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SUMMARY

This paper presents the results of a parametric study of nine

analytic models that are commonly used for representing aerosol size

distributions; discusses methods by which best-·fit estimates of these

parameters can be obtained; describes a catalog of graphical plots,

depicting the parametric behavior of the functions; and explains pro

cedures for obtaining analytical representations of size distribution

data by visual matching of the data with one of the plots. These

analytic models consist of mathematical functions, with up to four

adjustable parameters, which are referred to as follows: power law;

regularized power law--in which singularities that occur in a simple

power law as radius goes to zero are avoided; modified gamma distribu

tion; inverse modified gamma distribution--in which the variable is the

inverse of radius; log normal distribution; normal distribution;

generalized distribution function; and, power law generalized distribu

tion function. The mathematical properties of these distribution

functions, such as, mode radius, modal value, limiting behavior of the

distribution as radius goes to zero or infinity, moments of the dis...

tribution,and, the dominant role played by each parameter in the

model. These properties are summarized in a table in the report. The

model catalog consists of log-log graphs (6 x 4 cycles) and/or in

some cases, semi-log graphs on which the model size distributions are

separately plotted. For each of the nine models, sets of plots have

been produced, each set depicting the behavior of the model asa

function of only one of its parameters, the other parameters being

kept constant. Thus, each catalog graph contains several plots, one
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corresponding to each value of the parameter being varied, the para-

meter values being chosen to cover the range of variations in aerosol

size distribution likely to be encountered.

The catalog is meant to assist researchers in obtaining an

analytic representation for their empirical size distribution data.

This is done by means of a relatively quick ~isual fit to one of the

plots in the catalog; and, if the fit is not good enough, which is more

likely to be the case, then use the parameters corresponding to the

closest plot as initial estimates in a least-squares type program to

obtain the best fit to the data. For this purpose~ the experimental

data should be plotted on transparencies provided with the catalog.

The closer the initial estimates are to the best-fit values, the

better the assurance of reaching a fast convergence.

In addition, it is shown that the same experimental data can often

be represented with equal accuracy by more than one analytic function.

INTRODUCTION

Even though atmospheric aerosols are known to possess a variety of

shapes, the description of their physical structure is immensely simplified

if they are assume~ to be spherical. The size spectrum of atmospheric

aerosols is, in general, continuous and covers over four decades in radii,

-3viz, 10 to 20 ]lm (Ref. 1). Of the basically four ways in which the

empirical size distribution (SD) data: can be represente(l, namely, t9bu1ar,

histogram, graphical and analytical (Ref .• 2), the last one is usually

employed due to the fact that there existreguLar~ties in the gross

structure of atmospheric aerosols which exhibit behaviour similar to that

of a variety of mathematical functions. An analytic functiongenera11y

encompasses in a smooth way the main features of the aerosol physical structure
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While admittedly unrealistic in its smoothness, the analytic.a] _epresen-

tation has the following advantages, namely those of convenient

adjustability to obtain a best fit to the experimental data; compact

b

representation of the dependent variable (the SD) in the form of

estimated parameters of the fitted distribution; construction of

reasonable and convenient models; and, carrying out systematic, para-

metric modeling of the aerosol optical properties.

The success of the analytic representation approach depends upon the

the selection of an appropriate mathematical function to approximate

the actual size distribution data. This may not always be possible

(Ref. 2); often a linear sum of mathematical functions may provide a

good representation. Thus, there seems to be no "special" analytic

function that can be said to be unique in representing aerosol SD's.

The choice of the function is to some extent dictated by the modeler's

taste. However, ultimately, it is only when the fitted analytic function

leads to results that closely fit the experimental optical (scattering/

extinction) data and at the same time falls within the typical physical

domain of atmospheric aerosols, that the analytic function may be assumed

to represent the aerosol SD.

The main purpose of this paper is to describe the use of a catalog,

depicting graphically the parametric behavior of some analytic functions
m

with Up to 4 parameters, that could assist researchers in obtaining analyt-

ical representation of their empirical particle size distribution data.

The terminology used, the distribution functions considered and the basis

for their selection, and a description of the various models and their

mathematical properties precede the discussion on the catalog.
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Terminology for Aerosol Size Distributions

For clarification, the terminology for the particle SD1s used is dis-

cussed in this section. The physical structure of aerosols (atmospheric or

artificial) can be represented, in general, in terms of the number, area,

volume or mass of aerosol particles per unit volume per unit radius at r.

However, in this paper the discussion will be restricted to the SD'represen-

tation in terms of the particle number and radius, so that only the xadius·-·

number distribution, log radius-number distributio[l and eumulativ~ size d:j.s,:"

tribution will be considered. Their definitions, used in this report, follow

those given in Ref. 3. (The dependence of the SD on factors such as altitude,

composition, etc., will not be considered here.)

-3 -1
The radius-number distribution n(r), (em lJm ), is defined as the number

of particles per unit volume (cm
3

) within a unit radius range at r measured

in lJm. Thus,

n(r) = -dN(r) / dr
-3 -1

dN (r) / dr, (cm lJm )
u

(1)

1 · i (unders1'ze) distributionwhere N(r) (N (r» is the cumu at1ve overs ze
. tt

function .. (Ref. 4).

The log r.adius:-numberdistributiqn .nL(r:) (em-
3

) is defined bv

-3
= 2.•3026 r: n(r), (em ) ,

(2)
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Junge found it convenient to handle the wide range of atmospheric aerosol

size distribution data by plotting nL(r) as a function of r, on , 10g

log scale. This method of plotting has the advantage that it represents

the particle concentration as well as the size distribution.

The cumulative size distribution represents the total number of

3particles per cm that have radii greater (less) than r, is represented

by N(r) (N (r» and is called the cumulative oversize (undersize) distribu
u

tion function (Ref. 4). In essence

N(r)

.00

n (r") dr" == J. . nL (r I)
loglO (r)

-3
d loglO(r ' ), (em

(3a)

r

N (r) == J jlOglO (r) . . 3
u 0 n(r")dr";:: -00 nL Cr') d loglO Cr'}, (em- )

(3b)

In this paper, only the curriulative·ov~rsizedistribution (COSD) will be

discussed. Note that N(O) would then be the total number density (cm- 3)

of the particles.

Distribution Functions and Selection Criteria

Given some empirical aerosol size distribution data, the problem

is to find an analytic function that will most closely represent this

data. Examples of mathematical functions of upto two parameters are

the normal, gamma, binomial and exponential distribution functions; and

of those with ~ore than two parameters are the Weibull, Johnson and

Pearson distribution

detail in many books

almost every type of

fami1fes. These distributions are discussed in
I

on prdbabi1ity. (See Ref. 5.) These functions admit
I

probability distribution, except composite distri-

butions made up of several idistinct populations, such as

multimodal distributions. In addition, there is another versatile
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distribution, referred to as the generalized distribution function (GDF)

(Refs. 6 and 7~ which is derived from the Wood-Saxon function.

In the selection of an analytic function to represent the size

distribution n(r), the following criteria must be taken into account:
"

1. The function is not singular for 0 ~ r ~ 00;

2. It is easily integrable over r;

3. It can represent the main features of the gross structure of

the aerosols by a minimum number of adjustable. parameters.

LIST OF SYMBOLS AND ACRONYMS

Symbols

a,
J

adjustable constants (Defined in Eg. l8a)

A average particle surf~ce area

DN(R)/DR

DN(R)!DLOGlOR

estimated values of parameters

same as N(r) 1 notation .used in the plot ,labels

-3[cm ]

[cm- 3]distribution[undersize]

-3
[cm ]

. 'd' 'b' [c'm- 3 1Jm-. l ]radJ.us-number sJ.ze J.strJ. utJ.on

cumulative oversize

log radius,...number size distribution

n (r) for j th mode (Defined in Eq.l8a)

number density

adjustable parameters in mathematical functions;
given values of parameters

nL(r) = dN(r)/loglOr; notation 'used in the plot labels

nCr) = d N(r)/dr; notation used in the plot labels

thk moment

reestimated values of ,parameters

(P
2

+ l)/P4

(P2 - 1) /P4

1,2,3,4, ..•..

[N (r)]
u

~

nCr)

n, (r)
J

n
L

(r)

N(O)

N(r)

N(>r)

Pi' i

Pi

"p.J.

P24

P42



r

r

r.
J

r
m

r
Lm

r
l

, r~

v

AGrony~s

CG

CP

coso

PT

GO

IMGD

I,.NO

MGO

MOOELR

ND

NLLS

PLD

PLGO

QCM

RM

RPLD

SO

SOl, S02

catalog graph

catalog plot

cumulative oversize distribution, N(>r)

data transparency

generalized distribution

inverse modified gamma distribution

log normal distribution

modified gamma distribution

represents model number

normal distribution

nonlinear least squares

power law distribution

power law generalized distribution

quartz crystal measurement

. r , the mode radius
m

regularized power law distribution

size distribution

terms 1 and 2 of SO
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SIZE DISTRIBUTION MODELS AND THEIR MATHEMATICAL PROPERTIES

Analytic models suitable for representing aerosol size distributions

include the following mathematical functions:

1. Power Law Distribution (PLD)

2. Regularized Power Law Distribution (RPLD)

3. Modified Gamma Distribution (MGD)

4. Inverse Modified Gamma Distribution (IMGD)

5. Log-normal Distribution (tND)

6. Normal Distribution (ND)

7. Generalized Distriibution (GD)

8. Power Law Generalized Distribution (PLGD)

Tlw expressj ons and the mathel!latical properties of the functions

will be described in this section. Here the model distributions represent

the radius-number distribution n(r), from which the corresponding expres-

sions for nL(r) and N(r) are derived. The properties of interest are:

the mode radii.for n(r) and nL(r); lower limit, asymptotic, and para_

metric behavior of the functions; and the k th moment of the models.

The mode radius r for n(r) is given by the solution ofm

d n(r)
0

dr =

and that for nL(r), by the solution of

d nL(r)

dr = 0

The k
th

moment is given by
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~he moments are useful for calculating properties of the distribution

such as number (N(O», average radiu~ (r), average area (A), and

average volume (V) of aerosol particles in a unit volume, as shown

here:

-r

:::I 7TM/MO

4
:;: 3' 'If M/MO

These prope17ties for the eight size distributions models for nCr) and N(>r)

are summarized in Appendix I for quick reference.

A description of how one can determine good estimates of the para-

meters from the gradients, modal values and moments of the models will be

given :tn a later section. In all these models, the adjust.;1ble parameters

are ret>resented by Pl' P2' P3' •••• , wqere Pl is the scaling par.;1meter and

is chosen so that the maximum value of the function is unity.

Model 1 -- The Power Law (PL) Model

This model, known as the Junge power law, was proposed by Junge to

rep~esent his continental aerosol S~ data and is given by

« -<r 1 - r r 2 (4a' )

ov, alternately, by

It has ~ COSD of the form



N(r)
l-p l-P2

(r 2_ r2 ),rl~r~r2

10

(4c)

Junge used O.Ol~m for r l and l.~m for r Z but other values could be

used.

The kth moment for the distribution is given by

(4d)

This model becomes singular at r = 0, if r l = 0; ,hasal! its moments

infinite if r l = 0 and r Z = 00; and has no mode rqdius (r
m
). Even though

this model may not always represent a real situation, and does not meet

the selection criteria, it is popularly used as it readily gives ana'lytic~lly

tractab'le results. The model is graphically presented in Figs. (lA.I - IC.!).

Model 2 -~ The Regularized Power Law (RP-L) Model

In order to eliminate the singularity at r = 0 that occurs in Modell,

without losing its ,power .law behaviour at 'large r,one may.use a regularized

form of the power law,

ri (r) = [:~)
"[r/p z)P3-

1

[1 + (.c/P2)P3) P4

(5a)

The mode radius is given by

r
m

(5b)
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and the maxim~m valu~ is

n(r )
m (5c)

The limiting behavior of thefunc.ion is as follows:

As (5d)

and ,I;1S (5e)

The log radiu$ number distribution is

Its ma~imum value occurs at

(5f)

(5g)

The limiting behavior for this form of the distribution i$' as follows

As r .'+ 0, n( r) (Sh)

and, as (51)



12

The COSD is given by (Ref.8, No. 3.194/2 and 9.121/1),

N(r) 1
(5j)

The limiting behavior for this f~nction ~s as follows,

As r-+O,N(r) (5k)

and, as
-p (p ....1)

3 4
(r /P2) (52)

The moments for the RPL are given by (Ref. 8, No. 3.194/3 and

Re f. 9, p. 103),

r(1+k/P3)r(P4-1- k/ P3)
-.........,.- ...:::-_.:..-._-..,...;:::.., k <: p 3 (p4-1 )

r(P4)

where r is the Go~p1ete gamma function.

The parameter P2 has the main effect on mode radius, being a multi

plicative factor, while P3 and P4 control the positive and negative gradients,

and hence po1ydispersity. The parameter P3 controls the positive gradi~nt

while both P3 and P4 influence the nega~ive gradient. The mO,de1 is

graphically presented in Figs. (2A.1 - 2C.4).

Mode13, ....-ModifiedGanunaDistribution(MGD)Mode1

Model 3 is the modified gamma distribution function. Deirmendjian

(Ref. 10) has shown that this function· cah be used to descri'Pe various
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~ypes of realistic aerosol distributions. For instance, by assigning

different values to the pCl-rameterf? P2 and P4 one obtains models such as

Haze H, Haz~ M, Haze L, Cloud C3, etc.

The radius-pumber distribu~iop is given by .

(6a)

Its mOQe radius is

(6b)

and its ~aximum value is

The limiting behaviQr of ~he distribution is as follows

As r -+ 0, n(r)

(6e)

(6d)

a:\1<,'1., ;,:l.S r -+ CX), n(r) -+ 0 (6e)

The log radiuswnumber distribution is given by

n;r..(r) :;: 2.3 (6£)



It has a maximum val~e at

so t4at

I '

The limiting behavior of the function is as follows~

14

(6g)

(6h)

As

and, as

r -+ 0, nL( r ) ~ 2 .3 p 1 (6i)

(6j)

rhe coso is given by (Ref. 8, No. 3.381/3),

N(r) , (6k)

The limiting behavior for the COSO is as foilows '(Ref. 11, 6.,5.3,

6.5.12, p.5.32),

As r -+ 0, N(r)
(6R,)

and, ,as r -+ 00, (6m)
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. The moments for the disirtbution are given by (Ref. 8, No. 3.381/4),

,The pa,riimete+ P3 controls the mode radius and the parameters P2 and

P4 control the PQ1y~~spersity. th~ parameter Pz determines the limiting

bep~vior as r -+ 0 while the parameter p4 determines the limit;;i.ng behavior

,as r -+ 00. The rpodel is graphic,ally presented in Figs; (3A.1 ~ 3C 05).

Mqde1 4 -- Inverse l10dified Gamma Distribution ('IMGD) Model

This distriQution has the same form as Model 3 except that the inverse

radius is used. This results in an exponential £a11-off at the small size

end and pOWer law behaviour at the large-raditl5 end. 'l'wol,Uey (Ref. 12) suggests

this form of the modified gamma distribution for dry aerosols.

The radius number distribution is given by

nCr) (7a)

Itq mode radius is given by

lip

r = ('P3P4), 4
m P2

and the maximum value is

( 7b)

( 70)



Th~ limiting behavior of the distribution is as follows,

16

As r '+0, nCr) '+0 I, (7d)

and, as
-P 2r '+ 00, nCr) ~ PI r (7e)

The log-radius number distribution is given by

Its mode tad ius is given by

and the maximum value is

(7f)

(7g)

I' ,

exp (-P4,z) (7h)

') .

The limiting behavior of the distribucion is as follows,

nL(r)
P4As r '+ 0, -+0 as 2.3 Pl exp( -P3 /r )

and, as nL(r) ~ 2.3 PI
-(P2-l )

r -+ 00, r

The COSD is given by (Ref. 8, No. 3.381/1)

where y is the incomplete gamma function.

( 71)

. (7 j)

,( 7k)'
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The limiting behavior of this di~trlbution is as follows (Ref. ll~

(72)r~ 0, N(r)As

No. 6.1.1, 6.5. f , 6.5.12).

PI ~P42 P4 . P4 (P42 - 1) ..
~ [P3 r(P42 ) - e}\:p(-~/r ) / P3r ]

P4

and, as

The momente of the distribution are given by (Ref~8, No. 3.381/4)

(7n)

The parameters P2 and P4 control the rate 9f fall-off at large and

small radii, respectively, and h~nce control the polydtspersity. The

parameter P3 controls the mode radius. This model is graphically pre

~en~ed in Figs. (4A.l - 4C.4).

Model 5 -- The Log Normal Distribution (LND) Model

The log normal distribution generally provides a better description of

particle Elize distribution than the nor~al distribuiton (discussed later on)

because pcrrtic:Le sizes, li~e many naturally occurri~g populations, are often

asym~tric. In this distribution it is 1n r rather than r which tsnormal1y

distr;j..buted. An excellentdiscUfilSion of thi.s distI;'ibut~on is given by

.Kerker (Ref. 2).

The radius number distribution is given by

(8a)
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The mode radius is

(~b)

and its maximum value ,is

(8c)

The, parameter P2 1,s the geometric m~an of rand In, P2 ,is the m~an

of In r. No series expansion could be found for the limiting,behavior

of this distribution which tends rapidly to zero ,at both extremities.

The log radius-number distribution is

exp (ad)

I~ has a maximum at

:;0 that

(8e)

(8f)

No ~eries expansion could be found for the limiting behavior of this

distribution which tends rapidly to zero at both extremities~

The COSD is given by (Ref. 9, p~l83)

(8g)



19

wh~re erfc is the complementary~rror function.

The l~miting b~havior of this function is as follows,

and, as r -+ <Xl, N(r) -+ 0

The pariimeter Pz is theptedian for the, CO~D, i.e.,

(8h)

(ai)

The moments for the distribution are given by (Ref. 8, No. 3.322/2)

(8j)

The parameter P3 contr91s the pQlydispersity of the model and the

paraweter P2 ha~ a multiplicative effect on mode radiqs.

graphically presented in Fig's. (SA.l ... SQ .3). ,

This model is

Mo<;lel6 ...... The Normal Distribution, (ND) Model

The norma1dbtr:Lb\ltion is a symmetric distribt,ltion which ;is :l;inite

at r = 0 and, thus, strictly speaking cannot 'be used to represent aerosol

SD's at smallr. It can be used to represent SP's at other ranges of r, and

since it is 9 Gaussian distribution, which has well1,<.nown properties, such

'~ model can be very useful in certain applications. It is given by

1 '['1 2
exp { ~ 2r;~2J } (9a)
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Its mode radius is given by

~nd the maximum value is

(9b)

(9c)

As (9d)

NO series expansion could be found for the asymptotic behavior of this

fuqct~.on which tends rapidly to zero.

The log radius-number distribution is given by

. ;{, l[~·-.P2 2.}exp --
2 P3

Its mode radius is given by

(9f)

. :-.

and the maximum value is

2.3 PI
nL(r lm ) - ~

y 2'11 P3 [
P2~422+4P/ ). ..{. ·[P22

+4P 32]' }
2· exp -1/2 '2

P3

(9g)
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The limiting behavior of the distributiqn is as follows

As

and, as

..... 2.3 Pi r
r -+ 0, n

L
(r) ~ 121T: P .

3

·r -+ 00, n (r)-+ 0
L

(9h)

(9i)

The eGS!;) is given by (Ref. 9, p. 183)

N (r)
[
r-

p Jerfc .2 ,

12 P3
(9j)

The limiting b~havior of the distribution is as follows (Ref. 9,

p. 183),

and, as

r -+ 0,

r+ 00,

N(r) ~ :i [1 ... fi· (r-
P2)J

2 . . 1T P3

N(r) • ~(r~;/ exp {[~~:]}

(9k)

The moments of the distribution are given by (Ref. 8, No. 3.462/1),

(9m)

where D....k+\ is a parabolic cylinder function.

In the norma~ distribution, the Parameter P2 controls the mode radius

and the par~meter P3 cqntrols the polydisper~ity. The model is graphically

presented in Figs. (6A.l -pC.3).
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Model 7 ~- The Generalized Distribution ~unction (GDF) Model

'l'his distribution is finite 'at r .:i: 0 and thus does not, strictly

speaking, represent particle size distr'ibui~ons at small r." However, it is

a versatile function with a wide variety of applications, including altitude

distributions, (Refs. 3 and 9) and is therefore inc~uded here as a p~tential

representation of aerosol SD's.
.....'

The radius-number distribution is given by

n <r) :=
2

{ P2+ exp (r/p3)}

(lOa)

Its mode radius is given by

and the maximum is

(lOb)

n (r ) '.'
m

PI (1+P2)2

4 P 2

( lac)

The limiting behavior of the distrfbutlon is as folLpws

As (lOd)

and, as , r -+ 90 ,n(r) -+ 0 as
?

PI ( 1+P"2 )-,exp (,.. r /f> 3 ) OOe)

The log radius-number distribution is given by

nL(r) OOf)



Its ,mode radi,us rl~ tsgiven by the solution of the equation

afld the max~mwn fs given by

TM qmitin~ behavior of the distrib\,ltion i:s as follows

23

. (lag)

(lOh)

As

a~q, as

( lOi)

i

The COSD is given by

2 '
PI O+PZ) P3
Ii

(P2 + ~:il!p(.r/P3·»)

The limiting behavior of the distribution is as follows

As r -+ 0, r(r) ~. PI (l+P2 ) P3 (l ...r /P3 (PZ +1»)

and, N(r) a 2
exp(-.r/P

3
)as r -+ 00, -+ as . PIP) (l+P2)

The analytic expression fo~ the moments of th~ distribution

equId not be 'evaluated.

(lOk)

( lOR,)

( 10m)
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The par?meter P3 can be considered as a scale radius and the parameter

P2 determines the type 9f function. For P2 = o the distribution. becomes

an exponential, and for small P2 the function initially falls off more

slowly than the exponential. As the parameter P3 increases, the spread

or poLydispersity of the function increases. The model is graphically

presented in Figs (7A.l - 7C.3).

Model 8 -- Power Law Generalized Distribution' Func'tion (PLGDF) Model

Thismod~l is a versatile function which is most useful when the data

to be fitted have broad peaks. The radius....number distribution is given by

n(r) = (lla)

Its mode radius is given by the solution of

(lIb)

and the maximum is

n(r ) =m

The limiting behavior of the distribution is as follows

As
P4

r +0, n(r) + OasPl exp(-PZ/r 1 (lld)

and, as r + 90, n(r) (lle)



The l0g rad~\,Is"'n\,ll1lb~r SD :l;sgiven by

P·4
2.3 Pl~~P (pZ/r )

) II i ' i i

P4 .. P4 2
~ (1tP3 (exp(P2!r ) -1»

~tsm(;lf;le rapius is giyer) by the sotution of

25

(llf) .

(llg)

and ~tsma~~mum is given by

(llh)

The li~iting behavior of the distribution is as follows

P4
as 2.3 PI exp (-PZ /r ) (UO

anp, As (llj)

.The COSO ;is given by

The limiting behaviQr of the distribution if; as follows

, (11k)·

As

( llin)
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The moment s, other than the zeroeth ,moment (N(O» '" cannot be:j

calculated for this distribution. However, there isa special form of

the function, referred to as Model 8B, fbr which higher moments can be

calculated, but it has no analytic form for the COSD. , The radius-number

$D for this function is given by
) ,

"

.' t ".',

(12a)

., " ;' . ),

Its mode radius is obtained from the, solution of the equation
" ,

: .'

and tts maximum is given by

(l2b)

,.: .

n(r )
m

:: (l2c)

The limiting behavior of this distribution is ,a,s :follows

As

and, as

r + 0, n(r) + ° as

r + 00, n(r) - P1

(12d)

(l2e)

The log rqdius-number distribution ~s; given,biY

lts mode rqdius is given by 'the solution of the equatlon

(l2f)
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and, its m~ximom is given by

'l;he limiting b~havior of the ~htribution is as follol1s

( l~h),

r -+ 0 , n~ (r) +0 ' as 2
2.3 PI exp(-P2Ir ) , (12f)

( 12J)

the mo~qnts for thisdistrlbution are given by (Ref. 13, No. 313.11)

L
i::;:O

[•. 1 l..)i
,... P3 (12k)

P4-(~+1) .
where P4k ::;: 4 ' P4 > k + 1.

The parameter beh~vior for both functions (Eqs. (11a) and (12a» ~s

similar~ The paramet~rP2 controls thq rate of fall-off at small radii

whil~ the parameter P4 controls th!'! rate of fall-off at large radii. The

p.ramet,r P3 corttrols the s~read of the distribution, t~e breadth of the

p~a~s inc~e~sing with large values of P3. The mode~ is graphic.ally pre

p~il~edinFigs. (B.A.1 - 8F.3).
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GRAPHICAL CATALOG OF SIZE DISTRIBUTION MODELS

Description of Model Catalog

The model catalog consists of log-log graphs (6 x 4 cycles), and/or

in some cases, semi-log graphs, on which n(r), :~ (r)andN(r) are separately

plotted against radius (~). Eor .each of the aforementioned models, sets

of~lots have been produced, each set dep:icting the 'behavior of the model

as a function of only one of its parameters, the other parameters being

kept constant. Thus, each catalog graph (~G) contains several plots, one
; i:_

for each value of the parameter being varied, the parameter values being

chosen to cover the rangeof ..variation tn aerosol size. distributions likely,..

to be encountered. A CG with a PZ' P3 or P4 variation will be hereafter

referred to as a Pz CG, P3 CG or P4 CG, ·respectively. Eachca.talog plot

(op) is labeled by a different symbol against which are printed the valuers)

of the parameter(s), outside the right-hand boundary of the graph. Also

printed there, are the model number 'and the mode radius (RM). For the

first plot all the paramet'ers are listed; and f<;>r' subsequent plots only

the values of the varying parameter and RM are printed. In cases where the

Sp has no mode radius, the value RM has been set equal to 0.01. The

annotation on logarithmic axes gives the power of 10.

For each set of paratneter values ~ three corresponding CG t s for nCr),

nL(r) and N(r}~re presented.! The va~ues of the .parameters he~d c9nstant

in each case, in general, were selected so that they were near the,middle

of their likely range. I~. all cases, the. paramet~r PI :!-s a scal~l1~ fflctoJ;'

which has been chosen so that the maximum values of n(r) , nL(r), or N(r)

are unity. This allows all of them to fit on one graph and facilitates

estimation of parameters.
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Use Of Model 'Catalog

In this section; ,a step~by~step procedure will be described illustrating

how the catalog can be used to obtain the best-fit values of ,the model

parameters.

Step 1: In case the two transparencies of log-log and semi-log graphs

provided in the pocket on the back covet of, this report are missing, take

the blank log-log or semi-log graph provided at the end of the catalog and

get some sharp photographic transparencies made of it. Xerox or vu-graph

transparencies will not do ,as, they generally distort the graph unevenly.

Step 2: Next, plo,t the experimental data forn(r); ~ (r) orN(r) on

the transparency,' which, is refered to as the data transparency (DT)., If

the data is not too noisy, one can visually detect some geometrical trend

in the data points. A free-hand" smooth line may be,drawn tht10ugh the data

poirttstoi accentuate the shape of the geometrical curve or line.

Step 3: The ,DT should then be overlayed on the different CGls belonging

to the selected analytical mod,el until a visual matching of the data points

to one of the plots is obtained. With some experience, such a match can

quickly be obtained. However, one often finds that the visual fit of the

data points to a CP is reasonably close but not exact. ,The, values ,of the

parameters corresponding to the closest plot are then read off theCG, and

used as initial parameter estimates in a nonlinear ,least squares (NLLS)

computer program or some other optimization code to obtain the ,best-fit

values of the parameters.

Since all the CP's for nCr), nL(:r) and NCr) are normalized to unity

at their individual maxima, the experimental data pqints may not, in general,

fall in the same range as that of the CP's; thus vertical translation of the
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DT will be necessary to obtain the visual match. In addition, horizontal

translatipns of the DT, where petlllissible, may sometimes be necessary. In

apy case, care should be taken to ensure that no rotation Qccurs between

the cq and the ~T.

As a rule,j:};le hQrizPllt;:altl=ans1ations are invalid when the parameter

being var:,f,e<i!Gontrols the mode racU.us r and are valid if it conttols them

PQlydisp~r\ll:tty ol:' the rate o;f fall....of~ at the extremities.

PARAMETER ESTIMaTION

There are tJiiree methods by which one .can obtain, with relative ease,

estimates of the parameters of the size distribution models that are

close .to the bestr-fit values. In each case, the experimental data is

plotted on a 10g...10g or semi-log graph paper. The first is based solely

on the interpretation of the plotted data in terms of the mathematical

properties (such as l:(;mitin& behavior, mode J'adius, momertts, etc.) of

an ana1yt;:ic mpdeljthe second is based solely on the visual matc1;l,in~ of

the plotted data with a set of parameterized plots of that model; and the

third, which is the most versatile, is simply a composite of the first two

methqd$. ~t is the last methods, which will be discussed in this section.

In this method, it is essential that the experimental data be plotted on

the photographic transparency of the unused log-log graph provided with

the catatog. III some cases itJ.'llaybe he1pf\ll to use the semi-log graph,

also prpvide~ with the. catalog.

A straight :Une on a log-log graph implies a power law, and on a

semi1lqg 9raph, an exponential function,' If for large t, the data points
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on a log-log graph fall on a straight line, then the size distribution
-PZ

models which should be considered are those which vary as, say r for

r +00, the slope being the value of the exponent, PZ• This would immediately

suggest that models 1, Z, and 4 are the appropriate ones to work with. If,

on the other hand, for large r, the data points on a semi-log graph fallon

a straight line, the models which should be considered are those which vary
-PZr

as, say e as r+ 00 , the slope being the value of the coefficient PZ.

This would suggest Model 3 with P4 = 1 or Model 7. If, however, the

experimental data do not fallon a straight line when plotted on either

the log-log or the semi-log graph, then Models 3 and ~ are important. In

the following discussion on parameter estimation, primed symbols will

refer to the data estimates and unprimed symbols, to the CP values.

The parameter pi is always the last parameter to be determined.

Since the estimation of the scaling parameter pi is essentially the same

for all models, it will be discussed before describing the procedures for

estimating other parameters for each of the models. The estimates for pi

can be obtained by one of the following three methods, after the estimates

for P2' P3' etc. have been obtained.

(a) o
If one assumes a linear relationship between the observed (Yj)

cand. calculated (Yj) values, Le.,

then by using linear regress10n methods it can be Bhown that

03a)

J
pI = ( l:

1
j=l

/)At
J . 1J=

( 13b)



a
w1)el"~ J :: nl,lmber of data points, Y

j
:: observed SD value at r., and

J
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c
Yj ;::: cq 1culated $D va14e at r j , u~ing pi == 1.0 and the PZ' P3' etc.

already determined.

(b) pi = (observed value at rj/ca1cu1ated value at r j )

wh~re the calculated value of the SD is obtained by substituting

(l3c)

pi ::; 1.0 and PZ' PJ' etc. as estimated from the CP's, in the eXpression

for the SD. If possible, the values a.t the mfPCimum should be used.

(c;) pi =~bserved value at rj/cata10g value at 1".) x PI
. . J

(l3d)

Even thougb the second method might perhaps be the easiest for

e~timf1ting pi, thE'! first rnetho<;l is found to be more convEmient when a

compl,lter optimization code is used, since the formula in Eq. (13b) can

~asily be incQrP9rated into the prograrn. The third method seems to be

the most complicated since often several CP'swith different Pl values

are used to estimate the parameters, P2' P3' etc.

The first step is to determine the other parameters p~, p~, etc.

fo~ each of the models. The procedures for estimating these parameters

are described under the subheadings for the different models as follows.

Modell: The slope of the straight line on a nCr), nL(r) or N(r)

plot determines the parameter pi'

Mod$l 2: This model behaves as a power law for both large and small

r •. Therefore~ ingenaral, it is best to determine P3 and P~ first, and

then dEi!termine PZ' The parameter estimaj:ion differs somewhat for the n( r) ,

nL(r) or N(r) data plots.

(a) n(r) data. P3 can be obtained from the positive slope

(== 1?3 ~ 1) of the data p1.ot; p~, from the negative slope (= -1- P3 (p~ -1),

after substituting for P~; and P2 is found by substituting for r~, P3
and P~ in ~q. (5b).
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To obtain P3 using the catalog, the DT is overlayed on

the P3- CG (Fig. 2A.3), and ,translated alpng x- and/or y- axes until

the data points corresponding to the small .limit of. r match, as closely

as possible, one of the CP's.

To obtain P4' the DT is overlaid on the P4 CG (Fig. 2A.4)

and translated parallel,.to th,e x- and/or y- axes until the data points

for large r closely match one of thep lots. (Sincebothp3 and P4 ;

affect. the slope fqr r -+ 00, it may be necessary to adjust the Pz. value" .

using,

p' (p' -1) :;:: P3 (P4 -1)3 . 4 (l4a)

if the P3 value for the GP differs from P3.) . Having obtained P3 and

P4' estimates of P~ can be obtained from Eq. (5b) rir from the CP's. In

the latter case, overlay the DT on the CG for which (P3' P4) are as

close as possible to (P3 , P4) (Fig. 2A.l or 2A.2) so that the data

maximum coincides with 1.0 on the CG y- scale (CP's are normalized

so that their maximum value is 1.0). Translation of DT along the x-axis

is not permitted, since the parameter being estimated controls rm. If the

data peak does not coincide with any of the CP peaks, but lies between two

CP peaks thenpz can be obtained by the following interpo1ation relations.

p'/r'2 m (14b)

(If P3 and/or P4 for the CG differ from those values for the DT, then use

p
II

[Z 1

1/p'
pI _ 1 ] 3

+3pl (pl_l)
34.

(l4c)

to obtain a better estimate, P2' for PZ.)
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(b) nL(r) data. The n
L
(r)data is plotted on the log-log

t:n,m~parency. The determination of the parameters is done in essen-

Hally the qame manner as for the nCr) data. As r + 0, P3 = positive

slope; as r + 00, p4 = 1 + negative slope/P3; and P2 is found by sub-

stitutin~ for
, p' and p' in Eq, (5g) • The parameters pI and pI

r l 'qI :3 4 3 4

are ~:letermined from Figs. (2B.3 anc;l 2B.4) respectively, in the same

manner as for nCr). Similarly, P2 is obtained in the manner describe~

for nCr) data using Figs. (2B.l or 2B.2), provided r andr'are re-
m m

placed byr lm and rim in Eq. (l4b) and (lAc) is replaced by

-lip'3
(l4d)

(c) N(r) data. The parameter determination from the N(r)

dqta is more difficult than from the nCr) data. Plot the N(r) data on the

log,..log transparency, visually fit a line through data points, and,

if possible, extrapolate it to r : .Olpm.

To obtain p~, overlay the DT on the P2- CG (Fig. 2C.l

Qr 2C.2) whose r + 00 behavior best matches that of the data, so that

the NCO) for the data c;.oinciqes with the N(O) for the CPo If data

lies between ~wo CPIE\, thenl\se the following extrapolation formula

[~J
s' s

(l4e)

wh~l'.le to and r' are radii with the same normalized value N(r) on the

straight portion dE I:he Curve (Fig. 9) and 5' and 5 are the slopes of
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the straight portion of the curve. It is best to use the CP which turns

closest to the data. P4 can then be obtained from the relation

[N(r)] 1/' N(O) =
P2

p '-1
Z 4 (l4f)

To estimate P3 overlay the DT on the P3- CG (Fig. 2C.3) and translate

along ,x- and y-axes to obtain the c1osest'matchbetween data points

for r -r 00 and one of the CP's. (If P4 for theCG differS from P4' then

to obtain a better estimate for P3' use Eq. (14a);)

Model 3: In representing the size distribution data with Model 3,

one generally obtains estimates of the parameters P2 and P4 first and

those of P
3

from them.

(a) n(r) data: If n(r) data is available for r -r 0, then

"

one can obtain P2 from the positive slope (=P2)' To obtain P2' overlay

the DT on the PZ- CG (Fig. 3A.l), and translate it along x- and y- axes

until a CP matches with the slope of the data for r -r 0, where the positive

slope = P2' To obtain P4' overlay the DT on the P4-CG (Fig. 3A.4), and

translate it along x- and y- axes, until a CP matches with the data for

r -r 00, for which limiting behavior is an exponential type fall-off.

P3 can then be obtained by substituting r~, P4 and P
2

in Eq. (6b) or from

the appropriate CPo In the latter case, overlay the DT on a CG with (PZ' P4)

closest to (P2' P4) (Fig. 3A.2, or 3A~3), so that the data maximum

coincides with 1.0 on the CG y~ scale. The following interpolation formula

can be used to obtain the p' if the data do not coincide with one of the
3

CP peaks.



36

(15a)

(l5b)

Gan he .used to pbt;ain a hetter estimate p) for the P3 parameter since Pz and

p' alao infl.J.lence the mode radius.)
4

(b) tt. (r) data: Oetermination of the i'Jodel 3 parameters

from. the nL(r) deta is similar to that described for the nCr) data,

. provided (P2 + 1) is used for the positive slope , pj ;is e&timated from

P2 and P4 using the expression for r lm given in Eq. (6g); r m a~d r~ are

replac~d byr1m and rim in Eq~ (15a), and Eq. (15b) is replaced by the

~e1ation

[

P ' + 1. 2

p" pI
3 4

(c) N(r) data: Determination of the model parameters from

theN(r) dat~ is difficult. It will generally be necessary to extra~

polate the data to r = O.Ol~m.

To obtain P2 overlar the DT pn a CG with plots whose

plopes for r -+ 00 (Fig. 3C oL or 3C .2) are similar to that for the data,

so ~ha~ the extrapolated N(O) value for the data c;oincides with N(O)

for the CP's. Then P2 is the P2- value for the CP which best fits the

data parti6ularly with regard to the curvature. It may be necessary

.. to interpolate ~isually in order to obtain a better value for P2'
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To obtain P4,overlaythe DT on the P4- CG (Fig. 3C.5)

and translate it in a manner similar to that for the nCr) data, until

a best fit to the data for r + 00 is obtained. Similarly, P3 is obtained

by overlaying the DT on the CG with (PZ' P4) closest to (P2' P4) (Fig.

3C.3 or 3C.4), and translating vertically so that N(O) 'for the data and

CPs coincide. Then determine which CP best fits the data, interpolation

by eye may be necessary to give a better estimate of p~.

Model 4: Determination of parameters for this mod~l is similar

to that for Model 3. In general, determine P2 and P4first, andthell

(a), nCr) ,data: The parameter P2 can be determined from the

slope of the data as r + ro (slope = P2)~ To detetmine P2 from the

CGls, overlay the !)T on the PZ'- CG (Fig.,4A.l) and translate

the DT parallel to the x- and/or y- axes until the data pointsps

r + 00 lie on or close to one-of the CplS~ The Pz value for this CP

then becomes the estimate P2. To determine P4' overlay the DT on the P4

CG (Fig. 4A.4) and translate the DT vertically and horizontally until

the data points as r +0 lie on one of the Cpls.

The parameter pI can then be determined by substituting3

for P2' p' and r' in Eq. (7b) or using the catalog graph. To determine4 m

p' from the catalog, overlay the DT on the P3'- CGwhich best matches ,the3

behavior ()f thE:! data both as r + 0 and r+ 00 (Fig. 4A.2 or4A.3 )50 that

the data peak coincides with 1.0 on the CG y- scale. If interpolation;

between CP values is necessary, use the following relationship:
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(16 a)

(If the values of Pz and/or P4 for the CG differ from the estimates P2 and

P4' then a better estimate P'3 can be obtai~ed by using the relationship:

=
(16b)

where P3 is the new estimate for p~.)

(b) nL.(r) d/:lta,: This is very similar to the parameter deter

ciinatian for nCr). The s16pe as ~ ~ occan be found from the data (slope

~ Pz ~l). Using the cat~log, P2 and P4 are determined from Figs. 4B.l

and 4B.4 respectively in the same way as P2 and P4 for nCr). The

parameterP3 is also determined in the same manner as for nCr) however,

if interpolatiQn between CP's is needed, r lm and rim should be used

tnstea~ of rm and r~ in E~. (16a). (If (P2' P4) for the CG differ from

the estimates (P2' P4)' a better P3 estimate can be obtained by using

(16c)

where l'3 i!;i defi-q.ed as the n~w estimate for P3')

(c) N(r) data: Determination of parameters is generally more

diffiCl,llt than for nCr) or nL(r). The slope as r 0+00 is given by 

(P2- l). Generally, it will be necessary to extrapolate the data to

r = O.Oll,\m.
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To determine P2 from the catalog, overlay the DT on the

P2- CG (Fig. 4C.1) and translate the DT .vertically and horizontally unti L

the best fit CP for the region r + 00 is found. To det~rmine,P4,overlay

the DT on the P4- CG (Fig. 4C.4), so that N(O) for the data coincides with

N(O) for the CP's. The estimate for P4 will be tpe p4,value fqr the best'

CP, giving particular attention to the fit in the region of curvature.

To determine P3' overlay the DT on the P3- CG which best approximates the

behavior of the data as r + 00 (Fig. 4C.2 or 4C.3) ~o thatN(O) for the

data coincides with N(O) for the ep's. The estimate for P3 is the value of

P3 for the CP'which best fits the data; The point where the curve turns

is of most importance here and some interpolation by eye may be necessary.

Model 5: In representing thesizedistributirin data with Model 5,

it is best to obtain an estimate of P3 first and use it to determine P2.

(a) n( r) data: If suffici~nt data are available, both P2 ,ancl'

P3 can be determined from the mathematical properties as follows:

(17a)

where r l and r 2 are the radi,i athalf-maximumpbints. 'Then P2 can be

obtained by substituting for P3 and r~ in Eq. CBb). To determine the

parameter using' the catalog, overlay the DT on the P3- CG (Fig. 5A.3)

and translate it so that the maxima for thed~ta and a CP coincide.

Then P3 is the same as the P3 value for the plot which best fits the

data. Attention should be paid t~ both the spread of the data, and

the rate of fall-off as r+ ~ Often some i~terpolati6n may be

necessary.
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Once p~ 1s obtained, p~ can be determined by substitution

~n Eq. (8b) 6r from the catalog. In the latter case, overlay the DT 6n

, the P2,,""CG wil:h P3 clo!?est to P3 (Fig. 5A.l or 5A.2) so that the data peak

co~ncide8 with 1.0 on t~e y... scale of th. CG. If the data do not coincide

with one of the CP peak&, Pz can be estimated from the closest one byt,ls;lng

p'
2

P2

_t~
:;:

r
m

(17b)

(If P3 i p~, then a better e~timate for P~ can be obt~ined from

wh.re Oil is the new estimate of P2 for the data.)
, t ~

(l7c)

(b) nL.(r) data: P2 can easily be obt,ained from the data peak,

stnCe P2 :;: r~m' Determination of the model parameters from the Cp's is

essentially the Same as for the nCr) c;lata, provided r m and r~.are

replaced by rIm and rim in Eq. (171;». Note that no adjustment of Pz

will be necessary if P3 for the catalog differs from, P,3'

(c) N(r) data: Generally, it is best to ~xtrapolate the N(r)

data to r :;: O.Olvm to obtain an. estimate of N(O). Then P2 can be

d~term~n~d from the fact that P2 15 the median, i.e., N(P2) :;: 0.5, or "

in th~ case Clf,unnormalized data, N(P2)/N(0) :;:: 0.5.

To obtain p~, ~verlay the DT on the P3- CG (Fig. 5C.3),

translate it hodzontal1y and vertically until a match of the data for

t.T :'* ~ wHh a CP i!;l obtained. (If P2 has been estimated as described
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earlier, then the data point (p~, 0.5 N(O)~ should coincide with the .'

point (PZ' 0.5) on the CPo If the median points for the data and the.

CP do not coincide it probably means that the original estimate for P~

is not very good and a better one would be the radius on the DT which

Model 6: Since this model was included in the catalog for complete-

ness only, a description of how to determine parameters from the catalog

will not be given. However, if the model is to be used, the data should

be plotted on a semi-log graph and the procedure for determining the

parameters will be similar to those described earlier.

Model 7: Data for this model· should also be plotted on a semi-log

graph. As in .the case of Model 6, this model w.s included for the sake

of completeness and will not be discussed here. However, determination

of the parameters for this model is discussed by Green (Ref. 6).

Model 8: Two forms of this model were discussed earlier, but para-

meter determination is the same for both, so that separate discussions

will not be necessary here.

(a) n(r) data: To determine p~, overlay the DT on the PZ

CG (Fig. 8A.l or 80.1) so that the radii are aligned and the data peak

coincides with 1.0 on the CG y- scale. P2 is the same as Pz for the
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CP which coincides with the data peak. Interpolation by eye may be

Decessaryto get a better estimate of p~.

To determine P3 the DT is overlayed on the P3- CG

(Fig. 8A.2 or 8D~2) and translated vertically and horizontally until

the CP which best matches the peak width is found. It is this para'::'

met~r which controls the broadness of the peak and U of importance for

data with broad flat peaks. The parameter P4 can be found from the stope

of the data for r. + 00 (= -(P4 +l)for Model 8, = -P4 for Model8B) or

from the catalog. Using the catalog, overlay the DT on the P4- CO

(Fig. 8A.3 or eD.) anQ translate vertically and horizontally until a

CP which matches the data for r +00 is found.

(b) n (r) data: The procedure for determining PZ' P3, P4 is •
L . ...

exactly the same as for n(r) except that in the case of Model 8 Figs. 8B.!

8B.3 are used and the slope for r + 00 is -P4 and in the case of Model 8B

Fi~s. 8E.1 - 8E.3 are used and the slope for r + 00 is and -P4 - 1.

(c) N(r) data: Extrapolate the data to r = O.Ol11m, then

to determ~ne pi' overlay the DT on the P2- CG so that the radii are

aligned and N(O) for the data coincide~ wfth N(O) for the CP's. Th~

estimate for P~ is ~iven by the value of P2 for the CP which· best

matches the data, particularly in the region where it turns.

To determine P3 overlay the DT on theP3- CG (Fig. 8C.2

or 8F.2) so that N(O) for the data and the CP's coincide. The estimate

of P3 is the value of P3 for the CP which best matches the spread or

polydispersity of the data. To determine P4' overlay the DT on the P4

CG (Fig. 8C.3 or 8F.) and translate the DT vertically and horizontally

until the Op which best matches the data for r~ 00 is found.
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Multimodal Size Distribution Models

Quite often the SD data may indicate that the distribution is multi-

modal (Refs. 14 and 15). Such SD' s presEint no particular difficulty in

representing them analytically in terms of the aforementioned SD

models. One can represent multimodal size dist:t>ibutions simply by

adding appropriate mathematical ~unctions, each co~ponent term repre-

senting a peak in the size distribution data, such as,

n(r)
J
l:

j=l
a. n.(r)

J J
(l8a)

where J is the number of component terms and the a. represent the
J

adjustable constants and are equivalent ,to PI for the unimodal models.

In describing the procedure for fitting mu1timoda1 data using the

catalog, a bimodal model will be condensed for simplicity.

Step 1: Plot the data on a log-log transparency and dot in the

probable behavior of the two modes as illustrated in Fig. (10).

Step 2: Decide the most appropriate model for each mode using

the guidelines already outlined for the unimodal models.

Step 3: Determine the parameters for each mode using the guide-

lines outlined earlier for unimodal models.

Step 4: Determine the scaling factors for each mode. The simplest

method for determining the scaling factors is the solution of the

simultaneous equations

(18b)

(18c)
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wh~re a~, a
2

are the scaling factors required, and r 1 and r 2 are the

mode radii for modes land 2 , respectively.,

In Some cases, it may be difficult to get good estimates for a
l

and

a2 , e;l.ther because of uncertainty in the accuracy of some estimates or

b~cause the scaling factors differ by several orders of magnitude. An

altetnative approach to determining the scaling factors under these

circumstances would be to assume that each mode makes a 'neg ligible con-

triqution to n(r) in the region where the other mdde dominates and, thus,

the ~caling factors can be found by using the follow,ing relationsh1.ps:

I.

(l8d)

(l8e)

wh~re r l and r 2 are radii at which modes land 2, respectively, dominate.

Examples of Analytic Representation of SD Data

Tropospheric Aerosol Size Distributions (Junge Data): Junge's

data (Ref. 1) for the average size distribution n(r) of continental

aerosols in the altitude region (0-3 km) were plotted on the log-

log graph transparency. One could readily see that for large radius

particles, the n(r) data points lay along a straight line and suggest

thereby a power law behavior. Thus, Models 2, 4, and 8 seemed

appropriate. In the following, examples are given for fitting the SD

qata with these three models. Model Swas also fitted to the data to

illustrate the poor fit which can be obtained if an inappropriate

tnodel is chosen.

Model 2: According to our earlier prescription, the DT was

overlaid on the P4 - CG (Fig. 2A.4), and translated vertically
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3 -2until the point (10- , 1.0) on the DT coincided with (10 ,0.1) on

the CG. The data points for large radii fell on the P4 = 2.0 plot;

thus, P3 = 3.0 and P4 = 2.0 (the CP parameters) represent the data

for large radii. Since there is not sufficient data at the smaller

end to determine P3 from the slope in that region, concentrat~onwill

be on the curvature in the region of the peak.

Still using Fig. 2A.4, the DT was translated vertically

and horizontally so that the point (0.5,106) on the DT.coincidedwith

(100, 1.0) on the CG. Although P3 = 3.0, P4 = 2.0 represented the large

r data well, the CP had a sharper peak than the data points and thus

suggested that p) = 3.0 may be too high.

The DT was then overlaid on the P3-CG' (Fig. 2A.3), and
. 6

translated vertically and horizontally so that the point (5.0, 10 ) on the

DT coincided with the point (100, 1.0) on the CG. The plot for P3 ~2.0

gave the best fit to the data. It did not falloff as sharply at small

radii and the slope at large radii was a little too steep; however it

did give a reasonable fit to the broad peak.

The estimate of P4 had to be adjusted in the light of

the new estimate for p) = 2.0 since the slope at large radii depends

on both P3 and P4' This was done by substitution in Eq. (14a) which

ga~e P4 = 2.5. The only parameter left to be estimated was Pz which

-3can be found from Eq. (5b). Since r~ = 6.5 x 10 for these data,

substitution for r~, P3' and P4 in Eq. (5b) gives pi = 0.013. The

accuracy of this estimate was confirmed by estimating Pz from the

catalog. The DT was overlaid on the P2-CG (Fig. 2A.l), and trans-

-2 5lated vertically so that the point (10 ,8 x 10 ) on the DT coincided

-2with (10 ,1.0) on the CG. It was evident that the P2 for the data
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was less than 0.05. The estimate for pi was found by substitution in

Eq. (14b). Substituting P2 (=0.05) and r (=0.022) for closest catalogm
plot and r' (= 0.0065) for the data points, yielded Pz = 0.015. However,m

p = 2.0, p = 3.0 on the CG and the estimates for the data were p' =3 4 3

2.0, P4= 2.5; thus, the pi estimate obtained had to be adjusted by

using Eq. (14c), which gave Pz = 0.013, the same as the earlier estimate.

These estimates (pi = 0.013, P3 = 2.0, P4 = 2:5) were

used as the initial estimates for a nonlinear least squares (NLLS)

fit. The results are given in Fig. (11) and the best fit estimates

-2
are P2 = 3.172 x 10 , P3 = 1.82, P4 = 2.65. It can be seen that

the initial parameter estimates represent the SD slope and the curvature

quite well. Note that the estimated curve has the right shape but is

t60 far to the left of the data points. Thts is due to the broad peak,

the estimate of pi was too low, since the actual rm value was used.

It might have been more accurate to take r = mid point of peak region.
m

The final best-fit values, obtained by the NLLS method, give a good

analytic fit to the SD data. It should be noted that the greatest change

Qccurred in P2' which effectively gave a higher rm value.

Model 4: Since the IMGD behaves as a power law for

large 4, it is a suitable model for the Junge data (0-3 km). From the

data points the slope as r -7 00 was found to be ~4; thus the estimate for

pi was 4.0. To confirm this estimate, the DT was overlaid on the P2-

CG (Fig. 4A.l) so that the DT point (10-3 , 1.0) coincided with the CG

point (2 x 10-Z, 10-5), their respective x- and y-axes remaining mutually

parallel. It was noted that the data points lay along the Pz = 4.0 OP.
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curve. Thus'P4 = 2.0 was the estimate.

Substituting the estimates for p' and p' and r'- 6.524m
-3 -5x 10 • in Eq. (7b) gaveP3 = 8.45 x 10 • To confirm the P3 estimate,

the DT was overlayed on the P3- CG (Fig. 4A.3) so that the DT point

(10-2 , 8 x 10+5) coincided with the CG point (10-:2 , L 0) • From this,

it was evident P3 «LO. Substituting r~ for the data, and P3 a.ndrm
-5for the closest CP plot in Eq. (16a) gave P3 =4.23 x 10 • However,

(P2' P4) for the CG were different from the (PZ' P4) estimates for the

data; thus, the final estimate for P3 was found by substitution in

-5Eq. (16b),which gave P3 = 8.45 x 10 ,the sanie as the earlier estimate'.

Figure 12 shows the results, the final estimates were P2 = 4.43,

p; = 0.788,P4= 0.514.

Model 5: Since these data falloff as a power law for

large r, the log-normal distribution is not the most appropriate model

to use. However, it is used here in order to illustrate the poor

fit one obtains when the model chosen is inappropriate and alsd to

illustrate that such a model can sometimes be used to fit the data

in a portion of the data range.

The DT was overlaid on the P3- CG (Fig. 5A.3) and

then translated horizontally and vertically so that the DT point

(10-3 , 8.0) coincided with the CG point (6 x 10-2 , 10-5 ). At this

point, the maxima for the data and the CP for P3 = 1.0 coincided.

The data points lay almost exactly along the P3 = LO CP, except for

very small r. Thus, P3 == LO was the estimate.
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r' =
m

The parameter pi was then estimated by using Eq. (8b) and

-36.5 x 10 • Substitution in this equation gave Pz = 0.0176. To

confirm this estimate from the catalog plots, the DT was overlaid on

the P2- CG (Fig. 5A.2) so that (10-2 , 8 x 105) on the DT coincided with

(10-2, 1.0) on the CG. It was noted that P2 for the data was less than

0.1; thus, in order to obtain an estimate forP2' an extrapolation was

made by Eq. (17b). Substitution of the Pz and rm values for the closest

CP and r~ for the data gave pi = 0.0176, the same as the previous estimate.

Thus, the parameter estimated foJ;' this model were pi - 0.0176,P3 = 1.0.

Figure 13 shows the results of anNLLS fit using these

parameter estimates. -2The best fit estimates were pi = 1. 208 x 10

P3 = 1.21. The initial estimate provides a good fit to the data up to

about 211m, beyond which it falls off too stee:ply. The final best-fit

values give a much better fit in the region 0.211m - 30l1m, but do not fit

the peak region. As was mentioned earlier, the log normal model is not

as suitable for these data as l-10dels 2 and 4. However, if only a portion

of the size range covered is of interest, say up to 211m, or beyond 0.2 m, .

then this model is as good as any of the. others.

Model 8B: Since Model 8B behaves as a power law for

large r it is a suitable model for the Junge data. It also has the

advantage of being able to model broad peaks. To determine P2' the

DT was overlaid on the P2- CG (Fig. 8D.l) so that the point (10-2 ,

5 -28 x 10 ) coincides with 10 ,1.0) on the. CG. It was then noted

halfway between the 10-4 and 10-5 CP's.

-5x 10 .

that the data points lay about

The estimate for pi was thus 5

To determine P3' the DT was overlaid on the P3- CG

(Fig. 8D.2) so that the point (5 x 10-3 , 8 x 105) coincided with the



49

-2point (2 x 10 ,1.0) on the CG. The data points coincided with the

P3 = 40.0 CP; thus, the estimate was P3 = 40.0.

The parameter P4 was determined by overlaying the DT

on the P4- CG (Fig. 8D.3) so that the point (10-2 , 106) coincided

-2with (2 x 10 ,10.0) on the CG. Since the data points lay along the

P4 = 4.0 CP, the estimate for pI was 4.0.4

Thus, the parameter estimates for this model were pI =2
-5 pI = 40.0, p;' = 4.0. The results of the NLLS fit this data,5 x 10 , to3

using t~ese estimates, are given in Fig. 14. The best fit estimates

were pi = 4.700 x 10-
5

, P3 = 38.8, P4 = 4.03. As can be seen from Fig. 14

the initial estimates represent the shape of the data quite well but the

n(r) values are consistently too low. The final estimates giv~ ~ very-

good fit to the data and model the broad peak very well.

Cumulative Size Distribution: The SD data was obtained over

Alaska at an altitude of 13 km, by Quartz Crystal Measurement

(QCM) method.] The SD is in the form of the cumulative.

Model 2: The data points fell on a straight line

as r + 00; thus, Model 2 is an appropriate model. In this case, pi
was determined first, and then P3 and P4 which control the slope for

large r. The first step was to extrapolate the data to r = 0.01.

3This gave a value 8 x 10 for N(O).

TheDT was overlaid ,on the P2- CG (Fig. 2C.1) so. that

N(O) for the DT coincided with N(r) = 1.0 on the CG. It was noted

that in this case the rate of fall-off of the data for large r was

]
D. woods, private communication.
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the same as for the CP' s but that the data lay between the 3 x 1O~2

and 5 x lO~2 CP's. By using the interpolation formula in Eq. (l4e) at

-4N(r) = 3 x 10 (on the CG), assuming s = s' and sub~tituting r =

0.4, r' = 0.3 and P2 = 0.05, the estimate P2 = 0.0375 was obtained.

To obtain an estimate for P4' the data va1~es N(P2) and N(O) were

substituted in Eq. (14f). This gave P4 = 4.

TheDTwas then overlaid on the P3- CG (Fig. 2e.3) so

that the point (0.5, 104 ) coincided with the point (40, 10) on the

CG. The data points lay on the P3 = 2.0 CP making p' = 2.0 the estimate.3

However, both P3 and P4 affect the slope as r + 00, and P4 on the CG was

different from the P4 estimated above, thus the estimate for p' was3

adjusted by using Eq. (14a). Substitution gave pj = 1.33 as the final

estimate.

Thus, the parameter estimates were Pz = 0.0375, p) = 1.33,

P4 = 4.0. Figure 15 shows the results of an NLLS fit using the estimates

for P2' P3 and P4 given above; the best estimates for the parameters were

P2 = 0.0434, P~ = 1.29 and P4 = 4.31. As can be seen from the plot,

the initial estimate explains the data very well and the final estimates

for the parameters are very similar to the original estimates.

Model 3: The DT was overlaid on the PZ- CG (Fig. 3C.l)

so that the point (10-2 , 8 x 103) coincided with the point (10-Z, 1.0)

on the CG. The shape of the data curve in the region where it curves was

very similar to the shape for the CP's, however, P2 < 1.0. In the absence

of any reliable extrapolation formula, P2 = 1.0 was used ~s the best estimate.

...
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The DT was then overlaid on the P4- CG (Fig. 3C.5) so

that the point (10-2 , 10-1 ) coincided with (3.0, 10- 5) on the eG. The

data lay close to the P4 = 0.3 CP so P4 = 0.3 was used.

To obtain an estimate for P3' the DT was overlaid on

-2 3the P3- CG (Fig. 3C.3) so that the point (10 ,8 x 10 ) coincided with

the point (10-2 , 1.0) on the CG. The data points lay closest to the

P3 = 30.0 CP; so this was taken as the estimate for P3'

Thus, the estimates for the model are P; = 1.0, P3= 30.0,

and P4 = 0.3. Figure 16 shows the results of an NLLS fit to the data

using these estimates; the best estimates were Pz = 0.999,

P3 = 30.0, P4 = 0.249. The initial estimate gave a reasonable fit to

the data, and the final estimate fitted the data very well.

Model 5: When fitting cumulative data with the LND, it

is generally best to extrapolate the data to obtain N(O), and use this

to calculate P2 ' Extrapolation of the data gave N(O) - 8 x 10
3

, and by

3
using N(P2)/N(0) = 0.5, it was found that N(r) = 4 x 10 at r = 0.02 and

gave a first estimate for PZ'

The DT was then overlaid on the P3- CG (Fig. SC.3) so

that (2 x 10-2 , 4 x 10-3 ) coincided with (1.0, 0.5) on the CG (i.e. the

median points coincided). This suggested 0.5 < P3 < 1.0, since the data

points lay between the CP'shaving those values. Looking at the behavior

as r ~ 00, it was noted that the CP for P3 = 0.5 fell off much more

sharply than the data. The DT was translated horizontally and vertically
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The DT was overlaid on the P4- CG (Fig. 3A.4) so that

the point (10- 2 , 6 x 102) coincided with the point (3 x 10-2 , 10) on

the CG. Then, by looking at the behavior as r + 00, it was noted that the

data points lay on a line which was approximately parallel to the P4=

1.0 CPo The DT was translated horizontally so that the point (20.0,

6 x 103) coincided with the point (102 , 10) on the CPo The data points

did, in fact, lie close to the P4 = 1.0 curve and thus confirm the

estimate P4 = 1.0. The parameter pj was then estimated from r~, pi,

and P4' by substituting into Eq. (6b); by taking r~ = 0.1275, this

gave pj = 78.4..

To confirm the estimate for p) the DT was overlaid on

-2 2
P3- CG(Fig. 3A.2) so that the point (10 ,6 x 10 ) coincided with

-2point (10 ,10) on the CG. The maximum for the data occurred at

the same r as that for the P3 = 10.0 CP; however, P2 and P4for the CG

were different from the estimates pi and P4 so that pj estimate was

adjusted by usingEq. (lSb). Substituting P2' P3' P4 for the CG and pi ,;

P4 for the data gave pj = 62.5. Thus, the original estimate for pj

seemed reasonable. Therefore, the estimates for this model were pi =

10.0, P3 = 78.4, and P4 = 1.0. Figure 18 shows the best fit obtained;

the final estimates were pi = 8.38, pj = 64.7, and P4 = 0.758.

Bimodal Size Distributions:. The data used in this example

were collected as part of an investigation of high temperature

combustion aerosols (Ref. 17). The original data were in the form

of the aerosol mass in each of eight diameter groups, ranging from

0.43 ~m to 20 ~m. For this example, the masses have been converted

to number of particles by assuming spherical particles with density

1 ~g/cm3 and average diameter equal to the midpoint of the diameter

group in question.
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Fieure 19 shows the original data, with a probably curve for

the second mode dotted in. It was not possible to dot in a probable

curve for the first mode because no information was available about

the turning point for this mode. The bimodal data can be represented

by two terms as in Eq. (18a). Both modes exhibit straight line behavior

in the large r region, so the RPL (Model 2), was chosen as being suitable

for both modes. The model fitted takes the form

n(r) +

where P2' P3 and P4 are parameters for the first mode, and P5' P6' P7'

and P8 are parameters for the second mode.

Model 2: P3 could not be determined from the data

for either mode. The DT was overlaid on the p4- CG (Fig. 2A.4) and

-2 2
translated vertically and horizontally until the point (10 , 2 x 10 )

coincided with the CG point (0.3, 1.0). The data points for the first

mode lay along the P4 = 2.0 CP and, in the absence of any information

about P3' the values P3 = 3.0, P4 = 2.0 were taken as the best estimates

of these parameters for the first term.

To determine Ps for the second mode, the DT was

2
translated so that (35.0, 3.0) coincided with the CG point (10 , 10).

The data points, for the second mode lay along the P4 = 2.0 CP, and

since this CP fitted both the peak and the large r portion of the

data curve, pi = 3.0, p~ = 2.0 were t~ken as the estimates.

To confirm P7 for the second mode, the DT was over-

laid on the P3- CG (Fig. 2A.3) and translated vertically and hori

zontally until the point (45.0, 2.5) coincided with the CG point
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2(10 , 10). The data points in the region of the peak for the second

mode lay along the P3 = 3.0 CP and confirmed the pj estimate.

The next step was to determine Pz and P6. The DT was

overlaid on the p2~ CG (Fig. 2A.l) so that the point (10-2 , 5 x 102)

coincided -2 the forwith the point (10 ,1.0) on CG. The data points

the first mode lay between the P2 = 0.1 CP and P2 = 0.5 CP and in the

absence of any information about the mode radius, P2 = 0.1 was taken

as the estimate for the first mode. (The value 0.27, which is the

smallest r for which data are available, is too high since there is

no sig~ of any curvature at this point.)

To determine P6 for the second mode, the DT was trans

lated vertically until the point (10-2 ,3.0) coincided with the point

-2(10 ,10) on the CG. In this case, interpolation was necessary since

the data lay between the P2 = 1.0 and P2 = 3.0 CPs. Using Eq. (14b)

with r~ = 1.6 gave P6 = 3.58 for the second mode.

The (P3' P4) values for the CG differ from (P3' P4 and (P7'

p~); thus, the pi and P6 estimates had to be adjusted by using Eq. (14c).

Substituting in this equation gave pi = 0.06 for the first mode and

P6 = 2.04 for the second mode.

The final step was to determine the relative proportions

of the two modes by determining the scaling factor pi for each mode.

Since the peak values of the two modes differ by several orders of

magnitude, it was decided to determine the scaling factors independ-

ently, by calculating them at radii where only one mode made a signif-

icant contribution to nCr) and using Eqs. (18d and l8e) to determine the

scaling factors ai, a2 for each individual mode. This gave ai = 1225 for
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the first mode (at_ r = 0.27) and a~ = 0.85 for the second mode (at r =

4.5). Because of the form which the model fitted by the NLLS program

takes, ai = pi, and a2= pi x PS' and thus Ps = 6.9 x 10-
4. Thus,

the initial estimates for this model are pi = 1225.0, P~ = 0.06, P~ =

-4 .
3.0, P~ = 2.0, Ps ~ 6.9 x 10 ,pJ = 2.04, P~ = 3.0 and P~ =2.0. The

results of the NLLS fit using these estimates are given in Fig. 19.

CONCLUDING REMARKS

The uses of the catalog are two-fold. Firstly, it provides a

catalog of the shapes of the different distributions, illustrating such

properties as the locations of mode radii, rates of fall-off and poly-

dispersity. By providing a means for comparing distributions, it aids

in selecting the model(s) most likely to give a good description of the

experimental data to be fitted. Secondly, the catalog provides a mea~s

of estimating the likely values of the model parameters. Often these

estimates will then be used as initial estimates for a nonlinear least-

squares or other optimization code.

The catalog has been used successfully in fitting tropospheric and

stratospheric aerosol data, bimodal data,.and COSD data. It is importnat

that the model chosen to fit the data be an appropriate one if useful

results are to be obtained. In deciding whether a model is appro-

priate, mode radius, rates of fall-off, and po1ydispersity should be

considered. Models which show different behavior for these properties

from that of the data should be avoided.

."
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As the examples showed, there are often several models which will

adequately describe the data, although some may be better than others.

Experience with the catalog has indicated that where there is a known

relationship between a property of the model such as rate of fall-off

and a particular parameter, that relationship should be used to get

the best possible estimate for the parameter.
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SUMMARY TABLE FOR SIZE DISTRIBUTION MODELS
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PARAMETRIZED GRAPHICAL CATALOG

OF SIZE DISTRIBUTION ANALYTIC MODELS

(For List of Symbols and Acronyms see page vii-viii)

· Annotation on logarithmic axes gives the power of 10

· For semi-log graphs (Figures 6A.l - 6C.3, 7A.l - 7e.3)
the annotation on the linear axis (X-axis) is the
actual value.

· Blank log-log and semi-log graphs are reproduced on
pages 156 and 157, respectively.

· Two transparencies of the blank log-log and semi~log

graphs are attached at the end of the catalog.
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0 P2 = 10.0
P1 =1.000E+20
RM =1.000E-02

0 P2 = 20.0
P1 =1.000E+L!0

-4 RM =1.000E-02

Figure lA.l. Modell (power law) for
n(r). Parameter Set 1.1: P2 vari
able.
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RM =1 ·OOOE·02
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Pl ::2.303E+38
-4 RM :: 1 . 000 E.- 02

Figure 1B.1. Modell for nL(r).
Parameter Set 1.1.
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Figure 1e.1. Modell for N(>r).
Parameter Set 1.1.
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Figure 2A.l. Model 2 (Regularized
Power Law) for n(r). Parameter
Set 2.1: P2 variable, P3 = 2.0,
P4 = 3.0.

67



Figure 2A.2. Model 2 for n(r) •
Parameter Set 2.2: P2 variable,
P3 = 4.0, P4 = 3.0.
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MODELR 2

0 P2 = 5.00
P3 = 2.00
P4 = 3.00
Pl =5.l76E-02
RM = 2.24

0

0 P3 = 3.00- Pl =4.082E-02
RM = 3.29

0 P3 = 4.00
Pl =3.70lE-02
RM = 3.80
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D P3 = 8.00
... Pl =3.270E"'-02

"..-, .' RM = 4.48
n:::

P3 10.00 =z Pl =3.200E-02
RM = 4.59

-3

Figure 2A.3. Model' 2 for n(r).
Parameter Set 2.3: P3 variable,
P2 = 5.0, P4 = 3.0.
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RM = 3.57

-1
D:. P4 = 3.00

Pl =4.082E-02
...... RM = 3·29
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~ P4 = 4.00
(Y):::J.. Pl =3.299E-02

's RM = 2.92
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RM = 2.68 .
et::

0 P4 = 7.00
Z P1 =2.213E-02

RM = 2.36
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- 5 L..----l.---l.-L.LLJ...Lll_-L-L-.L.l...LWL.J..!-_..L-..l.-.l..,-L...J...LU..L-~~__L_.J....L._~
-2 -1 0

RRDIUS R, Mffi

Figure 2A.4. Model 2 for n(r) .
Parameter Set 2.4: P4 variable,
P2 = 5.0, P3 = 3.0.



•
71

- 5 L,----!--J...-i-J....l-J...L...l.l-_..L..-...l.-.J.-L..L...J...L.l..l...----!--J...-i-J.....L..:LI..I..I-_...l.-...l.-.J....J...J.....J...J....l.J

-2 0 1 2

RRO IUS R, 11m

1
MOOELR 2

0 P2 = 15.0
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0 P2 =5.000E-02
P1 = .341
RM =2.236E-02
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P1 = .3l!O
RM =1.342E-02

Figure 2B.1. Mociel 2 for nL(r).
Parameter Set 2.1.
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RM = 11.4
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Z RM = .228
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0 P2 - .100
~1 = .341
RM =7.598E-02
!

0 P2 =5.000E·-02
P1 = .341
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Figure. 2B. 2. Model 2 for nL (x) •

Parameter Set 2.2.
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Figure 2B.3. Model 2 for nL(r).
Parameter Set 2.3.
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0 RM = 2.68
"-..,.......

0 P4 = 7.00,a:::: P1 - .127-'--' RM = 2.36Z
0 -3

Figure 2B.4. Model 2 for nL(r).
Parameter Set 2.4.
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RM = .134
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0 P2 - .J 00-

P1 = .245
RM =4.472E-02

0 P2 =5.000E-02
P1 = .231
RM =2.236E-02
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RM =1.342E-02

Figure 2C.l. Model 2 for N(>r) •
Parameter Set 2.1.
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Figure 2C.2. Model 2 for N(>r) •
Parameter Set 2.2.
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Figure 2C.3. Model 2 for N(>r).
Parameter Set 2.3.

77



78

-4

o
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Figure 2C.4. Model 2 for N(>r).
Parameter Set 2.4.
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Figure 3A.l. Model 3 (Modified Gamma
Distribution) for n(r). Parameter
Set 3.1: P2 variable, P3 ~ 1.0,
P4 = 2.0.
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Figure 3A.2. Model 3 for nCr) •
Parameter Set 3.2: P3 variable,
P2 = 2.0, P4 = 0.5.
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Figure 3A.3. Model 3 for n(r).
Parameter Set 3.3: P3 variable,
P2 = 2.0, P4 = 2.0.
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RM = .405".......
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z

-3

Figure 3A.4. Model 3 for n(r).
Parameter Set 3.4: P4 variable,
P2 = 1.0, P3 = 5.0.
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Figure 3B.l. Model 3 for nL(r).
Parameter Set 3.1.
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Figure 3B.2. Model 3 for nL(r) •
Parameter Set 3.2.
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Figure 3B.3. Model 3 for nL(r).
Parameter Set 3.3.
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Figure 3B.4. Model 3 for nL(r).
Parameter Set 3.4.
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Figure 3C.l.Model 3 for N(>r).
Parameter Set 3.5: P2 variable,
P3 = 20.0, P4 = 0.5.
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Figure3C.2. Model 3 for N(>r) .
Parameter Set 3.1.
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Figure 3C.3. Model 3 for N(>r).
Parameter Set 3.2.
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Figure 5B.2. Model 5 for nL(r).
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Figure 6B.l. Model 6 for nL(r).
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Figure 14. Example of fit to Junge
data using Model 8B. (Power Law~

Generalized Distribution Function)
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SOl ""' MODEL 2

o OBSERVED VRLUES
o FIRST ESTIMRTE

PI =4.202E+04
P2 =3.750E-02
P3 = 1.33
P4 = 4.00

() NLLS ESTIMRTE
ITERRTION 6
Pl =4.026E+04
P2 =4.34lE-02
P3 = 1.28
P4 = 4.31
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ALASKA DATA
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SOl - MODEL 3

3
o OBSERVED VALUES
o FIRST ESTIMATE

PI =1.2S5E+II
P2 = 1.00
P3 = 30.0
P4 = .300
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ITERATION 4
PI =2.264E+07
P2= .SSS
P3 = 30.0
P4 = .24S
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Figure 16. Example of fit to Alaska
data using Model 3. (Modified
Gamma Distribution) .
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SOl - MODEL 5

o OBSERVED VRLUES
o FIRST ESTIMRTE

P1 =1.459E+04
P2 =1.000E-02
P3 = 1 .00

o NLLS ESTIMRTE
ITERRTION 7
P1 =2.718E+05
P2 =1.543E-03
P3 = 1.22
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Figure 17. Example of fit to Alaksa
data using Model 5. (Log Normal
Distribution) •
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13.2 KM (REF. 17 )
SOl - MODEL 3

o OBSERVED VRLUES3

FIRST ESTIMRTE0 P1 =8.637E+14
P2= 10.0
P3 = 78.4
P4 = 1.00

2 o NLLS ESTIMRTE
ITERRTION 5
P1 =6.733E+14
P2 = 8.38...-4

P3 = 64.7IS
P4 = .768C()::1..
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Figure 18. Example of fit to Miranda
data using Model 3. (Modified
Gamma Distribution).
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COMBUSTION DRTR
(REF. 18)
SOl - MODEL 2
SD2 - MODEL 2

o OBSERVED VRLUES
o FIRST ESTIMRTE

P1 =1.234E+03
P2 =6.000E-02
P3 = 3.00
P4 = 2.00
P5 =6.900E-04
P6 = 2.04
P7 = 3.00
P8 = 2.00

\) NLLS ESTIMRTE
ITERRTION 14
P1 = 397.
P2 =8.317E-02
P3 = 1.24
P4 = 3.44
P5 =5.121E-04
P6 = 1.52
P7 = 6.61
P8 = 1.27
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Figure 19. Example of fit to bimodal
combustion data using sum of two
Model 2's.
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