
# ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE



DOE/JPL - 954830 - 78/2 Distribution Category UC-63

ASSESSMENT OF PRESENT STATE-OF-THE-ART SAWING TECHNOLOGY OF LARGE DIAMETER INGOTS FOR SOLAR SHEET MATERIAL

FINAL REPORT

# FOR PERIOD COVERING

### 1 SEPTEMBER 1977 THROUGH 28 FEBRUARY 1978

ΒY

### H. I. YOO

# JPL CONTRACT NO. 954830

# OPTICAL COATING LABORATORY, INC. PHOTOELECTRONICS DIVISION 15251 EAST DON JULIAN ROAD CITY OF INDUSTRY, CA 91746

"The JPL Low-Cost Silicon Solar Array Project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DoE."

REPRODUCIONATY OF THE ORIGINAL LAGE IS POOR

"This report was prepared as an account of work sponsored by the United States Government. Meither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights."

### ABSTRACT

The objective of this program is to assess the present state-ofthe-art sawing technology of large diameter silicon ingots (3" and 4" diameter) for solar sheet materials. During this program, work has progressed in: (1) Slicing of the ingots with the multiblade slurry (MBS) saw, the multiwire slurry (MWS) saw and the I.D. saw, (2) Characterization of the sliced wafers, and (3) Analysis of add-on slicing cost based on SAMICS.

Multiblade slurry slicing resulted in mechanical wafer yields of 95% for the 3" diameter ingot and 84% for the 4" diameter ingot (using a 230 blade package to cut 6" ingot in length). A slicing test with the I.D. saw was performed to obtain mechanical yield versus both wafer thickness and cut rate, and the result showed a good yield (above 95%) down to 7-8 mils of wafer thickness for the 3" wafers and 11-12 mils for the 4" wafers if the cut rates were reduced to one (1) inch per minute. An ingot of 3" in diameter and 3" in length was sliced with a multiwire slurry saw to obtain wafer yield of about 97%; 163 wires were used, and wafer thickness and kerf width were 10-11 mils and 8 mils, respectively.

Thickness, taper, bow, and roughness (RMS) were measured to characterize the sliced wafers. Four inch wafers sliced with the multiblade slurry saw showed larger thickness variation (wafer to wafer) and more taper than 3" wafers. Wafers sliced with the I.D. saw indicated that taper, bow and roughness increased as the cut rate increased (This effect was significant when cut rate was increased to above

-i-

three (3) inches per minute). Comparison of the above parameters showed the wafers cut with the I.D. saw (sliced below three (3) inch per minute of cut rate) and the multiwire slurry saw have much smaller values and variations than those cut with the multiblade slurry saw, indicating the need for less removal of silicon before solar cell formation. Also, the I.D. saw wafers showed slightly better characteristics in parameters than those of the multiwire slurry saw.

Add-on slicing cost was evaluated based on Solar Array Manufacturing Industry Costing Standard (SAMICS) for three slicing types: MBS saw indicated a cost of \$.80/wafer for 3" wafers and \$1.41/wafer for 4" wafers while MWS saw showed \$.85/wafer for 3" wafers. I.D. saw sliced at two (2) IPM of cut rate gave \$.17/wafer for 3" wafer and \$.24/wafer for 4" wafers showing significant advantages over the other two methods at present.

# ACKNOWLEDGEMENTS

The author wishes to acknowledge and express his appreciation to the numerous individuals who contributed to this report. At OCLI slicing experiments and significant information was provided by R. Schwartz and P. Iles assisted this program in various ways. Special thanks go to K. Evans, of JPL, who took SEM pictures for blade and wafer characterization.

D. Bickler, of JPL, is the Task Manager and L. Sanchez, of JPL, is the Technical Manager for this study. Their helpful guidance and input to the study are gratefully achnowledged.

# TABLE OF CONTENTS

|      |       |         |           |                                                    | PAGE |
|------|-------|---------|-----------|----------------------------------------------------|------|
|      | ABSTI | RACT.   |           |                                                    | i    |
|      | ACKN  | OWLEDG  | EMENTS    |                                                    | iti  |
|      | TABLE | E OF CO | ONTENTS.  |                                                    | iv   |
|      | LIST  | OF FI   | GURES     |                                                    | vi   |
|      |       |         |           |                                                    |      |
| _    |       |         |           |                                                    | VIII |
| Ι.   | INTRO | DUCTI   | ON        | • • • • • • • • • • • • • • • • • • • •            | 1    |
| Π.   | TECH  | VICAL I | DISCUSSI  | DN                                                 | 3    |
|      | 1.0   | Slict   | ing Expe  | riments                                            | 3    |
|      |       | 1.1     | Multib    | lade Slurry (MBS) Saw Slicing                      | 3    |
|      |       | 1.2     | Multiw    | ire Slurry (MWS) Saw Slicing                       | 5    |
|      |       | 1.3     | Interna   | al Diameter (I.D.) Saw Slicing                     | 8    |
|      |       |         | 1.3.1     | Wafer Yield Versus Wafer Thickness and Cut<br>Rate | 8    |
|      |       |         | 1.3.2     | Thin Blade Slicing                                 | 15   |
|      |       |         | 1.3.3     | Accelerometer Results                              | 16   |
|      | 2.0   | Chara   | acterizat | tion                                               | 19   |
|      |       | 2.1     | Wafers.   |                                                    | 19   |
|      |       |         | 2.1.1     | MBS Saw Wafers                                     | 19   |
|      |       |         | 2.1.2     | MWS Saw Wafers                                     | 20   |
|      |       |         | 2.1.3     | I.D. Saw Wafers                                    | 20   |
|      |       |         | 2.1.4     | Comparison of Wafer Parameters                     | 29   |
|      |       | 2.2     | B1ades    | and Wires                                          | 41   |
|      |       |         | 2.2.1     | MBS Saw Blades                                     | 41   |
|      |       |         | 2.2.2     | MWS Saw Wires                                      | 41   |
|      |       |         | 2.2.3     | I.D. Saw Blades                                    | 45   |
| III. | COST  | ANALYS  | SIS       |                                                    | 51   |
|      | 1.0   | Add-(   | Dn Slicin | ng Cost                                            | 51   |
|      | 2.0   | Wafer   | Cost      |                                                    | 52   |

 $\mathbf{c}$ 

# PAGE

16

|     | 3.0   | Reduction Potential                                              | 60 |
|-----|-------|------------------------------------------------------------------|----|
|     |       | 3.1 MBS Saw                                                      | 60 |
|     |       | 3.2 MWS Saw                                                      | 62 |
|     |       | 3.3 I.D. Saw                                                     | 62 |
|     | 4.0   | Discussion                                                       | 64 |
| IV. | CONCL | USIONS AND RECOMMENDATIONS                                       | 66 |
| ۷.  | REFER | ENCES                                                            | 68 |
|     | APPEN | DICES                                                            |    |
|     | Ι.    | Application of SAMICS to Multiblade Slurry (MBS) Saw<br>Slicing  |    |
|     | II.   | Application of SAMICS to Internal Diameter (I.D.) Saw<br>Slicing |    |
|     | III.  | Application of SAMICS to Multiwire Slurry (MWS) Saw<br>Slicing   |    |
|     | IV.   | A New Cost Account Catalog for SAMICS                            |    |
|     | ۷.    | Abbreviations                                                    |    |

- V -

# LIST OF FIGURES

| FIGURE |                                                                                         | PAGE |
|--------|-----------------------------------------------------------------------------------------|------|
| 11-1   | Ingot Mounting for Multiwire Saw Slicing                                                | 6    |
| II-2   | Mechanical Yield Versus Wafer Thickness and Cut<br>Rate of I.D. Saw; 3" Wafers          | 10   |
| II-3   | Mechanical Yield Versus Wafer Thickness and Cut<br>Rate of I.D. Saw; 4" Wafers          | 11   |
| II-4   | Breakage of Wafers Sliced at High Cut Rates of I.D.<br>Saw                              | 13   |
| II-5   | Mechanical Wafer Yield Versus Cut of I.D. Saw<br>(Standard Blade)                       | 14   |
| II-6   | Typical Output of an Accelerometer of I.D. Saw<br>Slicing                               | 17   |
| II-7   | Output of an Accelerometer at Two Different I.D.<br>Blade Conditions                    | 18   |
| II-8   | Range of Taper Versus Cut Rate of I.D. Saw<br>(Standard Blade)                          | 24   |
| II-9   | Range of Bow Versus Cut Rate of I.D. Saw (Standard Blade)                               | 25   |
| II-10  | Range of Roughness (RMS) Versus Cut Rate of I.D.<br>Saw (Standard Blade)                | 26   |
| 11-11  | Range of Kerf Width Versus Cut Rate of I.D. Saw<br>(Standard Blade)                     | 27   |
| II-12  | Comparison of Bow of the Wafers Sliced by Three<br>Different Slicing Types              | 33   |
| 11-13  | Comparison of Tapers of the Wafers Sliced by Three Different Slicing Types              | 34   |
| II-14  | Comparison of Roughness (RMS) of the Wafers Sliced<br>by Three Different Slicing types  | 35   |
| II-15  | Typical Surface Profiles of the Sliced Wafers                                           | 36   |
| II-16  | SEM Pictures of the Surface of the Wafers Sawn by<br>Three Different Slicing Techniques | 38   |
| II-17  | A Blade From a Multiblade Package of a MBS Saw<br>After Slicing a 4" Diameter Si Ingot  | 42   |
| II-18  | SEM Pictures of MWS Saw Wires                                                           | 43   |
| II-19  | SEM Pictures of I.D. Blades at Diamond Plated<br>Cutting Edge                           | 46   |
| II-20  | SEM Pictures of I.D. Blades; Side View of Diamond<br>Plated Cutting Edge                | 47   |
| 11-21  | SEM Pictures of Used I.D. Blades                                                        | 49   |
| II-22  | Kerf Width Versus History (Number of Cuts) of I.D.<br>Blades                            | 50   |

-vi-

N'

# LIST OF FIGURES

| FIGURE | PAGE                                                                         |
|--------|------------------------------------------------------------------------------|
| 111-1  | Yielded Wafer Cost (SAMICS) Versus Wafer Thickness<br>of I.D. Saw Cut Wafers |
| 111-2  | An Illustration of Finding a Optimum Thickness (Top)<br>of I.D. Wafers       |

# LIST OF TABLES

| TABLE |                                                                                                                   | PAGE |
|-------|-------------------------------------------------------------------------------------------------------------------|------|
| II-1  | MBS Saw Slicing Conditions                                                                                        | 4    |
| II-2  | MWS Saw Slicing Conditions                                                                                        | 7    |
| II-3  | I.D. Saw Slicing Conditions                                                                                       | 9    |
| II-4  | Characterization of Wafers Sliced With MWS Saw                                                                    | 21   |
| II-5  | Effect of Cut Rate on 3" Wafer Parametors Sliced by I.D. Saw                                                      | 23   |
| II-6  | Four Inch Wafers Sliced With a Thin I.D. Blade                                                                    | 28   |
| II-7  | Comparison of 3" Wafer Parameters                                                                                 | 31   |
| II-8  | Comparison of 4" Wafer Parameters                                                                                 | 32   |
| 111-1 | Dependence of Add-On Slicing Cost (SAMICS) on Cut<br>Rate of I.D. Saw                                             | 53   |
| III-2 | Silicon Wafers Cost (SAMICS) of Different Slicing<br>Types at Various Ingot Price Levels                          | 54   |
| III-3 | Si Cost (SAMICS) Per Unit Yielded Area of 3" Wafers<br>as a Function Q: Wafer Thickness; I.D. Saw                 | 56   |
| III-4 | Slicing Add-On Costs (SAMICS) Per Unit Yielded Area<br>of 3" Wafers as a Function of Wafer Thickness; I.D.<br>Saw | 57   |
| 111-5 | Wafer Cost (SAMICS) Per Unit Yielded Area of 3"<br>Wafer as a Function of Wafer Thickness; I.D. Saw               |      |
| III-6 | Comparison of Add-On Slicing Cost (SAMICS) of<br>Different Slicing Types                                          | 61   |

### I. INTRODUCTION

Substrate proparation in sheet form is a first step in solar cell icorication. Sheets for silicon solar cells are often prepared from ingots sliced by mechanical means. This slicing step results in loss of silicon (called kerf loss), and this loss adds considerably to the overall cost because already much expense has accrued in forming the ingots. A number of different techniques for slicing silicon have been tried and some have seen limited to production use. Methods tried include:

- Internal or outer diameter (I.D. or O.D.) wheel saw.
- Multiblade saw, using slurry, or diamond particles plated to the blade.
- Multiwire saw, using slurry, or diamond particles plated to the blade.
- Spark discharge with wires or blades.
- Pulsed laser discharge.
- Electro-chemical removal with current (etch-cutting)
- Ultra-high pressure (100,000 psi) water jet.

Among these techniques, the I.D. saw is the most extensively used in industry and is a well developed method for preparing large area sheets from silicon ingots for solar cells. Typical shortcomings of other techniques include excessive taper, unpredictable work damage, low mechanical yield, and lack of machine productivity (mainly because of slow cutting rate). The objective of this program is to assess the present state-of-the-art sawing technology of large diameter silicon ingots for solar sheet materials, with main emphasis on the I.D. saw. Slicing by multiblade slurry slicing and multiwire slurry is compared with I.D. slicing techniques. During this contract, work has progressed in slicing of silicon ingots with multiblade slurry (MBS) saw, internal diameter (I.D.) saw, and multiwire slurry (MWS) saw. Three inch (3") and four inch (4") ingots were sliced with both MBS saw and I.D. saw, while only a 3" ingot was sliced with the MWS saw due to the limitation of the machine used. Mechanical properties of the sliced wafers, such as thickness variation, bow, taper and surface roughness, are identified and the blades (or wires) used in the test examined using characterization techniques (such as SEM pictures, sectioning and potting techniques, etc.). Finally, add-on slicing cost was evaluated based on Solar Array Manufacturing Industry Costing Standards (SAMICS).

# II. TECHNICAL DISCUSSION

# 1.0 SLICING EXPERIMENTS

# 1.1 Multiblade Slurry (MBS) Saw Slicing

Slicing experiments were conducted using a Norton 686 wafering machine (same as Varian 686). A pre-assembled blade package from Varian was loaded in the blade head and aligned and tensioned (difficulty in alignment and tensioning, especially in tensioning, forced OCLI to cease using pin type blade packages which are cheaper than pre-assembled blade packages). The blade packages with 230 blades (blade thickness 8 mils, spacer thickness 18 mils and blade depth 1/4") were used to slice 6" ingot length for both 3" and 4" diameter ingots. The slurry was a mixture of 12 lbs. of 400 grit SiC and 1.8 gallons of P.C. oil. The load on the ingot per blade was about 100 grams and a stroke length of 6 3/4" and a stroke rate of 100 cycles/minute were used in this experiment.

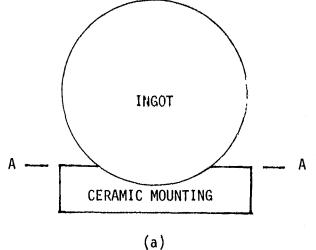
The total slicing time was 10 hours for the 3" ingot and 20.5 hours for the 4" ingot, and mechanical yields (the iraction of unbroken slices) were 95% and 84% for the 3" and 4" diameter ingot, respectively. The detailed slicing conditions and their results are given in Table II-1.

-3-

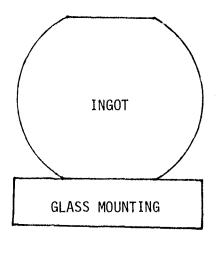
# TABLE II-1

| MBS | SAW | SL | ICI | NG | CONDITION | S |
|-----|-----|----|-----|----|-----------|---|
|     |     |    |     |    |           |   |

| INGOT DIAMETER, CM (INCH)                 | 7.62 (3")  | 10.16 (4")                                                                                                      |
|-------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|
| BLADE PACKAGE                             |            |                                                                                                                 |
| Number of Blades                          | 230        | 230                                                                                                             |
| Spacer Thickness, mm (mils)               | 0.457 (18) | 0.457 (18)                                                                                                      |
| Blade Thickness, mm (mils)                | 0.203 (8)  | 0.203 (8)                                                                                                       |
| Blade Width, mm (inch)                    | 6.35 (1/4) | 6.35 (1/4)                                                                                                      |
| SLURRY                                    |            | 999 - 1999 - 1999 - 4- 1999 - 4- 1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 |
| Abrasive (400, SiC), Kg (1b)              | 5.4 (12)   | 5.4 (12)                                                                                                        |
| Suspension Oil (P.C. Oil), liter (gallon) | 6.8 (1.8)  | 6.8 (1.8)                                                                                                       |
| Mix, Kg/liter (lb/gallon)                 | 0.79 (6.7) | 0.79 (6.7)                                                                                                      |
| Load on Blade, gram/blade                 | 100        | 90                                                                                                              |
| Blade Speed, cm/sec.                      | 57         | 57                                                                                                              |
| Wear Ratio                                |            | 0.048                                                                                                           |
| PRODUCTIVITY (WAFER)                      |            | annya - Anagang ang Pangar ( palanakan adara garagang ang darang<br>-                                           |
| cm <sup>2</sup> /Machine/Hour             | 1,005      | 771                                                                                                             |
| cm <sup>2</sup> /Blade/Hour               | 4.33       | 3.32                                                                                                            |
| Yield, %                                  | 95         | 85                                                                                                              |
| Yielded Wafer Area, m <sup>2</sup>        | 1.0        | 1.58                                                                                                            |
| Ingot Length, cm (inch)                   | 15.24 (6)  | 15.24 (6)                                                                                                       |


# 1.2 Multiwire Slurry (MWS) Saw Slicing

A slicing experiment was performed by Yasunaga Engineer Co., Ltd., using their YQ-100 wafering machine. The following information on slicing was furnished by the company.


A 3" diameter ingot 3" in length was mounted on a ceramic block with epoxy adhesive as in (a) of Figure II-1. (Note: Limitation of the machine prohibited slicing 4" diameter ingot or longer ingot.) With this mounting configuration, the wire started to cut the ingot and the mounting block at the time when wire reaches position A-A. As a consequence the initial slicing conditions change and the cutting speed decreases drastically. If the surface of the ceramic block is uneven, the wire often slips out of the position, causing saw marks on the surface of the wafers (graphite may be a better material for this purpose). However, there is less trouble if the ingot has a flat side and in (b) of Figure II-1. In this case, the ingot is sliced first and the mounting block afterward. A piece of glass was a suitable mounting material and gave lesser trouble than other materials.

Diameter of the wire was 0.16 mm (6.3 mils) and number of wires under cutting was 163. Slurry was a mixture of 5 Kg of 16  $\mu$ m alumina powder and 3 Kg of lapping oil. Total slicing time was 8:35 hours and a mechanical wafer yield of 97% was obtained. Detailed slicing conditions are given in Table II-2.

-5-



- 6 B



(b)

FIGURE II-1 - INGOT MOUNTING FOR MULTIWIRE SLURRY SAW SLICING (a) ON CERAMIC

> (b) ON GLASS

> > -6-

# TABLE II-2

\*

# MWS SAW SLICING CONDITIONS

| INGOT                                       |             |
|---------------------------------------------|-------------|
| Diameter, cm (inch)                         | 7.62 (3)    |
| Length, cm (inch)                           | 7.62 (3)    |
| WIRE                                        |             |
| Roller Pitch, mm (mils)                     | 0.47 (18.5) |
| Diameter of Wire, mm (mils)                 | 0.16 (6.3)  |
| Number of Wires Under Cutting               | 163         |
| Mean Unit Weight, g/cm/wire                 | 13          |
| Total Wire Tension, Kg                      | 1.7         |
| Breaking Point of Wire, Kg                  | 5.7         |
| Wire Feed Rate, m/min.                      | 8           |
| Reciprocation of Wire, cycle/min.           | 65          |
| Wears of Wire, $\mu m$                      | 12          |
| SLURRY                                      |             |
| Abrasive, GC #1000 (16µm), Kg               | 5           |
| Lapping Oil, P.C. Oil, Kg                   | 3           |
| Wafer Thickness, mm (mils)                  | 0.27 (10.6) |
| Kerf Width, mm (mils)                       | 0.20 (7.9)  |
| Slicing Time, hours                         | 8:35        |
| Mechanical Yield, %                         | 97          |
| Yielded Wafer Area, m <sup>2</sup>          | 0.72        |
| Productivity, cm <sup>2</sup> /machine/hour | 840         |

# 1.3 Internal Diameter (I.D.) Saw Slicing

Slicing experiments were carried out using wafering machines from Silicon Technology Corporation: Model STC-16 was used for slicing 3" ingots and Model STC-22 for 4" ingots. I.D. of a blade for STC-16 was 6" and the thickness of a diamond plated edge and core (stainless steel) of the standard blade were about 11-12 mils and 4 mils, respectively. The I.D. of a standard blade for STC-22 was 8" and the thickness of diamond edge and core were about 13-14 mils and 6 mils, respectively.

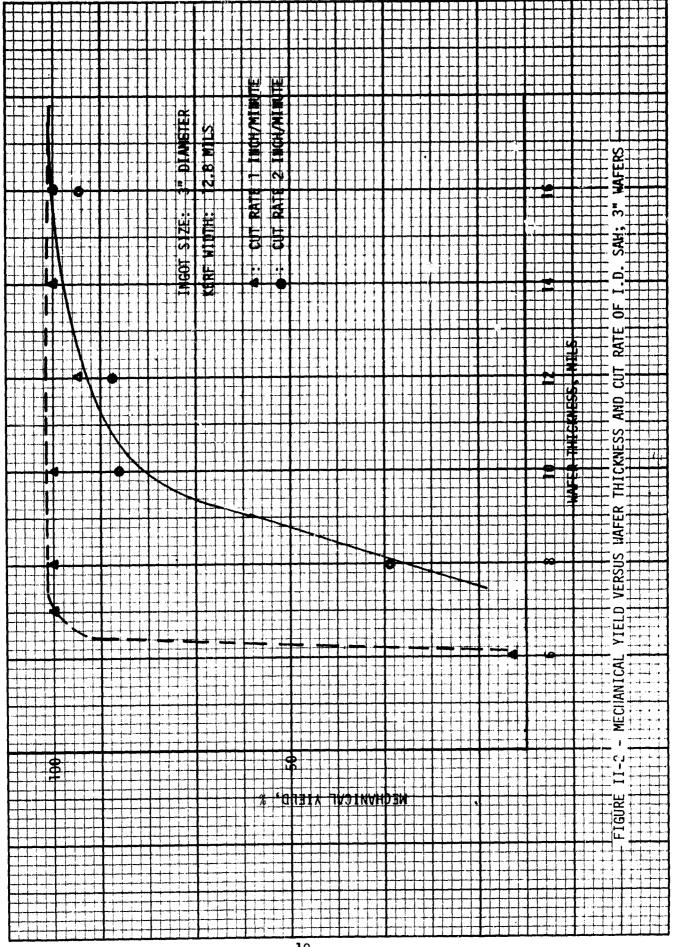
# 1.3.1 Wafer Yield Versus Wafer Thickness and Cut Rate

Mechanical wafer yield versus wafer thickness at two cut rates, one (1) IPM and two (2) IPM, were obtained using standard blades and a normal mode of slicing operation (described in the First Quarterly Peport<sup>(1)</sup>) for both 3" and 4" ingots. The results showed good mechanical yields (above 95%) down to 7-8 mils of wafer thickness for the 3" wafers and 11-12 mils for the 4" wafers if the cut rates reduced to one (1) IPM. The slicing conditions are given in Table II-3, and the plots of mechanical yields versus wafer thickness and cut rate are given in Figure II-2 for the 3" wafer and Figure II-3 for the 4" wafer.

Difficulties in slicing thin wafers, less than 7 mils 3" wafers for example, were experienced due to the mechanical instability of a I.D. blade. At constant cut rates the stress on the blades is greatest at the beginning and end of the cut, causing flutter and surface damage<sup>(2)</sup>. Programmed cut rates are designed to reduce

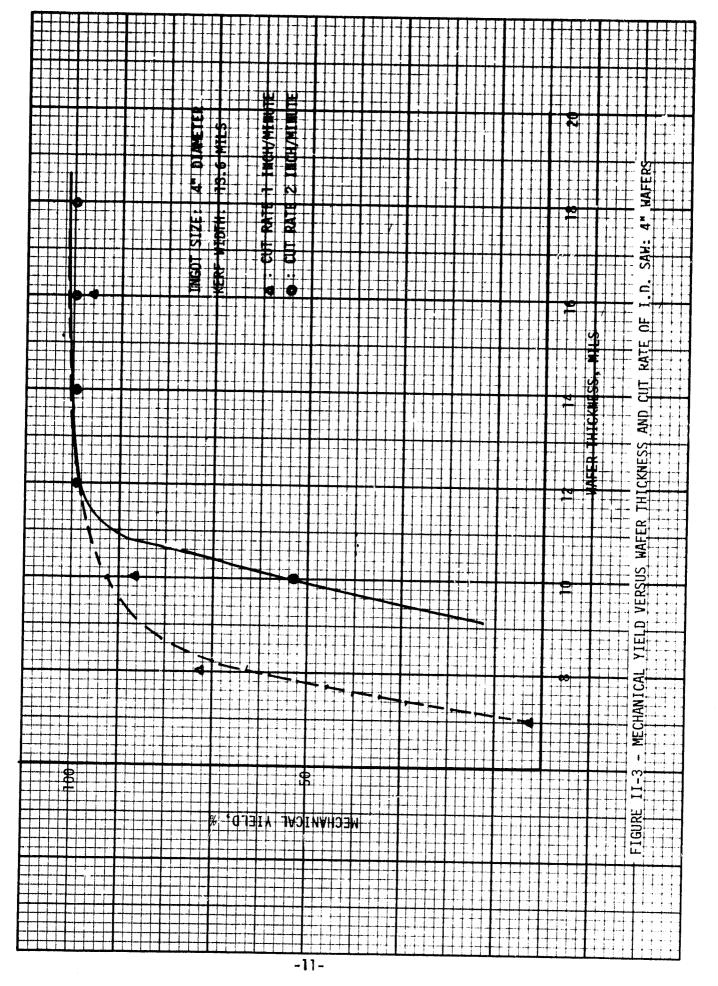
-8-

# TABLE II-3


; . .

i N N

1.2


# I.D. SAW SLICING CONDITIONS

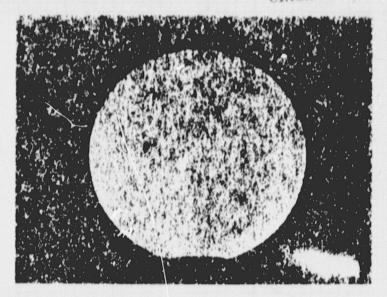
| INGOT SIZE, CM (INCH)                               | 7.62     | (3")                                                                   | 10.16     | (4")                                                           |
|-----------------------------------------------------|----------|------------------------------------------------------------------------|-----------|----------------------------------------------------------------|
| Machine                                             | STC      | -16                                                                    | STC-      | 22                                                             |
| BLADE                                               |          |                                                                        | ,         | 9                                                              |
| I.D., cm (inch)                                     | 15.2     | 4 (6)                                                                  | 20.32     | (8)                                                            |
| 0.D., cm (inch)                                     | 42.23 (  | 16-5/8)                                                                | 55.88     | (22)                                                           |
| Core Thickness, mm (mils)                           | 0.1      | 0 (4)                                                                  | 0.15      | (6)                                                            |
| Diamond Thickness, mm (mils)                        | 0.28∿0.3 | 0 (11-12)                                                              | 0.33~0.36 | (13-14)                                                        |
| Blade Rotation, R.P.M.                              | 2,10     | 0                                                                      | 1,650     |                                                                |
| Blade Return Speed, cm/min (inch/min)               | 38.1     | (15)                                                                   | 38.1      | (15)                                                           |
| Blade Stroke, cm (inch)                             | 8.1      | 3 (3.2)                                                                | 10.67     | (4.2)                                                          |
| Blade Dressing, After Number of Slices              | 5        | 0                                                                      | 25        |                                                                |
| COOLANT                                             |          | al ang gang dari salang dari gan san san san san san san san san san s |           | ingen ander verderer oger meller ange for Malandaka som av som |
| Flow Rate, cc/min                                   | 12       | 0                                                                      | 140       | )                                                              |
| Mix Ratio, Water: Rust-Lick                         |          | :1                                                                     | 80:       |                                                                |
| Cut Rate, Inch/Minute                               | 1        | 2                                                                      | 1         | 2                                                              |
| Slicing Cycle, Minute/Wafer                         | 3.4      | 1.8                                                                    | 4.5       | 2.4                                                            |
| Productivity (Wafer), cm <sup>2</sup> /Machine/Hour | 800      | 1,510                                                                  | 1,090     | 2,040                                                          |



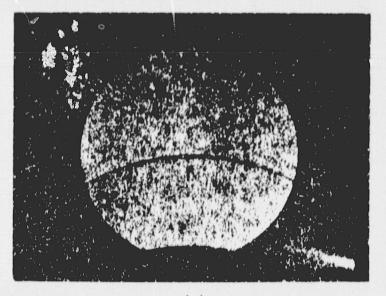
i.

-10-




• •

damage by maintaining constant pressure throughout the cut, resulting in more uniform surface quality and longer blade life. Experiments were performed to control cut rates manually; initially one quarter of the wafer was sliced by (approximate) linearly increasing the cut rate from 0.1 to 1.3 IPM. The middle half of the wafer was cut at constant rate ( $\sim$  1.3 IPM) and the last quarter of the wafer was sliced with decreasing cut rate. Average cut rate was approximately one (1) IPM and a wafer thickness of about 5 mils was obtained experimentally. This result might not give any impact on reduction of wafer cost due to difficulties associated with the handling of thin wafers. However, this experiment indicates a possibility of significant improvement in wafer yields and less surface damage with uniform distribuiton.


To see the effect of cut rate on mechanical yield and wafer parameters, a cut rate of up to five (5) IPM was applied to slice 3" wafers of 12 mils thickness. From the sample size of 10 wafers, 100% wafer yield was obtained below three (3) IPM of cut rate and breakage of wafer started at three (3) IPM. At five (5) IPM of cut rate all the wafers were broken (mostly by the last cutting edge of the wafer), often showing step changes in thickness of the wafer. Figure II-4 gives a picture of broken wafers sliced at high cut rates, (a) four (4) IPM, (b) five(5) IPM, and a middle arc in (b) indicates a step change in wafer thickness. Mechanical wafer yield versus cut rate (up to 5 IPM of cut rate) is plotted in Figure II-5.

-12-

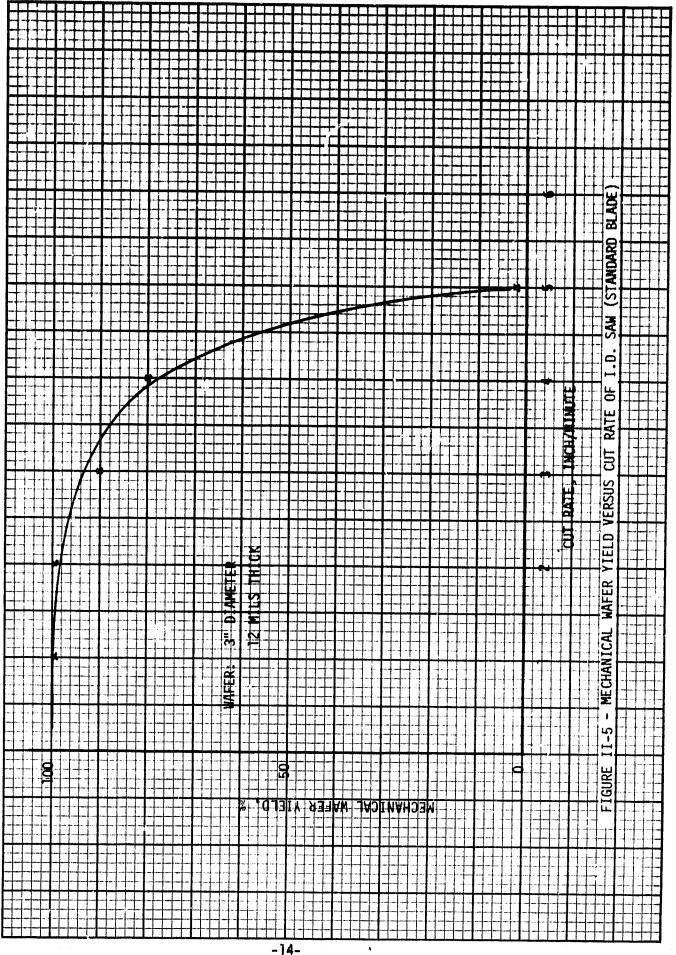
# REPRODUCIBILITY OF THE ORIGINAL FAGE IS POOR



(a)



(b)


FIGURE II-4 - BREAKAGE OF WAFERS SLICED AT HIGH CUT RATES OF I.D. SAW

(a) FOUR (4) INCH/MINUTE

(b) FIVE (5) INCH/MINUTE

SLICING DIRECTION IS FROM TOP TO BOTTOM AND STEP CHANGE IN THICK-NESS IS SHOWN IN (b)

14



15

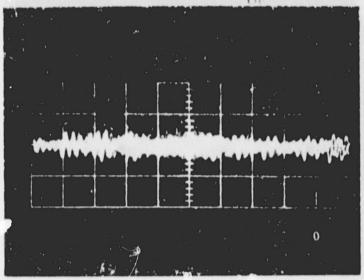
•

# 1.3.2 Thin Blade Slicing

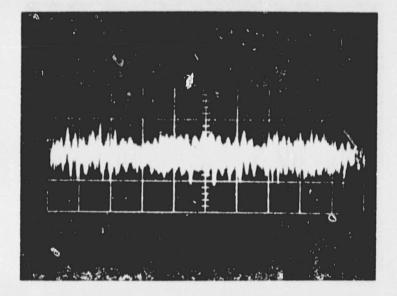
Four (4) thin I.D. blades (two for 6" I.D. blade and two for 8" I.D. blade) were delivered from Semiconductor Materials, Inc. (SMI). Thicknesses of the core and diamond edge of the blade were about 5.2-5.4 mils and 12.2-12.4 mils for 8" I.D. blade and 4.2-4.4 mils and 9.5-10 mils for 6" I.D. blade, respectively. The same tensioning procedure was applied for the blades and other slicing parameters were maintained the same.

Wafers of 12 mils in thickness were sliced from the 4" ingot at two cut rates: 1 IPM and 2 IPM. From the sample sizes of 25, mechanical yields of 100% and 85% were obtained at cut rate of 1 IPM and 2 IPM, respectively. Average kerf width was about 12 mils, showing slight increase in kerf width at higher cut rate (12.3 mils at 2 IPM of cut rate versus 12 mils at 1 IPM of cut rate). Average kerf width for 6" thin I.D. blade was about 10 mils. Quantitative slicing data could not be obtained due to short lifetime of the blades.

-15-


# 1.3.3 Accelerometer Results

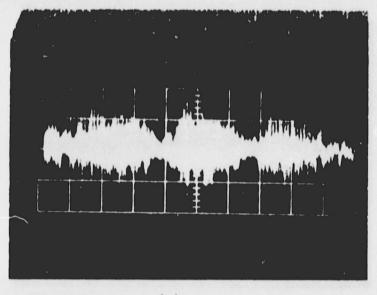
lo study the influence of mechanical vibration caused by a blade on wafer yields and quality of sliced wafers, an accelerometer (BBN, #507) was pressed on ingots to be sliced and electrical output was detected by an oscilloscope.


Figure II-6 represents the output of the accelerometer while slicing 3" ingot using 6" I.D. blade. The picture shows background noise in (a) and output at 2.5 IPM of cut rate in (b) in which increase in frequency and amplitude was noticed. The effect of blade dressing was detected by the output of the accelerometer. The top picture of Figure II-7 was taken while wafers were showing severe saw marks, and the bottom picture was taken while slicing without saw marks after blade dressing. Periodicity was observed in (a) and the period of the wave envelope was about the same R.P.M. of the 1.D. blade ( $\sim$  2,100 R.P.M.). Preliminary results indicates that better surface quality could be achieved in the absence of periodicity (wave envelope) in output signal of the accelerometer.

-16-

REPRODUCIBILITY OF THE




(a)



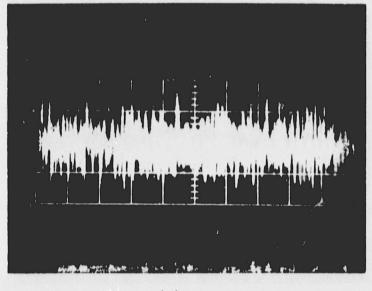

(b)

FIGURE II-6- TYPICAL OUTPUT OF AN ACCELEROMETER OF I.D. SAW SLICING. HORIZONTAL 10ms/div AND VERTICAL 0.05V/div. (a) WHILE IDLING (b) WHILE SLICING

-17-



(a)



(b)

FIGURE II-7- OUTPUT OF AN ACCELEROMETER AT TWO DIFFERENT I.D. BLADE CONDITIONS.

HORIZONTAL 10ms/div AND VERTICAL 0.02V/div.

- (a) BAD CONDITIONS, SHOWING SAW MARKS ETC.
- (b) GOOD CONDITIONS.

### 2.0 CHARACTERIZATION

# 2.1 <u>Wafers</u>

After the wafers were demounted, degreased and cleaned, thickness, bow and roughness (RMS) were measured. Their average values, standard deviations, and ranges were obtained. Thickness was measured at seven points on each slice using a dial gauge (Mitutoyo, Model DGS-E), one at the center and six at points 120 degrees apart, and an average of these seven points data represented a thickness of a single wafer.

Bow is measured by supporting a wafer on three points 120 degrees apart in the periphery. The center position of the slice relative to the three points is defined as bow. Bow was measured by a Brown & Sharp bow gauge. Taper was determined by taking the difference between the maximum and minimum slice thickness measured. Surface roughness (RMS) was measured in parallel to the cutting direction, using a Metro-surf (Model 181, Airtronics, Illinois). Surface profiles of the sliced wafers were obtained on a X-Y recorder using Dek-Tak (Sloan), and SEM pictures were taken to see the surface features of the sliced wafers.

### 2.1.1 MBS Saw Wafers

From 60 slices of each ingot size, an average thickness of 13.2 mils for the 3" diameter ingot and 13.0 mils for the 4" ingot as obtained using the same blade package. Average bow indicated 1.1 mils for the 3" wafers and 0.81 mils

-19-

for the 4" wafers, and average taper showed 1.7 mils and 2.4 mils for the 3" and 4" wafers, respectively. (See Table II-7 and Table II-8 for details.)

### 2.1.2 MWS Saw Wafers

An average thickness of 10.7 mils with kerf width of 7.9 mils as obtained from 32 samples of 3" sliced wafers. Average bow and roughness (RMS) were about 0.37 mils and 0.56 µm, respectively. Average taper inidcated 0.53 mils and this is mainly due to the change in kerf width, which is caused by the wear of abrasives and wire as the slicing progresses, consequently leading to thin wafers at the start and thick wafers at the last cutting edge of the wafers.

Detailed characterization parameters of the sliced wafers are given in Table II-4.

# 2.1.3 I.D. Saw Wafers

angestangen en einen Geschlichten einen ein Definition of standard blade and thin blade was given in previous slicing experiment (Section 1.3).

# Wafers Sliced By Standard Blades

From the slicing experiment which determined the wafer yields versus wafer thickness and cut rate (1 IPM and 2 IPM of cut rate), an average bow and roughness (RMS) of the 3" wafers cut at 1 IPM were about 0.52 mils and 0.37  $\mu$ m, respectively, while taper showed values less than 0.2 mils. Generally, an accenter of taper was limited by the accuracy

-20-

# TABLE II-4

Ĥ,

# CHARACTERIZATION OF WAFERS SLICED WITH MWS SAW

| INGOT SIZE, CM (INCH)    | 7.62 (3)                  |
|--------------------------|---------------------------|
| THICKNESS, mm (mils)     |                           |
| Average                  | 0.269 (10.61)             |
| Standard Deviation       | 0.005 (0.19)              |
| Range                    | 0.265~0.285 (10.43~11.23) |
| <u>TAPER</u> , μm (mils) |                           |
| Average                  | 13 (0.53)                 |
| Standard Deviation       | 5.8 (0.23)                |
| Range                    | 7.6∿35.6 (0.3∿1.4)        |
| <u>BOW,</u> µm (mils)    |                           |
| Average                  | 9.4 (0.37)                |
| Standard Deviation       | 8.1 (0.32)                |
| Range                    | 2.5~38.1 (0.1~1.5)        |
| ROUGHNESS (RMS), µm      |                           |
| Average                  | 0.56                      |
| Range                    | 0.46 0.78                 |

-21-

t

of thickness measurements using a dial gauge. The 4" wafers showed similar values in taper and roughness (RMS). However, a slightly increased bow was observed for the 4" wafers, compared with the 3" wafers. [Detailed parameters of typical wafer thickness (about 4 mils) are given in Table II-7 and Table II-8 and those of the other wafer thicknesses were reported in reference (1)].

Effects of cut rate on wafer parameters was obtained from a 3" ingot. Wafer tickness of 12 mils was chosen and the measured parameters are given in Table II-5. Starting at 3 IPM of cut rate, significant increase in bow and taper was observed. Breakage of wafers and excessive saw marks on one face of the slices wafers started at 4 IPM of cut rate. Roughness (RMS) had a tendency to increase slowly as the cut rate increased. (Note: roughness values tabulated are measured on smooth face of the wafers, the other side of the wafer which has saw marks showed roughness (RMS) values up to  $1.5 \ \mu$ m). Ranges and average values of bow, taper, and roughness (RMS) are plotted at different cut rates in Figure II-8, Figure II-9, and Figure II-10, respectively. Instead of thickness, kerf width versus cut rate is plotted in Figure II-11.

### Wafers Sliced By Thin Blades

Twelve (12) mils wafers were sliced from the 4" ingot at two cut rates (1 IPM and 2 IPM) and the detailed wafer parameters are shown in Table II-6. In general, the wafers sliced with thin I.D. blades indicated a wider

-22-

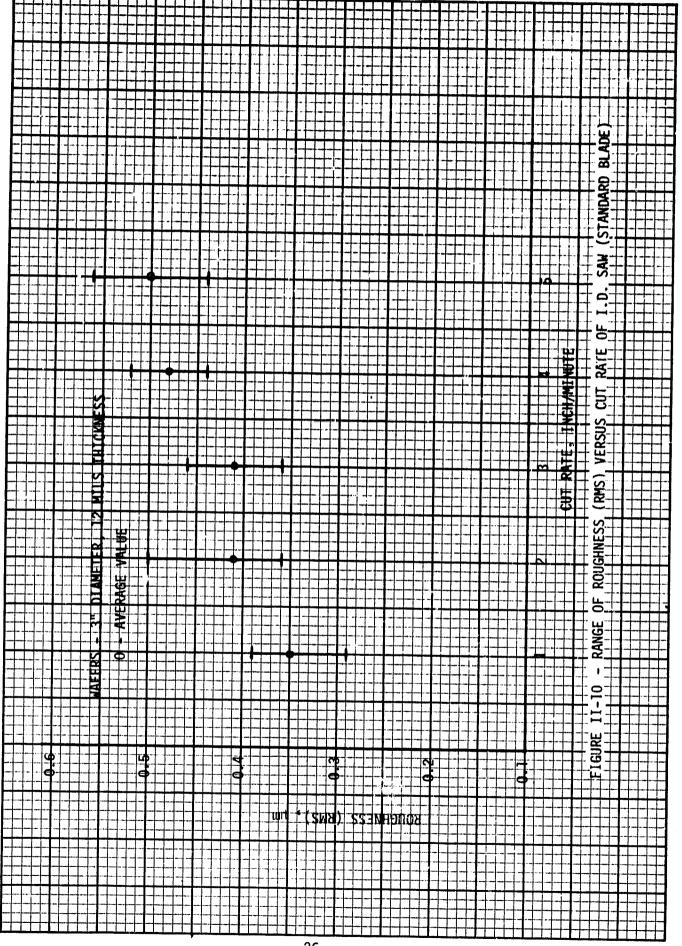
TABLE II-5

# EFFECT OF CUT RATE ON 3" WAFER PARAMETERS SLICED BY I.D. SAW

| NESS<br>, Lin            | Range                         | 0.29<br>°<br>0.39   | 0.36<br>0.50    | 0.36<br>0.46        | 0.44<br>∿<br>0.52   | 0.44<br>∿<br>0.56   |
|--------------------------|-------------------------------|---------------------|-----------------|---------------------|---------------------|---------------------|
| ROUGHINESS<br>(RMS), Jum | Average Range                 | 0.35                | 0.41            | 0.41                | 0.48                | 0.50                |
|                          | Range                         | 0.1<br>گ            | 0.1<br>گ<br>0.3 | 0.2<br>0.5          | 0.4<br>1.2          | 0.6<br>گ            |
| TAPER, MILS              | Standard<br>Deviation         | 0.08                | 0.06            | 0.10                | 0.22                | 0.38                |
| 11                       | Average                       | 0.14                | 0.13            | 0.34                | 0.76                | 1.07                |
|                          | Range                         | 0.4<br>گ            | 0.2<br>گ<br>0.7 | 0.4<br>°<br>2.7     | 1.7<br>م<br>3.0     | ×4.0                |
| BOW, MILS                | Standard<br>Deviation         | 0.13                | 0.18            | 0.69                |                     |                     |
|                          | Average                       | 0.64                | 0.45            | 1.53                | >3                  | <b>4</b>            |
| S                        | Range                         | 12.23<br>گ<br>12.56 | 12.33<br>12.50  | 12.21<br>°<br>13.11 | 11.83<br>گ<br>13.54 | 11.23<br>گ<br>12.49 |
| THICKNESS, MILS          | Average Standard<br>Deviation | 0.11                | 0.06            | 0.23                | 0.48                | 0.41                |
| THIO                     | Avérage                       | 12.36               | 12.42           | 12.50               | 12.25               | 11.84               |
| CUT RATE                 | Inch/Min.                     |                     | 2               | m                   | 4                   | വ                   |

Ŵ,

-23-


| Z WILS THICKNESS                                                                               |
|------------------------------------------------------------------------------------------------|
| Z WILS THICKNESS                                                                               |
| 2 MILS THICKNESS                                                                               |
| Z WILS THICKNESS                                                                               |
| Z WILS THICKNESS                                                                               |
| Z WILS THICKNESS                                                                               |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
| <u></u>                                                                                        |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
| ┙╴╴╷╴┙╴┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙                                                         |
|                                                                                                |
|                                                                                                |
|                                                                                                |
| ┼ <u>╴</u> ╶╴┥╴┥╺╋╵╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴                                                        |
|                                                                                                |
|                                                                                                |
|                                                                                                |
| <u>┥</u> ┾┑┙╴┫╌╗╴┙┙┫┙┙┥┥┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙                                        |
| <u>┼╍┶┶╍┧╶╪╼┙┝╼┙┲┪┙┥┽┧</u> ╎┶┶┲┥┧╍╵┼╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎                       |
| ╊┯┼┲┿╍┫╍╬╌┫┯╪┙┽┼┙┲┲╌┲╼┲╼┲╌╖╌╎╎╎╎╖╖┙╸╢╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎┙┙╋┾┱┥┝┓╏╎┼┥╎╎╎╸╏╎╷╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎ |
|                                                                                                |
| ╋ <mark>╴╴┥┙┙┙╴┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙</mark>                                          |
| ╋┲┾┿╋╋┿╍┾┼╊╊┾┿┿┿╋╋╋╋┨┽┿┿┝╋╢┽┼┿┽┫╬╴┽┼┿┽┫┿┽┿┿┿╋┿┿┿┿╋┿┿┿┿╋┿┿┿╋╪┿╪┿┥┽╌┊╏╶╴┆╎╎┊╊╎┼╪┝┿╫┝┿╖╎┿╶┥       |
| -24-                                                                                           |

-24-

| ┣┽┼┼┽┫╸┾┿╸                                             |                                                                                                     | <u>┾╍┽╌┝╌┤╺┨</u>    |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     | ┝┿┿┿╋               |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     | ┇┽┽┼┥               |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     | E                   |
|                                                        |                                                                                                     |                     |
| <b>─</b> ┤─┤ <b>─</b> ┤─┼ <b>─</b> ┤─┤─┤─┤             |                                                                                                     |                     |
|                                                        |                                                                                                     | +-1-1               |
| <mark>╞╼┽╴┥╌╎╌┦╌┦╶┤╺┼╺┾</mark> ╌┥<br>╍┽╌╿╌╿╍┥╍┨╺┶╴╄╌╿╼ |                                                                                                     |                     |
| ╺╋╌╎┈╎╺╁╍╏┈┤╶┧╼┠╍┧                                     |                                                                                                     |                     |
|                                                        |                                                                                                     | <u>+++</u>          |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     | ┥ <u>┥</u>          |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     | ╋╍┿╼┿╼ <b>┦</b>     |
|                                                        |                                                                                                     | ╪╾╡┈╡╵┨<br>┽╾┽╵╎╽   |
|                                                        |                                                                                                     | <u></u><br><u> </u> |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
| DIANET ER, 12                                          |                                                                                                     |                     |
|                                                        | 8                                                                                                   |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
| MAFERS                                                 |                                                                                                     |                     |
| 5                                                      |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
| ·····································                  |                                                                                                     |                     |
|                                                        | ┓┓┑┲╗╗╔╗╔┱┲┲┯┱┱╏╴╝╔╔┊╖╻╪┯╓┯┿╖╖┨╶╪╾┥╶┦╌╡╶┨┉╧╼┧╶╉╍╎╶┨╺╢╶┽╸┫╸╎╴╡╌┥┥┥┥┥╸╸╸╸┥╴╴╸╸╸╴╸╴╸╴╸╴╸╴╴╸╴╴╴╴╴╴╴╴╴╴╴ |                     |
|                                                        | STW MOB                                                                                             |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |
|                                                        |                                                                                                     |                     |

Ì,

-25-



\*

-26-

e.

|                                                    | ╾┿┿╋ <b>┙┥┿┽┽╋┝┿┽┼╋╸</b>                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| ╸┱╴╋╼┿┿┱╖╖╌╄╼┿╷╎╻╖╎╖╗╖╖╖<br>╼┿╍┝╶┱╍┾╵┠╼┝╌┠╶┝╴┠╴╺╻╸ |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | ╅╍┿╴╋╍┨╍┿╍┼╾╋╌║╶╴╎╴╏╴╎╸╸╸<br>┼╴┼╼┾╸┠╍┿╸┼╾┿╍╎╴║╴╎╾┥╴┢╴╽╴┠╸╸  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      | C (STANDARD                                                                                                                                                                                                                                                                                                                                                               |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| <b>┍┼┼┼┽┼┲┼┼╎╴┼╶┼╶╿</b> ╶┦╴┥                       |                                                             | <mark>╡╶┧╶┧╶┧╌┽╶┽╺┨╺┼╶┼╶┽╺╊╺┽╶┼╶┤╴┼╴┫╺</mark>                                                        |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             | ┥╌┶╴┤╶ <mark>╴</mark> ╼┶╍┿╼┥╼┥╼┥╼┥╼┽╼┥╺┿╍╌╼ <mark>╺</mark> ╺┥╸┽╍┝╼┊╴╴<br>┍╴┙╴╵┚╵╹┑┑╸┥┑┥╺┥╺┥╼┥╼┥╼┥╼┥╼ |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | ┼╌┤╍╂╾┿╍┽╼┽╼┟╴┼╶╄╼┽╶┽╺┠╶┾╼┥<br>┽╍┽╴╏╼┽╾┽╼┽╼┽╶╽╴┼╌┼╼┿╼┽╼┠╌┾╍ |                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| S                                                  |                                                             |                                                                                                      | CUT RATE OF I                                                                                                                                                                                                                                                                                                                                                             |
|                                                    |                                                             |                                                                                                      | <b>5 5 5 5 5 5 5 5 5 5</b>                                                                                                                                                                                                                                                                                                                                                |
| A E C                                              |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| - AVERAGE                                          |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      | Sanda S |
| O RE                                               |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             | ╴╴┾╍╸╍┿╍╴╛╍┠╍┼╸┲╴╎┈┼┉╋╼╎╴╏╼┽╶╕╺┶╷╶╽╴╝╶╢╴╝<br>╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴                                         |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| <b>•••••</b>                                       |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | 2                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | STIW STIW                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             | · * ┃ ★ * ★**★ *#**┃ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                                                         |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             | <b>╶┼╌┨╷┼╶┼╴┼╶┼╶┨╶┨╶╎╴┨</b>                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | ┨┼┾┽┽┨┼┾┽┼╿╎┿┿                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                                             | -27-                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |

-27-

İ

Ì

1

4

# FOUR INCH WAFERS SLICED WITH A THIN I.D. BLADE

| CUT RATE              | THICKNE   | THICKNESS, mils i BOM, mils                                            | BOM,    | mils    | I TAPER, mils | mils    | ROUGHNE   | ROUGHNESS. La |
|-----------------------|-----------|------------------------------------------------------------------------|---------|---------|---------------|---------|-----------|---------------|
| n/min.                | 1         | 2                                                                      | -       | 2       | -             | 2       | -         | 2             |
| lverage               | 12.18     | 11.91                                                                  | 0.41    | 1.74    | 0.4           | 0.8     | 0.47      | 0.48          |
| Standard<br>Deviation | <0.2      | <0.3                                                                   | 0.31    | 0.31    | <0.3 <0.3     | <0.3    |           |               |
| Range                 | 11.8~12.4 | 1.8~12.4 11.6~12.4 0.2~1.1 1.3~2.2 0.2~0.8 0.3~1.2 0.42~0.56 0.38~0.62 | 0.2~1.1 | 1.3~2.2 | 0.2~0.8       | 0.3~1.2 | 0.42~0.56 | 0.38~0.62     |

4" wafers sliced with a thin I.D. blade (12±0.5 mils, diamond edge and 5.0 mils core thickness, nominal). NOTE:

Þ

-28-

variation in thickness and an increase in bow and taper than the wafers cut with the standard blades. In some cases, 2 mils of taper resulted from slicing a 3" ingot, using a 6" I.D. thin blade which ultimately caused short lifetime ( $\sim$  300 cuts) of the blade. This could possibly be due to a mechanical instability (fluttering or wandering) of a blade of thin core or the difficulty of conditioning of thin diamond plated cutting edge. Ŵ,

## 2.1.4 Comparison of Wafer Parameters

The parameters obtained from the wafers of three (3) different slicing type, MBS saw, MWS saw, and I.D. saw, were compared for the evaluation of the mechanical quality of the sliced wafers.

Thickness variation, from wafer to wafer and within a single wafer, of the MBS wafer were higher than those of the I.D. saw and MWS saw. Bow and roughness (RMS) also indicated that the MBS saw wafers showed about a factor of two higher values than those with the I.D. saw wafers. In general, comparison of the parameters indicated that the wafers sliced with the I.D. saw and MWS saw had much smaller values and variations, than those with the MBS saw, indicating the need for less removal of silicon before solar cell fabrication. Wafers sliced by the I.D. saw (cut at or below 2 IPM of cut rate) showed slightly better mechanical quality than those with the MWS saw. Detailed comparison of the parameters for different slicing types is given in Table II-7 for the 3" wafers and in Table II-8 for the 4"

-29-

wafers. Bow, taper, and roughness (RMS) are plotted for 3" wafers in Figure II-12, Figure II-13, and Figure II-14, respectively.

Surface profiles of the sliced wafers were obtained using a Dek-Tak from Sloan. Typical surface profiles of the wafers are given in Figure II-15: The I.D. saw wafers sliced at 2 IPM of cut rate (b) shows slightly increased surface roughness than the wafers sliced at 1 IPM of cut rate (a). However, a surface profile of a wafer sliced with MBS saw (c) shows a significant increase in roughness at the surface compared with those with the I.D. saw and MWS saw (d). Wafers sliced with the MWS saw show same surface roughness with the wafers sliced at 2 IPM of cut rate with the I.D. saw. SEM pictures of the wafers sawn by three different slicing techniques are given in Figure II-16. The pictures indicated that surface roughness increases in the order ID-MWS-MBS, showing an agreement with the results obtained from Figure II-16: This is well illustrated in (a) of the figure and also in pictures taken at high magnification (a, b, and c of the figure). One unique surface feature was observed from the wafer sliced with MWS saw, (c) in the figure, in which several distinct lines were identified. The lines could possibly be micro-cracks introduced during slicing operation. Further investigation is suggested.

-30-

ŵ,

| s           | LICING TYPE  | MBS       | MWS       | <u> </u>  |           |
|-------------|--------------|-----------|-----------|-----------|-----------|
|             |              |           |           | 1 IPM     | 2 IPM     |
| S##         | AVERAGE      | 13.2      | 10.6      | 14.0      | 14.0      |
| THI CKNESS* | S. DEVIATION | 1.02      | 0.19      | <0.1      | <0.1      |
| E           | RANGE        | 10.4∿16.6 | 10.4011.3 | 14.0~14.1 | 14.0014.1 |

## COMPARISON OF 3" WAFER PARAMETERS

|       | AVERAGE      | 1.1     | 0.37    | 0.37     | 1.4     |
|-------|--------------|---------|---------|----------|---------|
| BOW** | S. DEVIATION | 0.51    | 0.32    | 0.17     | 0.18    |
| â     | RANGE        | 0.3∿2.3 | 0.1~1.5 | 0.1~0.75 | 1.301.8 |

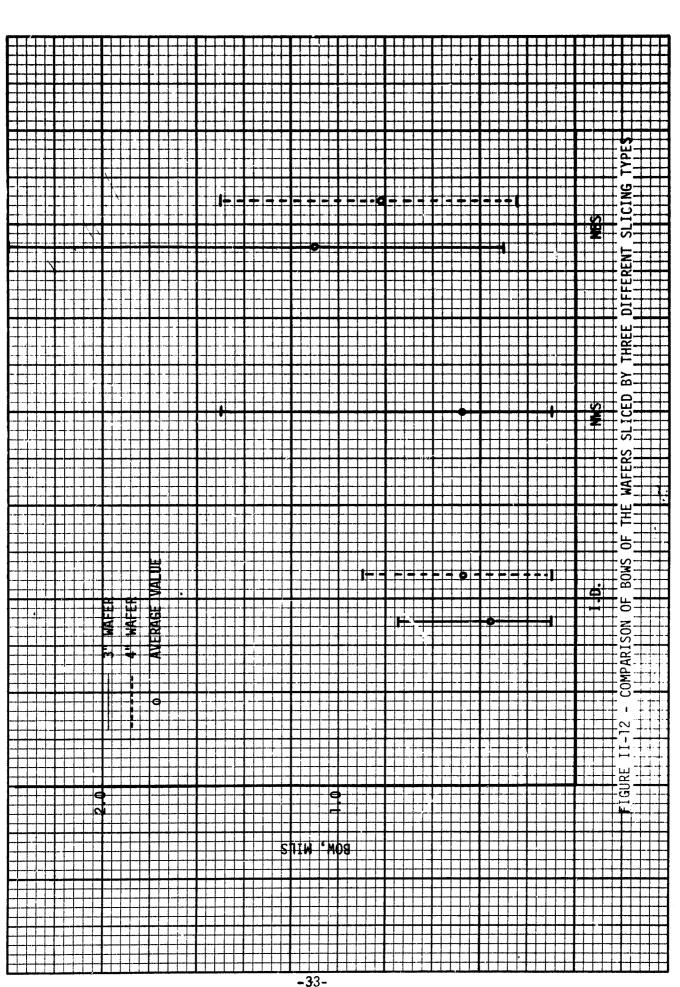
| *      | AVERAGE      | 1.7   | 0.53    | 0.1  | 0.1  |
|--------|--------------|-------|---------|------|------|
| TAPER* | S. DEVIATION | 0.59  | 0.23    | <0.1 | <0.1 |
|        | RANGE        | 0.3∿3 | 0.3∿1.4 | <0.2 | <0.2 |

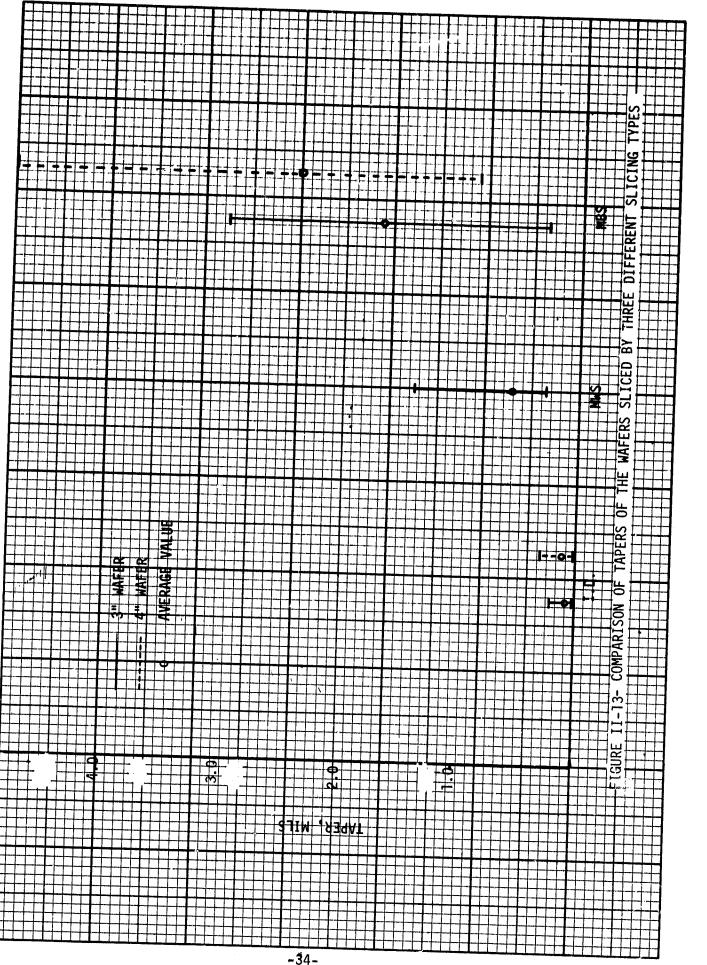
| NESS* | AVERAGE | 1.2     | 0.56      | 0.37     | 0.57     |
|-------|---------|---------|-----------|----------|----------|
| ROUGH | RANGE   | 0.8∿1.6 | 0.46∿0.78 | 0.34∿0.4 | 0.540.61 |

\* Measured in Micrometers \*\*Measured in Mils

COMPARISON OF 4" WAFER PARAMETERS

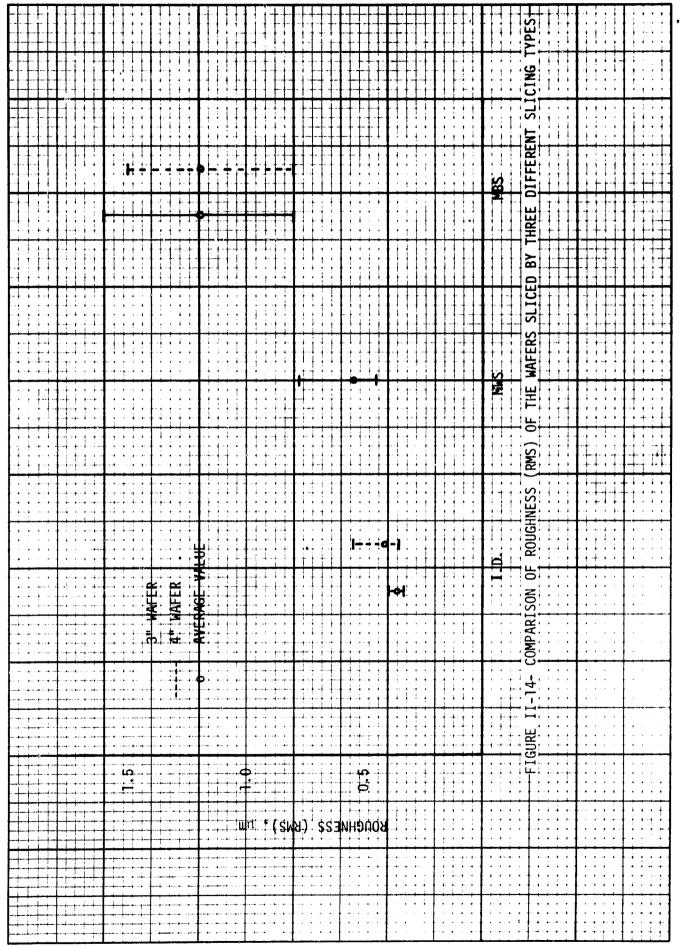
## 1.D. SLICING TYPE MBS 1 IPM 2 IPM THICKNESS\*\* AVERAGE 14.1 14.1 13.0 <0.2 S. DEVIATION 1.32 <0.1 RANGE 9.5016.4 13.8014.2 14.0014.2


|       | AVERAGE      | 0.81     | 0.47    | 0.33    |
|-------|--------------|----------|---------|---------|
| BOW** | S. DEVIATION | 0.34     | 0.29    | 0.16    |
|       | RANGE        | 0.25~1.5 | 0.1∿0.9 | 0.100.6 |


| *       | AVERAGE      | 2.4   | 0.2  | 0.2  |
|---------|--------------|-------|------|------|
| TAPER** | S. DEVIATION | 0.7   | <0.1 | <0.1 |
|         | RANGE        | 0.9∿5 | <0.3 | <0.3 |

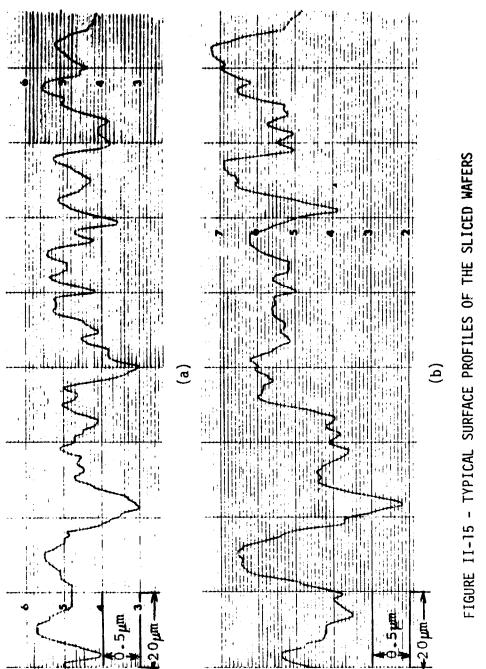
| NESS*   | AVERAGE | 1.2     | 0.42      | 0.52      |
|---------|---------|---------|-----------|-----------|
| ROUGHNE | RANGE   | 0.8~1.5 | 0.36∿0.54 | 0.43∿0.59 |

\* Measured in Micrometers. \*\*Measured in Mils.


-32-



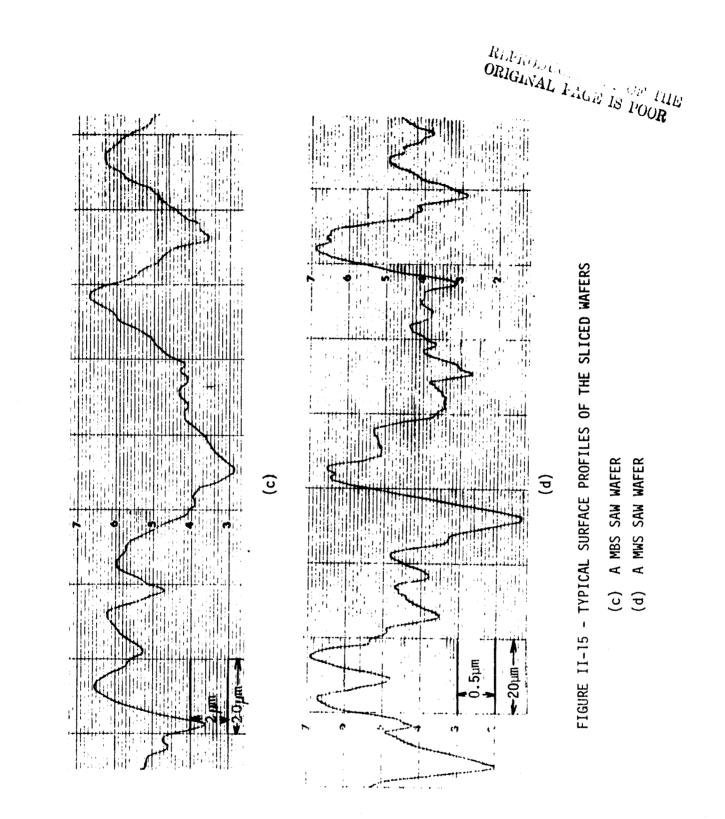



• • •

t į



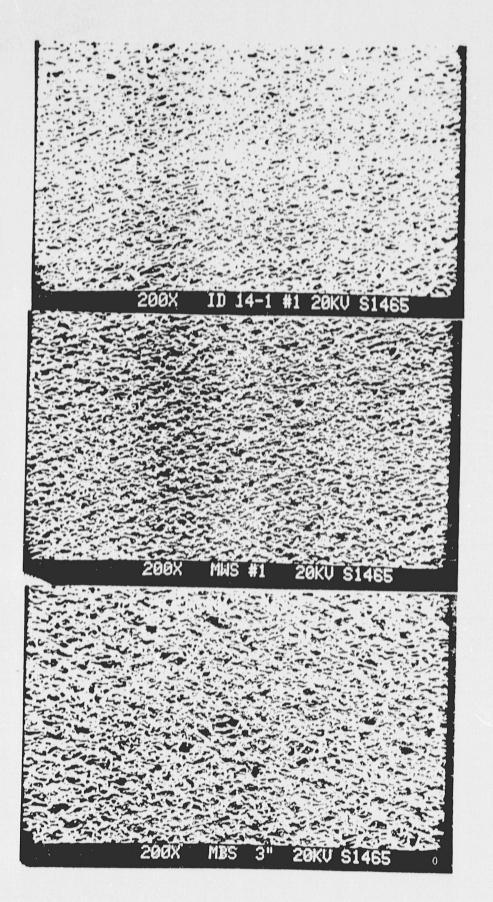
-35-


. La presenta

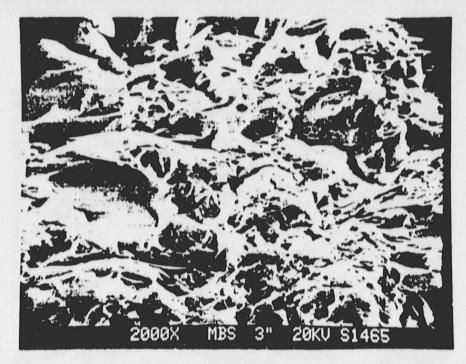


(a) AN I.D. SAW WAFER; 1 IPM OF CUT RATE

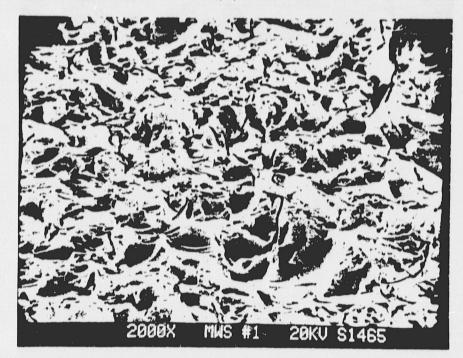
(b) AN I.D. SAW WAFER; 2 IPM OF CUT RATE


-36-



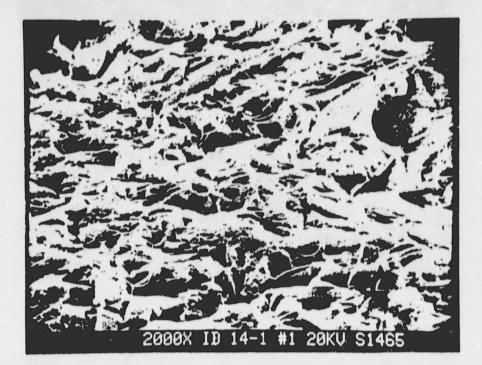

-----

A Manual AL


-37-








(b)



(c)

REPRODUCIBILITY OF THE ORIGINAL FAGE IS POOR



(d)

## FIGURE II-16 - SEM PICTURES OF THE SURFACE OF THE WAFERS SAWN BY THREE DIFFERENT SLICING TYPES

- (a) I.D., MWS AND MBS WAFERS AT LOW MAGNIFICATION; 200X
- (b) MBS WAFER AT HIGH MAGNIFICATION; 2000X
- (c) MWS WAFER AT HIGH MAGNIFICATION; 2000X
- (d) I.D. WAFER AT HIGH MAGNIFICATION; 2000X

## 2.2 Blades and Wires

## 2.2.1 MBS Saw Blades

The wear ratio, defined by the volume of a blade worn out divided by the volume of silicon removed during cutting, was about 0.048. After one slicing experiment with a 4" ingot, wear of blade thickness was negligible and maximum wear of blade width (or depths) was about 2.6 (mm); corresponding to 40% wear of a new blade. The lifetime of a blade was considered to be 60% wear of the new blade<sup>(3)</sup> Figure II-17 shows a boundary between the wear part and intact part (blade width) of blade after one slicing of a 4" ingot.

## 2.2.2 MWS Saw Wires

The following information was furnished by Yasunaga Engineering Co., Ltd.

High tension wire (Music steel wire) with 0.16mm in diameter was used for the slicing and about 5800m (0.92 Kg) of the wire was consumed. Wear of the wire after slicing was approximately 12µm in diameter. Lifetime of the wire was suggested to be around 15%\* wear in diameter of a new wire and used wires are not recommended for second run because the old wires have a tendency to be twisted, causing a danger of breakage of the wires in the middle of the run. Also, irregular wear of a wire (along the length and the

\*Personal communication with technical staff of Geos Corporation (sales representative of Yasunaga wire saw).

-41-

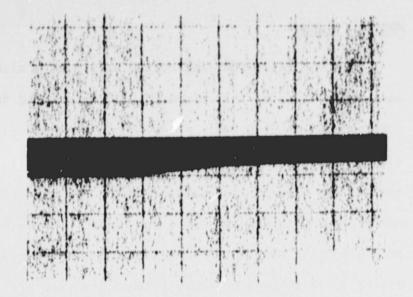
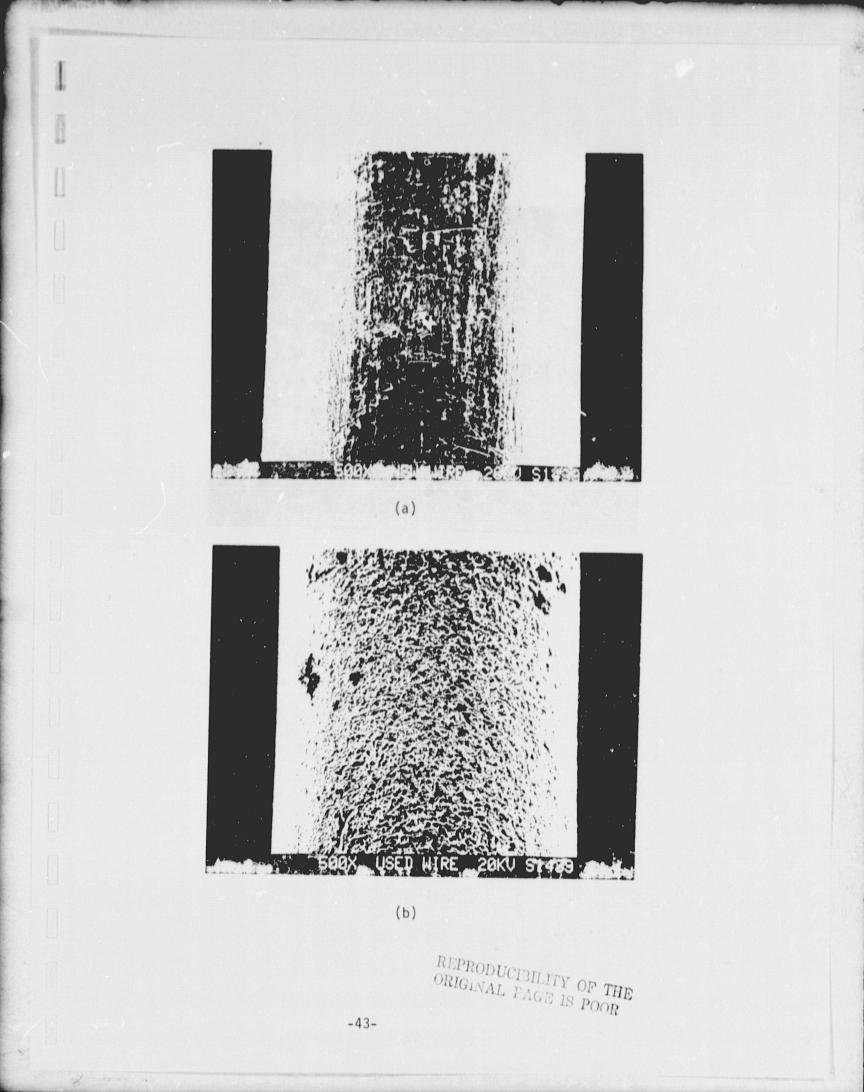
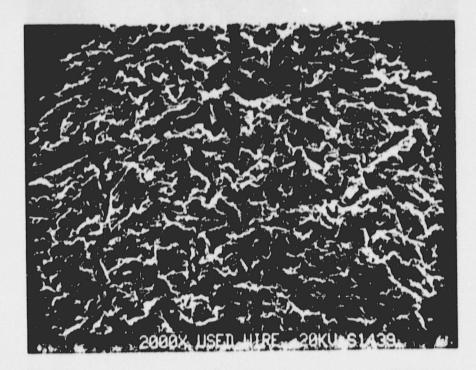





FIGURE II-17 - A BLADE FROM A MULTIBLADE PACKAGE OF A MBS SAW AFTER SLICING A 4" DIAMETER SI INGOT. A BOUNDARY BETWEEN WEAR PART AND INTACT PART IS SHOWN HERE. (0.25 INCH/DIV.)





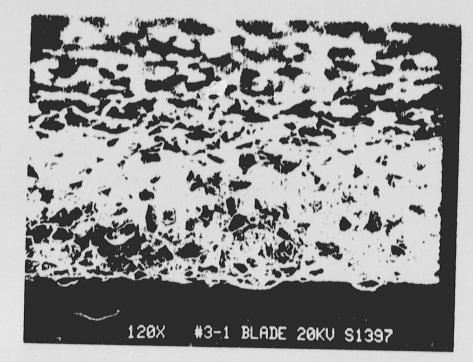
(c)

FIGURE II-18 - SEM PICTURES OF MWS SAW WIRES:

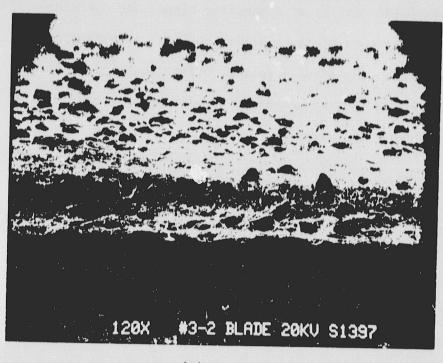
- (a) A NEW WIRE
- (b) A USED WIRE AFTER SLICING A SILICON INGOT OF 3" DIAMETER AND 3" IN LEGHT
- (c) SURFACE FEATURE OF A USED WIRE AT HIGHER MAGNIFICATION

-44-

## REPRODUCTBULITY OF THE ORIGINAL FACE IS POOR


cross section of the wire) will contribute to the wire breakage. JPL SEM pictures of a new wire (a) and a wire (b) which was used once for slicing a 3" ingot are given in figure II-18. Reduction in diameter of the used wire was notices in (b) and relatively uniform wear of the wires are observed from both (b) and (c) of the figure.

## 2.2.3 I.D. Saw Blades


Blade lifetime (number of cuts) is limited by various reasons: excessive taper and saw marks which cannot be corrected either by dressing or retensioning of the blade, or earning-out of diamond edge which will cause breakage of wafers. The quality of a specific blade, and operator skill to maintain good blade condition are very important parameters to maintain long blade lifetime. Effective cooling of a blade during slicing operation is also an important factor to.influence the lifetime.

Under normal operation conditions (average two IPM of cut rate and mixed load conditions), the average lifetime of the standard blade was over 4,000 cuts for the 6" I.D. blade (blade for slicing 3" diameter ingots) and over 5,000 cuts for the 8" I.D. blade (blade for slicing 4" diameter ingots). SEM picutres of worn-out I.D. blades indicated excessive wear of diamond particles at the cutting edge of the blade in (b) of figure II-19, and fracture of diamond particles and glazing of the ingot

-45-



(a)



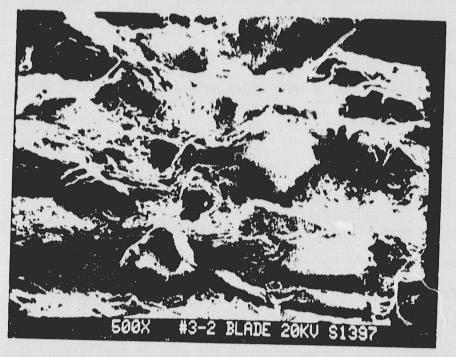

(b)

FIGURE II-19 - SEM PICTURES OF I.D. BLADES AT DIAMOND PLATED CUTTING EDGE; 120X MAGNIFICATION

- (a) A NEW BLADE
- (b) A WORN-OUT BLADE



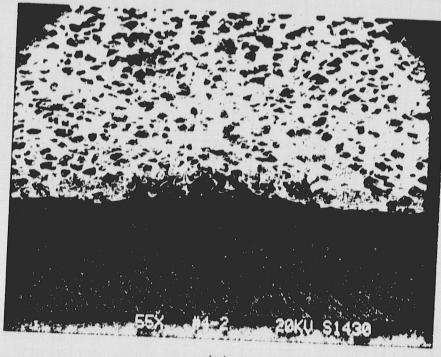
(a) REPRODUCIBILITY OF THE ORIGINAL FAGE IS POOR



(b)

FIGURE II-20 - SEM PICTURES OF I.D. BLADES; SIDE VIEW OF DIAMOND PLATED CUTTING EDGE; 500X MAGNI-FICATION

(a) A NEW BLADE


(b) A WORN-OUT BLADE -47fixing material (epoxy) were observed from the side view of diamond plated cutting edge in (b) of figure II-20.

Lifetime data of the thin I.D. blades was obtained from the limited number of test blades from Semiconductor Materials, Inc. (SMI): about 300 cuts and 3,000 cuts from two 6" I.D. blades, and 2,500 cuts and 3,000 cuts from two 8" I.D. blades, which indicates less than half of the life of standard blades. In general, difficulties of using thin blades were experienced mainly due to poor wafer yield, poor wafer quality and short lifetime of the blades. SEM pictures of the worn-out thin I.D. blades, figure II-21 point out some problems associated with thin I.D. blades, showing non-uniform wear in (a) and chipping in (b) at the cutting edge of the blades. Wear of diamond particles at the cutting edge does not seem to be a major problem of low blade lifetime at present.

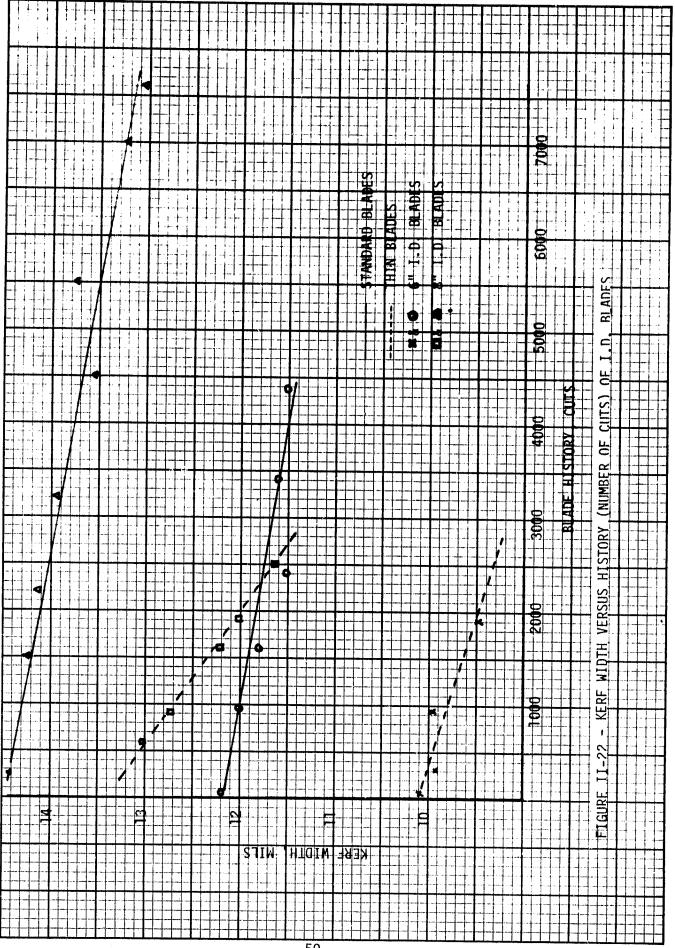
For an I.D. blade, kerf width decreases as the slicing continues, mainly, due to the wear and pull-out of diamonds. Thus, a kerf width of an I.D. blade at specific conditions should be an average kerf width of the blade during the lifetime. From thin blades, both 6" I.D. and 8" I.D. kerf width versus blade history (number of cuts) are plotted in figure II-22, in which about two mils of kerf width reduction is indicated from the 8" I.D. blade. In the figure, ends of lines represent the lifetime of the blades and typical case of standard blades are obtained for comparison.

-48-

(a)



(b)


FIGURE II-21 - SEM PICTURES OF USED I.D. BLADES THIN BLADES SHOWING:

(a) IRREGULAR WEAR AT CUTTING EDGE

(b) CHIPPING AT CUTTING EDGE

-49-

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR



No.

-50-

## REPRODUCIBILITY OF THE ORIGINAL FAGE IS POOR

## III. COST ANALYSIS

Input data for SA,OCS were obtained from the slicing experiments performed and the costs were estimated based on SAMICS Workbook (September, 1977). Cost assessment on wire saw slicing was obtained from the information supplied by the manufacturer who did a slicing test for this project. For the clarity of the assessment, major assumptions are identified and detailed input data is given in Appendices. All the cost information given here is based on the price year 1977.

## 1.0 ADD-ON SLICING COST

MBS saw slicing method is a batch process (versus continuous). Thus a batch of 219 wafers for the 3" wafers and 193 wafers for the 4" wafers were selected from the wafer yields obtained. Detailed input data for capital equipment, space, labor, materials and utilities is given in Appendix I. The add-on slicing costs per yielded wafer were \$0.80 and \$1.41 for the 3" wafers and the 4" wafers, respectively, corresponding to  $$177/m^2$  for the 3" wafers and  $$174/m^2$  for the 4" wafers. Important assumptions are: (1) the blade package can be used three (3) times for the 3" ingot and one and a half (1-1/2) times for the 4" ingots, and (2) the slurry is used only once; in other words, not recycled.

Add-on slicing cost for MWS saw was obtained from the slicing information sheets that OCLI sent to Yasunaga Engineering Co. A wafer yield of 97% for the 3" wafers gave a batch process of 158 yielded wafers and the cost was estimated to be around 0.85/wafer or 186/m<sup>2</sup>. Detailed input data is given in Appendix III. The major assumption is that the wire and the slurry were not recycled.

-51-

Add-on slicing cost of the I.D. saw varies depending on the cut rate and yield etc. Dependence of wafer yields on wafer thickness is well demonstrated in the experiments (see Figure I-2 and Figure I-3) and, within a certain range of cut rate (i.e. below 3 IPM of cut rate), mechanical wafer yield is constant down to a certain limit of wafer thickness; this limit is estimated to be in the range of 12-14 mils. In this range slicing tests showed yields close to 100%, experimentally. However, from practical industry production, 96% wafer yield was used for the cost assessment. Detailed input data for the add-on slicing cost is given in Appendix II for both 3" and 4" wafers sliced at two (2) IPM of cut rate, giving the cost of 0.17/wafer ( $37/\text{m}^2$ ) for the 3" wafers and 0.24/wafer ( $30/\text{m}^2$ ) for the 4" wafers (same wafer thickness sawn with MBS saw was intentionally chosen for proper comparison in overall wafer cost). To see the effect of cut rate on overall add-on slicing cost, Table III-1 is included. The table suggests that significant reduction in the cost can be expected by increasing the cut rate from one (1) IPM to two (2) IPM, indicating that the cost related to the machine productivity, such as capital equipment and space, are the major factors within this range of cut rate. However, smaller reduction of the cost is expected beyond three (3) IPM of cut rate, since some other factors, such as labor and materials start to play the lominant role in the cost.

## 2.0 WAFER COST

Wafer cost includes material (Si) cost in addition to add-on slicing cost. Table III-2 gives wafer costs of different slicing types at various ingot price levels. The main purpose of this table is to

-52-

REPRODUCIBILITY OF THE ORIGINAL FAGE IS POOR

## DEPENDENCE OF ADD-ON SLICING COST (SAMICS) ON CUT RATE OF I.D. SAW

| INGOT SIZE             | 3'       | 1                 | 4"       | ********          |
|------------------------|----------|-------------------|----------|-------------------|
| Cut Rate,<br>Inch/Min. | \$/wafer | \$/m <sup>2</sup> | \$/wafer | \$/m <sup>2</sup> |
| 1                      | 0.29     | 64                | 0.39     | 48                |
| 2                      | 0.17     | 37                | 0.24     | 30                |
| 3                      | 0.13     | 29                | 0.19     | 23                |

## NOTE

 Dependence of blade lifetime and wafer yield (96%) on cut rate of I.D. saw was not considered.

والمحمولات والمتحد والمتكر والمحمد والمرادين والمراجع والمتحد والمتعالم

# SILICON WAFER COST (SAMICS) OF DIFFERENT SLICING TYPES AT VARIOUS INGOT PRICE LEVELS

|            |              | \$/m <sup>2</sup>                                     | 345     | 284     | 222     | 136     |
|------------|--------------|-------------------------------------------------------|---------|---------|---------|---------|
|            | I.D.         | \$/Wafer \$/m <sup>2</sup> \$/Wafer \$/m <sup>2</sup> | 2.8     | 2.3 284 | 1.8 222 | 1.1 136 |
| 4          |              | \$/m <sup>2</sup>                                     | 543     | 469     | 395     | 296     |
|            | MBS          | \$/Wafer                                              | 4.4 543 | 3.8     | 3.2     | 2.4 296 |
|            | •            | \$/m <sup>2</sup>                                     | 329     | 263     | 219     | 132     |
|            | I.D.         | \$/Wafer \$/m <sup>2</sup> \$/Wafer \$/m <sup>2</sup> | 1.5 329 | 1.2 263 | 1.0 219 | 0.6 132 |
|            | SMM          | \$/m <sup>2</sup>                                     | 417     | 373     | 329     | 263     |
| 34         |              | \$/Wafer                                              | 1.9 417 | 1.7 373 | 1.5 329 | 1.2 263 |
|            | S            | \$/m <sup>2</sup>                                     | 548     | 439     | 373     | 285     |
|            | MBS          | \$/Wafer \$/m <sup>2</sup>                            | 2.5     | 2.0 439 | 1.7 373 | 1.3 285 |
| INGOT SIZE | SLICING TYPE | INGOT PRICE<br>\$/Kg                                  | 150     | 120     | 06      | 50      |

NOTE

1. Ingot Price: Grind Ingot Price

| 13.2 mils wafer thickness and 12.8 mils Kerf width for 3" | 13 mils wafer thickness and 13 mils Kerf width for 4" | 10.6 mils wafer thickness and 7.9 mils Kerf width for 3" | <pre>13 mils wafer thickness and 12 mils Kerf width for 3" 13 mils wafer thickness and 13 mils Kerf width for 4"</pre> |
|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 2. MBS Wafer:                                             |                                                       | 3. NWS Wafer:                                            | 4. I.D. Saw Wafer:                                                                                                     |
| 2.                                                        |                                                       | т                                                        | 4.                                                                                                                     |

## REPRODUCIBILITY OF THE ORIGINAL FACE IS POOR

see the effect of material (Si) cost on overall wafer cost and not to compare with the cost between different slicing types because different wafer thicknesses were considered and they are also not optimized thicknesses. By decreasing ingot price three (3) times, from \$150/Kg to \$50/Kg, wafer cost reduced less than two (2) times for both MBS and MWS saw slicing while decreasing the cost two and a half (2-1/2) times for the I.D. saw slicing, implying material cost (Si) is dominant factor in the I.D. saw wafers while it is less dominant in the MBS and MWS saw wafers.

Thickness dependence of wafer cost was obtained from the wafers sliced with the I.D. saw. Table III-3 gives a silicon cost per unit yielded area, in which actual thickness dependence of wafer yield was considered from the slicing tests performed at two cut rates (one IPM and two IPM). A final wafer cost, which is a sum of silicon cost and add-on slicing cost, is obtained in Table III-5. Reasonable prediction in add-on cost given in Table III-4 in which yield factors are also incorporated. Figure III-1 is a plot of Table III-5, showing wafer cost versus wafer thickness and cut rate (or yield) at three different years. The figure indicates that a significant reduction in wafer cost can be achieved by decreasing both the wafer thickness and the cut rate. However, the advantages of fast cutting were observed for wafers of thickness greater than about 12 mils leading to low add-on cost.

| WAFER<br>THICKNESS, |                 |       | COST, \$/m <sup>2</sup> |      |      |                 |      |      |
|---------------------|-----------------|-------|-------------------------|------|------|-----------------|------|------|
|                     | YIELDS OBTAINED |       | CUT RATE, 1 IPM         |      |      | CUT RATE, 2 IPM |      |      |
| MILS                | 1 IPM           | 2 IPM | 1978                    | 1980 | 1982 | 1978            | 1980 | 1982 |
| 16                  | 1.00            | . 98  | 259                     | 194  | 108  | 264             | 198  | 110  |
| 14                  | 1.00            | .96   | 240                     | 180  | 100  | 250             | 188  | 104  |
| 12                  | 1.00            | .92   | 222                     | 166  | 92   | 241             | 181  | 100  |
| 10                  | 1.00            | .82   | 203                     | 152  | 85   | 247             | 186  | 103  |
| 8                   | 1.00            | .60   | 184                     | 138  | 77   | 307             | 230  | 128  |
| 6                   | 0               | 0     | œ                       | 00   | œ    | ∞               | ∞    | 00   |

## SILICON COST (SAMICS) PER UNIT YIELDED AREA OF 3" WAFERS AS A FUNCTION OF WAFER THICKNESS; I.D. SAW

NOTE

1. Kerf Width: <sup>1</sup>2 mils

2. Yields Obtained From Figure II-2

3. Cost of Ingot: 1978 - 120 \$/Kg 1980 - 90 \$/Kg 1982 - 50 \$/Kg

÷.,

## SLICING ADD-ON COSTS (SAMICS) PER UNIT YIELDED AREA OF 3" WAFERS AS A FUNCTION OF WAFER THICKNESS; I.D. SAW

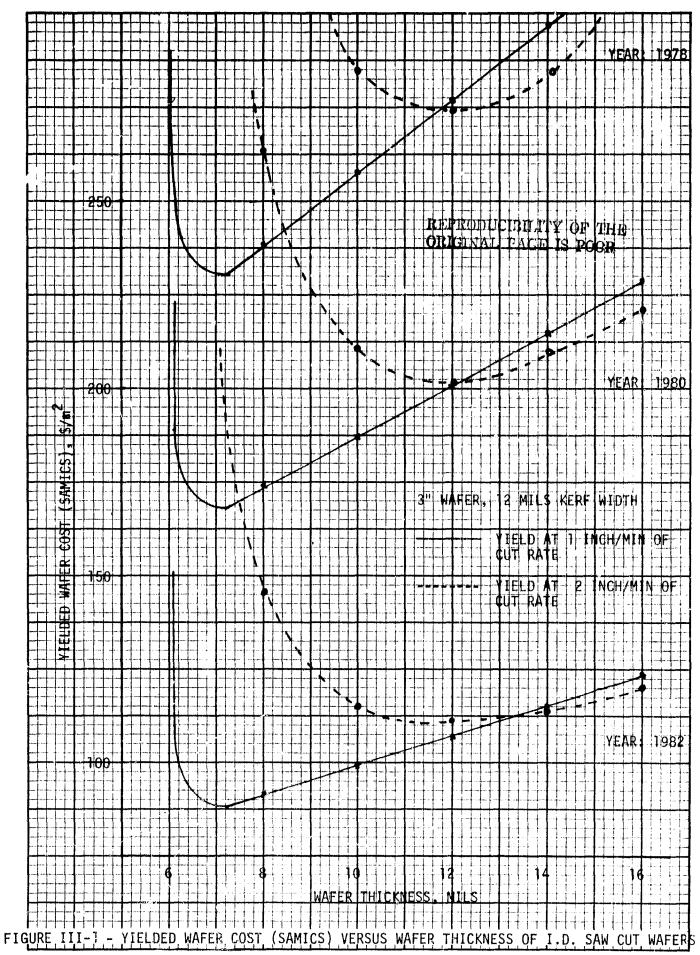
| WAFER              | COST, \$/m <sup>2</sup>               |    |    |                                       |    |    |  |  |
|--------------------|---------------------------------------|----|----|---------------------------------------|----|----|--|--|
| THICKNESS,<br>MILS | CUT RATE, 1 IPM<br>1978   1980   1982 |    |    | CUT RATE, 2 IPM<br>1978   1980   1982 |    |    |  |  |
| 16                 | 55                                    | 35 | 15 | 31                                    | 20 | 10 |  |  |
| 14                 | 55                                    | 35 | 15 | 31                                    | 21 | 10 |  |  |
| 12                 | 55                                    | 35 | 15 | 33                                    | 22 | 11 |  |  |
| 10                 | 55                                    | 35 | 15 | 37                                    | 24 | 12 |  |  |
| 8                  | 55                                    | 35 | 15 | 50                                    | 33 | 17 |  |  |
| 6                  | 8                                     | œ  | œ  | œ                                     | مى | œ  |  |  |

## ASSUMPTIONS

1

1

| 1. |                | Cost at 1 Inch/Minute of Cut Rate: |
|----|----------------|------------------------------------|
|    | Year 1978: 55  |                                    |
|    | 1980: 35       | \$/m <sup>2</sup> At 100% Yield    |
|    | 1982: 15       | \$/m <sup>2</sup>                  |
| 2. | Slicing Add-On | Cost at 2 Inch/Minute of Cut Rate: |
|    | Year 1978: 30  |                                    |
|    |                | \$/m <sup>2</sup> At 100% Yield    |
|    | 1982: 10       | \$/m <sup>2</sup>                  |


-57--

ŵ

## WAFER COST (SAMICS) PER UNIT YIELDED AREA OF 3" WAFER AS A FUNCTION OF WAFER THICKNESS; I.D. SAW

| WAFER      | COST, \$/m <sup>2</sup> |      |      |                 |      |      |  |
|------------|-------------------------|------|------|-----------------|------|------|--|
| THICKNESS, | UI RAIE, I IPM          |      |      | LUI RAIE, Z IPM |      |      |  |
| MILS       | 1978                    | 1980 | 1982 | 1978            | 1980 | 1982 |  |
| 16         | 314                     | 229  | 123  | 295             | 218  | 120  |  |
| 14         | 295                     | 215  | 115  | 281             | 209  | 114  |  |
| 12         | 277                     | 201  | 107  | 274             | 203  | 111  |  |
| 10         | 258                     | 187  | 100  | 284             | 210  | 115  |  |
| 8          | 239                     | 173  | 92   | 357             | 263  | 145  |  |
| 6          | 00                      | œ    | ω    | 80              | 00   | ω    |  |

٠.



-59-

## 3.0 REDUCTION POTENTIAL

## 3.1 MBS Saw

Assessment of add-on slicing cost from these specific slicing tests might not have used optimized slicing conditions for the MBS saw. However, the slicing condition was the one that OCLI has used to slice silicon ingots for solar cell fabrication for last ten years without giving any significant risk of spoiling whole ingots or in wafer yields. Optimistic add-on slicing costs can possibly decrease to about \$0.50/wafer for the 3" wafers if the pin type blade package (price is about one third of the preassembled blade package) can be successfully applied to achieve the same wafer yield, wafer thickness and quality, and if labor related costs can be reduced by automation or elimination of P.C. oil as a suspension media.

Comparison of add-on slicing cost of different slicing types is shown in Table III-6, in which priority for future cost reduction effort can be seen. It suggests that cost reduction for the MBS saw slicing strongly depends on success in reducing the cost incurred by direct material and direct labor, especially direct material in which the blade package and slurry form a major portion of the cost. Increase in productivity, by increasing number of blades using an inexpensive method, can further reduce the cost by reducing the cost related to capital equipment and space.

-60-

TABLE III-6

COMPARISON OF ADD-ON SLICING COST (SAMICS) OF DIFFERENT SLICING TYPES

|            |              |              |           |            |              |                  |           | Rhip<br>ORIGI  | RUDICI 311.11 × OF THE                                                                                                                                       |
|------------|--------------|--------------|-----------|------------|--------------|------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |              | 86           | 37.8      | 16.2       | 17.8         | 27.0             | 1.2       | 001            | " POOR                                                                                                                                                       |
| 4"         | 1.0          | \$/Wafer     | 0.091     | 0.039      | 0.043        | 0.065            | 0.003     | 0.241<br>(30)  |                                                                                                                                                              |
|            | S            | 26           | 10.3      | 4.4        | 15.2         | 69.9             | 0.2       | 100            |                                                                                                                                                              |
|            | MBS          | \$/Wafer     | 0.151     | 0.065      | 0.222        | 0.974            | 0.002     | 1.414<br>(174) | '\$/m <sup>2</sup> .<br>saw slicing.                                                                                                                         |
|            |              | 26           | 34.3      | 17.1       | 25.1         | 22.3             | 1.2       | 100            | of \$/n<br>D. saw                                                                                                                                            |
|            | <u>1.D.</u>  | \$/Wafer     | 0.060     | 0.030      | 0.044        | 0.039            | 0.002     | 0.175<br>(38)  | ldd-on costs in unit of<br>Is considered for I.D.                                                                                                            |
| -          | SMM          | 28           | 10.7      | а.<br>З. З | 23.2         | 62.6             | 0.2       | 100            | n cost<br>nsider                                                                                                                                             |
| 31         |              | \$/Wafer     | 160.0     | 0.028      | 0.197        | 0.531            | 0.001     | 0.848<br>(186) | ent add-c<br>te was cc                                                                                                                                       |
|            | 0            | 2            | 8.2       | 3.6        | 19.6         | 68.6             |           | 100            | represent a<br>cut rate wa                                                                                                                                   |
|            | MRC          | \$/Wafer     | 0.066     | 0.029      | 0.158        | 0.552            | 0.001     | 0.806 (177)    | renthesis<br>minute of                                                                                                                                       |
| TNENT ST7F | CITCINC TVDE | SLIUING ITTE | EQUIPMENT | SPACE      | DIRECT LABOR | DIRECT MATERIALS | UTILITIES | TOTAL          | NOTE<br>1. Numbers in parenthesis represent add-on costs in unit of \$/m <sup>2</sup> .<br>2. Two (2) inch/minute of cut rate was considered for I.D. saw sl |

ş

-

15

-61-

11 - Sa 11 - Mar

### 3.2 <u>MWS Saw</u>

The slicing performed may not have been most economical condition for the machine. Further reduction in cost can possibly be achieved with the existing system by better utilization of wires and slurry, and by elimination of P.C. oil as a suspension media. This will decrease both direct labor and direct material cost. By increasing the wire lifetime two times, recycling slurry twice and improvement in oil degreasing step, reduction in add-on cost for the 3" wafers can lead to about \$0,50/wafer.

At present the machine has limited capacity to handle large diameter or long ingots; the maximum limit is 4" diameter and 4" in length. Scale up of the machine will bring cost reduction by increasing the machine productivity.

### 3.3 <u>I.D. Saw</u>

Among the three slicing types discussed, the I.D. saw is the only slicing method where automation from slicing of an ingot to .final wafer cleaning is possible due to its continuous slicing characteristics. This automation process is commercially available with an additional capital cost. Using this system, preliminary results indicated that two cents (2¢) of cost reduction can be achieved for the 3" wafers, resulting in \$0.15/wafer. Future cost reduction can be expected in the following areas; increase in machine productivity and decrease in kerf width. Machine pmoductivity can be achieved by: 1) Ganging two or more blades

2) Programmed slicing; i.e. controlled cut rate while slicing. and kerf width reduction can be obtained by:

1) Development of thin blade

2) Rotating crystal slicing system

Programmed slicing machines are now commercially available and overall faster cutting speed are claimed. Effectiveness of the rotating crystal system<sup>(4)</sup> was already demonstrated by slicing Gadolinium Gallium Garnet with an I.D. saw. Since the rotating crystal system only needs to cut half of a ingot, a thinner blade can be used to slice same ingot size compared to an I.D. blade without rotated crystal system, consequently leading to lower kerf loss. Blade liftime has also increased about three times mainly due to the effective cocling at the cutting edge. Thus, a most ideal slicing system for the I.D. saw. could be a programmed-rotating crystal-ganged I.D. saw.

### 4.0 **DISCUSSION**

Since the ultimate goal of JPL-DOE program is expressed in unit of dollar per electrical peak output (\$/Wp), the cost of silicon sheet ( $\$/m^2$ ) has to be converted to \$/Wp through an intermediate conversion parameter (or a mechanical-electrical conversion parameter);  $m^2/Wp$ . Minimum  $\$/m^2$  does not necessarily lead to minimum \$/Wp because the electrical quality of the sliced wafers (surface damage) and thickness dependence of solar cell output, for example, were not considered in the formation of the silicon sheet. This gives an expression: 16

$$Wp = (M^2) \times (m^2/Wp)$$

Once the conversion parameter  $(m^2/Wp)$  is obtained as a function of solar cell thickness, the wafer thickness, which will give a minimum S/Wp, can be obtained by minimization of the product of two functions;  $Mm^2$  and  $m^2/Wp$ . This process is illustrated in Figure III-2 for the case of the I.D. saw wafers.

The conversion parameter, m<sup>2</sup>/Wp, also depends on the type of solar cell fabrication, i.e., methods of junction formation, with and without back surface field, etc. Thus, proper choice of a fabrication process which is suitable to terrestrial solar cell application should be made. This suggests that a systems approach is needed to optimize slicing process (it may be called a subsystem of a whole solar module fabrication process), in which input is a ingot and output is wafers which will provide maximum electrical power output after solar cell fabrication. Slicing conditions can be internal variables of this subsystem.

| ┣╍╋╍┿╌╄╴┼┈┥    | <b>┫╌┼╾╆╶┽╌┽</b> ╶                       | ╋╍╋╍╋╶╋╶           | ·∎·∔ k·to k                                            | ╋╍╅┝╌┥┝              | <b>┣┈╽┈╽┈┾╌┿</b>          | ┫╍┨╺╋╴┠╌┠╴            | <b>┫</b> ╌ <del>┥</del> ╶┽╌┽╶┿┈ | ┫╍╂╾┽╌┽┈┼╶   | <b>┫╶┼╌┼╍┽╺┥╌╋</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ╶┼╶┽╶┿╶┿╼                 | ┠╍╈╍╁╼┽╾┾╍                   | <b>┫</b> ╼┿╍┿╶┼╍┾╼                                       | <b>┠╌┾╶┼╍┼╼┽</b> ╼                             |
|----------------|------------------------------------------|--------------------|--------------------------------------------------------|----------------------|---------------------------|-----------------------|---------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|----------------------------------------------------------|------------------------------------------------|
| ┣╼╋╼╋╾╋╌┧╌┥    | ╽╌┧╌┼╌┼╸┼╸                               | ╋╼┾╾┾╸┾            | <b>1</b> + + + + + + + + + + + + + + + + + + +         | ╋┿┽╞╞                | ╶┨┥┾┿┿                    | ╊╍┼╍┾╸╅╶╅╴            | <b>₽</b> + + 1                  | $\mathbf{P}$ | ╂╍╞╌╞╌╞╌╫╴╋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · +                       | ╏╌┼╾╃╼┾╌┾╌                   | ┨╾┽╾┝╾╅╼┿╍                                               | ╊╍┾╺┥╶┼╍┾╍                                     |
|                | ┢╍╽╴┥╶┼╍┼╍                               | ┫╼┼╴┿╴┼┈┼╴         | ┪┽╡┼┼                                                  | 1 1 1 1              | ┫╌┫╌╋╼╋╺╋                 | ┫╌┥┥╌┼╶┦╴             | ╋╶┽┈╪╼╽┈┽┈                      | ╏┼┼┽┼        | ┫╶╁╾╪╸╡┈╂┈╋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | ╉╶┼╌┼╌┼╼                     | ┫╌┼╾┽╌┼╼                                                 | ╏╌╽╌┥╌┥╶                                       |
|                |                                          |                    | 1111                                                   | 11111                |                           | 11111                 | 1-1-1-1-1-                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                |                                          |                    | $\mathbf{T}$                                           |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                |                                          |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                | ┫╍┥ ╡ ╡╌┊╼                               | <b>.</b>           | ┥┥┥╷╷                                                  | ┫ ╡╾╁╴╡╶┧            | ╶┫╶┟╶┧╌┢╼┾                | ┫╴┧┈┿╺┿┈┽╴            | ┢┿┼┼┪╸                          | ▋┝╴╽╺┝╶┷╶    | <b>Ⅰ</b> ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ╶╅╁╁┿┿                    | ▋∔┥∔┥                        | ┠┽┽╌┾╴┿╸                                                 | <b>┫╌┧╌┼╌┼╌</b>                                |
| <b></b>        | ┋╍╪╶┠╴┥╶╆╌                               | <b>┫╸┼╶┼╺┥╶┿</b> ╌ | <b>∦</b> - <b>∤</b> - <b>∳</b> - <b>∳</b> - <b>∳</b> - | ┨╪┿╽┼                | ┈┠╌┽╌┟╌┿╴                 | ┫╍╽╶┼╍┽╴┼╶            | ┨╺┽╍┼╴┤╶┽╴                      | ╋╍╅╍┽╸┿┑┾╴   | ┠╌┼╍┼╴┼╶┽╺╉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>╶┽┽╶┼╴┼╸</b>           | ┠╍┼╌┾╸┾╴┾╌                   | <b>┠</b> ╍┼╶┼╴┿╍┿╺                                       | ╋╺┾╍┿╌┿╌┾╍                                     |
| ┠╍╡┅╡╶╡╌┽╼┥    | ╋┽┽┽┽                                    | ┫╌╬╌┊╴╬╴╬          | ╉╍┿╍┿╍┿╍                                               |                      | ╺┫┈┿╌┿╍┿╍┿                | ┫╌╄┈╄┈╄╌┿╴            |                                 | ╋╍┿╍┿╍┿╍     | ╉┅╬╸╬╸╋╸╋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ┿┿┿                       |                              |                                                          |                                                |
| ┣╾╃╼┾╌┼╌┤╌     | ╋╾┧╺┧╵┿╍┽                                |                    |                                                        |                      | ╊┾╍┿╸╡╶╡                  | ┨╌┥╌┤╺┼╌┽╴            | <b>1</b> -+-+-+ +-              | ╋┼┼╌┼╌┼╴┼╴   | 1 1 1 1 1 1 1 <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ++++                      | ╋╍┽╍╁╌┾╴┽╺                   | ╋╍╋╌┽╴┿╍┝╌                                               | ╋╾┿╼┽╍┽╸┿╴                                     |
|                |                                          |                    | 11111                                                  | 1 1 1 1 1            |                           |                       | 11                              |              | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1111                      |                              |                                                          |                                                |
|                |                                          |                    | 11111                                                  | 1                    | T1111                     | 1 1 1 1               | 11111                           | 1111         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                      |                              |                                                          |                                                |
|                |                                          |                    |                                                        |                      | <u>Lill</u>               | 11111                 |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . It leale                |                              |                                                          |                                                |
|                |                                          |                    |                                                        | 1                    |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/Wr<br>m <sup>2</sup> /W |                              |                                                          |                                                |
| ┝┈┝╍┿┈╽╺┼╺┥    |                                          |                    | 4 + + + +                                              |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - LZn                     | <mark>, _</mark>             | ▋Ì∳                                                      | ╉ <sub>┲</sub> ╋┉╈╺┝╶┿┉                        |
|                |                                          |                    | · · · · ·                                              |                      | 4 + + + +                 |                       |                                 |              | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - m / k                   |                              | • • • • • • • •                                          | ╉┈╂╴╁╾╡╍╇╺                                     |
|                |                                          |                    | 1 7 7 7 7                                              | 111111               |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | ┫┇┾┾┾╍                                                   | ╏╶┤╶┼╾┽╶┥╌                                     |
|                |                                          |                    |                                                        |                      |                           | ┨┈┿┈┿╾┿╸              | 1                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | मा रुष                    |                              |                                                          |                                                |
|                |                                          | I                  | 1 M 1 1                                                |                      |                           | 1 1 1 1               |                                 |              | 111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | <b>1</b> - 1 - 1 - 1 - 1 - 1 |                                                          | 1                                              |
|                |                                          |                    |                                                        | LIIM                 |                           |                       | 1                               |              | I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                              |                                                          |                                                |
|                |                                          |                    |                                                        | 1 X.                 |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                |                                          |                    | -                                                      | ┟┅┉╉                 |                           |                       | <b></b>                         | <b></b>      | <del>↓ ↓ ↓ ↓ ↓</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 1-444                        | <b>┟</b> ╼┲╼┿╼┿╼┿╼┥╌                                     |                                                |
|                | • • • • • •                              |                    |                                                        |                      | ( <b>1</b> • <b>1</b> • • | 1                     |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         | 1                            |                                                          | ▋ᡟ᠋╆┿┿╸                                        |
|                | ₹ • <sup>2</sup> •                       | ↓ * * * *          | 1 1 1                                                  |                      | 1 + 1 + 1 + 1             | 1.1.1.1               | 1                               |              | <b>1</b> :   <b>1</b>   <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | ┫┥┥┽┽┽╸                      |                                                          | ╉╞┼┽┽┽┉                                        |
|                | 1 🛏 🖓 🗄                                  |                    | 1                                                      | 1 8 🏹 🖬              |                           |                       | 1:11:                           |              | 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1111                      | <b>      †</b> †~            | ╋┽┽┽┽╸                                                   | ╉╶┼╍┿╌╀╺╋╍                                     |
|                |                                          |                    | <u> </u>                                               | <u>       </u>   [   |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | 11111                                                    | <u>111++</u>                                   |
|                | 5                                        | 1                  | T                                                      |                      |                           |                       |                                 |              | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                              |                                                          |                                                |
|                |                                          | 1 i                |                                                        | 1 + 1 📲              | A                         |                       |                                 |              | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                              |                                                          |                                                |
| A started      | 1≿::::                                   | <b>1</b>           |                                                        | 193 - I              | <b>N</b>                  | 1 : 1 + 1             |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ▋↓↓↓↓                        | ▋Ì╞┼┾╸                                                   | ┫╺┥┈╡╶╡╺╽╷                                     |
| 1              | 2                                        | 1                  | 1                                                      | 1 : : - 4            |                           |                       | ++++                            |              | الفنفيه ووا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | ┫┧┥┥┼                        | ╉┽┊╞┉┿╺                                                  | finfinfinfi fin                                |
|                | ARBITRARY                                |                    | <b></b>                                                | <del>┨╶┼╌╌┼╶</del> ┸ |                           | ╉┼┼┼┼                 | ╋╍┼╍┽╍┿╼                        | ┫┥┥┥         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | ╋╋┿┾┾┼╸                                                  | ╋ <del>╸┉╺┥╺╡╸╡</del> ╸                        |
|                |                                          | 11111              | 1111                                                   | 1 1 1 1              |                           | 11111                 | 11111                           | 1111         | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1111                      | 1111                         | <b>    <del>     </del>                             </b> | <b>1</b> + + + + + + + + + + + + + + + + + + + |
|                |                                          | I                  | 1:::::                                                 | 1111                 | TINI                      | <b>[</b> ]            | []]]]]                          |              | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 1111Ľ                        |                                                          |                                                |
|                | l €                                      |                    |                                                        |                      |                           |                       |                                 |              | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | يتجليلوا                     | TITI                                                     | LLLT                                           |
|                |                                          |                    | l i l i l                                              | ┨ <sub>┥</sub> ┥┥┦   |                           |                       |                                 | Line         | ╇┿┿┿╋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                              |                                                          |                                                |
| here has shown |                                          | <b>i</b> + 4 i 4 i | <b>1</b>                                               |                      | 4 + 4 + 4                 |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | • • • • • •                                              | • • • • •                                      |
|                | N_                                       | i t t t            | 1                                                      | ┟╴┽╴╅╶┽╸┨            | · • • • • • •             |                       | 1                               | 1.14         | And the second s | ++++                      |                              |                                                          | <b>k</b>                                       |
|                | 5                                        | • + + • • •        | <b>1</b>                                               | 1 1 1 1 1            |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++++                      | i-+-+ + ±_                   |                                                          | €                                              |
|                | and \$/m                                 | ┫┈╞┈┥╶┞┈┼┈         | 1                                                      | trata ta             |                           | 1 ( - ) ( )           |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                      |                              |                                                          |                                                |
|                |                                          |                    |                                                        |                      |                           |                       | I                               | I            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | 1                                                        |                                                |
|                | Z                                        |                    |                                                        |                      |                           |                       |                                 | LELE         | $\mathbf{I} \mid \mathbf{I} \mid \mathbf{I} \mid \mathbf{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                              |                                                          |                                                |
|                | ro .                                     |                    |                                                        |                      |                           |                       |                                 |              | المرجا با                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                              |                                                          |                                                |
|                |                                          |                    |                                                        |                      |                           | and the second second |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | ┫╌╪╍╪╴╕╶╡╺┥                                              | ┝╍┥╌┥╴┟╾╞╌╵                                    |
| ┟╍╍╍┼╍┼╍       | 2                                        | ┫╼┧╼╞╾┵╍┿╍         | ╉╾┽╌┿╌┿╌                                               | <b>┫╺┿╍┿╍╈</b>       | ┍╋╾┿╍┯╍┿╸                 | ╋╍┿╍┿╍                | <b>┫╌┼╌┼╌┼</b> ┈┼┈              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╺┿┿┿┿┿                    |                              | <u>╋╍╈╍┿╼</u> ┿╼┥                                        | ┠╍┝╍┾╍┿╍┽╍┥                                    |
| الشيف بعربة ال |                                          |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                |                                          |                    | d in inte                                              | 1 : <b></b>          | 14 ÷ • • •                | 1 to 1 to 1           |                                 |              | <b>1 1 1 1 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                              | • • • • • • • • •                                        | ┝╍┾╍┿╸┿╶┥╶┥                                    |
|                |                                          |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | ╸┥╺┿╍┽┈┥╼<br>┥╶╢╌┽╾┥╶┽╼                                  | ┝╾┾╴┽╶┥<br>┝╾┾╌┽╴┡╶┽┈                          |
|                | È.                                       |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                | E                                        |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                | E                                        |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                | E                                        |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                | È.                                       |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                | E                                        |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2                            | 2                                                        |                                                |
|                | E                                        |                    |                                                        |                      |                           |                       |                                 |              | <b>S/N</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 2) ×                         |                                                          |                                                |
|                | E                                        |                    |                                                        |                      |                           | •                     |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <b>(\$</b> /n           | 2,                           | m <mark>²/₩</mark> ₽)                                    |                                                |
|                | E                                        |                    |                                                        |                      |                           |                       |                                 |              | <b>5/Wp</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - (\$/1                   | 2) (                         | m <sup>2</sup> /₩p)                                      |                                                |
|                | т. т |                    |                                                        |                      |                           |                       |                                 |              | \$/₩p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - <b>(\$/</b> 1           | 2) * (                       | 12<br>m <sup>2</sup> /WP)                                |                                                |
|                | E                                        |                    |                                                        |                      |                           |                       |                                 |              | \$ <b>/W</b> p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - ( <b>\$</b> /n          |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           |                       |                                 |              | \$/₩p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           |                       |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           | Ţ                     | 1                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           | Ţ                     | 1                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           | Ţ                     | 1                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           | Ţ                     | CKNESS                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                      |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           |                       | CKNESS                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | ni kukv                                                  |                                                |
|                | т. т |                    |                                                        |                      |                           | ER TH                 | CKNESS                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              | ni kukv                                                  |                                                |
|                | 27WU0 2. THE                             |                    |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
|                | 27WU0 2. THE                             |                    |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. THE                             | 2 - AN             | ILLUS                                                  |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. THE                             | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s (TOP                    |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s (TOP                    |                              |                                                          |                                                |
| F I GURE       | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              |                                                          |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              |                                                          |                                                |
| F I GURE       | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              | .D. WA                                                   |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | <del>CKNESS</del>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              | .D. WA                                                   |                                                |
| F I GURE       | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | A OPT                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              | .D. WA                                                   |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | CKNESS<br>A OPT                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              | .D. WA                                                   |                                                |
| FIGURE         | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | CKNESS<br>A OPT                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              | .D. WA                                                   |                                                |
| F I GURE       | 27WU0 2. TH                              | 2 - AN             |                                                        |                      | WA                        | E <mark>R T</mark> H  | CKNESS<br>A OPT                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (TOP                    |                              | .D. WA                                                   |                                                |

-65-

### IV. CONCLUSIONS AND RECOMMENDATIONS

Evaluation of the slicing experiments performed indicated:

- o SAMICS cost assessment indicated that the I.D. saw slicing is more favorable than the MBS saw and MWS saw techniques at present, and its capability of automation, which is essential for large volume production, adds advantage over the other two methods. Preliminary results indicated that the I.D. saw slicing technique will meet the slicing goal in 1982 without significant innovation of the slicing techniques. However, significant improvement in blade package, slurry, wire and machine capacity are needed to meet the goal for the MBS saw and MWS saw.
- o An advantage of lower kerf loss by the MWS saw slicing was obtained at an expense of higher add-on slicing cost over the I.D. saw and MBS saw.
- Mechanical wafer parameters such as thickness variation, taper, bow and roughness, were considerably better for wafers sliced with the I.D. saw and MWS saw than for those with the MBS saw. Wafers sawn with the I.D. saw (sliced at two IPM of cut rate) showed slightly better parameters than those with the MWS saw.
- o The add-on slicing cost should be assessed with the specification of thickness, kerf loss, and diameter of the wafers to be sliced, because they are the major parameters which will strongly influence the overall slicing cost. Finally the surface damage generated by the slicing methods should be investigated and the electrical power output that can be obtained from the sliced wafer should be incorporated in the overall assessment. In other words, a systems approach in necessary to obtain optimum slicing conditions.

~66-

- o Preliminary results using thin I.D. blades was not successful mainly due to low lifetime of the blade. Development of I.D. blades which will give low kerf loss with long life is needed.
- o The following areas of development of I.D. saw machine design are suggested, to achieve further reduction of the cost:
  - (1) Improvement in machine productivity.
  - (2) Use of a rotating crystal system.
  - (3) Development of techniques to detect mechanical instability (or vibration) of I.D. blades while slicing, either due to blade head or loosness of blade tension etc.

### V. <u>REFERENCES</u>

- H. I. Yoo, "Assessment of Present State-of-the-Art Sawing Technlogy of Large Diameter Ingots for Solar Sheet Material," First Quarterly Report, 1977.
- 2. The Staff of STC, "Selecting and Using the I.D. Diamond Blade," Industrial Diamond Review, p.p. 10, January, 1975.
- S. C. Holden, "Slicing of Silicon Into Sheet Material," (Varian Associates, Lexington Vacuum Division) JPL Contract 954374, Third Quarterly Report, p.p. 3, December, 1976.
- 4. J. Grandia and J. Hill, "Improved Slicing and Orientation Techniques for I.D. Sawing," Solid State Technology, p.p. 40, February, 1978.

# APPENGIX I

🖌 or and the second se

# APPLICATION OF SAMICS TO THE MULTIBLACE SLURRY (MBS) SAW SLICING

### SLICING OF 3" WAFERS

## A. DESCRIPTION OF THE SLICING

Ţ

Ł

- 1. Batch Process: 219 Yielded Wafers Per Batch
- 2. Average Slicing Cycle: 10.6 Hours/Batch

| Slicing<br>Machine | Time:<br>Down-Time*: |      | Hours<br>Hours |        |
|--------------------|----------------------|------|----------------|--------|
| Total              |                      | 10.6 | Hours          | /Batch |

3. Wafers Per Operating Minute:  $\frac{219}{10 \times 60} = 0.364$  Wafers/Operating Minute

4. Process Usage Time Fraction:  $\frac{10}{10.6} = 0.94$ 

### B. EQUIPMENT AND MANUFACTURING SPACE

- 1. Salvage Value: 10% of the New Machine Price
- 2. Manufacturing Space: Three (3) Times of a Machine Space

#### C. DIRECT LABOR REQUIREMENT

1. General Assembler:

| Ingot Mount on Graphite:    | 15     | Minutes       |
|-----------------------------|--------|---------------|
| Ingot Mount on Machine:     | 6      | Minutes       |
| Ingot Demount From Machine: | 6      | Minutes       |
| Wafer Demount and Degrease: | 90     | Minutes       |
| Final Clean:                | 13     | Minutes       |
| Operator's Attention:       | 24     | Minutes       |
| Total                       | 154    | Minutes/Batch |
|                             | = 2.57 | Hours/Batch   |

#### PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift = 2.57 x  $\frac{8}{10.6}$  x  $\frac{1}{8}$  = 0.242

For Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

$$PRSN * YRS = 0.242 \times 4.7 = 1.14$$

÷.

# SLICING OF 3" WAFERS (Continued)

2. Maintenance Mechanics II

Blade Package Tensioning and Alignment: 0.5 Hours/Batch

PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift = 0.5 x  $\frac{8}{10.6}$  x  $\frac{1}{8}$  = 0.047

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc. ŵ.

 $PRSN * YRS = 0.047 \times 4.7 = 0.22$ 

### D. DIRECT MATERIAL REQUIREMENT

- 1. Blade Package: Three (3) Batches can be Sliced Using a Blade Package
- 2. Slurry: Slurry was Used for One Batch Slicing Orly

### \*Machine Down Time (Hours/Batch)

| Blade Package Alignment and Tensioning: | 0.33 Hours      |
|-----------------------------------------|-----------------|
| Ingot Mount:                            | 0.1 Hours       |
| Ingot Demount:                          | 0.1 Hours       |
| Miscellaneous:                          | 0.07 Hours      |
| Total                                   | 0.6 Hours/Batch |

## SOLAR ARRAY MANUFACTURING INDUSTRY COSTING STANDARDS

|            | a                                                                                                                         | FOR                | RMAT A                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------|
| -J         | P<br>IF & PROPESTION & MORATORY<br>Ender once Dimensional Technology<br>Once Conference Dimensional Canal Conference Dis- | ROCESS L           | DESCRIPTION                                    |
| AI         | Process Referent                                                                                                          |                    | -                                              |
| AP         | Description (Optional) Slici                                                                                              | ng_of_3 <u>"</u> _ | diameter silicon ingot by MBS saw.             |
| PART       | - PRODUCT DESCRIPTION                                                                                                     | ***                |                                                |
| A3         | Product Referent MBS-3                                                                                                    |                    |                                                |
| A4         | Name or Description _3" wafers                                                                                            | sliced b           | ov MBS saw. Kerf width 12.8 mils and wafer     |
|            | thickness 13.2 mils.                                                                                                      |                    |                                                |
| A5         |                                                                                                                           |                    | 219 wafers)                                    |
| PART       | ? - PROCESS CHARACTERISTICS                                                                                               |                    |                                                |
| A6         | Output Rate                                                                                                               | 0.364              | Units (given on line A5) Per Operating Minute  |
| A7         | Average Time at Station                                                                                                   |                    | Calendar Minutes                               |
| <b>A</b> 8 | Process Usage Time Fraction                                                                                               | 0.94               | Average Number of Operating Minutes Per Minute |
| PARTS      | - EQUIPMENT COST FACTORS                                                                                                  |                    |                                                |
| A9         | Component Referent                                                                                                        |                    | Varian-686.                                    |
| A10        | Base Price Year For Purchase Price                                                                                        |                    | 77                                             |
| A11        | Purchase Price (\$ Per Component)                                                                                         |                    | 25,000                                         |
| A12        | Anticipated Useful Life (Years)                                                                                           |                    | 7                                              |
| A13        | Salvage Value (\$ Per Component)                                                                                          |                    | 2,500                                          |
| A14        |                                                                                                                           | omponent)          | 300                                            |

101 - 30362 (F. 1947) - 1

U,

Format A. Process Description (Continued)

A14 Process Referent (From Page 1) \_\_\_\_\_MBS\_\_\_\_\_

## PART 4 - DIRECT REQUIREMENTS PER MACHINE

| A16                                    | A17                                                                                                             | A18<br>Amount Required | A19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Catalog<br>Number                      | Requirement Description                                                                                         | Per Machine            | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A 2064 D                               | <u>Manufacturing Space (Type A)</u>                                                                             | 50                     | Square Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B 3064 D                               | General Assembler                                                                                               | 1.14                   | PRSN * YRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| B 3736 D                               | <u>Maintenance Mechanics II</u>                                                                                 | 0,22                   | PRSN * YRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | Application for a second s  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -4940-485-06 &15-440-440-4-46-820-06-0 | 9011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                        |                        | generalization of the second state of the seco |
|                                        | Belle sealitier, states where a sealitier was sealitier as a state of the seality of the seality of the seality |                        | <b>an search a state an </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

PART 5 -- DIRECT REQUIREMENTS PER BATCH (A continuous process has a "batch" of one unit)

| A20               | A21                            | A22<br>Amount Required | A23         |  |
|-------------------|--------------------------------|------------------------|-------------|--|
| Catalog<br>Number | <b>Requirement Description</b> | Per Batch              | Units       |  |
| <u>G 1012 D</u>   | Shellac Clear Spray            | 0.1                    | Can         |  |
| G 1030 D          | Cement, Do All No Load         | 0.4                    | Lbs.        |  |
| G 1016 D          | Graphite Beam Mount            | 0.5                    | Each        |  |
| <b>G 1032</b> D   | SiC, 400 Grit                  | 12                     | Lbs.        |  |
| G 1034 D          | P.C. 0i1                       | 1.8                    | <u>Gal.</u> |  |
| G 1036 D          | TCE, Tech. Grade               | 2                      | Gal.        |  |
| G 1038 D          | Multiblade Package             | 1/3                    | Pkg.        |  |

### (Continued - Attachment A) PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED

| A24<br>Product | A25               | A26<br>Yield Factor   | A27      |
|----------------|-------------------|-----------------------|----------|
| Reference      | Product Name      | (Usable Output/Input) | Units    |
| GSIG           | Grind 3" Si Ingot | 1 <u>35</u>           | Wafer/Kg |
|                |                   |                       |          |

Prepared by \_\_\_\_\_ Prepared by \_\_\_\_\_ Date \_\_\_\_ J/1/78

REVERSE SIDE JPE 3037 5 11/77

# ATTACHMENT A

# PART 5 - DIRECT REQUIREMENTS <u>PER BATCH</u> (Continued from Page 2)

€ strategy €

A subscribe,
 A subscribe,

10 8 A

1

| A20<br>Catalog<br>Number                                                                                        | A21<br>Requirement Description                                                                                    | A22<br>Amount Required<br>Per Machine                                                                           | A23<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C 1032 B                                                                                                        | Electricity                                                                                                       | 5                                                                                                               | KW Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D 1064 D                                                                                                        | Rejected Wafers                                                                                                   | 11                                                                                                              | Wafer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                 |                                                                                                                   | ann a hann a bha a na an an ann an ann an ann an ann ann an a                                                   | terregeneration and an appropriate difference of the terreturn construction of the approximation of the |
|                                                                                                                 | We want and a specify specific and the state of an and and been and by Configuration of the state of the state of | <u></u>                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| مىدىرىيەت خەرىيەت خەت ھەت بىلە بىرىيەر يەت يەت بىلەر يەت بىلەر يەت ھەت بىلەر يەت ھەت يەت يەت بىلەر يەت بىلەر يە | ander periodi die fest die Anna gewenne die Anna   | danlah sebuah sebuah sepertah sebuah sebu | de en der sin generaliste die Statistica de Statistica de Constanti de Constanti de Statistica de Constanti de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| an a                                                                        |                                                                                                                   | 20-01.56.56.56.56.56.56.76.76.76.76.76.76.76.57.76.76.76.76.76.76.76.76.76.76.76.76.76                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                 |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# COMMODITIES PER CYCLE

| P11               | P12                | P13                 | P14               | P15                    |
|-------------------|--------------------|---------------------|-------------------|------------------------|
| Catalog<br>Number | Annual<br>Quantity | Uninflated<br>Price | Inflated<br>Price | Commodities<br>Expense |
| G 1012 D          | 45.7               | \$ 3.01             |                   | \$ 137                 |
| G 1030 D          | 182.8              | \$ 5.24             |                   | \$ 958                 |
| G 1016 D          | 228.3              | \$ 1.88             |                   | \$ 429                 |
| G 1032 D          | 5,480              | \$ 1.35             |                   | \$7,398                |
| G 1034 D          | 822                | \$ 4.74             |                   | \$ 3,896               |
| G 1036 D          | 913                | \$ 3.50             |                   | \$ 3,196               |
| G 1038 D          | 152.2              | \$ 175.00           |                   | \$ 26,636              |
|                   |                    |                     |                   |                        |

# UTILITIES PER CYCLE

| P16               | P17                | P18                 | P18 P19           |                      |  |  |
|-------------------|--------------------|---------------------|-------------------|----------------------|--|--|
| Catalog<br>Number | Annual<br>Quantity | Uninflated<br>Price | Inflated<br>Price | Utilities<br>Expense |  |  |
| C 1032 B          | 2,283              | \$ 0.032            |                   | \$73                 |  |  |
|                   |                    |                     |                   |                      |  |  |
|                   |                    |                     |                   |                      |  |  |
|                   | -                  |                     |                   |                      |  |  |

Prepared by .....

1

\_\_\_ Date \_\_\_\_

REVERSE SIDE JPL 3040-5 11/77

JET PROPULSION LABORATORY California Institute of Technology 4800 Oak Grote Dr. / Pasadena, Calif. 9/103

11

**PROCESS WORK SHEET** 

P1 PROCESS REFERENCE MBS

### LABOR PRICES AND COSTS PER MACHINE

| P2                | P3                                                                                                              | P4       | P2                | P3                | P4   |
|-------------------|-----------------------------------------------------------------------------------------------------------------|----------|-------------------|-------------------|------|
| Catalog<br>Number | Inflated<br>Price                                                                                               | Cost     | Catalog<br>Number | Inflated<br>Price | Cost |
| B 3064 D          | \$ 8,748                                                                                                        | \$ 9,973 |                   |                   |      |
| B 3736 D          | \$ 12,744                                                                                                       | \$ 2,804 |                   |                   | •    |
|                   |                                                                                                                 |          |                   |                   |      |
|                   | an men i 1998 an Anno 1999 an Ann |          |                   |                   |      |
|                   | موجودي المحمد ويوجدون والمترفونين ومحروا فالمرجون والمرو                                                        |          |                   |                   |      |

## **BYPRODUCTS PER CYCLE**

| P5                | P6                                    | P7                  | P8                | P9                                    | P10                  |
|-------------------|---------------------------------------|---------------------|-------------------|---------------------------------------|----------------------|
| Catalog<br>Number | Annual<br>Quantity                    | Uninflated<br>Price | Inflated<br>Price | Byproduct<br>Expense                  | Byproduct<br>Revenue |
| D 1064 D          | 4,800                                 | \$ - 0.041          |                   | · · · · · · · · · · · · · · · · · · · | \$ 197               |
|                   |                                       |                     |                   |                                       |                      |
|                   | · · · · · · · · · · ·                 |                     |                   |                                       |                      |
|                   | • • • • • • • • • • • • • • • • • • • |                     |                   |                                       |                      |

antina telefoliation and the

JPL 3040 - 5 11-77

# COMPANY WORK SHEET

nin Kita

| WI         | Wafco            | W17    | \$ 42,650                   |
|------------|------------------|--------|-----------------------------|
| <b>W</b> 2 | 3" Wafers, 100,0 | 00 W18 | \$.73                       |
| W3         | MBS              | W19    | \$ 197                      |
| W4         | 3" Ingot         | W20    | \$ 13,406                   |
| W5         | 135 Wafer/Kg     | W21    | 29.4                        |
| W6         | 740.7 Kg         | W22    | \$ 7,513                    |
| W7         | 274,725          | W23    |                             |
| W8         | 466,992          | W24    | \$ 42,650                   |
| W9         | 0.588            | W25    | \$ 73                       |
| W10 _      | \$ 22,800        | W26    | \$ 197                      |
| W11 _      | \$ 13,406        | W27    | per des des des des des des |
| W12        | 50               | W28    |                             |
| W13        | 29.4             | W29    | \$ 42,650                   |
| W14        | \$ 12,777        | W30    | \$ 0.80                     |
| W15 _      | \$ 7,513         | W31    |                             |
| W16 _      |                  |        |                             |

Prepared by 14 2400 Date 3/1/18

-1

### SLICING OF 4" WAFERS

### A. DESCRIP, ION OF THE SLICING

- 1. Batch Process: 193 Yielded Wafers Per Batch
- 2. Average Slicing Cycle: 21.5 Hours/Batch

Slicing Time:20.5 HoursMachine Down-Time\*:1.0 HoursTotal21.5 Hours/Batch

3. Wafers Per Operating Minute:  $\frac{193}{20.5 \times 60} = 0.157$  Wafers/Operating Minute

4. Process Usage Time Fraction:  $\frac{20.5}{21.5} = 0.95$ 

### B. EQUIPMENT AND MANUFACTURING SPACE

- 1. Salvage Value: 10% of the New Machine Price
- 2. Manufacturing Space: Three (3) Times of a Machine Space

### C. DIRECT LABON REQUIREMENT

#### 1. General Assembler:

| Ingot Mount on Graphite:<br>Ingot Mount on Machine: | 15<br>6 | Minutes<br>Minutes |
|-----------------------------------------------------|---------|--------------------|
| Ingot Demount on Machine:                           | 6       | Minutes            |
| Wafer Demount and Degrease:                         | 90      | Minutes            |
| Final Clean:                                        | 13      | Minutes            |
| Operator's Attention:                               | 27      | Minutes            |
| Total                                               | 157     | Minutes/Batch      |
|                                                     | 2.62    | Hours/Batch        |

PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift = 2.62 x  $\frac{8}{21.5}$  x  $\frac{1}{8}$  = 0.122

For Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

 $PRSN * YRS = 0.122 \times 4.7 = 0.573$ 

## SLICING OF 4" WAFERS (Continued)

2. Maintenance Mechanics II

Blade Pakage Tensioning and Aligning: 1 Hours/Batch

PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift = 1 x  $\frac{8}{21.5}$  x  $\frac{1}{8}$  = 0.047

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

 $PRSN * YRS = 0.047 \times 4.7 = 0.22$ 

## D DIRECT MATERIAL REQUIREMENT

- 1. Blade Package: One and a Half  $(1 \frac{1}{2})$  Batches can be Sliced Using a Blade Package
- 2. Slurry: Slurry was Used for One Batch Slicing Only

#### \*Machine Down Time (Hours/Batch)

| Blade Package Alignment and Tensioning: | 0.7 Hours       |
|-----------------------------------------|-----------------|
| Ingat Mount:                            | 0.1 Hours       |
| Ingot Demount:                          | 0.1 Hours       |
| Miscellaneous:                          | 0.1 Hours       |
| Total                                   | 1.0 Hours/Batch |

## SOLAR ARRAY MANUFACTURING INDUSTRY COSTING STANDARDS

1 |4 |Y

|            | n                                                                                                                                                                 | FORMA                   | ТА            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | PROC                                                                                                                                                              | ESS DES                 | CRIPTION      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 164: PROPULATOR AMORATORY<br>Cales onta Intervente d'El Onne av<br>Secol Crob Cales De l'Pacadona, Calel, 191103<br>Secol Crob Cales De l'Pacadona, Calel, 191103 |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AI         | Process ReferentMBS                                                                                                                                               | mananaka sindifi digaga |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A2         | Description (Optional) Slicing of                                                                                                                                 |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PART 1     | - PRODUCT DESCRIPTION                                                                                                                                             | * * * ^ ********        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A3         | Product Referent MBS-4                                                                                                                                            |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A4         | Name or Description _ 4" wafers sli                                                                                                                               | iced by                 | MBS saw, Kerf | width 13 mils a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd wafer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | thickness 13 mils.                                                                                                                                                |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Annald and an an analysis of the state of th |
| A5         | Units Of Measure Wafer (a bate                                                                                                                                    | ch of 19                | 3)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an egy gelander in same en gelander men an gelander an de se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PART 2     | - PROCESS CHARACTERISTICS                                                                                                                                         |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A6         | Output Rate 0.1                                                                                                                                                   | 157                     | Units (give   | n on tine A5) Per Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ating Minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A7         | Average Time at Station                                                                                                                                           |                         | Calendar N    | Ainutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>A</b> 8 | Process Usage Time Fraction0.9                                                                                                                                    | 95                      | Average N     | umber of Operating Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nutes Per Minuto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PART 3     | - EQUIPMENT COST FACTORS                                                                                                                                          |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A9         | Component Referent                                                                                                                                                | -                       | Varian-686    | a.<br>Ba bereiten einen aussa an einen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Annual and the state of the sta |
| A10        | Base Price Year For Purchase Price                                                                                                                                | -                       | 77            | te aj line and an all an allower and and all a gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mar Marillan a di tra maka dina ta da da ta ta ta ta ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A11        | Purchase Price (\$ Per Component)                                                                                                                                 | -                       | 25,000        | <b>Belle</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and and the set of the |
| A12        | Anticipated Useful Life (Years)                                                                                                                                   | -                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A13        | Salvage Value (\$ Per Component)                                                                                                                                  | -                       | 2,500         | <b>and again</b> in the other of a game and a second s | <b>8999 201 - 1 - 1</b> - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A14        | Cost of Removal & Installation (\$/Compo                                                                                                                          | onent) "                | 300           | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | genete i su su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

 $\mathbf{H} \mathbf{U} = \{\mathbf{U} \in \mathcal{U} : x \in \mathcal{U} : x \in \mathcal{U} : x \in \mathcal{U}\}$ 

Ŕ,

Format A. Process Description (Continued)

A14 Process Referent (From Page 1) \_\_\_\_\_MBS



| A 16<br>Catalog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A18<br>Amount Required                                    | A19                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Requirement Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Per Machine                                               | Units                                             |
| A 2064 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manufacturing Sapce (Type A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                        | <u>Square Feet</u>                                |
| B 3064 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General Assembler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.573                                                     | PRSN * YRS                                        |
| B 3736 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maintenance Mechanic II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22                                                      | PRSN * YRS                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ana da mangangan kanangan kanangan da kanangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           | Weinige alle et de la mage mane sprocher en gen a |
| - and and . The second and the second s | <b>19</b> 00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-00-19-                                                                                                                                                                                                                                                                                       | Ban sasnursectoria ann an a |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | First Manual Section (Section (Section Section (Section (Section Section |                                                           |                                                   |

PART 5 - DIRECT REQUIREMENTS PER BATCH (A continuous process has a "batch" of one unit)

| A20<br>Catalog  | A21                            | A22<br>Amount Required | A23          |
|-----------------|--------------------------------|------------------------|--------------|
| Number          | <b>Requirement Description</b> | Per Batch              | Units        |
| G 1012 D        | Shellac Clear Spray            | 0.1                    | Can          |
| <u>G 1030 D</u> | Cement, Do All No Load         | 0.4                    | <u>Lbs</u> , |
| G 1018 D        | Graphite Beam Mount            | 1                      | Each         |
| G 1032 D        | SiC, 400 Grit                  | 12                     | Lbs.         |
| G 1034 D        | P.C. 0i1                       | 1.8                    | Gal          |
| G 1036 D        | TCE, Tech. Grade               | 2                      | <u> </u>     |
| G 1038 D        | Multiblade Package             | •                      | Pkg.         |
|                 | (Continued - Attachm           | lent A)                |              |

# PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED

| A24<br>Product | A25               | A26<br>Yield Factor   | A27      |
|----------------|-------------------|-----------------------|----------|
| Reference      | Product Name      | (Usable Output/Input) | Units    |
| GSIG           | Grind 4" Si Ingot | 67.2                  | Wafer/Kg |

Prepared by \_\_\_\_\_ H\_ 470 \_\_\_\_\_ Date \_\_\_\_\_\_Date \_\_\_\_\_\_D

REVERSE SIDE OPE 3037 5 11/77

# ATTACHMENT A

| A20<br>Catalog<br>Number                                                                  | A21<br>Requi#ement Description                   | A22<br>Amount Required<br>Per Machine                                                                           | A23<br>Units                                                                                                      |
|-------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <u>C 1032 B</u>                                                                           | Electricity                                      | 10                                                                                                              | KW Hour                                                                                                           |
| D 1064 D                                                                                  | Rejected Wafers                                  | 37                                                                                                              | Wafer                                                                                                             |
| ana na ana aka aka aka kata kata kata ka                                                  |                                                  | epontes por the late on a - and in the data and a set of the state of the set of the set of the set of the set  | Freeman by the second construction and an interest of the second second second second second second second second |
| \$1971 (Audio da la grade, a) da que estas (1871 e 47 generalmente) da la constantinación | sa sa ing sa | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                   |                                                                                                                   |
| 1 <b>0</b> 11111111111111111111111111111111111                                            | an a         | ŢĸĸĸĸĹŧĸĸŎŎŴŎŎĊŎĸŢŎŗĸĔŎſĸĬŎŎŎĸŢŎĬŎŎŢŎŢŎŢŎŢŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ                                                  | Winama Ingera Mpa dan injeri na nina mang mpanang mpanang mpanang mpanang mpanang mpanang mpanang mpanang mpana   |
|                                                                                           | €₩₩₩₩₩₩₽₽₩₩₩₩₩₩₩₩₩₽₩₩₩₩₽₽₽₩₩₩₽₽₽₩₩₩₩₩₩₩₩         | a ya ang mananining ng kapanang ng kapang |                                                                                                                   |
|                                                                                           |                                                  |                                                                                                                 | any says the set of the   |

# PART 5 - DIRECT REQUIREMENTS <u>PER BATCH</u> (Continued from Page 2)

• ------

# COMMODITIES PER CYCLE

an a **sta**testas and

and the second second

| P12                | P13                                                                 | P14                                                                                                                                                                                                                                      | P15                                                                                                                                                                                                                                                                |
|--------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Annual<br>Quantity | Uninflated<br>Price                                                 | Inflated<br>Price                                                                                                                                                                                                                        | Commodities<br>Expense                                                                                                                                                                                                                                             |
| 51.8               | \$ 3.01                                                             |                                                                                                                                                                                                                                          | \$ 156                                                                                                                                                                                                                                                             |
| 207.3              | \$ 5.24                                                             |                                                                                                                                                                                                                                          | \$ 1,086                                                                                                                                                                                                                                                           |
| 518                | \$.88                                                               |                                                                                                                                                                                                                                          | \$ 456                                                                                                                                                                                                                                                             |
| 6,218              | \$ 1.35                                                             |                                                                                                                                                                                                                                          | \$ 8,394                                                                                                                                                                                                                                                           |
| 933                | \$ 4.74                                                             |                                                                                                                                                                                                                                          | \$ 4,422                                                                                                                                                                                                                                                           |
| 1,036              | \$ 3.50                                                             |                                                                                                                                                                                                                                          | \$ 3,626                                                                                                                                                                                                                                                           |
| 345.4              | \$ 175.00                                                           |                                                                                                                                                                                                                                          | \$ 60,445                                                                                                                                                                                                                                                          |
|                    |                                                                     |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |
|                    | Annual<br>Quantity<br>51.8<br>207.3<br>518<br>6,218<br>933<br>1,036 | Annual<br>Quantity         Uninflated<br>Price           51.8         \$ 3.01           207.3         \$ 5.24           518         \$ .88           6,218         \$ 1.35           933         \$ 4.74           1,036         \$ 3.50 | Annual<br>Quantity         Uninflated<br>Price         Inflated<br>Price           51.8         \$ 3.01           207.3         \$ 5.24           518         \$ .88           6,218         \$ 1.35           933         \$ 4.74           1,036         \$ 3.50 |

# UTILITIES PER CYCLE

| P16                                      | P17                | P18                 | P19               | P20                  |
|------------------------------------------|--------------------|---------------------|-------------------|----------------------|
| Catalog<br>Number                        | Annual<br>Quantity | Uninflated<br>Price | Inflated<br>Price | Utilities<br>Expense |
| C 1032 D                                 | 5,181              | \$ 0.032            |                   | \$ 166               |
| 10 · 0 · · · · · · · · · · · · · · · · · |                    |                     |                   |                      |
|                                          |                    |                     |                   |                      |
|                                          |                    |                     |                   |                      |

Prepared by .....

REVERSE SIDE JPL 3040-5 11/77

... Date ...

JET PROPULSION LABORATORY California Insiste of Technology 4800 Oak Grove Dr. / Pasadena, Calif. 91103

1

PROCESS WORK SHEET

P1 PROCESS REFERENCE

MBS-4

### LABOR PRICES AND COSTS PER MACHINE

| P2                                                                                                        | P3                                                  | P4                                                                              |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|
| Catalog<br>Number                                                                                         | Inflated<br>Price                                   | Cost                                                                            |
| B 3064 D                                                                                                  | \$ 8,748                                            | \$ 5,013                                                                        |
| B 3736 D                                                                                                  | \$ 12,744                                           | \$ 2,804                                                                        |
|                                                                                                           |                                                     |                                                                                 |
| alanyan gan din teta seri na guna guna guna da da den da yang guna da | an 2017 - T. AN | 996 - Andre C. C. B. 1997 - The Annu Alexandro Contract of The Annual Alexandro |
|                                                                                                           |                                                     |                                                                                 |

| r2                | P3                                                                                                       | P4                                     |
|-------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|
| Catalog<br>Number | Inflated<br>Price                                                                                        | Cost                                   |
|                   |                                                                                                          |                                        |
|                   |                                                                                                          | ************************************** |
|                   |                                                                                                          |                                        |
|                   | Januar Mandretta Martina and an and an and an an and an an an and an |                                        |
|                   |                                                                                                          |                                        |

# BYPRODUCTS PER CYCLE

| <b>P6</b>            | P7                   | P8                                  | P9                                                 | P10                                                                  |
|----------------------|----------------------|-------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|
| Annual<br>्रिधantity | Uninflated<br>Price  | Inflated<br>Price                   | Byproduct<br>Expanse                               | Byproduct<br>Revenue                                                 |
| 19,160               | \$ -0.19             |                                     |                                                    | \$ 3,640                                                             |
|                      |                      |                                     |                                                    |                                                                      |
|                      |                      |                                     |                                                    |                                                                      |
|                      |                      |                                     |                                                    |                                                                      |
|                      |                      |                                     |                                                    |                                                                      |
|                      | Annual<br>উদ্ধantity | Annual Uninflated<br>Quantity Price | Annual Uninflated Inflated<br>Guantity Price Price | Annual Uninflated Inflated Byproduct<br>Guantity Price Price Expense |

JPL 3040 - 3 11/77

# COMPANY WORK SHEET

| W1  | Wafco             |
|-----|-------------------|
| W2  | 4" Wafer, 100,000 |
| W3  | MBS-4             |
| W4  | 4" Ingot          |
| W5  | 67.2 Wafer/Kg     |
| W6  | 1,488.1 Kg        |
| W7  | 636,943           |
| W8  | 471,960           |
| W9  | 1.35              |
| W10 | \$22,800          |
| WII | \$30,780          |
| W12 | 50                |
| W13 | 67.5              |
|     | \$7,817           |
|     | \$10,553          |
| W16 |                   |
|     |                   |

5

al s

| W17   | \$78,585                                                                                                                                                                                                                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W18   | \$166                                                                                                                                                                                                                                |
| W19   | \$3,640                                                                                                                                                                                                                              |
| W20   | \$30,780                                                                                                                                                                                                                             |
| W21   | 67.5                                                                                                                                                                                                                                 |
| W22   | \$10,553                                                                                                                                                                                                                             |
| W23   | nyan na mana ma<br>Na mana na mana m |
| W24   | \$78,585                                                                                                                                                                                                                             |
| W25   | \$166                                                                                                                                                                                                                                |
| W26   | \$3,640                                                                                                                                                                                                                              |
| •     | ••••                                                                                                                                                                                                                                 |
| W27 _ |                                                                                                                                                                                                                                      |
| W28 _ |                                                                                                                                                                                                                                      |
| W29 _ | \$78,585                                                                                                                                                                                                                             |
| W30 _ | \$1.41                                                                                                                                                                                                                               |
| W31 _ | and any and any loss and data and data                                                                                                                                                                                               |

Prepared by <u>14. 400</u> Date <u>3/1/78</u>

# APPENDIX II

÷,

# APPLICATION OF SAMICS TO THE INTERNAL DIAMETER (I.D.) SAW SLICING

# SLICING OF 3" WAFERS

### A. DESCRIPTION OF THE SLICING

1. A Continuous Process

Cut Rate: Two (2) Inch/Minutes Wafer Yield: 96%

2. Average Slicing Cycle Per Wafer: 1.912 Minutes

| Slicing |              |       | Minutes |
|---------|--------------|-------|---------|
| Machine | Down Time *: | 0.037 | Minutes |
| Total   |              | 1.912 | Minutes |

3. Wafers Per Operating Minute:

$$\frac{1}{1.875}$$
 = 0.533 Wafers/Operating Minute

4. Process Usage Time Fraction:

$$\frac{1.875}{1.912} = 0.98$$

### B. EQUIPMENT AND MANUFACTURING SPACE

- 1. Salvage Value: 10% of the New Machine Price
- 2. Manufacturing Space: Three (3) Times of a Machine Space

### C. DIRECT LABOR REQUIREMENT

1. General Assembler

| Ingot Mount:                 | 0.023 Minutes       |
|------------------------------|---------------------|
| Blade Dressing:              | 0.014 Minutes       |
| Wafer Demount:               | 0.100 Minutes       |
| Final Clean:                 | 0.060 Minutes       |
| <b>Operator's Attention:</b> | 0.030 Minutes       |
| Total                        | 0.227 Minutes/Wafer |

PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift:

$$0.227 \times \frac{8 \times \cancel{60}}{1.912} \times \frac{1}{8 \times 60} = 0.119$$

### SLICING OF 3" WAFERS (Continued)

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

 $PRSN * YRS = 0.119 \times 4.7 = 0.56$ 

2. Maintenance Mechanics II

Blade Mount and Tensioning: 0.017 Minutes/Wafer

PRSN \* YRS/Machine/Shift:

$$0.017 \times \frac{8 \times 60}{1.912} \times \frac{1}{8 \times 60} = 0.009$$

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vaction and Sick Days Etc.

 $PRSN * YRS = 0.009 \times 4.7 = 0.042$ 

## D. DIRECT MATERIA EQUIREMENT

1. Six Inch (6) I.D. Blade

Lifetime of the Blade: 3,000 Cuts

### \*Machine Down Time (Minutes/Wafer)

| Blade Replacement, Tensioning and Initial Blade Dressing: | 0.015 Minutes       |
|-----------------------------------------------------------|---------------------|
| Two Tensioning in Blade Life:                             | 0.005 Minutes       |
| Blade Dressing:                                           | 0.014 Minutes       |
| Miscellaneous:                                            | 0.003 Minutes       |
| Total                                                     | 0.037 Minutes/Wafer |

# SOLAR ARRAY MANUFACTURING INDUSTRY COSTING STANDARDS

|            | n                                                                                                           | FORM              | AT A              |                                                                                                                 |
|------------|-------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
|            | DET PROPENSION LABORATORY<br>Calificities Internet Tr. Internet<br>Alter Genre Dr. / Paradena, Calif. 22103 | PROCESS DI        | ESCRIPT           | ION                                                                                                             |
| A1<br>A2   | Process Referent J.D.<br>Description (Optional)Sijcing                                                      |                   | ameter            | silicon ingot with I.D. saw.                                                                                    |
| PART 1     | - PRODUCT DESCRIPTION                                                                                       |                   | <del></del>       | андардан бал дан жана талан талан шулар кандан арай талан да ката бала филосой да брол та байта талан талан тал |
| A3         | Product Referent I.D3-1.                                                                                    | 3-2               |                   |                                                                                                                 |
| A4         | Name or Description                                                                                         | <u>s sliced w</u> | ith I.D           | . saw, 13 mils wafer thickness,                                                                                 |
|            | <u>12 mils Kerf width, at</u>                                                                               | two in/min        | n of cut          | rate.                                                                                                           |
| A5         | Units Of Measure                                                                                            |                   | 11                |                                                                                                                 |
| PART 2     | PROCESS CHARACTERISTICS                                                                                     |                   |                   |                                                                                                                 |
| A6         | Output Rate                                                                                                 | 0.533             |                   | Units (given on line A5) Per Operating Minute                                                                   |
| A7         | Average Time at Station                                                                                     |                   |                   | Calendar Minutes                                                                                                |
| <b>A</b> 8 | Process Usage Time Fraction                                                                                 | 0.98              |                   | Average Number of Operating Minutes Per Minute                                                                  |
| PART 3     | - EQUIPMENT COST FACTORS                                                                                    |                   |                   |                                                                                                                 |
| A9         | Component Referent                                                                                          |                   | STC               | -16                                                                                                             |
| A10        | Base Price Year For Purchase Price                                                                          |                   | 19                | 77                                                                                                              |
| A11        | Purchase Price (\$ Per Component)                                                                           |                   | 35,               | 000 ·                                                                                                           |
| A12        | Anticipated Useful Life (Years)                                                                             |                   | ••••••••••••••••• | 7                                                                                                               |
| A13        | Salvage Value (\$ Per Component)                                                                            |                   | 3,                | 500                                                                                                             |
| A14        | Cost of Removal & Installation (\$/Co                                                                       | omponent)         |                   | 400                                                                                                             |

Format A. Process Description (Continued)

A14 Process Referent (From Page 1) \_\_\_\_\_\_ I.D.

# PART 4 - DIRECT REQUIREMENTS PER MACHINE

| A 16<br>Catalog                                    | A17                                                        | A18<br>Amount Required                                                                                          | A19         |
|----------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|
| Number                                             | <b>Requirement Description</b>                             | Amount Required<br>Per Machine                                                                                  | Units       |
| A 2064 D                                           | Manufacturing Space (Type A)                               | 80                                                                                                              | Square Feet |
| B 3064 D                                           | General Assembler                                          | 0.56                                                                                                            | PRSN * YRS  |
| B 3736 D                                           | Maintenance Mechanics II                                   | 0.042                                                                                                           | PRSN * YRS  |
| allenda ser en | an a suite a suite anna an a | 17 197 - 1981 - 1982 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 |             |
|                                                    |                                                            |                                                                                                                 | <u></u>     |
|                                                    |                                                            |                                                                                                                 |             |

PART 5 -- DIRECT REQUIREMENTS PER BATCH (A continuous process has a "batch" of one unit)

| A20               | A21                            | A22<br>Amount Required        | A23   |
|-------------------|--------------------------------|-------------------------------|-------|
| Catalog<br>Number | <b>Requirement Description</b> | Per Batch                     | Units |
| <u>G 1012 D</u>   | Shellac Clear Spray            | $1.25 \times 10^{-4}$         | Can   |
| <u>G 1014 D</u>   | <u>Epoxy Paste</u>             | 4.17 x 10 <sup>-5</sup>       | Gal   |
| G 1016 D          | Graphite Beam Mount            | $2.16 \times 10^{-3}$         | Each  |
| G 1020 D          | Coclant, Rust-Lick             | $0.95 \times 10^{-3}$         | Gal   |
| G 1026 D          | 6" I.D. Diamond Wheel Blade    | <u>3.33 x 10<sup>-4</sup></u> | Each  |
| G 1022 D          | Blade Dressing Stick           | <u>1 × 10<sup>-4</sup></u>    | Each  |
| G 1024 D          | Blade Dressing Stick           | $1 \times 10^{-3}$            | Each  |
|                   | (Continued Attached            |                               |       |

## . (Continued - Attachment A) PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED

| A24<br>Product                        | A25                                                                                                            | A26<br>Yield Factor                                    | A27      |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|
| Reference                             | Product Name                                                                                                   | (Usable Output/Input)                                  | Units    |
| GSIG                                  | Grind 3" Si Ingot                                                                                              |                                                        | Wafer/Kg |
| an a sa aray yang tan manganan kanang | anna girlifti ang aga tao ay kapatan nagya ta ganta ng taolan ay kabija waka waka kabila kabatan da kabatan da | ann tagan tao i a panan i an targ inan tao i an ti ang |          |

Prepared by \_\_\_\_\_ 24. 400 \_\_\_\_\_ Date \_\_\_\_\_ Date \_\_\_\_\_

REVENSE SIDE JPL 3037 - 5 11/77

# ATTACHMENT A

| A20<br>Catalog<br>Number                                                                                        | A21<br>Requirement Description | A22<br>Amount Required<br>Per Machine                                                | A23<br>Units                            |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|
| . <u>C. 1032_B</u>                                                                                              | Electricity                    | 0.045                                                                                | KW Hours                                |
| C 1128 D                                                                                                        | Water, Cooling                 | 0.07                                                                                 | Cubic Feet                              |
| <u> </u>                                                                                                        | I.D. Blade Tensioning Fluid    | $2.1 \times 10^{-5}$                                                                 | Gal.                                    |
| D 1064 D                                                                                                        | Rejected Wafer                 | 0.04                                                                                 | Wafer                                   |
| w generative ginde generative e division di denative                                                            |                                |                                                                                      |                                         |
|                                                                                                                 |                                |                                                                                      |                                         |
| eunite et different de en un unternation aux different de different de different de different de different de d |                                | nandin tu quanta para ta a statu ang panta ta da | • #**################################## |

PART 5 - DIRECT REQUIREMENTS <u>PER BATCH</u> (Continued from Page 2)



PROCESS WORK SHEET

P1 PROCESS REFERENCE \_\_\_\_\_I.D.

6

# LABOR PRICES AND COSTS PER MACHINE

| P2                | P3                | P4       |
|-------------------|-------------------|----------|
| Catalog<br>Number | Inflated<br>Price | Cost     |
| B 3064 D          | \$ 8,748          | \$ 4,899 |
| B 3736 D          | \$12,944          | \$ 544   |
|                   |                   |          |
|                   |                   |          |

۰,

'e'

•

| P2                | P3                                                                                                              | P4   |
|-------------------|-----------------------------------------------------------------------------------------------------------------|------|
| Catalog<br>Number | Inflated<br>Price                                                                                               | Cost |
|                   |                                                                                                                 |      |
|                   | 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 |      |
|                   |                                                                                                                 |      |
|                   |                                                                                                                 |      |
|                   |                                                                                                                 |      |

### **BYPRODUCTS PER CYCLE**

| P5                | P6                 | P7                  | P8                                                                                   | P9                   | P10                  |
|-------------------|--------------------|---------------------|--------------------------------------------------------------------------------------|----------------------|----------------------|
| Catalog<br>Number | Annual<br>Quantity | Uninflated<br>Price | Inflated<br>Price                                                                    | Byproduct<br>Expense | Byproduct<br>Revenue |
| D 1064 D          | 4,000              | \$ -0.041           |                                                                                      |                      | 164                  |
|                   |                    |                     |                                                                                      |                      |                      |
|                   |                    |                     |                                                                                      |                      |                      |
|                   |                    |                     | 1                                                                                    | -                    |                      |
|                   |                    |                     |                                                                                      |                      |                      |
|                   |                    |                     | # Wildelingson and high a classe with the a Management and Management and Management |                      |                      |

JPL 3040-S 11/77

# COMMODITIES PER CYCLE

| P11               | P12                | P13                 | P14               | P15                    |
|-------------------|--------------------|---------------------|-------------------|------------------------|
| Catalog<br>Number | Annual<br>Quantity | Uninflated<br>Price | Inflated<br>Price | Commodities<br>Expense |
| G 1012 D          | 12.5               | \$ 3.01             |                   | \$ 38                  |
| G 1014 D          | 4.17               | \$ 23.63            |                   | \$ 99                  |
| G 1016 D          | 216                | \$ 1.88             |                   | \$ 406                 |
| G 1020 D          | 95                 | \$ 3.65             |                   | \$ 347                 |
| G 1026 D          | 33.3               | \$ 57.00            |                   | \$ 1,898               |
| G 1022 D          | 10                 | \$ 3.44             |                   | \$ 34                  |
| G 1040 D          | 2.1                | \$ 22.00            |                   | \$ 46                  |
| G 1024 D          | 100                | \$ 1.08             |                   | \$ 108                 |

# UTILITIES PER CYCLE

| P16               | P17                | P18                 | P19               | P20                  |
|-------------------|--------------------|---------------------|-------------------|----------------------|
| Catalog<br>Number | Annual<br>Quantity | Uninflated<br>Price | inflated<br>Price | Utilities<br>Expense |
| C 1032 B          | 4,500              | \$ 0.032            |                   | \$ 144               |
| C 1128 D          | 7,000              | \$ 0.00566          |                   | \$ 40                |
|                   |                    |                     |                   |                      |
|                   |                    |                     |                   |                      |

.

Prepared by ....

-----

. Date ...

REVERSE SIDE JPL 3040-5 11/77

# COMPANY WORK SHEET

Wl Wafco W2 <u>3" Wafer, 100,000</u> W3 <u>I.D.</u> W4 <u>3" Si Ingot</u> W5 148 Wafer/Kg W6 \_\_\_\_\_\_\_Kg\_\_\_\_\_ W7 187,617 Minutes W8 486,864 Minutes W9 <u>0.385</u> W10 <u>\$ 31,900</u> W11 <u>\$ 12,282</u> W12 80 Sq. Ft. W13 30.8 Sq. Ft. W14 <u>\$ 5,443</u> W15 <u>\$ 2,096</u> W16 \_\_\_\_\_

| W18   | \$ 184       |
|-------|--------------|
| W19   | \$ 164       |
| W20   | \$ 12,282    |
|       | 30.8 Sq. Ft. |
| W22   | \$ 2,096     |
| W23   |              |
| W24   | \$ 2,976     |
| W25   | \$ 184       |
|       | \$ 164       |
| W27   |              |
| W28   |              |
| W29   | \$ 2,976     |
| W30 _ | \$ 0.17      |
| W31 _ |              |
|       |              |

W17 <u>\$ 2,976</u>

\*

Prepared by K. 400 Date 3/1/18

### SLICING OF 4" WAFERS

### A. DESCRIPTION OF THE SLICING

1. A Continuous Process

Cut Rate: Two (2) Inch/Minutes Wafer Yield: 96%

2. Average Slicing Cycle Per Wafer: 2.532 Minutes

| Slicing        | Time:       | Minutes           |
|----------------|-------------|-------------------|
| <u>Machine</u> | Down Time*: | Minutes           |
| Total          |             | <br>Minutes/Wafer |

3. Wafers Per Operating Minute:

$$\frac{1}{2.500}$$
 = 0.4 Wafers/Operating Minutes

4. Process Usage Time Fraction:

$$\frac{2.500}{2.532} = 0.99$$

### B. EQUIPMENT AND MANUFACTUIRNG SPACE

1. Salvage Value: 10% of the New Machine Price

2. Manufacturing Space: Three (3) Times of a Machine Space

### C. DIRECT LABOR REQUIREMENT

1. General Assembler

| Ingot Mount:                 | 0.023 Minutes       |
|------------------------------|---------------------|
| Blade Dressing:              | 0.014 Minutes       |
| Wafer Demount:               | 0.100 Minutes       |
| Final Clean:                 | 0.060 Minutes       |
| <b>Operator's Attention:</b> | 0.030 Minutes       |
| Total                        | 0.227 Minutes/Wafer |

PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift:

 $\frac{0.227}{2.532} = 0.09$ 

## SLICING OF 4" WAFERS (Continued)

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

PRSN \* YRS = 0.09 x 4.7 = 0.42

2. Maintenance Mechanics II

Blade Mounting and Tensioning: 0.013 Minutes/Wafer

PRSN \* YRS/Machine/Shift:

$$\frac{0.013}{2.532}$$
 = 0.005

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

PRSN \* YRS = 0.005 x 4.7 = 0.024

### D. DIRECT MATERIAL REQUIREMENT

1. Eight Inch (8") I.D. Blade

Lifetime of the Blade: 4,000 Cuts

## \*Machine Down Time (Minutes/Wafer)

| Blade Replacement, Tensioning and Initial Blade Dressing: | 0.011 Minutes       |
|-----------------------------------------------------------|---------------------|
| Two Tensioning in Blade Life:                             | 0.004 Minutes       |
| Blade Dressing:                                           | 0.014 Minutes       |
| Miscellaneous:                                            | 0.003 Minutes       |
| Total                                                     | 0.032 Minutes/Wafer |

### SOLAR ARRAY MANUFACTURING INDUSTRY COSTING STANDARDS

|            | FC                                                                                                                                          | RMAT A                                         |                                                                                                                                                                       |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -J         | PROCESS DESCRIPTION<br>Det PROPENION LABORATORY<br>Calify Dia Unificate no Tr. Angli y 103<br>(North Dia Gring Dr. / Paladenia, Galif y 103 |                                                |                                                                                                                                                                       |  |  |
| A1<br>A2   | Process Referent                                                                                                                            |                                                | ilicon ingot with I.D. saw.                                                                                                                                           |  |  |
| PART 1     | - PRODUCT DESCRIPTION                                                                                                                       | in tara ang ang ang ang ang ang ang ang ang an | ατα διαμό της η την της ματού του της που της την την την την την την την την απολογού την από της την την την<br>Τα τα διαμό την η την την την την την την την την τ |  |  |
| A3         | Product Referent I.D4-13-2                                                                                                                  |                                                |                                                                                                                                                                       |  |  |
| A4         | Name or Description4" wafers sli                                                                                                            | ced with                                       | I.D. saw, 13 mils wafer thickness,                                                                                                                                    |  |  |
|            | 13 mils Kerf width, at two in/                                                                                                              |                                                |                                                                                                                                                                       |  |  |
| A5         | Units Of Measure Wafer                                                                                                                      |                                                |                                                                                                                                                                       |  |  |
| PART 2     | - PROCESS CHARACTERISTICS                                                                                                                   |                                                |                                                                                                                                                                       |  |  |
| A6         | Output Rate                                                                                                                                 | 0.4                                            | Units (given on line A5) Per Operating Minute                                                                                                                         |  |  |
| A7         | Average Time at Station                                                                                                                     |                                                | Calendar Minutes                                                                                                                                                      |  |  |
| <b>A</b> 8 | Process Usage Time Fraction                                                                                                                 | 0.99                                           | Average Number of Operating Minutes Per Minute                                                                                                                        |  |  |
| PART 3     | - EQUIPMENT COST FACTORS                                                                                                                    |                                                |                                                                                                                                                                       |  |  |
| A9         | Component Referent                                                                                                                          | STC                                            | -22                                                                                                                                                                   |  |  |
| A10        | Base Price Year For Purchase Price                                                                                                          | 19                                             | 77                                                                                                                                                                    |  |  |
| A11        | Purchase Price (\$ Per Component)                                                                                                           | 40,                                            | 000                                                                                                                                                                   |  |  |
| A12        | Anticipated Useful Life (Years)                                                                                                             | 7                                              | ann an                                                                                                                               |  |  |
| A13        | Salvage Value (\$ Per Component)                                                                                                            | 4,                                             | 000                                                                                                                                                                   |  |  |
| A14        | Cost of Removal & Installation (\$/Component)                                                                                               | )                                              | 400                                                                                                                                                                   |  |  |

JPL 3057-5 11-1

Format A. Process Description (Continued)

A14 Process Ruferent (From Page 1) \_\_\_\_\_\_ I.D.

### - 1RT 4 - DIRECT REQUIREMENTS PER MACHINE

| A16                                                 | A17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A19                                                                                                            |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Cata.og<br>Number                                   | <b>Requirement Description</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amount Required<br>Per Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                                                                                                          |
| A 2064 D                                            | Manufacturing Space (Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A <u>) 80</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Square Feet                                                                                                    |
| B 3064 D                                            | General Assembler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRSN * YRS                                                                                                     |
| B 3736 D                                            | Maintenance Mechanics II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRSN * YRS                                                                                                     |
| 90-1973 - 10 10                                     | and some all water and a state of the state | Ben un han the second of the second | <b>Bender alle and all and all and all all all all all all all all all al</b>                                  |
| tappinten antonia ang tanang pantang                | aganan ana ana ing kanang k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Andrewan</b> yana manana kata kata kata kata kata kata kata                                                 |
| animentales anomen entrestationalistica participati | Jacija - na se poslava na s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commission of the second s |

PART 5 -- DIRECT REQUIREMENTS PER BATCH (A continuous process has a "batch" of one unit)

| A20               | A21                            | A22<br>Amount Required     | A23   |
|-------------------|--------------------------------|----------------------------|-------|
| Catalog<br>Number | <b>Requirement Description</b> | Per Batch                  | Units |
| G 1012 D          | Shellac Clear Spray            | 1,25 x 10 <sup>-4</sup>    | Can   |
| <u>G 1014 D</u>   | Epoxy Paste                    | $10.4 \times 10^{-4}$      | Gal   |
| G 1018 D          | Graphite Beam Mount            | $3.7 \times 10^{-3}$       | Each  |
| G 1020 D          | Coolant, Rust-Lick             | $1.3 \times 10^{-3}$       | Gal   |
| G 1028 D          | 8" I.D., Diamond Wheel Blade   | $2.5 \times 10^{-4}$       | Each  |
| G 1022 D          | Blade Dressing Stick           | $1 \times 10^{-4}$         | Each  |
| G 1024 D          | Blade Dressing Stick           | <u>1 x 10<sup>-3</sup></u> | Each  |
|                   | (Continued Attachmen           | A A 1                      |       |

#### (Continued - Attachment A) PART 6 -- INTRA-INDUSTRY PRODUCT(S) REQUIRED

| A24<br>Product                                  | A25                                                    | A26<br>Yield Factor   | A21                                            |
|-------------------------------------------------|--------------------------------------------------------|-----------------------|------------------------------------------------|
| Reference                                       | Product Name                                           | (Usable Output/Input) | Units                                          |
| GSIG                                            | Grind 4" Si Ingot                                      | 76.8                  | Wafer/Kg                                       |
| n n - Propi de pir in ladas desegurador desarra | an ann a bhair a na an an an an an an ann ann ann an a |                       | ана, ано — — — — — — — — — — — — — — — — — — — |

Prepared by \_\_\_\_\_ 14. 400 \_\_\_\_ Date \_3/1/78.

والمحمدة بمتشفين بدارا المفر وديرش سيتهم ومشابط

nine, and stations and some stational trade to a second state of the

REVERSE SHOL JPE 3037-5 13/77

ÌΓ,

# ATTACHMENT A

| A20<br>Catalog<br>Number | A21<br>Requirement Description | A22<br>Amount Required<br>Per Machine | A23<br>Units |
|--------------------------|--------------------------------|---------------------------------------|--------------|
| C 1032 B                 | Electricity                    | 0.06                                  | KW Hours     |
| C 1128 D                 | Wafer, Cooling                 | 0.07                                  | Cubic Feet   |
| G 1040 D                 | I.D. Blade Tensioning Fluid    | $1 2.1 \times 10^{-5}$                | Gal.         |
| D 1064 D                 | Rejected Wafer                 | 0.04                                  | Wafer        |

# PART 5 - DIRECT REQUIREMENTS PER BATCH (Continued from Page 2)

1

1949 18



PROCESS WORK SHEET

P1 PROCESS REFERENCE \_\_\_\_\_\_I,D,

# LADOR PRICES AND COSTS PER MACHINE

| P2                | P3                | P4       |  |
|-------------------|-------------------|----------|--|
| Catalog<br>Number | Inflated<br>Price | Cost     |  |
| B 3064 D          | \$ 8,748          | \$ 3,674 |  |
| B 3736 D          | \$ 12,944         | \$ 311   |  |
|                   |                   |          |  |
|                   |                   |          |  |

| P3                | P4<br>Cost        |  |
|-------------------|-------------------|--|
| Inflated<br>Price |                   |  |
|                   |                   |  |
|                   |                   |  |
| •                 |                   |  |
|                   |                   |  |
|                   |                   |  |
|                   | Inflated<br>Price |  |

#### **BYPRODUCTS PER CYCLE**

| P10                  | P9                   | P8                                 | P7                 | P6                                        | P5       |
|----------------------|----------------------|------------------------------------|--------------------|-------------------------------------------|----------|
| Byproduct<br>Revenue | Byproduct<br>Expense | Uninflated Inflated<br>Price Price | Annual<br>Quantity | Catalog<br>Number                         |          |
| 292                  |                      |                                    | \$ -0.073          | 4,000                                     | D 1064 D |
|                      |                      |                                    |                    |                                           |          |
| · · · ····           |                      |                                    |                    | a (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |          |
|                      |                      |                                    |                    |                                           |          |
|                      |                      |                                    |                    |                                           |          |
|                      |                      |                                    |                    |                                           |          |

## COMMODITIES PER CYCLE

| P11               | P12                | P13                 | P14               | P15                    |
|-------------------|--------------------|---------------------|-------------------|------------------------|
| Catalog<br>Number | Annuai<br>Quantity | Uninflated<br>Price | Inflated<br>Price | Commodities<br>Expense |
| G 1012 D          | 12.5               | \$ 3.01             |                   | \$ 38                  |
| G 1014 D          | 10.4               | \$ 23.63            |                   | \$ 246                 |
| G 1018 D          | 370                | \$.88               |                   | \$ 326                 |
| G 1020 D          | 130                | \$ 3.65             |                   | \$ 475                 |
| G 1028 D          | 25                 | \$ 150.00           |                   | \$3,750                |
| G 1022 D          | 10                 | \$ 3.44             |                   | \$ 34                  |
| G 1024 D          | 100                | \$ 1.08             |                   | \$ 108                 |
| G 1040 D          | 2.1                | \$ 22.00            |                   | \$ 46                  |

### UTILITIES PER CYCLE

| P17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P18                           | P19                                                | P20                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
| Annual<br>Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uninflated<br>Price           | Inflated<br>Price                                  | Utilities<br>Expense                                                |
| 6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.032                      |                                                    | \$ 192                                                              |
| 7,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.00566                    |                                                    | \$ 40                                                               |
| 2 (1) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122(2) - 122( |                               | ,                                                  |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                    |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annual<br>Quantity<br>6 , 000 | Annual<br>QuantityUninflated<br>Price6,000\$ 0.032 | Annual<br>QuantityUninflated<br>PriceInflated<br>Price6,000\$ 0.032 |

Prepared by ...

REVERSE SIDE JPL 3040-S 11/77

... Date .....

A.

1.1.1.1

1.127.28.2

.

1

56.12

a subset to a

and the second se

# COMPANY WORK SHEET

| W1   | Wafco                    |
|------|--------------------------|
| W2   | <u>4" Wafer, 100,000</u> |
| W3   | I.D.                     |
| W4   | 4" Si Ingot              |
| W5   | 76.8 Wafer/Kg            |
| W6 _ | 1302.1 Kg                |
| W7   | 250,000 Minutes          |
| W8 _ | 491,832 Minutes          |
| W9   | 0.508                    |
| W10  | \$ 36,400                |
| W11  | \$ 18,502                |
| W12  | 80 Sq. Ft.               |
| W13  | 40.6 Sg. Ft.             |
| W14  | \$ 3,985                 |
| W15  | \$ 2,024                 |
|      |                          |

W16 \_\_\_\_\_

| W17      | \$ 5,023                                                                                       |
|----------|------------------------------------------------------------------------------------------------|
| W18 .    | \$ 232                                                                                         |
| W19      | \$ 292                                                                                         |
| W20      | \$ 18,502                                                                                      |
| W21      | 40.6 Sq. Ft.                                                                                   |
| W22      | \$ 2,024                                                                                       |
| W23      |                                                                                                |
| W24      | \$ 5,023                                                                                       |
| W25      | \$ 232                                                                                         |
| W26      | \$ 292                                                                                         |
| W27      |                                                                                                |
| W28      | # = = # # # # #                                                                                |
| -<br>W29 | \$ 5,023                                                                                       |
|          | \$ 0.24                                                                                        |
| W31      |                                                                                                |
|          | والمهور معاريب ويعادي فعلوا فالمتر المراجع والمراجع المتراجع المتراجع المتراجع المراجع المراجع |

Prepared by 12. 450 Date 3/1/78

# APPENDIX III

-

痴

# APPLICATION OF SAMICS TO THE MULTIWIRE SLURRY (MWS) SAW SLICING

### SLICING OF 3" WAFERS

#### A. DESCRIPTION OF THE SLICING

1 -

- 1. Batch Process: 158 Yielded Wafers Per Batch
- 2. Average Slicing Cycle: 9.5 HOurs/Batch

| Slicing | Time:    | 8.58           | Hours       |
|---------|----------|----------------|-------------|
| Machine | Down Tim | <u>e*:0.92</u> | Hours       |
| Total   |          | 9.5            | Hours/Batch |

3. Wafers Per Operating Minutes:

$$\frac{158}{8.58 \times 60} = 0.307$$

4. Process Usage Time Fraction:

$$\frac{8.58}{9.5} = 0.90$$

#### B. EQUIPMENT AND MANUFACTUIRNG SPACE

- 1. Salvage Value: 10% of the New Machine Price
- 2. Manufacturing Space: Three (3) Times of a Machine Space

#### C. DIRECT LABOR REQUIREMENT

1. General Assembler

| Ingot Mount on Ceramic:     | 10 Minutes        |
|-----------------------------|-------------------|
| Ingot Mount on Machine:     | 5 Minutes         |
| Ingot Demount From Machine: | 5 Minutes         |
| Wafer Demount and Degrease: | 65 Minutes        |
| Final Clean:                | 10 Minutes        |
| Operator's Attention:       | 25 Minutes        |
| Total                       | 120 Minutes/Batch |
|                             | = 2 Hours/Batch   |

PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift:

$$2 \times \frac{8}{9.5} \times \frac{1}{8} = 0.21$$

#### SLICING OF 3" WAFERS (Continued)

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

 $PRSN * YRS = 0.21 \times 4.7 = 0.99$ 

2. Maintenance Mechanics II

| Wiring:<br><u>Arrange</u> | Angle | and | Position |      | Minutes<br>Minutes |
|---------------------------|-------|-----|----------|------|--------------------|
| Total                     |       |     |          | 40   | Minutes/Batch      |
|                           |       |     | *        | 0.67 | Hours/Batch        |

PRSN \* YRS Conversion

PRSN \* YRS/Machine/Shift:

$$0.67 \times \frac{8}{9.5} \times \frac{1}{8} = 0.071$$

For an Operation of Three (3) Shifts Per Day, 345 Days Per Year, Including Vacation and Sick Days Etc.

 $PRSN * YRS = 0.071 \times 4.7 = 0.33$ 

### D. DIRECT MATERIAL REQUIREMENT

- 1. Slicing Wire (High Tension Wire): 0.92 Kg of the Wire was Consumed in a Batch Process.
- 2. Slurry: Slurry was Used for One Batch of Slicing Only.

\*Machine Down Time (Hours/Batch)

| Wiring Time:           | 0.33 Hours       |
|------------------------|------------------|
| Ingot Mount:           | 0.08 Hours       |
| Ingot Demount:         | 0.08 Hours       |
| Arrange Ingot Positon: | 0.33 Hours       |
| Miscellaneous:         | 0.10 Hours       |
| Total                  | 0.92 Hours/Batch |

# SOLAR ARRAY MANUFACTURING INDUSTRY COSTING STANDARDS

|              | 0                                      | FORM                                  | AT A                                           |  |  |  |  |  |
|--------------|----------------------------------------|---------------------------------------|------------------------------------------------|--|--|--|--|--|
|              | PROCESS DESCRIPTION                    |                                       |                                                |  |  |  |  |  |
| , AI         | Process Referent                       | · · · · · · · · · · · · · · · · · · · | ameter silicon ingot by MWS saw.               |  |  |  |  |  |
| A2           | Description (Optional)                 | STICING 01 5 di                       | ameter stricon myot by mus saw.                |  |  |  |  |  |
| PART 1<br>A3 | - PRODUCT DESCRIPT Product Referent    | TION<br>MWS-3                         |                                                |  |  |  |  |  |
| A4           | Name or Description<br>wafer thickness |                                       | by MWS saw. Kerf width 7.9 mils and            |  |  |  |  |  |
| A5           | Units Of Measure                       | Wafer (a batch of                     | * 158)                                         |  |  |  |  |  |
| PART 2       | - PROCESS CHARACTI                     | ERISTICS                              |                                                |  |  |  |  |  |
| <b>A</b> 6   | Output Rate                            | 0.307                                 | Units (given on line A5) Per Operating Minute  |  |  |  |  |  |
| A7           | Average Time at Station                |                                       | Calendar Minutes                               |  |  |  |  |  |
| <b>A</b> 8   | Process Usage Time Frac                | tion <u>0.90</u>                      | Average Number of Operating Minutes Per Minute |  |  |  |  |  |
| PART 3       | - EQUIPMENT COST F                     | ACTORS                                |                                                |  |  |  |  |  |
| A9           | Component Referent                     |                                       | Yasunaga yo -100                               |  |  |  |  |  |
| A10          | Base Price Year For Purc               | hase Price                            |                                                |  |  |  |  |  |
| A11          | Purchase Price (\$ Per Co              | mponent)                              |                                                |  |  |  |  |  |
| A12          | Anticipated Useful Life                | (Years)                               | 7                                              |  |  |  |  |  |
| A13          | Salvage Value (\$ Per Cor              | nponent)                              | 2,800                                          |  |  |  |  |  |
| A14          | Cost of Removal & Insta                | llation (\$/Component)                | 300                                            |  |  |  |  |  |

÷

Format A. Process Description (Continued)

A14 Process Referent (From Page 1) \_\_\_\_\_\_MWS\_\_\_\_\_

# PART 4 - DIRECT REQUIREMENTS PER MACHINE

| A16<br>Catalog                                                     | A17                                                                                                            | A18<br>Amount Required                                                                                          | A19                                                                                                            |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Number                                                             | Requirement Description                                                                                        | Per Machine                                                                                                     | Units                                                                                                          |
| A 2064 D                                                           | <u>Manufacturing Space (Type A)</u>                                                                            | 40                                                                                                              | SquareFeet                                                                                                     |
| B 3064 D                                                           | General Assembler                                                                                              | 0_99                                                                                                            | PRSN * YPS                                                                                                     |
| <u>B 3736 D</u>                                                    | <u>Maintenance Mechanics II</u>                                                                                | <u> </u>                                                                                                        | PRSN_*_YRS                                                                                                     |
| <b>18 1</b> 219-122-124 - 12-12-12-12-12-12-12-12-12-12-12-12-12-1 | and a second |                                                                                                                 | genande wije werden en skale waarde beer sjok staat die genoem wije wat in die skale of staat die skale of sta |
| Anappang at 1 - an an ini ini ganga da Santag at 100               | ,                                                                                                              |                                                                                                                 | and a second |
|                                                                    |                                                                                                                | Name of the second state of the | <b></b>                                                                                                        |

PART 5 -- DIRECT REQUIREMENTS PER BATCH (A continuous process has a "batch" of one unit)

| A20               | A21                                        | A22                          | A23      |
|-------------------|--------------------------------------------|------------------------------|----------|
| Catalog<br>Number | <b>Requirement Description</b>             | Amount Required<br>Per Batch | Units    |
| <u>G 1012 D</u>   | Shellac Clear Spray                        | 0.1                          | <u> </u> |
| G 1014 D          | Epoxy Paste                                | $6 \times 10^{-3}$           | Gal      |
| <u>G 1014 D</u>   | Ceramic Block for Mounting                 | <u> </u>                     | Each     |
| <u>G 1042 D</u>   | <u>.16 um Alumina Lapping Powder</u>       | <u> </u>                     | Lbs      |
| <u> </u>          | P.C. 0il                                   |                              | Gal      |
| G 1036 D          | TCE, Tech. Grade                           | 1.4                          | Gal      |
| G 1046 D          | High Tension Wire<br>(Continued - Attachme | .92                          | <u> </u> |

#### (CONTINUED - Attachment A) PART 6 - INTRA-INDUSTRY PRODUCT(S) REQUIRED

. .

| A24<br>Product                         | A25               | A26<br>Yield Factor                                | A27                    |  |
|----------------------------------------|-------------------|----------------------------------------------------|------------------------|--|
| Reference                              | Product Name      | (Usable Output/Input)                              | Units                  |  |
| GS1G                                   | Grind 3" Si Ingot | 193.8                                              | Wafer/Kg               |  |
| ···· · · · · · · · · · · · · · · · · · | <b></b>           | anna phalan ina ing magnal man ang ing mangnal man | Mar en a como a como e |  |

|               | 1 / |     | • |            |                                  |
|---------------|-----|-----|---|------------|----------------------------------|
| Beams and bea | /4  | Un  |   | <b>•</b> • | 3/1/178                          |
| repared by    |     | 7-0 |   | Date       | manantific for the Level and the |
|               |     | 0   |   |            |                                  |

REVENSE SIDE JPL 3037 - 5 11/77



14

PROCESS WORK SHEET

P1 PROCESS REFERENCE

MWS

#### LABOR PRICES AND COSTS PER MACHINE

| P2                | P3                | P4       |
|-------------------|-------------------|----------|
| Catalog<br>Number | Inflated<br>Price | Cost     |
| A 2064 D          | \$ 8,748          | \$ 8,661 |
| B 3736 D          | \$ 12,744         | \$ 4,206 |
|                   |                   |          |
|                   |                   |          |

| P2                | P2 P3                                                       |      |  |
|-------------------|-------------------------------------------------------------|------|--|
| Catalog<br>Number | Inflated<br>Price                                           | Cost |  |
|                   |                                                             |      |  |
|                   | gen affektigen og sen en e |      |  |
|                   |                                                             |      |  |
|                   |                                                             |      |  |
|                   |                                                             |      |  |

### BYPRODUCTS PER CYCLE

| P5 P6<br>Catalog Annual<br>Number Quantity                                                                     |                                                                                                                | atalog Annual Uninflated Inflated |                                                                     | P9                   | P10<br>Byproduct<br>Revenue           |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|----------------------|---------------------------------------|--|
|                                                                                                                |                                                                                                                |                                   |                                                                     | Byproduct<br>Expense |                                       |  |
| D 1064 D                                                                                                       | 3,000                                                                                                          | \$ -0.029                         |                                                                     |                      | \$ 87                                 |  |
| anna a ann an Anna ann an Anna |                                                                                                                |                                   | a y managanan a sanalikina a managana akan kiya a anganana kanan ka |                      |                                       |  |
|                                                                                                                | g                                                                                                              |                                   |                                                                     |                      |                                       |  |
|                                                                                                                |                                                                                                                |                                   |                                                                     |                      |                                       |  |
|                                                                                                                | and a second of the second |                                   |                                                                     | · · · · · · · · ·    | · · · · · · · · · · · · · · · · · · · |  |
|                                                                                                                |                                                                                                                |                                   |                                                                     |                      |                                       |  |
|                                                                                                                |                                                                                                                |                                   |                                                                     |                      |                                       |  |

JPL 3040 - 5 11/27

### COMMODITIES PER CYCLE

| P11               | P12                | P13                 | P14               | P15                    |
|-------------------|--------------------|---------------------|-------------------|------------------------|
| Catalog<br>Number | Annual<br>Quantity | Uninflated<br>Price | Inflated<br>Price | Commodities<br>Expense |
| G 1012 D          | 63.3               | \$ 3.01             |                   | \$ 191                 |
| G 1014 D          | 3.8                | \$ 23.63            |                   | \$ 90                  |
| G 1044 D          | 633                | \$.21               |                   | \$ 133                 |
| G 1042 D          | 6,962              | \$.80               |                   | \$ 5,570               |
| G 1034 D          | 557                | \$ 4.74             |                   | \$ 2,640               |
| G 1036 D          | 886                | \$ 3.50             |                   | \$ 3,101               |
| G 1046 D          | 582                | \$ 50.00            |                   | \$ 29,100              |
|                   |                    |                     |                   |                        |

### UTILITIES PER CYCLE

| P16               | P17                | P18                 | P19                                                                                                              | P20                  |
|-------------------|--------------------|---------------------|------------------------------------------------------------------------------------------------------------------|----------------------|
| Catalog<br>Number | Annual<br>Quantity | Uninflated<br>Price | Inflated<br>Price                                                                                                | Utilities<br>Expense |
| C 1032 B          | 1,329              | \$ 0.032            | and the second | \$ 43                |
|                   |                    |                     |                                                                                                                  |                      |
|                   |                    |                     |                                                                                                                  |                      |
|                   |                    |                     |                                                                                                                  |                      |

Prepared by .....

\_\_\_ Date \_\_\_\_\_

REVERSE SIDE JPL 3040-S 11/77

- 2

. .

# ATTACHMENT A

| A20<br>Catalog<br>Number                                                                                        | A21<br>Requirement Description                                                                                  | A22<br>Amount Required<br>Per Machine                                                                          | A23<br>Units                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| <u>C 1032 B</u>                                                                                                 | Electricity                                                                                                     | 2.1                                                                                                            | KW Hours                                                                                                      |
| D 1064 D                                                                                                        | Rejected Wafers                                                                                                 | 5                                                                                                              | Wafer                                                                                                         |
| anda anger ang  | N BARTAR MANANTANI ANTARA MANANTANA MANANTANA MANANTANA MANANTANA MANANTANA MANANTANA MANANTANA MANANTANA MANA  | We wanted and a graduate sub-track sub-track and the state of the state of the state of the state of the state | **************************************                                                                        |
| • *******                                                                                                       | an an an an third an                                                        |                                                                                                                |                                                                                                               |
| persett dags og af for                                                                                          |                                                                                                                 |                                                                                                                |                                                                                                               |
| MARTING ALT IN THE WORK OF THE MET AND A SUBJECT OF                                                             | an a                                                                        | an ann an an ann an an an an an an an an                                                                       |                                                                                                               |
| an ann an Staine, a saideach an Staine an | a en el segundo de el suco del de gundan el suco el segundo el segundo el segundo el segundo de segundo de segu |                                                                                                                | والمحمولة |

# PART 5 - DIRECT REQUIREMENTS PER BATCH (Continued from Page 2)

1

1

# COMPANY WORK SHEET

16

| พา   | Wafco                                   | W17 | \$ 40,825                                                                       |
|------|-----------------------------------------|-----|---------------------------------------------------------------------------------|
| W2   | <u>3" Wafers, 100,00</u> 0              | W18 | <u>\$ 43</u>                                                                    |
| W3   | MWS                                     | W19 | \$ 87                                                                           |
|      | 3" Ingot                                | W20 | \$ 18,590                                                                       |
| ¥5   | 193.8 Wafers/Kg                         | W21 | 29.2 Sq. Ft.                                                                    |
| W6 _ | <u>516 Kg</u>                           | W22 | \$ 9,380                                                                        |
| W7   | 325,733 Minutes                         | W23 |                                                                                 |
| W8   | 447,120 Minutes                         | W24 | \$ 40,825                                                                       |
| W9   | 0.729                                   | W25 | \$ 43                                                                           |
|      | \$ 25,500                               | W26 | \$87                                                                            |
|      | \$ 18,590                               | W27 | are and an are an or an or                                                      |
|      | 40 Sq. Ft.                              | W28 |                                                                                 |
|      | 29.2 Sq. Ft.                            | W29 | \$ 40,825                                                                       |
|      | \$ 12,867                               |     | \$ 0.85                                                                         |
|      | \$ 9,380                                |     |                                                                                 |
| W16  |                                         |     | n - Channa An Annaich aig à channa anns an staic a bhair dh'fhann a' anns a mar |
|      | *************************************** |     |                                                                                 |

Prepared by 19. 400 Date 3/1/18

4

APPENDIX IV

Second and a second 
# A NEW COST ACCOUNT CATALOG FOR SAMICS

NEW COST ACCUMIT CATALOG

| CATALOG NO. | ITEM DESCRIPTION                                                                            | UNIT   | PRICE+           |
|-------------|---------------------------------------------------------------------------------------------|--------|------------------|
| G1012D      | SHELLAC CLEAN SPRAY                                                                         | Can    | \$ 3.01          |
| G1014D      | EPOXY PASTE                                                                                 | 6al.   | 5 23.63          |
| 61016D      | GRAPHITE BEAM MOUNT (12" x $1\frac{3}{R}$ x $\frac{3}{R}$ )                                 | Ea.    | 5 1.88           |
| G1018D      | GRAPHITE BEAM MOUNT $(7" \times 2" \times \frac{1}{2}")$                                    | Ea.    | ž                |
| G1020D      | COOLANT (RUST-LICK)                                                                         | [ea]   | <b>5</b> 3.65    |
| G1022D      | BLADE DRESSING MATERIAL, ALUMINA STICKS (1" x 1" x 6")                                      | Ea.    | 5 3.44           |
| G1024D      | BLADE DRESSING MATERIAL, ALUMINA STICKS $(\frac{1}{2} \times \frac{1}{2} \times 6^{\circ})$ | Ea.    | \$ 1.08          |
| G1026D      | 6" I.D. DIAMOND WHEEL BLADE                                                                 | Ea.    | \$ 57.00         |
| G1028D      | 8" I.D. DIAMOND WHEEL BLADE                                                                 | Ea     |                  |
| G1 C30D     | CEMENT, DC ALL NO LOAD                                                                      |        | 1 5 24           |
| G1032D      | SiC, 400 GRIT                                                                               |        | 4 1 35           |
| G1034D      | P. C. 01L                                                                                   | [a]    | 5 A 74           |
| G1036D      | T.C.E. (TECHNICAL GRADE)                                                                    | Gal.   | 2 2 20           |
| G1038D      | MULTIBLADE PACKAGE (PRE-ASSEMBLED IN 1 $\frac{1}{2}$ ) (230 BLADES,                         | Pkq.   | <b>\$</b> 175.00 |
|             | 8 MILS x 18 MILS, WITH $\frac{1}{4}^{\text{H}}$ BLADE WIDTH)                                | 3      |                  |
| G1040D      | I.D. BLADE TENSIONING FLUID, STC                                                            | ઉત્વા. | \$ 22.00         |
|             |                                                                                             |        |                  |

Price Year: 1977

. Ng

(CONTINUED)

Internetizionere
 Internetizionere
 Internetizionere
 Internetizionere
 Internetizionere

. .

No. of Concession, Name

and the second

•

CATALOG NO. 610460 G1044D 610420 HIGH TENSION (MUSIC STEEL) WIRE 0.16 mm DIAMETER CERAMIC BLOCK 3" x 4" x 0.31" 16 Jun ALUMINA LAPPING POWDER ITEM DESCRIPITON Ką. Ea. Б. UNIT \$ 50.00 69 \$ PRICE\* .21 . 80

NEW COST ACCOUNT CATALOG (Continued)

Price Year: 1977

. . .

÷.

APPENDIX V

Ц

----

A Designation of the

Principal and principal

And a second 
e Beleveranization,

Ŧ.

ABBREVIATIONS

### ABBREVIATIONS

ŵ,

MBS: Multiblade Slurry

. .....

Antimication
 Antimication

n - angerst Rate

, in the second

.....

-

とうため

and the second states

and the second second

angonne - - - a

\$nationation.€ The second second

- MWS: Multiwire Slurry
- I.D.: Internal Diameter
- IPM: Inch Per Minute
- SEM: Scanning Electron Microscope
- RMS: Root Mean Square
- SAMICS: Solar Array Manufacturing Industry Costing Standards