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ELEMENTS OF THE WING SECTION THEORY AND OF THE WING
THEORY.

By Max M, Munk,

SUMMARY.

The following paper, prepared for the National Advisory Committee for Aeronautics,
contains those results of the theory of wings and of wing sections which are of immediate
practical value. They are proven and demonstrated by the use of the simple conceptions of
‘“kinetic energy” and “momentum’’ only, familiar to every engineer; and not by introducing
‘“isogonal transformations’ and ‘vortices,” which latter mathematical methods are not
essential to the theory and better are used only in papers intended for mathematicians and

special experts.
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I. THE COMPLEX POTENTIAL FUNCTION.

W D

1. I have shown in the paper, reference 1, how each air flow, considered as a whole,
possesses as characteristic quantities a kinetic energy and a momentum necessary to create it.
Many technically important flows can be created by a distribution of pressure and they then
have a ‘“velocity potential” which equals this pressure distribution divided by the density
of the fluid with the sign reversed. It is further explained in the paper referred to how the
superposition of several “potential flows” gives a potential flow again.

The characteristic differential equation for the velocity potential ® was shown to be

2, 2, 2
gg + gyg: + g—; =0 (Lagrange's equation) (1)

where z, ¥, and z are the coordinates referred to axes mutually at right angles to each other.
The velocity components in the directions of these axes are

_0%, 0% 0%
Yozt YToy’ YT o

I assume in this paper the reader to be familiar with paper reference 1, or with the fundaental
things contained therein.

2. The configurations of velocity to be superposed for the investigation of the elementary
technical problems of flight are of the most simple type. It will appear that it is sufficient to
study two-dimensional flows only, in spite of the fact that all actual problems arise in three-
dimensional space. It is therefore a happy circumstance that there is a method for the study
of two-dimensional acrodynamic potential flows which is much more convenient for the investi-
gation of any potential flow than the method used in reference 1 for three-dimensional flow.
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The method is more convenient on account of the greater simplicity of the problem, there
being one coordinate and one component of velocity less than with the three-dimensional flow.
But the two-dimensional potential is still a function of two variables and it represents a distri-
bution of velocity equivalent to a pair of functions of two variables. By means of introducing
the potential a great simplification of the problem has been accomplished, reducing the number
of functions to one. This simplification can now be carried on by also reducing the number
of variables to one, leaving only one function of one variable to be considered. This very
remarkable reduction is accomplished by the use of complex numbers.

The advantage of having to do with one function of one variable only is so great, and
moreover this function in practical cases becomes so much simpler than any of the functions
which it represents, that it pays to get acquainted with this method even if the student has
never occupied himself with complex numbers before. The matter is simple and can be
explained in a few words.

The ordinavy or real numbers, z, are considered to be the special case of more general
expressions {z-+1y) in which » happens to be zero. If ¥ is not zero, such an expression Is
called a complex number.  z is its real part, iy is its imaginary part and consists of the product
of y. any real or ordinary number, and the quantity ¢, which is the solution of

et e, i=~—1

The complex number (z-+iy) can be supposed to represent the point of the plane with the
coordinates z and . and that may be in this paragraph the interpretation of a complex num-
ber. So far, the system would be a sort of vector symbolism, which indeed it is. The real
part r is the component of @ veetor in the direction of the real z-axis, and the factor y of the
imaginary part iy is the component of the vector in the y-direction. The complex numbers
differ. however. from vector analysis by the peculiar fact that it is not necessary to learn any
new sort of algebra or analysis for this vector system. On the contrary, all rules of calculation
valid for ordinary numbers are also valid for complex numbers without any change whatsoever.

The addition of two or more complex numbers is accomplished by adding the real parts
and imaginary parts separately.

(z+iy) + @ +iy") = @+2) +ily+y")

This amounts to the same process as the superposition of two forces or other vectors. The
multiplication is accomplished by multiplying cach part of the one factor by each part of the
other factor and adding the products obtained. The produect of two real factors is real of
course. The product of one real factor and one imaginary factor is imaginary, as appears
plausible.  The product of %1 is taken as — 7, and hence the product of two imaginary parts
is real again. [Ience the product of two complex numbers is in general a complex number
again
(x+iy) (@' +iy") = ez’ —yy") +iley" +2'y).

There is now one, as I may say, trick, which the studen. has to know in order to get the
advantage of the use of complex numbers.  That is the introduction of polar coordinates. The
distance of the point (ry) from the origin (0,0 is called 22 and the angle between the positive
real axis and the radius vector from the origin to the point is called ¢, so that z=FR cos ¢;
y =1 sin ¢. Multiply now

(B, cos o, +1 I, sin @) (R, cos g+t Ly SiIl ¢@y).
The result is

R.R, cos ¢, cos ¢, — R\, sin ¢, sin ¢, +3(R,R, cos ¢, sin ¢, + 1,1, sin ¢, ¢o3 @,)
or, otherwise written
R\I, [cos(e, +¢,) +1sin (g, +¢,)]
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That is: The radius 2 of the product is the product of the radii B, and R, of the two factors,
the angle ¢ of the product is the sum of the angles ¢, and ¢, of the two factors. Further, as
is well known, we may write

2=1R{cos p+1 sin ¢) =R el

where ¢ denotes the base of the natural logarithms,
As a particular case
(e #5)m== (cOS ¢ +1 SIN @)= CO8 N 41 8IN N @ = enir

This is Moivre’s formula.

I proceed now to'explain why these complex numbers can be used for the representation of a
two-dimensional potential flow. This follows from the fact that a function of the complex num-
bers, that is in general a complex number again different at each point of the plane, can be treated
exactly like the ordinary real function of one real variable, given by the same mathematical
expression. In particular it can be differentiated at each point and has then one definite differ-
ential quotient, the same as the ovdinary function of one variable of the same form. The
process of differentiation of a complex function is indeterminate, in so far as the independent
variable (z-+iy) can be increased by an clement (dx -+ idy) in very different ways, viz, in
different directions. The differential quotient is, as ordinarily, the quotient of the increase of
the function divided by the increase of the independent variable. One can speak of a differ-
ential quotient at each point only if the value results the same in whatever direction of (dx +1idy)
the differential quotient is obtained. Tt has to be the same, in particular, when de or dy is zero.

The function to be differentiated may be

Fletiy) =8 G,y +iT (2, )
where both /2 and T are real functions of x and . The differentiation gives

OF ok 0T
or ~or or

OF_ Ok OT
oy~ oy "oy

or again

These two expressions must give identical results and hence are equal. That is, both the real
parts and both the imaginary parts are equal:

oR_ oT oR_ OT
dy ~ 2z’ dy  Ox

Differentiating these equations with respect to dr and dy

Ok _¥T_ T . T T,
. a]ay—— 03/2 = O.r‘-” 1. O oz Oy*’ ==
or again
o*T R oM . o' O*R

ordy ot or’ v a.r2'+'07=
Hence, it appears that the real part as well as the imaginary part of any analytical complex
function complies with equation (1) for the potential of an aerodynamic flow, and hence can be
such a potential. 1f the real part is this potential, I shall call the complex function the *‘ poten-
tial function” of the flow. It is not practical, however, to split the potential function in order
to find the potential and to compute the velocity from the potential. The advantage of having
only one variable would then be lost. It is not the potential that is used for the computation
of the velocity, but instead of it the potential function directly. Tt is casy to find the velocity
directly from the potential function. Differentiate Flz+1iy)=F(z). It is seen that

({F(Z)ﬁaRV.aT
dz ~0or "o

0
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But it was shown before that

OT_ oR
dr Oy
Hence
dF(z) R .OoR
dz oz "oy
The velocity has the components %R and afl—? ¢ Writtenasa complex vector, itwould be on +1 Ok
. xr oy dz Ay

1t appears therefore:
Any analytical function F(z) can be used for the representation of a potential flow. The

potential of this flow is the real part of this potential function, and its differential quotient %f,

called the “velocity function,’” represents the velocity at each point “turned upside down.”
That means that the component of the velocity in the direction of the real axis is given directly

by the real part of the velocity function (21:' and the component of the velocity at right angles to

the real axis is equal to the reversed imaginary part of (21: The absolute magnitride of the ve-
- . dr
locity is equal to the absolute magnitude of dz"

3. 1 proceed now to the series of two-dimensional flows which are of chief importance for
the solution of the aerodynamic problems in practice. They stand in relation to the straight
line. The privileged position of the straight line rests on the fact that both the front view and

the cross section of a monoplane are approxi-

mately described by astraight line. The different

types of flow to be discussed in this section have

in common that at the two ends of a straight

line, but nowhere else, the velocity may become
/ infinite. At infinity it is zero. This suggests
/ the potential function 42— 1 which has discon-
z// .inuities at the points =1 only, but it does not
{ @ give the velocity zero at infinity.

I{’= —\«/22 —1—=z

gives rise to an infinite velocity at the points
z = -+ I which may be regarded as the ends of the
straight line, and in addition the velocity be-
comes zero at infinity. A closer examination
| shows that indeed the potential function

Fic 1.—Transverse flow, produced by a moving straight line. I=1(z2— \““22 — I @

represents the flow produced by the straight line extending between the points z= =+ I, moving
transversely in the direction of the negative imaginary axis with the velocity 7 in the fluid other-
wise at rest. For its velocity function is

i L
! \‘22 -~ 1

giving for points on theline a transverse velocity — 1. This flow may be called “ transverse flow.”
The velocity potential at the points of the line, i. e., fory=01s 1 —z*. This gives the kinetic
energy of the flow thalf the integral of the product of potential, density and normal velocity
component, taken around the line (reference 1)).
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P + P
T=5- ef_141—x2 dz=jr (3)

giving an apparent mass of the straight line moving transversely equal to the mass of the fluid
displaced by a circle over the straight line as diameter. This reminds us of the apparent
additional mass of the circle itself, which is the same (ref. 1, sec. 6). It can be proved that
the additional mass of any ellipse moving at right angles to a main axis is equal to the mass of
the fluid displaced by a circle over this main axis as diameter (reference 6).

The flow around the straight line just discussed can be considered as a special case of a
series of more genceral flows, represented by the potential function

F=i(z— 22— I)n (4)

where n is any positive integer. n=1 gives the transverse flow considered before. For n
different from I the component of the transverse velocity along the straight line is no longer
constant, but variable and given by a simple law. Such a flow, therefore, can not be produced
by a rigid straight line moving, but by a flexible line, being straight at the beginning and in the
process of distorting itself.

It 1s helpful to introduce as an auxiliary variable the angle & defined by z=cos 5. Then
the potential function is

F=1 (cos né—1 sin ng) =1 e—ind

where § is, of course, complex. The potential along the line is
¢ =sin né (5)

where now 3§ is real. The velocity functien is

dF _dF ds n e—ind

’ . _ ___.n
F T dz ds dz sin & sin &

(cos nd—1 sin nd)

giving at points along the line the transverse component

7 SN né
Y7 ins (6)
and the Jongitudinal component
n COS Né
7 siné @
This becomes infinite at the two ends. The kinetic energy of the flow is
, 1 rosin? ng p
]—gnp ﬁ Sinérsmada—mrg (8)

This impulse is given by the integral
p S ®dx

to be taken along both sides of the straight lines, since the velocity potential times p represents
the impulsive pressure necessary to create the flow. This integral becomes

2

f” sin né siu & dé
[}]

for the nth term. This is zero except for n—=1.
By the superposition of several or infinitely many of the flows of the series discussed
F=ild(z— 2=+ A,(z— V2124 . . .+ A,(z— V22— 1)), (9)

with arbitrary intensity, infinitely many more complicated flows around the straight line can be
described. There is even no potential flow of the described kind around the straight line existing
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which ean not be obtained by such superposition.  The kinetic energy of the flow obtained by
superposition stands in a very simple relation to the kinetic energy of the single flows which rela-
tion by no means is self-evident. It is the sum of them. This follows from the computation of
the kinetic energy by integrating the product of the transverse component of veloeity and the
potential along the line.  This kinetic energy is

7-° [- (A, sind+.d,sin 264, ) (4, sind+21. 30 .26+..)ds (10)

[24
<

But the integral

f sin 7é sin md dd=0 (nz n (11
1}

is zero if m and n are different integers. For integrating two times partially gives the same
inteeral again, multiplied by (m/n)?.  In the same way it can be proved that

f” cos 16 cos md do=0 {nm) (12)
1]

Only the squares in integral (10) contribute to the energy and each of them gives just the kinetic
encrey of its single term (equation (8)).

It mayv happen that the distribution of the potential ® along the line is given, and the flow
determined by this distribution is to be expressed as the sum of flows (equation (9)). The
condition is, for points on the line, a known function of r 13 given,

b=, sind+.1,8n 25+, . .+, sinrd-. .. (13)

and the coecllicients .1 are to be determined. The right-hand side of equation (13) is called a
Fourier’s series, and it is proved in the textbooks that the coefficients 4 can alwayvs be deter-
mined as to conform to the condition if & has reasonable values. At the ends §=0 or =, hence ¢
has to be zero there as then ull sines are zero.

Otherwise expressed equation (1) gives enough different types of flow to approximate by
means of superposition any reasonable distribution of the potential over a line, with any exact-
ness desived.  This being understood, it is easy to show how the coellicients A can be found.

Inteerate

J (A, sin 64, sin 25 . ..) sin ng 8
0
According to equation (11) all integrals become zero with the exception of

A, j“ sin® né tlé=g. A,

Ience
[P
A”:NJ & sin nd dé (14)
TJo

These values may be introduced into equation (9}, and thus the potential function F'is
determined.

Another problem of even greater practical importance is to determine the potential func-
tions, equation (4), which superposed give a desired distribution of the transverse component
of velocity. The condition is now

sing sin 28
U= 2.4,

“lain § '“"sin6+"' (15)

That means, now, « sin 8, & known function, is to be expanded into a Fourier's series

usin §=0B,siné+ B, sin 28+. ..+ B,sinnd (16)
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The 5’s may be determined by an equation like (14), and then the A’s may be deduced, since
A,=B,/n (16a)

This is always possible if the velocity component is {inite along the line. These values may then
be introduced in equation (9).

The value of the potential function Fas given by series (13) with the values of A, substituted
from (16) may be transformed into a definite integral which sometimes is more convenient for
application. Let u, be a function of the coordinate z,, a point on the line joining z= —1 and
z= +1, and let f(z, z,) be a function to be determined so that

"1
F=J flz, 29 . u, . dz,
—1

I have found that this is satisfied by making
1 o o i
f= . [IOg (eit — ezao) _ log (exéo_ P 160)] (1 ,)

and this leads to a physical interpretation of w,.
Ilence, the velocity function

(Y

F/:(Zz L dz o dz,

The potential function and the veloeity function are both thought of, then, as being the summa-
tion of functions due to “clementary flows.” An element gives rise to a potential function

1 (z,2,) uydz, and to the velocity function (;f ydz, (18)
p_df_1sins, 1 _L 1 -
Y Tdz rsins cos d—cos b, rz*w\ 1—22

where the plus sign is to be taken for points on /
the positive side of theline, and the negative sign

for those on the opposite side. In this olemon—

tary flow, then, the velocity is parallel to theline /

at all points of the line excepting the point z,,  Fie. 2.—Flow around a straight line ereated by one clementaof the
being directed away from this point on the ing seetion.

positive side of the line and toward it on the other side. For points close to z,,

£, d20=u(, dz, ) 1~
™ < Ty

from which the value of the velocity of the flow may be deduced. If a small circle is drawn
around the point z,, it is seen that there is a flow out from the point z, of amount v, dz, per sec-
ond on the positive side and an inflow of an equal amount on the other side; so that this is
equivalent 1o there being a transverse veloeity v, at points along the element dz,, positive on
one side, negative on the other. The total flow around the line due to fiz |, z,) 1, dz, is illustrated
in Figure 2

Substituting the value of 7 in I

UL, dz /I—
F’:’L 0 0
__J71 7‘-’;—"0\ ]_h-
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Therefore, for any point on the real axis, the transverse velocity is 1, and the longitudinal

velocity
1o, dz, /1 — 2,2
Ye= ij_l rz—z,V1-2

Or, interchanging symbols, writing z for z, and vice versa
1 udz [1-2
Vo = F . (19)
_, m2—2,V1I—2

For a point near the edge on the positive side, write z,=1—¢

R S i /17+z
Vedge =~ 1 /2% L Vi

-1

1 "+ 1+2
- Z ' d 9
Vedge sin 5edpe uaz JI 2 (1 a)

-1

or, substituting +/2e=sin 8,4

For the discussion of the elements of the wing theory, in addition to the flows mentioned,
there is one flow which needs a discussion of its own. This is given by the potential function

F=A sinz (20)
The velocity function of this flow is
4(4
="
'\/1 -z

1 shall call this flow “circulation flow” as it
represents a circulation of the air around the
line. The transverse component of the velocity
at points along the line is identically zero.

The circulation flow does not quite fit in
with the other ones represented by equation
(4), because the potential function (20) is a
multiple valued one, the values at any one
point differing by 2r or multiples thereof. All
this indicates that the flow is a potential flow,
it is true, but it does not conform to the condi-
tion of a potential flow when considered as in
equation (4).

This is in accordance with the physical
consideration, that it is impossible to produce
this flow by an impulsive pressure over the
straight line. Such a pressure would not per-
form any mechanical work, as the transverse
components of velocity at points along the line are zero. The kinetic energy of this flow, on
the other hand, is infinite, and hence this flow can not even be completely realized. Still it
plays the most important part in aerodynamics.

The best way to understand this flow and its phivsical meaning is to suppose the line to be
elongated at one end, out to infinity. On the one side the potential may be considered zero.
Then it is constant and will be equal to 27 on the other side.  The transverse velocity component
is finite. Hence the flow can be produced by a constant impulsive pressure difference along
this line extending from the edge z=1 to infinity. This pressure difference makes the fluid
circulate around the original straight line, the pressure along the line itself being given by the
potential function (20} and not performing any work.

F16. 3.—Circulation flow around a straight linc.
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A pressure difference along an infinite line does never actually occur. At least t does not
oceur simultaneously along the whole line. A very similar thing, however, occurs very often
which has the same effect. That is a constant momentum being transferred to the air at
right angles to an infinite straight line at one point only, but the point traveling along the line,
so that the final effect is the same as if it had occurred simultaneously. This is the fundamental
case of an airplane flying along that infinitely long line. During the unit of time it may cover
the length V and transfer to the air the momentum L, equal to the lift of the airplane. Then
the impulse of the force, per unit of length of the line, is L/V, and hence the potential difference is
'pr' That makes 4, in equation (20) A,= .?prr. If the airplane has traveled long enough,
the flow in the neighborhood of the wing, or rather one term of the flow, is described by the
circulation flow, provided that the airplane is two-dimensional, that is, has an infinite span.

The velocity at the end of the wing z= + 1 due to this circulation flow

=4, sin™! z

where
L
A, = onpV (21)
is
A L
7o fto. . A
Iedﬂeh(Siﬂ 5)5:0 27I'pV (sin 5)5=0 (218,)

II. THEORY OF WING SECTION.

4. The investigation of the air flow around wings is of great practical importance in view
of the predominance of heavier-than-air craft. It is necessary to divide this problem into two
parts, the consideration of the cross section of one or several wings in a two-dimensional flow,
and the investigation of the remaining effect. This chapter is devoted to the first question.

All wings in practice have a more or less rounded leading edge, a sharp trailing edge and
the section is rather elongated, being as first approximation described by a straight line. The
application of the aerodynamic flows around a straight line for the investigation of the flow
around a wing section suggests itself. I have shown in section (3) how the potential flow
around a straight line is determined, for instance, from the transverse components of velocity
along this line. Only one type of flow, the circulation flow, is excepted.  This flow does not
possess any transverse components at the points of the line and hence can be superposed on a
potential flow of any magnitude without interfering with the condition of transverse velocity.
I have shown, on the other hand, that it is just this circulation flow not determined so far,
which gives rise to the chief quantity, the lift. It is, therefore, necessary to find some additional
method for determining the magnitude of the circulation flow.

This magnitude of the circulation flow is physically determined by the fact that the air
is viscous, no matter how slightly viscous it is. The additional condition governing the magni-
tude of the circulation flow can be expressed without any reference to the viscosity and was
done so in a very simple way by Kutta. The condition is very plausible, too. Kutta’s condition
simply states that the air does not flow with infinite velocity at the sharp, rear edge of
the wing section. On the contrary, the circulation flow assumes such strength that the air
leaves the section exactly at its rear edge flowing there along the section parallel to its mean
direction. The wing as it were acts as a device forcing the air to leave the wing flowing in a
particular direction.

Consider, for instance, the wing section which consists merely of a straight line of the length 2.
The angle of attack may be . The flow produced by this line moving with the velocity V is
then represented by the potential function

F=Vsina-.1e?

which gives a constant transverse component of velocity along the wing, as shown in equation
(6) for n=1. The real axis is parallel to the straight line, its origin is at the center of the line.
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The infinite longitudinal velocity at the rear end is

Vina
(s 5)5:0

The angle of attack may now be assumed to be small and I change slightly the way of
representing the flow, turning the real axis of coordinates into the direction of motion. Instead
of referring the flow to the line really representing the wing section I consider the straight line
between z = -1, which differs only slightly from the wing and is parallel to the motion. The
transverse components of the flow relative to this line are approximately equal to the transverse
velocity relative to the wing section at the nearest point and therefore constant again and equal
to Vsin «. Thercfore, this way of procceding leads to the same flow as the more exact way
before. It also gives the same infinite velocity at the rear end.

This velocity determines the magnitude of the circulation flow
F=A4,sin™ z (21)

by the condition that the sum of their infinite velocities at the edge is zero.

. 1 1
Vsin a (sin 5)5-({10 (Sil’\ 5)5:00

and hence A,=T"sin a. The lift is therefore

L=2r V*psin a.

The lift coeflicient, defined by Cp= L , since the chord =2, is therefore,
5 veh
2
(.= 27 sin a, or approximately Zra (22)
and
L=V2 8 2ra (23)

where S denotes the area of the wing.

The representation of the flow just employed is approximately correct and gives the same
result as the exact method. This new method now can be generalized so that the lift of any wing
section, other than a straight line, can be computed in the same way, too. The section can be
replaced with respect to the aerodynamic effect by a mean curve, situated in the middle between
the upper and lower curves of the section and having at all points the same mean direction as
the portion of the wing section represented by it. The ordinates of this mean wing curve may

be £, the abscissa z, so that the direction of the curve at gach point is df:' This direction can

be considered as the local angle of attack of the wing, identifying the sine and tangent of the
angle, with the angle itself. Accordingly it is variable along the section. Since the velocity of
the air relative to the wing is approximately equal to the velocity of flight, the component at

right angles to the z-axis is ,(,g%_ As before, the infinite velocity at the rear edge is to be found.

~V (e T4z
7 (sin 8)s-, J_l dr \/1 S dz 24

It is, according to equation (19a)
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At the rear edge z==7. The mean apparent angle of attack, that is the angle of attack of the
straight line giving the same lift as the wing section, is found by the condition that this infinite

value must be the same as that deduced for a straight line; viz, — VSisrllnaa. Hence, replacing
sin « by « .
. S
o = _1 i [1+z dz length=2 (25)
rJ.,dxV1—-z
;o 2 dE 1422 _ 5
a = — Wf—h AoV 1 —22 dzlength =1 (25a)

This formula holds true 1. any small angle of attack of the section. The integral can now
be transformed into one containing the coordinate £ rather than the inclination gﬁ of the wing
curve, provided that the trailing edge is situated at the z-axis, that is, if £ is zero at the end
2= +1. This transformation is performed by partial integration, considering gi dr as a factor

tobeintegrated. Itresults

1+ dxt .
1 length = 2 26
. wa. (I—z) yI-2¢ 8 ’

/(LR dxt
al=? e

™ j—m (1-2z) 1—47

The important formula (26) gives the mean apparent angle of attack directly from the
coordinates of the shape of the wing section. The mean height £ of the section has to be inte-
grated along the chord after having been multiplied by a function of the distance from the
leading edge, the same for all wing sections.” This integration can always be performed, whether
the section be given by an analytical expression, graphically or by a table of the coordinates.
In the latter case a numerical integration can be performed by means of Table 11, taken from
reference 4. The figures in the first column give the distance from the leading edge in per cent
of the chord. The second eolumn of figures gives factors for each of these positions. The
height £ of the mean curve of the section over its chord, measured in unit of the chord terms,
is to be multiplied by the factors, and all products so obtained are to be added. The sum gives
the apparent angle of attack in degrees.

5. The lift of a wing section as computed in section (4) is caused by the circulation flow
symmetrical with respect to the straight line representing the wing. Hence the pressure creat-
ing this lift is located symmetrically to the wing, its center of pressure is at 50 per cent of the
chord, it produces no moment with respect to the middle of the wing. This lift is the entire
lift produced by the wing. It is not, however, the entire resultant air force. The remaining
aerodynamic flow in general exerts a resultant moment (couple of forces) and this moment
removes the center of pressure from its position at 50 per cent.

If the wing section is a straight line of the length 2, its apparent transverse mass is p, as
seen in section (4). The longitudinal mass is zero. Hence, according to reference 1, the result-
ant moment is

length =1 (264)

M=V? 7 7 sin 2a length -2 27)

M~V* 5 2ra length=2 (28)

Both the exact and the approximate expressions give the constant center of pressure 25 per cent
of the chord from the leading edge, as results by dividing the moment by the lift (23).

The straight sections considered have a constant center of pressure, independent of the angle
of attack. The center of pressure does not travel. This is approximately true also for symmet-
rical sections with equal upper and lower curves, where the center of pressure is also at 25
per cent. If, however, the upper and lower curves are different and hence the mean section

52201—25——11
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curve is no longer a straight line, the potential flow produced at the angle of attack zero of the
chord not only gives rise to the circulation flow and thus indirectly to a lift, but also creates a
moment of its own. It is simple to compute this moment from the potential flow, which is
represented in equation (9) as a superposition of the flows, equation (4).

The longitudinal velocity relative to the line is, according to equation (7),

cos § 2 cos 25 n cos né
v= (i Ty A )Y

As the section is supposed to be only slightly curved, 35 is always small, so are, therefore, the

coefficients 4, when compared to V, so that they may be neglected when added to it. The
pressure at each point along the line, according to reference 1, is

The present object is the computation of the resultant moment. When really forming the
square of the bracket in the last expression, the term with V% indicates a constant pressure and
does not give any resultant moment. The squares of the other terms are too small and can be
neglected. There remains only the pressure,

I 7 cos & _2c0526.___..
P L (A‘sin 6+A" sin &

giving the resultant moment about the origin

Mg Vs f(4 cosd g fes B .)cosasinada,

since the density of lift is twice the density of pressure, the pressure being equal and opposite
on both sides of the wing. But according to (12)

f’cos né cos mé ds=0 (12)
if m and n are different integers. Hence there remains only one term. The resultant moment is
M=2V A, ;—T
A, was found according to equation (14) by means of the integral

L J'V‘E sin® 8 d 8
T Jo dI
Hence the moment is
~dE .
_ 2 gk 2
M—2pVL 7 Sin 5dé

or, expressed by z

(P d _
M=2pwf‘1 aﬁ NI—22 dz (29)
By the same method as used with integral (25) this integral can be transformed into

+opdr &
M=201" e 30
p VI (30)
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It has been shown that for a chord of length 2, the center of pressure has a lever arm'% and the

lift is V’% . 2ra - 2, giving a moment F?pra; so that an angle of attack corresponds to a

moment V%pra. Consequently the resultant moment is the same as if the angle of attack is
increased by the angle

w2 [ rdrt B
[0 _11' f-] ;71 '_J:z ]ength—? (31)
b 16 (T2 zdz _
@ Wf—x/z VI -t length =1 (32)

It is readily seen that this angle is zero for sections with section curves equal in front ana
in rear. Hence such sections have the center of pressure 50 per cent at the angle of attack zero
of the mean curve, that is, for the lift (24) produced by the shape of the section only. The
additional lift produced at any other angle of atiack of the chord and equal to the lift as produced
by the straight line at that angle of attack has the center of pressure at 25 per cent. Hence a
travel of the center of pressure takes place toward the leading edge when the angle of attack is
increased, approaching the point 25 per cent without ever reaching it. The same thing happens
for other sections with the usual shape. At the angle of attack zero of the chord the lift pro-
duced was seen to be 2x V%o, 1. e., from (26)

+1 dzx E

L=v?? f S

2 4 Sl —n)I-22

and the moment, see equation (30),
tlztde
M=32pV2| >
P -1 -‘/1 —x? (30)
giving the center of pressure at the distance from the middle

+lrtdr
*+1 dx E
J—n (1—n)1—2
The lift produced by the angle of attack of the chord, equation (23) as before has the center of
pressure 25 per cent. The travel of the center of pressure can easily be obtained from this

statement. The moment about the point 25 per cent is independent of the angle of attack.
The center of pressure in ordinary netation at the angle of attack zero is

length =2

f“zfdz

_ _ o A2

OP =500, — 50 =y 3” a,
J—l (I-n) -2

The computation of the mean apparent angle of attack with respect to the moment is done in
the same way as that of the angle with respect to the lift. Table 11, gives the coefficients for
numerical integration, by means of two ordinates only, to be used as the other figures in Table II.
The final sum is the mean apparent angle in degrees.

6. The problem of two or even more wing sections, combined to a biplane or multiplane and
surrounded by a two-dimensional flow can be treated in the same way as the single wing section.
The two sections determine by their slope at each point a distribution of transverse velocity
components along parallel lines. The distribution determines a potential flow with a resultant
moment. According to Kutta’s condition of finite velocity near the two rear edges, the potential
flow in its turn determines a circulation flow giving rise to a lift and moment. The physical
aspect of the question offers nothing new, it is a purely mathematical problem.
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This mathematical problem has not yet been solved in this extension. I have attacked
the problem within a more narrow scope (reference 4). The method followed by me amounts to
the following considerations:

Equation (13) represents different types of flow around one straight line, consisting in a
motion of the air in the vicinity of the straight line only. Now the motion of the flows with high
order n is more concentrated in the immediate neighborhood of the straight line than the flows
of low order n. The transverse velocity components along the line, determining the flow, change
their sign (n — 1) times along the line. With large n, positive and negative components follow each
other in succession very rapidly so that their effect is neutralized even at a moderate distance.

Hence the types of flow of high order n around each of a pair of lines will practically be the
same as if each line is single. The flows of high order do not interfere with those of a second line
in the vicinity even if the distance of this second line is only moderate. It will chiefly be the
types of flow of low order, the circulation flow n=0, the transverse flow n=1, or it may be the
next type n =2 which differ distinctly whether the wing is single or in the vicinity of a second
wing. Accordingly, I computed only the flows of the order n=0 and n=1, the circulation flow
and the transverse flow for the biplane and used the other flows as found for the single section.

The results are particularly interesting for biplanes with equal and parallel wings without
stagger. Their lift is always diminished when compared with the sum of the lifts produced by
the two wings when single. The interference is not always the same. If the sum of the angle
of attack and the mean apparent angle of attack with respect to the moment is zero, or other-
wise expressed, at the angle of attack where the center of pressure is at 50 per cent, it Is par-
ticularly small. The lift produced at the angle of attack zero is diminished only about half as
much as the remaining part of the lift produced by an increase of this angle of attack.

This second part of the lift does not have its point of application exactly at 25 per cent of
the chord, although its center of pressure is constant, too. This latter is quite generally valid for
any two-dimensional flow. At any angle of attack zero arbitrarily chosen, the configuration of
wing sections produces a certain lift acting at a certain center. The increase of the angle of
attack produces another lift acting at another fixed point. llence the moment around this
second center of pressure does not depend on the angle of attack; and the center of pressure at
any angle of attack can easily be computed if the two centers of pressures and the two parts of
the lift are known.

The resultant moment of the unstaggered biplane consisting of portions of equal and
parallel straight lines is again proportional to the apparent transverse mass, as the longitudinal
mass is zero (reference 1). This mass is of use for the considerations of the next chapter, too.
Therefore, I wish to make some remarks concerning its magnitude. If the two straight lines are
very close together, the flow around them is the same as around a line of finite thickness and is
almost the same as around one straight line. Its apparent mass is the same, too, but in addition
there is the mass of the air inclosed in the space between the two lines and practically moving
with them. Hence the mass is approximately

b(b4+h)p

where b is the length of the lines and & their distance apart, if the distance 4 of the lines is small.
For great distance, on the other hand, the flow around each of the lines is undisturbed, the
apparent mass is twice that of the flow around each line if single. It is therefore

Qb"—Zp

For intermediate cases the apparent mass has to be computed. Particulars on this computa-
tion are given in reference 4. Table 1 gives the ratio of the apparent mass of a pair of lines to

that of one single line for different values of ;;' This ratio, of course, is always between 1 and 2.
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These few remarks on the theory of biplane sections seem to be sufficient in this treatise
on the elements of wing theory. The student will find full information on the subject in my
paper on biplanes, reference 4. The remarks laid down here, I hope, will assist him in under-
standing the leading principles of the method there employed.

III. AERODYNAMIC INDUCTION.

7. The last chapter does not give correct information on the aerodynamic wing forces,
since the flow in vertical longitudinal plancs was supposed to be two-dimensional. The vertical
layers of air parallel to the motion were supposed to remain plane and parallel and only the
distortion of the two other planes at right angles to it was investigated. This is a very incom-
plete and arbitrary: proceeding, for the vertical longitudinal layers do not remain plane, as
little as any other layers remain plane. It is therefore necessary to complete the investigation
and to assume now another set of layers, parallel to the lift, to remain plane, thus studying
the distortion of the vertical longitudinal layers. Accordingly, I will now assume that all
vertical layers of air at right angles to the motion remain plane and parallel, so that the air
only moves at right angles to the direction of flight. Hence, I have now to consider two-
dimensional transverse vertical flows. This consideration, it will appear, gives sufficient
information on the motion of the air at large, whereas the preceding investigation gives infor-
mation on the conditions of flow in the vicinity of the wing. Both, the longitudinal two-
dimensional flow studied before and the two-dimensional flow to be studied presently, possess
vertical components of velocity. Both flows and in particular these vertical components
are to be superposed, and thus one can determine the final acrodynamic pressures and resultant
forces.

The transverse vertical layer of air is at rest originally. The wings, first approaching it,
then passing through it and at last leaving it behind them, gradually build up a two-dimensional
flow in each layer. The distribution of impulse creating this flow is identical with the distri-
bution of the lift over the longitudinal projection of the wings. It is immaterial for the final
effect whether all portions of the wings at every moment have transferred the same fraction
of the momentum to a particular layer or not. The final effect and hence the average effect
1s the same as if they always have. They actually have if all wings are arranged in one trans-
verse plane—that is, if the airplane is not staggered. It may be assumed at present that at
each moment each layer has reccived the same fraction of the impulse from every portion of
the wings and it follows then that the shape of the configuration of the two-dimensional flow
is always the same and that it is built up gradually by increasing its magnitude while not
changing its shape, beginning with the magnitude zero at a great distance in front of the wing
and having obtained its final magnitude at a great distance behind the wings.

The potential of the final two-dimensional flow long after the wings have passed through
the layer is easy to find, for the impulsive pressure creating it is known along the longitudinal
projection of the wings. It is identical with the distribution of the lift over this projection,
acting as long as the airplane stays in the layer. This is the unit of time, if the thickness of
the layer is equal to the velocity of flight. Hence the potential difference along the longi-
tudinal projection of the wings is equal to the density of the lift along this projection divided
by the product of the density of air and the velocity of flight, since the velocity potential is
equal to the impulse of the pressurc creating the flow, divided by the density. In general the
longitudinal projections of the wings can be considered as lines. The density of lift per unit
length of these lines is then equal to the difference of pressure on both sides, and hence the
density of the lift is proportional to the difference of the potential on both sides. This state-
ment determines completely the final two-dimensional flow in the transverse vertical layer,
and nothing remains unknown if the distribution of the lift over the wings is given. The
actual determination of the flow is then a purely mathematical process.
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For the present purpose, however, not the final transverse flow but the vertical flow at the
moment of the passage of the wings is of interest. It is this flow that s to be superposed on
the longitudinal flow in order to determine the actual air forces. It has already been men-
tioned that this flow can be supposed to differ from the final flow in magnitude only. It
remains therefore only to find the ratio of momentum already transferred while the wing passes
through the layer, to the momentum finally to be imparted.

The fraction 15 seems to me more plausible than any other fraction. The effect of the
wing on the layver is the same at equal distances from the layer, whether in front or back of it
and this would involve the factor 14. It is not necessary, however, to have recourse to a mere
assumption in this question, however plausible it may be. It can be proved that the assump-
tion of 15 is the only one which does not lead to a contradietion with the general principles of
mechanies. I proeced at onee to demonstrate this.

If the transverse flow in the plane of the wings is found, only the vertical component down-
ward #'. called the induced downwash, is used for the computation. This downwash can be
positive or negative, but in general is positive. Such downwash in the neighborhood of a
portion of wing changes the motion of the air surrounding the wing portion relative toit.  The
induced downwash is always small when compared with the veloeity of flight.  Hence, its
superposition on the veloeity of flight at right angles to it does not materially change the mag-
nitude of the relative motion hetween the wing and the air in its vieinity. It changes, however,
the direction of this relative veloeity, which is no longer parallel to the path of the wing but
inclined toward the path by the angle whose tangent is «’;1. This has two important
consequences.

The flow produced and hence the air force no longer correspond to the angle of attack be-
tween the wing and the path of flight but to the angle given by the motion of the wing relative
to the surrounding portion of the air.  In most cases the angle of attack is decreased and the
effective angle of attack, smaller than the geometric angle of attack between path and wing,
determines now the fow and the air forces.  Henee, the lift in general is smaller than would
he expected from the geometric angle of attack.  The angle of attack in the preceding chapter
on the wing section is not identical with the geometric angle between the chord and the direc-
tion of flight but with the effective angle of attack, smaller in general, as there is an induced
downwash motion in the vicinity of the wing. Therefore the geometrical angle of attack is
decreased by

: ’

o= (34)

That is not all.  The lift is not only deercased but its direction is changed, too. It is no
longer at right angles to the path of flight, but to the relative motion between wing and adjacent
portion of air. It is generally turned backward through an angle equal to the induced angle
of attack. The turning backward of the lift by itself does not materially change the magni-
tude of the lift, as the angle is always small; the vertical component of the lift remains almost
the same, but the effective angle of attack has to be deereased.  In addition to this the air foree
has now a component in the direction of the motion. The wing experiences an “induced”’
drag. in addition to the drag caused by the viscosity of the air, not discussed in this paper,
and the induced drag is often much larger than the viseous drag. The density of the induced

’
. " . . . i .
drag 1s dL T where L is the density of lift, as can be directly seen from Figure 1.

dD,=dL l{ (35)
The existence of a drag could have been anticipated, as there must be a source of energy

for the creation of the transverse flow under consideration. The final kinetic energy of this
flow in a layer of thickness V'is
1
f 2 dL u
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and this energy is to be delivered by the wing per unit of time, as during this unit of time
another layer has been put into motion in the way discussed. On the other hand the energy
delivered by the wings is the integral over the drag multiplied by the velocity, that is, /' dL '

. . . 1 .. .
From which follows immediately »’ =2 %, and it is thus confirmed that the transverse flow
A 2 "

is only half formed when the wings are passing through the vertical layer.

8. The problem is thus solved in general if the shape of the wings and the distribution
of lift over the wings is known. Before passing to special wing arrangements and distributions
of lift, in particular to the simple monoplane, there is one general problem to be discussed.
The longitudinal projection of the wings being given, as well as the entire lift, the induced
drag depends on the distribution of the lift over the projection. The drag is desired to be as
small as possible. The question arises, What is the distribution of lift giving the smallest
induced drag? The importance of this question is at once obhvious.

The entire lift and the entire induced drag of the wings are found again as important
characteristics of the final transverse flow, discussed in the last section. The resultant lift
is equal to the resultant vertical momentum of this flow for the thickness of the laver cqual
to the velocity 17, and the induced drag is equal to the kinetic energy in the same layer divided
by V. The problem is therefore to find such a two-dimensional flow produced by impulsive
pressure over the longitudinal projection of the wings as possesses a given magnitude of the
vertical momentum. and the kinetic energy of which is a minimum.

It is sufficient for elementary questions to consider only arrangements of wing symmetrical
with respeet to a vertical longitudinal plane, giving moreover horizontal lines in the longitudinal
projections. The results are valid for all conditions (reference 1). It is then easy to find the
solution. The momentum of several flows superposed on each
other is the sum of their single momenta. The flow is of the de- 2§
sired kind if thesuperposition of any other low with the resultant i
vertical momentum zero increases the kinetic energy of the flow. /IR

The velocity of the superposed flow can be assumed to be ]
small, for instance, so that its own kinetic energy, containing the f'\
square of the velocity, can be neglected. The impulsive pressure J\ S0

t~

L : | . _ .
along the projection of the wings necessary to create the super- |/ 90 Divection of wind
posed flow acts along a path determined by the magnitude of the | 4 Vv
downwash at the same points.  The increase of kinetic energy is \“p‘e;y;,.i: ~~~~ w

= Mot T~
1 77 OF gy
!
2 P f u P d.l? F1G. 4.—Diagram showing the creation of the
induced drag.

where f° & dxr=10.

It is readily seen that the first expression can be identically zero for any distribution of the
potential @ restricted by the second condition only if the downwash u’ is constant over the
entire projection of the wings. Only then a transfer of a portion of lift from one point to another
with smaller downwash is impossible, whereas this procceding in all other cases would lead to a
diminution of the induced drag. It is thus demonstrated:

The induced drag is a minimum, if the transverse two-dimensional flow has a constant
vertical component of velocity along the entire projection of the wings.

For wings without stagger it follows then that the induced angle of attack w'/V is
constant over all wings.

The magnitude of the minimum induced drag of a system of wings 1 easily found from the
apparent mass p K of their longitudinal projection in the two-dimensional transverse flow.
For the vertical momentum equal to the lift is uV pK=1L where u is the constant downwash
of the final low. This gives

e L
Vo X
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The induced drag is equal to the kinetic energy divided by V

m=w%K

It follows therefore that the minimum induced drag is

Iz
ik )
and the constant or at least average induced angle of attack is
w_ L
VT o K (37)

K is a constant area determined by the longitudinal projection of the wings. It is the area of
the air in the two-dimensional flow having a mass equal to the apparent mass of the projection
of the wings.

The results (36) and (37) show that the minimum induced drag can be obtained from the
consideration that the lift is produced by constantly accelerating a certain mass of air downward
from the state of rest. The apparent mass accelerated downward is at best equal to the apparent
mass of the longitudinal projection of the airplane in a layer of air passed by the airplane in the
unit of time.

In practical applications the actual induced drag can be supposed to be equal to the mini-
mum induced drag, and the average induced angle of attack equal to (37). It is, of course,
slightly different, but the difference is not great as can be expected since no function changes
its value much in the neighborhood of its minimum.

I proceed now to the application of the general theory of induction to the case of the mono-
plane without dihedral angle, giving in longitudinal projection a straight line of the length &.
Consider first the distribution of lift for the minimum induced drag. It is characterized by the
transverse potential flow with constant vertical velocity component along this straight line.
This flow has repeatedly occurred in the earlier parts of this paper. For the length 2 of the line,
it is the transverse flow given by equation (2) or by equation (4) and n=71. The potential

function for the length b is
2z j/2zV
F=A, z[bz—\/(b‘?) —1] (38)

giving the constant vertical velocity component along the line
2
U= ‘11 b

The density of the lift per unit length of the span is equal to the potential difference of the final
flow on both sides of the line, multiplied by Vp.

darL 22\ . 4 L si
de =2 VpA‘\/I —< bz) =2 A, Vpsin =" b:lﬁn by (39)

&

where cos §= FI Plotted against the span, the density of lift per unit length of the span is

represented by half an cllipse, the multiple of sin § being plottea against cos 8. Thelift there-
fore is said to be elliptically distributed.
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The apparent mass of the line with the length b according to equation (3) is equal to
pK=0 72 p
Hence, with this distribution of lift, the minimum induced drag is, according to equation (36)

L (40)

D"_

b Ve 2‘.’7r

and the constant induced angle of attack according to equation (37) is

_ L (41)
2172 P
by 27

a;

The density of lift (39) per unit length of the span together with the chord ¢, different in general
along the span, and with equation (22) determines the effective angle of attack at each point,
including the apparent mean angle of attack of the section. Namely, from equation (39),

dL

= density of lift _  dz _2Lsing (42)

27 chord Ig 2#61""2 bn2cVz£)

The geometric angle of attack is greater by the constant induced angle of attack, and hence

2L sin & L ¢
a,= b8 ‘p+ p=a¢(1 +§b_75r'irrfi’6> (43)
br2cV? 9 b*r Vzg

Equation (40) indicates the importance of a sufficiently large span in order to obtain a small
induced drag.
Any distribution of 1ift ((ljf over the span other than the elliptical distribution is less simple

to investigate, as then the induced downwash is variable. The distribution of lift gives directly
the distribution of the potential difference along the two-dimensional wing projection.

dL
dz
= 44
Ab= (44)
The transverse two-dimensional flow can now be obtained by superposition of types of flow
given by equation (4) with z=2bz, as now the length of the line is not 2 but 4. The condition

that the superposition of such flows gives the required potential difference, viz,

4L
Daw— % 4, sins+4, sin 2 1, sin nb (45)
2 =gy, ~ism +4,smn 26+ - - - +A4,s1in né+

Hence, the distribution of the density of lift, divided by 2 Vp is to be expanded into a Fourier’s
series. The induced angle of attack results then, according to equation (15),

1 . . .
= pin 8 (A,sin8+2A4,sin 26+ - - +n A, sinns+, . - ) (46)
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and the entire induced drag, being the integral of the product of the induced angle of attack
and the density of lift with respect to the element of the span is
+b/2
dL
). = =
0 dx

b2

aid1=pg;1‘2+2;122+- e A0 (47)

As mentioned before, the induced drag for any reasonable distribution of lift agrees prac-
tically with the minimum induced drag. given by equation (101, .1, is the main coeflicient and
all other .1's are then small when compared with it. It is, therefore, exact enough for practical
problems to apply equation (40) indiscriminately, whether the distribution of lift is exactly
elliptical or only within a certain approximation. In the same way, equation (41) for the
constant induced angle of attack can be used generally for the average induced angle of attack.

9. In practice the reversed problem is more often met with.  Not the distribution of the
lift but the shape of the wing is known. viz, the magnitude of its chord and the angle of attack
at each point. The air forces are to be determined.

The =olution of this problem in full generality is barred by great mathematical difficulties.
There is, however, one particular plan view of the wing which can be treated comparatively
simply and which gives very interesting results.  That is the elliptical wing; that s, a wing
with such a plan view that the chord plotted against the span is represented by half an ellipse.

A possible way to investigate a wing with a given plan view would be to look for particular
distributions of the angle of attack such that the solution for them can be found. It would
be particularly easy to use such special solutions for the solution of the general problem, if it
is possible to determine those particular special solutions, for which the induced angle of attack
is proportional to the effective angle of attack and hence to the geometric angle of attack, too.
These functions found, the distribution of the angle of attack arbitrarily given has to be
expanded as a series of such functions, that is, as a sum of them. It is then easy to find from
this series the induced angle of attack or the effective angle of attack, as this can be done for
each term separately by the mere multiplication with a certain constant.  Hence, a new series
for the effective angle of attack is readily obtained from the series of geometric angles of attack.

That sounds simple, but it is extremely diflicult to find such distributions of the angle
of attack of a given plan view. It suggests itself, thercfore, to try the other way and to begin
with simple distributions of the angle of attack and to try to find a plan view which can be
conveniently investigated by means of them. The only distributions discussed in this paper
are those represented by the flows equation (4). It suggests itself to begin by considering their
induced angle of attack and effective angle of attack. For one special term, as follows from
equations (42), (43), and (16), the effective angle of attack is

24, sin né
[e Fal -
¢ wcl

(48)
and the induced angle of attack is

A, sinnd

%~ 3V sin s 49

It is at once seen that these two angles become proportional to each other if the chord ¢
hecomes proportional to sin 8. For circles and ellipses
v
¢=-— sin 3, (50)
T
b,
4

and therefore this is taken as applying to other shapes also. lence,

A, sin né
= TN
1" sin 6 7;7
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where S denotes the entire area of the wing. The ratio of the two angles of attack becomes then

% _2n 8
ae_ b2 (51)
This plan view is called elliptical.
With an elliptical wing, all equations found for any monoplane become particularly simple.

Equation (43) can be written
= (145 (52)
The geometric angle of attack follows from equations (48) and (49) for the effective and induced

angles of attack, valid for a special n, by taking the sum of all such expressions. The condition
for the coeflicient A, if the geometric angle of attack o, is given, is therefore

218 . . ) 2n8 -
) @SN 5=AISIII<5(1+ '——>+A1 sin 28 <1+ >+ + A, sin nd (1+ )+ ------ (53)

s . S
That 1s, 2V a, sin & b is to be expanded into a Fourier’s series

2V a(,smabs =B sin 8+ B, sin 264+ B, sin né+ + - - (54)
and the coefficients 4, are then
B,
A= oy (55)
147,

The distribution of the lift follows then from equation (44)

dL.

I p (A, sind+A4,sin 26+ - - - F+A,sinné+) (56)

and the distribution of the induced angle of attack is given by equation (46). The entire
induced drag is given by equution (47).

+hf2
The entire lift isj ((iL dz and only the first term of series (56) contributes to it In view of
B2
formula (11), since dr= —sin 6 d §.  Hence, the entire lift 1s

b2
L=2Vp A, | sinsds

or, transformed by introducing «,, and using (54) and (55)

L0 1 #biz .
L=V*% 25 2 a, ¢ dx (57)
I+, 7
—bi2

That is to say, the entire lift of an elliptic wing can be obtained by supposing the effective
angle of attack equal to the geometric angle of attack divided by (1 +Zb>. Otherwise expressed

the aerodynamic induction reduces the entire lift of the elliptical wing in the ratio

1+b°

however the wing may be twisted.
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This 1s not so plausible as it sounds. The distribution of the lift itself is by no means
obtained by a mere diminution of the angle of attack in a constant ratio; only the entire lift
can be computed that way. Nor does this theorem hold true for any other plan view but the
elliptical. It may, however, be applied to shapes approximately elliptical so as to gain approxi-
mate results.

The rolling moment of the lift can be found by means of quite an analogous theorem. Only
the second term in (56) gives a contribution to the rolling moment in view of formula (11).
This is therefore as a consequence of formulas (56), (55), (54), and (50),

P +b/2
I’ 2 2 271’
M= 48 cazdz (58)
I+ B

Hence, the entire rolling moment is obtained by taking as the effective angle of attack, the

. . 1 . . . .
geometric angle of attack times 48 The induction decreases the rolling moment in the

1 32
1 ’

ratio -- s This 1s of interest for the computation of the effect of a displacement of ailerons.
1+
Fope

It will be noticed that this factor of decrease is a different one for the entire lift and for the
entire rolling moment. The induced angle of attack is not proportional to the geometric angle
of attack except when all factors but A, are zero. This is the case in the main case n= 1 where
the constant angle of attack is decreased by a constant induced angle of attack, as we have
seen before.

Equation (58) may also be applied approximately to shapes differing from elliptical plan
forms. The error involved in this proceeding is probably greater in general than for the deter-
mination of the entire lift, as the rolling moment is more influenced by the ends of the wing
and there the deviation from the elliptical shape will be particularly pronounced.

10. The biplane, represented by two parallel lines in the longitudinal projection, gives
rise to the same considerations as for the monoplanc. The apparent mass of the pair of lines
is always greater than that of one line. Therefore, the minimum induced drag of a biplane
1s always smaller than the induced drag of a monoplane of the same span under the same con-
ditions. 1t is

Iz
4K Vzg (59)

D=

It is equal to that of a monoplane of equal area and of greater span. The span of the mono-
plane with the same induced drag as the biplane has to be kb where k%= K;_ The magnitude
2
¥
of Kis given in Table II.

I have discussed the subject at full length in my paper on the biplane (reference 4). This
paper contains also the discussion of the influence of the induction on the stability of staggered
biplanes. It can easily be seen that the induced angle of attack of a staggered biplane is greater
at the rear wing, this wing being in a layer of air having received more than 50 per cent of the
impulse, whereas the front wing is in a layer having received less than that. Hence, the center
of pressure is moved toward the front wing.

A theory of a particularly shaped biplane when the angle of attack is given, in analogy to the
theory of the elliptical wing as given by me in the last section is not yet written. Even less
is written on triplanes and other multiplanes. The number of variables to be considered and
the general mathematical difficulties increase with the number of wings, and at the same time
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the results become less important as they are more seldom used. This refers to the exact
numerical information. The general physical problem is as easily understood as with the

monoplane.

TABLE 1.
APPARENT Mass oF A PAIR OF STRAIGHT LINES.
gp  K=b el gal
E
span . Y
0.00 . L 1.000
.05 1.123 . 4962
10 1.212 . 909
.15 1.289 881
.20 1. 333 . 860
.30 1. 462 .827
.40 1. 550 . 803
! . 50 1. 626 . 784
| < 2.000 .07
|
TABLE IIL

COMPUTING THE ANGLE OF ATTACK OF ZERO LIFT AND OF ZEKO MOMENT
ZERO LIFT.

i
Per cent of chords. Factor.

I

2 points:
X1=89. 185 S1=264.9
X1=10.815 Ja= 32,1

v points:
X1=99.548 fi=1125.24
X:=87.426 fi= 109.048
X3=50.000 fi= 32,5959
X=12.574 fi= 156838
Xi= .542 fi= 597817

ZERO MOMENT.

X,=95.7
! Xy 4.2

4 fi=/1=062.634
i}

149



150



