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THE MINIMUM INDUCED DRAG OF AEROFOILS.

I_y MAx M. MVNK.

INTRODUCTION.

The following paper is a dissertation originally presented hy the author t(> the University

of Goettingcn. It was intended principally for the use of mathematicians and physicists. The

author is pleased to note that tile paper has aroused interest in other circles, to the end that

the National Advisory Committee for Acr()nautics will m:_ke it available t.(, a larger circle in

America. The folh)wing intro(hlcti()n has heen ,_dded in order to first acquaint the reader

with the essence of the paper.

In the following development all results are obtained 1)y integrating sore(, sinlple expressions

or relations. For our purposes it is sufIicient, indeed, t{) prove the results for a pair of smaii

elements. Tile qu'flities dealt with are integral)le, since, under the assumptions we are allowed

to make, they can not be affected by integrating. We have to e,_nsider only the r[,lations

between any two lifting elements and to add the effects. That is to say, in the process of inte-

grating each element occurs twice first, as an element producing an effect, and, second, as an

element experiencing an effect. In consequence of this the symbols expressing the integration

look somewhat confusing, and they require so much space in the mathematical expression that

they are apt to divert the reader's attention from their real meaning. We have to proceed up

to'three dimensional problems. T]ach element has to be denoted twice (1)y a Latin letter and

by a Greek letter), occurring twice in a different connection. The integral, therefore, is sixfold,

six symbols of integration standing together ,re(l, accordingly, six (liffercntials (ahvays the same)

standing at tile end of the expression, re(luiring ahn()st the fourth part ()f the line. The meaning

of this vohlminous group of symbols, however, is not nl()re complicated and m)t less elementary

than a single integral or even than a simple addition.

In section 1 we consider one aerofoil shaped like a straight line and ask how all lifting

elements, which we assume to be of equal intensity, must be ,_rranged on this line in order to

offer the least drag.
If the distribution is.the best one, the drag can not be decreased or increased by transferring

one lifting element fr()m its (dd position ((1) t(> some new position (b). For then either the

resulting (listributi_)n would |>e improve(I by this transfer, and therefor[_ was not, best before, or
the transfer _)f an element from (b) t(> ((i) w<)uld have this effect. Now, the share of one clement

in the drag is composed of two parts. It takes sh,lre in producing a downwash in the neighbor-

hood of the other lifting elements and, in consequence, a change in their drag. It has itself a

drag, hcing situated in the downwash produced by the other elements.

f/) (2/

_9 /

Considering only two elements, Fig. 1 shows that in the ease of the lifting straight line the

two downwashes, each produced by one element in the neighborhood of the otller, are equal.

For this reason the two drags of the two elements each produced 1)y the other are equal, to(),

and hence the two parts of the entire drag of the wings due to one element. The entire drag
375
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produced by one element has twice the value as the drag of that element resulting from the
downwash in its environs. Hence, the entire drag due to one element is unchanged when the

element is transferred from one situation to a new one of the same downwash, and the distribu-
tion is the best only if the downwash is constant over the wh(>le wing.

In sections 2 to 6 it is shown that the two parts of the drag change by the same value in
all other cases, too. If the elements are situated in the same transverse plane, the two parts are

equal. A glance at Fig. 2 shows that the downwash produced by (1) at (2), (3), (4), and (5)

/2,_ f.4)

i"1/

f3) f5J

,=_
h9 2

is equal. But then it also equals the downwash due to (4), say, produced at (1). This holds
true even for the component of the downwash in the direction of the lift if the elements are nor-

mal to each other (Fig. 3.); for this component is proportional x.y/r _, according to the symbols

_- -, ...... _-_

_9-3.

of the figure. Hence, it is proved for lift of any inclination, horizontal and vertical elements

being able, by combination, to produce lift in any direction.
There remains only the question whether the two parts of the drag are also equal if the

elements are situated one behind the other--that is to say, in different longitudinal positions.

They are not; but their sum is independent of the longitudinal distance apart. To prove

this, add in Fig. 4 to the lifting element (2) a second inverse lifting element (3) with inverse

/ /" rs;,"

+.. / /
linear longitudinal vortices in the inverse direction. The reader observes that the transverse
vortices (2) and (3) neutralize each other; the longitudinal linear vortices, however, have the

same sign, and all four vortices form a pair of vortices running from infinity to infinity. The

drag, produced by the eombinat.ion of (1) and this pair, is obviously independent, of the longi-
tudinal positions of (1) and (2). But. the added element (3) has not changed the drag, for (1)
and (3) are situated symmetrically and produce the same mutual downwash. The direction

of the lift., however, is inverse, and therefore the two drags have the inverse sign, and their sum
is zero.

If the two lifting elements are perpendicular to each other (chapter 5), a similar proof can
he given.

Sections 6 and 7 contain the conclusions. The condi[i(m for a minimum drag does not
depend upon the longitudinal coordinates, and in order to obtain it the downwash must be
assumed to be constant, at all points in a transw,rse plane of a corresponding system of aero-

foils. This is not surprising; the wings act like two dimensional objects accelerating the air
passing in an infinite transverse plane at a particular moment. Therefore the calculation
leads to the consideration of the two dimensional flow about the projecti<)n of the wings on a

transverse plane.
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Section 8 gives the connection between the theory in perfect fluids and the phenomenon

in true air. It is this connection that allows the application of the results to practical questions.

1. THE LIFTING STRAIGHT LINE.

A system of aerofoils moving in an incompressible and frictionless fluid has a drag (in tile
direction of its motiori) if there is any lift (perpendicular to the direction of its motion). The

magnitude of this drag depends upon the distribution of the lift over the surface of the aerofoils.

Although the dimensions of the given system of aerofoils may remain unchanged, the distribu-
tion of the lift can be radically altered by changes in details, such as the aerofoil section or the
angle of attack. The purpose of the investigation which is given in the following pages is to

determine (a) the distribution of lift which produces the least drag, and (b) the magnitude of this
minimum drag.

Let us first consider a single aerofoil of such dimensions that it may be referred to with
sufficient exactness _s a lifting straight line, which is at right angles to the direction of its flight.

The length or span of this line may be denoted by I. Let the line coincide with the horizontal,
or x axis of a rectangular system of coordinates having its origin at tile center of the aerofoil.
The density of the lift

A' dA
= dx (1)

where A, the entire lift from the left end of the wing up to the point z, is generally a function of

z and may he denoted byf (z). Let the velocity of flight be re.
The modern theory of flight L allows the entire drag to be expressed as a definite double

integral, if certain simplifying assumptions are made. In order to find this integral, it is neces-
sary to determine the intensity of the longitudinal vortices which run from any lifting element

to infinity in a direction opposite to the direction of flight. These vortices are gen'erally
distributed continuously along the whole aerofoil, and their intensity per unit length of the
aerofoil is

1 dA'
v' = • - (2)

%. p dx

where p is the density of the fluid. Now, for each lifting element dx, we shall calculate the down-

wash w, which, in accordance with the law of Biot-Savart, is produced at it by all the longi-

tudinal vortices. A single vortex, beginning at the point z, produces at the point x=_ the
downwash

1 1
dw=4_ov" • dA' • _-x (3)

Therefore the entire downwash at the point ( is

w- 1 (dA;. _i dx (4)- 47rp,oJ dz
1

The integration is to be performed along the aerofoil; and the principal value of the integral is
to be taken at the point x = _. This rule also applies to all of the following integrals. Hence it
follows that the drag according to the equation

d W= W,=_w . A' (5)
dx Vo

is

+-i-f +_ }d "
t See b. Prandtl, Tr_gfl_geltheorie, I. Mitteilung. Nachriehten tier Ges. d. Wiss. zt_ GSttingen, 1918.
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or, otherwise expressed,

-2" -_

(6)

f' here signifies the derivative off with respect to x or 4- The entire lift is represented by

+_
A= f� (x)dx (r)

2

IIence the solution of the problem to determine the best distribution of lift depends upon
the determination of the function f so that the double integral

J'= f 3ff'(z) z-xf(O dxd_ (8)
l t

-_- --_

shall have a value as small as possible; while at the same time the value of the simple integral

J_.= f_t (x)dx =const. (9)
l

--2

is fixed.

The first step towards the solution of this prohlem is to ft)rm the first variation of J_

+i +i ÷._ +_

,1, = _f (x) axle_ x t,¢] ,- j[ 5f' (4)d_ . d_ (10)

The second integral on the right side of (10) can I)e reduced to the first. By exchanging lhe

symbols x and _ and by partial integration with respect, to x, considering.('(_) qs the integral)le
factor, there is obtained

+t +t t+._ +_

-al['sf(x)dx "dxJx-_d"f(_) d_ } (11)
l l l l

The second member disappears since f=O at the limits of integration. 2 Further, the right

hand part of (11)

d ( l(Z)d_

1

upon substitution o_f the new variables x and t=x- _ for z and 4, is transformed into

d C.f(x- t)
dx ] t dt

X-t- I.

2 If this were not trtlO, there wotlh! be infinite velocities at these points.
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Now

dzJ -t-- = I- , l J t
,+½ x= 2 xl- 2 _

or, sincef disappears at the limits of integration,

!
z--_ x 2

d _ f(x - t) dt _' f' (x - t)
dx J" t =.1 t dt

which, upon the replacement of the original variables, hecomes

so that, finally,

.]x- ,_

+'_ +_ _ +'_

f{,_.f' (_)d_f'[_)xdX}= f {_ f (x) dx |j "_if f'(_)d_}_x (12)

Substituting this in (10) there finally resul(s

_J,= 2 _ f(x)dx " d_
I t

-- 27

(13)

From which the condition for the minimum amount of drag, taking into consideration the
second condition (9), is

1

-f'(_) d_+ x = o (14)

/

2

or, when equation (4) is taken into consideration

11) = const. = _Co (15)

The 7tecessary coTtditi6n for the minimum of drag for a lifting straight line is that the down-
wash produced by the longitudinal vortice,_ be con,_tant along the entire line.

That this necessary consideration is also sufficient results from the obvious meaning of

the second variation, whi('h represents the infinitesimal drag produced by the variation of the

lift if it alone is acting, and therefore it is always greater than zero.

2. PARALLEL LIFTING ELEMENTS LYING IN A TRANSVERSE PLANE.

The method just deveh)pcd may be applied at once to problems of a more general nature.
If, instead of a single aerofoil, there are several aerofoils in the same straight line perpen-

dicular to the direction of flight, only the limits of integration are changed in the development.
The integration in such cases is to be performed along all of the aerofoils. However, this is

nonessential for all of the equations and therefore the condition for the minimum drag (equa-

tion 15) applies to this entire system of aerofoils.
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Let us now discard the condition that all of the lifting lines are lying in the same straight
line, but retain, however, the condition that they are parallel to each other, perpendicular to
the line of flight as before, and that they are all lying in a plane perpendicular to the line of

flight. Let the height of any lifting line be designated by z or _-. Equation (3) transforms into

a similar one which gives the downwash produced at the point x, z by the longitudinal vortex
beginning on the lifting element at the point i-:

1 _-x
dw= 4_.pVodA' (_ ±x)2 -t- (_- z) 2 (3a)

The expression, which must now be a minimum, is

J,=f fUxfX,z)']
with the unchanged secondary condition

• f(_, _) (__x)Z+ (_-z)2 d_dx (8a)

J_ = ff(x, z) dx = const.

These integrals are to be taken over all of the aerofoils.
This new problem may be treated in the same manner as the first.

(9a)

(_-x)_+(_-z) _

1
is always to be substituted for _-x" It may be shown that this substitution does not

affect the correctness of equations (10) to (15). Therefore

w = const. = Wo (15a)

is again obtained as the necessary condition for the minimum of the entire drag.
Finally, this also holds true for the limiting case in which, over a limited portion of the

transverse plane, the individual aerofoils, like venetian blinds, lie so closely together that
they may be considered as a continuous lifting part of a phme. Including all (rases which
have been considered so far, the condition for a minimum of drag can be stated:

Let the dimensioT_s of a s!lstem of aerofoils be given, those in the direction of flig/d being small

in comparison with those in other directions. Let tl_e lift be everyw]_ere directed vertically. Under

these conditions, the dotvnwash produced by the longitndinal vortices must be uniform at all points
on t)_e aerofoils in order t)_at there may be a minimum _ drag for a given total lift.

3. THREE DIMENSIONAL PARALLEL LIFTING ELEMENTS.

The three-dimensional problem may be based upon the two-dimensional one. Let now

the dimensions in the direction of flight be considerable and let the lifting elements be dis-

tributed in space in any manner. Let y or n be the coordinates of any point in the direc-
tion of flight. For the time being, all lifting forces are assumed to be vertical.

The calculation of the density of drag for this case is somewhat more complicated than in
the preceding cases. Consideration must be given not only to the longitudinal vortices, which

are treated as before, but also to the transverse vortices which run perpendicular to the lift at

any point and to the direction of flight. Their intensity at any point where there is a lifting
element is

v = A'.-1 =f (x, y, z). )-.
Vo" p VoP

The density of drag, W _now has two components, _i_ and W_, the first being due to the trans
verse vortices and the second to the longitudinal vortices.

100
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For the solution of the present problem onlv the total drag of all lifting elements

w= f W' d::

is to be considered. In the first place it _;ill be shown that the integral of those parts of tile

density resulting from the transverse vortices

w,=f
does not contribute to the total drag. A small element of one transverse vortex of the length dx

at the point (x, y, z) produces at the point (_, v, _') the downwash

where

Therefore

1
dw=4rpv ° '7;3Y f (x, y, z). dx (16)

r_= (_ - x) _"+ (7 - y)_ + (_ - z)*.

This integration is to be extended over all the a_rofoils. It is possible to write this expression
in such a manner that it holds for a continuous distribution of lift over parts of surfaces or in

space. This is true, moreover, for most of the expressions in this paper. Now, exchanging the
variables x, y, z, for _,,7, _', in equation (17) does not change the value of the integral, since the

symbols for the variables have no influence on the value of a definite integral. On the other
hand, the factor (,7- Y), and therefore the integral also, changes its sign. Hence

w, = - w_ = 0 (18)
and, as stated,

IV= W v (19)

Therefore the entire drag may be calculated without taking into consideration the transverse
vortices.

The method of calculating the effect of the longitudinal vortices can be greatly simplified.

At the point (_, 7, _') that part of the density of drag resulting from a longitudinal vortex begin-

ning at the point (z, y, z) is

1
W,'= dp_f(_,a 7, _)f' (x, y, z)._dx (20)

where

and

f,=d d fdx f'resp" d_

The entire drag is

= ! _$-Xds;t_=(G_x),+(,_s),+(t_z) _.
¢ 4_3 t_

Y

(21)

f i (x,y,z)¢d_dx.w= .W/ dx= _
(22)

Now, in the double integral (22) the variables z, y, z may be exchanged with _, n, _-,as before,
without affecting the value of the definite integral. Partial integration may then be performed

t_vice, first with respect to _ and then with respect to x. The substitution results in

1 f f, _dxd_ (23)
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is obtained from ¢ upon the exchange of wLriables. Its value is therefore

-: 1 /'x-_
tT ds; (r-z) (24)

Y

When p_rtially integrating with respect to d_, the integrable factor isf' ($, n, _)

1
W=-v0_.;,;f (}, ,, _) d _. f (x, y, z)dxd_ (25)

d-
In the subsequent partial integration with respect to dx, the integrable factor is _-__b= - dx 5"

1 ff .f' z) _dxd_. (26)W= f D (x, y,

Finally, by addition of (22) and (26), timre is obtained

2 w=@f f f ,, r) f (z, u, z) dxd . (27)

= y + _- s may now be substituted in (24) for the variable of integration s. Then t changes to
t, and with tile exception of the sign the integrand in (21) agrees with the resulting one in (22)

Y

Subtracting (28) from (21) there results finally
-4-Q¢

tIence, _b-_b and therefore the entire right side of equation (22) is seen to be independent of the

longitudinal coordinates y of the lifting elcments.
Therefore the entire resistance of a _.ree-dimensional s}]stem of aerofoils with parallel lifting

eleme_ds does not depend upon the longitudinal positions of the lifting elements.

4. LIFTING ELEMENTS ARRANGED IN ANY DIRECTIONS IN A TRANSVERSE PLANE.

The problem considered in section 2 can also be generalized in another way. For the present
the condition that all lifting elements be in one transverse plane may remain. However, they

need no hmger be parallel, and the lift may be due to not only a great number of infinitesimal
lifts dA but also to similar transverse forces dB. In the first place let the direction of all lifting

elements be arbitrary, but such that there is a minimum drag, and let this direction be an

unknown quantity to be determined.

In the present problem it is desirable to consider a continuous distribution of lift over given
areas instead of lines The last case can be deduced from the first at any time by passing to

the limit.

Let A' =f(x, z) i)e the density of the vertical lift per unit area, and B' = F(x, z) the density
of the lateral force per unit area. The lateral force is considered positive when acting in the

positive direction of the X-axis. Then the density of the transverse vortices has the eom-

1 .A' and 1 B'. ' s"'/he density of the longitudinal vortex is the divergence of the
ponents Vop Vop "

t idA'
density of the transversal vortex, or v,,p \ dx - dz ]" The longitudinal vortices beginning
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at the point (x, z) therefore produce at the point (_,_-) tile downwash and the transverse velocity

d 1 IdA' dB'\ _ _ _-z
w=4rVoO _. dz--az) axaz r" (3b)

du= 1 {d A' dB'_dxdzZ:_;Vo_\ dx - dz ] _f (3c)

According to the above, the density of the drag is

d W=. <txdz + B 'u dxdz (Sb)
Vo V o

With these symbols there results for the total drag the expression

fffff, <.,z>,. jffjF,

All of these integrals are to be taken over all of the lifting surfaces. Now the first two

integrals have forms corresponding to the integral in (8), and therefore _here is a possibility of
substituting (12) for these. A similar relation also holds for the last two integrals. For exam-
ple, the variation of the third integral is

(31)

Now in the tirst term on the right-hand side the variables x and z may be exchanged with
and _'. It may then be partially integrated with respect to d_, the integrahle factor being dff (_,_).
This gives

z d F (x,z) __z dxdzd_d_ (32

This may be partially integrated with respect to dz, the integrable factor being

d _'-z d _-x
dr r_ = - dz r _

(33)

Ilence the first term of the variation of the third integral of (30) can be transformed into the

second term of the variation of the fourth integral of this equation. In a similar manner the
two other terms may be transformed into each other. It is therefore demonstrated that the

variation of the entire drag may be written

6IV= 2ff6f.w.dxdz+ 2ff' F. u.dxdz (13b)

103



REPORT NATIONAL. ADVISORY COtVIMITTEE FOR AERONAUTICS.

Two problems of variation can now be stated. In the first place limited parts of the surfaces
may be at our disposal, over which the vertical lift A and the horizontal transversal force B

may have any distribution. Only the total lift

A = fff ¢,z) &gz = const. (9b)
will be given in this case.

Then

w = const. = w0; u = o (15b)

is the condition for the least drag.

If, however, tile lifting parts are similar to lines, there is generally one other condition to
fulfill. It is then required that the lift disappear everywhere along the direction of the aerofoils.

That is to say,
f sin fl- F cos _ = o (34)

where _3is the angle of inclination of the aerofoil to tim horizontal X-axis. In order to add the
new requirement (34) a second Lagrange constant u is introduced. The condition for the least

drag is now

w + X+ COS_ 2 = o, u - sin _ = o (34a)

and after the elimination of u
w cos _+u sin _=Wo cos _ (15c)

the constant 2 X being replaced by - wo, as before. In words:

If all lifting elements are in one transverse plane, the component of t]_e velocity perpendicular
to the wings, produced by the longitudinal vortices, must be proportional, at all lifting elements, to

the cosine of the angle of lateral inclination.

5. LIFT DISTRIBUTED AND DIRECTED IN ANY MANNER.

The results obtained previously can be generalized not only for lifting elements distributed
in a transverse plane but also for lifting elements distributed in any manner in space. That

part of the total drag resulting from the transverse vortices is, in the general case

(17a)

Both terms have the same form as the integral in (17). The demonstration for (17) therefore

applies to both. In the general ease also the total drag can be calculated from the longitudinal
vortices without taking into consideration the transverse vortices.

Jo[jf f f f fJW= 4 W (x, y, z) f (_, ,, ¢) ¢/, dxdydzd_d,Td_

JJJfff+ F' (x, y, z) F (_, _, D G dxdydzd_d_d_

(22a)

fjjfJJ}- (x, y, z) F' (_, rl, _) ¢q dxdydzdlid_d_

In this as in (20),
ov

=! l '_-z
_ 47r3 t_ ds; t==(_-x)=+(_-s)=+(f-z) _

Y

Y
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The first two terms in (22a) have tile same form as the right-hand side of (22), an(t the same

conclusions are therefore valid for each. It can t)e l)roved directly for (22a) as for (22) that
each of the two double integrals is independent of tile longitudinal coordinates of the lifting

elements. This proof c_l,n now be extended over the last two integrals of equation (22a).
The third integral, after changing the variables, becomes

fffffff (x, y, z) F' (_, _, _) _, &d,jdzd_&d¢=

ffffffJ (_, ., r) Y' (x, :/, _) ¢, d_&d¢&(Z,j&

(35)

where

oe

l F_-x. i_
_t=-4zr_t a- as," =((-x)2+(s--y)2+(f--z) 2

Y

Now, let F' be chosen as the integrable factor and be partially integrated with respect to z.

ffffffJ (_, ,.I,_) *' (_, ., r)ee,dxdvd_d_t_Jr= (3_)

d-
ffffff f (_, ., _) F ix, y, z) dz ¢<d_dn,tr,txd:Zdz.

As in the previous cases, the second integral to be expected vanishes since j as well as F
d d

disappear at the limits of the integration. Next dz _' = - d_ _'is chosen as the integr.d)le factor

and partially integrated with respcct to x. By _2, by an'dogy, is meant

Y

ffffffJ (., y, _) F' (_, ., r) ¢.,d_d,2&d_&dr- (aT)

ffffffJ' (_,., _) Y (x, y, z) _:d_dvdrdxdy,tz.

Now _ may be transfo-me(l, the variable s in the defining equation heing ret)laced by _ + y-s.
The result is that

Y

It is seen that the integrand agrees with that of the detining integral ¢,. Therefore, and since

the right-hand side of (37)'contains the same function under the double integnd as the fourth
turn in (22a), this fourth term can be combined with the transformed third member. This

gives

ffffff J (x, _, _) F' (_, ,, r) ¢flzdgdzd(d_dr + (38)

f f f f f f F (x, y, _) J' (_, ., r).C._&dy&d_d.dr=

ffffffF (x, y, z)J' (_, .7, r) (_.-_0 dxd_dzd_d.d¢
where

•

_-_ and therefore the two sides of (38) are independent of y.

strated for the whole right-hand side of (22a).
20167--23-- 25

This is therefore (lemon-
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In general it can therefore be said:

Tile total resistance is a:u'ays independent o/t/_e longitudhml coordinates o� tlte lifting elements.
And further :

Tl_e most.favorable distribution oJ the lift, u,itt_ reference to tl_e total drag, occurs v,l_erz this is

also the case Jor the projection oJ the lifting elements o1_a trartscerse plane.
That is to say, all of the lifting elements are projected on a plane perpendicular to the

direction of flight, and any element so obtained has a lift equal to the sum of the lifts (_f all lifting
elements projected onto it.

6. DETERMINATION OF THE SOLUTIONS.

The previous demonstrations sliow that the investigation for the distribution of lift which
causes the least drag is reduced to tim solution of the problem for systems of aerofoils which are
situated in a phme perpendicular to the direction of flight. In addition, the condition for least

drag (15e), which becomes the condition of uniforin downwash (15) if the lift is vertical, leads
to a problem which has often been investigated in the theory of two-dimensional tlow with a

logarithnfie potential. The flow t)rodueed within the lifting transverse plane by the h,ngitudinal

vortices originating in it. is, indeed, of this type. Each such vortex produces a distrit)ution of
velocity such as is pr,)duced by a two-dimensional vortex of half its intensity, anti the whole

distrihution of vch)city is ot)tained by adding the distributions produced by the longitudinal
vortices. The l)otential flow sought is determined by the condition of (15e). Let it be com-
bined with the flow of constant vertical upward motion e= o_o. The resulting th)w satisfies
the condition at the t)oundaries

_ocos .2 -Fg sin .2 -- 0 (39)

and there results, for the case of lifting lines:

The two dimtn,_io_ml potential flow is qf the type that _ncirclcs tl_c lifting lines, and at a yr_at
distance the ,velocity is directed upwards and has the value 'w = -u:o.."

Within lifting-surfaces the velocity is zero according to the condition (15t)), and the fluid
therefore flows around the contour.

2'he intensity of the longitudinal vortices at any point is twice the rotation of the two

dimensional flow. In the case of the lifting lines, therefore, the density of the longitudinal
vortices is double the discontinuity of velocity from one side to the other. The intensity of the

transwwsal vortices is determined by integrating the longit, udinal vortices along the aerofoils
and therefore equals.twice the difference of tit(, velocity-integr'd produced on the two sides of
the aerofoil. Now the integral of the velocity produced is identical with the potential and
hence it appears:

Tl_e density of tt_e llft perpendicular to the lifth_g lii_e is proportional to the disco_di_uity of
potential _z-_, a_d has the value

a/fil'_ 2?-B'z = 2v0p(¢: - ¢,) (40)

IIence the total lift obtained hy integrating over all aerofoils is

.4 = 2vopf (_,_- ¢,)dx (41)

Sometimes a transformation of this equation is useful. In order to obtain it, suppose that

all of the liCtmg lines are divided into small parts. Then, on the two ends of each lifting element
there begin t_: o in :-rse longitudinal vortices, the effect of which on a distant point is that of a
double vortex. Thmr velocity-potential _ and their stream function ¢_may be combined in the
comp%x function _ +i¢, and, not considering the existence of a parallel flow, which is without

any importance in the calculation, this comph, x function has the form for a lifting line,

dA + idB
d(¢ + i_) = (42)

Z -- 2 o
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wherez represents z _ ;?/and z, -Xo + i!t0, Xoand y0 being the coordinates of the lifting dements of
the line. For a lift distributed over areas a similar equation can be formed. The integration of
(42) gives

• _'dA + idB
¢+'_J z-z. (42=)

Now the residuum of the integrand at infinity is dA + idB and therefore the residuum of the

integral is A !- lB. Therefore the expression can be written.

A = 2veer IRes (_ + ie)] (4 la)

where the last: part means the real part of the residuum of ¢ +i_o at infinity. In the most im-

portant ('ase (,f horizontal am'()foils the residuum itself is real and can t)e used directly to calcu-
late the lift.• The density of drng at any point is proportional to the t)erpendical component of

the density of lift and is W' = v'o. A', from which results 1V=w% A. Making use of (41) one obtains
V0 V0

_I° _ 1If' A,o., [.U (4a)
J \ 'wo / '

1 wo (43a)
IV= A =2re=p R [Res (¢ + i_)]

The integral in the (hmomimtt()r of (43) represents an area chnracteristic of the system of

aer,foils investigated. Frequently the easiest method of calculation is to assume from tile
1)eginning the velocity v'0 at infinity to be unity.

The case of |he lift conlinuously distributed over single parts of areas is derived from the

preceding one by passing to the limit. Since the vertical velocity w disappears at all points in

the lifting surfaces, the velo,ity is zero a_ all points and the rotation vanishes.
Tl_erefore, i,r tim ca._e q[" tl_e ,_o._'tjitvorable distributiol_ of l!t't, all fff the lol_gitudinal vortices

from tire eoldil_uousb.t l_b_g areas begin at the boundaries of the areas.

Equ'ttions (43) and (13a) remain. The distribulion of lift is indeterminate to a certain
extent. ()n the other hand, it is l)ossible to connect the points of the contour having the same

potential _ by strips of any form, and it is only necess,try that the lift be 'flways perpemticular
to the strip and its densily have a constant value along the whole strip. According to equation
(40) this equ'tls the difference of the potential at the contour between the two borders of tile

strip. Worthy of note is the special case in which all of the strips run along the contour, thus
coming again to the (:'tse of lifting lines. It appe,trs that:

Closed lilies hare t/_e same mim;,r,,n d" drag as the e,wlosed areas wl_en conti,mousl u loaded.
Especially important are lhose symmetrical contours which arc cut by horizontal lines in

only two points. With such the limitation to vertical lift does not involve an increase of the

mininmm drag. For this case it appears that:
The density of tlre verticol l_t per u_it area must be proportional to the vertical component of

ttte velocity of the two-dimensional flow at the point of the contour of the same height z. It is

The corresponding density of drag is

dA d_
dF = 2v# d) (44)

dW o, d¢
dF = _tc,,o _t-z (45)
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7. EXAMPLES OF CALCULATIONS.

Examples of calculation of the previous demonstrations e'm be based on any calculated
two-dimensional potential tlow around parts of lines or areas. The simplest flow of the first

kind is that around a single horizontal line. It leads to the t,roblenl investigated at the begin-
ning of this paper.

In this case the potential is the real part of (f 1, where p denotes x+iz. The lifting

line joins the two pointsz-0, x=-land z=O, x= +/,and has the length 2. The velocity at

infinity is w = I. The discontinuity of potential along the lifting "line is _,-_ =211 -x _. The

density of lift is distributed according to the same law, therefore if l)lotted over the span the
density of lift would be represented bv the half of an ellipsc.

The ininimmn drag is
1 1

W=AZ.2 -- (46)
vo p/.. 47r

If, instead of tile value 2, the span had the general wdue b, tile minimum drag would be

1 1

IV= :12 • t,:p/-,:7rb_ (47)

This same result has been obtained by Prof. PrandtI by another nmthod. 3
Tile simplest example for a lifting vertical area is the ('ircle. Let its center ('oineide with

the origin of the system of coordinates. Then the i)l)tenti,d of the tlow 're)and this circle is

¢ = .,:+ z (48)

where r _ _,/x2 -t- 2 "_,

the density of lift is
At infinity Be= 1. Under the condition of al_d according to equation (40)

A' 9 d /z "_
= -oop (49)

This results in a constant density of lift of A'= 2. Therefore the drag is

1 1 1

W= :12 " -"6v°G " djcc2d'rdz = "t2 t'°_°/2" 8_ (50)

The double integral is to be taken over the circle. If the general ease for the diameter
equal to D be considered, then the least drag is

1 1
W=:I _" • " " (51)
• v:p,,q, l) _27r

Hence in respect to the minimum drag the circle is e(tuivalent to a lifting line having
a length _'2 times the diameter.

A lifting circular line wmfld have the same nfinimum drag as the circular area.

This result was also obtained by Prof. Prandtl by another metho(t. 4 A reduction of the

original problem of variation to tile two-din_ensional llow sometimes enables a survey of tile
result to be made without calculation. For instance, let a third aerofoil be added between the

two aerofoils of a biplane having a small gap. (The gap may be about one-sixth of the

span.) Then, in order to tind the most favorable distribution of lift, the double line about

which the tlow occurs is to be replaced by three lifting lines. Now, in the region of the middle
lifting line the velocity is small, even before this line is introduce<l. Therefore the discontinuity
of the potential along the nfiddle line is very much sn{aller than that along the others, tlen(:e
it results that the middle aerofoil of a triphme should lift. less than the other two.

• Fi'st eommunk,ation ctmcerning t i,,in Zeitschrift ffir Flugh_chltik and Motorl. 1914. S. 239, ill a hole by 13etz.

See Teehldsche Berichle tier Flugzeugmeisterci Bd. II lleft 3.

108



MINIMU3I INI)U('EI) DRAG OF AI,]I_OI.'Oll,,_.

8. PROCEDURE FOR THE CASE OF FLUIDS WITH SMALL VISCOSITY.

The preceding r(_ults do not apply so much to the e,dculation of the most favorable distrihu-
tion of lift as to the ealeul,dion ()f the least drag. For it appears, and the results are checked

by calculation, that even considerable variations from the eomtition of most favorable distribu-

tion of rift (h) n<)t ine,rease the drag to any great extent. Usually the minimum drag can be
considered as the real drag of the system of aerofoils 'rod in order t<) allow for the effect of
fri(qion of the air it is suitieient to malu_ an addition. This a<htition depends chietly upon the

aerofoil section; it also depends, omitting the Re, ynolds Number, only upon the area of the
wings and on the dynamical pressure. It is imlepemlent of the dimensions of the. system of

wings themselves. It may be useful to have a name for that part of the density of drag, in(h,-
pendent of the friction of the air, whi<'h results from the theory deveh)ped in this paper. It is
called the "in(lu<wd drag." Generally it is not the drag itself but an absolute eoeflicient which
is considered. This eoefli<fent is defined by

c.i = q' F (52)

where I1"/ is the drag previously denoted by It, q is the dynamical pressure %hp/2, and F is
the total area of the wings. Equation (43) can now he written

cj. F

c,,,_= (k. b)_ (53)

t

is the lift <_oefli(4ent p'_;, (_orresponding t<) e,,. The greatest horizontal span b of theW]lere ('a

system of wings perpendicular to the direction of flight is arbitrarily chosen as a length eh'w-
ae, teristic of the proportions of tile system, ]c is ,_ factor characteristic of the system of aero-

foils and has, accor(ling to the preceding, the value.

(54)

It has a special physical significance.
{5_der the ,_<zme comt;tio_s <t ._in(lle aer<ffbil with a spa_, of le time,_ the maximum ._p<tl_qf a

s!/sten_ o)caer_foil,_ • ho,_'the same bMuced mb_imum resistance as the ,_'ffstem.

9. REFINEMENT OF THE THEORY.

The demonstrations given rest on the assumption that the velocities produced by the
vortices are small in <.omparison with the velocity of flight. The next assumption, more ac-

curate, wouhl l)e that only powers high('r than the tirst power eouhl be neglected.
In this case the solutions just found for lifting eleinents in a transverse plane can be con-

sidered as the first step towards the calculation of more exact solutions. The following steps

must be taken: The exact density of drag is W'=A' "' where v is the horizontal velocity
- v0+ v "

pr,)du('ed at the lifting elements by the transverse vortices. It can be calculated exactly

enough from the tirst approximation. Now, the condition of least drag is

w. cos_+_sinC_=u'0eos/3 l+v (15d)

and the flow of potential, according to this condition at the boundary, is to be found. Compared
with the first approximation the density helow is in general somewhat increased and the den-

sity ab,we is somewhat decreased. The minimum drag changes only by quantities of the
second order.
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If tile lifting elem_;nts are distributed in three dimensions a similar refinement can easily
be found. In this ease there is to be taken into consideration a second factor which always

comes in if the difl'erenees of the longitudinal coordinates of the lifting elements are consider-
able. The direction of the longitudinal vortices do not agree exactly with the direction of

ttight, but they coincide with the direction of the velocity of the tluid around the aerofoil.
They are therefore somewhat inclined downwards. A better approximation is obtained by

projecting the lifting elements not in the direction of flight but in a direction slightly inclined

upwards from the rear to the front. This inclination is ab,,ut 2_c0. Except for this, the method

of ealeulatian remains unchanged.
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