@ https://ntrs.nasa.gov/search.jsp?R=19800006557 2020-03-21T20:35:12+00:00Z

NAHSHCE= 737,110

IR

INASA Contractor Report 159170

NASA-CR-159170 |
1990 000 LSS

|
. ANALYTIC MODELING OF AEROSOL SIZE DISTRIBUTIONS
AparsH DEepak AND GaiL P, Box
INSTITUTE FOR ATMOSPHERIC OPTICS & REMOTE SENSING
HampToN, VIRGINIA 23666 ) ,
LIBRATY pomy
DEC 20 q970
WApG ; o
NASA ConTrAcT NAS1-15198 SR
; NOVEMBER 1979 MAMPTORN, viRGINIA

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665







SUMMARY . . ..

INTRODUCTION .

CONTENTS

. . . . . . . . . . . . . . . . . . . . . . . . . .

Terminology for Aerosol Size Distributions . . . . . . c e e

Distribution Functions and Selection Criteria . . . . « « + .

LIST OF SYMBOLS

AND ACRONYMS ¢ & & v v ¢ 4 o o o o o o o o o o &

SIZE DISTRIBUTION MODELS AND THEIR MATHEMATICAL PROPERTIES . .

Model 1 --
Model 2 --
Model 3 --
Model 4 --
Model 5 --
Model 6 --
Model 7 --

Model 8 --

The Power Law (PL) Model . . . . . . .

The Regularized Power Law (RPL) Model .‘. e e e e
Modified Gamma Distribution (MGD) Médel o« e v e e e
Inverse Modified Gamma Distribution (IMGD) Model .
The Log’Normal Distribution (LND) Model . . . . . .
The Normal Distribution (ND) Model . . . . . ,

The Generalized Distribution Function (GDF) Model .

Power Law Generalized Distribution Function (PLDGF)

Model .

GRAPHICAL CATALOG OF SIZE DISTRIBUTION MODELS . . . . « « « « . &

Description of Model Catalog . « . ¢ & « ¢ &« ¢« o 4 & o o o o

Use of Model Cétalog e e e s e e e s e e e e e e e e e e e

PARAMETER ESTIMATION . . & v & ¢ v o o o o o o o o o o o o o o o &

Multimodal

Size Distribution Models . . . ¢« ¢« ¢« ¢ v ¢ & & « &

Examples of Analytic Representation of SD Data . . . . . . . .

CONCLUDING REMARKS . & v v & ¢ ¢ o o o o ¢ o o o o« ¢ o o s o o o «

REFERENCES . .

APPENDIX T .,

. . . . . . . . . . . . . L) * ® . . . . . . . . .

PARAMETRIZED GRAPHICAL CATALOG OF SIZE DISTRIBUTION ANALYTIC

MODELS .

. . . ¢ o . . . . . . .

. 10
. 12

. 15

17

. 19

22

. 24

28

. 28

. 29

30

43

. 44

56

. 58

60

63







SUMMARY

This paper presents the results of a parametric study of nine
analytic models that are commonly used for representing aerosol size
&istributions; discusses methods by which‘bestnfit estimates of these
parameters éan be obtained; describes a catélog of graphical plots,
depicting the parametric behévior of the functionsg and explains pro-
cedures for obtaining analytical representatidns of size distribution
data by visual matching 6f the data with one of the plots. These
analytié models chsist 6f mathematical functiéﬁs, with ﬁp to féﬁr
adjustablevparameters; which are referfed to as follows: power law;
regularized power law--in which singﬁlarities that occur in a simple
power law as radius goes to zero are avoided; modified gamma distribu-
tibn; inverse modified gamma distribution-—invwhich the variable is the
inverse of radius; log normal distribution; normal distribution;
generalized distribution function; and, power law generalized distribu~
tion function. The mathematical properties of these distribution
functions, such aé, mode radius, modal value, limiting behavior of the
distribution as radius goes to zero or infinity, moments of the dis-
tribution, and, the dominant role played by each parameter in the
model. These properties are summarized in a table in the report. The
model catalog consists of log-log graphs (6 x 4 cycles) and/or in

some cases, semi-log graphs on which the model size distributions are
separately plotted. For each of the nine models, sets of plots have
been produced, each set depicting the behavior of the model as ‘a
function of only one of its parameters, the other parameters being

kept constant. Thus, each catalog graph contains several plots, one
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corresponding to each value of the parameter being varied, the para-
meter valges being chosen to cover the range of variations in aerosol
size distribution likely to bg encountered,

The catalog is meant to assist rgsearchers in obtaining an
analytic-representation for their empirical size distripution dataf
This is done by'means of a relatively quick‘Yisual.fit to one of the
plots in the catalog; and, if the fit‘is not good enough, which is more
likely to be the case, then use the parameters corresponding to the
closest plqt as initial estimates in a leagtfsquares type‘program to
obtain the best fit'tq the data. For this purpose, the gxperimental L
data should be plotted on transparencigs provided_yith ;he catélog.'
The qléser the_ipitial estimates arevtovthe best-fit values, the
better the assurance of reaching avfast convergence. |

In addition, it is shown thatwthe,same experimental data can often.“

be represented with equal accuracy by more than one analytic function.

INTRODUCTION

Even though atmospheric aerosols are known to possess a variety of
shapes, the description of their physical structure is immensely simplified
if they are assumed to be spherical. The size spectrum.of atmospheric
aerosols is, in general, continuous and covers over four decades in radii,
viz, 10_3 to 20 um (Ref. 1). Of the basically four ways in which the
empirical size distribution (SD) data can be represented, namely, tabular,
histogram, graphical and analytical (Ref. 2), the last one is usually
employed due to the fact that there exist regularities in the gross ..
structure of atmospheric aerosols which exhibit behaviour similar to that
of a variety of mathematical functions. An analytic function generally

encompasses in a smooth way the main features of the aerosol physical structure
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While admittequ unrealistic in its smoothness, the analytical represen-
tation has the following advantages, namely those of convenient
adjustability to obtain a best fit to the experimental data;vcompact
representation of the dependent variable (the SD) in the form of
estimated parameters of the fitted distribution; construction of
reasonable and convenient models; and, carrying out systematic, para-
metric modeling of the aerosol optical properties.

The success of the analytic representation approach depends upon the
the selection. of an appropriate mathematical function to approximate
the actual size distribution data. This may not always be possible
(Ref. 2); often a linear sum of mathematical functions may provide a
gdod representation. Thus, there seems to be mno ”Special” analytic
function that can be said to be unique in representing aerosol SD's.

Tﬂe choice of the fuhction is to some extent dictated by the modeler's
taste. However, ultimately, it is only when the fitted analytic function
"leads to results that closely‘fit_the experimental optical (scattering/
extinction) data and at the same time falls within the typical phjsical
domain of atmospheric aerosols, that the analytic function may be essumed
td'represent the aerosol SD.

The main purpose of this paper is to describe the use of a catalog,
depicting graphically the parametric behavior of some analytic functions
with up to 4 parameters, that could assist researchers in obtaining analyt-
ical representation of their empirical particle size distribution data.
The terminology used, the distribution functions considered and the basis

for their selection, and a description of the various models and their

mathematical properties precede the discussion on the catalog.

WD 14505
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Terminology for Aerosol Size Distributions

For clarification, the terminology for the pafticle'SD‘s used 1is dis;
cussed in this section. The physical structure of aérdsols (atmosphericér
artificial) can be represented, in general, in'terms of the number, area,
volume or mass of aerosol particles per unit volume per unit radius at' r,
However,. in this papef the discussion will be restricted to the:SD represen~
tation in terms .of the particle number and radius, so that only: the radius~-:
number dist%ibution, log radius-number distribution and cumulative size dis+
tribution will be considered. Their definitions, used in this report, follow
those givén in Ref, 3._ (The dependence gf the SD on factors such as altitude,
composition, etc., will not be‘considered here.)

Thg.radiﬁs—nﬁmber distributiéﬁ n(r), (cm—sum~l),,ié deﬁined as the number
of ﬁarticles»per uﬁit volﬁme (cm3) within a unit radius fange at.rvmeasurgd

in um. Thué,
. | | (en Yy - | (L -
n(r) = ~-dN(r) / dr = dNu(r) / dr, (cm “um )

where N(r) (N (r)) is the cumulative oversize (undersize) distribution
) u : o T _ . _
function:: (Reff 4).

' -3 , ,
The log radius-number. distribution nL(r) (cm ) is defined by

3
nL(r)--=—dN (r) / d(»]'Og].Or') = 2.3026 r n(r), (.Cm ) (2)
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Junge found it‘cpnvenient to handle the wide range of atmbspheric aerosol
size distribution data by plotting_nL(r)’as a functionvof r, on a log-
log scale. This method of plotting has the advantage that it represents
~ the particle concentrafion as well as the size distribution.

.The cumulative sizé distribution represents the total number of

particles per cm3 that have radii greater (less) than r, is represented
by N(r) (N (r)) and is called the.cumulative oversizé,(undersize) distribu-

tion function (Ref. 4). 1In essence

00 s ' -3
N(r) = J n(x")de" = J nL(r') d loglo(r') r (Cm )
: r loglo(r) ' (3a)
r v
N (x) f ‘n(x"d Jl'oglotr) -
r) = n(x")de" = ’ n (r') d log, (x'), (cm 7))
a o —oo L 107 7 (3n)

In this paper, only the cumulative oversize distribution (COSD) will be
discussed. ©Note that N(0) would then be the total number density (cm*s)

of the particles.

‘Distribution Functions and Selection Criteria

Given some empirical aerosol size distributién data, the problem
is to find an analytic function that will most closely represent this
"data. Examples of mathematical functions of uptotwo parameters are
the normal, gamma, binomial and exponential distribution functions; and
of those witﬁ more than two parameters are the Weibull, Johnson and
Pearson distribution families. These distributions are discussed in
- detail in many books on pr%bability; (See Ref. 5.) These functions admit
almost every type of probagility distribution, except composite distri-
butions made up of severalidistinct populations, such as

"multimodal distributions. In addition, there is another versatile




6
distribution, referred to as the generallzed distribution function (GDF)
(Refs. 6 and 7) which is derlved from the WOoo—éaxon function. .

In the selectlon of an analytlc fonctlon to tepreseot the size
dlstrlbutlon n(r), the follow1ng cr1ter1a must be taken into account:

1. The function is not 51ngu1ar for 0 Sr 5 o3

2. It is ea311y‘1ntegrable over r;

3. It ean represent the main features of the gross structute of

'

the aerosols by a minimum number of adJustable .parameters.

LIST OF SYMBOLS AND ACRONYMS

Symbols
aj - adjustable constants (Defined in Eq. 18a)
IN average particle surfece area
DN(R)/DLOG10R nL(r) = dN(r)/loglor; notation ‘used in the plot labels
DN(R) /DR * ' ' n(r) = d N(r) /dr; rotation used in the plot labels
Mk :‘ o . kth moment
n(r) radius-number size distribution [cm-3- umfl]
nj(r) _ . n(r) for jth mode (Defined in Eq.. 18a)
nL(r) : log radius-number.size distribution [cm—3]
N(0) : - , number density -[cm_3]
N(r) [Nu(r)] cumulative oversize [undersize] distribution [cm-3]
N(>r) ' ; same as N(r); notation used in *he plot labels .
pi, i=1,2,3,4,..." adjustable parameters in mathematical functions;
given values of parameters
p; estimated values’of éaraﬁeters
p; | | reestimated‘values of parameters
Poy | (p, + 1)/p, N

(p2 - 1)/p4




Acrpﬁzms
CG

cp
. COSD
DT

GD
IMGD
LND
MGD
MODELR
ND
NLLS
PLD
PLGD

QCM

RPLD
SD

Sbl, sp2

- particle radius

average particle radius

.th

3 value of «x
mode radius for n(r)

mode radius for nL(r)

t limits of r

.average particle volume

catalog graph

catalog plot

cumulative oversize distribution, N(x)
data transparency

generalized distribuﬁion

inverse modified gamma distribution
1og‘normal distribution

modified gamma distribution
reéresents model number

normal distribution

nonlinear least séuares

power law distribution

power law generalized distribution

quartz crystal measurement

'rﬁ, the mode radius

regularized power law distribution
size distribution

terms 1 and 2 of SD



SIZE DISTRIBUTION MODELS AND THEIR ‘MATHEMATICAL PROPERTIES
Analytic models suitable for representing aerosol size distributions
include the following mathematical functions:
1. Power Law Distribution (PLD)

2. Regularized Power Law Distribution (RPLD)

3. Modified Gamma Distribution (MCD)

4. Inverse Modified GammavDistfiBuﬁién‘(IMGD)

5. Log-normal Distribution (LND)

6. Normal Distribution (ND)

7. Generalized Distribution (GD)

8. Power Law Generalized Distribution (PLGD)

The expressions and‘the matheratical properties of the functions
will be described in this section. Here_thevmodel distributions represent
the radius-number distributibn n(r), from which the corresponding expres-—
sions for nL(r) and N(r) are der?ved. The properties of interest are:
the mode radii for n(r) and nL(r); lower 1i¢it, asymptotic, and parae
metric behavior of the functions; and the kth moment of the models.

The mode radius r for n(r) is given by the solution of

d n(r)
dr = 0

and that for nL(r), by the solution of

d nL(r)
dr =0

th
The k= moment is given by

Mk :J rk n(r)dr



Thevmoments are useful for calculating properties of the distribution
such as number (N(0)), average radiug (), average area (K), and

average volume (V} of‘aerosol particles in a unit volume, as shown

here:
N(}o)} ='M0
r = M, /M,
B = iy,
LA %“ MMy

These properties fdr tﬁe eight size distributions models fot ﬁ(r) and N(>r)
are suﬁﬁarizéd in Aﬁpendix I for quick reférence.

A deécfiption of how one can detérminé good'estimétés of the para-
metgrs from fhe grédients,.modal vaiues and moments of the models will be
glven inba later section. in all these models, the adjustable parameters
are rgpresented bY‘Pi5 Pys Pgs erees where Py is the scaling parameter andv

is chosen so that .the maximum value of the function is unity.

Model 1 ~- The Power Law (PL) Model
This model, known as the Junge power law, was proposed by Junge to

represent his continental aerosol SD data and is given by

n(r) = p, r 2 » Sl r, (4a)
or, alternately, by
(1-py) < 4 ,
nL(r) =. 2.3 p;r , Ty S 3, (Ab)

It has g COSD of the form
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p]. l—pz 1"'P2
N(r) :kg_—l‘ .(r‘  —' r2 | ‘.), rl

SrSr

£ )

Junge used 0.0lﬂm for r and 1.0um for r, but other values could be
used.

The kth moment for the distribution is given by

1+k—p2 1+k—p2 .
This model becomes singular at r = 0, if r, = 0; has 'all its moments
infinite if r, = 0 and r, = ®; and has no mode radius (rm). Even though
this moael ma§ not QIQAYS réprésent a feél Sifuation, and does not ﬁeef
the selection criteria, it is popﬁiarly used as it readiiy giﬁes énéi§ﬁicélly
tractable results. The model is gra?hically présented_in Figé. (1A.1 - 1C.1).
Model 2 -- The Regularized Power Law (RPL) Model ot

In order to eliminate. the sipgularity at r = O that.occurs in Model 1,

without losing its power law behaviour atlarge r, one may use a regularized

form of the power law,

n{r) =
P2

. p.-1
[Pl ] /2] o o (5a)
{1 + (r/pz)‘p3} Py

The mode radius is given by

Pl oo
r =p 3 }93 (5b)
m 2 1+ p3(p4—1) T
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and the maximum value is

- L L+pg(py-1)
Py p
p; (py-1). (lepy (p,-1)) 73
n(r ) = — o -
m p : p : (5¢)
P3P,
The limiting behavior of the function is as follows:
. pi . p3—1
As r- 0, n(r)= (r/pz) (54)
| P, ~(14p4(p,-1))
and, as ¥ > @, n(r) ~ == (r/p,) . (5e)
_ Py D .
‘The log_radiﬁs number distribution is
P3 ,
2.3 Pl(r/pZ) o .
P3 PQ
- (+(x/py) ™)
' Its'ma#imum.value occurs at
rlm = pz (pa_l) (58)
p,-1
- e
sqlthat nL(rlm) = 2.3 Py -———*EZ——~
(p,) -

The limiting behavior for this form of the distribution is. as follows

Pg

As .t » 0, n(r) = 2.3;p1 (r/pz) (5h)

‘ ‘P3(P4-1) )
and, as r »> o, nr)~ 2.3 P, (r/pz) . ' (51)



The COSD is given by (Ref.8, No. 3.194/2 and 9.121/1),

Py | 1
P3(P4’1)

" N(r) - :
R N |
1+ (efpy) D)

The limiting behavior for this function is as follows,

) i S D e D)
A -+ 0, N = T ln <1 - o

pl -p3(P4'1)
and, as r > ®, N(r) SSTEZ:IF v(?/P2>.

The moments for the RPL are given by (Ref. 8, No. 3.194/3 and

Ref. 9, p. 103),

Py p,°  T(14k/p)T(p ~1-k/p.)
PPy 370 Py 30 .
Mk = =k <Ap3(p4—l)
P3 - Ipy) | |

where I' is the complete gamma function.

12

(53)

(5%)

(5m)

The parameter P, has the main effect on mode radius, being a multi-

plicative factor, while Py and Py, control the poéitive and negative gradients,

and hence polydispersity. The parameter P3 controls the positiVe gradient

while both Ps and P, influence the negacive‘grédieht{ The model is

graphically presented in Figs. (2A.1 =~ 2C.4);

Model 3=~ Modified Gamma Distribution (MGD) Model *

Model 3 is the modified gamma distribution function. Deirmendjian

(Ref. 10) has shown that this functioh;cah’beiuéed'toidescribe various
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types of realistic aerosol distributions, For instance, by assigning
dfffereﬁt values to'thé'ﬁafameters Py and p, one obtains models such as
Haze H, Haze M, Haze L, Cloud C3, etc.

The radius—pumbef distribution‘is given By:

Py

n(r):='pl Y exp(rp3rp41 ' (6a)
Its mode radius is
-1/
P, -,/p4 ‘ . :
r = . : ’ (6b)
| P3Py |

and its maximum value is
nlr) =p |55 exp (-p,/p,) - (60)

': The 1imiting behavior of the distribution is’asvfollowé

' - s | (6d)
As Y - Ol n(_r) - pl r, . - . : ) ’

. : P,
and, as r > %, n(x) > 0 as p, exp (-p3r 4) (6e)

The log radjus-number distribution is given by

- | Pytl By » -
nL(r) = 2.3 pr exp(-p3r ) ; (6£)



It has a maximum value at

1/p

, ; o o
Tim = (Pyy/P3) where p,, = (py+l)/p,

so that

() = 2.3 p, (po,/pa) 2% exp (<p.)
A/ = 203 Py Py, /Py €XP Y Pyy

‘The limiting behavior of the function is as follows,

pz+1
As r * 0, nL(r) ~2.3 Py T

and, as r > o, nL(r) >0 as 2.3 Py exp(wp3r 4)

The COSD is given by (Ref. 8, No. 3.381/35,

Pog

5 |
N(r) = p, T(po,» Par ) / p,p p, >0
T U1 WPagr Pyt S L PyPy o Py

Thé.iimiting behavior for the CO8D is as foilowsi(Ref. 11, 6.5;3;

6.5.12, 6.5.32),

Pyy Pp+l

P P,-p,+1 P
and, as T + o, N(r)~ L r 2, 4 - exp(-p,r 4)

14

(68)

(6h)

(61)

(63)

. (6k)

(69)

(6m)



15

. The moments for the distribution are given by (Ref. 8, No. 3.381/4),

Mk = (pl/pa) Py 'T(Pzéfk/pa) s p2+k+1 > 0. . (6n

The parameter Ps controls the mode radius and the parameters Py and
pa'control the polydispersity._ The parameter P, detefmines the limiting
behavior as r ?’O while the parameter P, determines the limitingbbehavior

,as‘r + ©. The model is graphically presented in Figsl (3A,1 - 3C.5).

Model 4 - Inverse Modified Gémna_Distr_ibuti‘oh' (IMGD) Modél'

This distributioﬁ haé the séﬁe»fofmkas Model,ﬁ excépt fhat tﬁe inverse
radius is used. This results in an exponential fallfdff ég the smali size
_end and poﬁer 1aw‘behaviour at the large-fadius end. Twomey (Ref. 12)'suggests
th_is form of the modified gamma distribution for _dry aerospls. .

The ‘radius number distribution is given by

P Py

n(r) = p; exp(-p,y/r Y /o - ‘ (7a)

Tts mode radius is given by

rm p2

and the maximum value is

1/p :
4 (7b)

Py/Py

, : p
2 .
g(rm) = Py [5252} eXp(-Pz/P4) - (7€)
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The limiting behavior of the distribution is as follows,
As r >0, n(r) >0 as Py exp(spB/r Yy : e (7d)

and, as r + ®, n(r) ~ py T 2. - | : S : (7e)

The log-radius number distribution is given by

T R D B
'nL(r) = 2.3 Py exp(—pj/r Y r | (7€)
Its mode radius is given by
“and the maximum value is
n () =230, G/ 2 expteny ()
L 1m "7 Py (Pyp/Py PPy - :

The limiting behavior of the distribution is as follows,

P,
As r >0, nL(r) +0 as 2.3 Py exp(—p3/r 4) - (71)

v ; v _(pz_l) .
and, as r > o, nL(r) ~ 2,3 Py T _ . - . (73)

. The COSD is given by (Ref. 8, No. 3.381/1)

pl -p 2 —p4 .
N(r) = o (py) Y (p42,p3 )y P20 (k)

Py

where v is the incomplete gahma function.
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The limiting behavior of this distribution is as follows (Ref. 11,

NO. 60101’ 60502, 605.12)-

| p “Pyo PPy -1
As  r -+ 0, N(r) = x—il; [?3 I‘(p42) — exp (- p3/r ) / p3 442" T (7
o o =(p,-1) ’ S |
and, as ¥ >, N(r) ~ p; ¢ 1 (py-1) ' o (7m)

" The moment s of the distribution are given by (Ref. 8, No. 3,381/4)

o p, o =(p «—k/p ) , : T o
1 427Ky .
Mk = e p3 T (P42 = k/P4) ’ k < P2 -1 (71’1)

. The pafameters Py and P, control the rate of fall-off at large and
small radii, respectively; and hence control the polydispersity. The
parameter Py controls the mode radius. This model is graphically.pre—

Sented in Figs. (4A01 - 40-4)0

Model 5 -- The Log Normal Distribution (LND) Model
The log normal distribution generally provides a better description of
particle size distribution than the normal distribuiton (discussed later on)
becauée particlg sizes, like many natﬁrally occurring'populatioﬁs, are often
: asymnetric. In this distribution it is 1n r rather than r which is normally
distributed.  Aﬁ eXéellént'discussion of tﬁié distributién ié»given by
,Kerker (Ref. 2). | | | |

The radius number distrlbutlon is given by

. P p (1nr - 18 py ‘ | ’
n(r) o QXD —’2" [""‘-"T—"—"’—"—] . (8a)‘
/2T P3 | : : ' -
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The mode radius is

2 )
r, = Py eXp(—p3 ) o (8b).:

and its maximum value is = .

n(r,) = éxp(p32/2) o . (8¢)

/2T p,p,

The parameter p2 is the geometrlc mean of r and ln p2 is the mean
of 1n r. No series expansion could be found for the limiting. behavior

~of this distribution which tends rapidly to zero at both extremities.

The log radius-number distribution is

: ‘2.°3 'p].‘ 1 Inr - ;anz- Q"3
nL(r) z= m—— exp -5 | - (84d)
) /7h‘p3 Ps
It has a maximum aﬁ
Tim =Py - (8e)
" 50 that
g (ry ) =23 p /02Ty (86)

3

No series expansion could be found for the limiting behavior of this

distribution which tends rapidly to zero at both extremities.

The COSD is given by (Ref. 9, p. 183)

b ’ 1nrv-f1np2 4 o
N(r) = = erfc . ) : : « (8g)
2 V2 -p3 8
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" where erfc is the complementary error function.

The limiting behavior of this function is as follows,

As' r~.0, N(r) - Py L v ' ’ (8h)

and, as r > w,;N(r) + 0 - v ' _ (81)

The parametl:er‘p2 is.the'median fbr the COSD, i.e.,
N(pz)/N(O)'= 0.5

The momenté for the distribution are given by (Ref. 8, No. 3.322/2)
ok 2 2, . o

The parameter P3 controls the polydispersity of the model and the
parameter p2 has a multiplicative'effect on mode radiys. This model is

graphically presented in Figs. (5A.1 - 5¢;3).’

Model 6 —-- The Normal Distribution (ND) Model
The normal distribution is a éymmetric distribution which is fin;te
at r = 0 and, thus, strictly speakiﬁg cannot be used to repreéent éerosol
Sp's ét small r. It can be used to represent SD's at other ranges of r, and
' since it is é Gaussian‘dié;ribution; which has well ‘known properties, such

g model can be very useful in certain applications., It is given by

. : ' P2 .
n(r) = - L exp {f % -EEE%% Yo RN o _ (9a)
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Its mode radius is given by
r, ® Py (9b)

and the maximum value is

n(rm) = 1 (9¢)
‘/2_7? 93 )
P p . 2
As r +0 , a(r) .t expy - % (—3) (1 + rPZ/P3 ) (9d)
27 p3 P

No series expansion could be found for the asymptotic behavior of this

function which tends rapidly to zero. .

The log radius-number distribution is given by

Its mode radius is given by .
, - . 1 v o : 0 £

pzvf p, *+ 4 93 | | "(9f)

“im- "

5

and the maximum value is.

TS
2.3 Py p2+.p'2 +4p3
nL(rlm) = o Py 2

(9g)
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The limiting behavior of the distribution is as follows

‘ s r >0, nL(r)— 77?*;**“
N 3 R . . N e
and, as ~r -+ o, ﬁL(r) +0 IR ! ' B (91)

The COSD is given By.(Rgf. 9, p. 183)

’ pl ) :t'--p2 . Co
N(r) = — erfe ‘ (93)
2 [/‘2‘ pa) ; . . | | A

The limiting behavior of the distribution is as follows (Ref. 9,

P 183), :
. - P Y R o P : |
As r >0, N(r) .= 7%— [1 ~/[% (——~g)] . (%)
. ' . i : P3 .
© and, as. r-+'¥, N(r).~ ;%%%( D3 ) éxp tf:zél . : (9Q)
: o ‘ TPy ﬂpg _ |

"The moments of the distribution are given by (Ref. 8, No. 3.462/1),

Moo= 2L 0K e (0.2/4p.2) D (p C (om)
; P3 ks €xp pz P3 ~k+1 2//2)

wheré D_"k+1 is a parabolic cylinder function.
In the normal distribution, the parameter Py controls the mode radius
and the parémetérlp3 controls the polydispersity. The model is graphically

presented in Figs. (6A.1 ~ $C.3).
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Model 7 -- Thé Generalized Distribution Function (GDF) Model

This distribution is finite at r = 0 and thus does not, strictly

speaking, represent particle size distrdibuitons at small r. However, it is

a versatile function with a wide variety of applications, including altitude

distributions, (Refs. 3 and 6) and is therefore included here as a potential

representation of aerosol SD's.
The radius-number distribution is given by

2
Py (1+py)~ exp (r/pg)

n(r) =

2
{ py+ exp (r/p3) 1

Its mode radius is given by

m T P3 lnp2

and -the maximum is

The limiting behavior of the distribution is as follpws
As  r> 0, n(r) = p (l-r (p,=1) /P, (p_+1))
N L2 P
and, ' as r->®, n(r)> 0 as~ p1(1+p2) Teexp (= r/pj)

The log radius-number distribution is given by

. 2 | | 2
“ ) = L. -+ ( { -+ /
n (r) = 2.3 P (1 Py x exp\r/p3) / Py exp(r,p3))

(10a)

(10b)

“ (10¢)

(leX

(10e)

(10f)



. Its.mode radius r; is givén by the solution of the equation
pz(l + rlm/pB) = (rlm/pfj - 1) exp (rlm/pS)

gpdfthe maximum is given b&
 ,ﬁL<r1ﬁ)_?'?.§ Pl (1¥p2$2 (rlm*Raéf(I1m+p3)'/ (4,P2I1m)
TbgAiim;Fihg bghgvi@rjqf §h¢.dis#ribution'isvag,foliows
 “ As ..r ->6f n(r? & 2f3 p1‘(1+é2)2 r
_,“andf as  ro wf'"<r>-¥ Or'}é' é¢3‘b1'<i+pz>2 éip(—f/Ps)i
R The cosb‘ié given by |

AR 2 .

N(r) =
' p24-§XP(r/p34

© The limiting behavior of thevdistribhtion is as follows
CAs a0, N(r) = py (14p,) py (1-r/py(p,+1))
and, as r > oo, N(r) >0 as PPy (1+p2) exp(—r/pa)

' The analyﬁic expression for the moments of the distribution

cquld not be evaluated.
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" (10g)

- (10m)

(101)

(10§

(10k)

(108)

(10m)
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The parameter Py can be considered as a scale radius and the parameter
Py determines the type of func;ién.- Forp2 = 0 the distribution,becomesv
an exponential, and for small P, the function initially falls off more
slowly than the exponential. As the parameter Py increases, Fhe spread
~or polydispersity of the function increases. The model is'graphically

presented in Figs (7A.1 - 7C.3).

‘Model 8 -- Power Law Generalized Distribution’ Function (PLGDF)”ﬁodel
This model is a Versatile function which is most useful when the data
to be fitted have broad peaks. The radius-number distribution is éiven by
| Py
P, exp (p,/r )

; (1la)
P
4) _ l))2

n(r) = _B +1

. :
T (1fp3(exp sz/?
Its mode radius is given by the solution of . .

P4 . P, P4
(1-p3) (p2p4 + (p4+1) r ) = P4 €Xp (p2/rm,;) (p2p4:-(p4+1)rm )

(11b)
and the maximum is
Py, P,
Py (popy + (py*1) ¥ ) (pyp, = (py+l) r )
n(r ) = : T (1lc)
m IR S = 94+1 ,
4Py Py(lpy) py Ty
The limiting behavior -of the distribution is as follows
As r >0, n(r) >0 asp, exp C-pz/r ) (114d) -

—(p4+1)
and, as r -+ o, n(r) ~ Py r (11le)




" The_ldg radius-number SD is’'given by

——r

R 7
2.3 py exp (p2/r )
nL(r) = -§‘ S

Py P
r (l+p3 (exp(pz/r 4) --1))2
Its mode radius is given by the solution of

o Py o Pa P
o Gpg) (e D = ey eyl ) oy )

v’;and its maximum is given by j
P P2 ) PoTm )

P,

~ The limiting behavior of the distribution is as follows
'As. r *0, n(r) >0 as 2.3 g (-p,/ pa)
» i A (eed Py €Xp P2 ?

Lt L : -p
and, as r > n(r) ~2.3 Py T 4

The COSD is given by -

: b,
p, (exp (pz/r ") - 1)

() - — . v
pypy (Ltpy (explpy/r ) -1))

The limiting behavior of the distribution is as follows

o - pz/rz,
As  r =0, N(r)= p1/p29394(1+1/p3(e Z1))

o ' ' P4
P | (gxp(pzfr_ )-1)

and, as r > w;.NCx),4 0 ag -
. A PyP, Py

1+p3(exp(p2/r

y-1) |
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(11£)°

(11g)

(11h).

(111)

(113)

(11k)

(118)

(11lm)
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The moments, other than the zeroeth moment -(N(0)), cannot be
calculated for this distributioﬁ. However, there is a special form of
the function, referred to as ModelféB,vfé;lwhiﬁh ﬁiéhér moments can be
calculated, but it has no ;nélytié formzfor thevC6SD.' The radius-number

SD for this function is given by

2.
p, exp (p,/r")

n(r) = (12a)
T (l+py (exp(p,/r™)~1))
) N L S
Its mode radius is obtained from the solution of the equation
(l1-p,) (2p,+p,r 2). = p.(2p,-p,r 2’ exp(p,/r 2) (12b)
3 2 54" m 372 Y4 2°"'m
. and its maximum is given by
P1(2P2 + p4r )(2P2 - P4rm )
n(r ) = : (12¢)
m 16 2 (1-p2) P4
Py P3li=Py/Ty, S
The limiting behavior of this distribution_isias}fpllows;
. Py, v
As r > 0, n(r) >0 as Py exp(—pzlp D) (12d)
TPA . . .
and, as r >~ o, n(r) ~ Py T Pt co (12e)
The log.rgdius-number‘distpibutiqn is, given, by -
2
2.3 P, exp (pz/r )
n (1) = —— — e - (12£)
Pyl S20 02
r (1+p3 (exp(pz/r ) - 1))

Its mode radius is given by 'the solution of the equation -
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(1—p3)(2p2+(ph~l)r ) = p3(2p2—(p4vl)r )exp(pz/r D) - (12g)

and its maximum is givgn‘by E

V The

As.

and, as

The

where p4k

The
similar.,
whil¢’the

parameﬁer

2.3 p1(2p2+(p4 l)r )(2p2 (pavl)r

ny (1) = . — (12h)
i6 p2 .p3<1—93)r Im
limjiting béﬁaﬁioi of the distribution is as follows
r >0, np(r) >0 as 2.3 py exp(p,/r) S (12D
| . ~(p,~1) N |

moments_for-this.diStribﬁtion are givenbby (Ref.‘13; No.'31§.11)

i w1 [t e
ko 2p2’plp4k Pl jeo L Tpg) G+ 1) - (12k)
STF3 P2 ST T v

pa"'(k‘i’l)

parameter behavior for both functions (Eqs. (llé) and (12a)) is

The parémeter-ﬁ2 controls the rate of faliéoff at small radii

parameter p, controls the rate of fall—off_at large radii. The

py controls the spreéd of the’distribution, the breadth of the

Peaks increasing with large values of p3 The mbdel'is graphically pre;

-senned in

Figs. (8A 1 - 8F,3).
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GRAPHICAL CATALOG OF SIZE DISTRIBUTION MODELS
Description of Model Catalog

The model catalog consists of log-log graphs (6 x 4 cycles), and/or
in some cases, semi?log graphs, on which n(r),inL(r)‘and’N(r)*are separately
bplotted against radius (um) For. each of the aforementioned models, sets
of ‘plots have been produced " each set deplcting the behavior “of the model
as a function of only one of its parameters, the other parameters being
kept constant. Thus, each catalog graph (CG) contains several plots, one
for each value of the parameter belng varied, the parameter values being
chosen to cover the range of wvariation in aerosol siZe:distributions likely
- to be encountered. A CG with a Pys P3 OF P, variation will be hereafter
referred to as a Py CG, P3 CG or P, CG"respectively. Each catalog~plot~
(CP) is 1abeled by a different symbol against which are printed the value(s)
of the parameter(s), out31de the rlght-hand boundary of’the éraph Also
_printed there, are the model number 'and the mode rad1us (RM) For the
first plot all the parameters are listed ‘and for subsequent plots only
the values of the varying parameter and RM are printed. In cases where the
sD has no mode radius, the value RM has been set equal to 0.01. The
annotatlon on logarithmic,axes gives the power of 10.

For each set of parameter values, three_corresponding CG's for n(r),
n, (r) and.N(r)‘are presented?: The values of the parameters held constant
inleach case, in general, were selected‘so’thatvthey were near the(middle
of their likely range.__lnhall.cases,Jthe.parameter:pl is a scallng factor
‘ which has been chosen so that the maximum values of n(r), nL(r), or N(x)
are unity, This allows all of them to fit on one graph and facilitates

estimation of parameters,
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Use 0f Model ‘Catalog

In this section,;.a step-by-step procedure will be described illustrating
how the catalog can be used to obtain the best-fit values of the model
parameters.

Step:1: 1In case the two transparencies of log-log and semi-log graphs
provided in the pocket on the back covetr of this report are missing, take
the blank log-log or semi-log graph provided at:the end of the catalog and
get some sharp photographic transparencies made of it. Xerox or vu-graph
transparencies will not do as. they generally distort the graph unevenly.

- -Step 2: Next, plot the experimental data for n(r); nL(r) or N(r) on
the transparency, which. is refetred to as the data transparency (DT). If
the data is not too .noisy, one can visually detect some geometrical trend
in the data points. A free~hand-smooth line may be drawn thvough the data
points . to accentuate’the shape of the geometrical curve or line, .

‘Step.3: The DT should then be overiayed on the different CG's belonging
to the selected analytical model until a visual matching of the data points
to one. of the plots is obtained, With some experience, such a match can
quickly be obtained.  However, one often finds that the visual fit of: the
data points -to.a CP is reasonably close but not exact. ~The values of the
parameters. corresponding to the closest plot are then read off the.-CG, and
useéd as initial parameter estimates in a nonlinear least squares (NLLS)
computer .program or some other optimization code to obtain the bhest-fit.
values of the parameters,

-Since all the CP's for n(r), nL(r) and N(r) are normalized to unity
at their individual maxima, the experimental:déta points may not, .in general,

fall in the same range as that of the CP's; thus vertical translation of the
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DT will be necessary to obtain the visual match. In addition, horizontal
translatipné‘of the DT; where permissible, may sometimes be necessary. In
any caée,‘care should be taken to ensure that n0'rotafion occurs between
the CG and the DT.
As a ru1e, fhe hofizonta1<tran81ations afe ihvalid when the parameter
being Variéd'gbntrois the'mode radius rm and are valid if it controls the

_pplydispersity or the rate of_fall-bff at the extremities,

PARAMETER ESTIMATION

There arg,three methods by which one can §btain, with relative easé,_
~ estimates of the paﬁameters.of>thevsize distributidh models that are
close ﬁo the-bestwfit values. in each case, the’experimental'data is
- . plotted on a log-log or semi-log graph paper, The'first‘is based solely
" on the iﬁterpretétion‘of the plotﬁed data in terms of the mathematical
‘vproéefties (such as limiting behévior, méde‘radius, moméﬁts, etc.) of
an anélytic mpdel} the second is based solely on the‘visuai matching of
the plotted data with a set of parametefized pldts of that model; and the
third, WHich is the most versatile, is simply a composite of the first two
methqu; It'is the last methods, which willvbevdiscussed in this section.
In this méthpd, it is essential that the experimental data be plotted on
the photographic tranSpafenéy of thevunused log-log graph providedbwith
the:catalog. In some cases it may be helpful to use the semi-log graph;
also provided with the cafalog.

A straight,line'on a 1dg-1og graph implies a power law, and on a

‘seminlog graph, an expongntialvfunction;'»If'for large r, the data points
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on a log~log graph fall on a straight line, then the size distribution
models which should be considered are those which vary as,_say.r—?? for.

r - o, the slope being the value of the exponent, Py This would immediately
suggest that models 1, 2, and 4 are the appropriate ones to work with. If,
on the other hand; for iarge r, the data points oh a semi—log:graph fall on
a straight line, the models which should be cons1dered are those Wthh vary
as, say e_pzr as r~ o , the slobe‘being the value of the eoeffic1ent Pye
This would suggest Model 3 with p-4 =1 or Model-7. If, however, the
experimental data do not fall on a straight 11ne when plotted on e1ther

the log- log or the semi~ log graph, then Models 3 and 5 are 1mportant. in
the follow1ng discu5510n on parameter estlmation, primed symbols w111
refer.to the data estimates ahd unprimed symbols, to the CP values.

The parameter oi is aiways the last parameter to be determined,:

Since.the estimation of the scaling parameter pi is essentialiy thexsame
for all models, it will be distussedbbefore describing the procedures for
estimating"other oarameters for each of the models. The estimates for pi‘

can be obtained by one of the follow1ng three methods, after the estimates

for p2, p3, etc. have been obtained

(a) If one assumes a linear relationship between the observed (y?)'

and calculated_(y?)‘values, i.e.,
¥ =p] vy, (13a)

then by using linear regression methods it can be shown that

pi=(Z yy ¥y /T Gy o (13b)
j=1 =1 |
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wbere‘J = nymber of data points, y? = observed SD value at rj, and

y§:= calculated SD value at rj, using pl = 1.0 and the p2, p3, etc.
. already determined. '

(b) pi = (observed value at rj/calculated value at rj) (13¢)

where the calculated value of the SD is obtained by substituting
pi = l.O_and.pé, pé, etc. as estimated from the CP's, in the expression

‘for the SD. If possible, the values af the maximum should be‘used.

(¢) py = (observed value at r, /catalog value at rj) X Py | (13d)-

J

Even though'the-second method might perhaps be the easiest fot
estimating pl’ the first method is found to be more convenient when a
computer optlmizatlon code is used, since the formula in Eq. (13b) can
‘easily be incorporated into the program. The third method seems to be
'tbe most complicated slncevoften several CP'swith different nl values
are used to estimate the barametere, Pyr Pgs etc.

The first etep is;to deterhine the other parameters pé, pé, etc.
for each of the models. The procedures fot estimating these parameters
are described under the subheadings for the different models as follows.

Model 1: The slope ef the straight 1ine on a n(r), nL(r) or N(r)
pldt determines the parameter pé.

Model 2: This model behaves as a power law for both large and small
r+ Therefore), in_general, it is best to determine pé and pA first, and
then determine pé.' The paraneter estimation differs somewhat for the n{r),
nL(r) or N(r)'data plots.,

| (a) nf(r) data,v pé can be obtained from the positive slope _
(=’p§ ~ 1) of the data plot; p&, from tne'negative slope (= —1'-p§ (pi‘-l)),
aftef substituting for pé; and pé is found by substituting for ré, pé
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To obtain p! using the catalog, the DT is overlayed on

!
3
the p3e,CG (Fig. 2A.3), and translated along x- and/or y—vaxeS’until
the data‘points corresponding to the small limit of r match, as closely:
as possible, one of the CP's.

~ To obtain p&, the DT is overlaid on the P, CG (Fig. 2A.4)
and translated parallelito the #— and/or y- axes until the data points-
for larée r closely match one of the plots.: (Since.bothﬁp3 and Py i
affect the slope for r » ®, it may be necessary to adjust the p& value, -

using,

py (pg =1) = py (p, -0 . o (1)

if the Pq value for the CP differs from pé.)-,Having obtaiped pé and
p&;féstimates of pé can be obtained from Eq. (5b) ardffom tge CP's. In

the latter case, overlay the DT on the CG for which (p3, p4) are as

close as ﬁoésibié to (pé, pZ) (fig.ZZA;l of 2A.2) so that the data

mékimum doincideé Withil;o on thé CG y~ scale:(C?'s are normélized

so that tﬁéir maximum Vaiue'is.l.O).: Tfansiatioﬁ of DT aioﬁg tﬁé #—akis,
is not permitted, since the parameter béihg»estimated‘confréls Tne If the
data peak does not coincide with any of the CP peaks, but lies between two

CP peaké then'péucan be obtaiﬁed by thejfollowing intérpolaﬁion relations,
' rtoZ - o .b | | o : |
p2/rm - p2/rm _ . ,,(14b),‘

(1f Py and/or Py, for the GG diﬁfer from those values for the DT, then use
: ' .
1/p3 l/p3

pé -1 p, — 1
Py = p, 2 (Lléc)
211 +e3lpg-b) ) T2 L pg(p, sl g

to obtain a better estimate,>p§,'fof p2.)
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(b) QL(r) data;. Tﬁe ﬁL(r) data is plotted on the log—iog'“ h
~ trangsparency. The determination.of the parameters is done in essen+ :

" tially the same manner as for the n(r) data. As r ~> 0,<pé = positive’
sioﬁe; as r »> «, p& = 1 + negative slope/pé;‘and pé is found by sub-
s;ituting-for‘rim, pé and pi'in Eq, (5g)5 ‘The parameters-pé.and pi

‘are determined from Fiés. (23.3 and 2B.4) respéctively, in the same
_manper as for n(r).. Similarly, pé is obtained inlthe manner described
for n(r) data.using>Figs. (2B.i or 2B.2), provided r. and r! arébre-

placed by rlm»and rim in Eq. (14b) and (l4c) is replaced by

_1/p§ o —1/p3 : »
b} -[p4-1]’ = [p4,—1] o | (14d)

(é) N(r) data. The parameter determination from the N(r)
data'is mbre difficult thaﬁ from the n(r) data; Plot the N(r) data‘oh the
logwlog tfansparency, visually fit a line through data points, and,
if possible, ex;raﬁolate it to‘r = .01um.

| To obtain pé, overlay the DT on the Py CG (Fig. ZC.l
o? 2G.2) whose r + « behavior best matches that of the data, so that
the N(0) for the data coincides with the N(0) for the CP. If data
iies between two CP's; then use the following extrapolation formula

to obtain Pyy Viz.

2 .
[;%] = [?r} | (l4e)
whgne r and r! are radii with the same normalized value N(r) on the

straight‘portion of the curve (Fig. 9) and s' and s are the slopes of
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the straight portion of the curve. It is best to use the CP which turns
closest to the data. PA can then be obtained from the relation

: , p; -1
[N(r)]p,/N(O) - 2 = (14£)
3 |

To estimate pé overlay the DT on the Py~ GG (Fig. 2C.3) and translate
alohg,ké and y-axes to obtain the closest ‘match between data points
for ¥ > ® and one of the CP's. (If p, for the CG differé'frbmfpi,.thenh'

to obtain a better estimate for pé, use Eq. (1l4a).:)

Model 3: In fepresentihé.the size &isttibetien&data_Qithyﬁodelv3,
one geheraliy'obtains‘estimateé of the ﬁafemeters pé:éhd pa first and
those of pé ffom‘theﬁ. |

(a) n(r)'data: 1f n(r) data is available for r - 0, thenf.

one can obtain pé from the positive slope (=pé). To obtain pé, overlay
the DT on the Py CG (Fig.‘BA.l), and translate it along x- and y- axes
until a CP matches with the slope of the deta fer r -0, where the positive
slope = p,- To obtain p&, overlay the DT on the p4—CG (Fig. 3A.4), andv
translate it along x- and:y— axes, ﬁntil a'CPvmatches with the data for
r+, for which 1imiting behavior is én expenential type.fail—off.
Pé can then be obtained by substituting ré, p& and pé in ﬁq. (6b) or)fromv
the appropriate CP. 'In the latter case, overlay the DT on a CG with (p2, p4)
closest to (p2, p4) (Fig. 3A. 2, or 3A. 3), =Y0) that the data maximum
coincides with 1.0 on the CG y- scale. The follow1ng 1nterpolat10nﬁformuia
can be used to obtain the pé>if the data do not.ceihcide with one 5: the

CP peaks.



36

Py | T
-3 . - | _ ~ (15a)
v.p3‘ rm )
(Ifhpé # p, and/or p, # p,, then
\]
Py 2
eyt B e ey (130)
p3‘p4 S p3 4.

can be used to pbtain a better estimate p3 for the p3 parameter since pz and
‘p& also influence the mode radius.)
(b) 'nL(r) data: 'Determination of the Model 3 parameters
from, the n (r) data is simllar to that descrlbed for the n(r) data,
,prov1ded (pé + 1) is used for the positive slope, p3 ;s estimated from

p2 and p4 using the expression for rl given in Eq. (6g), r and rm are

.replaced by Cim and r! in Eq. (15a), and Eq. (15b) ‘is replaced by the

1lm
ﬁelation :
' _ :
s 1/p4 . v1/p4
Bl _[mrr) (15)

.'(c> N(r) data: Determination of the model parameters from
the &(r) data is difficult. it will generally be necessary to extra-
polate the data tor =0, Olum. -

To obtain p2 overlay the DT on a CG with plots whose
“siopes fbr r -+ o (Fig. 3C.1 or 3C.2) are similar to that for the data,
. so that the extrapolated:N(Q) value for the data coincides with N(0)
for the CP's. Then pé_is thg p2- valué for the CP.Which besr fits the
dara_particulariy with regard to the curvature. It may be necessary

. to intérpolate visually in order to obtain a better value for Py-
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To obtain pA, overlay the DT on the p,~ CC (Fig. 3C.5)
and translate it in a manner similar to that for the n(r) data, until
a best fit to the data for r = ® is obtained. Similafly, pé is obtained
by overlaying the DT on the CG with (pz, pa) closest to (pé, pA) (Fig.
3C;3hor 30.4), and traﬁslating verficélly S0 thét N(0) for the data aﬁd
CPs‘éoinCide. ThenAdetermine which CP best.fité ﬁﬁé déta, gﬁferpol;tion:

by eye may be necessary to give a better estimate of pé._

Model 4: Determination of parametérs for this médei'is similar

to that for Model 3. 1In general, determine p) and p} first, and then -
pé.n

(a). n(r) data: The parameter p, can be determined from the -
slope of the data as r - « (slope = pé). _To determine pé from the
CG's, overlay the DT on-the Py~ CG (Fig.. 4A.1) and translate"
the DT_parallel.to the x— and/or y— axes until the data points as
r - o lie on or close to one.of the CP's. The Py value for this GP
then becomes the estimate pé.‘ To determine pA,overlaythe‘DT on the Py~
CG (Fig. 4A.4) and translate the DT vertically and horizontally until:
the data points as r >0 lie on one of the CP's.

The parameter pé can then be determined by substituting
for pé, pL and ré in Eq. (7b) or using the catalog graph. To deterﬁine
pé from the catalog, overlay the DT on the Py~ CG which best matches ‘the
behavior of the data both as r > 0 and r +~ © (Fig. 4A.2 or 4A.3) so that
the data peak coincides with 1.0 on the CG y- scale. If: interpolation

between CP values is necessary, use the following relationship:
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Pé ‘ r' : :
U i (1
Py r (162)

(1f the values of Py and/or Py for the CG differ from the estimates pé and

_pi, then a better estimate p'3 can be obtained by using the relationship:

- Up] Y/p, _
n v In!

Pé 'pz,

: where pg-is'the.new estimate fbr pg.)

- (b) nb(r) data: This is very similar to the parameter deter-
minétion far n(r). Tﬁe slope as r - ®can be found from the data (slope
= pé -1). Using'ﬁhe catglog, pé and p& are determined from Figs. 4B.l
and 43.4 respectively in the same way 4s pé and pi for n(r).  The
parameter,pé is also determined in'the same manﬁer_as for n(r) however,
if interpolation between CP's is needed, *im and rim should be used
instead of r_ and r! in Eq. (16a). (If (p,, p,) for the GG differ from

the estimates (pé, pi); a better pj estimate can be obtained hy using
1
l/p4 1/p,
" [} T
[P3 P4]‘ (p3 p4] (16c)
T
py-1

p,-1
where py is defined as the new estimate for pé.)

(¢) N(r) data: Determination of parameters is generally more
~difficylt than for n(r) or nL(r). The slope as r> ® is given by -
(pé -1). Generally, itwill be necessary to extrapolate the data to

r = 0,0lum.
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To determine pé from thg catalog, overlay the DT on the
p2; CG (Fig. 40.1)_and»translatg the bT.vertically and}horizontally=un;i;”
the best fit CP for the region r - « is found. To detgrm}ne;p&, overlay.. .
the DT on the p,- CG (Fig. 4C.4) so .that N(O)kfo; the daté coincides with.
N(0) for the CP's. The estimate for.p& will be the p, value for the best-
CP, giving particular attention to the fit in the region of curvature.
To determine pé, overlay the DT on the Py CG which,best approximates the
behavior of the data as r - o (Fig. 4C.2 or 4C.3) sb thatiN(O) for the
data coincides with N(0) for the CP's. The estimate for'pé is the value of
Py for the CP-which best fits the data: The point’where the éur?e turns
is of most importance here and some intérpolétion by eye may be necessary.
Model 5: 1In representing the size distribution déta with Model 5,
it 1s best to obtain an estimate of pé first and use it to determine pé.
(a) n(r) data: If sufficient dataare available, both’bé‘an&”"

pé can be determined from the mathematical properties as ‘follows:

Py = 0.424 In(ry/ry)), 1y > 1)  (7)

where r and r, are the radii at half-maximum points. Then pé'can be
obtained by substituting for pj and r' in Eq. (8b). To determine the
parameter using' the catalog, overlay the DT on the Py~ CG (Fig. 5A.3)
and translate it so that the maxima for the data and a CP coincide.
Then pé is the same.as -the p3'value’for the plot which best fits the
data. Attention should be paid to both the spread of the data, and’
the rate of fall-off as r + « Often some interpolation may be

necessary.
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Once‘pé is obtained, p, can be determined by substitution
in Eq. (8b) or from the catélogQ In the latter case, overlay the DT on
;the p2r CG with P3 closest to pé (Fig. 5A.1 or 5A.2) so that the data peak
coiﬁcides with 1.0 on the y- scale of the CG. 1If the data do not coincide

‘with one'qf thé Cp peast pé can be estimated from the closest Onebyfusing

' i e !
2 mm
' N (17b
P, T (17b)
C(If Pg # P} then a better estimate for pj) can be obtained: from
Ay '2 t 2 1-7 )
Py exp(-p3”) = p; exp(-py) . | o (17c

where pg is-the new estimate of P, for the data.)

(b) nLﬂr) data: P} can easily be obtained from the data peak, .

2
since pévz rlm' Determination of the model parameters from the CP's is
vesSentiaIly the same as for the n(r) data, provided o and r&iare
replaced by‘r1m andrrim in Eq. (17b). Note that no adjustment of»pé
» will Ee necessary if Py for the catalog differs,from‘pé.
- | (e). N(r) data: Generally, it is best to extrapolate the N(r)
~data to r = 0.01ym to obtain ap estimate of N(O). Then pé can be
»decefmiﬁgd'from.the fdact tHat Py is the median, i.e., N(pz) = 0.5, or .
i@ thé case of unnormalized data, N(pz)/N(O) = 0.5.

To obtain pé, overlay the DT on the Py~ CG (Fig. 5C.3),
uréns}ate it horizpntally and vertically until a match of the data for

n'f*oowith a CP is obtained. (If pé has been estimated as described
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earlier, then the data point (pé, 0.5 N(0)) should coincide with the
point (pz, 0.5) on the GP. If the median points for the data and the .
CP do not coincide it probably means that the original estimate for pé
is not very good and a better one would be the radius on the DT which
corresponds to the median point for the CP.)

To determine pé.using the catalog, overlay the DT on.the . .
p,=. CG with p, closest to pj (Fig. 5C.1 or 5C.2) so that the N(O) values . .

for the data and CP's coincide. pévis then the Py value of the CP with

which data points match,. Interpolation by eye may be necessary.

Model 6: ‘Sinee this model was ihcludedbin the catalogxfor oomplete_
ness only, a description of how to determlne oarameters from the catalog
will not be glven.‘ Howevet, if theAmodel 1sbto be used, the data should
be plotted on a‘seml 1og graph and the procedure for determlnlng the :

parameters w111 be 51m11ar to those descrlbed earller.

Model 7:  Data for this model:- should also be plotted on a semi-log
graph. As in the case of Model 6, this model was included for the sake
of completeness and will not be discussed here. However, determination

of the parameters for.this model is discussed by Green: (Ref. 6).

Model 8: TQo forms of this model were disouseed eatlier,‘bot para—.
meter determination is the same fof‘both, eo that seoarate‘discussions
will not be heceesary‘here; | | : |

(a) 'ﬁ(r)‘datai To determlne p2, overlay the DT on thevp2
CG (Fig. 8A.1 or 8D.1) so that the rad11 are allgned and the data peak

coincides with 1.0 on the CG y— scale. p2 is the same as p2 for the
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CP which coincides with the data peak. Interpolation by eye may be -
necessary to get a better estimate of pj.
"~ To determine pé the DT is overlayed on the Py CG

~ (Fig. 8A.2 or 8D,2) and translated vertically and horizontally until '~
the CP which best matches the peak width is found. it»is this para=
| VFmeter which'controls the broadness of the peak and i$s of importance for
:datahwith broad flat peaks. The parameter p; can be fotnd from the slope.
ef the data for r + » (= -(p& +1) for Model 8, = -p,, for Model 8B) or'
from the catalog. Using the catalog,'overlay the DT on the P, CG
(Fig. 8A.3‘or 8D.3) and translate vertically and herizontally uhtil a
CP whlch matches the data for r +-m>is found. | | | o '.

¢)) n (r) data' The procedure for determlnlng pz, p3, pA ie:
exactly the same as for n(r) except that 1n the case of Model 8 Figs. 83.1 -
8B,3 are used and the slope for r > is —p4 and in the case.of Mpde}HBh.
Figs. 8E.1 - 8E 3 are used and the slope for r - « is and —p4 1.

“(e). N(r) data: 'Extrapolate the data to r = 0.01um, then
to determine pé, overlay the DT on the Py~ CG so that the radii are
aligned and ‘N(O) for the data coincides with N(O) for the CP's. The
estimate for pé is given by the value of Py for the CP which best
matches the data, particularly in the reglon where it turns.

To determine p3 overlay the DT on the Py- GG (Fig SC 2

or 8F.2) so that N(O) for the data and the CP's coincide. The estimate
- of p3 is the value of Py for the CP whlch best matches the spread or
polydlspersity of the data. To determthe pa, overlay the DT on the Py
CG (Fig. 8073 or 8F.3) and translatevthe DT vertically and horizontally

~until the CP which best matches the data for r =+ ® is found.
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Multimodal Size Distribution Models
Quite often the SD data may indicate that the distribution is multi-
modal (Refs. l4and 15). Such 8D's present no particular difficulty in
representing them analytically in terms of the aforementioned. SD
models. One-can represent multimodal size distributions simply by
adding appropriate mathematical functions, each component term repre-

senting a peak in the size distribution data, such as,

fing LIS

. n(r) =

- a, n(r) v ’ ; (18a)
i J ]

1

wheré J is the number of component terms and the aj represent the
adjustable constants and are equivalent:to p1~for thebunimodal models.

In describing the procedure for fitting multimodal data using the
caﬁalog; a bimodal model will be condensed for simplicity.

Step 1: Plot the data on a log-log tfanspargncy and dot in the
probable behavior of the two modes as’illustrated in Fig. (10);

Step 2: Decide the most appropriétevmodel for each mode using
the guidelines élready outlined for the unimodal models.

Step 3; Deterﬁine the parameters for each mode using the guide-
lines outlined eafliér for ‘unimodal models. |

Step‘4: Determine.the scaling factors for'each mode. The simplest

method for determining the scaling factors is the solution of the

simultaneous equations
n(rl) :Ialhl(ri)'+ a2n2(rl) ' T(18b)

n(rz) = alnl(rz) + azgz(rz) ‘ o (18¢c)
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where a;, a, are the scaling factors required, and Ty and r, are the
" mode radii for modes 1 and 2, respectively..

In some cases, it may be difficult to get good estimates for a; and -
a5 either because of uncertainty in the accuracy of some estimates or
bacause the scaling factors differ by several orders of magnitude. An
alternative approach to determining the scaling factors under these
circumstances would be to assume that each mode makesva'negligible con~

tribution to n(r) in the region where the other mdde dominates and, thus,

the gcaling factors can be found by using the following relationships:
nlry) = apn (ry) | _, (184)
n(ry) = aymny(r,) | |  (18e)

where ?1 and r, are radii at which modes 1 and 2, respectively, dominate.

Examples of Analytic Representation of SD Data

Tropospheric Aerosol Size Distributions (Junge Data): Junge's

data (Ref. 1) for the average size diétributioﬁ n(r) of continental
aerosols in the altitﬁde region (0-3 km) were plotted on the 1og—v
log graph transparency. ‘One could readily see that for large radius
particles, the n(r) data points lay aloﬁg a straight 1ine and suggest
thereby a power law behavior. Thus, Models 2, 4, and 8 seemed
appropriate. In thebfollowing, examples are given for.fitting the SD
IQata with these three models. Model 5 was also fitted to the data to
illustrate the poor fit which can be obtained if an inappropriate
model is chosen.

h Model 2: According to our earlier pfescription, the DT was

‘overlaid on the P, - CG (Fig. 2A.4), and translated vertically
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2, 0.1) on

until the point (10—3, 1.0) on the DT coincided with (10~
the CG; EThe data paints for large tadii fell on the P, = 2.07plot;
thus, Py = 3.0 and P, = 2.0 (the CP parameters) reptesent the. data

for large radii.v Since there is not sufficient data at the smaller
end to datermine pé,from'thelslope in that region,_cpncentratian will
be on tha curvatare in the region of the peak.

»vStiil usinngig. 2A;4, the DT was translated vertically
and horizontally so that‘the point.(O.s, 106).on the DT coincided with

(100, l.O)ion the CG. Although pé = 3.0, p& = 2.0 tepresentad the large
r data well, the CP had a sharper peak than the data points and thus_v
suggeSted’thatvpé = 3.0 may be too high.

| The DT was\then overlaid on the p3—CGf(Fig. 2A,3),,and |
translated vertically and horizontally so that the,pointv(S.O, 106) on the
DT coincided with the point (100, 1.0) on the CG. 'Ihe plot for.kaé 2.0
gave the best fit to the data. It did not fall off as sharply at.small
radii ana_the slope at large radii was a little too steep; however it
did;give a reasonable fit to the broadlpeak.

The estimate of pa had to be adjusted in the light of

the new estimate for pé = 2.0 since the slope at large radii dependa
on both Py and Py This was done by substitution in Eq. (l4a) which
gave p& = 2.5. The only parameter left to be estimated was pé‘which
can be found from Eq. (5b). Since ré = 6.5 x 10—3;for these data,
substitution for ré, pé, and‘pi in Ea. (Sb)‘givas pé =.0.013. The
accuracy of this estimate was confirmed by estimating pé from the
catalog. The DT was overlaid on the pz—CG (Fig. 2Atl), and trans- .
lated vertically so that the point (10—2, 8 x 105) on the DT coincided

with (10_2, 1.0) on the CG. It was evident that the P, for the data
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was less than 0.05. The estimate for pé was found by substitution in

Eq. (l4b). Substituting Py (=0.05) and ro (=0.022) for closest catalog
L _ . R ,

plot and r (= 0.0065) for the data points, yielded pé = 0.015. However,

Py = 2.0, Py = 3.0 on the CG and the estimates for the data were p§'¥

2.0, p& = 2.5; thus, the pé estimate obtained had to be adjusted by

using_Eq. (14c), which gave pé = 0.013, the same as the earlier estimate.

These estimates (pé = 0.013,'p§ = 2.0, p& = 2.5) were.
.used as the initial estimates for a nonlinear least squares (NLLS)
fit. The results are given in Fig.‘(ll) and the best fit estimates

, -2
are pé = 3,172 x 10 7, pé = 1,82, p& = 2.65, It can be seen that

the initial parameter estimates repfesent the SD slope and the curvature

quite welli Note that the estimated curve has the right shape but is

too far to the left of the data points. This is due to the broad peak,

thé estimate of pé was too low, since the actual r value wés used.

It might have been more accurate to take ro= mid pdint of peak‘region.“

The final best-fit values, obtained by the NLLS method, give a good'

analytic fit to the SD data. It should be noted that the greatest changé‘
occurred in pé, which effectively gave a higher r value.

Model 4: Since the IMGD behaves as a power law for

large 4,-it is a suitable model for the Junge data (0-3 km). From the

data points the slope as r - ® was found to be -4; thus the estimate for

pé was 4,0. To confirm this estimate, the DT was overlaid on the pz—'

CG (Fig. 4A.1) so that the DT point (10_3

, 1.0) coincided with the CG
point (2 x 10_2, 10_5), their respective x- and y-axes remaining mutually

parallel. It was noted that the data points lay along the P, = 4.0 CP.
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The DT was then overlaid on the-p4- CG (Fig. 4A.4) so
that the point (10_3, 8.0) coincided with the CG point (0.3,

107

). The data méximum then coincided with the maximum for the P, =
2.0 CP and the data points in the region of the peak fell on that
curve. Thus, pz = 2.0 was the estimate.

. "Substituting the estimates for'pé and pi and réﬂ— 6.5
X 10—3rin Eq. (7b) gave'pé =-8.45 x 10—5. To confirm the P3 estimate,
the DT was overlayed on the Py~ CG (Fig. 4A.3) so that the DT point
(10'2,-8 x 10) coincided with the GG point (10*2,v1.0). From this,
it was evident Py << 1.0. Substituting r& for ‘the data, and Pj and*-rm
for the closest CP plot in Eq. (16a) gave pé = 4,23 x 1075. However,
(p2, p4) for the CG were different from the (pé, p&) estimates for the
data; thus, the final estimate for Py was found by substitution in
Eq. (16b), which gave pé = 8,45 x 10—5, the same as the earlier estimate.
Figure 12 shows the results, the final estimates were pé = 4,43,
pé =-0.788, pi = 0.514.

Model 5: Since these data fall off as a power law for
large r, the log-normal distribution is not the most appropriate model
to use. However, it is used here in order to illustrate the poor
fit one obtains when the model chosen is inappropriate and also to
illustrate that such a model can sometimes- be used to fit the data
in a portion of the data range.
The DT was overlaid on the Py~ CG (Fig. 5A.3) and

then translated horizontally and vertically so that the DT point

-3 5).’ At this’

(10 7, 8.0) coincided with the CG point (6 x 10—2, 10~
point, the maxima for the data and the CP for Py = 1.0 coincided.
The data points lay almost exactly along the Py = 1.0 CP, except for

very small r. Thus, pé = 1.0 was ‘the estimate.
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The parameter pé was then estimated by using Eq. (8b) and
ré = 6,5 x 10_3. Substitution in this equation gave pé = 0.0176. To

~confirm this estimate from the catalog plots, the DT was overlaid on

the p,~ CG (Fig. 5A.2) so that (10"2

-2

s 8 % 105) on the DT coincided with

(10 7, 1.0) on the CG. It was noted that P, for the data was less than

0.1; thus, in order to obtain an estimate for P, an extrapolation was

| made by Eq. (17b). Substitution of the Py and T values for the closest

CP and.ré for the data gave pé = 0.0176, . the same as the previous estimate.

Thus, the parameter estimated for this model were pé - 0.0176,-p§ = 1.0,
Figure 13 shows the results oflan NLLS fit using these

parameterve;timates. The best fit estimates were pé = 1.208 x 10'_2

pé = 1.,21. The initial estimate provides a good fit to the data up to

about 2ym, Beyond which it falls off too steeply. The final best-fit

values give a much better fit in the region 0.2um - 3Qﬂm, but do not fit

the péak region. As was mentioned earlier, the log normal model is not

as suitable for these data as Models 2 and 4. However, if only a portion

of the size range covered is of interest, say up to 2um, or beyond 0.2 m, .

then this model is as good as any of the others.

| Model 8B: Since Model 8B behaves as a power law for

large r it dis a suitable model for the Junge data. It also has the

advantage of being able to model broad peaks. To determine»pé, the -

DT was overlaid on the Py~ CG (Fig. 8D.1) so that the point (10_2,

2

8 x 105) coincides with 10 %, 1.0) on the»CC. It was then noted

that the data points lay about halfway between the 10'-4 and 10"5 CP's.

The estimate for p, was thus 5 x 107,

To determine pé, the DT was overlaid on the_p3— CG

3

(Fig. 8D.2) so that the point (5 x 10 , 8 x 105) coincided. with the
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point (2 x 10—2, 1.0) on the CG. The data points coincided with the
Py = 40.0 CP; thus, the estimate was pé = 40.0.
The parameter pa was determined by overlaying the DT

2

on the P,- CG (Fig. 8D.3) so that the point (10_ , 106) coincided

4
with (2 x 10_2, 10.0) on the CG. Since.the data points lay along the -
P, = 4,0 CP, the estimate for pi was 4.0,

Thus, the parameter estimates for this model were pé =

5% 1072

, pé = 40.0, pa = 4,0. The results of the NLLS fit to this data,
using these estimates, are given in Fig. 14. The best fit estimates

were pé = 4,700 x 10—5, pé = 38.8, p& = 4,03, As can be seen from Fig. 14
the initial estimates represent the shape of the data quite well but the
n(r) values are consistently too low. The final estimates give a very.

good fit to the data and model the broad peak very well,

Cumulative Size Distribution:  The SD data was obtained over

Alaska at an alﬁitude of 13 km, by Quartz Crystal Measurement
(QCM)‘method.l The SD is in the form of the cumulative.

Model 2: The data points fell on a straight line
as r + ©; thus, Model 2 is an appropriate model. In this case, pé
was determined first, and then pé and pa which control the slope for
large r. The first step was to extrapolate the data to rv=,0.Ql.
This gave a value 8 x 103 for N(O).

The DT was overlaid .on the Py~ CG (Fig. 2C.1) so_ that
N(0) for the DT coincided with N(r) = 1.0 on the CG. . It was noted

that in this case the rate of fall-off of the data for large r was

1 , , ,
D. Woods, private communication.
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the same as for the CP'sbut that the data lay between the 3 x 10

and 5 x.lO_2 CP's. By using the interpolation formula in Eq. (l4e) at
N(r) = 3 x 10-”4 (on. the CG), assuming s = s' and substituting r =
0.4, r' = 0.3 and p, = 0.05, the estimate pé = 0.0375 was obtained.
To obtain an estimate for pA, the data values N(pé) and N(O) were
substituted in Eq. (14f). This gave p, = 4.

The DT was then overlaid on the Py~ CG (Fig. 2C.3) so
that the point (0.5, 104) coincided with the point (40, 10) on the
CG. The data points lay on the Py = 2.0 CP making pé = 2.0 the estimate.
However, both Py and Py affect the slope as rf*‘”, and p, on the CG was
different from the p& estimated above, thus the estimate for pé was
adjusted by using Eq. (l4a). Substitution gave p! = 1.33 as the final

3

estimate.

Thus, the parameter estimates were pé 0.0375, pé = 1,33,
pj = 4.0. Figure 15 shows the results of an NLLS fit using the estimates
for Pys p3_and P, given above; the best estimates for the parameters were
pé = 0.0434, pé = 1.29 and pA = 4.31. As can be seen from the plot,
the initial estimate explains the data very well and the final estimates
for the parameters are very similar to the original estimates.

Model 3: The DT was overlaid on the p,~ CG (Fig. 3C.1)

2 2

so that the point (10 “, 8 x 103) coincided with the point (10 °, 1.0)

on the CG. The shape of the data curve in the region where it curves was
very similar to the shape for the CP's, however, pé < 1.0. 1In the absence

of any reliable extrapolation formula,‘pé = 1.0 was used as the best estimate.
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The DT was then overlaid on the Py~ CG (Fig. 3C.5) so

2, 10°1) coincided with (3.0, 10-5) on the CG. The

that the point (10~
data lay close to the P, = 0.3 CP so pi = 0.3 was used.

To obtain an estimate for pé, the DT was overlaid on
the Py~ CG (Fig. 3C.3) so that the point (10—2, 8 x 103) coincided with

2

the point (10 °, 1.0) on the CG. The data points lay closest to the

Py = 30.0 CP; so this was taken as the estimate for pé.

Thus, the estimates for the model are pé = 1.0, pé = 30.0,
and pi = 0.3. Figure 16 shows the results of an NLLS fit to the data
using these estimates; the best estimates were pé = 0.999,
pé = 30.0>» pA = 0.249. The initial estimate gave a reasonable fit to
the data, and the final estimate fitted the data very well.

Model 5: When fitting cumulative data with the LND, it
is generally best to extrapolate the data to obtain N(0), and use this
to calculate p,. Extrapolation of the data gave N(0) ~ 8 x 103, and by
using N(pé)/N(O) = 0.5, it was found that N(r) = 4 x 103 at r = 0.02 and
gave a first estimate for pé.

The DT was then overlaid on the p3— CG (Fig. 5C.3) so
that (2 x 1072, 4 x 107°) coincided with (1.0, 0.5) on the CG (i.e. the
median points coincided). This suggested 0.5 < P3 < 1.0, since the data
points lay between the CP'shaving those values. Looking at the behavior
as r > o, it was noted that the CP for Py = 0.5 fell off much more

sharply than the data. The DT was translated horizontally and vertically
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| The DT was overlaid on the p4—‘CG (Fig. 3A.4) so that
the point (10_2, 6.x 102) coincided with the point (3 x 10_2, 10) on
the CG. Then, by looking atlthe behavior as r + o, it was noted that the
data points lay on/a‘line which was approximately parallel to the Py, =
1.0 CPp, bThé DT was translated horizontally so that the point (20.0, B
6 x 103) coincide& with the poiﬁt (102, 10) on the CP. The data points
did, iﬁ facﬁ, lie close to the P, = 1.0 curve and thus confirm the o
estimate pi = 1.0. The paraméter pé was tﬁen estimated from ré, pé,
and pL, by substituting into Eq. (6b); by taking r& = 0.1275, this
gave pé = 78.4,: -

To confirm the estimate for pé the DT was overlaid on

the Py~ CG (Fig. 3A.2) so that the point (10_2, 6 x lOz)lcoincided,with‘
the point (10_2, 10) on the CG. The maximum for the data occurred at
the same r as that for the Pj = 10.0 CP; however, p2'and Py for the CG
were different from the estimates pé and pz so that pé estimate was
adjusted by using Eq. (le). Substituting Pys Pgs Py for the CG and pé,
p& for the data gave pé =:62.5. Thus, the original estimate for pé
seemed reasonable. Therefore, the estimates for this model were pé =
10.0, Py = 78.4, and P, = 1.0. Figure 18 shows the best fit obtained;
the final estimates were»pé = 8.38, pé = 64.7, and-pi = 0.758.

Bimodal Size Distributions: The data used in this example °

were collected as part of an investigation of high temperature

combustion aerosols (Ref. 17).. The original data were in the  form
of the aerosol mass in each of eight diameter groups, ranging from
0.43 ym to 20 um. For this example, the masses have been converted
to number of particles by assuming spherical particles with density
1 ug/cm3 and average diameter equal to. the midpoint of the diameter

group in question.
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Figure 19 shows tﬁe original data, with a probabiy curve for
the second>mode dotted in. It was not possible to dot in a probablé
curve for the first mode because no informétion was available about
the turning point for this mode. The bimodal data‘can‘be repreéented
by two terms as in Eq. (18a). Both modes éxhibiﬁ straight line behavior
in the large r region, so the RPL (Model 2), was chosen as being suitabie

for both modes. The mbdel fitted takes the form

p3—1 - py-l
(r/p,) P (r/pg)

n(r) = py P, b, D
3,74 7.P8

Py (1+(x/py) ) p6(1+(r/p6) )
where Py p3-and p, are parameters for the first mode, and P5s Pgs Pys
and pg are parameters for the second mode.

. Model 2: pé could not be determined from the data
for either mode. The DT was everlaid on the p,~ CG (Fig. 2A.4) and
translated vertically and horizontally until the point (10_2, 2 x 102)
coincided with the CG point (0.3, 1.0). The data points for the first-
mode lay along the.p4 = 2.0 CP and, in the absence of any information
about pé, the values pé = 3.0, pi = 2.0 were taken as the best estimates
of these parameters for the first term.

To determine'pé for the sécond mode, the DT was
translated so that (35.0, 3.0) coincided with the CG point (102, 10).
The data points for the second mode lay along the P, = 2.0 CP, and
since this CP fitted both the peak and the large r portion of the
data curve,‘p? = 3.0, pé = 2.0 were taken as the estimates.

Iq‘confirm p;Afor the second mode, the DT was over—
laid on the Py CG (Fig. 2A.3) and translated vertically and hori-

zontally until the point (45.0, 2.5) coincided with the CG point
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(102, 10 ). The data points in the region of the peak for the second .
mode lay along the p3 = 3.0 CP and confirmed the p; estimate.

The next step was to determine pé and pé.l The DT was
overlaid on.the p,- CG (Fig. 2A.1) so that the point (10,'2_, 5 x 102)
coincided with the point (10—2,1.0) on the CG. The data points for
the first mode lay between the Py = 0.1.CP and Py = 0.5 CP and in the
absence of any information about the mode radlus, p2 = 0.1l was taken
as the estimate for the first mode. (The value O. 27 which is the
smallest.r fof which dafa afe avallable, is too high since there is
no eign of'any curvature at this point.) | | |

To determine pé fofdthe second mode, the DT wes t?aos— |
lated vertically until the poinf (10-2, 3.0) coincided with.the poin;
(10-2, 10) on the CG. In this case, interpoletion was necessafy since
the data 1ay between the p, = 1.0 and Py = 3.0 CPs. Using Eo. (i&d)
with r% = 1.6 gave p6 = 3.58 for the second mode.

The (p3, p4) values for the CG differ from (pé; Pd and (p;;
pé); thus, the pé and pé estimates had to be\adjusted by using Eq. (14&5.
Substituting in this eduation gave pé = 0.06 for tﬁe firet‘mode and
pé = 2.04 for the second mode.

The final step was to determine the relative proportions
of the two modes by determining’the scaling factor pi for each mode.
Since the'peak values of the.two.modes differ by several orders of
magnitude, it was decided to determine the scaling factors independ~
ently, by calculating them at radii wﬁerelonly'one ﬁode4made a signif-
icant contribution to n(r) and using Eqs. (18d and 18e) to determine the

scaling factors ai, aé for each individual mode. This gave ai = 1225 for
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the first mode (at.r = 0.27) and aé = 0.85 for the second mode (at r =
4.5). ‘Because.of=the form which the model fitted by the NLLS program
takes, ai = pi, and aé = pi X pé, and thus pg = 6.9 x 10—4. Thus,

the initial estimates for this model are pi = 1225.0, pé = 0}06, pé =

4

3.0, pA = 2.0,_pé =6.9 x 10 ', pé = 2.04, p; = 3.0 and pé = 2.0. The

results of the NLLS fit using these estimates are given in Fig. 19.

~ CONCLUDING REMARKS
The uses of the catalog are two-fold. Firstly, it provides a
catalog of the shapes of the different distributions, illustrating such

properties as the locations of mode radii, rates of fall-off and poly-

dispersity. By providing a means for comparing distributions, it aids

in selecting the model(s) most likely to give a good description of the

experiﬁéntal Aata to be fitted. Secondly, the catalog-prqvides a means
of estimating the 1ike1y values of the model parameters. .Oftenrthesg
estimates will then be used aé initial éstimates for a nonliﬁear least~
squareé‘or other §p£imization éode. |

The catalog has been used successfully in fitting tropospheric and

stratospheric aerosol data, bimodal data,.and COSD data. It is importnat

that the model chosen to fit the data be an appropriate one if useful
results aré‘to be obtained. In deciding whether é moael is appro-
priate,.mode radius, rates of fall-off, and polydispersitf‘should be
considered. Modéls which show different behaviof for these properties

from that of the data should be avoided.
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As the examples showed, there are often several models ﬁhich will
adequately describe the data, although some may be better than others.
Experience with the catalog has indicated that wheie'there is a known
relationship between a property of’the model such as rate of fall-off
and a particular parametéf, that relationship should be used to get

the best possible eStimate'for the parametér.
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SUMMARY TABLE FOR SIZE DISTRIBUTION MODELS
Model 1 Model 2 Model 3
Power Law o Regularized Power Law ' Modified Gamma
, Pyl
P p, . (r/p,) P P
n(r) by 2 il St A 1 %4 2 exp(-p3r 4) -
Py P3 Py '
(A+(x/p,) )
l/P3
" N. A. Py 7t Ve
Py 1T+ P, (p,-1) (p,/p,p,)
p,-1 1+p, (p,-1) ,
p,’ P, pP,/p
n(r ) N. A. - 3 p,  “2'%4
m ﬁ. (py~1) (1+p, (p,-1)) p, (p 2 exp(-p,/p,)
P P 374
2 4
(9394)
As
e
2 . P
r>0 p,r p p.-1 2
! 1 o1 (x/p.) 3 Plr
n(r) = : P, 2 :
As
£, pr 2 P ~(L+p, (p,-1)) 0
1 == (£/p,)
n(r) ~ Py 2
p 1-p l-p .
1 2 2 p, (1-p,)
N(r) == (r -r ) 14 3 4 p p.*
p,-1 2 Py (+{x/p,) 7) P l_(;;4, P,* Y/ 4P, 2,
P,y (p,-1) "
. P,
*p,  om o
As 24 Py
i o) 1-p Py
1 2 (1-(p,~1) (x/p,) °) l ? P .
o, P p Py
2 p,(p,~1)
N(r) = 3'%4
As
- -p.{p,-1)
r>wo, pl (rl Pz) pl (r/pz) 374 o
P,-1
N(r) ~ 2 Py (p,-1)
P 14k-p_  l+k-p k - ~(p, *k/p,)
1 2 2 1+k ~1-k 24 /T4 I ’
M (p,-k-1) (ry -z, ) PPy [_(_1 /p4) |(2y /B (py/Py)py (P tk/Ry)

P, ey




SUMMARY TABLE FOR SIZE DISTRIBUTION MODELS (CONTINUED) 6l

Model 4 Model 5 Model 6

Inverse Modified Gamma Log Normal Distribution Normal l Distribution
P, 1nr-inp 2 Py ’ y - 22 :
) Pq, P2 T ——— exp{- £( %)} exp(~ 7 (59}
P, exp(-p/r ")/x S Py /21 p 3
1/p,
r 4 2
n (p4P,/P,) P, exp(-p;") Py
p,/p ‘
n{r 2"%4 P .
il ( P2 ) exp(p32/2) P, / /m p,
Py PP, exp(~p,/p,) var P,Py I
As
r+0, 0 ' % P 1 P2 2
, ] exp {‘"2- (E’—-) }(l+rpz/p3 )
nx) = _ : /77T py 3
As
T+ o, P,
er 0 0
n(r) ~
N(r) ( /rpq)/ . Pao 4 Py ‘ inr-lnpz p; . r-p,
Pl Y 942'5’3 P493 r - erfc (,._____,__,__, ] 5 erfo( ) )
Py, = =
42 P,
" As
Py r~p
£>0, Ps2 La. /222
’ p, Tpy,) / pp, 0 2 5 '}
N(r) =
As
~-(p,-1)
o, p¥ 2 /(p,~1) _ o _ 0
N(r) .
-(p,,~k/p,) 2,2
4275/ Py X p. k
Mk (Pl/P4)P3 ) (P42"k/P4) PPy exp[ 32 ] .
. . see Eq. (9m)




SUMMARY TABLE FOR SIZE DISTRIBUTION MODELS (CONTII\IUED) 62

. Model 7 Model 8 Model 8B
Generalized Distribution Power Law - Generalized ;
Function Distribution Function
2 -p4 exp( /rz) '
P, (14p,) “exp(x/p,) Py exp(py/z- ) Py SXP(R/T
n(r) +1 - X _ T
(p, + exp(z/p,)) > Ps Py 2 Py 2 2
P, + exp(x/p, r (1+p3(exp(p2/r )-1)) r (1+p3(exp§p2/? )<1))
T P, in P, See Eq. (11b) See Eq. (12b)
p, (14p.)2
n(rm) 1 2 See Eq. (1llc) _ See Eq. (12¢)
4 Py
As
P,~-1
r+0 . 2-
’ p, (1 + (p2+l)§‘/P3) 4 o 0
n(r) =
As
~-(p,+1) ~-p
4
r &+ o0, 0 p]_r plr 4
n(r)~
(1+ )2 | p, (exp( /rp4 1
(py + exp(r/p3) ) ; ?, N.A.
PP, (L+p, (exp(p,/r *)-1))
As
+ -
r=+o0, Pl(l 92)P3 (1 r/p3(1+p2)) ./P.p.D . N.A
17727374 hhind
N{x) = '
As
e 0 0 N
N(x) ~
P . o i = (P, ~1)
M 1
M N.A NA. o =l ) T (a-dy ey X
ap2, Dan bR 6T Ry
P3P,
P, (k+1)

Py = 7730




PARAMETRIZED GRAPHICAL CATALOG
oF S1zE DISTRIBUTION ANALYTIC MODELS

(For List of Symbols and Acronyms see page vii—viii)'
. Annotation on logarithmic axes gives the power of 10
. For semi-log graphs (Figures 6A.1-6C.3, 74.1-7C.3)

the annotation on the linear axis (X-axis) 1s the

actual value.

. Blank log-log and semi-log graphs are reproduced on
pages 156 and 157, respectively.

.. Two transparencies of the blank log-~log and seml-log
graphs are attached at the end of the catalog.
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Figure 4C.3. Model 4 for N(>r).
Parameter Set 4.3.
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Figure 4C.4. Model 4 for N(”r).
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Figure 5A.2. Model 5 for ﬁ(r).

Parameter Set 5.2: pp variable,

p3 = 1.0.
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FPigure 5A.3. Model 5 for n(r).
Parameter Set 5.3: pj3 variable,

p2 = 1.0.
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Figure 5B.1. Model 5 for nL(r).
Parameter Set 5.1.
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Parameter Set 5.2.
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Figure 5B.3. Model 5 for nL(r).
Parameter Set 5.3.
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Figure 5C.1. Model 5 for N(>r).
Parameter Set 5.1.
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Figure 5C.2. Model 5 for N(>r).
Parameter Set 5.2.
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Parameter Set 5.3.
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Figure 6A.1. Model 6 (Normal
Distribution) for n(r). Parameter
Set 6.1: p, variable, py = 0.5.
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Figure 6A.3. Model 6 for n(r).
Parameter Set 6.3: p, variable,
p2 = 2.5.




-3

cm

DN(R}/DLOG10R ,

I

+

I
no

1
w

-5
0

LT TTTTT EARRERENNRRARERARARARRRRANRREANRARE

|

Zé’g
" )
<

L

RADIUS R, um

Figure 6B.l. Model 6 for nL(r).
Parameter Set 6.1.
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Figure 6B.2. Model 6 for nL(r).
Parameter Set 6.2.
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Figure 6C.l. Model 6 for N(>r).
Parameter Set 6.1. o

] EEREREN ‘Jllil IIIJIII NERNRE IJIIIII IENEEENEEENE

4

119

MODELR
P2 = .100
P3 = .500
P1 = .579
RM = .100
P2 = .250
P1 = 691
RM = .250
PO = .500
Pl = .84l
RM = .500
P2 = .750
P1 = .933
RM = .750
P2 = 1.00
Pl = .977
RM = 1.00
P2 = 1.50
P1 = .999
RM = 1.50
P2 = 2.00
P1 = 1.00
RM = 2.00
P2 = 2.50
P1 = 1.00
RM = 2.50
F2 = 3.00
PT = 1.00
RM = 3.00
P2 = 4.00
P{ = 1.00
RM = 4

.00 |




-5

o

T T T

R

T

SeSARRRRRRRRRRRERRRRRARRARRRE

TTTTTTTTTTTITTTTd

IIIJIII lLlIIIIII IIIJ]JIJI NENN

L

| LI

O &N

lIJIlJJIIlIJIIIJlJJ
1

e
RADIUS R,

Figure 6C.2. Model 6 for N(>x).

Parameter Set 6.2.
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Figure 6C.3. Model 6 for N(>r).
Parameter Set 6.3.
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Figure 7A.1. Model 7 (Generalized
Distribution Function) for n(r).
Parameter Set 7.1l: p, variable,
p3 = 0.5.
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Figure 7A.2. Model 7 for n(r).
Parameter Set 7.2.: p2,variable, :
p3 = 1.0.
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Figure 7A.3. Model 7 for n(r).
Parameter Set 7.3: p3 variable,

p, = 2.5.
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Figure 7B.1l. Model 7 for nL(r).
Parameter Set 7.1.
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Figure 7B.2. Model 7 for nL(r).

Parameter Set 7.2.
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MODELR 7
P2 = 2.50
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MODELR 8
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MODELR 8B
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Parameter Set 8.5: P3 variable,
p2 = 5.0 x 10'4, o)

4= 4.0.
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Parameter Set 8.6: Py variable,
p, = 5.0 x 1074, py = 40.0.
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= TTTHIL TTTIm T 1T T 11T JUNGE 0ATA
— — 0-3 KM (REF. 1)
| ~ ] sD1 - MODEL 2
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= —|y FIRST ESTIMATE
e — Pt =2.751E+0Y4
e ] P2 =1.300E-02
- ] P3 = 2.00
- —{ P4 =2.50
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Figure 11. Example of fit to Junge
data using Model 2. (Regularized
Power Law) .
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Figure 12. Example of fit to Junge
data using Model 4. (Inverse
Modified Gamma Distribution).
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JUNGE DATA
0-3 KM (REF. 1)

SD1 - MODEL Y4
OBSERVED VALUES

FIRST ESTIMATE
Pl =1.122E-02

P2 = 4.00
P3 =8.450E-05
P4 = 2.00

NLLS ESTIMATE
ITERQTION 18

= 5.78
P2 = §.43
P3 = .788
PY = .514
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Figure 13. Example of fit to Junge
data using Model 5.. (Log Normal
Distribution)
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JUNGE DATR
0-3 KM (REF.1)

501 - MODEL o
OBSERVED VALUES

FIRST ESTIMATE
Pl =1.571E+Q4

P2 =1.760E-02

P3 = 1-00

NLLS ESTIMATE

ITERATION Y4
P1 =1.209E+04

P2 =1.208E-02

P3 = 1.21
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— —5 FIRST ESTIMATE
— —~ P1 = 2.99
P2 =5.000E-05
[ T P3 = 40.0 ‘
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Figure 14. Example of fit to Junge
data using Model 8B. (Power Law--
Generalized Distribution Function) -
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Figure 15. Example of fit to Alaska
data using Model 2. (Regularized
Power Law).

A R
-1 0 1 2

155

ALASKA DATA
13 KM (REF. 16)

501 - MODEL 2
OBSERVED VALUES

FIRST ESTIMATE
P1 =4.202E+0Y4

P2 =3.750E-02

P3 = 1.33

P4 = 4.00

NLLS ESTIMATE

[TERATION b
P1 =4.026E+0Y4

P2 =4.341E-02

P3 = 1.29

P4 = Y4.31
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Figure 16. Example of fit to Alaska
data using Model 3. (Modified
Gamma Distribution).
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ALASKA DATA
13 KM (REF. 16

- SD1 - MODEL 3

OBSERVED VALUES
FIRST ESTIMATE

=1.295E+11
P2 = 1.00
P3 = 30.0
PY = .300

NLLS ESTIMATE
ITERHTION 4

=2 .264E+07
P2 = .993
P3 = 30.0
P4 = .243
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Figure 17. Example of fit to Alaksa
data using Model 5. (Log Normal
Distribution).

no

157

ALASKA DATA
13 KM (REF. 16)

o501 - MODEL 5
o UBSERVED VALUES

o FIRST ESTIMATE
P1 =1.459E+0Y4
P2 =1.000E-02
P3 = 1.00

o NLLS ESTIMATE

[TERATION 77
Pl =2.718E+05

P2 =1.543E-03

P3 = 1.22
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Figure 18. Example of fit to Miranda
~data using Model 3. (Modified
Gamma Distribution).
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- MIRANDA DATA

13.2 KM (REF. 17)

| oD1 - MOBEL 3

OBSERVED VALUES
FIRST ESTIMATE

=8.637E+1Y
= 10.0

P3 = 78.4

PY = 1.00

NLLS ESTIMATE
ITERATION &

=6.733E+1Y4
P2 = 8.38
P3 = 8"1.7
P4 = .758
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Figure 19. Example of fit to bimodal
combustion data using sum of two
Model 2's.
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COMBUSTION DATAH

(REF. 18)
SD1 - MODEL 2
SD2 - MODEL 2

OBSERVED VALUES

FIRST ESTIMATE
P1 =1.234E+03
P2 =6.000E-02

PY = 2.00

P5 =6.300E-0Q4

P6 = 2.04 v

P7 = 3.00

P8 = 2.00
NLLS ESTIMATE
[TERATION 14
P1 = 397.

P2 =8.317E-02

P3 = 1.24

PY = 3.4y

P5 =5.121E-04

PB = 1-52

P8 = 1.27
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