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THE MINIMUM INDUCED DRAG OF AEROFOILS.

By Max M. Munk.

INTRODUCTION.

The following paper is a dissertation originally presented by the author to the University
of Goettingen. It was intended principally for the use of mathematicians and physicists.  The
author is pleased to note that the paper has aroused interest in other circles, to the end that
the National Advisory Committee for Aeronautics will make it available to a larger circle in
America. The following introduction has been added in order to first acquaint the reader
with the essence of the paper.

In the following development all results are obtained by integrating some simple expressions
or relations.  For our purposes it is sufficient, indeed, to prove the results for a pair of smali
elements. The qualities dealt with are integrable, since, under the assumptions we are allowed
to make, they can not be affected by integrating. We have to consider only the relations
between any two lifting elements and to add the effects.  That is to say, in the process of inte-
grating each element occurs twice —first, as an element producing an effect, and, sccond, as an
element experiencing an effect.  In consequence of this the symbols expressing the integration
look somewhat confusing, and they require so much space in the mathematical expression that
they are apt to divert the reader’s attention from their real meaning.  We have to proceed up
to three dimensional problems. Each element has to be denoted twice (by a Latin letter and
by a Greek letter), occurring twice in a different connectign.  The integral, therefore, is sixfold,
six symbols of integration standing together and, aceordingly, six differentials (always the same)
standing at the end of the expression, requiring almost the fourth part of the line. The meaning
of this voluminous group of symbols, however, is not more complicated and not less elementary
than a single integral or even than a simple addition.

In section 1 we consider one aerofoil shaped like a straight line and ask how all lifting
elements, which we assume to be of equal intensity, must be arranged on this line in order to
offer the least drag.

If the distribution isthe best one, the drag can not be decreased or increased by transferring
one lifting element from its old position (4} to some new position (h). For then either the
resulting distribution would be improved by this transfer, and therefore was not best before, or
the transfer of an clement from (d) to (@) would have this effect.  Now, the share of one element
in the drag is composed of two parts. It takes share in producing a downwash in the neighbor-
hood of the other lifting clements and, in consequence, a change in their drag. It has itself a
drag, being situated in the downwash produced by the other elements.
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Considering only two elements, Fig. 1 shows that in the case of the lifting straight line the
two downwashes, each produced by one element in the neighborhood of the other, are equal.
For this reason the two drags of the two elements each produced by the other are equal, too,
and hence the two parts of the entire drag of the wings due to one element.  The entire drag
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produced by one element has twice the value as the drag of that element resulting from the
downwash in its environs. Hence, the entire drag due to one clement is unchanged when the
element is transferred from one situation to a new one of the same downwash, and the distribu-
tion is the best only if the downwash is constant over the whole wing.

In sections 2 to 6 it is shown that the two parts of the drag change by the same value in
all other cases, too. If the clements are situated in the same transverse plane, the two parts are
equal. A glance at Fig. 2 shows that the downwash produced by (1) at (2), (3), (4), and (5)
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is equal. But then it also equals the downwash due to (4), say, produced at (1). This holds
true even for the component of the downwash in the direction of the lift if the elements are nor-
mal to each other (Fig. 3.); for this component is proportional x.y/r*, according to the symbols

R
- ,yéﬂ
:L——i Fig. 3.
of the figure. Hence, it is proved for lift of any inclination, horizontal and vertical elements
being able, by combination, to produce lift in any direction.

There remains only the question whether the two parts of the drag are also equal if the
elements are situated one behind the other—that is to say, in different longitudinal positions.
They are not; but their sum is independent of the longitudinal distance apart. To prove
this, add in Fig. 4 to the lifting element (2) a second inverse lifting element (3) with inverse
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linear longitudinal vortices in the inverse direction. The reader observes that the transverse
vortices (2) and (3) neutralize each other; the longitudinal linear vortices, however, have the
same sign, and all four vortices form « pair of vortices running from infinity to infinity. The
drag, produced by the combination of (1) and this pair, is obviously independent of the longi-
tudinal positions of (1) and (2). But the added element (3) has not changed the drag, for (1)
and (3) are situated symmetrically and produce the same mutual downwash. The direction
of the lift, however, is inverse, and therefore the two drags have the inverse sign, and their sum
is zero.

If the two lifting elements are perpendicular to each other (chapter 3), a similar proof can
be given.

Sections 6 and 7 contain the conclusions. The condition for a minimum drag does not
depend upon the longitudinal coordinates, and in order to obtain it the downwash must be
assumed to be constant at all points in a transverse planc of a corresponding system of aero-
foils. This is not surprising; the wings act like two dimensional objects accelerating the air
passing in an infinite transverse plane at a particular moment. Therefore the calculation
leads to the consideration of the two dimensional flow about the projection of the wings on a
transverse plane.
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Section 8 gives the connection between the theory in perfect fluids and the phenomenon
in true air. It is this connection that allows the application of the results to practical questions.

1. THE LIFTING STRAIGHT LINE.

A system of aerofoils moving in an incompressible and frictionless fluid has a drag (in the
direction of its motion) if there is any lift (perpendicular to the direction of its motion). The
magnitude of this drag depends upon the distribution of the lift over the surface of the aerofoils.
Although the dimensions of the given system of aerofoils may remain unchanged, the distribu-
tion of the lift can be radically altered by changes in details, such as the aerofoil section or the
angle of attack. The purpose of the investigation which is given in the following pages is to
determine (a) the distribution of lift which produces the least drag, and (b) the magnitude of this
minimum drag.

Let us first consider a single aerofoil of such dimensions that it may be referred to with
sufficient exactness as a lifting straight line, which is at right angles to the direction of its flight.
The length or span of this line may be denoted by I. - Let the line coincide with the horizontal,
or r axis of a rectangular system of coordinates having its origin at the center of the aerofoil.
The density of the lift

4=, g
where A, the entire lift from the left end of the wing up to the point z, is generally a function of
z and may be denoted by f (z). Let the velocity of flight be v,

The modern theory of flight! allows the entire drag to be expressed as a definite double
integral, if certain simplifying assumptions are made. In order to find this integral, it is neces-
sary to determine the intensity of the longitudinal vortices which run from any lifting clement
to infinity in a direction opposite to the direction of flight. These vortices are generally
distributed continuously along the whole aerofoil, and their intensity per unit length of the
aerofoil is

o1 a4’
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where p is the density of the fluid. Now, for each lifting element dz, we shall calculate the down-
wash w, which, in accordance with the law of Biot-Savart, is produced at it by all the longi-
tudinal vortices. A single vortex, beginning at the point z, produces at the point z—=¢ the
downwash

1 . 1 ,
dur=4ﬂ_pv0 - dA E—p (3)
Therefore the entire downwash at the point # is
3
1 dA’ 1
:47rp'7,!0 de E—xdr )
[}
T

The integration is to be performed along the aerofoil; and the principal value of the integral is
to be taken at the point x=¢. This rule also applies to all of the following integrals. Hence it
follows that the drag according to the equation .

aw_ . w i
=W = A (3)
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f" here signifies the derivative of f with respect to z or £. The entire lift is represented by

or, otherwise expressed,

+
A= [f@ de (7)
i

Hence the solution of the problem to determine the best distribution of lift depends upon
the determination of the function fso that the double integral

+

.
([ (@ -1f®
o= [ [FED daas (8)

shall have a value as small as possible; while at the same time the value of the simple integral

+ &
J,= [ 1 (x)dx=const. (9)
—_ l.

is fixed.
The first step towards the solution of this problem is to form the first variation of J;

+4

5.7, — ﬂmz)d fs ©) | +f 57 (&) lsfﬂﬁ ] (10)
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The second integral on the right side of (10) can be reduced to the first. By exchanging the
symbols z and £ and by partial integration with respect to r, considering /7 (£) as the integrable
factor, there is obtained
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The second member disappears since f=0 at the limits of intogmtion.2 Further, the right
hand part of (11)

l
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upon substitution L\f the new variables z and t=x— £ for r and ¢, 1s transformed into

-
d (fle—1
dz, t

1+

dt

2If this were not true, th‘ra would be mﬂmte velocnties at theie pomts
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Now

dj‘f(z—t) () f( 2> ff’(x—f)dl

or, since f disappears at the limits of integration,

et . e
. x— P . x—
dz ¢ dt_f t dt

+d +h
which, upon the replacement of the original variables, becomes

4.4

2
)
x—§& di
so that, finally, :
+5 é
f o (s)dzj T@g, f 5 f (2)dx f e )] (12)

3

Substituting this in (10) there finally results

8J, = 2]6 f(x)dzjlzf, dg (13)

From which the condition for the minimum amount of drag, taking into consideration the
second condition (9), is
1
+)

(f () - ,
Ifg—xd5+)‘() (14)

T2
or, when equation (4) is taken into consideration
w = const. =, (15)

The necessary conditidn for the minimum of drag for a lifting straight line is that the down-
wash produced by the longitudinal vortices be constant along the entire line.

That this necessary consideration is also sufficient results from the obvious meaning of
the second variation, which represents the infinitesimal drag produced by the variation of the
lift if it alone is acting, and therefore it is always greater than zero.

2. PARALLEL LIFTING ELEMENTS LYING IN A TRANSVERSE PLANE.

The method just developed may be applied at once to problems of a more general nature.
If, instead of a single aecrofoil, there are several aerofoils in the same straight line perpen-
dicular to the direction of flight, only the limits of integration are changed in the development.
The integration in such cases is to be performed along all of the aerofoils. However, this is
nonessential for all of the equations and therefore the condition for the minimum drag (equa-
tion 15) applies to this entire syxtem of acrofoils.
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Let us now discard the condition that all of the lifting lines are lying in the same straight
line, but retain, however, the condition that they are parallel to each other, perpendicular to
the line of flight as before, and that they are all lying in a plane perpendicular to the line of
flight. Let the height of any lifting line be designated by z or . Equation (3) transforms into
a similar one which gives the downwash produced at the point z, z by the longitudinal vortex
beginning on the lifting element at the point ¢:

d A A (38)

dw SO P

" dmpv,

The expression, which must now be a minimum, is

J,=fﬂ:%f(x, 2)] At IRy (g;’x)glfs;uz)édfdx (8a)

with the unchanged secondary condition
J, =ff(z, z) dzx = const. (9a)

These integrals are to be taken over all of the aerofoils.
This new problem may be treated in the same manner as the first.

E, —

r
(E—x)?+ ({—2)°

E—i— It may be shown that this substitution does not

aifect the correctness of equations (10) to (15). Therefore

is always to be substituted for

w=const. =w, (15a)

is again obtained as the necessary condition for the minimum of the entire drag.

Finally, this also holds true for the limiting case in which, over a limited portion of the
transverse plane, the individual aerofoils, like venetian blinds, lie so closely together that
they may be considered as a continuous lifting part of a plane. Including all cases which
have been considered so far, the condition for a minimum of drag can be stated:

Let the dimensions of a system of aerofoils be given, those in the direction of flight being small
in comparison with those in other directions. Let the lift be everywhere directed vertically. Under
these conditions, the downwash produced by the longitudinal vortices must be uniform at all points
on the aerofoils in order that there may be a minimum of drag for a given total lift.

3. THREE DIMENSIONAL PARALLEL LIFTING ELEMENTS.

The three-dimensional problem may be based upon the two-dimensional one. Let now
the dimensions in the direction of flight be considerable and let the lifting elements be dis-
tributed in space in any manner. Let y or 7 be the coordinates of any point in the direc-
tion of flight. For the time being, all lifting forces are assumed to be vertical.

The calculation of the density of drag for this case is somewhat more complicated than in
the preceding cases. Consideration must be given not only to the longitudinal vortices, which
are treated as before, but also to the transverse vortices which run perpendicular to the lift at
any point and to the direction of flight. Their intensity at any point where there is a lifting
element is

1 1
F:A,'" = s b —
Yo' P Sy, 2) Vop

The density of drag, W' now has two components, W, and W,, the first being due to the trans
verse vortices and the second to the longitudinal vortices.
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For the solution of the present problem only the total drag of all lifting elements
W=f Wdz

is to be considered. In the first place it will be shown that the integral of those parts of the
density resulting from the transverse vortices

W,=[ W dz

does not contribute to the total drag. A small element of one transverse vortex of the length dx
at the point (x, y, 2) produces at the point (¢, 9, {) the downwash

_ 1 92—y
dw_47l"PUo 73 f(I; Y, 2)-d12 (16)
where
rP=E—2)+O-:+—2)"
Therefore
1 _
Wm b [ [ S w27 om0 Y dui a7

This integration is to be extended over all the agrofoils. It is possible to write this expression
in such a manner that it holds for a continuous distribution of lift over parts of surfaces or in
space. This is true, moreover, for most of the expressions in this paper. Now, exchanging the
variables z, y, 2, for ¢, 9, ¢, in equation (17) does not change the value of the integral, since the
symbols for the variables have no influence on the value of a definite integral. On the other
hand, the factor (5 —y), and therefore the integral also, changes its sign. Hence

W,=— W,=0 (18)

and, as stated,
W= W, (19)

Therefore the entire drag may be calculated without taking into consideration the transverse
vortices.

The method of calculating the effect of the longitudinal vortices can be greatly simplified.
At the point (¢, 5, {) that part of the density of drag resulting from a longitudinal vortex begin-
ning at the point (z, v, 2) is

1
W2'=mff &0, 0 f (x,y,2) ¢dx (20)
where
,_d d
f :d;tf’ resp. cTEf
and
T A T D SR 21)
¥
The entire drag is
W=J‘.W,'dx=&0£pfjf(5, 7, O f (x, y, 2) ydidr. (22)

Now, in the double integral (22) the variables z, y, z may be exchanged with £, 9, {, as before,
without affecting the value of the definite integral. Partial incegration may then be performed
twice, first with respect to £ and then with respect to z. The substitution results in

1 , >
w-i | f 102 f &, ¢ ydad (23)
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v is obtained from ¢ upon the exchange of variables. Its value is therefore

- 1 % — B
‘l’:hfx'taéds;t’=(£—z)’+(S—y)’+(§—z)2. (24)
¥

When partially integrating with respect to d¢, the integrable factor is ' (¢, #, {)

7_ 1 d —_— ’ .
W= - l;ﬂ'z;,fff & m ) i y-f @z, y, 2) dzdt (25)
Loy . . . . d - d ~
In the subsequent partial integration with respect to dr, the integrable factor is & y=— by V-
1 _
= 2pfff &, O-f (z, 9, 2) ydzd. (26)
‘0
Finally, by addition of (22) and (26), there is obtained
1 —
2 =mfff En O S @y, 2) Y—y) dadt. 27)

§ =y +n—s may now be substituted in (24) for the variable of integration s. Then ¢ changes to
t, and with the exception of the sign the integrand in (21) agrees with the resulting one in (22)

__ 1 fz=¢
V= _41rf 3 ds (28)
v
Subtracting (28) from (21) there results finally
+ o
1 —_—
b=y | 2500 (29)

—o

Hence,  —¢ and therefore the entire right side of equation (22) is seen to be independent of the
longitudinal coordinates y of the lifting elements.

Therefore the entire resistance of a three-dimensional system of aerofoils with parallel lifting
elements does not depend wpon the longitudinal positions of the lifting elements.

4. LIFTING ELEMENTS ARRANGED IN ANY DIRECTIONS IN A TRANSVERSE PLANE.

The problem considered in section 2 can also be generalized in another way. For the present
the condition that all lifting elements be in one transverse plane may remain. However, they
need no longer be parallel, and the lift may be due to not only a great number of infinitesimal
lifts 2.4 but also to similar transverse forces dB. In the first place let the direction of all lifting
elements be arbitrary, but such that there is a minimum drag, and let this direction be an
unknown quantity to be determined.

In the present problem it is desirable to consider a continuous distribution of lift over given
areas instead of lines. The last case can be deduced from the first at any time by passing to
the limit.

Let A’ =f(x, 2) be the density of the vertical lift per unit area, and B" = F(z, 2) the density
of the lateral force per unit area. The lateral force is considered positive when acting in the
positive direction of the X-axis. Then the density of the transverse vortices has the com-

1 . . . . .
ponents P <A and " op B’. The density of the longitudinal vortex is the divergence of the

1 /dA" dB”

density of the transversal vortex, or wp\ dz ) The longitudinal vortices beginning
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at the point (x, 2) therefore produce at the point (¢,¢) the downwash and the transverse velocity

1 (dA’ dB’ f—2x
dw= T\ dz -»d;) dxdz ” (3b)

1 dA’ dB z-¢
“frp\dr T d )‘WZ i (3¢)

According to the above, the density of the drag is
dW=A4 drdz + B’ dxdz (5b)

With these symbols there results for the total drag the expression

= 4rots fffff @a) £ &0t dedetsgs— [ [ [ [ @) P en® Sastaasass oo
JITJr e ren z;f dudedgitc— [ [ [ [ o) 1 60 57 dudadas

All of these integrals are to be taken over all of the lifting surfaces. Now the first two
integrals have forms corresponding to the integral in (8), and therefore there is a possibility of
substituting (12) for these. A similar relation also holds for the last two integrals. For exam-
ple, the variation of the third integral is

6fffff' (z)2) F(£3) g;( drdzdtds =

fj f“}f (x2)- F (&, Sb) +f (w,2) 8F (£,%) - Tzf]da:dzdgdf (31)

Now in the first term on the right-hand side the variables £ and z may be exchanged with ¢
and {. It may then be partially integrated with respect to d¢, the integrable factor being df* (¢,¢).
This gives

ffffaf () F(85) ° 5 dadzdsdr - — fjjfa (£0)- ds @e) 57 dededids (32

This may be partially integrated with respect to dz, the integrable factor being

d¢—z dt—z

dy 7 = dz r
f f f j 5 (@,2) F (8,8) 258 dededidp = — J J f f S0 F' (z2) £ dzdzdsdg‘ (33)

Hence the first term of the wvariation of the third integral of (30) can be transformed into the
second term of the variation of the fourth integral of this equation. In a similar manner the
two other terms may be transformed into each other. It is therefore demonstrated that the
variation of the entire drag may be written

sW=2ffof-w-dedz-+2[ [s F.-u-dzdz (13b)
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Two problems of variation can now be stated. In the first place limited parts of the surfaces
may be at our disposal, over which the vertical lift A and the horizontal transversal force B
may have any distribution. Only the total lift

A= fff (z,2) dxdz=const. (9b)
will be given in this case.

Then

w=const. =w,; u=0 (15b)
is the condition for the least drag.

If, however, the lifting parts are similar to lines, there is generally one other condition to
fulfill. It is then required that the lift disappear everywhere along the direction of the aerofoils.
That is to say,

fsinf—Fcos =0 (34)

where 8 is the angle of inclination of the aerofoil to the horizontal X-axis. In order to add the
new requirement (34) a second Lagrange constant p is introduced. The condition for the least
drag is now

e e
w+)\+cos 8 0, %= g 8 0 (34a)
and after the elimination of u
w cos B+ u sin 3=w, cos 3 (15¢)

the constant 2 A being replaced by — w,, as before. In words:

If all lifting elements are in one transverse plane, the component of the velocity perpendicular
to the wings, produced by the longitudinal vortices, must be proportional, at all lifting elements, to
the cosine of the angle of lateral inclination.

5. LIFT DISTRIBUTED AND DIRECTED IN ANY MANNER.
Pl

The results obtained previously can be generalized not only for lifting elements distributed
in a transverse plane but also for lifting elements distributed in any manner in space. That
part of the total drag resulting from the transverse vortices is, in the general case

1 o B
IVI =47rpuz l:fj J J J ff (1'7 Y, Z) f (E 7 f) " ¥ Y dxdydzdidndg‘
+J ffjfj F(z,y,2) F&n, 0 g{:_y dxdydzd{dqd{]

Both terms have the same form as the integral in (17). The demonstration for (17) therefore
applies to both. In the general case also the total drag can be calculated from the longitudinal
vortices without taking into consideration the transverse vortices.

W= 4,fpuz[f f ff f ff(x, ¥, ) f (& n, §) ¥y dzdydzdidnds
+fffffwaamamenwmwwmwwr

_fJJfJJf (z,y,2) F' (& n, ) ¥, dedydzdtdndt (224)

—fffffme%af%amo%dwwwwwd

1 °‘.’£_z
¢1_41r t

(17a)

In this as in (20),

ds; P={(—2)?+(n—8?2+({—2)?
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The first two terms in (22a) have the same form as the right-hand side of (22), and the same
conclusions are therefore valid for each. Tt can be proved directly for (22a) as for (22) that
each of the two double integrals is independent of the longitudinal coordinates of the lifting
elements. This proof can now be extended over the last two integrals of equation (22a).

The third integral, after changing the variables, becomes

SIS f @y 2 F' &9 ¢, dedydedidnds = (35)
TIfIIff & 0 F (2, y, 2) ¥, dedndidedydz

where

_ 1 me_ i
T e T
¥

Now, let F’ be chosen as the integrable factor and be partially integrated with respect to z.
JIISfIf @y, 2 B2 m, 0 udedydedednds = (36)
SISSIS S Gon ) F ey 2) & dedndsdsdydz.

As in the previous cases, the second integral to be expected vanishes since f as well as I

disappear at the limits of the integration. Next (;I, Y= — j ¥,is chosen as the integrable factor

3

and partially integrated with respect to 2. By y,, by analogy, is meant

- 1 X {—z
V=g ) s
v
ffffffj (r, y, 2) F' (& 4, {) v, dxdydzdidndi = (37)

JfIIf]1 &m0 F @y, 2) dudidndidadydz.

Now ¢, may be transformed, the variable s in the defining equation being replaced hy 7+ y—s.
The result is that

T I
Yy

It is seen that the integrand agrees with that of the defining integral ,. Therefore, and since
the right-hand side of (37)*contains the same function under the double integral as the fourth
turn in (22a), this fourth term can be combined with the transformed third member. This
gives
JIIfI 1 Gy Fr @, ©) idadydeddads + (38)
[I[f[[F @y 2) 1 & 0 0)-ddrdydzdidnd; =

ffffffp (Iz ?/7 Z) jl (E; 7, g‘) (‘l’z—iz) dIddedEdndg'

where
+w

— 1 —
bt g [ 25 E s

—

¥, —¥, and therefore the two sides of (38) are independent of y. This is therefore demon-
strated for the whole right-hand side of (22a).
20167—23——25
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In general it can therefore be said:

The total resistance is always independent of the longitudinal coordinales of the lifting elements.

And further:

The most favorable distribution of the lift, with reference to the total drag, occurs when this is
also the case for the projection of the lifting elements on a transverse plane.

That is to say,all of the lifting elements are projected on a plane perpendicular to the
direction of flight, and any element so obtained has a lift equal to the sum of the lifts of all lifting
elements projected onto it.

6. DETERMINATION OF THE SOLUTIONS.

The previous demonstrations show that the investigation for the distribution of 1ift which
causes the least drag is reduced to the solution of the problem for systems of aerofoils which are
situated in a plane perpendicular to the direction of flight. In addition, the condition for least
drag (15¢), which becomes the condition of uniform downwash (15) if the lift is vertical, leads
to a problem which has often been investigated in the theory of two-dimensional flow with a
logarithmic potential.  The flow produced within the lifting transverse plane by the longitudinal
vortices originating in it is, indeed, of this type. Each such vortex produces a distribution of
velocity such as is produced by a two-dimensional vortex of half its intensity, and the whole
distribution of velocity 1s obtained by adding the distributions produced by the longitudinal
vortices. The potential flow sought is determined by the condition of (15¢). Iet it be com-
bined with the flow of constant vertical upward motion w== - w,. The resulting flow satisfies
the condition at the boundaries

w cos B+ usin =0 (39)

and there results, for the case of lifting lines:

The two dimensional potential flow is of the type that encivdes the lifting lines, and at @ great
distance the velocity is divected upwards and has the value w= —1,. -

Within lifting-surfaces the velocity is zero according to the condition (15b), and the fluid
therefore flows around the contour.

The mtensity of the longitudinal vortices at any point is twice the rotation of the two
dimensional flow. In the case of the lifting lines, therefore, the density of the longitudinal
vortices is double the discontinuity of velocity from one side to the other. The intensity of the
transversal vortices is determined by integrating the longitudinal vortices along the aerofoils
and therefore equals twice the difference of the velocity-integral produced on the two sides of

‘the aerofoil. Now the integral of the velocity produced is identical with the potential and

hence it appears:
The density of the lift perpendicular to the lifting line is proportional to the discontinuity of
potential ¢, — ¢,, and has the value

VAL B =2v0(p,— ¢,) o

Hence the total lift obtained by integrating over all aerofoils is

A=2vopf(ga2—(pl)d.r (41)

Sometimes a transformation of this equation is useful. In order to obtain it, suppose that
all of the Ii¥ting lines are divided into small parts. Then, on the two ends of each lifting element
there begin tv o in rerse iongitudinal vortices, the effect of which on a distant point is that of a
double vortex. Their velocity-potential ¢ and their stream function ¢ may be combined in the
comp'ex function ¢ + iy, and, not considering the existence of a parallel flow, which is without
any impoertance in the calculation, this complex function has the form for a lifting line,

e +ig) =118 (42)

2—2,
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where z represents r+ 7y and 2, =z, + 1y, 7, and y, being the coordinates of the lifting elements of
the line.  For a Lift distributed over arcas a similar equation ean be formed. The integration of

(42) gives
oL ‘p?_J(Ll*de (420)

z2—2z

Now the residuum of the integrand at infinity is 4 +1dB and therefore the residuum of the
integral is A4 4-¢B.  Therefore the expression can be written.

A=2v,pR [Res(y + i0)] (41a)

where the last part means the real part of the residuum of ¢ 4-ip at infinity. In the most im-
portant case of horizontal acrofoils the residuum itself is veal and can be used directly to caleu-
late the lift.  The density of dmv at any point is proportional to the perpendical component of

the density of lift and is W ="" A’ from whichresults W= v " A. Making use of (41) one obtains
0 0

°v2 J(«a ¢1> (43)

w,
Wty R (Res (0 + i) 3w

The integral in the denominator of (43) represents an area characteristic of the system of
acrofoils investigated.  Irequently the casiest method of caleulation is to assume from the
beginning the velocity wy, at infinity 1o be unity. .

The case of the lift continnously distributed over single parts of areas is derived from the
preceding one by passing to the limit.  Since the vertical velocity w disappears at all points in
the lifting surfaces, the velocity is zero at all points and the rotation vanishes.

Therefore, in the case of the mast fuvorable distribution of Uift, all of the longitudinal vortices
from the continuously lifting areas begin at the boundaries of the areas.

Fquations (43) and (43a) remain. The distribution of lift is indeterminate to a certain
extent. On the other hand, it 1s possible to connect the points of the contour having the same
potential ¢ by strips of any form, and it is only necessary that the lift be always perpendicular
to the strip and its density have a constant value along the whole strip.  According to equation
(40) this equals the difference of the potential at the contour between the two borders of the
strip.  Worthy of note is the special case in which all of the strips run along the contour, thus
coming again to the case of lifting lines. It appears that:

Closed lines have the saime mimimum of drag as the enclosed areas when continuously loaded.

Especially important are those symmetrical contours which are cut by horizontal lines in
only two points. With such the limitation to vertical lift does not involve an increase of the
minimum drag. For this case it appears that:

The density of the vertical lift per unit area must be proportional to the vertical component of
the velocity of the two-dimensional flow at the point of the contour of the same height z. It ig

dA de

dF=20 g, (44)
The corresponding density of drag is

dW _ do

dF =0 g (45)
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7. EXAMPLES OF CALCULATIONS.

Examples of calculation of the previous demonstrations can be based on any calculated
two-dimensional potential flow around parts of lines or arcas. The simplest flow of the first
kind is that around a single horizontal line. It leads to the problem investigated at the begin-
ning of this paper.

In this case the potential is the real part of v p—1, where p denotes r+iz. The lifting
line joins the two points z=0, = —1 and 2=0, r= +/, and has the length 2. The velocity at
infinity is w=1. The discontinuity of potential along the lifting line 1s ¢, — ¢, =212 The
density of lift is distributed according to the same law, therefore if plotted over the span the
density of lift would be represented by the half of an ellipse.

The minimum drag is

Weuar ! o1

) v,20/s 4r (46)

If, instead of the value 2, the span had the general value b, the minimum drag would be

11

vipl, Th?

W= A2 (47)
This same result has been obtained by Prof. Prandtl by another method.?
The simplest example for a lifting vertical area is the circle. Let its center coineide with
the origin of the system of coordinates.  Then the potential of the flow around this circle is

o= ,t=z (48)

where 7= +/z* +2% At infinity W,=1. Under the condition of and according to equation (40)
the density of ift is

A’ =2up i(; +2)’=1 (49)

This results in a constant density of lift of A’=2. Therefore the drag is

1 1 . 1 .
W= A% - ol J'J‘;Z([lrdzz“ly viiply 87 (50)

The double integral is to be taken over the circle. If the general ease for the diameter
equal to D) be considered, then the least drag is
1 1
‘V: ‘42 ) L‘zp,“(“.' ' 1)227I' (51)

Hence in respect to the minimum drag the circle is cquivalent to a lifting line having
a length +/2 times the diameter.

A lifting circular line would have the same minimum drag as the circular area.

This result was also obtained by Prof. Prandtl by another method.* A reduction of the
original problem of variation to the two-dimensional flow sometimes enables a survey of the
result to be made without calculation. For instance, let a third aerofoil be added between the
two acrofoils of a biplane having a small gap. (The gap may be about one-sixth of the
span.) Then, in order to find the most favorable distribution of lift, the double line about
which the flow occurs is to be replaced by three lifting lines.  Now, in the region of the middle
lifting line the velocity is small, even before this line is introduced.  Thercfore the discontinuity
of the potential along the middle line is very much smaller than that along the others. lHence
it results that the middle aerofoil of a triplane should lift less than the other two.

3§ st communication concerning L isin Zeitschrift fiir Flugtechnik nnd Motorl 1914, 5. 239, in a note by Betz.
« xee Technische Berichie der Flugzeugmeisterei Bd. IT Heft 3.
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8. PROCEDURE FOR THE CASE OF FLUIDS WITH SMALL VISCOSITY.

The preceding results do not apply so much to the ealculation of the most favorable distribu-
tion of lift as to the calculation of the least drag.  For it appears, and the results are checked
by calculation, that even considerable variations from the condition of most favorable distribu-
tion of lift do not increase the drag to any great extent. Usually the minimum drag can be
considered as the real drag of the system of acrofoils and in order to allow for the effect of
friction of the air it is sufficient to make an addition. This addition depends chiefly upon the
aerofoil section; it also depends, omitting the Reynolds Number, only upon the area of the
wings and on the dynamical pressure. It is independent of the dimensions of the system of
wings themselves. It may be useful to have a name for that part of the density of drag, inde-
pendent of the friction of the air, which results from the theory developed in this paper. It is
called the “induced drag.”  Generally it is not the drag itself but an absolute coefficient which
is considered.  This coefficient is defined by

cu‘i=;"’ﬁ, (52)
where Wj is the drag previously denoted by W, ¢ is the dynamical pressure v.p/2, and /' is
the total area of the wings.  Equation (43) can now be written

(,(lg' I" -
Cu'izw(k. b)g (-.)3)

where ¢, 1s the 1ift cocfficient g corresponding to ¢,.  The greatest horizontal span & of the
system of wings perpendicular to the direction of flight is arbitrarily chosen as a length char-
acteristic of the proportions of the system, & is a factor characteristic of the system of acro-
foils and has, according to the preceding, the value.

fey/t. ] J.‘Pz—r‘—p‘dx (54)
Wy

‘\/,n, tp
1t has a special physical significance.

Under the same conditions a single aerofoil with a span of k times the maximum span of a
ystem of aerofoils has the same induced minimum resistance as the system.

9. REFINEMENT OF THE THEORY.

The demonstrations given rest on the assumption that the velocities produced by the
vortices are small in comparison with the veloeity of flight.  The next assumption, more ac-
curate, would be that only powers higher than the first power could be neglected.

In this case the solutions just found for lifting elements in a transverse plane can be con-
sidered as the first step towards the calculation of more exact solutions.  The following steps

. . - " . . .
must be taken: The exact density of drag is W’:;l’v e where v is the horizontal velocity
(1}
produced at the lifting clements by the transverse vortices. It can be calculated exactly
enough from the first approximation. Now, the condition of least drag is

w-cos B+ u sin B=u, cos B <1 +$> (15d)
0

and the flow of potential, according to this condition at the boundary, is to be found.  Compared
with the first approximation the density below is in general somewhat increased and the den-
sity above is somewhat decreased.  The minimum drag changes only by quantities of the
second order.

109



110

REPORT NATIONAL ADVISORY COMMITTEE FOR ARRONAUTICSA,

If the lifting clements are distributed in three dimensions a similar refinement can casily
be found. In this case there is to be taken into consideration a seccond factor which always
comes in if the differences of the longitudinal coordinates of the lifting elements are consider-
able. The direction of the longitudinal vortices do not agree exactly with the direction of
flight, but they coincide with the direction of the velocity of the fluid around the aerofoil.
They arce therefore somewhat inclined downwards. A better approximation is obtained by
projecting the lifting elements not in the direetion of flight but in a direction slightly inclined

7
.. . . . 20 .
upwards from the rear to the front. This inclination is about °. Except for this, the method
p » - ’

of calculation remains unchanged.



