
TECHNICAL NOTES

NATIONAL ADVISORY COMMITTEEFOR AERONAUTICS

No. 196

REMARKSON THE PRESSUREDISTRIBUTION OVER THE SURFACEOF AN

ELLIPSOID, MOVINGTRANSLATIONALLYTHROUGHA PERFECTFLUID

By Max M. Munk

Washington

June 1924

151

https://ntrs.nasa.gov/search.jsp?R=19800006782 2020-03-21T19:29:01+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42866651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 196.

REMARKS ON THE PRESSURE DISTRIBUTION OVER THE SURFACE OF AN

ELLIPSOID, MOVING TRANSLATIONALLY THROUGH A PERFECT FLUID.

By Max M. Munk.

Summary

This note, prepared for the National Advisory Committee for

Aeronautics, contains a discussion of the pressure distribution

over ellipsoids when in translatory motion through a perfect fluid.

An easy and convenient way to determine the magnitude of the veloc-

ity and of the pressure at each point of the surface of an ellip-

soid of rotation is described.

The knowledge of such pressure distribution is of great prac-

tical value for the airship designer. The pressure distribution

over the nose of an airship hull is known to be in such good agree-

ment with the theoretical distribution as to permit basing the com-

putation of the nose stiffening structure on the theoretical dis-

tribution of pressure.
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Experiments have shown that the knowledge of the pressure

disbribution over the surface of ellipsoids, moving translationally

through a perfect fluid, is often of considerable practical inter-

est. This pressure distribution is of a simple description; it

can easily and quickly be determined by analytical methods. To

the best of my knowledge this has never been brought out clearly

in any publication. The mathematical theory of the flow created

by an ellipsoid is given by H. Lamb in his "Treatise on Hydrody-

namics," Chapter V. It requires considerable mathematical train-

ing to grasp the full meaning of the results as given by Lamb.

E. G. Gallop (Ref. 3) has given some comments on the nature of the

resulting distribution of the velocity and pressure, for the spec-

ial case of an ellipsoid of revolution. A part of this holds true

for all ellipsoids, including those with three different principal

axes. Mr. Gallop does not, however, for the special case of sphe-

roids make the distribution of the pressure sufficiently plain for

immediate computation or for the practical application of this

interesting analysis.

The knowledge of one simple lemma on the potential flow around

ellipsoids, implicitly contained in Lamb's result (Third Edition,

Equation (114 (8) ), ) is sufficient for the deduction of all the

following theorems and for the determination of the pressure dis-

tribution. This lemma is:

If an ellipsoid is moving with uniform velocity parallel to

one of its principal axes, say parallel to the x-axis, the velocity
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potential at any point of the surface can be written in the form

: A'x (i)

where A' is constant for a given flow and a given ellipsoid.

This theorem'is the key to all the relations referring to the dis-

tribution of velocity and of pressure.

If the velocity of flow is not paralle] to a principal axis,

but has components in the direction of each of them, the resulting

flow is the superposition of three flows analogous to the one just

considered. Hence, at all points of the surface, the potential is

a linear function of the Cartesian coordinates x, y, and z

again, and can be written in the form

: A'x + B'y + C'z (2)

where the coordinate axes are chosen to coincide with the axes of

the ellipsoid. Hence the curves of equal potential % are

situated on parallel planes.

Now, suppose first the ellipsoid to be at rest and the fluid

to be moving relative to it, as in a wind tunnel or as with an

airship moored in a gale. The change from the ellipsoid moving

through the fluid otherwise at rest to the fluid passing by the

stationary ellipsoid does not affect the validity of Equation (2)

except giving the constants A', B', and C' other values, say

A", B", and C" In the latter case (the body at rest) the

velocity of the fluid at all points of the surface is parallel to

the surface. Consider first the elements of surface containing a
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line element at right angles to the planes of constant potential,

i.e. at the points of the ellipsoid where the plane

A"x + B"y + C"z = 0 meets the surface. It is apparent from (2)

that at all these points the velocity has the components A" B"

and C". This is evidently the maximum velocity.

At all other points of the ellipsoid the elements of surface

are inclined towards the direction of maximum velocity, say by the

angle E. Then the elements of distance on the surface, As,

between curves of equal potential are increased in the ratio

1
cos c' when compared with the actual distances between the planes

of equal potential. Accordingly, the velocity, being equal to

6}
6--s is decreased inversely, its magnitude is A" cos _. It will

be noted in particular that the velocity is equal at surface

elements which are inclined by the same angle _. It is equal to

the projection of the maximum velocity at right angles to the

surface element. Hence the velocity cannot exceed the one rightly

denoted by "maximum velocity," having the components A", B",

and C".

Returning to the case when the direction of flow is parallel

to a principal axis, it can be shown that the maximum velocity A"

stands in a very simple relation to the kinetic energy of the flow,

and hence to the apparent additional mass of the ellipsoid. We

have now to suppose the fluid to be at rest and the ellipsoid to

move, say with the velocity U, parallel to a principal axis,
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e.g., the x-axis. The kinetic energy of the flow set up is equal

1 f d_to 2 p _ d-n dS, i.e., the volume of fluid displaced by an

element of the surface per unit of time, multiplied by the poten-

P where p denotes thetial at the point of displacement and by

density of the fluid. Now, the volume displaced by a surface ele-

ment per unit time is equal to the projection of this element

perpendicular to the direction of x, multiplied by the velocity

U. The potential being A'x the integrand becomes A' Ux _ dy dz.

f xdy dz is the volume of the ellipsoid, hence the integral gives

Volume A'U _. This is the kinetic energy, usually expressed by

k I denotes the factor of apparent mass.Volume k I U2_, where

It follows that

!

- kl .
U

A", referring to the case when the ellipsoid is stationary, is

connected with A" by the equation

A" = A' + U 1

as the latter flow results from the former by the superposition of

the constant velocity U. Hence it appears that

A"
- kl + 1 : A.U

A is the maximum velocity corresponding to a flow having unit

velocity along the x-axis. It is a constant for a given ellipsoid.

It equals the sum of 1 and of the factor of apparent mass

k I as is confirmed for two special cases, where the factor A

is well known. With a sphere, the maximum velocity is 1.5 times
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the velocity of flow, and the additional apparent mass is one-half

the mass of the displaced fluid. With a circular cylinder, moving

at right angles to its axis, the maximum velocity is twice the

velocity of flow, and the apparent additional mass is equal to the

mass of the displaced fluid.

A" B" C"
The ratios A - U ' B - V ' C - W are independent of the

velocities U,V, and W and hence only depend on the ratio of the

three semi-axes of the ellipsoid a, b, and c. Lamb gives the

method to compute them. Compute first the integral

a = abc dx

_(a 2 + x) (a 2 + x)(b 2 + x)(c 2 + x)

and the analogous integrals B and

factors of apparent mass are then

for the axes b and c. The

- _ etckl 2 - _' "

There are no tables for A, B, C, or for kl, k2, ks, pub-

lished yet. The integrals for _ etc., can be numerically evalu-

ated in each case, and I will assume at present that A,B, and C,

are therefore known. For the special case b = c, that is, for

ellipsoids of revolution, k I and k 2 have been computed for a ser-

ies of elongation ratios, and are reprinted in a small table in

1 - k2 The
Ref. 3. They are connected by the relation kl - 2 k 2

determination of the velocity at any point is thus reduced to a

simple geometric problem. The maximum velocity, whose components

are AU, BV, and CW, has to be projected onto the plane tangent
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to the ellipsoid at the point considered, i.e. it has to be multi-

plied by the cosine of the angle between the normals to the sur-

face at this point and at the point where the velocity is a max-

mum.

In the most interesting case of an ellipsoid of revolution,

this can be done analytically in a very convenient way. The for-

mula is most easily arrived at by the application of elementary

vector analysis. First compute the component of the maximum veloc-

ity in a direction normal to the surface at a given point. The

longitudinal component of the maximum velocity is AU, and the

lateral component of the maximal velocity is BV.

Let the angle between the normal and the longitudinal axis be

n, and let the dihedral angle between the plane containing this

axis and the line of velocity of flow and the plane containing the

axis and the point in question be _. Then cos n is the longi-

tudinal component and sin n cos _ the lateral component of the

normal of unit length. Hence the component of the maximum velocity

in a direction perpendicular to the element of surface is

Let

Then

V1

V 2 = (i + kl) U cos n + (i + k2) V sin n cos B.

denote the component parallel to the surface element.

V12 + V2 2 = V 2max'

V 2 2Vl =f max - V2

and hence
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This is the desired formula for the velocity of flow along

the surface. The pressure is computed directly from the velocity

at the points of the ellipsoid, now supposed to be stationary in

the flowing fluid. For this is a steady flow and hence

Bernouilli's equation for the pressure holds true, viz.:

1
p + _ p Vi 2 = const. That is, the pressure is equal to an

arbitrary constant pressure minus Vi 2 E where V 1 denotes the2'

velocity. The points of greatest velocity are those of smallest

pressure or of greatest section. The curves of equal velocity

are also the curves of equal pressure.

In practice, we are chiefly interested in rather elongated

ellipsoids of rotation, and the angle a between the principal

axis and the direction of motion is small. With very elongated

ellipsoids, k I is about 1 and k2 is very small. Hence A is

about 2 and B is about i, and the angle between the direction

of the line of maximum velocity and the axis is about twice as

large as the angle between the direction of motion and the axis.

The maximum velocity is always greater than the velocity of motion.

The difference between the largest negative pressure and the pre-

sure in the undisturbed atmosphere is

V2{_ (l+kl) 2 COS2a+ (l+k2) 2 sin2a - 1}
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