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THE AERODYNAMIC FORCES ON AIRSHIP HULLS.

By Mxx M. MUNK.

SUMMARY

This report describes the new method for making computations in connection with tile

study of rigid airships, which was used in the investigation of Navy's ZR-1 by the special

subcommittee of the National Advisory Committee for Aeronautics appointed for this purpose.

It presents the general theory of the air forces on airship hulls of the type mentione(l, and an

attempt has I)cen made ta_ develop the results from the very fundamentals of mechanics, with-

out reference tt) some of the modern highly developed conceptions, which may not yet be

thoroughly known to a reader uninitiated into modern aerodynamics, and which may perhaps

for all times remain restricted to a small number of specialists.

1. GENERAL PROPERTIES OF AERODYNAMIC FLOWS.

The student of the motion of solids in air will find advantage in first neglecting the

viscosity and compressibility of the latter. The influence of these two properties of air are

better studied after the student has become thoroughly familiar with the simpliticd problem.

The results are then t() be corrected aml mottitied; but in most cases they remain substantially
valid.

Accordingly I begin with the discussion of thc general properties of aerodynamic ttows

produced by the motion of one or more solid bodies within a perfect fluid otherwise at rest.

In order to be able to apply the general laws of mechanics to fluid motion I suppose the air to

be divided into particles so small that the differences of velocity at different points of one par-

ticle can be neglected. This is always possible, as sudden changes of velocity do not occur

in actual llows nor in the kind of /lows dealt with at present. The term "tlow" denotes the

entire (listributit)n of velocity in each case.

With aerodynamic th)ws external volume forces (that is, forces uniformly distributed over

the volume) do not occur. The only force of this character which couht be supposed to inilu-

ence the flow is gravity. It is neutralized by the decrease of pressure with increasing ,'altitude,

anti both gravity and pressure decrease can be omitted without injury to the result. This

does not refer to aerostatic forces.such as the buoyancy of an airship, bu t the aerostatie forces

are not a subject of this paper.

The only force acting on a particle is therefore the resultant of the forces exerted by the

adjacent particles. As the ttuid is supposed to be nonviscous, it can not transfer tensions

or forces other than at right angles to the surface through which the transfer takes place. The

consideration of the equilibrium of a small tetrahedron shows, then, that the only kind of tension

possible in a perfect tluid is a pressure of equal magnitude in all directions at the point considered.

In general this pressure is a steady function of the time t and of the three coordinates of

the space, say x, y, and z, at right angles to each other. Consider now a very small cube with

the edges dx, dy, and dz. The mean pressure acting on the face dy dz may be p. The mean

pressure on the oppositc face is then p+ Op/bxdx. The X-component of the resultant volume

force is the difference of these two mean pressures, multiplied by the area of the faces dydz,
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hence, it is - dx dy dz. Per unit volume it is -_)Z' as the volume of the cube is dx, dy, dz.

It can be shown in the same way that the other two components of the force per unit volume

are__P c)Pand- 5z" Such a relation as existing between the pressure distribution and the force

produced t)y it is generally described as the force being the "gradient" of the pressure, or
rather the negative gradient. Any steady distribution of prcssure has a gradient at each point,
but if a distribution of forces (or of other vectors) is given, it is not always possible to assign

a quantity such that the forces are its gradient.
We denote the density of air by p; that is, the mass per unit volume, assumed to be con-

stant, dr may denote the small volume of a particle of air. The mass of this particle is then
pdr. The components of the velocity V of this particle parallel to x, y, and z may 1)e denoted

P dv(_d" + v"_+ u,a) anti theby u, v, and w. Each particle ires then the kinetic energy dT= 2

component of momentum, say in the X dire('ti_m, is pdr_. Tile kinetic energy of the entire

flow is the integral of that of all particles.

T=_f(,,'+v'+w")dr ..................... (1)

Similarly, the c-mtmnent of momentum in the X-directi.n is the integral

pf_,dr .................................. (2)

and two similar equations give the components for the two other directitms. These integrals
will later be transformed to make them tit for actual computation of the energy and the
momentum.

It is sometimes useful to consider very large forces, pressures, or w>lume forces acting
during a time element dt so that their product by this time element becomes tinite. Such
actions are called "imt)ulsive." Multiplied by the time element they are called impulses, or

density of impulse per unit area or unit volume as the case may be.
After these general definitions and explanations, I proceed to establish the equations

which govern an aerodynamic flow. I)ue to the assumcd c,,nstant density, we have the well-
known equation of continuity

i)_l i)_, 5w .
5x +by + (3z =O .......................... (3)

We turn now to the fact that for aerodynamic problems the flow can be assumed to be

produced by the motion of bodies in air originally at rest. As ext)lained above, the only force

per unit w)lume acting on each i)article is the gradient of the l)ressure. Now, this gradient
can only 1)e formed and exlu'essed if the ])ressure is given as a function of the sf)ace co()rdinates
x, y, and z. The laws of nlechanics, on the other hand, deal with one particular l)article, and
this does not stand still lint cimngcs its sl)ace r,(mlinates (,ontimmliy. In order to avoid
difliculties arising t hcrefr,,m, it is convenient tirst to c,,nsidcr the flow during a very short
time interval d[ ,nly during which the changes of the space c..r(hnates t,f the l)articles can he

neglected as all wdocities are finite. The forces and 1)ressuves, however, are SUl)posed to be
impulsive, so that during the short interval tinite changes of velocity take place. Suppose
tirst the ttuid and the bodies immersed therein to be at rest. During the creation of the tlow

the density of impulse per unit area may be P, i. e., 1 )-fp,tt. The principles of mechanics

give then
bP

lip = --7_X
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and similarly in the two other directions

5 P

........... (4)

P) state investigation the
\

Hence the veh)city thus created is tile gradient of - p •
At this of

value of P- is not yet known. But the important result is that the flow thus created is of the
P

type having a distribution of velocity which is a gradient of some quantity, called the velocity

potential _. if) is the impulse density which would stop the flow, divided t)y the density p.
According to (4)

5¢, a_ a4_

u=_) x, v=a?/, W=az ........... (5)
from which follows

ff_= J'(,dx +vd!t + wdz) ......... (ti)

A second differentiation of (5) gives
art _V

5y=_, etc ..................... (7)

since both are equal to axay" The substitution of (5) into the equation of continuity (3) gives

iy=ff_ b2_ a24_ .
az,+by=+az= =u ......................... (8)

(Laplace's equation), which is the desired equation for the potential (P. The sum of any

solutions of (8) is a solution of (8) again, a_ can easily t)e seen. This is equivalent to the super-
position of flows; the sum of the potential, of the impulsive pressures, or of the velocity com-
ponents of several potential flows give a potential tlow again.

All this refers originally to the ease only that the flow is ereated by one impulsive pressure

from rest. But every contimmus and changing pressure can be replaced by inlinitely many
small iml)ulsive pressures, and the resultant tlow is the superposition of the ltows created by
each impulsive pressure. And as the superposition of potential flows gives a potential flow
again, it is thus demonstrated that all aerodynamic flows are potential flows.

It can further be shown that for each motion of the bodies hnmersed in the fluid, there
exists only one potential flow. For the integral (6) applied to a stream line (that is, a line
always parallel to the velocity) has always the same sign of the integrant, and hence can not

become zero. tIence a stream line can not be closed, as otherwise the integral (6) would give
two different potentials for the same point, or different impulsive pressures, which is not pos-
sible. On the contrary, each streaan line begins and ends at the surface of one of the immersed
t)odies. Now suppose that two potential flows exist for one motion of the bodies. Then

reverse one of them by changing the sign of the potential and superpose it on the other. Thc

resulting tlow is characterized by all bodies being at rest. But then no stream line can begin
at their surface, and hence the flow has no stream lines at all and the two original flows are
demonstrated to he identical.

It remains to compute the pressure at each point of a potential flow. The acceleration

of each particle is equal to the negative gradient of the pressure, divided by the density of
the ttui(l. The pressure is therefore to be expressed as a function of the space coordinates,

du
and so is the acceleration of a particle. Each component of the acceleration, say d[' has to

be expressed by the local rate of change of the velocity component at a certain point at and
22--24--30
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by the velocity comp_ments and their local deriwttives themselves. This is done by the equa-

tion

dt = bt 4 71 b.r + vb?/-+ u'b_. - .................

For during lhe unit of lime Ihe t,artiele changes its coordinates by _, v, and ,,' respe('liveiv,
b_t

and therefore rea('hes a region where the vehwity is larger by _tbx, etc. This increase of

velocity has to be _M(led t, the rate of change per unit tbne of the velocity at one particular

point.

The ,,.,eneral prin,'ilde._ _,f me,'hani<'s, applied t<> a pariicle _ff" trail wdume, _ive therefore

d,, b. bu ifl,_ OJ_, 1
= w_- ..... p 0p (1o_+It bt ;ubz _ <:)y _ z bz ...................

Suhstituting equation _7) in the last e<tuation, we have

O_L bPI by , bw I bp
bt 4 ub. r _ vbz • wb.r = -- p b2" .................. (1 1)

Integratiltg tiffs wil h respect Io d.r gives

Pbtb'l'+'2P "_' _e_+ '':) :: :PIP .......

'['he equations for the two other components of the acceleration would give the same equation.

Hence it appears that the pressure can t>e divided into two parts superposed. The tirst part,

cM,.
-Phi ,is the part .f the pressurebuihling np m" ,'hanging the l>,4entia[ flow. It is zer,, if the

thrw is steady; that, is, if

<.)+

bt =¢) ..... _13)

The see_md part,

- I': P_....................... (14)
%/

if the pressure necessary to maintain and kee l) up the steady p<,tenlial ttow. It depends only

on the velocity and density of the fluid. The greater the velocity, the smaller the pressure.

It is sometimes called Bermmilli's pressure. This pressure ,wts permanently without <'hanging

the flow, and hence without changing its kinetic energy. It folh)ws therefore that lhe Pier-

nouilli's pressure il4) acting on the surface of st moving body, can not perform or consume

any mechanical work. ]len('e in the case of the straight m<)tbm .f a body the colnp(ment c_f

resultant force parallel t,) the motion is zero.

Some iinpor/aut fox'ntuhts follow from the ('reati<m .f the tlow by the impulsive pressure

--¢p. i will assullte OllC hody only, though thi_ is not al)sohnely necessary for _t part of the

results. The distril>ulimt of this impulsive pressure over the surface of the t)odies or body is

characterized by a resultant impulsive force and a resultant impulsive moment. As further

characteristic there is the mechanical work performed t)y the impulsive pressure during the

creation of the flow, ahsorh<,d by the air and c,n/ained aft(,rwan'<ls in the flow as kinetic en<,r<,.,y

,)f all partich, s.

It happens sometimes that the momentum imparted I() lhe flow around a body movinv

translatory is parallel to the motion of the body. Since this momentum is proportional to the

velocity, the eit'ect (>f the air on the motion of the body in this direction is then taken care of by

imparting to the body an apparent additional inass. If the velocity is not accelerated, no force

is necessary 1_) maintain the motion. The body experiences no drag, which is plausible, as no

dissipation of energy is assumed. A similar lhing may happen wilh st rotating body, where
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then tile body seems to possess an apparent additional moment of momentum. In general,
however, the momentum imparted to the tt_fid is not parallel to the motion of the body, but it
possesses a lateral component. The body in general possesses different apparent masses with
respect to motions in different directions, and that makes the mechani('s of a body surrounded
by a perfect fluid different from that of one moving in a vacuum.

The kinetic energy iml)arted to the air is in a simple relation to the momentum and the
I"

velocity of the body. During the generation of the flow the body has the average velocity 2

V
during the time dr, hence i't moves through the distance 2dt' The work performed is equal

to the product (_f the component of resultant force of the creating pressure in the direction of
motion, multiplied by this path, hence it is equal to half the product of the veh)city and the

component of the impulsive force in its direction.
The same argument can be used for the impulsive pressure acting over the surface of the

body. Let dn be a linear element at right angles to the surface of the body drawn outward.

The velocity at right angles to the surface is then, -d_/dn and the pressure -o_P acts through
• d_/dn

the ¢hstance- ,, dt. The work performed all over the suHaee is therefore

'l' dndS .............................. (15)

which integral is to be extended over the entire surface of the body consisting of all the elements
dS. The expression under the integral contains the mass of the element of fluid displaced
by the surface clement of the body per unit of time, each element of mass multiplied by the

velocity potential. The Bernouilli pressure does not perform any work, as discussed above,
and is therefore omitted.

The apparent mass of a body moving in a particular direction depends on the density of the
fluid. It is more convenient therefore to consider a volume of the tluid having a mass equal

to the apparent mass of the body. This volume is

T
K=---- ................................. (16)

and depends only on the dimensions and form of the body.
The kinetic energy of the flow relative to a moving body in an infinite fluid is of course

infinite. It is possible, however, to consider the diminution of the kinetic energy of the air
moving with constant velocity brought about by the presence of a body at rest. This diminu-
tion of energy has two causes. The body displaces fluid, and hence the entire energy of the
fluid is lessened by the kinetic energy of the displaced fluid. Further, the velocity of the air
in the neighborhood of the body is dinfinished on the average. The forces between the body
and the [luid are the same in hoth cases, whether the air or the body moves. Hence this second

diminution of kinetic energy is equal to the kinetic energy of the flow produced by the moving
body in the fluid otherwise at rest•

1I. THE AERODYNAMIC FORCES ON AIRSHIP HULLS.

An important branch of theoretical aerodynamics deals with moments on bodies mov-
ing through the air while producing a potential flow. Wings produce a flow different from a
potential flow, in the strict meaning of the word. The wings have therefore to be excluded
from the following discussion.

Consider first bodies moving straight and with constant velocity V through air extending
in all directions to infinity. There can not then be a drag, as the kinetic energy of the flow

remains constant and no dissipation of energy is supposed to take place. Nor can there be a
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lift in eonformity with the remarks just raade, ttenee the air pressures can at best produce
a resultant pure couple of forces or resultant moment. The magnitude and direction of this

moment will depend on the magnitude of 17e velocity V and on the position of the body rela-
tive to the direction of its motion. With a change of velocity all pressures measured from a
suitable standard, change proportional to the square of the velocity, as follows from equation
(14). IIenee the resultant moment is likewise proportional to tile square of the velocity. In
addition it will depend on the position of the body relative to the direction of motion. The

study of this latter relation is the chief subject of this section. At each different position of
the body relative to the motion the flow produced is different in general and so is the mo,nentunt
of the lIow, possessing different components in the direction of and at right angles to the direc-
tion of motion. By no means, however, can the relation between the momentum and the
direction of motion be quite arbitrarily prescribed. The flow due to the straight motion in

any direction can be obtained by the superposition of three flows produced by the motions in
three partieular directions. That restriets the possibilities considerably. But that is not all,
the moments can not even arbitrarily be prescribed in three direetions. I shall presently
show that there are additional restrictions based on the principle of conservation of energy
and momentum.

Let there be a component of the momentum lateral to the motion, equal to K_Vp, where

p denotes the density of the air. Since the body is advancing, this lateral component of the
momentum has continually to be annihilated at its momentary position and to be created anew
in its next position, occupied a moment later. This process requires a resultant moment

M= K3V2p .................................. (17)

about an axis at right angles to the direction of motion and to the momentum. In other words,
the lateral component of the momentum multiplied by the velocity gives directly the resultant
moment. Conversely, if the body experiences no resultant moment and hence is in equilibrium,
the momentum of the air flow must be parallel to the motion.

Now consider allow relative to the body with constant velocity V except for the disturb-
anee of the body and let us examine its (diminution of) kinetic energy. If the body changes

its position very slowly, so that the flow ean still be considered as steady, the resultant moment
is not affected by the rotation but is the same as corresponding to the momentary position and

stationary flow. This moment then performs or absorbs work (luring the slow rotation. It
either tends to accelerate the rotation, so that the body has to be braked, or it is necessary to
exert a moment on the body in order to overcome the resultant moment. This work performed

or absorbed makes up for the change of the kinetic energy of the tlow. That gives a fundamental
relation between the energy and the resultant moment.

There are as many different positions of the body relalive to its motion as a sphere has
radii. The kinetic energy of the flow is in general different for all directions, the velocity t"

and dens;ty p supposed to be constant. 'It has the same value, however, if the motion of the
immersed solid is reversed, for then the entire flow is reversed. Therefore each pair of direc-

tions differing by 180 ° has the same kinetic enei'gy. This energy moreover is always positive
and finite. There must therefore be at least one pair of direetious, where it is _t minimum and
one where it is a max;inure. Moving paralM t.o either ,,f lhese directions the body is in equilib-

rium and experiences no resultant mmnent. This follows from the consideration thai then _L
small change in the direction of motion does not give rise to _t correst)onding change of the
kinetic energy; the moment does not perform any work, and hence must be zero. The equilibrium
is stable if the diminution of energy of the entire th)w is a maximum and unstable if it is a mini-

mum. It can be prove([ that in addition there must t)i_ at least one other axis of equilibrium.
This is the position "neutral" with respect to the stable direetion and at the same time neutral
with respect to the unstable one. I call these directions "main axes."

I proceed to demonstrate that the three main axes of equilibrimn are always at right angles
to each other. Consider tirst the inotion parallel to a phme through one of the main axes and
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only tile components of the momentum parallel to this plane. The direction of motion of the
body may be indicated t)y the angle a in such a way that a = O is one motion of equilibrium, and
hence without lateral component of momentum. The component of momentum in the direc-
t.ion of tile motion may then (that is, when a=O) be ](_0V. When moving at the

angle of a= 90 °, the momentum may be supposed to possess the components K_pV parallel
and K3p V at right, angles to the motion, and we shall prove at once that the only momentum
is tile former.

The kinetic energy for any dirccti,)n a can be written in the general form

o (K_ cos"- a + K: sin 2 a + 1(3 cos a sin o_)T=V2_

and hence the resultant moment is

M=dT/dc_=V_[(h':-KI) sin2a+K3cos2ct] ......... (18)

This resultant moment was supposed to be zero at a=O. lIence I(3-0, and it folh)ws that:

a = 90 ° is a position of equilibrium for nu)ti,)ns in the phlne considered. :ks for other motions,
it is to be noticed that the third component ,)f the momentum, at right angles to the plane.

changes if the plane rotates around tire axis of equilibrium. It necessarily changes its sign
(luring _ revolution, and while doing it M is zero. Thus it is demonstrated that there are at
least two axes at right angles to cach other where all lateral components of the momcntmn arc
zero, and hence the motion is in equilibrium. And as this argument hohls true for any patrol the
three axes of equilibrium, it is proved that there arc always at least three axes of equilibrium

at right angles to each other.
Resolving the veh)city V of the body into three components, t_,v, w, parallel to these three

main axes, the kinetic energy can be expressed

P (K_,,_+ K:v_+ K_)2

The differential of tile energy
p (K, ud_ + K.vdv + K3u'du,)

is identically zero in more th'm three pairs of positions only if at least two of the K's are equal.
Then it is zero in an infinite number of directions, and there are an infinite number of directions

of equilibrium. The body is in equilibrium in all directions of motion only if all three K's are
equal; that is, if the apparent mass of the body is the same in all directions. Timt is a special
case.

hi all other cases the 1)ody experiences a resultant moment if moving with the velocity com-

ponents 7t. v. and w parallel to the three main axes. The component of this resultant moment
is determine(l by the momentary lateral monlentum and its components, as stated in equation
17.

In most practical problems the motion occurs in a main plane; that is, at right angles to a
main axis. Then the entire resultant moment is according to (17) the product of the velocity

and tire c(,mponent of momentum at right angles to it., giving

M= V 2 p K,) sin 2 a. (19)2(K:- _.................

In general, the three main momenta of the flow, parallel to the respective motion, do not

pass through one center. Practical problems occur chiefly with bodies of revolution. With them
as well as with bodies with a center of symmetry--that is, such as have three planes of symmetry--
the relation between the motion and the momenta is simple. It follows then from symmetry

that tile body possesses an aerodynamic center through which the three main momenta pass.
This means that the body can he put into any straigtit motion by applying a force at a fixed
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center. The force, however, is not parallel to the motion except in the main directions. The

center where the force has to t)e applied coincides with the aerodynamic center, if the center of

gravity of the body does so or if the mass of the body itself can be neglected compared with
any of the three main additional masses.

Airship hulls are often bounded by surfaces of revolution. In addition they are usually
rather elongated, and if the cross sections are not exactly round, they are at least approximately
of equal and symmetrical shape and arranged along a straight axis. Surfaces of revolution
have, of course, equal transverse apparent masses; each transverse axis at right angles to the
axis of revolution is a main direction. For very elongated surfaces of revolution a further

important statement may be made regarding the magnitude ,)f the longitudinal and transverse
apparent mass. When moving transversely the flow is approximately two-dimensional along

the greatest part of the length. The apparent additional mass of a circular cylinder moving at
right angles to its axis will be shown to be equal to the mass of the displaced fluid. It follow.,
therefore that the apparent transverse additional mass of a very elongated body of revolution

is approximately equal to the mass of the displaced fluid. It is _lightly smaller, as near the
ends the fluid has opportunity to pass the bow and stern. For ('ro._s sections other than circular
the two main apparent masses follow in a similar way from the apparent mass of the ('ross
section in the two-dimensional flow.

The longitudinal apparent additional mass, on the other hand, issmall whencompared with
the mass of the displaced fluid. It can be neglected if the b,)dy is very elongated or can at
least be rated as a small correction. This follows from the fact that only near the bow am| the

stern does the air have velocities of the same order of magnitude as the velocity of motion.
Along the ship the veh)city not only is much smaller but its direction is essentially opposite t,)
the direction of motion, for the bow is continually displacing fluid and the stern makes room
free for the reception of the same quantity of fluid, ltence the fluid is flowing from the bow to
the stern, and as only a c(rmparatively small volume is displaced per unit, of time and the space
is free in all directions to distribute the flow, the average veh)(.itv will be small.

It is possible to study this flow more closely and t() prove analytically that the ratio of the
apparent mass to the displaced mass approaches zero with in('rea_ing elongation. This proof,
however, requires the study or knowledge of quite a nmnber of conceptions and theorems,and

it seems hardly worth while to have the student go through _dl this in order to prove such a
plausible and trivial fact.

The actual magnitudes of the longitndinal and transverse masses of elongated surfaces of
revolution can be studied by means of exact computations made by H. Lamb (reference 5),

with ellipsoids of revolutions of different rat:to of elongation. The figures of /:, and ]q_,where
K= k × volume, obtained by him are contained in Table. I of this paper, and/q - t'_ is computed.
For bodies of a shape reasonably similar to ellipsoids it can be approximately assumed that.
t/c,-/¢2) has the same value as for an ellipsoid of the same length and volume; that is, if Vol/L 3
has the same value.

The next problem of interest is the resultant, aerodynamic force if the body rotates with
constant velocity around an axis outside of itself. That is now comparatively simple, as the
results of the last section can-t)e used. The configuration of flow follows the body, with constant

shape, magnitude, and hence with constant kinetic energy. The resultant aerodynamic force,
therefore, must be such as neither to consume nor to perform mechanical work. This leads
to the conclusion that the resultant force must pass through the axis of rotation. In general
it has both a component at right angles and one parallel to the motion of the center of the body.

I confine the investigation to a surface of revolution. Let an airship with the apparent

masses K,p and I(._p and the apparent moment of inertia K'p for rotation about a transverse
axis through its aerodynamic center move with the velocity V _,f its aerodynamic center around
an axis at the distance r from its aerodynamic center and let the angle of yaw 4, be measured
between the axis of the ship and the tangent of the circular p_th at the aerodynamic center.

The ship is then rotating with the constant angular velocity V/r. The entire motion can be
obtained by superposition of the longitudinal motion V cos ¢ of the aerodynamic center, the
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tranverse v(,locity l'sin 6, and the angular velocity V/r. The longitudinal component of tile
momentum is I% cos g,. k,. vol, and the tranverse component of the momentum is Vp sin ¢.
k:. vol. Besides, there is a monwnt of momentum due to the rotation. This can be expressed
by introducing the apparent moment of inertia K'p=l_",lp where J is the moment: of inertia of
the disph,ced nit; thus making the anguhu" momentunl

:ks it does not change, it does not give ris(, to any resultant aerodynamic force or moment during
the motion under consideration.

The momentum remains consl_m(, too, but changes its direction with the angular velocity
V/r. This requires a force passing through the center of turn and having the tranverse eom-
Imnen(

P't :- K,p cos _)I"/r ............................. (20)

;m,l th,' hm_it,ulin:,l (.()lrlporr(,ii[

I" l - h'_p sin ¢l':/r .......................... (2l)

The tirst term is almost some kind of cent,'ifugal force. Some nir accompanies the ship, increas-
ing its longitudimd mass and hence its centrifugal force. It will be noticed that with actual
Mrships this additional centrifug,l ro,.c,, is small, as k, is small. The force attacking at the
(.(mt(u' of the turn (ran be rephmed by the same fore(, ntttmking at (he "*erodyn)_mic center nml
a m,)morl( :,round (his (,(,nl(w of lit(, mngnitudo.

.1/=_ _(h_- h'))p sin 2<hi: ........ (22)

This rot)men( is equal in dir('ction ,ud nurgnitu(le to the unstnblc mom(,n( found during straight
moti(m under the same angle of pitch or yaw. The longitudinal force is in practice a negative

([rn_ as the bow of the ship is turned toward the inside of the circle. It is of no great practical
importnnee as it does not, produce considerable structural stresses.

It appears thus that the ship when flying in a curve or circle experiences almost the same

r(,sult_mt moment as when flying straight and under the same angle of pitch or yaw. I proceed to
show, however, that the transverse aerodynamic forces producing this resultant moment are
(listributed differently M<mg th(, nxis of (he ship in the two eases.

The distribution of tit(' transverse nerodynnmic forces nlong the _lxis can conveniently
be ('ompute(l for very ehmgated airships. It may be supp(/sed th'd the cross section is eircuhrr,
although it is easy to g(,neralizc the proceeding for a more general shape of the cross section.

Th(, following investigation requires the knowledge of the apparent additional mass of a

('ircular cylinder moving in a two-dimensional flow. I proceed to show that this apparent
a(hlitionM mass is exactly e(lual to the mass of the fluid displaced by the cylinder. In the
two-tlimensional flow the cylinder is represented by a circle.

Let the center of this circle coineide with the origin of a system of polar coordinates h' and

0, moving with it, and let the radius of the circle be denoted by r. Then the velocity poten-
(ial of the [low created by this cirele moving in the direction _= 0 with the veloeity v is
,1> _,,._(cos O)'R. For this potential gives the radial velocity components

d_ z':
dR = -VR2 cos

and at the circumference of the circle this velocity becomes v cos (_. This is in fact the normal

component of velocity of a circle moving with the velocity v in the specified direction.
The kinetic energy of this flow is now to be determined. In analogy to equation (15),

this ix dent, by integrating along the cir('umfcrence of the circle the product of (a) lilt, (q(,ments

C )of lu,lf the mnss of the fluid penetrating flw circle ,_ cos 4wrdO and (b), the vnhw .f (he veloc-
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ity potential at that point (-v cos @.r). The integral is therefore

p _:r

2re c°s2 _vaPd¢

giving the kinetic energy r=Trv2;.

This shows that in fact thc area of apparent mass is equal to the area of the circle.
I am now enabled to retm'n to the airstrip.
If a very elongated airship is in translatory hertz(total motion through air otherwise at rest

amt is slightly pitched, tim component of tim moti(m of the air in the direction of ttw ._xis of the
ship can be neglected. The air gives way to the passing ship by flowing around the axis of the

ship, not by flowing along it. Tim air located in a vertical plane at right angles to the motion
remains in that plane, so that the motion in ea(.h plane can be considered to be two-dimensional.
Consider one such approximately vertical layer of air at right angles to the axis while the ship
is passing horizontally through it. The ship displaces a circular portion of this layer, and this

portion changes its posilion and its size. The rate of change of position ix expressed by an
apparent velocity of thi_ ('ircular portion, the motion of the air in the w, rtical layer is described
by the two-dimensional tlow produced l)v a circle moving with the same velocity. The momen-
tum of this ltow is Svpdz, where S is the area of the ('ircle, and v the vertical veh)city of the

circle, and dx the tlfickness of tim htycr. C(msider first the straight, flight of the ship under the

angle of pitch ¢. The velocity v of the displaced circular portion of the layer is then constant
over the whole length of the strip anti is V sin _, where V is the veh)city of the airship ahmg the
circle. Not so the area >,': it changes ahmg the ship. At a particular layer it changes with the

rate of change per unit time,
d,s'

1" cos ¢. dx

where x denotes the longitudinal coordinate.
Therefore the moment mn changes with the rate of change

;'"P sin '-'4JdSdz
"2 dx

This gives a down f()rcc (m thc ship with the magnitu(I(_

dI e= dx I "2o sin 94_dS2 - d _ ........................... ('-,a)

Next, consider the ship when tzn'ning, the angle of yaw being oh. The mmnez_hnn in each layer
is again

rb'pd._

The transverse rob)city _, is nuw variable, to, b as it is composed t,f the constant ln,rtiml I" sin O,

t)roduced by thc yaw, and cf the variable portion l'x. . ;: cos _, pr,)duced by the turning, x = 0

represents the aerodynamic center. Hence the ratc of change of the monlentum per unit
length is

l.:p d,S' V 2 d(rsin 2_dx+p r cos ¢ (.rS')

giving rise to the transverse force per unit length

" I, dS\
=P2 2,dd_ + V'° r cosV sin *IS + Xdx )

\ /

or otherwise written

dF=da" I'2_ sin24_ dS+ V:p cos@ S+ V zO cos 4,.x_1x ............ (24)
dx r ?"
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The tirst term agrees with tile moment of the ship flying straight having a l)itch _. The
direction of this transverse force is opposite at the two ends, and gives rise to an unstal)le
moment. The ships in practice have the bow turned inward when they fly in turn. Then the

transverse force represented by the first term of (24) is directed inward near the bow and out-
ward near the stern.

The sum of the sec_)nd and third terms (,f (24) gives no resultant f(wce or moment. The
second term ahme gives a transverse force, being in magnitude and distribution alnm.st (,(lual t_
the transverse component of the centrifugal force of the disl)laced air, hut reversed. This latter

becomes clear at the cylindrical porti,)n of the ship, where the two other terms arc zero. The
front part of the cylindrical portion moves toward the center of the turn and the rear t)art
moves away from it. The inward m_mlentum ,)f the th)w has t_) change int(J an outward mo-

mentum, requiring an outward f_wee "_cting on the air, and giving rise t(_ an inward force
reacting this change of momentum.

The third term (,f (24) r(q_resents forces alm()st c_mcentrated near the two ends and their
sum. in magnitude and directi(m is ('qnal t_) the tt'ansvers(, c_,iUl)Onent ()f the centrifug_fl f(w('e of
the disl)laced air. They are directed outward.

Ships only m(_dcrately ehmgated have resultant forces and a distributi(m (_f them differing
from those given t)v the formulas (23) and (2t). The assumption of the l'uers remaining plane

is more accurate near the Ijfiddle of the ship th'm m,ar the ends, and in c()ns(_quence the trans-
verse forces arc diminished to a greater extent at the ends than near the ('ylindrical part when
compared with the very ehmgated hulls. In practice, however, it will often 1)e exact enough

t(_ assume the same shape of distribution for each term and to m(,dify the transverse for('es by
constant diminishing factors. These factor_ are logically to he chosen different for the different
terms of (24). For the first term represents the f_wces giving the resultant monlent 1)r(q)ortional
to (k2-/q), aml hen('e it is rea_,)n,d)le to diminish this term t)v multiplying it by (k2- ]q). The
second and third t_,rms take care of the momenta _)f the air thawing transverse with a velocity
t)r(q)ortional 1(_ the distance fr[,m the aer,)dynamic center. The moment of inertia _)f the

momenta really comes in, and thcl'cforl, it seems r(,asonat)h, t() diminish these terms by the
f:wt,)r k', the ratio t_f the al)parent mom_,nt of inertia t4) the moment _)f in(,rtia _)f the displaced air.

The transverse component of the centrifugal force produced by the air taken ahmg with the
ship due to its longitudinal mass is neglected. Its magnitude is _mall; the dislributi()n is dis-

cuss,,d in reference (3) ,rod may he omitted in this treatise.
The entire transverse force on an airship, turning under an angle of yaw with the velocity

I" and a radius r, is, according to the preceding discussion,

. - 2 r dx cos _ ........... (25)

This expression does not contain of course the air forces on the fins.
In the first two parts of this paper I discussed the dynamical forces of bodies moving

along a straight or curved path in a perfect fluid. In particular I considered the case of a very

elongated body and as a special case again one bounded by a surface of revolution.
The hulls of modern rigid airships are mostly surfaces of revolution and rather elongated

ones, too. The ratio of the length to the greatest diameter varies from 6 to 10. With this
elongation, particularly if greater than 8, the relations valid for infinite elongation require
only a small correction, only a few per cent, which can be estimated from the case of ellipsoids
for which the forces are known for any elongation. It is true that the transverse forces are

not only increased or decreased uniformly, but also the character of their distribution is slightly
changed. But this can be neglected for most practical applications, and especially so since
there are other differences between theoretical and actual phenomena.

Serious differences are implied by the assumption that the air is a perfect fluid. It is not,
and as a consequence the air forces do not agree with those in a perfect fluid. The resulting

air force by no means gives rise to a resulting moment.only; it is well known that an airship
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hull model without fins experiences both a drag and a lift, if inclined. The discussion of the

drag is beyond the scope of this paper. The lift is very small, less than 1 per cent of the

lift of a wing with the same surface area. But tile resulting moment is comparatively small,

too, and therefore it hal)pens that the resulting moment about the center of volume is only

al)out 70 per cent q)f that CXl)ected in a perfect fluid. It appears, ]mwever, that the actual

r,,sulting moment is at lenst of the same range of magnitude, and lhe c.ntemplati-n of the

i)erfect fluid gives therefore an exl)htnation of the phenomenon. The difference can l)e

exphdned. The fhiw is not perfectly irrotational, for there are free vortices near the ltull,

especially at its rear end, where the air leaves the hull. They give a lift. acting at the relir

end of the hull. and tten('e de('re'lsing the unstable moment wilh respect tu the center of v.hune

_.Comsfonf
V r ._ect,bn"_

flOW -_----_--_ 'W Ster m

S

tr I ' ' : t"_-:_ (k-kldS'"'_'

.(5om_2 o-¢: if7 Sfr-c,<'_# /'Iiqhf itm, Y_c" l,sh

ii ii,
k' I,"" ,;Pcos _,S"

A/egoY/_ e ce,'Tlr'/fuq,7/ fo/'ce >

k' V'-Pcos_x d,S
i" ado

l:i,,. I.--l)iagram _llo_ing tim direction o[ tho tiali_c't'_e iiir fot_e_

acting 011 ltll airship flying in a turn. ]'lie three terms are to be

added together.

+t.0

What is l)erhaps more imt)ortant, they produce it kind of induced ilownwiish, tliminishing the

effective angle of attack, and hence the unstable inolnent.

This refers to airship hulls without fins, which arc of n(, l)ractical interest. Airshi l) ltull._

with fins must be considered in a different way. Tim lins are a kind of wings; trod the flow

around them, if ttley are inclined, is far from being even approximately.irrotational and their

lift is not zero. The circulation of the inclined fins is not zero; and as they are arranged in the

rear of the shit), tire vertical flow induced by the fins in front of them around the hull is directed

upward if the ship is n()se(l Ul). Therefore the effective angle of attack is increased, and the
inthiclwe of die lift of the hull itself is counteracted. For this reason it is to be expected thlit

the tl'ansverse forces of hulls with fins in air agree better with these in a perfect fluid. Some

uiodel tests to be discussed now confirm this.
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These tests give the lift and the moment with respect to the center of volume at different
angles of attack and with two different sizes of fins. If one computes the difference between
the observed moment and the expected moment of the hull alone, and divides the difference
by the observed lift, the apparent center of pressure of the lift of the fins results. If the center
of pressure is situated near the middle of the fins, and it is. it can be inferred that tile actual

flow of the air around the hull is not very different from the flow of a perfect fluid. It follows,
then, that the distribution of the transverse forces in a perfect fluid gives a good approximation
of the actual distribution, and not only for the case of straight flight under consideration, but

_lso if tile ship moves along a circular path.
The model tests which I proceed to use were made by Georg Futu'mann in the ohl Goet-

tingen wind tunnel and published in the Zeitschrift ftir Flugtechnik und Motorluftschiffahrt,
1910. The model, represented in Figure 3, had a length of 1,145 millimeters, a maximum
diameter of 188 millimeters, and a volume of 0.0182 cubic meter. Two sets of fins were
attached to the hull, one after another; the smaller fins were rectangular, 6.5 by 13 centimeters,

and the larger ones, S by 15 centimeters. (Volume) =/3=0.069 square meter. In Figure 3 both
fins are shown. The diagram in Figure 2 gives both the observed lift and the moment expressed
by means of absolute coefiieients. They are reduced to the unit of the dynamical pressure,
and also the moment is redticed to the unit of the volume, and the lift to the unit of (volume) _'_

, fins of model_

fin b_

0 ° 2 ° 4 ° 6 ° 8 ° IO ° 12 ° 14 ° /6* 18 °
t_L_._ Angler O'f o#ock

Fro. 3.--Airship model. FIG. 4._Center of pressure of fin t'orces.

Diagram Figure 4 shows tile position of the center of pressure computed as described
before. Tile two horizontal lines represent the leading and the trailing end of the fins. It

appeat-_ that for both sizes of the fins the curves nearly agree, particularly for greater angles
of attack at which the tests are more accurate. The center of pressure is situated at about
40 per cent of the chord of the fins. I conclude from this that the theory of a perfect fluid
gives a good indication of the actual distribution of the transverse forces. In view of the
small scale of the model, the agreement may be even better with actual airships.

III. SOME PRACTICAL CONCLUSIONS.

The last examination seems to indicate that the actual unstable moment of the hull

in air agrees nearly with that in a perfect fluid. Now the actual airships with fins are statically
unstable (as the word is generally understood, not aerostatically of course), but not much s%
and for the present general discussion it can be assumed that the unstable moment of the hull
is nearly neutralized by the transverse force of the fins. [ have shown that this unstable

moment is M= (volume) (k_-k_) V 2p sin 2¢, where (ko-k,) denotes the factor of correction
" - 2

due to finite elongation. Its magnitude is discussed in the first part of this paper. Hence the

transverse force of the fins must be about M where a denotes the distance between the fin and
a

the center of gravity of the ship. Then the effective area of the fins--that is, the area of a wing
giving the same lift in a two-dimensional flow--follows:

(Volume) (k2 - k_)
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Taking into account the span b of the fins--that is, tile distance of two utmost points of a pair
of fins--the effective fin area S must be

l+2b S
(Volume) (/c_- kl) × ....

a 7r

This area S, however, is greater than the actual fin area. Its exact size is uncertain, but a far
better approximation than the tin area is obtained by taking the projection of the fins and tile
part of the hull between them. This is particularly true if the diameter of the hull t)etween
the fins is small.

If the ends of two airships are similar, it follows that the fin area must be proportional
to (k_-k_)(volume)/a. For rather elongated airships (k_-k_) is ahnost equal to 1 and con-
stant, and for such ships therefore it follows that the fin area must be proportional to (volume)/a,

or, less exactly, to the greatest cross section, rather than to (volume) m. Comparatively short
ships, however, have a factor (k_-]q) rather variable, and with them the fin area is more nearly
proportional to (volume):/L

This refers to circular section airships. Hulls with elliptical section require greater fins
parallel to the greater plan view. If the greater axis of the ellipse is horizontal, such ships are
subjected to the same bending moments for equal lift and size, but the section modulus is
smaller, and hence the stresses are increased. They re(luirc, however, a smaller angle of attack
for the same lift. The reverse holds true for elliptical sections with the greater axes vertical.

If the airshi t) flies along a circular path, the centrifugal force must be neutralized by the
transverse force of the tin, for only the fin gives a considerable resultant transverse force. At
the same time the fin is supposed nearly to neutralize the unstat)le moment. I have shown

now that the angular velocity, though indeed producing a consideral)le change of the distribution
of the transverse forces, and hence of the berating moments, does not give rise to a resulting
force or moment, ttence, the ship flying along the circular path must be inclined l)y the same
angle of yaw as if the transverse force is produced (luring a rectilinear flight by pitching. Front
the equation of the transverse force

Vol(k_-k_) V:_ sin 24,V2
Vol p =

r (1

it. follows that the angle is approximately

a 1

¢ _ r k:- k,

This expression in turn can be used for the determination of the distribution of the transverse
forces due to the inclination. The resultant transverse force is produced by the inclination

of the tins. The rotation of the rudder has chiefly the purpose of neutralizing the damping
moment of the tins themselves.

From the last relation, substituted in equation (25), follows approximately the distril)ution
of the transverse forces due to the inclination of pitch, consisting of

dS i, 2 o 2adz (26)
dx 2 r .................

This is only one part of the transverse forces. The other part is due to the angular velocity;
it is approximately

k ,2x dS DpI "2°..dx + k'r-dx ' z r Sdx .......................... (27)

The first term in (27) together with (26) gives a part of the bending moment. The second
term in (27), having mainly a direction opposite to the first one and to the centrifugal force,

is almost neutralized by the centrifugal forces of the ship and gives additional bending moments
not veryconsiderable either. It appears, then, that the ship experiences smaller bending moments
when creating an air force by yaw opposite to the centrifugal force than when creating the same
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transverse force during a straight flight by pitch. For ships with elliptical sections this can not
be said so generally. The second term in (27) will then less perfectly neutralize the centrifugal
force, if that can he said at all, and the bending moments become greater in most cases.

Most airshi t) pilots are of the opinion that severe aerodynamic forces act on airships
Ilying in bumpy weather. An exact computation of the magnitude of these forces is not possible,

as they depend on the strength and shat)e of the gusts and as probably no two exactly equal
gusts occur. Nevertheless, it is worth while to reflect ,)n this phenomenon and to get acq{minted
with the underlying general mechanical principles. It will be possible to determine how the
magnitude of the velocity of ttigbt influences the air forces due to gusts. It even becomes

possible to estimate the magnitude of the air forces to be expected, though this estimation will
necessarily be somewhat vague, due to ignorance of the gusts.

The airship is supposed to fly not through still air but through an atmosphere the different
portions of which have velocities relative to each other. This is the cause of the air forces in

bumpy weather, the airship coming in contact with portions of air having different velocities.

ttence, the contiguration of the air flow around each portion of the airship is changing as it
always has to conform to tile changing relative velocity between the portion of the airship and
the surrounding air. A change of the air forces produced is the consequence.

Even an airshi l) at rest experiences aerodynamical forces in bumpy weather, as tile air moves

toward it. This is very'pronounced near the ground, where the shape of the surrounding
objects gives rise to violent local motions of the air. The pilots have the impression that at
greater altittrdes an airship at rest does not experience noticeable air forces in t)uml)y weather.
This is plausible. The hull is struck by portions of air with relatively small velocity, and as the
forces vary as the square of the velocity they can not hecome large.

It will readily be seen that the moving airship can not experience considerable air forces

if the disturbing air velocity is in the direction of flight. Only a comparatively small portion
of the air can move with a horizontal velocity relative to the surrounding air and this velocity
can only be small. The effect can only be an air force t)arallel to the axis of the ship which is
not likely to create large structural stresses.

There remains, then, as the main problem the airship in motion coming in contact with air
nloving in a transverse direction relative to the air surrounding it a moment t)efore. The

stresses l)roduced are se_,'erer if a larger portion of air moves with that relative velocity. It is
therefore logical to consider portions of air large compared with the diameter of the airship;
smaller gusts produce smaller air forces. It is now essential to realize that their effect is exactly
the same as if the angle of attack of a portion of the airship is changed. The air h)rce acting
on each portion of the airship depends on the relative velocity between this portion and the
surrounding air. A relative transverse velocity u means an effective angle of attack of that
portion equal to _t/I_ where V denotes the velocity of flight. The airship therefore is now to

be considered as having a variable effective angle of attack along its axis. The magnitude of
the superposed angle of attack is u/I, where u generally is variable. Tile air force produced at
each portion of the airship is the same as the air force at that portion if the entire airship wouht
have that particular angle of attack.

Tile magnitude of the air force depends on the conicity of the airship portion as described in

section 2. The force is proportional to the angle of attack and to the square of the velocity of
flight. In this ease, however, the superposed part of the angle of attack varies inversely as the
velocity of llight, it results, then, that the air forces created t)y gusts are directly proportional
to the velocity of ttight. Indeed, as I have shown, they are proportional to the product of the
velocity of iiight and tile transverse velocity relative to the surrounding air.

A special and simple case to consider for a closer investigation is the problem of an airship
immersing from air at rest into air with constant transverse horizontal or vertical velocity.
Tile portion of the ship already immersed has an angle of attack increased by the constant

amount u/V. Either it can 1)e assumed that by operation of the controls the airship keeps its
course or, better, the motion of an airship with fixed controls and the air forces acting on it
under these conditions can he investigated. As the fins come under the influence of the increased
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transverse velocity later than the other parts, the airship is, as it were, unstable during the time
of immersing into the air of greater transverse velocity and the motion of the airship aggravates
the stresses.

[n spite of this the actual stresses will be of the same range of magnitude as if the airship
flies under an angle of pitch of the magnitude u/V, for in general the change from smaller to
greater transverse velocity will not be so sudden and complete as supposed in the last para-
graph. It is necessary chiefly to investigate the case of a vertical transverse relative velocity u,
for the severest condition for the airship is a considerable angle of pitch, and a vertical velocity
,_ increases these stresses. Hence it would be extremely important to know the maximum
value of this vertical velocity. The velocity in question is not the greatest vertical velocity of

portions of the atmosphere occurring, but differences of this velocity within distances smaller
than the length of the airship. It is very difficult to make a positive statement as to this
velocity, but it is necessary to conceive an idea of its magnitude, subject to a correction after

the question is studied more closely. Studying the meteorological papers in the reports of the
British Advisory Committee for Aeronautics, chiefly those of 1909-10 and 1912-13, I should
venture to consider a sudden change of the vertical velocity by 2 m./sec. (6.5 ft./sec.) as coming
near to what to expect in very bumpy weather. The maximum dynamic lift of an airship is
produced at low veh)city, and is the same as if produced at high velocity at a comparatively

low angle of attack, not more than 5 °. If the highest velocity is 30 m./sec. (67 mi./hr.), the

57"3×2=3.8°. This is a littleangle of attack u� V, repeatedly mentioned before, would be 30

smaller than 5°, but the assumption for u is rather vague. It can only be said that the stresses
due to gusts are of the same range of magnitude as the stresses due to pitch, but they are prob-

ably not larger.
A method for keeping the stresses down in bumpy weather is by slowing down the speed

of the airship. This is a practice common among experienced airship pilots. This procedure

is particularly recommended if the airship is developing large dynamic lift, positive or negative,
as then the stresses are already large.
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