GRAPHIC CONSTRUCTION OF JCUKOWSKI WINGS.*
 By E . Troiftz.

In plotting the cross-soctionel outlinc (or profilc) of a Joukowbi wing, wo proced as follows (Fig. 6).

We first plot an $x y$ system of coordinates with the origin 0 cuch that the x axis forms the angle β with the horizontal direction of the wing and mark on the x axis the point L, for which $X=-l$, and on the y axis the point F, for which $y=f$.

We now describe two circles and label them K_{1} and K_{2}. The center H_{1} of the first circle is situated on the straight line $L F$ at a distance 2δ from the point F (beyond the section LF). The circle, moreover, passes through. the point L. The eecond circle likewise passes through the point L and its center \mathcal{Z}_{2} is likowise on $L F$, the position of M on $L E$ being detcrmined by the following condition. If $O V_{1}$ is the portion of the positive x axis cut off by the circle K_{1} sind $O V_{2}$ the portion cut off by the circle K_{2}, tien $O V_{1} \times O V_{2}=i^{2}$.

Wo now draw, from the point 0 , the two lines $O A_{1}$ and $0 A_{z}$, so as to form equal angles with the x axis, A_{1} being the point of intersection of the first line with the circle K_{1} and A_{B} the intersection of the second line with the circle

* From "Zeitschrift für Flugtechnik und Motorluftschifiahrt," Kay 31, 1913, pp. 130 and 131.

N.A.C.A. Technical Nemorendum No. 336

K_{2}. Then the centor P of the line $A_{1} A_{e}$ is the point sought on the Joukowski wing profile.

In plotting the preceding figures, 24 points were found in this manner for each one, by shifting the first line from the point $I \quad 15^{\circ}$ each time and drawing the second line symmetrically with reference to the x axis.

In order to determine the pressure on each point of the profile, when the wing is exposed to a horizontal wind having the volocity V, we must know the velocity q at which the air flows by each point of the profile. The pressure on each unit area of the wing surface is then proportional to q^{2}.

We can now find the values of q in a very simple anner. For this purpose, we draw a horizontal linc through the point L. If we designato by h the aistance of the point A_{1} (of the circle K_{1}) from this horizontal linc, we obtain, for any desired point P of the figure, the corresponding valuo of q in the following mannor. We take from the diaEran the cistance between the points A_{1} and A_{2}, at the middle of which we had found the point P, and also the distances of the point A_{1} from the origin 0 , from the center M_{1} of the circle K_{1} and from the horizontal line passing through L. We then have

$$
q=V \frac{O A_{1}}{A_{1} A_{2}} \frac{\partial h}{M_{1} A_{1}}
$$

The mathematical proof for the given conctructions is simple. As already mentioned, the profile of a Joukowski wing

N.A.C.A. Technical ifemorandum No. 336

can be constructed by describing on the z plane, with the aid of the formula $z=\zeta+\frac{l^{2}}{4 \zeta}$, the circle k, determined by the camber and radii difference. This circle passes throuch the point $\zeta=-\frac{l}{2}$.

The systems of coordinates are plotted both in the ξ plane and in the z plane in such manner that the ξ axis and the x axis form the ancle β with the horizontal wind direction.

If we now describc, in thc z plane, both circles, which we obtain from the given circle K in the ζ plane by employing the two conversion formulas

$$
z_{1}=2 \zeta \text { and } z_{2}=\frac{\tau^{2}}{2 \zeta}
$$

then these are the same two circles we dosignated above by K_{1} and K_{2}.

Tho point A_{1} has tho coordinate z_{1} and the point A_{2} has the coordinate z_{22}, hence the center of $A_{1} A_{2}$ has the coordinate $z=\frac{1}{2}\left(z_{1}+z_{2}\right)=\zeta+\frac{l^{2}}{4 \zeta}$, as desired. P is therefore an actual point on the Joukoweki curve.

The following formula nolds good for the velocity a at which the air flows by every noint on tho Joukowski ficure.

$$
q=\frac{k(\xi, n)}{\left|\frac{d z}{d \zeta}\right|}
$$

From $z=\zeta+\frac{r^{2}}{4 \xi} \quad$ it follows that
N.A.C.A. Technical Zonorandum No. 330

$$
\frac{d z}{d \zeta}=1-\frac{l^{2}}{4 \zeta^{2}}=\frac{1}{2 \zeta}\left(2 \zeta-\frac{l^{2}}{2 \zeta}\right)=\frac{z_{1}-z_{2}}{z_{1}}
$$

whence we obtain

$$
\left|\frac{d z}{\partial \zeta}\right|=\frac{A_{1} A_{z}}{O A_{1}}
$$

sinco the absolute value of $z_{1}-z_{2}$ equals the distance $A_{1} A_{2}$ and the absolute value of $z_{1}=$ the distance $O A_{1}$.

For $k(\xi, \eta)$, we obtain, from formula 2 of the prececing articie, $k=\frac{2 V h}{M_{1} A_{1}}$, in which h is the distance of the point A_{1} from the horizontal line passing through I. In the oxpression there given for the numerator, it is equal to h and the denominator is equal to $\frac{1}{2}\left(\mu_{1} A_{1}\right)$, as may he easily verificd. We thus obtain

$$
q=V \frac{h}{L_{1} A_{1}} \frac{0 A_{1}}{A_{1} A_{3}}
$$

which is just the formula given above for q.

Translation by Dwight M. Miner, National Advisory Committee for Acronautics.

Fig.I
N.A.C.A. Technical Memorandum No. 336

Fig. $2: f=0, \delta / l=\frac{1}{10}$

N.A.C.A. Technical Memorandum No. 336

Fig. 3: $f / z=\frac{1}{10}, \quad \delta / \tau=\frac{1}{20}$
N.A.C.A. Technical Memorandum No. 336

Fig. $4: \mathrm{f} / \bar{i}=\frac{1}{5}, \delta / l=\frac{1}{20}$

Nos. ©o. Technical Memorandun To. 336

Fig. 6

