin{aligned} & \text { EIRCUIT } \\ & \text { REF } \end{aligned}$	PRFT		FAILURES $/$ M	ILLIDN HRS			
DESIG	COIE	DURNTIT＇${ }^{\prime}$	IIPPER QUAL	LDWER DUAL	DERATING	STRESS	
P1	RNS0C：	1．000	． 063363	． 264013	． 250	． 250	
FE	FNS0C	1.000	． 063363	． 264013	． 250	． 250	3
P 3	RC05	1．000	． 408188	1.050471	． 250	． 250	
R4	RHSOC	1．000	． 063363	． 264013	． 250	． 250	
R5	RNSOL	1．000	． 063363	． 264013	． 250	． 250	
P6	RE05	1.000	． 493183	1.050471	． 250	． 250	
FS	R NSOCO	1.000	． 063563	． 264013	． 250	． 250	
F9\％	RC05	1.000	.408188	1.050471	． 250	． 250	＊
F10	RC05	1．000	． 405188	1.050471	． 250	． 250	
F11	RNSOL	1.000	． 06356	． 264013	．$-\times 0$	． 250	
F12	FNSOLO	1.000	． 16356	． 264013	． 250	． 250	
Ri3	RNSOC	1.000	． 06336	． 264013	． 250	． 250	
F14	RNSOC	1.000	． 163363	． 264013	． 250	． 250	
P17	FCOS	1． 000	.408188	1．050471	． 250	． 250	2
F13	RE05	1.000	． 408188	1.050471	． 250	． 250	
R19	FC05	1.000	． 408188	1.050471	． 250	． 250	
FEO	RHSOLO	1.000	． 163563	． 264013	． 250	． 250	
Fこ1	FICOL	1.000	． 408188	1．050471	． 250	． 250	
Fここ	RNSOC	1．000	－ 063363	． 264013	． 250	． 250	3
FE3	PNSOC：	1.000	． 06336	． 264013	． 250	． 250	v
F2S	FECS	1.000	． 408188	1.050471	． 250	． 250	
［1	ESP	1.000	－07E9ここ	．アごこここ	． 250	． 250	
にこ	ESP	1.000	－ 17 ごきこ	－アニツごこ	， 250	． 250	
13	CSE	1.000	－07ごご	－アゴごこ	． 250	． 250	
14	ESR	1.000	． 07 こここ	－アジぎこ	． 250	． 250	2
6	CSF	1.000	． 07 －9ここ	－アジ『こ	． 250	． 250	
E\％	EK	1.000	こ．-9604	11.49818	． 250	． 250	
07	ER	1.000	． 07 こ9ここ	－アごきごこ	． 250	． 250	
CS	EK	1．000	こ．-9604	11．498018	－ 250	． 250	
59	ESE	1.000	－07ごきこ	－アごきご	． 250	． 250	
C10	ES	1．000	－07こうここ	－フこЭこご	． 250	． 250	8
C11	EK	1． 000	こ．-95604	11.498018	． \mathbf{E}_{0}^{0}	． 250	
E12	EK	1.000	こ．ご心64	11.498015	． 80	． E ¢	
13	ESF	1.000	－07ごヨここ	－アゴこここ	． 250	． E_{0}^{0}	
E15	CSF	1.000	． 07 こうここ	． コこここ $^{\text {a }}$	． 250	． 25	
E1E	EK	1.000	2． 29564	11.498018	． 250	． 250	
Q1	日S	1．000	10.561313	105.1681 ご	1．083	． 250 N	2
I1	ERS	1.900	－ $76 \in \mathcal{E S O}$	4.447680	1．083	． 250×2	
IE	ERS	1.000	． T 66 ESO	4.447680	1．083	． $250 \times$	
IS	ZEN	1.000	4.895974	45.419744	1．083	． 250 A	
［14	VFF	1.000	65.004994	ここ0．5こ496\％	1.083	． 250 A	
F1	IL	1.000	73．8379	559．734518	1． $370 \cdots$	$1.270 \times$	
HE	IE	1.000	110.756904	ES0．-7677	1． 270×8	1.270 A	$?$
H 3	IL	1.000	110.756904	ES0．676778	1． 270	1．$\because 90$	
F4	IE	1.000	11.075690	BS． 06767	1． $370 \times$	1.270	
HE	IE	1.000	35．685336	ごア．E心ごア	1． 270×8	$1.270 \cdots$	

TABLE G-2. MULTICHANNEL WIR \because DATA TRANSMITTER MTBF @ $150^{\circ} \mathrm{C}$ (continued)

<<< EQUIPMENT FAILURE TABLE >>>

```
    - EDUIPMENT NAME
MULTICHANNEL :IIRELESS DATA TRANSMITTER
```

- ENVIROMmENTAL SERVICE CONDITIDN

MDIIILE NAME
STATIE STRAIN MOIJLATDR THERMDCDUPLE SCANNER IYNAMIE STRAIN TRANSMITTER

```
AIREGRNE UNINHABITED
FAILURE MILLIDN HRS
QUANTITY DUALITY GRRIE (100) (L06) \(363.92101 \quad 3636.47391\) \(471.46849 \quad 8639.50578\) \(440.75240 \quad 3126.28117\)
TATAL
```

1
1
1

\lll EQUIPMENT MTBF \ggg
1105 - 784 HRS LQG 65 HRS
<<< FAILURE RHTE DISTRIEUTIDN >>>
(RANKEL DRDER, IDG)

FART EODE

QUANTITY'

FAILURE RATE

614.08550 496.81144 65.00499 57.39009 21.12363 12.24565 4.89597 1.53256 1.53137 1.52071
1276.14191

PERECNT EONTR I BUTIDN

IC	12.000
FET	19.000
VFR	1.000
CK	25.000
QSF	2.000
RCOS	30.000
ZEN	1.000
CRS	2.000
CSR	21.000
FNSOC	24.000
TQTRL	137.000

48.120%
38.931%
5.094%
4.497%
1.655%
$.960 \%$
$.384 \%$
$.120 \%$
$.120 \%$
$.119 \%$
100.000%

TABLE G-3. MULlICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $175^{\circ} \mathrm{C}$
MOIULE : 1

STATIC STRGIN MOIIIL.ATDR

$\begin{aligned} & \text { CIRCUIT } \\ & \text { REF } \end{aligned}$	PART		FAILIURES	MILLIDN HPS		
DESIG	Cone	EDANTITY	LIPFEF DUAL	LDWER DUAL	DERATING	STRESS
F1	RHS 00 C	1.000	. 078304	. 326268	. 250	. 250
Fe	RHSOLC	1.000	. 078304	. 3 ece6s	. 250	. 250
F3	FHSOL	1.000	. 078304	. 3 E6268	. 250	. 250
F.4	PNSOL	1.000	. 078304	. 3 こ6e6s	.250	. 250
F5	RHSOC	1.000	. 078304	. 326268	. 250	. 250
Fe	RNSOLS	1.000	. 078304	. 326268	. 250	. 250
F7	FHStioc	1.000	- 078304	. 3ecese	. 250	. 250
FE	RC05	1.000	1.075e05	2.718013	. 250	. 250
FO	FO 0.05	1.000	1. 075205	E.718013	. 250	. 250
F10	FCOS	1.000	1.075205	E. 718013	. 250	. 250
F11	0005	1.000	1.075e05	E. 718013	. 250	. 250
F1E	FOOS	1.000	1. 075205	E. 718013	- 250	. 250
F13	FOOS	1.000	1. 075205	E. 718013	. 250	. 250
F14	FNS Oin	1.000	. 078304	. 326268	. 250	. 250
F15	RCOS	1.000	1.075205	E. 718013	. 250	. 250
F16	FHStios	1.000	. 078304	. 32626	- 250	-550
F17	FCOS	1.000	1.075205	E. 718013	. 250	. 250
F13	FHSOL	1.000	. 078304	. 32626	. 250	. 250
F19	FCOS	1.000	1.075205	E. 718012	. 250	. 250
FEO	FC0S	1.000	1.075205	E. 718013	. 250	. 250
FEI	FHEOUS	1.000	. 078304	. 32626	. 250	. 250
FEE	FOOS	1.000	1.075e05	E. 718013	. 250	- 250
FES	FHSOL	1.000	. 076304	. 32626	- 250	. 550
6	EF	1.000	19,011041	190.110409	. 250	. 250
0	LR	1.000	19.011041	190.110409	. 250	. 250
ES	CK	1.000	140.702060	708.530301	. 850	. 250
[4	ISF	1.000	19.011041	190.110409	. 250	. 250
5	SF	1.000	19.011141	190.110409	- 550	- 250
6	Er	1.000	140.702060	P03.530301	. 250	. 250
07	CK	1.000	140.700^{060}	P03.530301	. 250	- 50
58	IR	1.000	19.011041	190.110409	. 250	- 250
69	SF	1.000	19.911041	190.110409	. 250	. 250
510	CK	1.000	$1+6.02060$	703.530301	. 250	. 250
611	ESP	1. 000	19.011041	190.110409	. 250	. 250
E1E	E\%	1.000	140.702060	703.53001	- 250	- 250
813	EF	1.000	19.011041	190.110409	. 250	. 20
614	ISF	1.000	19.011041	190.110409	. 250	Es0
815	SSF	1.000	19.011041	190.110409	. 250	. 250
E16	ST	1. 000	19.011041	190.110409	. 250	. 250
[17	E\%	1.000	140.700^{060}	703.530301	. 250	50
618	ET	1.000	140.700^{060}	703.530801	. 250	. 250
01	FET	1.000	$14 E . E 81087$	こB4E. 0E1734	1.250	- 250
Qe	FET	1.000	142.281087	234E. 0 E1734	1.850	250
0	FET	1.000	$14 E .281087$	234E. 0 E1734	1.250	. 250
H1	IT	1.000	99.70988e	747.854116	1.520	1.520
He	IV	1.000	149.56482	1121.736175	1.520	1.50
H:	It	1.000	9\%. 70988	747.824116	1.500	1.500
H4	IL	1.000	3.32365	24.9ET471	1.520	1.
H5	It	1.000	3.32365	24.9E7471	1.520	1.580

TABLE G-3. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $175^{\circ} \mathrm{C}$ (continued)

MOIULE : 2 THERML゙ GUPLE SCRNNER

$\begin{aligned} & \text { GIRCUIT } \\ & \text { REF } \\ & \text { DESIG } \end{aligned}$	PART CODE	QUANTITY	FAILURES/MILLIDN HRS		IERPTINE	STRESS
			IJPFER QUAL	LIWER QUAL		
R1	RC 05	1.000	1.075205	2.718013	. 250	. 250
Re	RC05	1.000	1.075205	2.718013	. 250	. 250
R3	RC05	1.000	1.075205	2.718013	. 250	. 250
R4	RC05	1.000	1.075205	2.718013	. 250	. 250
R5	RC05	1.000	1.075205	2.718013	. 250	. 250
R6	RCOS	1.000	1.075205	2.718013	. 250	. 250
R7	RC05	1.000	1.075205	2.718013	. 250	. 250
R8	RCO 5	1.000	1.075205	2.719013	. 250	. 250
$\mathrm{R9}$	RC05	1.000	1.075205	2.718013	. 250	. 250
R10	RC05	1.000	1.075205	2.718013	. 250	. 250
C1	CK	1.000	140.702060	703.530301	. 250	. 250
C2	CK	1.000	140.702060	703.530301	. 250	. 250
03	CK	1.000	140.702060	703.530301	. 250	. 250
1.4	CK	1.000	140.702060	703.530301	. 250	. 250
05	EK	1.000	140.702060	703.530301	. 250	. 250
C6	CK	1.000	140.702060	703.530301	. 250	. 250
07	CK	1.000	149.702060	703.530301	. 250	. 250
68	CK	1.000	140.702060	703.530301	. 250	. 250
69	CK	1.000	140.702060	702.530301	. 250	. 250
C10	CK	1.090	140.702060	703.530301	. 250	. 250
C11	EK	1.000	140.702060	703.530301	. 250	. 250
C12	CK	1.000	140.702060	703.530301	. 250	. 250
C13	CK	1.000	140.702060	703.530301	. 250	. 250
Q1	FET	1.000	142.281087	2342.021734	1.250	. 250
02	FET	1.000	142.281087	2842.021724	1.250	. 250
03	FET	1.000	142.281087	284E.021734	1.250 N	. 250
24	FET	1.000	142.281087	2842.021734	1.250	. 250
05	FET	1.000	142.281087	234z.021734	1.250	. 250
06	FET	1.000	142.281087	284E.021734	1.250	. 250
97	FET	1.000	142.281087	2842.021734	$1.250 \ldots$. 250
08	FET	1.000	142.281087	2842.021734	1.250	. 250
09	FET	1.000	142.281087	2842.021734	1.250	. 250
010	FET	1.000	$14 E .281087$	284E.021734	1. 250	. 250
011	FET	1.000	142.281087	284E.021734	1.250	. 250
012	FET	1.000	142.281087	234E.021734	1.250	. 250
1.13	FET	1.000	$14 \varepsilon .281087$	2842.021734	1.250	. 250
014	FET	1.000	142.231087	284E.021734	$1.250 \ldots$. 250
015	FET	1.000	142.281087	2e4e.021734	1.250	. 250
916	FET	1.000	142.281087	284E.021734	$1.250 \ldots$. 250
617	QSF	1.000	63.727051	636.820508	1.250	. 250
F1	IC	1.000	4.985494	37.391206	1.520	1.520
AE	IC	1.000	6.647325	49.854941	1.520	1.520

TABLE G-3. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $175^{\circ} \mathrm{r}$ (continued)

MODULE : 3

CIRCUIT REF	PRRT
DESIG	COPE
R1	RN5 UC
Re	RN50C
R3	RC05
$R 4$	RNS 0 C
R5	RNS 50 C
R6	RCO5
R8	RH500
F 9	RC05
R10	RC05
F11	RN50C
R12	RNSOC
R13	RNS 000
R14	RN50C
R17	RC05
F18	RC05
R19	RC05
Reo	RH500
Re1	RC05
Ree	RH500
Re3	RNS 0 O
Fes	RCO5
C1	CSR
ce	CSR
53	CSF
C4	CSR
C5	CSR
C6	EK
C7	CSR
Cs	EK
69	ESR
C10	CSF
611	CK
CiE	CK
013	CSF
C15	CSF
C16	CK
01	QSP
I1	CRS
Le	CRE
13	ZEN
114	V/F
H1	IC
he	10
A3	IC
H4	IL
H5	IC.

DYNAMIC STRAIN TRANSMITTER

FAILURES/MILLIDN HRS QUANTITY UPPER QUAL IDIUER QUAL

DERATING STRESS
.250
.250
. 250
.250
.250
.250
.250
.250
.250
. 250
.250
. 250
. 250
. 250
. 250
. 250
. 250
.250 . 250
.250 . 250
.250 . 250
.250 . 250
.250 . 250
.250 . 250
.250 . 250
$.250 \quad .250$
$.250 \quad .250$
.250 . 250
.250 . 250
$.250 \quad .250$
.250 . 250
.250 . 250
.250 . 250
$.250 \quad .250$
.250 . 250
.250 . 250
$.250 \quad .250$
1.250 . 250
1.250 . 250
1.250 . 250
1.250 . 250
1.250 . 250 ^^
1.520 ~ 1.520
1.520 へ 1.520
1.520
1.520
1.520 人
1.520

TABLE G-3. MULTICHANNEL WIRELESS DATA TRANSMITTER MTBF @ $175^{\circ} \mathrm{C}$ (continued)

<<< EQUIPMENT FAILURE TABLE 》>>

APPENDIX H
 THEORY OF OPERATION OF TRANSMITTER AND RECEIVER SIGNAL CONDITIONING CIRCUITRY

Theory of Operation: Thermocouple Scanner

The thermocouple scanner (see Figure $\mathrm{H}-1$) module provides six channels of temperature measurement. The scanner sequentially selects six thermocouple output voltages, a zero reference, a calibration signal, a module's internal temperature signal and a sync signal for transmission.

The module's internal temperature information is used to derive the cold junction compensation. The output of the scanner is amplified by an AC amplifier and transmitted by the phase-lock transmitter.

Both the positive and negative thermocouple leads are switched by the scanner, thereby providing isolation between the channels. Each channel is scanned once every 2 milliseconds which provides a response bandwidth of 25 Hz , as required.

Theory of Operation: Temperature Demultiplexer

The temperature demultiplexer is shown in Figure $\mathrm{H}-2$. A sync decoder decodes the sync signal and maintains the operation of the demultiplexer in the same sequence as that of the transmitted signal.

The demodulated module temperature is added to the demodulated thermocouple signals for cold junction compensation. Self-calibration is aiso accomplished by comparirig the demodulated calibration signal to a

Figure $\mathrm{H}-1$. Thermocouple scanner block diagram.

Figure $\mathrm{H}-2$. Block diagram of temperature demultiplexer.
reference voltage and feeding back the error signal to vary the analog gain. This self-calibration feature greatly reduces gain errors over the full range of environmental conditions.

Theory of Operation: Static Strain Modulator

The outputs of the strain gage bridge (see Figure $\mathrm{H}-3$) are sampled alternately by two MOS switches. The differential output signal from the bridge is then converted to 3.125 kHz square waves whose amplitudes correspond to the magnitude of the strain signal. These square waves are amplified and applied to the input of a VCO in a similar manner as in the dynamic strain transmitter.

The sampling switches are driven by signals derived from dividing down the 200 kHz induced power frequency. A test frequency twice that of the sampling frequency was also derived from the same source.

The test signal is injected into the signal processing path and is recovered and utilized in the receiver to calibrate the gain of the system. Theory of Operation: Static Strain Demodulator

The composite static strzin signal from the receiver is further processed by the static strain demodulator module (see Figure H-4). The demodulator module consists of a phase-lock loop, a test signal demodulator and a static strain demodulator.

The phase-lock loop generates two sampling signals whose outputs are in quadrature with each other. When the sampling frequency is equal to the test signal frequency, and exactly 90 degrees out of phase the phase-lock loop is in lock. To speed up locking and increase the capture range of the phase-lock loop. A frequency comparator is used to limit the frequency deviation of the VCO to within 2 Hz of the expected frequency.

1

Figure H-4. Static strain demodulator block diagram.

When the PLL is in lock, the 6 kHz test signal is demodulated by the in-phase sampler whose output is amplified and compared with a reference. The comparator produces ar output which controls the gain of the input amplifier to maintain a constant system gain.

In this manner the gain of the system is standardized even if the gain of the transmitter varies with temperature. The bridge sensitivity is also automatically corrected should its excitation voltage vary due to temperature. This is because the amplitude of the 6 kHz test signal (in the transmitter) is propertional to the bridge excitation voltage.

The test signal sampling frequency is divided again by 2 to drive the static train demodulator. The demodulated strain signal is then amplified and filtered by a 500 Hz bandwidth lowpass filter. Then its absolute value is taken and passed on as the static strain signal is output.

Theory of Operation: Dynamic Strain Module

Referring to the block diagram of Figure H-5, AC power is picked up by the induction coil and applied to the power transformer. Diodes D1, and D2 full-wave rectify the input AC signal, and capacitor C1, filters the $A C$ ripple. The voltage regulator provides a stable +10 volt $D C$ output to power the rest of the circuits. The gage bias is supplied by the regulated $D C$ output through a precision resistor.

A 40 kHz self-test signal is derived from the 200 kHz AC input. The 400 kHz signal from the full-wave rectifier is divided down by a decade counter to 40 kHz . The output of the decade counter feeds the input amplifier. When the input gage is connected this test signal will appear at the output of the transmitter. However, when the gage is open,

Figure H-5. Dynamic strain transmitter block diagram.
the input amplifier saturates and the test signal disappears.
The gage signal is amplified by a two-stage cascaded amplifier whose gain range can be selected externally by connecting the "gain jumper" terminal to common. The second stage amplifier also acts as a frequency deviation limiter. If the input signal ever exceeds its normal range, usually due to a fault condition, the maximum frequency deviation of the transmitter will be limited by the second amplifier to prevent interference in the adjacent channels.

The VCO is phase-locked to the 200 kHz AC input and since all transmitters operating in the same system are locked onto the same frequency, channel spacing will be maintained throughout the full operating temperature range.

The output of the VCO drives the RF buffer amplifier which in turn drives the antenna.

APPENDIX I
 TESTS ON CAPACITIVE ANTENNA

Figure I-1 shows a closeup of two capacitive antennas which were fabricated and tested. The antennas were machined from standard copperclad glass-epoxy laminated P.C. board stock. Both antennas have a number of conducting tracks. In operation alternate tracks are grounder to serve as guards (or shields) and reduce crosstalks between the adjacent active tracks. Note that in the figure, the configuration at the left has narrow active tracks and wide guard tracks while the configuration on the right has equal widths for all tracks.

The most critical performance parameter for this antenna is crosstalk. Crosstalk increases with spacing between the transmitting and receiving antennas. The following is a summary of measured antenna crosstalk:

Spacing Between Transmitting and Receiving Ântennas	Crosstalk	
	Antenna "A" Narrow Active Tracks, Wide Guard Tracks	Antenna "B" All Tracks Equal Width
$0.030 "$	$>-40 \mathrm{db}$	
$0.060 "$	-33 db	
$0.120 "$	-21 db	-38 db

800-H/OV

Figure I-1. Closeup of antennas and simulated transmitter modules.

APPENDIX J
 ENVIRONMENTAL TEST ON HYBRID TANTALUM CAPACITORS

High Temperature and High G Engineering

Tantalum capacitors were selected for high temperature study. Because of their low strength and large bulk relative to the other components. The initial test comprised eight sample capacitors mounted on four substrates. The electrical properties and mechanical dinensions were recorded at room temperature. Epoxy was used to fill the voids between the capacitor body and the substrate to ensure good mechanical support for the capacitors. The substrates with these capacitors were then installed in a heated centrifuge rotor and spun at 40000 g ' and $+175^{\circ} \mathrm{C}$. Two separate groups were tested. Results of the tests are shown in the following table.

These results are very encouraging. Only one of the sixteen samples would be considered as failing (Unit No. 8 increased its leakage by about 40 times).

It is likely that a high temperature bake or burn-in can be employed to prescreen the capacitors and further reduce the failure rate.
FIRST TEST - 24 HR SPIN $175^{\circ} \mathrm{C} / 40 \mathrm{Kg}$'s

	Leakage		Capacitance		LX HXHMechanical Dimension	
Sample'	Before	After (\%)	Sefore	After (\%)	Berore	After
1	$9.09 \times 1 \mathrm{C}^{-8} \mathrm{~A}$	+260	$4.97 \mu \mathrm{f}$	+0.4	$0.1540 \times 0.1017 \times 0.0782$	$0.1539 \times 0.1016 \times 0.0785$
2	9.55×10^{-8}	+14.3	$4.80 \mu \mathrm{f}$	-2.3	$0.1543 \times 0.1042 \times 0.0780$	$0.1542 \times 0.1026 \times 0.0767$
3	9.55×10^{-8}	+14.3	$5.01 \mu \mathrm{f}$	+0.2	$0.1562 \times 0.1033 \times 0.0747$	$0.1559 \times 0.1032 \times 0.0745$
4	9.55×10^{-8}	+9.5	$5.02 \mu \mathrm{f}$	+0.6	$0.1532 \times 0.1051 \times 0.0755$	$0.1533 \times 0.1054 \times 0.0755$
5	1.00×10^{-7}	+4.6	$5.02 \mu \mathrm{f}$	+0.6	$0.1521 \times 0.1012 \times 0.0758$	$0.1528 \times$
6	9.09×10^{-8}	+315	$5.04 \mu \mathrm{f}$	+0.79	$0.1542 \times 0.1039 \times 0.0769$	
7	6.38×10^{-6}	-0.14	$4.8 \mu \mathrm{f}$	-39.58	$0.1571 \times 0.1097 \times 0.0737$	
8	1.00×10^{-7}	+4354	$4.87 \mu \mathrm{f}$			
			4.87μ	+1.64	$0.1555 \times 0.1025 \times 0.0715$	$0.1553 \times 0.1 C 23 \times 0.0717$

SECOND TEST - BAKE BEFORE HOT SPIN

Sample	Start		$\frac{\text { After Bake }}{24 \mathrm{hrs} / 175^{\circ} \mathrm{C}}$		$\begin{gathered} \text { After Spin } \\ 24 \mathrm{hrs} / 175^{\circ} \mathrm{C} / 40 \mathrm{~kg} \end{gathered}$	
	Leakage	Capacitance	Leakage	Capacitance	Leakage	Capacitance
9	$6.4 \cdot 10^{-6} \mathrm{~A}$	--	$6.4 \cdot 10^{-6}$	--		Capacitance
10	$9.1 \cdot 10^{-8}$	$1.015 \mu \mathrm{f}$	$8.6 \cdot 10^{-8}$		6.3 - 10	--
11	$9.5 \cdot 10^{-8}$			0.999 ~	$8.6 \cdot 10^{-8}$	0.998 ¢ f
12	$9.1 \cdot 10^{-8}$	$0.920{ }^{\text {f }}$	$8.6 \cdot 10^{-8}$	$0.972 \mu \mathrm{f}$	$8.6 \cdot 10^{-8}$	0.948 นf
12		$1.081 \mu \mathrm{f}$	$8.6 \cdot 10^{-8}$	$1.066 \mu \mathrm{f}$	$8.6 \cdot 10^{-8}$	1.066 ¢f
13	$4.5 \cdot 10^{-7}$	$1.010 \mu \mathrm{f}$	$5.7 \cdot 10^{-6}$	$0.994 \mu \mathrm{f}$	$5.5 \cdot 10^{-6}$	0.995 f
14	$9.5 \cdot 10^{-8}$	$1.076{ }_{\mu} \mathrm{f}$	$8.6 \cdot 10^{-8}$	1.065		0.995
15	$9.1 \cdot 10^{-8}$	$1.011 \mu \mathrm{f}$	$8.6 \cdot 10^{-8}$	1.065	$6 \cdot 10^{-8}$	$1.064 \mu \mathrm{f}$
16	$9.5 \cdot 10^{-6}$	1.017		$0.997 \mu^{\text {f }}$	$8.5 \cdot 10^{-8}$	0.997 uf
		$1.011{ }^{\text {f }}$	$8.6 \cdot 10^{-8}$	1.002 uf	$8.6 \cdot 10^{-8}$	1.001 นf

APPENDIX K

ADDITIONAL DRAWINGS

This Appendix contains the following drawings.

Acurex Autodata Number		Title
27271		Block Diagram, 11-22 Frequency Synthesiser
27273		Dynamic Strair Receiver, Block Diagram
28011		Static Strain Demodulator, Schematic
28016		Dynamic Strain Receiver, Schematic
28042		Stationary System Wiring
28045		Dynamic Strain Transmitter, Schematic
28046		Tracking Phase-Locked Loop Receiver, Schematic (Sheet 1)
28046	Tracking Phase-Locked Loop Receiver, Schematic (Sheet 2)	
28047	Frequency Comb Spectrum Generator, Schematic	
E25508	Dynamic Strain Transmitter Housing NASA	
E25518	Dynamic Strain Transmitter Lid	

EOLDOUT FRAMF

PRECEDING PACE ELANK NOT THMED
FOLDOUT FRAME

PRECEDING PAGE BLANK NOT FILMED

FOLDOUT FRAM
S: UNLESS OTHERWISE NOTED
1 RESISTORS ARE $1 / 4 \mathrm{~W}$.
FILTER CAP @ IC, NOT ON OPAMPS. OIUF LL OPAMPS ARE TO-5 CASE SIZE


```
& S.YSTEM
G-
```


FOLDOUT FRAS:

$\div(\mathrm{N}+2)$ COUNTER

FOLONIT FRAS. 2

ORIGINAL PAGE si
Of boon quatre

FOLA, fho:

NOTES:

1. INTERPRET DRAWING PER MIL-STD-IOC
2. BREAK ALL SHARP EDGES .OIO MAX 4 REMOVE ALL BURRS
3. NATER/AL $=17-4$ PH CRES, H900 COND
4. MACHINED SURFACES TO BE $\sqrt[32]{ }$.
5. PINS 70 BE $1 / 2$ HARD EERYLIUM, GOLD PLATED

Armort frantio 2

NOTES:

1. INTERPRET DRAWING PER MIL-STD-IOOB
2. BREAK ALL SHARP EDGES . OIO MAX \& REMOVE ALL BURRS
3. MATERIUL : I7-4 PH CRES, H9OO COND
4. MACHINED SURFACES TO BE 32 .
5. FINE GRIT BLAST THIS SURFACE

FOLDOUT FRAME \geq

REFERENCES

1. Panter, P. F.: Modulation, Noise and Spectral Analysis. McGraw-Hill,
New York, 1965.
2. Corrington, M. S.: Frequency Modulation Distortion Caused by Common -- and Adjacent -- Channel Interference. RCA Review, Vol. 7, pp. 522 - 560, December, 1946.
3. Carlson, A. B.: Communication Systems, Mć̂́raw-Hill, New York, 1975.

[^0]: *See note in Figure G-1.

