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SECTION I

SUMMARY

A scale model test was conducted using a twenty inch (50.8 cm) diameter,
low tip speed, low pressure ratio fan to assess the effect of source noise
reduction techniques and advanced suppression concepts on aft radiated noise.

Source noise reduction techniques included the effects of spacing,
effects of vane~blade ratio on the second harmonic, and the effect of Mach
number through the vane row. At 0.5 chord spacing it was demonstrated that
the farfield second harmonic level was minimized at a vane-blade ratio of
1.87; but there was no significant difference between the various vane-blade
ratios at 1.5 chord. No significant reduction in fan broadband noise levels
was observed by decreasing the Mach number through the vanes; however, this
may be due to the levels at wide spacing being controlled by rntor~turbulence
noise and not rotor-stator interaction noise.

Aft suppression tests indicated low (127%) porosity faceplate designs
achieved higher peak suppression and wider bandwidth than did high (27%)
porosity designs. Variable depth treatent was shown to be somewhat more
effective than constant thickness treatment. The amount of suppression
achieved with variable depth treatment was somewhat dependent upon whether
the panels were oriented thin-to~-thick or thick~to-thin. Variations in
duct Mach number up to a maximum of about 0.53 indicates no apparent flow
noise contribution.




SHCTION 11

INTRODUCTION

General Electric Company is currently engaged in the Quiet, Clean
Short-haul Experimental Engine (QCSEE) Program under Contract NAS3-18021 to
NASA Lewis Research Center. A major objective of the QCSEE Program is to
develop and demonstrate the technology required to meet the stringent noise
requirements anticipated for commercial turbofan short-haul aircraft.

An extensive series of component tests are being conducted to enable a
better assessment of the various engine noise sources and advanced suppression
concepts. Among these is the Scale Model Fan Test Program which investigated
aft radiated source noise reduction and aft duct treatment design.

The program was conducted in the General Electric Anechoic Chamber using
a 20-inch (50.8 cm) diameter 1.2 pressure ratio, 700 feet per second (213
meters per second) tip speed fan provided by NASA Lewis.

Volune I of this report presents the test configurations, test facility,
vehicle, and data acqusition and reduction systems plus selected comparisons
and initial engineering analysis of the data. Volume II presents the.1l/3 octave
band data in the form of computer plots of the major configurations and obvious
comparisons. The standard package of plots includes

. PNL versus angle at 2 fan speeds
o PWL versus frequency at 2 fan speeds
° SPL versus frequency at 2 aft angles and 2 fan speeds

In addition, the source noise data package includes the following plots:

® BPF SPL versus acoustic angle at 2 fan speeds

° 2nd harmonic versus acoustic angle at 2 fan speeds

Volume III presents all the 1/3 octave band model data for all configu-
rations. The data are given for both a 17 foct (5.18 m) arc and extrapolated
to a 200 foot (60.96 m) sideline.

A subsequent report will provide a more detailed engineering analysis of

the results and the impact of those results on the design of the full size
QCSEE engine.




SECTION II1

TEST i GL.LIY

This test was conducted in the anechoic e.vironment of the General
Electric Corporate Research and Development Aero/Acoustic Facility in
Schenectady, New York. An overview of the facility is shown in Figure 1.
A photograph of the facility 1s presented in Figure 2. It is comprised
of:

1. A 2500 HP drive system for speeds up to 26,000 RPM

2. An anecholc chamber approximately 35 feet (10.67m) wide by 25 feet
(7.62m) long by 10 feet (3.05m) high designed for less than + 1 dB
standing wave ratio at 200 Hz. All walls, floor, and ceiling are
covered with an array of 28 inch (71.1lcm) polyurethane foam wedges.

3. Porous walls for minimum inflow distortion to the fan when measuring
inlet radiated noise.

4, Ability to !nstall the fan for evaluation of both forward and ex-~
haust radisted noise,

5. Farfield noise measurement on a 17 foot (5.2m) arc from O to 110°
relative to the inlet for inlet radiated noise and nominally 60° to
160° relative to the inlet when measuring exhaust radiated noise.

The sound field is set up with the center of the arc located assuming the
source location to be at the inlet face during tests of inlet radiated noise
levels., For the exhaust radiared measurements on this test the source was not
located at the same point due to the long exhaust duct. Table I presc.its the
corresponding angles and distances to each microphone for both the long and
short duct configurations.

et — M o =
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SECTLION 1V

TEST HARDWARE

A schematic of the test vehicle is precented in Figure 3 and a vehicle
installation drawing is shown in Figuve 4. The airflow and noise source for
these tests was a twenty inch (50.8 c¢m) diameter fan designated Rotor 55 which
was supplied by NASA Lewls Research Center. Fan parameters are presented in
Table 11 and the votor, shown in tiie phetograph in Figure 5, was mounted in
a front drive configuration. The rotor biades were closed 6 denrees (.10 rad)
from nominal for these tests due to a c¢lutch cooling capacity limit.

Initial checkout and selected subsequent tests were conducted with the
original vane row designed with Rotor 55 and which had 11 vanes. 1Two addi-
tional vane rows were manufactured. The first (hereafter referred to as
the baseline vanes) was designed to enable investigation of the ecffects of
vane/blade ratio from 1.63 to 2.07. The number of vanes selected for Lhe
baseline design was 25 and the chord length of these vanes was ratloed
inversely (11/25) as the number of wvanes to the chord of the original Stage 55
vanes. To vary the vane-blade ratio with these baseline vanes, inner and outer
rings were manufactured to house from 25 to 3% (V/B = 1.67 to 2.07) baseline
vanes. ‘The effects of axial spacing between blade and vane row on noise was
also evaluated with 28 baseline vanes.

The second vane row designed incorporated a Llowpath with a larger annulus
area through the vanes to investigate the coffect of loweving the Mach number
through the vanes. It was desirable to use a maximum annulus area opening
consistent with not aerodynamically overloading the walls or vanes and to
cover the anticipated ares opening available within the existing ground rules
or the QCSEE propulsicen system. An acceptable predicted loading level
resulted from an increased solidity, 3! vane configuration {n conjunction
with an 114 area increase at the OGV inlet. Also, since the baseline vanes
would be tested in a 31 vane configuration, a direct performance comparison
would be obtainable. Table 111 shows the design diffusion factors for the
25 and 31 vane low Mach configurations relative to the 25 and 31 vane base-
line configuration. A modest loading increase in the hub of the low Mach
vanes was predicted golng from 35 baseline vanes to 31 low Mach vanes,

Figure 6 compares the low Mach and baseline configuration flowpaths.

Both vane sets were designed using the same NACA 400 series airfoils
employed in the original design. The radial distribucions of ty/c differed
from the stage 55 vanes as indicated below:

tm/ C o
Tip Pitch  lub
Stage 55 .09 .09 .09
Baseline .125 .081 . 102
Low Mach . 115 . 085 . 115



See Insert Above

'1/ Anechoic Chamber Wall

Fan Flow
- Long Aft Duct Configuration
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FIGURE 3 TEST VEHICLE SCHEMATIC
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TABLE II - FAN PARAMETERS

e Inlet Guide Vanes None
o Fan Diameter 20 inches (50.8cm)

e Stage Pressure Ratio (100% N/ /5) 1.16

e Tip Speed (100% N/ V5) 700 fps (213 m/sec)
e Fan Speed (100% N/ v8) 8021 rpm
e Pitch Angle (Degrees Closed
from Nominal) +6°
o Weight Flow 59.5 lbm/sec (27.0 kgm/sec)
e Number of Stators (Stage 45) 11
(Baseline Vanes) 25,26,27,28,29,30,31
(Low Mach) 31
e Spacing (Stage 55) 1.5 true rotor tip chords
(Baseline Vanes) 0.5,1.0,1.5,2.0
(Low Mach Vanes) 1.5
e Radius Ratio 0.46
P
RECEDING PAGE BLANK NOT FILMEQ
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The tp/c values were changed to satisty mechanical design requirements
relative to vane frequency charactevistices,

Spacing, low Mach vane, and baseline vane=blade ratio tests were conducted
with a short hardwall att duct. Tests with Stage 55 utilived a long harvdwall
att duct.  These aft ducts ave shown schemat {cally {n Figure 3.

ALl att suppression tests were conducted with the long att duct versiom
ot the test vehidele. A photograph £s shown in Figure 7. The long aft duct
was desipned to hold four pairs (fnner and outer) of interchangeable treatment
panels.  The panels themselves were of varfous thicknesses and porosities.

Also manufactured as part of the aft suppression tests was a 0.0 ineh (1,52 cm)
thick splitter which had a treatment leapth L/ o 5.2. Treatment panel
parameters are swamarized in Table 1V,
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SECTION V

DATA ACQUISITION AND PROCESSING

A, Data Acquisition

1. Aerodynamic

Aerodynamic data were recorded in three modes. Mode 1 included wall
static pressure taps, and fixed radial rakes. Mode 2 included wall static
pressures, fixed radial rakes, and a traversing arc rake. Mode 3 encompassed
only wall static pressures. Basic pressure data were individually sampled
through use of two 48 channel scanivalve systems and temperature data were
sampled directly through a Hewlett Packard crossbar scanner and digital
voltmeter.

During the aft suppression tests, a kiel nrobe was traversed downstream
of the splitter to determine splitter losses. This pressure information was
plotted on-line on an X-Y plotter.

Location and types of aerodynamic instrumentation are shown in Figure 8.

2. Acoustic

Farfield microphones were calibrated with a pistonphone with the cali-
bration recorded on magnetic tape. Sound from farfield microphones and wall
kulites was recorded simultaneously for at least one minute at each data
point using a 28 track Sangamo recorder which has a 40 kHz capability in the
FM mode at 60 inches per second (152 cm per second) tape speed. All acoustic
probes were retracted to the wall during farfield noise measurements. Repeat
data points (with few exceptions) were taken at fan speeds of 70 and 100
percent for all configurationms.

Kulite phase shift relation calibrations were determined by applying a
pressure on each kulite simultaneously and observing the direction of the DC
shift and by inserting a clipped sine wave signal into the amplifier of all
kulites simultaneously with the results recorded on tape.

B. Data Reduction

1. Aerodynamic

Data was recorded and reduced in three modes. Mode 1 was used when the
fixed inlet and discharge rakes were installed. Pressures and temperatures
sensed by the rakes were averaged circumferentially, and radial mass-
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averaging was used to obtain overall stage discharge conditions. The basic
performance parameters of airflow, pressure ratio and efficiency were computed
in this mode.

Mode 2 was designed for use with the traversing arc rake. Arc rake
pressure/temperature elements spanning an integral number of vane passages
were used to obtain an average total pressure and temperature downstream of
the OGV. The three highest reading elements were used to determine the
OGV inlet pressure for the OGV recovery calculation. The traverse data were
radially mass-averaged to determine overall OGV discharge conditions.

Mode 3 was designed to provide wall static information for acoustic
testing with the fixed rakes removed.

Equations in the data reduction programs conformed to perfect gas re-
lationships. Real gas effects were accounted for through specific heat
variation with temperature and humidity and gas constant variation with humi-
dity. These variations were defined for consistency with in-house programs
that utilize enthalpy tables.

2. Acqqstic

One-third octave band data were processed using a General Radio 1927 real
time analyzer whose digital output was put on magnetic tape and run through a
Full-Scale Data Reduction Program. A schematic of the acoustic data system
is given in Figure 9. In general the data repeatability was excellent to
+ 1 dB. Where it is not confusing both the original and the repeat data
points are shown on the comparison plots. However, where showing both would
lead to too many symbols, only the average of the data points is plotted.
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SECTION VI

AERODYNAMIC PERFORMANCE

A. Fan Stage Performance

Fan stage performance was measured to satisfy two basic objectives:

1. Verify the adequacy of the baseline (25) vane design in achieving
stage performance comparable to the original NASA 11 vane configura-

tion.

2. Support the acoustic evaluation of the low Mach versus baseline
vane configurations by providing data for noise/performance
tradeoffs.

Three types of aero data were obtained:
a. Fixed rake data to provide basic fan map information.

b. Vane wake surveys provided by a circumferential arc rake
positioned at several radial locations.

c. Static pressure data to provide additional stage infor-
mation and to monitor vehicle operation during acoustic
testing when aero rakes were removed. Instrumentation
locations are depicted in Figure 9.

Because of the 90° turn of the inlet flow from the vertical inlet stack
to the horizontal inlet duct, shown in Figure 3, the total pressure profiles
at the rotor inlet are of interest. Figure 10 shows the rotor inlet radial
profiles at three circumferential locations for the baseline vane configuration
at 100% N/Y0. Except at the hub, the total pressure at the 200° location was
slightly lower, probably reflecting the additional turning and mixing occurring
in the bottom quadrant. The higher hub pressure in this quadrant was possibly
due to the boundary layer getting a start on the axial portion of the hub flow-
path, whereas, at the other positions the hub boundary layer included the
total buildup down the stack. Also shown for reference is the inlet pressure
profile for Stage 55, (Reference 1) which was a*t a comparable inlet airflow.
Relative to the NASA profile, a small total pressure defect (v0.6%) existed in
the hub at the 60° and 300° rake positions, but essentially no total pressure
distortion was measured in the tip.

Stage discharge radial pressure profiles measured with the downstream fixed
rakes are also shown in Figure 10. The maximum measured circumferential vari-
ation was slightly above 1% for the 31 vane baseline configuration. With this
number of vanes, the circumferential position of the rakes relative to a vane
was such that the 215° rake was closest to the vane suction surface, followed
by the 330° rake. This relative positioning could account for the measured
circumferential pressure variation, since the 215° rake measured the lowest
pressure at four out of five radial locations.
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Aero performance was measured for the baseline and low Mach at a vane-blade
ratio of 2.07 (31 vanes) and a rotor-stator spacing of 1.5 true rotor tip chords.
Figure 11 shows overall performance data for these vane types against a back-
ground map obtained by interpolating the NASA test results (Reference 1) to a
rotor pitch angle of 6°. Also shown are the two data points taken with the
eleven-vane NASA configuration. The pressure ratios for these configurations
were obtained by a radial mass-averaging of the fixed rake immersion averages.
The tests were conducted with a common, fixed area exhaust nozzle, so the data
should ideally fall on a common operating line. Conclusions regarding the
relative pressure losses of the vane configurations were thus based on the
airflow-speed relationship, shown in Figure 12. On that basis, airflow at
speed is slightly higher for the 31 baseline vanes, indicative of 0.1-0.27%
less pressure loss. Fixed rake efficiency data is not shown due to discharge
temperatures reading too low, resulting in efficiencies greater than 1.0.

Traverse pressure data at selected immersions are shown for the baseline
and low Mach vanes in Figures 13 and 14. The arc rake spanned slightly more
than one vane passage in the tip and more than two passages at the hub. The
data measured by each arc rake element are thus depicted in a circumferential
position relative to a vane trailing edge in order to illustrate the circumfer-
ential profile in a single passage. Except at the tip and hub, circumferential
profiles of the two vane types are similar. In the tip, high suction surface
losses are evident for the baseline vanes at both 90% and 100% N/v®. The low
Mach vanes appear to have higher suction surface losses in the hub.

Temperature profiles at 100% N/v6 for selected immersions are shown in
Figure 15. 7The relatively larger variation at the ead walls, particularly in
the hub, are evidence of streamline warping/seconda~zy flow phenomena.

Radial profiles of OGV recovery, stage pressure and temperature rise and
stage efficiency derived from the traverse data are presented in Figures 16 and
17. The upstream total pressure used in the OGV recovery computation was the
average of the three highest reading are rake pressures. Reference profiles at
100% N//6 derived from averaged Stage 55 NASA data are shown in Figure 17.

The recovery levels of the baseline and low Mach vanes were about the same
except near the end walls, where the low Mach vanes were better in thke tip and
worse in the hub, as discussed previously. Both vane types indicated improve-~
ment relative to the eleven vane NASA configuration data from Reference 1. No
comparison between the NASA configuration and the 25 baseline vane configuration
was available since the latter was not traversed. The stage pressure and tem-
perature rise profiles are similar to the NASA results but a temperature level
discrepancy of 1° to 2° R (0.6 to 1.1° K) was evident. It could not be deter-
mined whether the inlet rake or arc rake temperatures were at fault, but the
arc rake was suspect due to the use of a connector rather than continuous leads.
Because of the relatively low rotor temperature rise, the 1° to 2° R (0.6 to
1.1° K) temperature discrepancy resulted in a large eificiency error. However,
one would not expect the 25 baseline vane performance to vary significantly
from the 31 baseline vanes.
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A limited amount of static pressure data within the fan stage was obtained.
0f most interest was a comparison of the baseline vane and low Mach vane hub
static pressures at the rotor exit and OGV inlet wihich is summarized below:

Pg/d; Baseline Low Mach
Rotor Exit 13.77 psia 13.85 4
(9.494 x 10%/m?) (9.549 x 107/m?2)
OGV Inlet 14.01 4. 2 14.21 4 ;

(9.650 x 10 /m”) (9.797 x 10 /mz)

The low Mach vane configuration exhibited both a higher rotor exit hub static
pressure and a greater hub static pressure rise between rotor and stator.
Defining a static pressure coefficient as:

c =APg

P -
Pt Ps

where APg - hub static pressure rise between rotor and stator.

PS - rotor exit hub static pressure.

Pt - mass-welghted discharge pressure

Design and measure values are tabulated below:

Design Measured
Baseline 0.053 0.073
Low Mach 0.110 0.112

It is noted that the difference in measured pressure coefficient between the
baseline and low Mach configurations is roughly 70% of the pressure coefficient
difference predicted by the design point axisymmetric flow solutions. Because
the design point solutions corresponded to a 0° rotor pitch, 110% N/V0 condi-
tions, the design rotor discharge Mach numbers (V0.6) were considerably higher
than actual test conditions (v0.49). It is estimated that the Mach number
difference and the difference in hub swirl between the 0° and 6° rotor pitch
angles could account for roughly half the difference in delta pressure coeffi-
cient. Other effects, such as the additional wall boundary layer growth of the
low Mach configuration which was not accounted for in the axisymmetric solution,
could account for the remaining difference. Thus, it 1s concluded that opening
the annulus area at the OGV inlet was largely effective in achieving the intended
prediffusion.
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In summary, stage performance comparable to the original NASA configura-
tion was achieved. Overall vane losses were in line with expectations. The
4 point efficiency decrement indicated by the arc rake traverse of the low
Mach configuration was not believed due to the previously mentioned temperature
measurement problems. The reasonable assumption that the rotor performance
was unaffected by the OGV configuration implied approximately equivalent stage
performance for the low Mach and baseline vanes since the vane losses were
about the same for both.

B. Inlet Turbulence

As mentioned in the previous section, the facility inlet geometry was of
interest due to the turning involved. Prior to design of the inlet stack and
bellmouth, a scale model was built and tested. These model results found that
turbulence levels (ratio of root mean square of the fluctuating velocity to the
freestream velocity) of less than 1% could be obtained at all circumferential
locations except at the lowest point of the model where levels of 1.5 percent
were measured. Accordingly, on the first configuration of this test vehicle,
turbulence was measured with a single axis hot film probe 6.7 inches (17 cm)
forward of the rotor. The resulting levels are presented in Figure 18. For
reference hot film data at equal mass flow from tests of NASA Rotor 1l are
shown in Figure 18. Rotor 11, a 20 inch (50.8 cm) diameter, 1.57 pressure
ratio fan was tested to measure inlet radiated noise and was thus oriented to
pull air from the anechoic chamber rather than from the stack as did Rotor 55.
Rotor 11 represents typical inlet turbulence levels for static anechoic chamber

testing.

The inlet turbulence levels measured on Rotor 55 are comparable to those
measured on a typical static test of an inlet in the anechoic chamber.

C. Aft Duct Performance

One of the objectives of the aft suppression tests was to determine the
effect of aft duct Mach number on flow regenerated noise. In support of this,
aerodynamic measurements were taken in the aft duct. These measurements con-
sisted of static pressure data and a total pressure traverse upstream of the
nozzle. These are depicted in Figure 9 and were used to determine aft duct
Mach numbers.

Figures 19, 20, and 21 present the 100%Z N/v6 duct Mach number profiles
which were derived from the aft duct aerodynamic data for the duct without
splitter, with splitter, and with splitter plus opened nozzle (12% open from
nominal). Mass weighted average Mach numbers and calculated duct total
pressure losses (excluding nozzle) are tabulated in Table V for both 90 and
100% N/v6. The maximum Mach number of 0.556 achieved was over the splitter
in the outer channel while 0.516 was achieved in the inner channel. Figure 22
shows the aft duct Mach number variation with fan speed.
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SHCLLON V11

SOURGE NOLSE THST RESULTS

A Vane-Blade Ratio Effects

A theoretlcal analysis developed by Mani (Eeterence 2) determined that
rotor-stator noise can be reduced by the judicious selection of vane/blade
ratio. The sources of the rotor-stator noise ‘re the tluctuating forces ex-
erted by the blades on the fluld., These tar @ = as o tirst approximation -
have an orientation which may be taken as that of the Lift vestor determined
from the steady state Uluild velocity diagrams.  The nofse {8 propagated as
spiraling waves which have an orientation that depends only on the number of
stator and rotor blades, the rvotor frequency, and the velocity of the moving
medium,  The efficiency with which a blade row produces discrote frequency
noise due to interaction with a neighboring row can be signiticantly reduced
if the orientation of the spiraling wave system s approximately perpendicular
to the orientation of the fluctuating torces.

Normally, the analysis would be used to select the vane=blade ratio that
would reduce the BPF. However, on the QCSEE under-the-wing engine the BPF s
at 1000 Hz and the sccond harmonic 2000 Hax, Due to the higher nov-weighting
of the second harmontic, minimiving it could be more beneticial, Rotor 55 was
used to reduce the second harmonic thus veritfving the analvsis which was used

to select the proper vane number on the enpine.

Predicted level changes due to minimizing the second harmonic rotor stator
interaction noise levels are shown {n Fipure 23 tor various radial locations.
The minimum energy transmittal occurs at 28 vanes or 1,87 vane/blade ratio,

A sortes of vane numbers were tested (Table VI) with the 1h blades of Rotor

55. This testing was done at two spacings - 1.5 and 0.5 rotor tip chords.

Fach vane number from 25 to 31 was tested which resulted In vane/blade ratios
from 1.67 to 2.07. 1In addition, testing ot the 11 vane contipuration which
originally made up Stage 55 provided data at a vane/blade ratio ot 0.73 at 1.5
chord spacing only. The confipurations ave summarized in Table IV, Test resalts
are presented fn Figures 24 and 25 at 100 and 70% N/VO respoctively.  Both 1.5
and 0.5 chord spaciug results are shown at three att angles.  Examining the

1.5 chord spacing results indicates that there was no sfgniticant change in

the second harmonic SPL as vane/blade ratio was varied. However, with the

0.5 chord spacing data, there is a definite trend to minfmum SPL's at I8 vanes
or a vane/blade ratio of 1.87. There are two conclusions to be observed from
these results.  First, the close spacing (0.5 chord) static test results
substantiate Mani's analysis and justify its use as a tool to choose the

proper vane/blade ratios on the UMW eagine.  Second, at a wide spacing (1.>
chord) the static test results fmply that some source other than rotor-stator
interaction is controlling. This may be votor-turbuleace interaction noise
and the effect of vane-blade ratio at wide spacing could be benetficial in-
flight if rotor-turbulence noise s reduced. Therefore, the QCSEE design
intent is justified if rotor turbulence noise is not controlling during flight.
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TABLE VI SOURCE NOISE TEST CONFIGURATIONS

olsaoronwmesi [ 1 T.’\

L ]
¢ +6% BLADE ANGLE .
\ \_N—OMINAL NOZZLE
- - - =\‘ - N
pu—— \

. :I . ) \
A R
_____ Jl' \\' ‘\______‘_________ s
ROTOR-0GV | VANE  VANE/BLADE  DUCT
CONFIGURATION  TREATMENT  SPACING  NUMBER RATIO LENGTH COMMENTS
1B ND 1.5 11 0.73 LONG STAGE 55 VANES
2 YES 1.5 28 1.87 SHORT BASELINE VANES
3A 1.5 31 2,07 BASELINE VANES
4B 1.5 31 2.07 LOW MACH VANES
5 1.0 28 1.87 BASELINE VANES
1.5 28 1.8/ LONG
12 1.5 26 1.73 SHORT
13 1.5 27 1.80
14 y 2.0 28 1.87 l
18 NO 1.5 28 1.87 LONG
19 YES 1.5 25 1.67 SHORT
20 1.5 29 1.93
21 1.5 30 2.00
22 Y 1.5 28 1.87 (REPEAT OF CONFIG, 2)
27 NO 0.5 31 2.07
28 30 2.00
29 29 1.93
30 28 1.87
| 31 27 1.80
32 26 1.73
33 Y Y 25 1.67 Y #
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B. Rotor-Stator Spacing Effects

An investigation of rotor-stator spacing effect was conducted at the
optimum vane-blade ratio (28 baseline vanes) for minimizing second harmonic
tone propagation in the exhaust. The four values of spacing - ratioed to
true rotor tip chords were 0.5, 1.0, 1.5, and 2.0,

At all test speeds for this vane/blade ratio the viscous wake discrete
frequency noise is cut off for the BPF and cut on for the second and third
harmonics. Hence, if ideal inlet conditions prevailed, the BPF would not be
discernible in farfield spectra. However, it has been shown that inlet
conditions are far from ideal in static tests. Nonideal conditions may
result from any or all of the following:

° turbulence eddies

(] ground vortices

. wall boundary layer fluctuations
° thermal gradients

Various investigators, References 2 and 3, have shown how interaction of
these inlet disturbances results in noise generation by the rotor alone.
Generally, the turbulence eddies form the dominant noise generation mechanisms,
Reference 4, and since the incoming turbulence is normally aggravated by static
test conditions, an apparent noise reduction is seen going from static to
inflight tests. The noise spectrum generated by rotor turbulence interaction
is controlled by the incoming turbulence spectrum; however, both discrete
frequency and broadband noise may result (References 2 and 4). It has been
found that the turbulence spectrum normally peaks at the low frequencies and
falls off rapidly at the higher frequencies. Correspondingly, the noise
spectrum was also found to decay with frequency.

The 100% N/v0 1/3-octave band PWL spectra presented in Figure 26 indicate
no significant change with spacing at the BPF. This is more clearly seen in
Figure 27 where the effect of spacing is shown on the 1/3-octave frequencies
of 2000 Hz (BPF) to 6300 Hz. However, there is another effect which must be
considered when looking at these curves, and that is the effect of the rotor-
OGV treatment. The 0.5 chord spacing was hardwall while the 1.0, 1.5, and
2.0 chord spacings had R-OGV treatment with L/H's of 0.26, 0.43, and 0.60,
respectively. As will be shown in a later section, the PWL suppression achieved
by R-OGV treatment at 1.5 chord spacing was 4.0, .5, .5, 1.0, 1.0 and 2 dB for
the 1/3-~octave bands from 2000 to 6300 Hz.

The effect of rotor-OGV treatment has not been completely analyzed and
therefore needs additional analysis. However, some definite trends are
present in the 4000, 5000, and 6300 Hz bands. If we examine the curve at
4000 Hz or the second harmonic more closely, a definite decrease in PWL with
spacing can be seen. Our current prediction of viscous wake spacing effect
on the second harmonic using the Silverstein wake model from Reference 5 is
shown in Figure 28. If we observe that R-OGV treatment has a negligible effect
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at 4000 Hz (less than 1 dB) and further assume that the PWL of 130 dB at 2
chord spacing is {he level of the inlet turbulence noise, which would not be
expected to vary with spacing then the level at 0.5 chord spacing is made up
of two sources. The first is inlet turbulence at 130 dB which is relatively
unchanged with spacing and the second is rotor-stator noise which is 130.8 dB
because together these two must add to give the 0.5 chord value of 133.5.
Figure 29 shows the relative levels of rotor-turbulence and rotor-stator noise
at each spacing under the assumption outlined above with the Silverstein model
applied to the rotor-stator noise. The sum of the components is in good
agreement with the measured PWL results. Similarly, at 1.0 chord the viscous
wake PWL using the GE prediction is at 127.4 dB which when combined with the
inlet turbulence level of 130 dB gives 131.9 dB. This is in good agreement
with the measured PWL data.

At 6300 Hz, the decay in PWL is highly indicative of viscc-is wake noise.
Several investigators, e.g. Reference 6, suggest that the intensity of higher
harmonics generated by rotor-inlet distortion interaction falls off rather
rapidly with harmonic number. This effect would appear to be reflected by the
6300 Hz 1/3-octave band PWL's.

Clearly, the subject of spacing has not been examinad in this report in
enough detail to answer all questions. However, the discussion here points
out the need for more investigation into this tect data in an attempt to
better define the relative contributions of rotor-turbulence interaction and
viscous wake interaction.

C. Low Mach Vanes

A potential fan source noise reduction technique, low Mach vanes, was
investigated during this test program. This technique consists primarily of
a flow diffusion between the rotor and OGV's to lower the axial flow Mach
numbers entering and through the vane row. An annular area increase of 117
resulted in approximately an 117 decrease in the axial Mach number. Analysis
indicates that this axial Mach number decrease should result in a 1.0 to
1.5 dB decrease in the stator generated noise (30 log axial velocity ratio).

Test results however, indicate no significant change in farfield SPL's,
Figure 30 shows a typical aft angle which indicates that the low Mach vanes
increased the BPF by 1.5 dB and also increased the broadband levels near the
BPF by less than 1 dB. Similar results are evident with the 1/3-octave band
PWL's at 100% N//8 in Figure 31.

There are two possible reasons for the apparent lack of noise reduction
with the low Mach vanes. The first is that aerodynamic performance had
changed enough to make a direct comparison between the low Mach and baseline
vanes unrealistic. Aerodynamic data indicates only a slight decrease in the
low Mach vane total pressure recovery and airflow when compared to the base-
line vanes. This indicates that the low Mach vanes were operating well aero-
dynamically auid thus, it is unlikely that there is a performance basis for
the lack of noise reduction.
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The second possihility is that at 1.5 chord spacing the aft fan noise is
controlled by scome ctlizr source and this is consistent with the results
obtained on the vanes/blade ratio study which observed a rotor-stator inter-
action effect at close chord spacing but none at 1.5 chord spacing. It
appears that even though low turbulence levels were measured on~line upstream
of the fan, this did not give enough information to provide detailed insight
into the spectrum of the turbulence, the eddy sizes seen by the rotor and
therefore the turbulence - rotor interaction noise levels.

D. Long Duct Versus Short Duct

As noted in earlier discussions, the test vehicle was designed to be
tested with either a long aft duct or a short aft duct where the nozzle was
mounted directly aft of the support struts. This was shown in Figure 3.

A comparison of the PWL at 1007% N/v0 is presented in Figure 32. It is
evident that the long hardwall aft duct (L/H = 5) attenuated the sound by
1 to 2 dB at frequencies at or above the BPF. PWL's at lower fan speeds
exhibited similar results. Not surprisingly there was a difference in
directivity pattern between the two configurations. Model PNL directivity is
shown in Figure 33 and shows the short duct to be about 1 to 2 PNdB higher in
the region of 70° to 130°. In Figure 34 the 1/3-octave baund which contains the
BPF, 2000 Hz, shows a marked change in directivity on the 17 foot (5.2 m) arc.

The key item here is that aft suppression tests should use the long duct
as their baseline when comparing suppression levels. The source noise com-
parisons where a long duct was involved, specifically Configuration 1B, should
be used with the awarness of the effect of the duct length in any such comparison.
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SECTION VIII

AFT SUPPRESSION TEST RESULTS

The aft suppression tests evaluated wall treatment, splitter suppression,
and the effect of aft duct Mach number. Table VII summarizes the various
configurations that were tested. The results are analyzed as model data
which can be evaluated directly or representative of full scale results since
the treatment for both model and full scale are tuned to 3000 Hz, the maximum
noy-weighted region of the spectrum.

With the number of aft suppression configurations tested there are many
comparisons that can be made. The following discussions will cover only the
more obvious. For looking at all the configurations (L/H = 4.6), Table VIII
summarizes the aft angle PNL suppression achieved for each configuration plus
the PWL suppression achieved at 2000 Hz (BPF 1/3-octave band).

A, Porosity Effacts

The aft suppression configurations that were tested included test to
determine the effectiveness of high (27 percent open area) and low (12 percent
open area) porosity designs. Cold flow duct test results were used to choose
these two porosities. Porosity effects are available from two aft duct con-
figurations one with variable depth, thin-to-thick treatment and one with
constant thickness treatment. These are sketched in Figure 35.

1. Constant Thickness Treatment

Comparison of the 12 and 27 percent porosity designs with constant thick-
ness single-degree~of-freedom treatment indicates that the 12 percent porosity
has a higher peak suppression and wider suppression bandwidth. Figure 36
shows this result for the PWL's at 100% N/v6 while similar SPL results are
observed at 122 degrees in Figure 37.

2. Variable Thickness Treatment

Figures 38 and 39 present PWL and 122 degree SPL comparisons at 100% N/Vo
with variable thickness, thin-to-thick treatment, 12 and 27 percent porosities.
As with the constant thickness designs, the low porosity achieved better sup-
pression. However, as Figure 40 indicates the suppression bandwidth is in-
creased only at frequencies above the peak frequency. Similar trends are
obaerved at lower fan speeds.
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B. Phasing Effect

A series of tests were conducted to fnvestigate phasing effects with
att suppression variable depth treatment. By placing treatment whose impe-
dance characteristlcs are quite different in successive lengths, an "interaction
or phasing effect" is obtained which produces greater attenuation than just
the sum of the individual treatment elements with equal L/H values. Based
upon analytical experience, it 1s felt that the most likely explanation of the
effect is that energy is redistributed into higher order modes which are more
readily suppressed. Figure 41 shows the sets of configurations which were
tested.

Cold flow duct test data showed that the arrangement of treatment thick-
nesses had a significant effect on phasing at high porosity and that high
porosity faceplate was more effective than low porosity. Thus, two porosities
-12 and 27 percent- were tested with variable depth treatment oriented both
thin~to-thick and thick-tc-thin in the direction of sound propagation.

In addition to comparisons on the arrangement of the treatment, the
variable depta designs at both porosities are compared to constant thickness
designs which were tuned to the high noy-weighted frequency and which repre-
sents a conventional nonphasing type of design.

1. 12 Percent Porosity Faceplate

Acoustic data tcoken in the General Electric "ompany rectangular duct
indicated no change in suppression levels of the ariable thickness treatment
with 12 percent poiusity faceplate when tested i thin-to-thick or a thick-
to-thin configuration. At low fan speeds, there was more suppression indicated
for the 111 degree, 12 percent porosity, thin-to-thick combination at
frequencies of 2500 to 8000 Hz as shown in Figure 42 at 707% N/Va.

At 80% N/V8 1in Figure 43, there is less difference between the two
suppression configurations. At 100% N/YO (rot shown) there is no signifizant
difference between the two configurations at any aft angle. This implies
that any phasing effect present is sensitive to fan speed or perhaps fan duct
Mach number,

PWL suppression spectra achieved for the 12 percent variable depth and
the constant thickness treatments are compared in Figures 4/ and 45 for 70 and
100% N//E, respectively. The constant thickness gives increased peak suppres-
sion, however, the variable depth has a wider )l~udwidth at the higher fre-
quencies. The suppression differences at frequencies below the peak attenua-
tion frequency do not correlatc with fan speed. At 70 and 100% N/V6 shown
above, the constant thickness achieved wore suppressicn. At 80 and 90% N/VB
(uot shown); however, little difference in suppression was evident.

A comparison of the model PNL directivities in Figure 46, shows that
the increased bandwidth above the peak attenuation frequency makes the variable
depth treatment more effective in suppressing the high noy-weighted fre-
quencies. This trend continues with fan speed as shown in Figure 47
which indicates the PNL suppressions at 111, 122, and 133 degrees are con-
sistently higher with the 12 percent variable depth, thin-to-thick treatment.
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e NOMINAL NOZZLE
® HARD ROTOR~OGV
® TREATMENT L/H = 4.6

CONFIGURATION 18, HARDWALL

N

.

; T

CONFIGURATION 7, POROSITY
CONFIGURATION 8, POROSITY

12%
27%

]

o ——— 1 —

« 25 .50 .70 1.5 IN, TREATMENT
(.64) (1.27) (1.91) (3.81) (cm.) DEPTHS

B N

CONFIGURATION 26, POROSITY = 172%
CGNFIGUKATION 75-5, POROSITY := 27%

m

J"i'i

HIHIHTThﬂIﬂTﬂ1nTnTnTh

-

1.5 .75 .50 .25 1IN, TREATMENT
(3.81) (L.91) (1.27) (.64) (cw.) pEPMUS

W\

CONFIGURATION 75~3, POROSITY = 12%
CONFIGURATION 17, POROSITY = 27%

f ] Fx

75 .75 75 .75  IN.  oREATMENT
’ ¢ T TMENT
(1.91) (1.91) (1.91) (1.91) (em.) peprus

FIGURE 41
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PHASING EFFECT CONFIGURATIONS
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NOMINAL NOZZLE
HARD ROTOR-OGV
e 17 FT, (5.2 m,) ARC

O 12% POROSITY, VARIABLE DEPTH TREATMENT
O 12% POROSITY, CONSTANT DEPTH TREATMENT

111° ACOUSTIC ANGLE

15
}—
10 S IR G I E I
5
0
2 122° ACOUSTIC ANGLE
15
5 <"4c§,, T -]
a 10 ,-- ---q—----q---—nq-
7 —"1- -0
- 2
'g 5
7}
=
& o
. 133° ACOYUSTIC ANGLE
— —{0———0
. - - o= - q>‘~“---_ <>_ <>
’ e, VIR PR
| 5
0

70 80 90 100
PERCENT FAN SPEED, N/V@

FIGURE 47 12 PERCENT POROSITY VARIABLE AND CONSTANT DEPTH TREATMENT
PNL SUPPRESSION AS A FUNCTION OF FAN SPEED N1
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2, 27 Percent Forosity Faceplate

Acoustic duct testing had indicated that the 27 percent faceplate, thin-
to-thick configuration achieved significantly more suppression than the thick=-
to-thin design. Figures 48 to 51 show that the thin-to-thick 277 porosity
configuration achieved better aft angle suppression than did the thick-to-thin
design at frequencies of 3150 Hz to 10 KHz. At the lowest fan speed of 70%
N/Jg, frequencies from 1250 to 1600 Hz show the thin-to-thick configuration to
be less effective. This trend does not continue at higher fan speeds, but is
evident at all other aft angles at 707 N/YG. Figure 52 compares the suppres-
sion achieved by both configurations as a function of fan speed at frequencies
of 2500, 3150, ard 4000 Hz. The thin-to-thick design is essentially constant
with fan speed and up to 5 dB better than the thick-to-thin design.

The 27 percent porosity configurations have been shown to be less effec~-
tive than the 12 percent porosity configurations. In addition, the trends
observed between variable depth and constant depth treatment were not the
same. PWL suppression spectra show the 27 percent variable depth treatment
to have higher peak suppression and wider bandwidth than constant thickness
treatment. This is true for 100% N/v8 shown in Figure 53 and at 90% N/V6 (not
shown). At 80% N/V® the peak suppressions are equal with variable depth treat-
ment ziving wider bandwidth. The 70% N/VB constant depth peak PWL suppression -
as shown in Figure 54, is 3.5 dB better than the variable depth. On a PNL
suppression basis, however, the variable depth, thin-to-thick treatment was
consistently 2 PNdB more effective at all speeds at 111 and 122 degrees and
1 PNdB more effective at 133 degrees as shown in Figure 55.

The configurations discussed so far have had constant porosity faceplate
on all four pairs of treatment panels. Two additional configurations, shown
in Figure 56, were tested which varied porosity as well as treatment depth.

Figure 57 compares the 100% N/V6 suppressed PNL's of the 12-27-12-27
porosity variable depth design to the variable depth, thin-to-thick 12 percent
design and to the 12 percent constant thickness design. The results indicate
that the 12-27-12-27 percent porosity design gave from O to 1.5 PNdB vane
suppression than variable depth, thin-to-thick treatment from 11 to 133 degrees.
Similar results are observed at 90% N/v6 with 3.0 PNdB more suppression
observed at 133 degrees in Figure 58. Examination of the spectra at 90%

N/V6 and 133 degrees in Figure 59 where the maximum difference occurs indicates
that additional suppression is achieved primarily from 1600 to 2500 Hz.

A PNL comparison of the two mixed porosity designs is presented in Figure
60 at 100% N/V6. There is no significant difference in suppression level
between the two. Lower speeds chow the same result.

The success of the mixed porosity designs is probably due to the fact that
the mixed 12 and 27 percent porosities offer more nearly optimum resistence
for each of the four panels. That the delta SPL's were most significant at
1600 to 2500 Hz supports this theory since the design frequency of the last
1.5 inch (3.8 cm) panel was 2200 Hz. From treatment theory, it is known that
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a decrease in H/X requires a decrease in resistance thus demanding a higher
porosity, Thus, 27 percent porosity could give a resistance closer to the
optimum value than does the 12 percent on the 1.5 thick (3.8 cm) panel of the
variable depth configuraticn. Twelve percent may be closer to the optimum
resistance of the forward panels which are tuned to higher frequencies.

c. Splitter Simulation

When a splitter is placed in an aft duct, the splitter is usually lined
with constant thickness treatment, due to mechanical and aerodvnamic flowpath
constraints on the allowable thickness, while the duct walls have varying
thickness treatment. Two configurations which had variable depth, thin-to-
tnick treatment on the outer flow path and constant depth treatment on the
inner wall were tested to simulate a splitter model. In one case the porosity
was 12 percent and in the second case 27 percent. These are shown schematically
in Figure 61.

When the 12 percent porosity splitter model design is compared to the
designs which had variable depth, thin-to-thick and constant thickness treat-
ment on both the inner and outer panels, it achieved about the same PNL levels
as the variable depth design. This is shown in Figure 62. The model PNL was
down about 1 PNdB in the aft angles, however, the splitter design was consis-
tently 1 to 2 PNdB better than the constant thickness design. Figure 63 shows
the 100% N/v6, 122 degree SPL suppression levels which show the splitter model
to fall between the other two in terms of both peak suppression and bandwidth.

A comparison of the PWL suppression achieved at 100% N/v® for both the
12 and 27 percent porosity configuration in Figure 64 indicates that the 12
percent had higher peak suppression and wider bandwidth than did the 27 per-
cent porosity. This is also clearly evident at 122 degrees for 100 and 70%
N/VB respectively in Figures 65 and 66. Although this was not the main intent
of this test series, it is apparent that the 12 percent porosity configuration
achieved more suppression.

D. Rotor-0GV Treatment

The test vehicle was designed to be tested with or without treatment
between the rotor and OGV at 1.5 chord spacing. Only the outer flowpath was
treated and the treatment used was slant cell single-degree-of-freedom with a
cavity depth of 1.5 (3.8 cm) inches. Faceplate thickness was 0.019 inches
(.48 mm) with hole diameters of 0.033 inches (.84 mm) and porosity of 28
percent open area. The treatment was tuned to 2200 Hz or the BPF at 110%
N/V® and had an L/H of 0.87.

As shown in Figure 67 the PWL suppression did peak at 2000 Hz and
achieved 4 dB suppression. At all other frequencies except 6300 Hz, the sup-
pression was less than 1 dB. The SPL directivity pattern of the 1/3-octave
band which contains the BPF indicates 4 to 5 dB suppression at the BPF for
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all angles due to rotor-OGV treatment as shown in Figure 68. On a PNL basis
the gain is much less due to the small bandwidth. Figure 69 shows that about
1 PNdB suppression wcs achieved with the rotor-OGV treatment.

E. Treatment Area Effectiveness

Often in engine and model testing, treatment area is lost due to probe
pads, static tap pads, close-out flanges, and blocked holes. To investigate
the effect of loss in treatment area, a configuration was run with 20 percent
of its area taped. This decreased the L/H from 4.6 to 3.68. Other than the
taping of each panel, the configuration was identical to the 12 percent porosity,
variable depth, thin-to-thick configuration. Both are shown schematically in
Figure 70.

The reduction in PNL suppression level is summarized below for four fan
speeds:

Reduction in PNL Suppression Level

% N/VB 111° 122°
70 0 --3
80 +.6 +.7
90 -03 +o6

100 -.6 0

These levels indicate very little effect of the taping on the suppression
PNL's. A spectral comparison for 1007 N/Vo at 122 degrees is shown in Figure
71 and shows that the taped design is about 1 dB less effective from
the BPF to 10 kHz.

The difference in suppression with the taped design is less than one
would expect for a 20 percent decrease in L/H. One possible explanation for
this is that a higher rate of suppression is achieved with the impedance
changes introduced by the circumferential taping. The attenuation with L/H
is not linear because of the varying modal decay rates.

F. Treatment Regenerated Noise

Two types of comparisons are made to determine and evaluate flow noise
effects on the variable depth treatment designs. The first type includes
comparisons of measured suppressions for a particular configuration at differ-
ent fan speeds and hence different flow Mach numbers. The second includes
comparisons where the nozzle setting was varied from nominal to open and
where the splitter was removed -~ both of which result in different duct
Mach numbers. Figure 72 presents schematics of the configurations involved
in these comparisons and Table III lists the duct Mach numbers for each config-
uration.
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Figure 73 compares the aft suppression achieved by three configurations -
nominal nozzle without splitter, nominal nozzle with splitter, and open nozzle
with splitter at 1007 N//0. For the same fan speed these three configurations
represent an increase in the aft duct Mach number as previously indicated by
Figure 22. There 1s a suppression increcase evident above 4000 Hz due to instal-
lation of the splitter; however, further opening the nozzle did not result in
any appreciable change in suppression except perhaps at 4000 Hz. If flow noise
were a limiting item, then one would anticipate a decrease in suppression with
the open nozzle plus splitter.

Aft suppression variation at 122 degrees for the nominal nozzle without
splitter configuration is presented in Figure 74 and shows little change
with fan speed. In fact, the peak suppression is achieved at 2000 Hz at 100%
N//8. Part of this may be due to the fact that the BPF at 100% N/v/6 falls in
the 2000 Hz 1/3-octave band; however, other frequencies show no degradation
of suppression with fan speed and corresponding Mach number increase.

The variation of 122 aft degree suppression with fan speeds is presented
in Figure 75 for the nominal nozzle with spiitter configuration. There is
no significant change between 70 and 10U N/YB. As before, there is little
difference between the suppressions achieved with the 1007% N/V6 or highest
duct Mach number generally being the best. This trend continues at high
frequencies as the nozzle is opened with the splitter installed as shown in
Figure 76. There is an indication in Figure 76 at 2500 to 5000 Hz that the
suppression achieved at 1007% N//é is less than: that at lower speeds. Apparently,
the duct Mach numbers were not high enough tc generate flow noise levels
which significantly degraded suppression levels.

A flow noise related phenomenon was observed in all configurations which
were tested with 12 percent porosity faceplate. The phenomenon was observed
at the lower fan speeds and was visible as a sharp tone at 12500 Hz. Figures
77 and 78 at 70 and 80% N//a, respectively, show this tone. Reference 7
discusses these tones which are generated by the interaction of the vortex
wave, ''psuedo sound', and the actual wave. They are the result of flow pulsa-
tions or eddies synchronized by the sound occurring at the edges of the face
sheet perforations. The frequency at which the tone is generated is given by
the expression

ncqM QM)

E= 1+ =
)
)
‘ where f - frequency of tone
n - integer (in practice n = 1 or 2)
q - flow speed factor, fraction of freestream Mach number at which
eddies propagate
M - freestream Mach number
c - speed of sound
L - perforation spacing in the direction of flow.
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Using the above theory tor the 12 percent porosity faceplate with L o=
0. 10 inches (0,41 em) and q = 0,47, a frequency of 1350 Hz is obtained which
is within the 12500 Hz 1/3-octave band. At specds above 80% N/v0, the tome
is not visible. PFor the 27 percent porosity configurations, a tone at 34000 Hez
would be predicted.

This phenomena will be investigated turther when narrvowbands ave processed.
The key point {s that these tones could influence the data - especially when
scaled to full size engine levels - and should be evaluated for cach treatwment
design.,
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SECTION IX

CONCLUSIONS

Second harmonic tone reductions were achieved at close (one-half chord)
spacing at a vane-blade ratio of 1.87. No significant differences in
second harmonic ncise level were observed at 1.5 chord spacing.

At wide rotor-stator spacings the noise levels appear to be
controlled by rotor~turbulence interaction noise, not rotor-stator
noise.

Variable depth treatment panels achieved somewhat wider bandwidth sup-
pressions than a constant thickness treatment.

Configurations designed to simulate variable depth wall treatment
opposite constant thickness splitter treatment indicate no significant
loss in suppression for such an arrangement.

Variations in aft duct Mach number up to about 0.53 indicated no signifi-
cant contribution of treatment regenerated flow noise which would degrade
suppression levels,

No significant change in fan broadband noise level was observed by lower-
ing the Mach number through the vane row; however, any changes may be
masked by rotor turbulence noise,

Rotor-OGV frame treatment achieved 4 to 5 dB BPF tone suppression at
all angles.

The measured suppression loss (-.6 to O PNdB at 100% N//E) due to treat-
ment area blockage was less than one would predict for 20 percent loss
in treatment length.

With a constant or variable depth treatment configuration, twelve
percent porosity gave more suppression (1 to 2 PNdB) than 27 percent
porosity.

s



B RN T Y "‘-vv‘v.“ " .

S Ty 2w T Tty

Symbol or Abbreviation

BPF

[o

oGV

PNL

AP

&

PWL

SPL

SECTION X

NOMENCLATURE

Definition
Blade passing frequency
Speed of sound
Chord
Static pressure coefficient
Frequency
Duct height

Distance between holes
Treatment length

Mach number

Integer (1 or 2)

Fan speed

Outlet guide vane
Perceived noise level

Hub static pressure rise
between rotor and stator

Static Pressure
Mass weighted discharge pressure
Sound power level, re 10"13 watts

Fraction of freestream Mach namber

Sound pressure level,
re .0002 microbar

Maximum vane thickness
Relative absolute pressure
Wavelength

Relative absolute temperature

Units
Hz
ft/sec (m/sec)

in. (cm)

PNdB

psia (N/mz)

psia (N/mz)
psia (N/mz)

dB

dB

in. (cm)

ft (m)
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