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SECTION 1

SUMMARY

A test program was conducted to investigate aft radiated noise reduction
techniques. Both reduction of noise at the source and suppression in the aft
duct were studied. Source noise reduction techniques included the effects of
rotor-stator spacing, the effect of vane/blade ratio on second harmonic tone
propagation, and the effect of axial Mach number through the vane row. Aft
suppression tests included a number of variations in treatment design such as
variable depth treatment, [rame treatment between the rotor and OGV, slanted
cells in the treatment cavity, panel resistance as a function of tuning
frequency, and flow-regenerated noise effects.

The noise source for these investigations was a low pressure ratio, sub=-
sonic tip =peed, scale model fan which had a diameter of 50.8 cm (20 inches).
Aft radiated noise data, as determined by free-field measurements in the
Ceneral Electric Company anechoic chamber, are presented and analyzed. Addi-
tional technology deve'opment =cudy results are reported including test re-
sults an. analysis of sound separation probes, modal propagation and attenu-
ation based upon in-duct modal measurements, and analysis cf rotor wake
characteristics.

At close spocing (0.5 true rotor tip chords) it was demonstrated that
second harmonic sound pressure level tended to minimize at a vane/blade ratio
of 1.87. No significant reduction in fan broadband noise levels was observed
by decreasing the Mach number through the vanes; however, this may be due to
the levels at wide (1.5 true rotor chords) spacing being controlled by rotor-
turbulence noise and not rotor~-stator noise. Tests of acoustic treatment
panels with various porosities and backing depths showed that to increase
suppression, variable depth treatment panels should be used with porosities
that optimize the acoustic resistance for each panel.

Analysis of two-axis, hot film data taken between the rotor and outlet
guide vanes showed the wake da“a to contain large amounts of wake amplitude
modulation and only small period (wake spacing) modulation.




SECTION I1

INTRODUCTION

General Electric Company is currently engaged in the Quiet Clean Short-
Haul Experimental Engine (QCSEE) Program under NASA Contract NAS3-18021. A
major objective of this program is to develop and demonstrate the technology
required to achieve the stringent noise goals required for commercial turbo-
fan short-haul aircraft, More details of the QCSEE objectives and design
rationale are available in References 1 and 2,

As part of the effort to meet these goals, a component test program was
conducted to investigate techniques for reduction of source noise and aft
radiated noise by exhaust duct treatment. The test series, designated the
Scale Model Fan Test Program, was conducted in the General Electric Company
Anechoic Chamber located at Schenectady, New York. Aft radiated noise level
effects were measured with the noise source provided by a low tip speed, low
pressure ratio, 50.8 cm (20 inch) diameter NASA-Lewis Research Center Fan
(designated Rotor 55). Rotor 55 is a variable pitch fan with a design pres-
sure ratio of 1.2 and a t{p speed of 213 meters per second (700 feet per
second), and was designed by Hamilton Standard. Aerodynamic performance of
the fan is documented in Reference 3, while acoustic performance of the six
foot diameter fan designated QF9 (of which Rotor 55 was a direct scale model)
is given in Reference 4.

The test chamoer and {ts sound field are shown schematically in Figure 1
while Figure 2 presents the test vehicle schematically. A photograph of the
installed vehicle i8 shown in Figure 3, with the location of the duct probes
identified. Test results along with more details of the test facility, test
vehicle, data acquisition system, and data reduction system may be found in
Reference 5. This report is intended to provide an in-depth analysis of the
test results.

The test matrix was divided into two major investigations: source noise
reduction techniques, and aft duct noise reduction with acoustic treatment.
Source noise reduction techniques which were investigated include minimizing
second harmonic noise by varying vane/blade ratio, variation in rotor-OGV
spacing, and lowering the Mach number through the vane row to lower fan
broadband noise. The entire source noise test matrix is shown in Table I.

Investigations conducted with treatment in the aft duct include face-
plate porosity, treatment placed between the rotor and OGV, slant cell treat-
ment, splitter simulation with variable-depth treatment on the outer wall and
constant-thickness trcatment on the inner wall, and various combinations of
wall treatment, such as thin-to-thick, thick-to-thin, mixed porosity combined
with mixed thickness, and flow noise effects. All aft suppression configura-
tions are summarized in Table II. On :.lected configurations, radial modal
measurements were made to determine the mode structure seen by the treatment.
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Figure 1. Schematic of General Electric Company Anechoic Chamber.
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¢ 15 ROTOR BLADES -—

Source Noise Test Configurations.
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i N)MINAL NOZZLE
\
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ROTOR-0GV | VANE  VANE/BLADE  DUCT
CONFIGURATION  TREATMENT  SPACING  NUMBER RATIO  LENGTH COMMENTS
18 NO 1.5 1 9,73 LONG STAGE 55 VANES
2 YES 1.5 28 1.87 SHORT ~ BASELINE VANES
3A 1.5 31 2.07 BASELINE VANES
4B 1.5 31 2.07 LOW MACH VANES
| 5 1.0 28 1.87 BASELINE VANES
6 1.5 28 1.87 LONG
* 12 1.5 26 1.73 SHORT
13 1.5 27 1.80
7 14A Y 2.0 28 1.87 l
5 18 NO 1.5 28 1.87 LONG
F 19 YES 1.5 25 1.67 SHORT
20 1.5 29 1,93
21 1.5 30 2.00
22 Y 1.5 28 1.87 (REPEAT OF CONFIG,2)
27 NO 0.5 31 2.07
28 30 2.00
29 29 1,93
30 28 1,87
: 31 27 1.80
* 32 26 1.73
*;‘ 33 Y Y 25 1.67 % \
6
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SECTION III

SOURCE NOISE REDUCTION TECHNIQUES

A, Vane/Blade Ratio Effects

A well-established technique for the reduction of blade passing frequency
noise in axial flow jet engines, caused by interaction between the rotor and
stator rows, is to employ a vane/blade ratio (V/B) such that the tone is cut
off. A convenient approximation is that cutoff begins when V/B exceeds
n (1+ Mt)' where Mt denotes the fan tip Mach number, and n denotes the har-
monic number of the tone one desires to eliminate. This phenomenon is
generally applied to the fundamental tone, which is the most critical source
of noise on most fans. For low tip speed, low blade number fans, however,
the second harmonic can be more critical than the fundamental to PNL levels.
There is a technique that can be applied to second harmonic tone reduction
and which was investigated in this test program. When considering noise gen-
erated above "cutoff", it can be shown (Reference 6) that a favorable orien-
tation of the spiral wave generating the noise, relative to the orientation
of the unsteady blade forces (ultimately responsible for the noise), can
create a mismatch between the dipole orientation and the propagating mode
that will reduce the radiated noise. The technique works only for subsonic
tip speeds (as indeed does the "cutoff" effect) and also works only for a
particular direction, i.e., either aft or forward radiated noise.

Calculations using the method described in Reference 6 were carried out
for Rotor 55. The results in Figure 4 show that as the vane number was
varied from 25 to 31, the vane number of 28 (V/B = 1.87) would demonstrate
the second harmonic tone reduction.

Measured narrowband second harmonic levels are presented in Figure 5 for
two aft angles. The levels at 1.5 chord spacing show no distinct minimum, as
predicted, at 28 vanes. This may be due to a second noise source such as
rotor turbulence controlling at the wide spacing of 1.5 chords. However,
decreasing the spacing to 0.5 chord results in a minimum appearing for 27
vanes at 1,88 radians (108 degrees), and 28 vanes at 2.06 radians (118
degrees).

Figure 6 presents the 1/3-octave band, 0.5 chord spacing data which have
been extrapolated to 61 m (200 ft) sideline. Here the peak sideline SPL's
for fan speeds of 70, 80, 90, and 100% N/6 tend to minimize at a vane number
of 28.

These results indicate that the second harmonic can be successfully
minimized in accordance with the analysis in Reference 6. Further, the
apparent lack of success at wider spacings may be caused by rotor turbulence
noise being dominant. Thus, this technique has the potential for a noise
reduction in the in-flight regime where low inlet turbulence levels would be
expected.
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B. Rotor-Stator Spacing

The effect of rotor-stator spacing at the optimum vane/blade ratio
(1.87) for minimizing second harmonic tone propagation was investigated at
four values of spacing, expressed in multiples of true rotor tip chords. The
four spacings were 0.5, 1.0, 1.5, and 2.0,

One-third octave band PWL data for frequencies of 2000 to 6300 Hz are
presented in Figure 7. These data show little or no change at the lower
frequencies with spacing; however, as the 1/3-octave band center frequencies
increase, the effect of rotor-stator spacing becomes more pronounced. It
appears that a second noise source is controlling at the wide spacings and
lower frequencies and that at higher frequencies this noise source is not as
evident.

Various investigators, References 6 and 7, have shown how interaction of
inlet disturbances such as turbulence eddies, ground vortices, wall boundary
layer fluctuations, and thermal gradients results in noise generation by the
rotor. Generally, the turbulence eddies form the dominant noise generation
mechanism, Reference 8. The noise spectrum generated by rotor turbulence
interaction is controlled by the incoming turbulence spectrum; however, both
discrete frequency and broadband noise may result (References 6 and 8). It
has been found that the turbulence spectrum normally peaks at the low fre-
quencies and falls off rapidly at the higher frequencies. Correspondingly
the noise spectrum was also found to decay with frequency. These results are
consistent with the data which are presented in Figure 7.

1f we examine the curve at 4000 Hz, the 1/3-octave band which contains
the second harmonic, a definite decrease with spacing can be seen. The
decrease with spacing 1s not as marked as our current prediction of viscous
wake spacing, shown in Figure 8, which uses the Silverstein wake model from
Reference 9. As spacing increases to 2 chords, it appears that a second
source such as rotor-turbulence noise is controlling. Spacing would not be
expected to have an effect on rotor-turbulence noise levels; therefore, it
can be assumed that the rotor-turbulence level is 130 dB and that this value
is constant with spacing, Then at 0.5 chord, the sum of rotor-stator noise
and rotor-turbulence noise (130 dB) must add to give the measured level of
133.5 dB. Figure 9 shows the relative levels of rotor-turbulence noise and
rotor-stator noise at each value of spacing with the Silverstein model
applied to the rotor-stator noise calculated at 0.5 chord. The sum of the
two sources is in good agreement with the measured data.

The above exercise indicates that at the wide spacings such as 2.0 and
1.5 chords, a second noise source may be contributing. There is still a
potential benefit from the wide spacings of 1.5 and 2.0 in actual flight
where rotor-turbulence noise should be greatly reduced.
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C. Low=Mach Vanes

One of the source noise reduction techniques investigzied in this test
program involved increasing the annulus area through the vane row. This
annulus area increase (shown in Figure 10) of 117 resuvlted in about a 10%
decrease in the axial Mach number through the vane row. Hanson's fan noise
prediction method (Reference 10) was reviewed to determine the relation
between axial velocity and sound power level. It was found that the approxi-
mate change in generated noise power due to a change in axial velocity 1is
given by 30 log (axial velocity ratio). For a 10 percent decrease in axial
Mach number through the vane row, one would estimate 1.4 dB reduction in
stator-generated broadband noise. Although not a significant effect for an
unsuppressed engine, with a highly suppressed fan duct this could translate
to 1.0 to 1.4 PNdB suppression if broadband noise were the dominant source
left after suppression.

Measured dota indicate no significant change in the broadband noise of
far-field SPL's. This is seen in Figure 11 which compares 1.88 radian (108
degree) narrowband spectra.

There are two possible reasons for the lack of noise reductions with
this technique. The {irst is poor aerodynamic performance and the second is
that another noise source is masking any benefit due to the low-Mach vanes.
However, the aerodynamic performance (discussed in more detsil in Reference
S) shows only a slight decrease in the low-~rlach vane total pressur: Tecovery
and airflow when compared to the baselinc vanes. There appears to be no per-
formance basis for the lack of noise reduction. Similar results are evident
for probe data taken upstream nf the rotor. A narrowband comparison at one
immersion is presented in Figure 12. This comparison shows that the low-Mach
vanes may have increased the forward radiated noise by 1 or 2 dB.

Previous sections, particularly those dealing with the vane/blade ratio
results, have given strong indication that rotor inlet turbulence levels are
controlling the aft radiaied noise at 1.5 chord spacring. This could con-
cejvably be the reason for the lack of positive results from the low-Mach
vanes., However, it should be noted that this does not mean low-Mach vanes
should not be investigated further as a means of reducing noise in flight,
but rather they should be evaluated in a test where the levels and eddy sizes
of inlet turbulence can be controlled.
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SECTION IV

AFT SUPPRESSION TESTS

A. Porosity Effects

The aft duct treatment configurations tested had faceplate porosities
of 12% and 27%. The selection of the two constant porosities was based on
acoustic duct data.

The variable-depth treatment designs have four different sections of
treatment. Each of these sections is designed to a different tuning fre-
quency which produces a variation in the acoustic parameter H/A,. Theore-
tically, the optimum acoustic resistance varies with this parameter. Thick
acoustic liners tuned to low frequencies give low (H/A,) values and require
low resistance. Thus, a higher porosity value is required for the thick
panel relative to a thinner panel.

Various treatment depth combinations were evaluated at 127 and 27%
porosities. All had a treated L/H value of 4.6 made up of four treatment
panels. The different combinations of thickness, t, and porosity, o,
which were tested and which are relevant to this discussion are as follows:

Treatment Panel

1 2 3 4
Configuration t o] t g t o] t o)
Constant Depth 1.9cm 127 1.9cm 12% 1.9cm 12% 1.9cm 12%
(75-3) (0.75 in.) (0.75 in.) (0.75 in.) (0.75 in.)
Constant Depth 1.9¢m 27% 1.9cm 27% 1l.9cm 27% 1,9cm 27%
(17) (0.75 in.) (0.75 in.) (0.75 in.) (0.75 4in.)
Variable-Depth 0. 6cm 127 1.2cm 127 1.9cm 127 3.8cm 12%
Panels (7) (0.25 in.) (0.50 in.) (0.75 in.) (1.5 in.)
Variable-Depth 0.6cm 27% 1l.2cm 27% 1.9cm 27% 3.8cm 27%
Panels (8) (0.25 in.) (0.50 in.) (0.75 in.) (1.5 in.)

Variable Depth and
Mixed Porosity (75-8)

1.27cm 127
(0.50 in.)

1.9cm 127%
(0.75 in.)

0.635cm 127
(0.25 in.)

3.8cm 27%
(1.5 in.)

The measured 1/3-octave band suppression for a configuration with a
1.9cm (0.75 in.) constant panel depth is shown in Figure 13 for porosities

of 127 and 27%.

The configuration is also shown in the figure.

The data

were taken at the maximum aft acoustic angle for fan speeds of 707% and 100%

N/VB.
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The treatment with 12% porosity gives a higher level of suppression
over the frequency range indicated. This suggests that the acoustic resis~
tance of 12% porosity face sheet 18 nearer the optimum value for the sub-
jected conditions. The duct Mach number at 70% N/V6 1s 0.3 and 0.42 at
100% N//6.

Figure 14 gives suppression spectra for the variable-depth treatment
design indicated in the figure. The data are for fan speeds of 70% and
100% N//8 at the maximum aft acoustic angle. The 12% porosity gives more
suppression at the higher frequencies (3150 Hz to 8000 Hz), with the 27%
porosity configuration offering more peak suppression by an amount of 2 dB
to 3 dB at 100%Z N/v/8. The 12% porosity gives more suppression for all fre-
quencies at 70% N/VB.

The two treatment configurations shown in Figure 15 have variable-
depth panels with one having a constant 12% faceplate porosity and the
other having panels with 127 and 277 porosity. The configuration with the
mixed porosity is also different in that the 3.8lcm (1.5 in.) and the
1.27cm (0.50 in.) panel positions are interchanged.

Suppression spectra for the two configurations are shown in Figure 16.
The suppression is given for fan speeds of 70% N//8 and 100% N//6 at the
maximum aft acoustic angle. Suppression comparison for the two configura-
tions shows little difference at the higher frequency values. The 100%
N/V/8 data show the mixed porosity configuration to give higher peak attenua-
tion, and also show more suppression for most of the frequencies below the
peak attenuation frequency. This increase in suppression is probably a
result of having changed the thick panel porosity from 12% to 27%, which
gives a lower acoustic resistance value. Theoretically, a lower resistance
is required for the thicker panel since it is tuned to a lower frequency
and has a smaller H/\, value,

The four treatment panels that make up the variable-depth treatment
configurations as just shown were evaluated separately. The panels were
evaluated with 12% and 27% faceplate porosities. The data obtained enable
an evaluation to be made of each individual panel's suppression perfor-
mance, and also give data showing the suppression level variation with H/X,
versus faceplate porosity.

Figure 17 gives suppression data as measured for the single panels
with a treated L/H of 1.15. The suppression spectra given are for 1007
N//B at the naximum aft acoustic angle. The four liner depths give four
tuning frequencies which enable a comparison of peak suppression versus the
acoustic parameter (H/)y). The results show that for H/A0 values of 1.94,
1.22, and 0.97, the 12% pcrosity gives more peak suppression. However, as
the H/)A, value is reduced to 0.78 with the 3.8lem (1.5 in.) panel, the 27%
porosity has the higher peak suppression. This result is strong evidence
that for the lower H/)\,'s a lower resistance value is required for suppres-
sion optimization. This does not suggest that 277 porosity is optimum, but
that relative to 127 the resulting acoustic resistance is nearer optimum
for these H/A, and L/H values.
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The supvression spectra shown in Figures 18 and 19 are for the constant-
depth 1.91 cm (0.75 in.) treatment with porosity values of 12% and 27%. The
data provide a comparison of suppression versus duct Mach number, which gives
a corresponding acoustic resistance variation. The Mach numbers for 70%
N//8 and 100% N/v6 are 0.3 and 0.42, respectively.

Figure 18 gives the suppression for the configuration having 12%
porosity at the two fan speed points. The peak suppression decreases by
as much as 3 dB as the fan speed is increased from 70% to 100% N/V8. The
reduced suppression indicates that as the duct Mach number increases the
acoustic resistance for the 12% porosity liner is also increased, giving
a higher resistance, which is farther removed from the optimum values.

Figure 19 gives the same type of data comparison for the configuration
with 277% faceplate porosity. Here, the peak suppression increases as the
fan speed is increased from 70% N/V8 to 100% N/v6. This indicates that at
70% N//g the 277 porosity faceplate acoustic resistance is below the optimum
value., However, as the duct Mach number increases from 0.3 to 0.42, with
the corresponding increase in fan speed, the resistance is also incceased.
The higher suppression noted in the data comparison is a result of now
having a resistance value nearer the optimum resistance requirement.

The overall result of the comparisons for changes in duct Mach number
is that neither the 127 nor the 27% porosity have the optimum acoustic
resistance at 100% N/VB for all panels. Thus, a configuration with vari-
able-depth treatment must also have mixed porosities for design optimiza-
tion,

B. Variable Boundary Conditions

Suppression characteristics for treatment configurations having con-
stant-porosity, constant-depth treatment; constant-porosity, variable-depth
treatment; and mixed-porosity, variable-depth treatment are discussed in
this section. These variations in the treatment design were included to
enable the identification of a design with improved peak attenuation and
suppression bandwidth characteristics.

Two treatment configurations are shown in Figure 20. The first con-
figuration has variable treatment depths with the second having constant-

depth treatment. A 12% faceplate porosity was used for the two configura-
tions,

Figure 21 gives a comparison of the suppression for the constant
versus variable-depth treatment at 100% N/v6. The variable-depth treatment
shows a wider suppression bandwidth, with the constant-depth treatment
giving more peak suppression. These suppression characteristics are expected
since the variable-depth treatment gives four different tuning frequencies,
spreading the suppression out over a broader frequency range. The constant-
depth treatment has one design frequency which gives a higher suppressicn
level at that design frequency.
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The suppression performance for these configurations can be evaluated
by comparing the results with previous suppression data. Figure 22 gives a
comparison of the measured and predicted suppression for the constant-depth
treatment configuration. The prediction is based on a correlation developed
from engine data where the treatment consisted of single-phase, constant-
depth treatment designs with constant porosity. Good agreement is seen
between the measured and predicted suppression bandwidth. The measured
peak suppression is less than predicted. This difference could be due in
part to the design frequency of the liner, which is predicted to be near
the filter-split of the 2500 Hz and 3150 Hz 1/3-octave bands.

Figure 23 gives the predicted and measured suppression for a variable-
depth, mirxed-porosity configuration at 100% N/V8. The porosity values and
the treatment orientation are indicated in the sketch shown on the figure.
The predicted suppression is low, relative to the measured suppression, at
all frequencies greater than 2500 Hz,

Fan exhaust suppression requirements in many cases require wall treat-
ment plus an acoustic splitter. The thickness restriction of the splitter
does not yield to a variable-depth design with the same range of treatment
thicknesses that are usually available on the outer and inrer flow paths.
Thus, one of the treatment configurations was designed to simulate a split-
ter condition. A sketch depicting the treatment design is shown in Figure
24, The outer wall treatment has variable-depth panels with the inner wall
treatment having a constant thickness. Also given in the figure are the
predicted and the measured suppression. The splitter simulation configura-
tions are discussed later in this report. Here, as was the case for the
variable-depth treatment on both walls, the predicted suppression in the
higher frequencies is less than measured. However, the difference for the
splitter simulation is less than for the variable-depth, mixed-porosity
design.

These results show that the suppression (at frequencies above the peak
suppression frequency) obtained from these configurations is consistently
higher than the average of the General Electric Company's better previous
engine treatment designs, from which the prediction method was derived.
Since the average Rotor 55 suppression is consistently higher than that
predicted, this suggests that the difference is a result of the treatment
design rather than experimental variation in the data. The increase in
suppression is probably a result of an interaction effect or some phenomena
introduced by the variable-depth treatment with constant- and mixed-porosity.
Therefore, the data correlation needs adjusting in order to get a better
relation between predicted and measured suppression bandwidths. Appropriate
adjustments were made for QCSEE engine design estimates.

C. Treatment Area Effectiveness

Treatment area losses are usually unavoidable in real engine hardware
due to flanges, instrumentation, and fan sheet hole blockage. A simulation
of this blockage was made by taping approximately 20% of the treated sur-
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face area of each of the four panels on the inner and outer walls. The fan
exhaust treatment configurations tested are shown in Figure 25. The con-
figuration without taping has an effective L/H of 4.6 and a L/H of 3.7 with
taping. This would result in a predicted loss of treatment effectiveness
of about 20%.

The suppression spectra for the two L/H values are shown in Figure 26
for fan speeds of 70% N/V6 and 100% N/VB. Data are glven at the maximum
aft angle as measured on a 5.18m (17 ft) arc. Suppression is seen to
decrease for each fan speed with the reduced treatment area. This reduction
occurs over the 1600 Hz to 10,000 Hz frequency range. No significant
change in suppression is noted at frequencies below 1600 Hz.

Figure 27 gives a comparison of the measured suppression loss with the
reduced treatment area, and the suppression loss that is predicted using a
linear relation between area and suppression. Approximately 1/4 tc 1/2 of
the [ redicted suppression loss was measured for the configuration with
treatment blockage. This result shows that a linear relation between
treatment area and suppression is not valid in the case tested.

The correlation given in Figure 28 first gives the measured peak sup-
pression in terms of the actual L/H value while the second graph gives the
peak suppression rate (AdB/L/H) versus the actual L/H value. This correla-
tion shows that the effectiveness of the treatment decreases as the L/H
parameter is increased. Also shown are the predicted suppression levels
and suppression rates which were determined by using a prediction procedure
that is linear with the L/H parameter. For higher L/H values, the estimated
loss in suppression resulting from treatment area loss or decreased L/H
using the linear model would be higher than that indicated from the measured
Rotor 55 data. However, at smaller L/H values, the reverse is true. The
loss in suppression due to treatment area loss would be underpredicted.

D. Splitter Simulation

The schematic in Figure 29 shows three fan exhaust treatment configura-
tions. The first has variable-depth treatment on both walls; the second
has variable depth along the outer flowpath but constant depth on the inner
flowpath. The third has constant-depth treatment on both walls. The
second configuration, which was introduced in Section IV-B, represents a
configuration with an acoustic splitter.

Figure 30 shows the measured suppression for the 'simulated splitter"
and the constant-depth configuration at fan speeds of 70% N/V® and 100%
N//6. The "splitter simulation" configuration gives a wider suppression
bandwidth, although the peak suppression levels are approximately the same.

Figure 31 compares the "splitter-simulation" results with suppression
levels measured for the configuration with variable-depth treatment on both
walls at fan speeds of 70% N//® and 100% N/V/8. The configuration with
variable depth on both walls gives somewhat better suppression bandwidth
than the "splitter" case; however, it gives less peak suppression.
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E. Rotor=0CV Treatment

Acoustic treatment was placed between the fan rotor and OGV's along
the outer flowpath only, The type of treatment used was a single-degree-
of=-freedom (SDOF) resonator with the honeycomdb cell slanted in the circum-
ferential direction. The resonator cavity and faceplate dimensions of the
design are as follows:

° Straight cavity depth 2,54em (1.0 in,)

. Slant cell length 3.8lcm (1.5 in.)

° 287 faceplate porosity

. Hole diameter 0.083 cm (0.033 in.)

] Faceplate thickness 0.048 cm (0.019 in.)

The panel was designed to have a tuning frequency of about 2000 Hz which is
the blade passing frequency at 1007 N/ VB,

The rotor-OGV treatment was evaluated for two fan exhaust configura-
tions., The first test was with an untreated fan exhaust downstream of the
rotor-0GV treatment. The gfecond was run with a fully treated fan exhaust
configuration to determine {f the suppression measured for the first con-
figuration i{s additive with treatment in the fan exhaust.

The suppression for the configuration having rotor-0GV treatment
without the fan exhaust treatment is given in Figure 32 for fan speeds of
70% N/V/6 and 100% N/v/6. All data are for the maximum aft acoustic angle
measured on a 5.18 (17 ft) arc. The data in Figure 32 show that the rotor-
OGV treatment achieved both tone and broadband suppression. The tone
suppression level increases from 2.5 dB at 70% N/v6 to 5 dB at 1007% N/VB.
Broadband noisc suppression varies from 0.5 to 2.0 dB over the measured
frequency range for both fan speed points.

The fully treated fan exhaust configuration with rotor—OGV treatment
suppression results are given in Figure 33 for 707 N/» 5 and 1007 N/V6 re-
spectively. The fully treated fan exhaust had the following design:

° Variable-depth treatment with panel depths of 0.63 em (0.25 in.),
1.27 em (0.5 in.), 1.9 cm (0.75 in.), and 3.81 cm (1.5 in.) on
beth walls

° 127 porosity

Figure 33 gives the suppression spectra for the full) treated fan ex-
haust with and without the rotor-OGV treatment for 707 N/V0. The addition
of the rotor=-0GV treatment increased the tone broadband nuiag suppression
lTevels. Broad-band suppression is from 1 to 3 dB and the tone suppression
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level increased some 2 to 3 dB. Figure 33 also gives the suppression
results for the 100% N/v/6 fan speed point. The broadband noise suppression
level increased by 1 to 3 dB for the rotor-OGV treatment with about 3 dB
additional tone suppression. Thus these data show the rotor-OGV treatment
to be effective at both fan speeds and gives suppression even when combined
with a fully treated exhaust configuration.

F. Variable~Depth Treatment Orientation

Rectangular duct data taken prior to the Rotor 55 fan exhaust tests
gave indications that suppression levels were strongly influenced by axial
treatment depth orientation for a high porosity (27%) faceplate design.

The duct data showed suppression to be independent of axial orientation for
a 12% faceplate.

Figure 34 shows a schematic of the variable-depth configurations that
were run with thin/thick and thick/thin treatment orientation. The suppres-
sion for the configuration with 127 porosity is given in Figure 35 for 70%
N/V/8 and 100% N//® fan speeds. ‘1nese data were taken at the maximum aft
acoustic angle on a 5.18 m (17 ft) arc. The 70% N/V/B fan speed point sup-
pression results show that at frequencies greater than the peak attenuation
frequency the thin/thick treatment sequence gives higher suppression. Sup-
pression at frequencies below the peak attenuation is not influenced by the
treatment sequence. The same comparison of data at 100% N/V/8 fan speed
shows less difference in suppression over the entire frequency range.

Figure 36 gives suppression for the configuration with 277% faceplate
porosity. The results are compared at fan speeds of 70% and 100% N/VB.
The results in Figure 36 for 1007 N/V/® show a small advantage at higher
frequencies for the thin/thick configuration, while at 70% N/V/8 the advantage
is greater. The low frequencies show no difference in the suppression
1evelsJ3t 100% N/V6 and a slight advantage to the thick/thin orientation at
70% N/v8.

Thus the Rotor 55 data show the same trend as the duct data, in that
the sensitivity in suppression with respect to treatment arrangement is
more notable for the high porosity (27%) design. However, the difference
in suppression level as measured in Rotor 55 is much less than prior duct
data had indicated. The total suppression level obtained from the 277%
porosity thin/thick configuration is poor when compared with other config-
urations having either constant 12% porosity, or a mixed porosity design.
Thus for the optimum design of the configurations tested here, suppression
seems to be independent of the treatment placement. Therefore, in the
QCSEE engine design, the thick-to-thin orientation is used since the engine
nacelle can accommodate this arrangement more readily.

G. Slant Cell Treatment

The application of slant cells in engine treatment designs is important
because they act effectively in giving low frequency tuning in areas where
thicker straight cell panel depths are not available. Three tests were run
to demonstrate this.
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° Slant cells: 2.54 cm (1.0 in.) panel depth with a slant distance
of 3.86 cm (1.52 1in.)

. 2.54 cm (1.0 in,) panel with a straight cell geometry
° 3.81 cm (1.5 in.) panel with a straight cell geometry

Figure 37 shows the treatment configurations. All the panels have a
treatment length of 15,24 cm (6.0 in.), giving a treated L/H value of 1.15.
The faceplate porosity is 27% for all configurations. The design frequen-~
cies are:

° 2000 Hz for the slant cell and 3.81 cm (1.5 in.) straight cell
° 2500 Hz for the 2.54 em (1.0 in.) straight cell

Figure 38 gives the suppression spectra for the slant cell, and for
the 2,54 cm (1.0 in.) straight cell resonator at fan speeds of 70 and 100%
N//6. At 70 and 100% N//8, the slant cell resonator gives higher peak
suppression than does the 2.54 cm (1.0 in.) straight cell treatment. The
slant cell peak suppression occurs in the 2000 Hz 1/3-octave band at both
fan speeds in Figure 38, and although not shown the slant cell peaks at
2000 Hz at 80 and 90% N/v6. Predicted straight cell peak suppression would
be in the 2500 Hz 1/3-octave band. The measured straight cell suppression
peaks at 2000 and 2500 Hz for 70 and 100% N//a, respectively. Data at 80
and 90% N/V6 indicate a broad peak at both 2000 and 2500 Hz. Why this
straight cell peak does not agree with predictions at lower fan speeds is
not fully understood at this time. However, the main point of the compari-
sons in Figure 38 is that the slant cell treatment consistently peaks at
2000 Hz.

Similar data for the slant cell and the 3.81 cm (1.5 in.) straight
cell are given in Figure 39. The peak attenuation for the slant and straight
cell treatment occurs at 2000 Hz for the 70% N/V/€ fan speed. The peak
suppression values are equal, each giving about 12 to 13 dB suppression.
The bandwidths are essentially the same above peak frequency; however, the
straight cell gives somewhat better bandwidth at lower frequencies. The
peak frequency is also at 2000 Hz for both panels for the 1007% N/V/6 fan
speed. Here the peak suppression for the straight cell is = 2 dB greater
than for the slant cell.

These results indicate that the slant cell geometry enables tuning to
a lower frequency for a fixed panel depth. Thus, this concept can be
utilized for achieving suppression at lower frequencies where the cavity
depth is limited.

The acoustic reactance for a SDOF acoustic liner is given in the
following equation:
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cavity depth of honeycomb

= wavelength of sound

o = a constant depending upon duct Mach number

For the faceplate porosity used in these tests both the slant cell and
the straight cell have reactances dominated by the (cot 27n%/)) term of the
reactance equation. The advantage that the slant cell treatment has is
that the length term, %, appears to be closer to the slant height rather
than the panel thickness. In the slant cell the maximum length is approxi-
mately 3.81 cm (1.5 in.). Therefore, the panel tuning frequency 1is the
3 same as for the 3.81 cm (1.5 in.) straight cell configuration.

H. Treatment Regenerated Noise

One of the objectives in the Aft Suppression Test series was to deter-
mine levels of treatment-regenerated flow noise by varying the Mach number
E in the aft duct. On highly suppressed fan exhaust ducts there is a poten-
3 tial of meeting a noise floor which limits the achievable suppression.

This floor is thought to be created by flow over the treatment surfaces and
is a function of the duct Mach number. Accordingly, the duct Mach number
was varied for these tests over a range representative of an engine to see
if suppression decreased at Mach numbers above 0.4. The configurations
involved are shown in Figure 40 and provided three Mach numbers at a given
fan speed. Lowest Mach numbers were achieved with the nominal nozzle
contfiguration without a splitter installed. Installation of the splitter
increased the Mach numbers with a further increase to the highest Mach
numbers achieved by opening the nozzle.

L L Lt

The suppression levels achieved with the three Mach number levels are
shown in Figure 41 at 100% fan speed for 1.94 and 2.13 radians (111° and
122°). An average duct Mach number for the configurations is shown below:

R s A
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Configuration MDuct

Nominal nozzle without splitter 0.40
Nominal nozzle with splitter - outer channel 0. 50
= inner channel 0.46

Open nozzle with splitter - outer channel C.56
- inner channel 0.52

Looking at the suppression levels we see that instaliation of the
splitter resulted in an increase in suppression peaking at 6300 Hz, which
was the tuning frequency of the splitter. There is a degradation in sup-
pression below 3150 Hz. Hhowever, whether this is due to a flow noise floor
or a decrease in bandwidth cannot be established., Opening the nozzle with
the splitter installed did not result in any significant change in the
suppression levels. One would expect a decrease in suppression if a treat-
ment-regenerated noise floor were being reached at higher Mach numbers.

Although no definite flow noise floor was established with these
tests, they can serve to provide an upper limit on the levels estimated for
a full-scale engine., By assuming that the measured suppressed level is an
upper limit of the flow nolse, and scaling on a 10 log (treatment area),
one can estimate the impact of this assumed flow noise on a full size
engine,
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SECTION V

IN~-DUCT MEASUREMENTS

In addition to the far-field results which have been discussed, in-duct
measurements were made to aid in understanding the results. A sound separa-
tion probe which had two flush-mounted sensors was used to separate the
broadband noise from turbulence noise. The same probe was used in conjunc-
tion with a wall-mounted sensor to determine radial modal characteristics of
the acoustic pressure pattern propagating in the duct.

Hot film wake surveys were taken on thL.. vehicle between the rotor and
OGV to provide information on the rotor wakes.

A, Sound Separation Probe

General Electric is developing an acoustic discrimination technique for
separation of broadband sound from turbulence in duct probe measurements.
This technique incorporates a new type probe referred to as a "sound separa-
tion probe," rather than the standard waveguide probe, to acquire the data
for the discrimination analysis, A photograph of the probe is shown in Fig-
ure 42,

The sound separation probe has two flush-mounted pressure sensors in the
probe end that provide a flat frequency response as shown in Figure 43, As
a result of the flush mounting and flat frequency response the relativ. -hase
shift between the two sensor signals can be expected to be minimal throughout
the frequency range of 0 Hz to 10000 Hz.

With the probe aligned axially with the flow, cross correlation of the
signals from the two sensors will provide a cross correlogram with separate
peaks for each of the components of the broadband .._nal (see Figure 44).

The slower moving turbulence provides a peak at the longest time delay (1),
the faster sound moving with the flow makes a peak at the shortest time delay
(2), while the sound moving against the flow gives a peak at 'negative time
delay" (3).

The acoustic discrimination technique is applicable to broadband random
signals. This requires that the tone level be removed prior to the cross-
correlation computation so that the periodicity from the tones does not con-
taminate the cross—correlograms as shown in Figure 45. The cross spectrum
between the two sensor signals is always computed prior to Fourier transfor-
mation to the cross correlation. Interpolation of the levels in the real
(co) and imaginary (quad) parts of the cross spectrum with frequency in the
region of the tones leaves the broadband random portion, which transfoirms
into the familiar two- or three-peaked cross correlation.

There are in general three peaks near the zero axis in the cross cor-
relogram. For broadband measurements in a flowing duct, the peaks can be
identified as (1) turbulence generated by the flowing air upstream of the
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probe, (2) sound generated by rotor/stator sources upstream of the probe, and
(3) sound reflected from a location downstream of the probe. It is assumed
the three sources of pressure fluctuations are independent, since the tur-
bulence and sound are from different interactions and the reflected sound has
lost its identity due to being broadband, random, and travelling through the
turbulent medium,

In order to compute the overall level of the broadband components of the
signal, use is made of the fact that the zero time delay value of the auto-
correlation of any signal is equal to its mean square value. Since the
sensors are close together and the time delays are small, the assumption that
the mean square value of each component of the signal is equal to the peak
value of the cross correlation is valid. Therefore, since the signal sources
are independent, solution of the following simultaneous equations using the
nomenclature of Figure 44 provides the sound level of each signal component:

2 2 2 2
PO+ P,  + P =P
) 2 ¢ 2
AB, _ P, AB. P,
) 2 > b )
AB, P, AB, P,
2 2 ¢AB3 ¢A51
P,” = P 1+ 77—+ o
AB, AB,

The sound separation technique will eventually compute the frequency
spectra of the sound propagating downstream with the reflected sound and
turbulence removed. The current status of the development does this for the
overall level, which is useful for determining if the probe-measured data are
predominately turbulence or sound. To emphasize this point the actual data
from the tests will be discussed. These data were recorded for four immer-
sions each, at the discharge of the struts ahead of the treatment sectionms,
and at the end of the treatment sections upstream of the nozzle. The data
analyzed for discussion in this report were at 1007 speed from Configurations
18, 7, and 8. (See Table II.) The nozzle probe data were used to determine
the treatment suppression in comparison with the far-field results.

The broadband cross-correlations for Configurations 18, 7, and 8 are
shown in Figures 46, 47, and 48. The correlation levels are nondimensional
and cannot be compared with one another until the fluctuating pressure level
factors are applied. Care must be exercised in analysis of cross-correlograms
of broadbaud data because the filtered data can make the cross-correlation
have lobes close to the peak due to a phenomenon called "ringing". This
effect is a function of the filter bandwidth (10 kHz) and the time between
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signals (Reference 11), However, when the cross-correlograms from all four
immersions are compared the peaks are seen to be quite different; thereby
discounting "ringing" as the eource of the peaks. The hardwall case (Con-
figuration 18) shows predominately aft-propagating sound in the data, with
forward-propagating sound in the outer two immersions and turbulence in the
inner two immersions making up the rest of the signals. However, the treated
cases (Configurations 7 and 8) show predominately turbulence in the data with
aft- and forward-propagating sound making up the rest of the signals. Fur-
thermore, a comparison of the overall levels of the signals from the forward
transducer of the probe (Figure 49) shows virtually no suppression from
hardwall to treated configurations. This is due to comparison of sound in
the hardwall case with turbulence in the treated case. To ohtain the actual
suppression of the aft-propagating sound the acoustic discrimination tech-
nique must be applied to the data.

By ratioing the peaks on the cross-correlograms to each other and apply-
ing the condition that the three peaks add to the overall level, the scound
and turbulence levels can be separated., This has been done and the results
are shown in Figure 50. The suppression of the aft propagating sound is
shown to be approximately 10 dB which agrees very well with the far-field
broadband data in the aft quadrant.

In summary, the acoustic discrimination technique using the sound sep-
aration probes will verify that probe data are sound or turbulence, and enable
computation of treatement-suppression levels from the probe data. This tech-
nique was applied to this test simply by using the sound separation probes in
place of the waveguide probes.

B. Modal Measurements

1. Theory of Modal Measurement

Recent findings (References 12, 13, and 14) have indicated that an
accurate prediction of acoustic treatment noise suppression, and consequently
an effective design improvement of acoustic treatment, is dependent upon the
knowledge of detailed modal characteristics of the acoustic pressure pattern
propagating inside the duct. The existence and nature of characteristic
duct modes have been known, but only since the advent of high-speed spectral
analyzers and sensitive microphone-probe systems has measurement become
technically feasible.

The modal content in the duct pressure signal is controlled by the
rotor (or rotor/stator) noise-generating mechanism. Duct modes are either
"cut-on", i.e., they propagate unattenuated in a hard-walled duct, or "cut-
off", i.e., they decay exponentially. In the presence of an absorbing liner,
each mode will attenuate at a specific decay rate that is a function of H/)
or 1, The modes are usually ordered in terms of their decay rates. Higher
order modes have higher decay rates.

Since a given pressure signal is usually composed of a number of modes,
and since cach of these modes usually decays at a different rate in the pres-
ence of acoustic treatment, the modal participation, and thus the overall
acoustic pressure profile, will change as the wave propagates down the duct.
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The objective of acous:iic liner design is to provide treatment which maxi-
mizes the acoustic energy absorption at frequencies of interest, under the
constraints of duct height and length. Since a duct liner section can be
optimized to provide a maximum rate of attenuation for a given mode or com-
bination of modes, the modal participation is an essential input to the
design process.

Data were taken during this test to demonstrate the technique for mea-
suring modal patterns and to evaluate the results with respect to the treat-
ment suppression results.

In a duct with circular or annular cross section, two indices are required
to describe the modal pattern, One index determines the order for modes with
diametral nodal lines (called spinning modes). The other index determines the
order for modes with circumferential nodal lines (called radial modes). These
duct modes, analogous to the modes of vibration of a drum head, are illustrated
figuratively in Figure 51.

For the case of high radius ratio annular ducts, an analytical simplifi-
cation can be made. To a higher degree of approximation, the spinning mode
content of the annular duct can be ignored and the propagation can be assumed
to be the same as that in a duct of rectangular cross section with the duct
height equal to the difference in radius of the annulii (Reference 15). The
transverse modes in the rectangular duct become analogous to the radial modes
of the annular duct, and the analysis can proceed in the rectangular coordi-
nate system. In the rectangular duct, the characteristic acoustic pressure
modes, or eigenfunctions, are given by:

¢, (x) =C I x/H) + Dj sin (y, x/H) (1)

cos (y

3 J ]

where:

Yj mode eigenvalue
X~ = transverse position in duct (immersion)
H duct height
J mode index
CJ. Dj = eigenfunction coefficients

An arbitrary acoustic pressure profile across the duct is analyzed in terms
of its component modes by a Fourier-type series expansion of the form:

POot) = T Aj(@) o3 (vg X/B) e
i=0

wt

(2)

where w is the frequency, t is time, and the A¥;S are the modal coefficients

giving the participation level of each mode. e acoustic pressure, modal
coefficients, eigenfunctions, and eigenvalues are all taken as complex
numbers, possessing a magnitude and phase.
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The theory behind the modal measurement requires the experimental

determination of
side of Equation
of interest. At
decomposition of
type techniques.
of immersions by

the complex acoustic pressure profile given by the left hand
(2) as a function of x across the duct at given frequencies
the given frequency, the A; are then determined by a modal
the p(x) in Equation (2) using standard Fourier analysis-
The magnitude and phase of p(x) are determined at a number
measuring the cross-spectral density between a movable probe

(see Figure 42 and description in Section V-A) in the duct and a reference
microphone fixed in the wall of the duct. The experimental setup for Rotor 55
is shown schematically in Figure 52.

The cross-spectral density of two signals is the product of the Fourier
(time) transforms of the two signals in the form:

(x » W) (3)

*
Srp (w,xr,xp) = Pr (xr,m) Pp >

where:

Py (x,,w) = reference microphone pressure signal
pp(xp,w) = probe pressure signal

Xp» = positions of reference microph.ne, probe
w = frequency

The bar denotes Fourier transform with respect to time, and the asterisk
denotes complex conjugate. The Fourier transform of Equation (2) gives:

©

P(x,w) = 2:
3=0

Aj (w) Pj (Yj x/H) (4)

Combining this with Equation (3), we get:

- *
Sep @i¥) =| D0 A (W) > A (W) Py (g x/H) (5)
n=0 j=0

The first sum on the right hand side is constant with respect to x, so that,
if we let:

By (@) = A () > A: (w) (6)

n=0
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we can write:

o©

Srp(m,x) =3 By (w) P
§=0

3 (Yj x/H) (7N

The left side of this expression is obtained from measurement, and the B; are
then obtained from analysis. Since the B; are proportional to the Aj, tge
relative magnitude and phase of the modal coefficients can be obtained in
this manner.

2. Experimental Results

At each immersion of the aft probe shown in Figure 52 a cross-spectral
density was calculated between the probe microphone and the wall reference
microphone using a Time/Data Fast Fourier Analyzer System. The analyzer
first plots the magnitude of the cross-spectrum, then prints a tabulation of
the cross-spectrum magnitude and phase for each narrowband center frequency.
The calculation was made using 200 frequency averages over each data sample,
with a 40 Hz bandwidth from O to 10,200 Hz.

Figure 53 is a plot of the logarithmic magnitude of the cross-spectrum
for the probe in the downstream location for Configuration 75-1F (Hardwall)
at 70% speed, at an immersion of 4.4 cm (1.715 in.) from the outer wall.
Figure 54 gives tabulations of the cross-spectrum for this case. Figure 55
is a plot of the logarithmic magnitude of the cross-spectrum for the probe in
the downstream location for Configuration 75-1F (Hardwall) at 1007 speed, at
an immersion of 4.4 ecm (1.715 in.). Figure 56 gives tabulations of the
cross-spectrum for this case. Similar plots were obtained at all other
immersions.

3. Data Analysis

The frequencies of interest for the analysis are the blade passing fre-
quency and its harmonics for both 707 and 100% speed. Complex acoustic pres-
sure profiles for the first four harmonics of the blade passing frequency at
70%Z speed are shown in Figures 57 to 60. The profiles for 10u% speed are
Figures 61 to 64.

The circles in these figures represent measured data points at each
immersion, while the solid curves resulted from the subsequent modal anal-
ysis. Note that the first immersion cccurs 3.8 c¢m (1.5 in,) from the wall,
which is the closest the gooseneck probe approaches the wall when fully
withdrawn. The data between the 3.8 cm (1.5 in.) immersion point and the
wall are probably significant to the modal expansion, but couid only be
approximated by extrapolating the curves to the wall in the manner shown.

The results of the modal analysis are presented in Table TII, where the

magnitude and phase of the modal coefficients for the first six modes are
presented.  The coefficients are normalized relative to the lowest order
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Figure 51(b). Cross-Spectrum for Downstream Probe - Hardwall Configuration
75-1F, 70% Speed, Immersion of 1.1 cm (1.715 in.), 5120 to
i0,200 Hz,
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Figure 56(b). Cross-Spectrum for Downstream Probe; Hardwall Configuration
75-1F, 100% Speed, Immersion of 4.4 em (1.715 in.), 5120 to
10,200 Hz,
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Figure 57, Complex Acoustic Pressure Profile for Hardwall Configuration
75-1F; 1320 Hz, 70% Speed,
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Figure 59. Complex Acoustic Pressure Profile for Hardwall Configuration
75-1F: 4000 Hz, 70% Speed.
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Figure 60, Complex Acoustic Pressure Profile for Hardwall Configuration

75-1F; 5280 Hz, 70% Speed.
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Figure 61. Complex Acoustic Pressure Profile for Hardwall Configuration
75-1F; 1920 Hz, 100% Speed.
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Figure 63. Complex Acoustic Pressure Profile for Hardwall Configuration
75-1F; 5860 Hz, 100% Speed,
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mode; that is, the lowest order modal coefficient has an amplitude of one,
and a phase angle of zero radians (0 degrees) in each case. The most inter-
esting result is the relative participation of the modes. This can be better
visualized when shown in bar graph form, in Figures 65 to 72,

The ability of the modal expansion to converge to the desired acoustic
pressure profile is evidenced by reexpanding the profile in a series of
eigenfunctions as given by Equation (2). Samples of the reexpansion of two
cases are shown in Figures 73 and 74, In all cases, the modal expansion was
performed assuming the measurement was done in a hardwall section of duct.

4, The Use of Modal Measurements in Prediction of Suppression

The most likely place to perform a modal measurement to characterize the
source would be in a plane upstream of the treated section. It was dis-
covered by using the sound separation technique discussed in Section V-A that
this signal contained "hydrodynamic" pressure pulsation due to the turbulent
wakes of the rotor passing the probe. These wakes cause a nonacoustic signal
which is correlated between the wall and probe microphone, thus contaminating
the acoustic signal. For this reason, the modal measurements made at the
downstream probe location in the hardwall duct ceufiguration were assumed to
be representative of the source modal distribution. It was further assumed
that the source modal distribution would not change appreciably between the
hardwall and the treated configurations.

General Electric (Reference 12) has developed a rectangular flow duct
acoustic propagation program which calculates wave propagation in ducts with
multiple treatment sections and uniform mean flow. The required input to the
program consists of the duct dimensions, the flow Mach number, the modal
participation at the source plane, and the acoustic impedance of the wall
treatment at the given frequency. The calculation is based on a narrowband
assumption, and reflections at the duct termination are neglected. Inherent
also is the assumption that the annular duct can be represented as a rectan-
gular duct for purposes of analysis.

Using the source modal measurements, acoustic PWL suppression was calcu-
lated for several Rotor 55 treatment configurations, These configurations
are listed in Figure 75. The predicted results are presented in Table IV.

The calculations have been compared to both narrowband and 1/3-octave
band far~field APWL measurements. Table V lists the measured PWL suppres-
sions for the six treated configurations for 1/3-octaves which contain the
pure tone frequencies of the analysis. Since the 1320 Hz blade passing
frequency at 70% speed is near the cutoff frequency between the 1250 and 1600
Hz 1/3-octaves, both are tabulated. Table VI lists the measu-ed PWL suppres-
sions for the 20 Hz bandwidth narrowbands.

Before considering the correlation between the analytical and measured

data, it should be noted that several sources of error are present which
could adversly affect the agreement. First, one would normally expect a
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Figure 67, Relative Modal Participation for Hardwall Configuration
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Figure 74.
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Table 1V.

Configuration

12X Single Phase
27Z Single Phase
12X Step Down
272 Step Down
12% Step Up

27% Step Up

Configuration

127 Single Phase
27% Single Phase
122 Step Down
27% Step Down
12% Step Up

277 Step Up

70% Speed APWL, dB

1320 Hz 2640 Hz
3.3 41.9
0.5 25.5
6.9 18.1
2.5 *

6.9 18.4
4.0 15.8

4000 Hz

9.3
7.8
9.0
6.1

13.3

*

1002 Speed APWL, dB

1920 Hz 3800 Hz
13.3 28.0
6.3 26.5
11.4 23.6
16.9 21.7
10.1 20.2
12.6 18.1

*
Program Experienced Numerical Difficulties

5800

6.2
5.8
10.4
13.2
10.8
14.5

Calculated Narrowband APWL Suppressions, Rotor 35.

5280 Hz

6.6

6.6

9.5
*

10.6
*

7640 Hz

1.8
1.5
4.6
4.5
5.2
5.5



Table V. Measured 1/3-Octave APWL Suppressions, Rotor 55.

70% Speed APWL, dB

Configuration 1250 Hz 1600 Hz 2500 Hz 400C Hz 5000 Hz
75-3 12% Single Phase 9.1 10.9 20.8 10.8 7.4
17 277 Single PHase 3.1 4.6 16.9 7.6 5.8
26 127 Step Down 10.3 11.6 16.7 12.2 11.3
75=5 27%Z Step Down 6.3 11.2 14.0 8.0 8.4
7 127 Step Up 10.2 11.3 17.9 13.0 10,3
8 272 Step Up 6.4 9.7 13.7 8.7 8.3

_ 100% Speed APWL, dB
? Confiugration 2000 Hz 4000 Hz 6300 Hz 8000 Hz

;

g

é 75-3 127 Single Phase 17.1 14.5 5.4 3.4
17 27% Single Phase 13.6 9.4 5.6 3.7
26 127 Step Down 17.0 15.3 11.0 7.3
75-5 27% Step Nown 15.6 9.5 7.5 5.3

1 7 12% Step UP 15.3 15.3 10.9 6.6
8 27% Step Up 16.7 10.0 9.0 6.2
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Table VI. Measured Narrowband APWL Suppressions, Rotor 535.

Configuration

122 Single Phase
27% Single Phase
12% Step Down
277% Step Down
12% Step Up

27% Step Up

Configuration

127 Single Phase
27% Single Phase
127 Step Down
27% Step Down
12% Step Up

27% Step Up

70% Speed APWL, dB

1320 Hz

9

2.7
12.7

5.7
12.5
10.3

2640 Hz

27.8
21.8
24.5
16.1
24.7
15.3

4000 Hz

8.5

8.8
12.2

7.8
16
12.2

100% Speed APWL, dB

1920 Hz

21.7
17.1
20.5
20.8
19.7
23.2

3800 Hz

18
12
17
11
19.7
15.7

5800 Hz

7.3
8.7
12.8
12,2
16.5
15.2

5280 Hz

8.4
7.2
12.3
9.4
13.3
9.3

7640 Hz

6.3
8.7
5.9
7.2
7.1
11



different attenuation rate for a tone spike which falls within a certain
1/3-octave band than for the overall 1/3-octave band attenuation, depending
on how much the tone level exceeds the broadband noise. Second, for both
1/3-octave band and narrowband comparisons the analytical prediction is
quite sensitive to variations in impedance of the liners. The impedance for
the calculations was obtained from simplified analytical models and may
contain substantial errors. Third, the rectangular duct analogy is assumed.
If higher order spinning modes are present in the vehicle, the measured
attenuations might tend to be higher than the calculated values. Fourth,
the incomplete radial modal traverse and estimated extrapolation may cause
the modal expansion to be in error. This may be the dominant effect as the
prediction is quite sensitive to modal content.

In comparing Tables IV and V, several observations can be made. First,
the analytical program underpredicts the suppression at the blade passing
frequency. Considering the four possible sources of error, a possible cause
of this would be that higher order spinning modes contribute substantially
to the source energy at this frequency. No spinning mode measurements were
attempted in this program, so this cannot be quantitatively determined from
the present data. Since this is the only harmonic at which the suppression
levels were underpredicted, it would also require that coherent higher order
spinning modes be produced most effectively at blade passing frequency. It
should be noted that Yurkovich (Reference 15) suggests that only the radial
modes need be considered in the annular exhaust duct.

At the second harmonic, the calculations overpredict the suppression
for both the third octave and narrowband data. These frequencies are near
the tuning frequencies of the single-phase liners, where the attenuation is
quite sensitive to the impedance. Slight errors in determining the impedance
for the analytical prediction could have caused the overpr rdiction in these
cases.

At all frequencies, substantial errors could have been introduced by
the extrapolation of the pressure profile to the outer wall. The 257 of the
profile at the outer wall which was missed is very likely the most important
part of the profile as far as energy content of the propagating signal is
concerned. The extrapolation of the profile over this region was only a
rough guess at the shape of the waveform. The modal participation is depen-
dent on the profile shape, and the prediction, in turn, is very sensitive to
the modal content,

The measured and predicted suppressions at the third and fourth har-
monics yield reasonably good quantitative correlation.

Ignoring the quantitative aspect of the data for a moment, qualitative
correlation can be obtained by ranking the treatment configurations in order
of suppression effectiveness, from best to worst, at each speed and fre-
quency. Tables VII and VIII show this type of comparison for the measured
and calculated results, It is obvious that, with some exceptions, the
agreement in ranking between measured and calculated configurations is quite
¢lose. For the considered duct and condition, the analytical program def-
initely predicts the trend which indicates the 127% porosity liners to be more
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effective than the 27% porosity liners. As this technique becomes more
definitive it may be applied to engine designs when the modal content of the
source and duct is known. While the check on an absolute basis was not as
good in this case as needed for predicting suppression levels, other exper-
ience suggests that significantly improved correlation might have been ob-
tained if (1) the radial modal measurement had been made across the entire
annulus height (~50% of the area was not traversed because of a goose-neck
used on the sound-separation probe used in this program), and (2) the acous-
tic impedance of the treatment had been determined experimentally in the
grazing flow impedance tube.

C. Rotor Wake Analysis

Interaction of fan blade wakes with downstream blade rows has long been
recognized as an important generation mechanism for fan noise. In fact,
with today's larger rotor-stator spacings, viscous wake interaction and
turbulence-rotor interaction are the two dominant factors in the production
of fan noise. Traditionally, viscous wake interaction has been associated
mainly with pure tones, but more recently (Reference 10) this mechanism has
also been identified as a source of fan broadband noise. Over the years,
much effort has been expended on the analytical prediction of wake interaction
noise, but one major flaw in all these analyses has been tlie lack of a good
mathematical wake description. Presently used models have been derived
using stationary isolated airfoil data or cascade data, but these models do
not appear to provide complete representations of the wakes shed from a fan
rotor.

Wake modulations have recently been postulated as a source of fan
broadband noise. Analtyical work has been done on this problem but detailed
experimental data on the type and extent of wale modulation which exists be-
hind a fan rotor are almost nonexistent. Hence, we are forced in our ana-
lytical work to use wake models derived from comparatively smooth flow over
stationary blad=s, and to guess at the behavior of these wakes as a function
of time and space for a moving blade row. The need for aerodynamic investi-
gations of fan rotor wakes is thus clearly indicated.

A step toward the solution of this problem was taken when hot film wake
survey data were acquired on Rotor 55. This type of data provides velocity
information directly rather than requiring the transformation of pressure to
velocity, as is necessary with conventional aerodynamic data. This allows a
more direct comparison of our analytical wake models with experiment.

1. Basics of Hot Film Anemometry

Yot film probes consist of a temperature-sensitive metallic coating
deposited on a cylindrical ceramic substrate. The coating is heated elec-
trically and placed in an electronic Wheatstone bridge similar to that us:d
with strain gages. When this heated metallic element is immersed in a flow=-
ing field, the sensor is cooled an amount proportional to the mass flux (pV)
of the flow. The resulting sensor temperature change alters the probe's
electrical resistance, which is, in turn, measured by the bridge circuit.’
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By calibrating this probe system over a known range of pV, the mass flux in
any flow can be measured. Then by measuring or computing the flow density,
the velocity can be extracted from the mass flux.

Many different syles and types of hot film probes are available., 1In
this case the two-dimensional "x'" array probe such as illustrated in Figure
76 was used. The two elements of the probe are electrically and mechanically
isolated from each other and each has its own electronics package for mea-
suring the sensor resistance. The probe is oriented so that the incoming
flow vector is at or near the bisector of the right angle between the sensors
as indicated in Figure 77. Then, denoting the voltage signal from one sensor
as "A" and the other as "B'", the longitudinal velocity is proportional to
A+ B; and the transverse velocity is proportional to A - B.

2. Probe Calibration

Probe calibration is accomplished by immersing the probe in a free air
jet of known velocity and thermodynamic properties. By directing the jet
along the probe "x" bisector the probe was calibrated for longitudinal veloc-
ity alone since A = B should be zero. Varying the jet Mach number then pro-
cuces the longitudinal calibration curve of Figure 78. Note that the A = B
voltage is virtually zero (< .1 volt) as it should be for zero yaw angle.
Simple conversion of jet Mach number and gas properties to mass flux converts
Figure 78 to the more useful Figure 79.

Calibration for flow directionality is obtained by simply yawing the
probe to several angles at various fixed jet Mach numbers. This calibration
is presented as (A - B)/{A + B) versus yaw angle in Figure 80. Use of the
directionality calibration in this ratio form 1is advantageous since any gas
temperature change effects are automatically cancelled out. The probe cali-
brations shown in Figures 78, 79, and 80 are those obtained on the probe used
to take wake data on Rotor 55. These curves are by no means universal for
all "x" array hot film probes, nor even for the same probe from test to test.
The probe tips must be recalibrated before each job to assure reasonable
accuracy.

Calibration curves of Figures 79 and 80 have been curve fit by fourth-
order polynomials to allow use of computerized data reduction techniques.
The following equations represent these curves within a reasonable accuracy
band.

—_ —_— 2
long = 0.8567084 + 8.577701 (A + B) ~ 0.20490007 (A + B)

—_—3 — 4
+ 0.021138243 (A + B) - 0.00070591945 (A + B)

pV

Yaw Angle (rad) = - 0.0090939458 + 1.9812846 (R) - 0.49972652R2

- 3.7908338R> + 7.4028571R%
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Figure 80. Directionality Calibration,
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3. Data Acquistion

Wake survey data obtained on Rotor 55 was taken one rotor tip chord
downstream of the rotor trailing edge. The probe was traversed to five
radial stations as indicated in Figure 81. Both the outermost and innermost
immersions were chosen at locations which were felt to lie outside of the hub
and casing boundary layers. At design speed, the rotor exi’ absolute air
angle averaged around 0,56 radians (32 degrees) from hub to tip. The hot
film probe was thus set at this nominal 0.56 radians (32 degrees) angle from
axial.

For the 100% speed points, this approach probably gave reasonably accu-
rate results. Accuracy at the low speeds, however, may be somewhat less.

4, Data Filtering

Preliminary analysis of the Rotor 55 wake data revealed that although
the blade wakes were clearly visible, the data were somewhat muddied by high-
frequency, small-amplitude random fluctations. When the data were plotted as
waveforms, this high frequency signal made the data quite difficult to digi-
tize. In order to overcome this problem, the data were passed through a low-
pass filter with a sufficiently high cutoff frequency to prevent significant
modification of the primary wake information but low enough to filter out the
unwanted high frequency signals.

Figure 82 shows representative wave form plots of the data comparing the
filtered and unfiltered signals. The 12,800 Hz filter successfully removed
the high frequency random signal without seriously affecting the primary
information.

Examination of the data in Figure 82 reveals a secondary, medium ampli-
tude signal which is apparently quite regular. The frequency of this signal
appears to be approximately four times BPF or =8 kHz. Further investigation of
this situation revealed that at other fan speeds, the signal frequency does
not change appreciably. This indicates the signal is not generated by the
fan at all but is instead a resonance in the instrumentation system. Similar
electronic "ring" has been noted sporadically during previous hot film data
acquisition.

Existence of this electronic resonance has degraded the quality of the
data somewhat. However, while the widths and shapes of the wakes have
probably suffered some distortion, the wake signal amplitude appears to be
affected only minimally.

5. Reduction to Velocity

The raw data consist of voltage measurements which are proportional to
velocity in the absolute frame of reference. That is, the velocity vector
marked €2 on the rotor exit velocity triangle of Figure 83 is measured. We
are interested, however, in the rotor relative velocity W) since the wakes
are shed from the moving rotor. W) is obtained by simply subtracting the
wheel speed U vectorially from C2 as shown.
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Figure 81, Rotor 55 Hot Film Probe Measurement Points,
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Figure 83. Typical Rotor Exit Velocity Triangle,
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As the wake sweeps past the sensor, a simple magnitude decrecase in rotor
relative velocity Wy due to the wake velocity defect will be reflected as
both a magnitude and angle change in C2 which is the velocity that the probe
measures. Hence, two-dimensional data are required to resolve a one-
dimensional change in W2. The (A - B) and (A + B) probe voltages, along with
their corresponding calibration curves provide all the necesaary information.
Rotor 55 hot film data were recorded both d.c. and a.c. coupled. The reason
for this was that the a.c. coupled signal would give good resclution of the
velocity fluctuations while the d.c. signals would provide the mean veloc-
ities to be added to the fluctuations. Unfortunately, the (A + B) d.c.
levels were obscured by a noise problem in that channel of data acquisition
equipment. Hence, no measured mean velocity was available for addition to
the a.c. signal to resurrect the total velocity. This situation prevents
defining the magnitude of €2 and, in turn, would not allow the determimation
of W2. Therefore, a computed rather than measured mean value of C2 was used
in conjunction with the experimental measurements., Figure 84 shows the
design velocity triangle for Rotor 55 at the radial point corresponding to
the tip-most data point. Using this computed velocity information, alcng
with the probe orientation sketch of Figure 84, it was possible to obtain the
following mean velocities:

180.3 m/sec (591.7 ft/sec)

Longitudinal Velocity

Transverse Velocity 14.5 m/sec (47.6 ft/sec)

Assuming then that the probe had measured these velocities, the probe vol-
tages as obtained from the calibration curves would have been A - B = 0,747
volts and A + B = 5.38 volts.

These mean voltages were then added to the measured a.c. voltages :o
give the time history of the C2 velocity.

A time-sharing computer program was written tu carry out the vector
transformation from C2 to W7. The raw hot film wave form data filtered at
12,800 Hz shown in Figure 85 were digitized and converted to rotor relative
exit velocity W2, Figure 86 shows the results of this calculation where W2
is plotted versus blade travel circumferentially. Notice that the electronic
ringing signal is clearly visible in the Figure 85 plots., At times, the
ringing signal amplitude approaches 50% of the wake amplitude, indicating
that the ring could have an effect on the wake signals on these occasions.

6. Modulation

Disregarding, for now, the apparent electronic resonance, inspection of
Figure 86 shows that the wake defect amplitudes vary from about 177 of th:
freec stream value to 28%, which corresponds roughly to 307 amplitude modula-
tion. This is a very substantial wake-to-wake amplitude modulation which,
according to theory, could produce a significant level of broadband noise
when impacting on the stator, It should be noted however that Hanson (Ref-
erence 10) assumed 100% maximum variation between wake amplitudes (amplitude
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181 m/sec
(593.6 ft/sec)

195 m/sec
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Figure 81, Design Velocity Triangle and Probe Orientation,
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A - B Filtered

A + B Raw

o TR

A + B Filtered

1/Blade
3
E
Blade
No, 15
e 2.2 cm (0.85 in.) from Casing o Filtered at 12 800 Hz
Wall ® 1 Rotor Tip Chord Downstreanm

@ 100% Corrected Speed
e 7783 rpm Puysical

Figure 85(d4). Rotor 55 Hot Film Wake Survey Data, Blade 15. .
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modulation) in his analysis. Maximum wake specing variation (spacing modu-
lation) appears to be on the order of 0 to 5% and should be fairly insignif-
icant in the production of broadband noise. Hanson (Reference 10) used 37
spacing modulation in his study.

Wake shape and width modulation are two variables which are not taken
into account in some present theories. The hot film data, however, indicate
that there are fairly large modulations in these two quantities. It is
believed that the wake width modulations would also have an effect on broad-
band noise production; however, the quantitative impact remains to be deter-
mined. In any case the width modulation would most certainly affect the
discrete frequency noise, as analytic experience has shown that narrcw wakes
cause higher tones and slower dropoff in the harmc1ics as compared to wide
wakes.

Presently, there are two different wake models used in General Electric
analytical prediction models. One, the Silverstein model in Reference 9 was
developed from data taken on isolated airfoils while the other, Mugridge's,
in Reference 16, was based on a combination of isolated airfoil and cascade
data. Neither, however, had the benefit of rotor data such as presented
above.

Shown in Figure 87 are the Silverstein and Mugridge mndel predictions
for the Rotor 55 wakes at the measuring point of Figure 87. Note that, at
this location, the two predictions differ by only small amounts, with Silver-
stein being slighter wider and weaker than Mugridge. These differences do
have important effucts on noise predictions. If the model wakes of Figure 87
are compared with the experimental ones of Figure 86, it can be shown that on
the average, the experimental wakes are wider and stronger by a substantial
amount than either of the mathematical models. Errors of this magnitude in
our analytical wake models would definitely have an important effect on our
noise predictions. The "ringing" problem discussed earlier had a definite
but unkown effect on the accuracy of the data, hence the absolute difference
between the theoretical and experimental wakes cannot be determined.

7. Summary and Conclusions

A semiautomated computer reduction technicue for hot film probe wake
survey data has been developed and demonstrated. One set of Rotor 55 wake
data has been reduced and shown to contain large amounts of wake amplitade
modulation and only small period modulation, as expected. Substantial wake
shape and width modulation were also present in the data, which could have
large effects on broadband viscous wake interaction noise generation. Com=-
parison of the current viscous wake models with the reduced Rotor 55 data
showed large differences in width shape and velocity-defect amplitude.

Consideration of the results shown here points out the potential benefit
to be gained from this type of wake data. New, more realistic wake models
can be developed from velocity measurements on a rotor, rather than pressure
measurements on a cascade as done almost exclusively in the past. Problems
with presently available mathematical wake models are well known. The above-

130

N M



| S R &

Velocity (ft/sec)

*sadeyg 9a¥eM TedrjewayleN pue Tejuswtxadxg Jo ugstaedwo)

uwd
S 0 G-
oSy
0¢c¢c
0s9
(91 @ousaaayay)
i 23p1a3ny L‘
(1]-72 -
(4 0 c-
sayouTt

12POR °U3en 23pradny
90BIL 3 EM GG JI030Y w=r cvum oo
90el], 94eM GC JO0JO0Y eeececescan

0St

091

oLt

081

061

002

(d9s/w) £3100197

Velocity (ft/sec)

wo

*L8 2an3dtg

0s1t
091
0SS oLT
081
061
0S9 002
L4
(6 oouaaayay)
UT931SI2ATIS
|
0SL
A 0 Z-
sayout

19POW *YIJeW UTS3ISIBATLS

908BIY 9HEM GG JOJ0Y wr wm o
308l 94eM CC JOI0Y rtecescecan

(d9s8/w) £3T0019A

131




AR e A s h e i ST T I T e e Em e T R T e e

demonstrated technique provides the means to substantially improve these
models and should be pursued further.

In addition to providing a means for developing a better mathematical
model for the mean wake, this new type of data also provides an excellent
picture of the time history of wake modulations, which are important to fan
broadband noise generation. For the Rotor 55 case, the existence of these
variations from wake to wake was clearly demonstrated. Moreover, the ampli-

tude modulation appeared to be significantly less than that used in Reference
9.
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SECTION VI

CONCLUSIONS

1. For a range of vane-blade ratios from 1.67 to 2,07, second harmonic
tone propagation in the aft duct tended to minimize at a vane-
blade ratio of 1.87 at a rotor-stator spacing of 0.5, No significant
differences in second harmonic noise level were observed at 1.5
chord spacing.

2, Analysis of the rotor=-stator spacing results indicated that a
second noise source (most likely rotor-turbulence noise) was con=-
trolling at spacings of 1.5 to 2.0 rotor-tip chords., Wide spacings
of 1,5 to 2.0 rotor-tip chords offer potential benefit in actual
flight where lower rotor-turbulence noise levels are expected.

3. No significant change in fan broadband noise was observed by
lowering the Mach number through the vane row; however, any
changes may be masked by rotor-turbulence noise. Further testing
on low-Mach vanes should be considered, but should be conducted in
a facility where the levels and eddy sizes of inlet turbulence are
controlled and monitored.

4, Tests of acoustic treatment panels with various porosities and
backing depths showed that to increase suppression, variable-depth
treatment panels should be used with porosities that optimize the
acoustic resistance for each panel. Variable depth treatment
configurations with either constant or mixed porosity faceplate
achieved suppression at frequencies higher than the peak frequency
that consistently exceeded predictions based upon the best previous
designs of the General Electric Company.

5. Tests of 12 percent porosity acoustic panels with H/A_ = 1,24,
showed that the measured suppression loss due to treatment area
blockage did not vary linearly with L/H (actual),.

6. The splitter simulation configuration with variable-depth treatment
on the outer wall and constant depth treatment on the inner wall
had better peak suppression than the configuration with variable~
depth treatment on both sides with somewhat less suppression
bandwidth. The splitter simulation configuration gave wider
suppression bandwidth than a configuration with constant depth
treatment on both walls.

7. Rotor-OGV treatment gives suppression (2 to 5 dB tone and 0.5 to 3

broadband) which is observed both with and without fan exhaust
duct treatment.
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10.

11.

12.

13.

Suppression was found (o be independent of treatment orientation
for variable-depth configurations with 12 percent faceplate
porosity. The thin/thick treatment gives a somewhat better
suppression bandwidth than the thick/thin for the 27 percent
porosity configuration - primarily at lower fan speeds.

Slant cell treatment can be tuned to a lower frequency, relative
to a straight cell resonator geometry for a given treatment
thickness.

An increase in average aft duct Mach number from 0.48 to 0.54 did
not result in any significant degradation of suppression. This
indicates that no flow noise floor was reached.

An acoustic discrimination technique using the sound separation
probe can separate sound from turbulence in probe data.

Hot film probe measurements between the fan rotor and stators

showed that substantial modulation of blade wake shape, width, and
strengtl, exast on the Rotor 55 fan blades. A viable method
utilizing hot film measurements between the rotor and stator has
been demonstrated for obtaining velocity data behind a rotor, with
which an improved analytical fan blade wake model could be developed.

Exhaust duct suppression predicted by means of duct-mode acoustic
propagation theory for several pertinent test configurations which
included radial modal measurements, is shown to correspond qualita-
tively with the measured effectiveness; rank-ordering corresponded
well enough to encourage further intensive effort to develop the
analytical method.




Symbol or
Abbreviation

M,

oGV
PNL
PWL

p (x,t)

SECTION VII

NOMENCLATURE

Definition
Modal coefficient
Blade passing frequency
Modal coefficient
Absolute velocity
Speed of sound
Eigenfunction coefficients
Eigenfunction coefficients
Hole diameter
Duct height
/-1
Modal index
Cavity depth of honeycomb
Duct length
Spinning mode index
Mach number
Tip Mach number
Fan speed
Outlet guide vane
Perceived noise level
Sound power level re: 1013 watts

Acoustic pressure

Units

Hz

m/sec (ft/sec)

m/sec (ft/sec)

cm (in.)

m (ft)

cm (in.)

m (ft)

rpm

PNdB
dB

N/m2 (psia)
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Abbreviation

136

Definiti

Pressure

Turbulence pressure

Pressure from downstream moving
sound wave

Pressure from upsiream moving
sound wave

Probe microphone pressure signal

Reference microphone pressure signal

Cross—-spectral density

Sound pressure level re 0,0002
microbars

Panel depth

Time

Effective thickness of faceplate
Wheel speed

Velocity

Rotor relative velocity

Duct transverse length

Acoustic reactance

Probe microphone position
Reference microphone position
Mach number constant

Duct eigenvalue

Duct height divided by wavelength
Rzlative absolute temperature

Yaw Angle

Unitg

(psia)

N

N/m

N/m? (psia)
N/m2 (psia)
N/m2 (psia)

N/m? (psia)

N/m2 (psia)

(N/m?)? f<ps1aﬁ]
rad/secLFad/sec
dB

cm (in.)

sec

em (in.)

m/sec (ft/sec)
m/sec (ft/sec)
m/sec (ft/sec)
m (ft)
rayls
m (ft)

m (ft)

rad (degrees)




Symbol or
Abbreviation

A

Ao

¢j (%)

~ ~ € ©
~r ~
»

Definition
Wavelength of sound
Tuning frequency wavelength
3.14159
Density
Faceplate porosity
Characteristic duct pressure mode
Cross correlation
Circular frequency
Denotes complex conjugate

Denotes Fourier Time Transform

Units
m (ft)

m (ft)

kg/m3 (1bm/ft)

rad/sec
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5.

10.

11.

12.

13.
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