
ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA CR-134872

CW-WR-77-024

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE

(QCSEE)

MAIN REDUCTION GEARS

DETAILED DESIGN FINAL REPORT

March 1975

by Curtiss-Wright Corporation Under Subcontract to General Electric Co.

(NASA-CR-134872)QUIET CLEAN SHOFT-HAULN80-15106EXPERIMENTAL ENGINE (QCSEE)MAIN REDUCTIONGEARS DETAILED DESIGN REPORTFinal Report(Curtiss-Wright Corp.)221 p HC A10/MF A01UnclasCSCL 21F G3/0733488

Prepared For

National Aeronautics and Space Administrati

NASA Lewis Research Center Contract NAS 3-18021

NASA CR-134872

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) MAIN REDUCTION GEARS DETAILED DESIGN FINAL REPORT March 1975

by Curtiss-Wright Corporation Under Subcontract to General Electric Co.

Prepared For

National Aeronautics and Space Administration

NASA Lewis Research Center Contract NAS 3-18021

PRECEDING PAGE DIANK NOT FILMED

19 **1**9 1 1 1

1

4.	leport No.	2. Government Accession No.	3. Recipient's Cetalog No.
4.	NASA CR-134872		
	Title and Subtitle		5. Report Date
	Quiet Clean Short-Haul Exper	imental Engine (OCSEE) Main	July 1977
	Reduction Gears Detailed Des		6. Performing Organization Code
7. /	Author(s) A. DeFeo and M. Kuli		8. Performing Organization Report No
	Power Systems Design	and Analysis	CW-WR-77 -024
			10. Work Unit No.
9. (Performing Organization Name and Address		
	Curtiss-Wright Corporation One Passaic Street		11. Contract or Grant No.
	Wood-Ridge, N. J. 07075		NAS3-18021
	Under Contract to General E	lectric Company	13. Type of Report and Period Covered
2. 1	Sponsoring Agency Name and Address		
	National Aeronautics and Sp Washington, D.C. 20546	ace Administration	14. Sponsoring Agency Code
	Technical Adviser, D. Reemsnyd NASA Lewis Research Center, C		
	reduction gear has a ratio of 3861 RPM fan speed. Details	2.062:1 and a 100% power design	3 RPM fan speed. The OTW engine
	sented.	or configuration, stresses, der.	
7. 1	sented. Key Words (Suggested by Author(s)) Aircraft Propulsion and Power		n rating of 12813 kW (17183 hp) a lections and lubrication are pre-
7. 1	Key Words (Suggested by Author(s))		
	Key Words (Suggested by Author(s)) Aircraft Propulsion and Power		

TABLE OF CONTENTS

SUMMARY

1.0 INTRODUCTION

٠

٥

- 2.0 PRELIMINARY DESIGN
 - 2.1 Design Requirements
 - 2.2 Design Approach
- 3.0 DETAILED DESIGN CLASS B (UTW) REDUCTION GEAR
 - 3.1 Mechanical Design
 - 3.2 Stress Analysis
 - 3.3 Deflection Analysis
 - 3.4 Natural Frequencies
- 4.0 DETAILED DESIGN CLASS A (OTW) REDUCTION GEAR
 - 4.1 Mechanical Design
 - 4.2 Stress Analysis
 - 4.3 Deflection Analysis
 - 4.4 Natural Frequencies

5.0 CONCLUSIONS OR SUMMARY OF RESULTS

APPENDIX

- A (UTW) Reduction Gear Bill of Material No. 210
- B (UTW) Reduction Gear Weight Analysis
- C (OTW) Reduction Gear Bill of Material No. 211
- D (OTW) Reduction Gear Weight Analysis
- E Mises Criterion

LIST OF TABLES

Table No.

a a **abas** i a

.

4

ę

2-1	Specification Preliminary Operating Parameters
2-2	Preliminary Design Ratios Analyzed
2-3	Preliminary Design Parameters
2-4	Experimental Engine Operating Requirements
2-5	Preliminary Design Parameters
2-6	Preliminary Design Gear Data - Class A Unit (OTW)
2-7	Preliminary Design Gear Data - Class B Unit (UTW)
2-8	Gear Materials Stress Allowables - AGMA
2-9	Gear Stresses - Experimental Engine Test Cycle
2-10	Total Oil Flows - Preliminary Design
2-11	Heat Rejection - Class A (OTW) Preliminary Design
2-12	Heat Rejection - Class B (UTW) Preliminary Design
2-13	Overall Reduction Gear Efficiency - Class A, 358°K (185°F) Oil
2-14	Overall Reduction Gear Efficiency - Class A, 361°K (190°F) 011
2 - 15	Overall Reduction Gear Efficiency - Class A, 364°K (195°F) 011
2-16	Overall Reduction Gear Efficiency - Class B, 358°K (185°F) 0il
2-17	Overall Reduction Gear Efficiency - Class B, 366°K (200°F) 0il
2-18	Overall Reduction Gear Efficiency - Class B, 372°K (210°F) 011
2-19	Bearing Data - Preliminary Design
2-20	Scoring Index - AGMA
2-21	Preliminary Design Weight Analysis
3-1	Detail Design Objectives - UTW Reduction Gear
3-2	Detail Design Objectives - Experimental Engine Cycle
3-3	UTW Reduction Gear Data

v

LIST OF TABLES (Cont'd)

Table No.

2

- atte

3-4 Gear Data - UTW Reduction G	3-4	Gear	Data	- UTW	Reduction	Gear
--	-----	------	------	-------	-----------	------

- 3-5 Gear Stress Data UTW Reduction Gear
- 3-6 Bearing Data
- 3-7 Bearing Life Data
- 3-8 Total Oil Flows
- 3-9 Oil Supply Data
- 3-10 Overall Reduction Gear Efficiency
- 3-11 Heat Rejection
- 3-12 Scoring Index Flight Cycle, AGMA
- 3-13 Scoring Index Flight Cycle, C-W
- 3-14 Weight Summary UTW Reduction Gear
- 3-15 Flight Unit Weight Reduction
- 3-16 Sun Gear Backing Stresses 100% Speed, 100% Torque
- 3-17 Sun Gear Backing Stresses 100% Speed, 140% Torque
- 3-18 Ring Gear Backing Stresses 100% Speed, 100% Torque
- 3-19 Ring Gear Backing Stresses 100% Speed, 140% Torque
- 3-20 Star Gear Backing Stress
- 3-21 Sun Gear "Combined" Stress
- 3-22 Ring Gear "Combined" Stress
- 3-23 Star Gear "Combined" Stress
- 3-24 Differential Deflections Maneuver Loads
- 3-25 Maneuver Loads
- 3-26 Gear Backing Stresses Maneuver Loads
- 3-27 "Combined" Stress Flight Maneuvers

LIST OF TABLES (Cont'd)

Table No.	
3-28	Star Gear Support Stress - Flight and Maneuver Loads
3-29	Flexible Coupling Stress - UTW Reduction Gear
3-30	Flexible Coupling Stress - Maneuver and Blade Out Loads
3-31	Gear Tooth Deflections
4-1	Detail Design Objectives - OTW Reduction Gear
4 <u>-2</u>	Detail Design Objectives - Experimental Engine Cycle
4-3	OTW Reduction Gear Data
4-4	Gear Data - OTW Reduction Gear
4-5	Gear Stress Data - OTW Reduction Gear
4-6	Bearing Data
4-7	Bearing Life Data
4-8	Total Oil Flows
4-9	Oil Supply Data
4-10	Overall Reduction Gear Efficiency
4-11	Heat Rejection
4-12	Scoring Index - Flight Cycle, AGMA
4-13	Scoring Index - Flight Cycle, C-W
4-14	Weight Summary - Class A Reduction Gear
4-15	Flight Unit Weight Reduction
4-16	Sun Gear Backing Stresses - 100% Speed, 100% Torque
4-17	Sun Gear Backing Stresses - 100% Speed, 140% Torque
4-18	Ring Gear Backing Stresses
4-19	Star Gear Backing Stresses
4-20	Gear "Combined" Stresses

Table No.

.

÷

4-21	Differential Deflections - Maneuver Loads
4-22	Maneuver Loads
4-23	Gear Backing Stresses - Maneuver Loads
4-24	Gear "Combined" Stresses - Maneuver Loads
4-25	Star Gear Support Stress
4-26	Flexible Coupling Stress - Maneuver and Blade Out Loads
4-27	Gear Tooth Deflections

LIST OF FIGURES

Figure No.	
2-1	Class A (OTW) Reduction Gear - Preliminary Design
2-2	Class B (UTW) Reduction Gear - Preliminary Design
2-3	Gear Tooth Lubrication
2-4	Gear Mesh Deflections
3-1	Class B (UTW) Reduction Gear - Detailed Design
3-2	Class B (UTW) Reduction Gear - Gear Layout
3-3	Class B (UTW) Reduction Gear - Spline Layout
3-4	Sun Gear Tooth Involute Profile Modification
3-5	Star Gear Tooth Involute Profile Modification
3-6	Ring Gear Tooth Involute Profile Modification
3-7	Star Gear Mesh Deflection
3-8	Star Gear Bearing Deflection
3-9	Goodman Diagram - Sun and Star Gears, Tooth Bending Stress
3-10	Goodman Diagram - Ring Gear, Tooth Bending Stress
3-11	Sun Gear High Stress Areas
3-12	Gear Load Diagram for "Combined" Stress
3-13	Goodman Diagram - Sun Gear Backing Stress
3-14	Ring Gear High Stress Areas
3-15	Goodman Diagram - Ring Gear Backing Stress
3-16	Star Gear High Stress Areas
3-17	Goodman Diagram - Star Gear Backing Stress
3-18	Goodman Diagram - Sun and Star Gear "Combined" Stress
3-19	Goodman Diagram - Ring Gear "Combined" Stress
3-20	Goodman Diagram - Sun and Star Gear "Combined" Stress for
	Maneuvers
3-21	Goodman Diagram - Ring Gear "Combined" Stress for Maneuvers
3-22	Star Gear Support Stress Locations
3-23	Coupling Model - Stress Locations

ix

LIST OF FIGURES (Cont'd)

Figure No.

-,34

の設定に意見を見

samaningan series and series and series and series and series are series at the series of the seri

CONTRACT.

t de la ser

a na ana ao amin'ny sorana amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny t Ny INSEE dia mampina mandritry no ben'ny tanàna amin' amin

- Andrewski -

,

•

3-24	Natural Frequencies Interference Diagrams - Sun and Ring Gears
4-1	Class A (OTW) Reduction Gear - Detailed Design
4-2	Class A (OTW) Reduction Gear - Gear Layout
4-3	Sun Gear Tooth Involute Profile Modification
4-4	Star Gear Tooth Involute Profile Modification
4-5	Ring Gear Tooth Involute Profile Modification
4-6	Star Gear Mesh Deflection
4-7	Star Gear Bearing Deflection
4-8	Goodman Diagram - Sun and Star Gears, Tooth Bending Stress
4-9	Goodman Diagram - Ring Gear, Tooth Bending Stress
4-10	Sun Gear Stress Locations
4-11	Goodman Diagram - Sun Gear Backing Stress
4-12	Ring Gear Stress Locations
4-13	Goodman Diagram - Ring Gear Backing Stress
4-14	Star Gear Stress Locations
4-15	Goodman Diagram - Star Gear Backing Stress
4-16	Goodman Diagram - Sun and Star Gears "Combined" Stress
4-17	Goodman Diagram - Ring Gear "Combined" Stress
4-18	Goodman Diagram - Sun and Star Gears "Combined" Stress for
	Maneuvers
4-19	Goodman Diagram - Ring Gear "Combined" Stress for Maneuvers
4-20	Natural Frequencies Interference Diagrams - Sun and Ring Gears

x

SUMMARY

The General Electric Quiet Clean Shorthaul Experimental Engine (QCSEE) being developed for NASA under Prime Contract NAS3-18021 utilizes a lightweight turbine engine with a geared slower-speed fan. Two engine-to-fan speed reducer gears with different ratios are being designed, fabricated and tested by the Power Systems Group, Curtiss-Wright Corporation under a sub-contract to General Electric Company.

This report covers the Analysis and Design Task, WBS Item 2.4, consisting of three major design sub-tasks: Preliminary Design, Detailed Design of two Reduction Gears, plus preparation of detailed drawings. One reduction gear is for an over-the-wing (OTW) engine application and the other is for an underthe-wing (UTW) engine application. General requirements were defined by General Electric Company Specification M 50TF1611-S1 dated January 25, 1974, Gear Assembly, Speed Decreaser.

Reduction gear configuration, engine interface definitions and reduction gear ratios were established and coordinated with General Electric during the preliminary design. Special features incorporated in the reduction gear design include the following.

- 1. Modular concept to permit installation and removal of the reduction gear and fan output shaft assembly as a unit.
- Epicyclic gear with star arrangement; power input to sun gear, output from ring gear and stationary star gear support.
- 3. Interface points between the reduction gear and engine identical for the two different ratio units.
 - a. Input coupling attached to General Electric LP turbine shaft
 - b. Star gear support interface flange
 - c. Ring gear output spline
 - d. Oil supply tube

- 4. Flexibility in the sun gear and ring gear mountings with controlled gear deflections between the sun gear to star gear mesh and star gear to ring gear mesh.
- 5. Star gears supported by spherical roller bearings to allow selfalignment with the mating gears.
- 6. Gear tooth contact ratio of 2.0, hunting and non-factorizing tooth numbers for quiet operation.

An epicyclic star arrangement uses concentric internal and external gears (ring and sun) with a series of idlers (star gears) between them. The power turbine drives the sun gear which drives the ring gear through the set of star gears mounted on spherical roller bearings which in turn are mounted on a fixed carrier or support. The idlers or star gears provide multiple power paths between the input sun and output ring gears which permits both members to utilize many teeth to simultaneously carry the load. This gear arrangement results in a compact, minimum weight gear set.

Gear reduction ratios and input 100% power and speed conditions established by General Electric during the preliminary design and used for the detailed designs are:

Engine Application	UTW	OTW
Reduction Ratio	2.465	2.062
100% Power	9885 kW (13256 hp)	12813 kW (17183 hp)
100% Speed (Input)	811 rad/s (7747 rpm)	834 rad/s (7962 rpm)

The UTW engine reduction gear has six star gears and the OTW engine unit has eight star gears. Gear data are presented within the report.

Calculated oil flows and heat rejection data are the result of integrations with the engine overall heat balance studies conducted by General Electric. Calculated design objective gear efficiency of 99.2% minimum at the 100% speed and 100% power condition is exceeded by the 99.3% for the UTW engine reduction gear. Calculated efficiency for the OTW unit is 99.11%. Scoring index data for the gears were calculated and are acceptable. Star gear spherical roller bearing tests, NASA CR-134890 report, confirmed the ability of the bearings to meet the operating loads and speeds. Calculated bearing B_1 life of 6110 hours exceeds the design objective of 6000 hours minimum at the flight spectrum operating conditions for the UTW engine star gear bearings. Calculated B_1 life for the OTW unit bearings is 5063 hours.

÷

ł

Calculated stresses in the reduction gear elements under several operational conditions, including the effects of maneuver load deflections, are all well within the current state-of-the-art limits.

Total weight of the reduction gear components included in the Curtiss-Wright design are 92.6 kg (204.2 pounds) and 89.9 kg (198.2 pounds) for the UTW and OTW engine applications, respectively. Weight reductions for a flight unit can be achieved by combining the Curtiss-Wright and General Electric support members, the use of titanium for the support and development effort to optimize the components for specific operational requirements.

1.0 INTRODUCTION

The General Electric Quiet Clean Shorthaul Experimental Engine (QCSEE) being developed for NASA under Prime Contract NAS3-18021 utilizes a lightweight turbine engine with a geared slower speed fan. Two engine-to-fan speed reducer gears with different ratios are being designed, fabricated and tested by the Power Systems Group, Curtiss-Wright Corporation under sub-contract to General Electric Company.

This report covers the Analysis and Design Task, WBS item 2.4, consisting of three major design sub-tasks: Preliminary Design, Detailed Design of two (2) reduction gears, plus preparation of detailed drawings. One reduction gear is for an over-the-wing (OTW) engine application and the other is for an under-the-wing (UTW) engine application. The General Electric/NASA experimental engine test schedule required that the UTW reduction gear detailed design be completed in advance of the OTW unit design.

QCSEE reduction gear design is based on the primary stage of a reduction gear developed by Curtiss-Wright for the Curtiss-Wright YT-49 and TP-51 turbo-prop engines. During the preliminary design phase specific interface concepts, conditions and requirements were coordinated between Curtiss-Wright and General Electric, and definitions for the detailed designs were established. Design concepts include a modular configuration to permit removal of the reduction gear from the engine as a unit and commonality of the reduction gearto-engine interfaces for the OTW and UTW units.

The compact, light weight reduction gears enable development of quiet high performance turbofan engines utilizing advanced high speed gas turbines driving slower speed fans.

Data in this report are presented in both International System of Units (SI) units and English units. In the narrative the SI units are shown as the primary units and the English equivalents shown in parentheses; i.e., 1.0 kg (2.2 lbs). In tables where the number of items are small, both types of units are presented in adjacent columns. Table 2-1 is an example of this method. Where extensive data appears in a table, separate tables having the same basic

number but with a suffix "a" for the SI units and a suffix "b" for the English units are used. Tables 2-6a and 2-6b are an example of this procedure. Only the basic table number is used in the narrative for referring to the tables; i.e. Table 2-6. Dual scales for SI and English units are used on charts.

2.0 PRELIMINARY DESIGN

The QCSEE Main Reduction Gears design effort included two primary phases: Preliminary Design and Detailed Design and Analysis. The preliminary design phase covered approximately a four month period during which design approaches, General Electric Company engine requirements and design trade-offs were evaluated and coordinated between Curtiss-Wright and General Electric. A design review was conducted at the conclusion of the preliminary period and parameters defined for the detailed design.

2.1 Design Requirements

Basic design requirements for the QCSEE Main Reduction Gears were defined by General Electric Company Specification M50TF1611-S1 dated January 25, 1974, Gear Assembly, Speed Decreaser. This specification covers two classes of speed decreasers:

- a. Class A with a gear reduction ratio of approximately 2.1 for an over-the-wing (OTW) engine installation.
- b. Class B with a gear reduction ratio of approximately 2.5 for an under-the-wing (UTW) engine installation.

Preliminary operating parameters in the specification are shown in Table 2-1.

Operating life requirement with repair was 36,000 hours when operated in accordance with a Table 2-1 flight duty cycle. Specified time between overhauls was 6000 hours and the required B_1 life for the bearings was no less than 6000 hours based on the flight duty cycle. Other preliminary design objectives were light weight, minimum noise, operation with MIL-L-7808 or MIL-L-23699 oils at oil-in temperatures of 378°K (220°F) to 400°K (260°F), and a minimum overall efficiency of 99.2% at 100% speed and 100% power.

TABLE 2-1 INITIAL SPECIFICATION OPERATING PARAMETERS (PRELIMINARY)

į

<u>Design Data</u>

Capability of 105% Speed Required

CLASS A (OTW)

100% Power	15130 HP	11282 kw
100% Output Speed	3783 rpm	396 rad/s
Gear Ratio	2.1 + 3% - 0%	
	CLASS B (UTW)	
100% Power	12500 HP	9321 kw
100% Output Speed	3197 rpm	335 rad/s
Gear Ratio	2.5 + 3% - 0%	

		Oil In Tem		Time	Power	Speed
Co	ndition	°К	°F	%	%	%
1	Start	-	-	1	_	0-30
2	Idle-Taxi	378	220	12	20	30
3	Take-Off	389	240	2	100	100
4	Climb	394	250	11	90	100
5	Cruise	394	250	28	70	90
6	Descent	400	260	25	30	75
7	Maneuver	400	260	5	60	70
8	Landing	400	260	4	55	95
9	Thrust Reverse	389	240 ·	.3	70	100
10	Idle-Taxi	378	220	12	20	30

4

TRANSPORT OF TAXABLE

2.2 Design Approach

「「日本」の「日本」の「日本」の「

Series and the series of the

ł.

A fixed carrier epicyclic gear set with the power input to the sun gear and the output from the internal tooth ring gear has been selected to obtain the desired reduction ratios. A set of star gears are supported on the carrier through double row spherical roller bearings with the bearing outer race integral with the star gear to obtain maximum bearing capacity.

Gear ratios analyzed during the preliminary design phase together with the respective power turbine input speeds as specified by the GE engine analysis team are listed in Table 2-2. From the 1 lyses, based on the gear pitch line velocity, the DN value for the star gear bearing and the capacity of the bearing limited by star gear size, the lowest ratio recommended for consideration for the Class A (OTW) gear assembly was 2.0617.

General Electric and Curtiss-Wright mutually agreed upon the design parameters shown in Table 2-3 for the continuing preliminary design studies. An additional requirement to be considered for the reduction gears was satisfactory operation in the Experimental Engines under the conditions shown in Table 2-4.

The design philosophy used in the gear assemblies is flexibility in the sun gear and ring gear mounting, controlled gear deflections between the sun gear to star gear mesh and star gear to ring gear mesh, and star gears having provision for self-alignment. This is discussed in greater detail later in this section. Gear tooth geometry selected provides a minimum contact ratio of 2.0 at each mesh point, a minimum of two teeth on each gear in contact at the mesh at all times. The number of teeth selected for each gear provides combinations which are hunting and non-factorizing. A non-factorizing epicyclic gear train is one in which the numbers of teeth on neither the sun gear nor ring gear is evenly divisible by the number of star gears. A non-factorizing system is theoretically smoother and quieter than one that factorizes, since tooth actions overlap.

PRELIMINARY DESIGN PHASE

GEAR RATIO INVESTIGATION

	INPUT SPEED	NN	MBER OF TEETH	TEETH	NO. OF	STAR	BEARING	BEARING	PITCH LINE VEL	INE VEL.
GEAR RATIO	RPM	NUS	STAR	RING GEAR	STARS	RPM	BORE, MM	DxN/10	FT/MIN.	8/W
2.5409	8122	61	47	155	9	10542	70	.74	18882	95.92
2.4640	7878	71	52	175	Q	10755	70	.75	19440	98.76
2.1733	8221	75	44	163	7	14014	65	.91	22489	114.24
2.1058	7966	85	47	179	œ	14407	60	.86	22967	116.67
2.1010	7948	79	43	166	7	14602	65	.95	23431	119.03
2.0617	8228	81	43	167	œ	15500	60	.93	24200	122.94
1.8915	8211	83	37	157	8	18420	55	66.	25680	131.37

A second strategy and

A CARLER OF A CARLER

and the second s

TABLE 2-3 REDUCTION GEAR DESIGN PARAMETERS

4

(PRELIMINARY DESIGN PHASE)

100% Power (Fan)	11111	kW	14900	hp
100% Output Speed	404	rad/s	3859	rpm
Gear Ratio			2.062	
B ₁ Bearing Life (Flight Cycle)			6224	
Bearing DN Value			.90 x 10 ⁶	
	9247	kw	12400	hp
100% Power (Fan)	7247			
100% Power (Fan) 100% Output Speed		rad/s	3143	rpn
• •		rad/s	3143 2.465	-
100% Output Speed		rad/s		hre

Z POWER	*	SPEED		TIME - HRS.
100		105		1
140		100		1
130		100		15
110		100		15
100		100		150
80		90		500
50		75		1000
10		30		1000
		T	TAL TIME	2682
100% Pc	ower same as a	shown in	n Table 2-3	
100% S	peed same as a	shown in	n Table 2-3	

TABLE 2-4	TA	BLE	2.	-4
-----------	----	-----	----	----

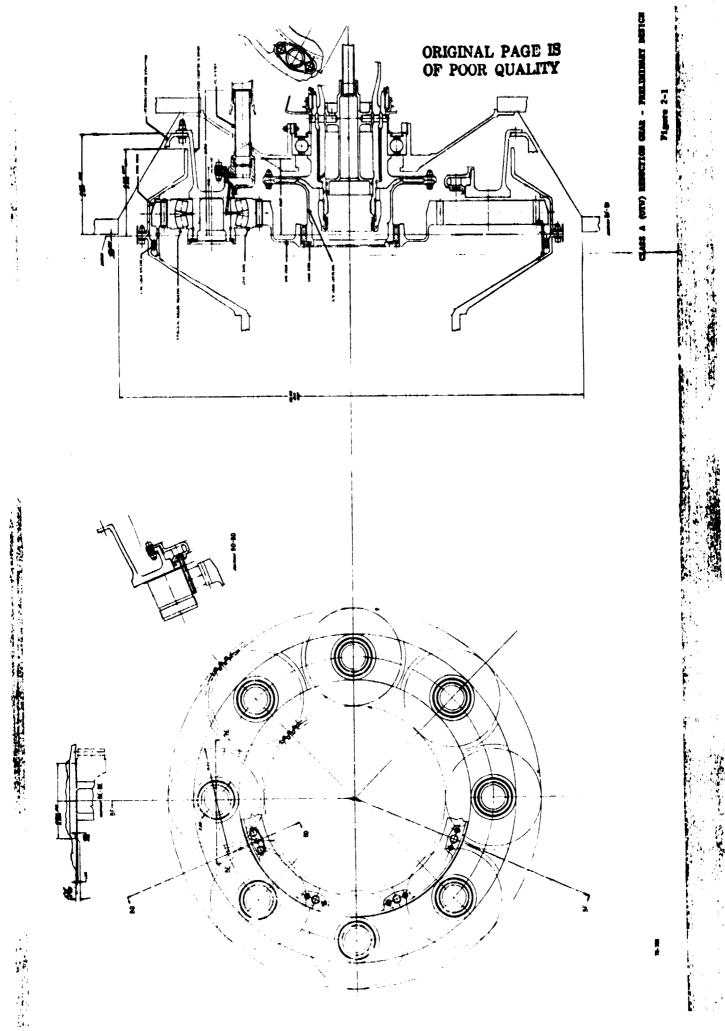
EXPERIMENTAL ENGINE OPERATION REQUIREMENT

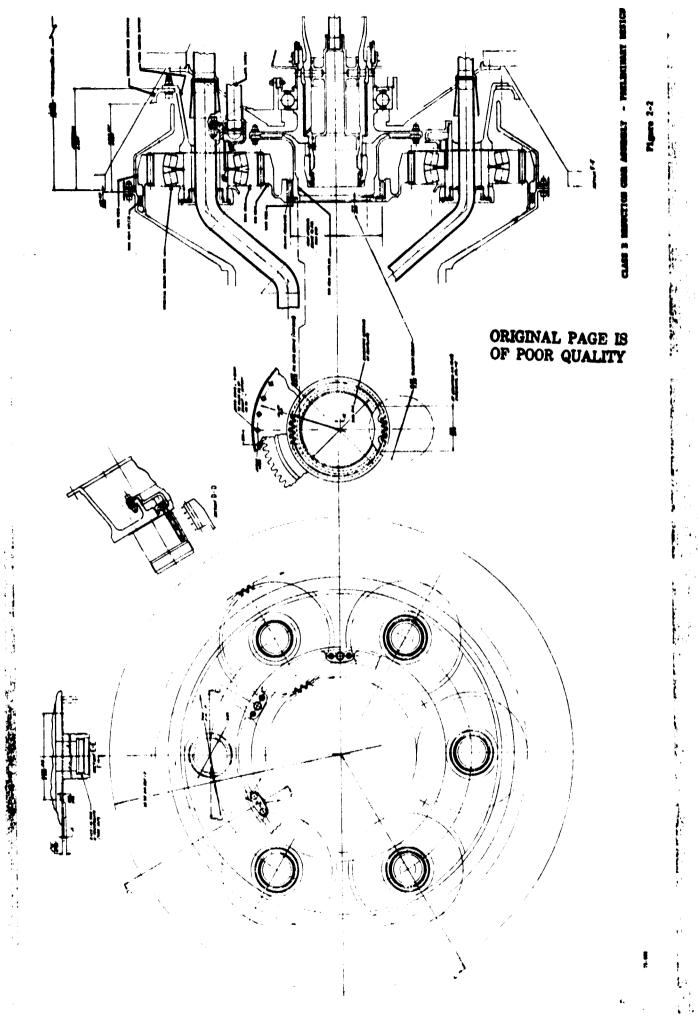
Hunting is a distinct quality and tends to correct small imperfections by increasing the number of different teeth with which a given tooth makes contact. Complete hunting requires that the numbers of teeth of any two meshing gears have no common factors higher than one. Complete hunting was achieved in both gear assemblies.

The meshing requirement for the epicyclic gear train with equally-spaced stars is:

	<u>0+S</u> n	=	a whole number	
where,	0	-	Number of teeth in ring gear	
	S	-	Number of teeth in the sun gear	
	n	=	Number of stars	

The following data and calculations show how the Class A (OTW) and Class B (UTW) gear sets meet the assembly, hunting and non-factorizing criteria.


		Class A (OTW)	Class B (UTW)
Sun Gear Teeth,	S	81	71
Star Gear Teeth		43	52
Ring Gear Teeth,	0	167	175
Number of Stars,	n	8	6
Assembly Requirements	$\frac{0+S}{n}$	$\frac{167 + 81}{8} = 31.0$	$\frac{175 + 71}{6} = 41.0$
Hunting Check	sunstar	$\frac{81}{43} = 1 + \frac{38}{43}$	$\frac{71}{52} = 1 + \frac{19}{52}$
	<u>ring</u> star	$\frac{167}{43} = 3 + \frac{38}{43}$	$\frac{175}{52} = 3 + \frac{19}{52}$
Non-factorizing Check	S n	$\frac{81}{8} = 10 + \frac{1}{8}$	$\frac{71}{6} = 11 + \frac{5}{6}$
	$\frac{0}{n}$	$\frac{167}{8} = 20 + \frac{7}{8}$	$\frac{175}{6} = 29 + \frac{1}{6}$


The design approach developed early in the preliminary design phase was a modular concept carrier support for installation and removal of the reduction gear as a unit with the output shaft. This arrangement shown in Figures 2-1 and 2-2 achieved commonality for Class A (OTW) and Class (UTW) units to the extent that both gear assemblies utilize a common core engine, fan turbine, sun gear coupling, output shaft assembly and oil supply.

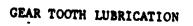
The sun gear assembly consists of a sun gear, a double diaphragm coupling, and a lock ring. Aft end of the double diaphragm coupling is attached to the power turbine shaft. The double diaphragm coupling is identical for both Class A (OTW) and Class B (UTW) gear assemblies. Forward element of the double diaphragm coupling is attached to the aft element with a bolted joint capable of carrying the input torque in friction. The sun gear for Class A (OTW) or Class B (UTW) gear assembly is splined to the forward end of the double diaphragm coupling with a full depth 20° pressure angle involute spline, and is positioned fore and aft with lock ring which is common to both Class A (OTW) and Class B (UTW) gear assemblies. The retaining ring type lock ring shown in preliminary design Figures 2-1 and 2-2 was replaced by a flanged bayonet lock ring bolted to the sun gear for the detailed design.

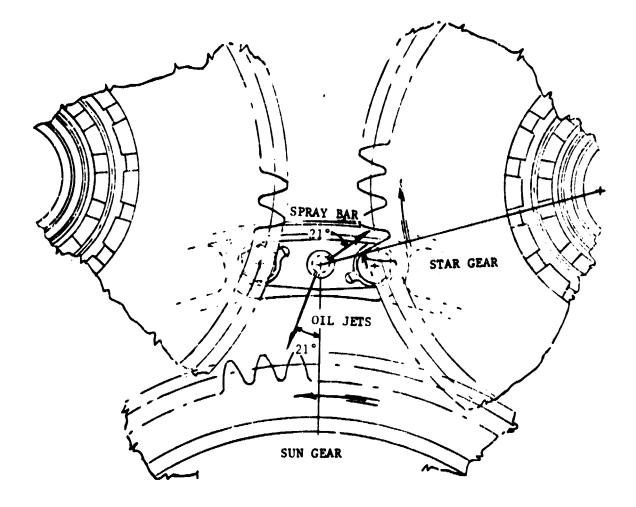
Star gears are mounted on double row spherical roller bearings with the outer race of the bearing integral with the star gear. Star gear assemblies are self-aligning and permit angular displacements. Symmetrical rollers of large diameter with close conformity between rollers and raceway result in high load ratings, making this configuration especially suitable for heavy duty applications. Sections through the gears and bearings are shown in Figures 2-1 and 2-2.

Star gear assemblies are mounted on a fixed carrier support with an interference fit and clamped with a threaded nut. The fixed carrier is attached to an intermediate cone structure which in turn is attached to the composite structural frame of the engine. The fixed carrier is bolted at the I.D. of the intermediate cone structure and is positioned with an O.D. pilot diameter. The bolting flange and the interference fit pilot diameter are identical for both Class A (OTW) and Class B (UTW) gear assemblies. For production engines it is anticipated that the fixed carrier and intermediate cone structure can

日に、一部のため

ľ


「「「「「「「「」」」を見まれています。 いっちょう


be one piece, thus eliminating the bolting flange and pilot diameter. This integral configuration would result in a weight saving. The output shaft aft roller bearing is mounted in the intermediate cone structure and is supplied oil from the fixed carrier. Oil feed to the output shaft roller bearing is common for both Class A (OTW) and Class B (UTW) gear assemblies. Details of the component arrangement are shown in preliminary design Figures 2-1 and 2-2 and in the detailed design section.

Basic cross-section of the fixed carrier support is a vertical base ring with an O.D. flanged conical section and an I.D. cylindrical section to provide the required section modulus for the trunnions which are cantilevered from the base ring.

Mounted to the I.D. of the fixed carrier is a U-shaped cross-section aluminum manifold which forms the oil supply annulus for the star gear bearings, gear mesh spray bars and the G.E. fan shaft thrust and roller bearings. The oil manifold is bolted to the aft inner flange of the fixed carrier and is sealed on two diameters with Viton 'A' "O" rings. Oil supply line is bolted to the aft face of the oil manifold with a two bolt flange and is sealed with a Viton A "O" ring. The oil supply line is common for both OTW and UTW gear assemblies. Gear mesh spray bars are mounted on the front face of the oil supply manifold with a two bolt flange and sealed with a Viton A "O" ring. Five axial positioned jets, located 21° from a radial line through the center of the sun gear assembly and the center of the gear mesh spray bar, direct oil to the sun gear teeth in the direction of sun gear rotation as shown in Figure 2-3. Five additional axial positioned jets are located 21° from a line through the center of the star gear assembly and the center of the gear mesh spray bar, spraying the star gear teeth in the direction of the star gear rotation.

Aluminum oil retaining sleeves inside the star gear carrier trunnions provide cavities fed from the oil manifold. These sleeves are sealed with two O.D. Viton A "O" rings and are retained axially with self locking Spirolox rings. Oil flow from the cavity to the bearing is matered by a radial hole in the trunnion. An annulus and radial passages in the center of the bearing inner race distributes oil to the bearing. Two of the oil retaining sleeves have

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2-3

*

six equally spaced holes and two close-stepped I.D.'s for accepting General Electric engine oil tubes that lubricate the fan thrust bearing, oil seal and sun gear spline. These are shown in Figures 3-1 and 4-1 in the subsequent detailed design sections.

Space is provided on the Class E (UTW) gear assembly trunnions for mounting the General Electric supplied fan variable pitch control mechanism support which interconnects all six trunnions. In the Class A (OTW) gear assembly, axial space and two rectangular grooves located 180° apart on the 0.D. of the trunnion are provided for mounting individual supports for the General Electric thrust bearing lubrication tubes.

Output ring gear contains an internal gear and a full depth 20° pressure angle involute external spline connected by a thin cylindrical section. Twenty-four oil drain holes are provided in the thin section. The spline on the forward end of the ring gear mates with an internal spline in the fan shaft. The ring gear is positioned axially by eighteen protrusions inside the forward and aft fan shaft members. The spline and axial length of the ring gears are identical for the Class A (OTW) and Class B (UTW) reduction gear units to provide fan shaft commonality.

Preliminary design phase of the program included general design layouts of the Class A (OTW) gear assembly, Figure 2-1, and the Class B (UTW) gear assembly, Figure 2-2. These configurations satisfy the required commonality for the two units at each interface point between the reduction gear and the engine.

The gear design tooth geometry was optimized to achieve a balanced design between bending stress, Hertz stress and scoring index for the two meshes involved, i.e., sun gear to star gear and star gear to internal gear, for integral contact ratios of at least 2.0. Gear analyses were performed with a computer gear program which calculates AGMA Standard bending stress per AGMA Standard 225.01. Included in the input are the following factors for both meshing gears: numbers of teeth, diametral pitch, pressure angle, circular tooth thickness, operating center distance, maximum normal backlash, torque, face width, modulus of elasticity, reduction of addendum due to tolerance and break edges, addendums, dedendums and maximum normal protuberance of

cutter. The program accommodates both external meshing and internal meshing gears, and accounts for cutter protuberance reducing tooth thickness at the root for the calculation of the bending stress.

Gear layouts for Class A (OTW) and Class B (UTW) units were executed and continually updated as new General Electric inputs as to fan horsepower and fan speed were evaluated to verify the geometry specified by the output of the gear program.

The 100 percent power and 100 percent speed condition design parameters in effect at the presentation of the preliminary design review are shown by Table 2-5. Gear data as optimized during the preliminary design phase is summarized in Table 2-6 and Table 2-7 for the Class A (OTW) and Class B (UTW) reduction gears, respectively.

AGMA allowables for bending stress and contact stress for the two materials used in the gear assemblies are shown by Table 2-8. Also listed are the Curtiss-Wright recommended limits for minimum risk with a minimum development program, and the values of Curtiss-Wright operating experience on production gear sets that have extensive development background. Calculated bending and contact stresses for the Class A (OTW) and Class B (UTW) gear assemblies most severe experimental test engine cycle conditions as shown in Table 2-9 fall below Curtiss-Wright operating experience on gearing.

Scoring index analyses were made to determine the suitability of the gear geometry or the need for tooth geometry change if the values were found excessive.

Curtiss-Wright scoring evaluation is a procedure based on the works of Blok, Kelley, Lemanski, and Curtiss-Wright scoring test development programs. The active involute contact line is divided into one hundred equally spaced increments and the procedure determines all pertinent parameters, especially the coefficient of friction at all points. For these calculations, the gear tooth driving load is assumed to vary parabolically along the line of involute action from a maximum at the pitch point to one sixth of the average value at the first and last points of contact. Load level at these points is taken such that the area under the load curve is the same as the area under the

PRELIMINARY DESIGN PHASE PARAMETERS								
(100% POWER, 100% SPEED)								
APPLICATION	UT	UTW OTW						
Ratio		2.465			2.062			
Turbine Power	9843 kw	13200	HP	12813 kW	171.83	HP		
Turbine Speed	811 rad/s	7747	rpm	834 rad/s	7962	rpa		
No. of Stars		6			8			
Pitch Line Vel	97.1 m/s	19118	ft/min.	119.3 m/s	23488	ft/min.		
Star Speed	1108 rad/s	10577	rpm	1571 rad/s	14998	rpm		
Bearing Load	33782 N	7595	lbs	26844 N	6035	lbs		
Sun Gear Teeth		71			81			
Star Gear Teeth		52			43			
Ring Gear Teeth		175			167			
Hunting		Yes			Yes			
Non Factorizing		Yes			Yes			

•

GEAR DATA CLASS A (OTW) UNIT (PRELIMINARY DESIGN PHASE)

SI UNITS

	SUN GEAT	STAR GEAR	RING GEAR
No. of Teeth	81	43	167
Module	3,5335	3.5335	3.5335
Pressure Angle, deg	21	21	21
Pitch Diameter, mm	286.2110	151.9392	590.0895
Center Distance, mm		219.1	219.1
Tooth Thick. (PD), mm	5.476	5.623	5.476
Backlash, mm	.102152	.102152	.127203
Root Rad., mm	1.17	1.50	.53
Contact Ratio (Min.) (Max. Break Edges)	2.111	-	2.114
Contact Ratio (Min.) (No Break Edges)	2.001	-	1.987
Bending Stress, N/cm_2^2	22,532	22, 262	19,212
Contact Stress, N/cm ²	88,139		61,383
Material	AMS6265	AMS 6265	AMS6470

ENGLISH UNITS

	SUN GEAR	STAR GEAR	RING GEAR			
No. of Teeth	81	43	167			
Diametral Pitch	7.1884	7.1884	7.1884			
Press. Angle, Deg.	21	21	21			
Pitch Dia., in.	11.26815	5.98186	23.23187			
Center Distance, in.		8.625	8.625			
Tooth Thick. (PD), in.	.2156	.2214	.2156			
Backlash, in.	.004006	.004006	.005008			
Root Rad., in.	•046	.059	.021			
Contact Ratio (Min.) (No Break Edges)	2.111	-	2.114			
Contact Ratio (Min.) (Max. Break Edges)	2.001	-	1.987			
Bending Stress, psi	32,680	32,288	27,864			
Contact Stress, psi	127,835	-	89,029			
Material	AMS 6265	AMS6265	AMS 6470			

GEAR DATA

CLASS B (UTW) UNIT

(PRELIMINARY DESIGN PHASE)

SI UNITS

	SUN GEAR	STAR GEAR	RING GEAR
No. Teeth	71	52	175
Module	3.3722	3.3722	3.3722
Pressure Angle, deg.	21	21	21
Pitch Dia, mm	239.43	175.36	590.14
Center Distance, mm		207.39	207.39
Tooth Thick. (PD), mm	5,3404	5,2527	5.3424
Backlash, mm	.102152	.102152	.127203
Rood Rad., mm	1.09	1.27	.500
Contact Ratio (min.) (No Break Edge)	2.123	-	2.121
Contact Ratio (min.) (Max. Break Edge)	2.006	-	1.986
Bending Stress, N/cm_2^2	24,636	24,467	20,479
Contact Stress, N/cm ²	88,637		56,458
Material	AMS 6265	AMS 6265	AMS6470

ENGLISH UNITS

	SUN GEAR	STAR GEAR	RING GEAR
No. of Teeth	71	52	175
Diametral Pitch	7.5321	7.5321	7.5321
Press Angle, deg.	21	21	21
Pitch Dia., in.	9.4263	6.9038	23.2339
Center Distance, in.	1	8,1650	8,1650
Tooth Thick (PD), in.	.21025	.2068	.21033
Backlash, in.	.004006	.004006	.005008
Root Radius, in.	.043	.050	.020
Contact Ratio (Min.) (No Break Edges)	2.123	-	2.121
Contact Ratio (Min.) (Max. Break Edges)	2.006	-	1.986
Bending Stress, psi	35,731	35,386	29,703
Contact Stress, psi	128,557	-	81,885
Material	AMS 6265	AMS 6265	AMS 6470

GEAR MATERIAL STRESSES

SI UNITS

	BENDING	CONTACT STRESS
AGMA ALLOWABLE		
AMS 6265 MATERIAL		
SINGLE TOOTH LOADING, N/cm ²	s, = 38,691	s = 102,566
LOADING BOTH DIRECTIONS, N/cm ² (70% OF SINGLE TOOTH LOADING)	s, = 26,958	
AMS 6470 MATERIAL		
SINGLE TOOTH LOADING, N/cm ²	s _b = 32,887	
CURTISS-WRIGHT RECOMMENDATION		
MINIMUM RISK, N/cm ²	$s_{b} = 24,132$	S _{ac} = 93,079
CURTISS-WRIGHT OPERATING EXPERIENCE, N/cm ²	S _b = 41,369	S _{ac} = 110,316

ENGLISH UNITS

	BENDING	CONTACT STRESS
AGMA ALLOWABLE		
AMS 6265 MATERIAL		
SINGLE TOOTH LOADING	S. = 56,117 psi	S _c = 148,760 psi
LOADING BOTH DIRECTIONS (70% OF SINGLE TOOTH LOADING)	S _b = 39,100 psi	
AMS 6470 MATERIAL		
SINGLE TOOTH LOADING	S _b = 47,699 psi	
CURTISS-WRIGHT RECOMMENDATION		
MINIMUM RISK	S _b = 35,000 psi	S = 135,000 psi ac
CURTISS-WRIGHT OPERATING EXPERIENCE	S _b = 60,000 psi	S = 160,000 psi

TABLE 2-9a

Service and services

S ... 23.0

0.0

1.1

GEAR STRESSES (SI UNITS)

-

(EXPERIMENTAL TEST ENGINE CYCLE)

(EXTERNAL MESH)

(PRELIMINARY DESIGN PHASE)

TURBINE-rad/s		BENDING STRESS N/cm ²		CONTACT STRESS	DURATION-
CLASS A (OTW)	kw	SUN	STAR		HRS.
875.5	12,813		1		1
833.8	17,939	31,548	31,168	104,291	1
833.8	16,657	29,291	28,939	100,492	15
833.8	14,094	24,787	24,489	92,444	15
833.8*	12,813*	22,300	22,489	88,139	150
750.4	10,250				500
625.4	6,407				1000
250.2	1,281				1000
CLASS B (UTW)					
851.8	9,843				1
811.3	13,780	34,489	34,252	104,875	1
811.3	12,796	32,060	31,806	101,060	15
811.3	10,828	27,098	26,912	92,961	15
811.3*	9,843*	24,636	24,467	88,637	150
730.1	7,875				500
608.4	4,922				1000
243.4	984				1000

*100% Power, 100% Speed Condition

TABLE 2-9b

GEAR STRESSES (ENGLISH UNITS)

(EXPERIMENTAL TEST ENGINE CYCLE)

(EXTERNAL MESH)

(PRELIMINARY DESIGN PHASE)

TURBINE rpm	НР	BENDING STRESS psi		CONTACT STRESS psi	DURATION-
CLASS A (OTW)		SUN	STAR		HRS.
8360	17183				1
7962	24056	45756	45206	151,262	1
7962	22337	42483	41972	145,751	15
7962	18901	35950	35518	134,078	15
7962*	17183*	32343	32617	127,835	150
7166	13746				500
5972	8592				1000
2389	1718				1000
CLASS B (UTW)					
8134	13200				1
7747	18480	50022	49679	152,108	1
7747	17160	46449	46130	146,575	15
7747	14520	39302	39032	134,828	15
7747*	13200*	35731	35486	128,557	150
6972	<mark>، 056</mark> 0				500
5810	6600				1000
2324	1320				1000

*100% Power, 100% Speed Condition

ŝ

average load; thus, energies are equated. The program determines the maximum temperature within the area of contact between gear teeth; this calculated temperature is called the "scoring index". This calculated scoring index is then compared with an allowable "flash index temperature" for the gean material and lubricant. Program outputs are as follows: involute roll angles, pinion approach ratio, lubricant viscosity, mesh loss, scoring indices, and locations.

A scoring index was also calculated by the AGMA procedure to simplify comparison with published data. AGMA 217.01 lists a gear scoring design guide for aerospace spur gears which is divided into three bands: low scoring risk, medium scoring risk, and high scoring risk. Based on Curtiss-Wright experience and the Curtiss-Wright scoring program, a maximum permissible AGMA scoring index of 300°F was established.

To establish the required oil inlet temperatures during projected flight a parametric analysis of gear box total heat rejection at each flight condition was made for the following oil inlet temperatures using MIL-L-23699 oil:

Class A (OTW) 358°K (185°F), 361°K (190°F) and 364°K (195°F) Class B (UTW) 358°K (185°F), 366°K (200°F) and 372°K (210°F)

The analysis was executed for the flight cycle using the agreed upon values of power and speed for the preliminary design phase (Table 2-3). Calculated oil flows for both Class A (OTW) and Class B (UTW) reduction gears are shown in Table 2-10.

Heat rejection and bulk oil outlet temperatures for the Class A (OTW) unit and the Class B (UTW) unit are shown in Table 2-11 and Table 2-12, respectively. Calculated power losses for bearings, gear mesh, churning and windage, and overall efficiency for the three oil inlet temperatures for the Class A (OTW) unit are shown in Tables 2-13, 2-14 and 2-15. Comparable data for the Class B (UTW) unit are shown in Tables 2-16, 2-17 and 2-18. Varying the oil temperature from 358°K (185°F) to 364°K (195°F) for the Class A (OTW) unit and from 358°F (185°F) to 372°K (210°F) for the Class B (UTW) unit had only minute effects on the overall efficiencies.

TOTAL OIL FLOWS

(PRELIMINARY DESIGN, PHASE)

MIL-L-23699 OIL

SI UNITS

	UTW				OTW	
	cm ³ /s				cm ³ /s	
358°K	366°K	372°K	OIL IN TEMPERATURES	358°K	361°K	364°K
			CONDITION (1)			
314	332	34FJ	IDLE - TAXI	1027	1053	1090
1045	1105	1161	TAKE OFF	1580	1620	1676
1045	1105	1161	CLIMB	1580	1620	1676
941	995	1045	CRUISE	1540	1579	1634
784	829	871	DESCENT	1454	1490	1543
732	773	876	MANEUVER	1391	1426	1476
993	1050	1103	LANDING	1517	1555	1609
1045	1105	1161	THRUST REVERSE	1517	1620	1676
314	332	348	IDLE - TAXI	1027	1053	1090

ENGL	,ISH	UNI	ΤS
------	------	-----	----

	UTW				OTW	
	GALS/MIN				GALS/MIN	
185°F	200°F	210°F	OIL IN TEMPERATURES	185°F	190°F	195°F
			CONDITION (1)			
4.97	5.26	5,51	IDLE - TAXI	16.28	16.69	17.27
16.57	17.52	18.41	TAKE OFF	25.04	25.68	26.57
16,57	17.52	18.41	CLIMB	25.04	25.68	26.57
14.91	15.77	16.56	CRUISE	24.41	25.03	25 .9 0
12.43	13.14	13.80	DESCENT	23.04	23.62	24.45
11.60	12.26	13.88	MANEUVER	22.04	22.60	23.39
15.74	16.64	17.48	LANDING	24.04	24.65	25.51
16.57	17.52	18.41	THRUST REVERSE	25.04	25.68	26.57
4.97	5.26	5,51	IDLE - TAXI	16.28	16.69	17.27

(1) TABLE 2-1 % POWER AND SPEEDS,

TABLE 2-11a

•

_

.

HEAT REJECTION (SI UNITS)

(PRELIMINARY DESIGN PHASE)

CLASS A (OTW) - MIL-L-23699 OIL

OIL IN TEMPERATURE		358°K			361°K			364 °K	
CONDITION (1)	3	X₀⊥ ∨	BULK TEMP.	Ŗ	∧ τ°Κ	BULK TEMP.	21	Υ°Υ ∨	BULK TEMP.
	5		. 6100	10 00		10			
TXVI - 3701	13.90	۲۷	Car	56.61	1.22	000	40.4T	on• /	1/0
TAKE-OFF	94.50	32.61	391	94.86	32.00	393	95.66	31.22	395
CLIMB	87.21	30.11	388	87.49	29.50	390	88.27	28.83	393
CRUISE	65.39	23.17	381	65.63	22.72	384	66.27	22.17	386
DESCENT	30.75	11.56	370	30.93	11.33	372	31.38	11.11	375
MANEUVER	47.81	18.72	377	48.87	18.72	380	49.31	18.28	382
LANDING	56.55	20.33	378	56.81	19.94	381	57.50	19.56	384
THRUST REVERSE	10.17	24.50	383	71.29	24.06	385	72.06	23.56	388
IDLE - TAXI	13.90	7.39	365	13.93	7.22	368	14.04	7.06	371

(1) TABLE 2-1 7. POWERS AND SPEEDS,

TABLE 2-11b

HEAT REJECTION (ENCLISH UNITS)

(PRELIMINARY DESIGN PHASE)

CLASS A (OTW) - MIL-L-23699 01L

OIL IN TEMPERATURE		185°F	H		190°F	64		195°F	1
CONDITION (1)	BTU/MIN	Δ T°F	BULK TEMP. OUT, °F	BTU/MIN	∆ T°F	BULK TEMP. OUT, °F	BTU/MIN	ΔT°F	BULK TEMP. OUT, *F
IDLE – TAXI	191	13.3	198	793	13.0	203	662	12.7	208
TAKE-OFF	5383	58.7	244	5398	57.6	248	5444	56.2	251
CLIMB	4963	54.2	239	4979	53.1	243	5023	51.9	247
CRUISE	3721	41.7	227	3735	40.9	231	3771	39.9	235
DESCENT	1750	20.8	206	1760	20.4	210	1786	20.0	215
MANEUVER	2721	33.7	219	2781	33.7	224	2806	32.9	228
LANDING	3218	36.6	222	3233	35.9	226	3272	35.2	230
THRUST REVERSE	4041	44.1	229	4057	43.3	233	4101	42.4	237
IDLE - TAXI	191	13.3	198	793	13.0	203	799	12.7	208

(1) TABLE 2-1 % POWERS AND SPEEDS,

TABLE 2-3 100% CONDITIONS.

a setteration of

TABLE 2-12s

HEAT REJECTION (SI UNITS)

(PRELIMINARY DESIGN PHASE)

CLASS B (UTW) - MIL-L-23699 OIL

OIL IN TEMPERALUKE		358°K			366 °K			372°K	
CONDITTION (1)	19	T°F ∆ T°F	BULK TEMP.	P	ΔT°K	BULK TEMP.	μάν Γ	> T ⁰ K	BULK TEMP.
IDLE - TAXI	9.24	16.1	374	9.30	15.4	381	9.74	15.3	387
TAKE-OFF	58.34	30.4	388	58.87	29.3	395	59.45	28.2	400
CLIMB	53.42	27.8	386	53.95	26.8	393	54.51	25.9	398
CRUISE	39.59	22.9	381	40.00	22.1	389	40.47	21.3	413
DESCENT	17.63	12.3	370	17.91	11.9	378	18.22	11.6	384
MANEUVER	18.64	13.9	372	20.12	14.3	380	20.40	12.8	385
LANDING	33.63	18.4	376	34.09	17.8	384	34.58	17.3	380
THRUS' REVERSE	42.58	22.2	380	43.09	21.4	387	42.35	20.1	392
IDLE - TAXI	9.24	16.1	374	9.30	15.4	381	9.74	15.3	389

(1) TABLE 2-1 7. POWER AND SPEEDS,

TABLE 2-12b

dinta 1

The second se

•

HEAT REJECTION (ENGLISH UNITS)

(PRELIMINARY DESIGN PHASE)

CLASS B (UTW) - MIL-L-23699 OIL

OIL IN TEMPERATURE		J° č.	 64		200°F	<i>t</i> .		210°F	<u> </u>
CONDITION: (1)	BTU/MIN	ΔT°F	BULK TEMP. OUT °F	BTU/MIN	ΔT°F	BULK TEMP. OUT, F	BTU/MIN	∆ T°F	BULK LEMP OUT °F
IDLE - TAXI	526	28.9	214	529	27.7	228	554	27.5	238
TAKE-OFF	3320	54.8	240	3350	52.7	253	3383	50.8	261
CLINB	3040	50.1	235	3070	48.3	248	3102	46.6	257
CRUISE	2253	41.3	226	2276	39.8	240	2303	38.4	284
DESCENT	1003	22.1	207	1019	21.4	221	1037	20.8	231
MANEUVER	1061	25.0	210	1145	25.7	226	1161	23.1	233
LANDING	1914	33.2	218	1940	32.1	232	1968	31.1	241
THRUST REVERSE	2423	40.0	225	2452	38.6	239	2410	36.2	246
IDLE - TAXI	526	28.9	214	529	27.7	228	554	27.5	238

(1) TABLE 2-1 % POWER AND SPEEDS.

÷ -)

OVERALL GEAR BOX EFFICIENCY

(PRELIMINARY DESIGN PHASE)

CLASS A (OTW) UNIT

358°K (185°F) OIL IN TEMPERATURE MIL-L-23699 OIL

SI UNITS

POWER kw	CONDITION (1)	kw loss BRGS	kw LOSS GEARS	kW LOSS CHURNING & WINDAGE	OVERALL EFFICIENCY %
2222	IDLE ~ TAXI	3.00	10.44	0.47	99.37
11111	TAKE -OFF	22.48	41.11	31.04	99.14
10000	CLIST	22.30	37.00	27.94	99.12
7778	CRUISE	18.65	28.78	17.99	99.15
3333	DESCENT	13.22	12.33	5.21	99.07
6667	MANEUVER	12.34	26.00	9.49	99.28
6111	LANDING	19.69	22.00	14.89	99.07
7778	THRUST REVERSE	21.92	27.99	21.13	99.08
2222	IDLE - TAXI	3.00	10.44	0.47	99.37

ENGLISH UNITS OVERALL HP LOSS EFFICIENCY HP LOSS HP LOSS CHURNING POWER BRGS & WINDAGE % CONDITION (1) GEARS HP 4.02 14.00 0.63 99.37 IDLE - TAXI 2980 30.14 55.13 41.62 99.14 14900 TAKE-OFF 37.46 99.12 49.62 13410 CLIMB 29.91 99.15 38.59 24.12 25.01 10430 CRUISE 17.73 16.54 6.99 99.07 4470 DESCENT 99.28 12.73 8940 16.55 34.87 MANEUVER 19.97 99.07 26.40 29.50 8195 LANDING 28.34 99.08 29.39 37.54 10430 THRUST REVERSE 99.37 4.02 14.00 0.63 2980 IDLE - TAXI

(1) TABLE 2-1 % POWERS AND SPEEDS,

ERALL GEAR BOX EFFICIENCY

PRELIMINARY DESIGN PHASE)

CLASS A (OTW) UNIT

(190°F) OIL IN TEMPERATURE MIL-L-23699 OIL

SI	UN:	ITS	
	-T-	_	

r

POW L)	BEARINGS LOSS KW	GEARS LOSS KW	WINDAGE & CHURNING LOSS kW	OVERALL Efficiency %
2222		3.03	10.44	.47	99.37
11111		22.76	41.11	31.04	99.14
10000		22.59	37.00	27.93	99.12
7778		18.90	28.78	17.99	99. 15
33 31		13.39	12.33	5.21	99.07
66 4		12.50	26.67	9.73	99.26
6 1	мG	19.94	22.00	14.89	99.07
7 ⁻	UST REVERSE	22.20	27.99	21.13	99.08
2	DLE - TAXI	3.03	10.44	.47	99.37
-		ENGLIS	H UNITS		
		READING	CEAPS	WINDAGE &	OVERALL

	CONDITION (1)	BEARINGS LOSS HP	GEARS LOSS HP	WINDAGE & CHURNING LOSS HP	OVERALL EFFICIENCY %
	IDLE - TAXI	4.07	14.00	0.63	99.37
	TAKE-OFF	30.52	55.13	41.62	99.14
	CLIMB	30.30	49.62	37.46	99.12
30	CRUISE	25.34	38.59	24.12	99.15
+470	DESCENT	17.95	16.54	6.99	99.07
8940	MANEUVER	16.76	35.76	13.05	99.26
8195	LANDING	26.74	29.50	19.97	99.07
10430	THRUST REVERSE	29.77	37.54	28.34	99.08
2980	IDLE - TAXI	4.07	14.00	0.63	99.37

(1) TABLE 2-1 % POWERS AND SPEEDS,

OVERALL GEAR BOX EFFICIENCY

(PRELIMINARY DESIGN PHASE)

CLASS A (OTW)

364°K (195°F) OIL IN TEMPERATURE

MIL-L-23699 OIL

		SI UN	ITS		
Power kw	CONDITION (1)	BEAR INGS LOSS KW	GEARS LOSS kW	WINDAGE & CHURNING LOSS KW	OVERALL EFFICIENCY %
2222	IDLE - TAXI	3.14	10.44	.47	99.36
11111	TAKE -OFF	23.55	41.11	31.04	99.13
10000	CLIMB	23.37	37.00	27.93	99.11
7778	CRUISE	19.53	28.78	17 .99	99.14
3333	DESCENT	13.85	12.33	5.21	99.05
6667	MANEUVER	12.93	26.67	9.73	99.26
6111	LANDING	20.63	22.00	14.89	99.05
7778	THRUST REVERSE	22.97	27.99	21.13	99.07
2222	IDLE - TAXI	3.14	10.44	.47	99.36
		ENGLIS	SH UNITS	WINDAGE	
POWER HP	CONDITION (1)	BEARINGS LOSS HP	GEARS LOSS HP	& LOSS CHURNING HP	OVERALL %
2980	IDLE - TAXI	4.21	14.00	0.63	99.36
14900	TAKE-OFF	31.58	55.13	41.62	99.13
13410	CLIMB	31.34	49.62	37.46	99.11
10430	CRUISE	26.19	38.59	24.12	99.14
4470	DESCENT	18.57	16.54	6.99	99.05
8940	MANEUVER	17.34	35.76	13.05	99.26
8195	LANDING	27.66	29.50	19.97	99.05
10430	THRUST REVERSE	30.80	37.54	28.34	99.07
2980	IDLE - TAXI	4.21	14.00	0.63	99.36

(1) TABLE 2-1 % POWERS AND SPEEDS,

TABLF 2-3 100% CONDITIONS.

OVERALL GEAR BOX EFFICIENCY

(PRELIMINARY DESIGN PHASE) CLASS B (UTW) 358°K (185°F) OIL IN TEMPERATURE

MIL-L-23699 OIL SI UNITS

POWER kW	CONDITION (1)	BEAR INGS LOSS KW	GEARS LOSS KW	WINDAGE & CHURNING LOSS KW	OVERALL EFFICIENCY %
1849	IDLE - TAXI	0.95	8.14	0.16	9 9. 50
9247	TAKE -OFF	9.82	32.36	16.18	99.36
8322	CLIMB	9.75	29.13	14.56	99. 35
6473	CRUISE	7.88	22.65	9.06	99.38
2774	DESCENT	5.30	9.71	2.62	99.36
3329	MANEUVER	4.73	11.32	2.60	99.43
5086	LANDING	8.57	17.29	7.79	99.33
6473	THRUST REVERSE	9.58	22.00	11.01	99.34
1849	IDLE - TAXI	0.95	8.14	0.16	99.50

EN	GL	IS	H	UN	ITS

POWER HP	CONDITION (1)	BEARINGS LOSS HP	GEARS LOSS HP	WINDAGE & CHURNING LOSS HP	OVERALL EFFICIENCY %
2480	IDLE - TAXI	1.27	10.91	0.22	99.50
12400	TAKE-OFF	13.17	43.40	21.70	99.36
11160	CLIMB	13.08	39.06	19.53	99.35
8680	CRUISE	10.57	30.38	12.15	99.38
3720	DESCENT	7.11	13.02	3.52	99.36
4464	MANEUVER	6.34	15.18	3.49	99.43
6820	LANDING	11.49	23.19	10.44	99.33
3680	THRUST REVERSE	12.85	29.51	14.76	99.34
2480	IDLE - TAXI	1.27	10.91	0.22	99.50

(1) TABLE 2-1 % POWERS AND SPEEDS,

OVERALL GEAR BOX EFFICIENCY

(PRELIMINARY DESIGN PHASE) CLASS B (UTW)

366°K (200°F) OIL IN TEMPERATURE MIL-L-23699 OIL

-		
ст	UNITS	

POWER kW	CONDITION (1)	BEAR INGS LOSS kW	GEARS LOSS kW	WINDAGE & CHURNING LOSS kW	OVERALL EFFICIENCY %
1849	IDLE - TAXI	1.00	8.14	0.16	99.49
9247	TAKE - OFF	10.34	32.36	16.18	99.36
8322	CLIMB	10.27	29.13	14.56	99.35
6473	CRUISE	8.30	22.65	9.06	99.38
2774	DESCENT	5.59	9.71	2.62	99.35
3329	MANEUVER	4.98	11.32	2.60	99.39
5086	LANDING	9.02	17.29	7.79	99.32
6473	THRUST REVERSE	10.09	22.00	11.01	99.33
1849	IDLE - TAXI	1.00	8.14	0.16	99.49
		ENGLIS	H UNITS		<u> </u>
POWER		BEARINGS LOSS	GEARS LOSS	WINDAGE & CHURNING LOSS	OVERALL EFFICIENCY
HP	CONDITION (1)	НР	HP	HP	%

1.34

13.87

13.77

11.13

7.49

6.68

12.10

13.53

1.34

10.91

43.40

39.06

30.38

13.02

16.52

23.19

29.51

10.91

0.22

21.70

19.53

12.15

3.52

3.80

10.44

14.76

0.22

99.49

99.36

99.35

99.38

99.35

99.39

99.32

99.33

99.49

(1)	TABLE	2-1	%	POWER	AND	SPEEDS,	

2480

12400

11160

8680

3720

4464

6820

8680

2480

;

IDLE - TAXI

TAKE-OFF

CLIMB

CRUISE

DESCENT

MANEUVER

LANDING

THRUST REVERSE

IDLE - TAXI

OVERALL GEAR BOX EFFICIENCY

(PRELIMINARY DESIGN PHASE)

CLASS B (UTW) 372°K (210°F) OIL IN TEMPERATURE

MIL-L-23699 OIL SI UNITS

10.4

÷.

POWER kw	CONDITION (1)	BEARINGS LOSS kW	GEARS LOSS kW	WINDAGE & CHURNING LOSS kW	OVERALL EFFICIENCY %
1849	IDLE - TAXI	1.05	8.51	0.17	99.47
9247	TAKE -OFF	10.92	32.36	16.18	99.35
8322	CLIMB	10.84	29.13	14.56	99.34
6473	CRUISE	8.76	22.65	9.06	99.37
2774	DESCENT	5.89	9.71	2.62	99.34
3329	MANEUVER	5.26	12.32	2.83	99.38
5086	LANDING	9.52	17.29	7.79	99.31
6473	THRUST REVERSE	10.65	22.65	9.06	99.34
1849	IDLE - TAXI	1.05	8.51	0.17	99.47

ENGLISH UNITS

POWER HP	CONDITION (1)	BEARINGS LOSS HP	GEARS LOSS HP	WINDAGE & LOSS CHURNING HP	OVERALL %
2480	IDLE - TAXI	1.41	11.41	0.23	99.47
12400	TAKE-OFF	14.64	43.40	21.70	99.35
11160	CLIMB	14.54	39.06	19.53	99.34
8680	CRUISE	11.75	30.38	12.15	99.37
3720	DESCENT	7.90	13.02	3.52	99.34
4464	MANEUVER	7.05	16.52	3.80	99.38
6820	LANDING	12.77	23.19	10.44	99.31
8680	THRUST REVERSE	14.28	30.38	12.15	99.34
2480	IDLE - TAXI	1.41	11.41	0.23	99.47

(1) TABLE 2-1 % POWERS AND SPEEDS,

Bearing size, cubic mean load, mean speed, rpm, and B_1 life in hours using catalog dynamic capacity "C" values, for both Class A (OTW) and Class B (UTW) flight cycle operation and test engine cycle operation are presented in Table 2-19. Bearing B_1 life is obtained by applying a material factor of 5 and a life conversion factor of 0.23 to the calculated AFBMA B_{10} life. For the submitted preliminary design flight duty cycle the bearings did not satisfy the specification requirements of a B_1 bearing life of no less than 6,000 hours for both Class A (OTW) and Class B (UTW) gear assemblies. Need for refinement of the flight duty cycle definition and the maximum attainable "C" value for the bearings was indicated.

An AGMA gear scoring index for Class A (OTW) and Class B (UTW) experimental engine cycles was calculated and is presented in Table 2-20 for the power and speeds from Table 2-4.

A preliminary weight analysis was made for Class A (OTW) gear assembly based on layout LS 34808 Sheet 2, Figure 2-1, and for Class B (UTW) gear assembly per LS 34808 Sheet 1, Figure 2-2. Results are tabulated in Table 2-21.

As discussed earlier, the stress analysis of the gears included calculation of gear tooth bending and contact stresses by the standard AGMA methods and comparison to allowable AGMA values as well as values based on C-W experience. In addition, rim stresses were calculated for each gear element. The rim is loaded by centrifugal forces, radial forces and bending moments in the plane of the ring. Shear stresses were included where they exist. Simplifying conservative assumptions were made throughout the analysis. Each load was analyzed separately and the results superimposed. In this way, the various loading effects could be investigated separately. Stresses are divided into steady and vibratory stresses and plotted on Goodman diagrams for the respective materials. Although the maximum gear tooth bending stress and the maximum rim stress do not occur at the same location, there is some influence of one on the other. A method of combining these stresses is used to show that the gear elements will perform satisfactorily.

BEARING DATA

(PRELIMINARY DESIGN PHASE)

TYPE: SPHERICAL ROLLER BEARINGS

-

;

MATERIALS: OUTER RACE (AMS 6265) (SAE 9310)

ROLLERS AND INNER RACE (M50)

GEAR UNIT	CLASS A (OTW)		CLASS B (UTW)	
Bearing Size		22.312		22314
	<u>S1</u>	ENGL I SH	<u>SI</u>	ENGLISH
Capacity, "C"	197,500 N	44,400 LBS	248,600 N	55,900 LBS
FLIGHT CYCLE				
Cubic Mean Load Mean Speed Bl Life	19,669 N 1130 rad/s	4,422 LBS 10,793 RPM 3,877 HRS	24,753 N 797 rad/s	5,565 LBS 7,611 RPM 5,506 HRS
TEST ENGINE CYCLE				
Cubic Mean Load Mean Speed Bl Life	20,563 N 492.5 rad/s	4,623 LBS 9,406 RPM 3,838 HRS	25,875 N 347 rad/s	5,817 RPM 6,629 RPM 5,444 HRS

1.

11.1.4.1

SCORING INDEX (AGMA)

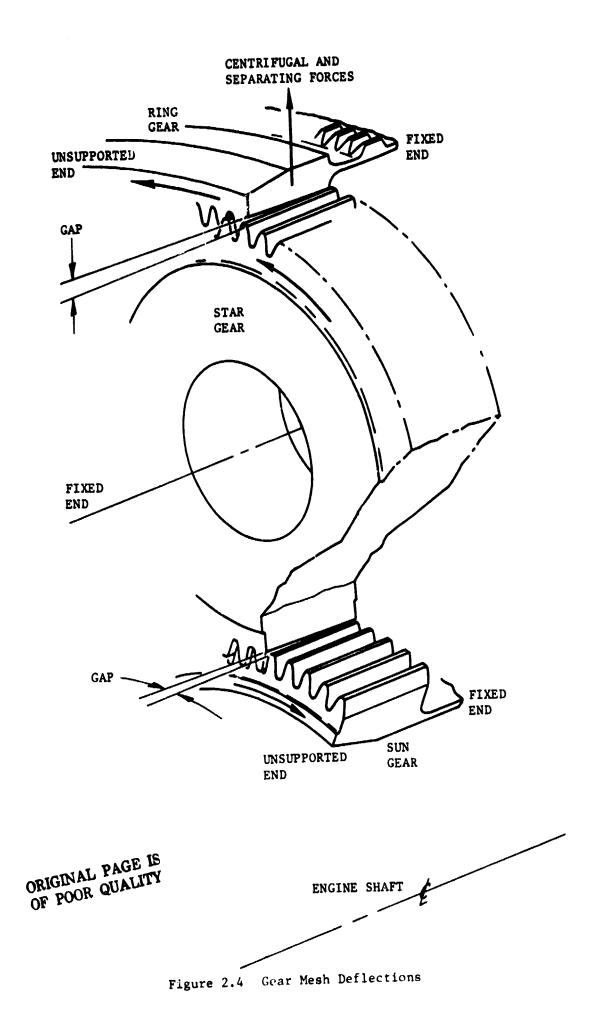
(EXPERIMENTAL ENGINE CYCLZ)

(TABLE 2-4 POWER AND SPEED)

CLASS B (UTW)			CLASS A (OTW)
	TEST CONE	DITION	
∆ T°F	% FAN SPEED	% FAN HP	ΔT°F
97	105	100	118
126	100	140	154
119	100	130	145
105	100	110	128
98	100	100	119
85	90	80	104
63	75	50	76
24	30	10	29

TABLE 2-21

PRELIMINARY DESIGN WEIGHT ANALYSIS


	CLASS	CLASS A (OTW)		B (UTW)
	kg 1bs		kg	lbs
STAR GEAR SUPPORT	30.24	66.67	31.76	70.01
STAR GEAR ASSY.	35.56	78.40	37.56	82.80
SUN GEAR ASSY.	9.25	20.40	7.96	17.54
RING GEAR	9.89	21.80	11.76	25.92
TOTAL WEIGHT	84.94	187.27	89.04	196.27

A stress analysis of the star gear carrier support was made for the normal torque loads as well as the loads due to expected maneuver conditions during flight and landing. Abnormal loading caused by fan unbalance due to blade failure was applied in addition to the normal torque loads, and the carrier support was found to be acceptable.

The star gear carrier support and the flexible coupling were stress-analyzed by means of a detailed shell computer program capable of calculating axisymmetric and non-axisymmetric loading conditions. In addition to centrifugal forces and torques the coupling had loads from the sun gear due to vehicle maneuvers during flight and landing. Maneuver and blade out loads were obtained from a complete system dynamic analysis performed by G.E. The analysis furnished deflection values at specific locations in the system that were converted to forces by calculating the associated spring values of the elements involved.

In an epicyclic reduction gear unit, input torque is transmitted along the pitch diameter line of the sun gear and output torque is transmitted along the pitch diameter line of the ring gear. Under load the sun and ring gear will deflect. In order to insure uniform gear tooth loading at each mesh, deflections of the mating teeth must be controlled. The star gear will assume a position such that the forces acting along the line of contact for the sun gear mesh and the ring gear mesh result in a balanced moment system. Final position of the star gear as dictated by the sun and ring gear deflections should "match" the deflection of the carrier support post on which the inner race of the star gear bearing is mounted. A good "match" can be achieved by a proper selection of the three gear elements, sun, ring and star.

Figure 2-4 shows a simplified isometric sketch of the gear mesh. The loads on the ring gear due to centrifugal forces and mesh separating forces, will cause the ring gear to deflect outward resulting in a slope of the ring gear in that direction. The separating force will cause the unsupported end of the ring gear to deflect further outward. The pressure angle of the gear tooth causes the ring to have in effect a circumferential movement in a clockwise direction. The sketch shows this as a gap between the star and ring tooth.

.

.

For the sun gear, the separating force has a greater effect than the centrifugal force. The resulting slope of the sun gear at the unsupported end is inward toward the center line. Because of the gear tooth pressure angle this radial movement would leave a clockwise gap at the forward end of the sun gear. The two gaps just discussed would exist if the star gear deflection is assumed zero.

Loading on the star gear results in a tangential load at its center which acts on the carrier support trunnion and a third deflection must then be evaluated. Because the carrier support is fixed and the tangential load is in the direction tangent to the sun gear rotation at the mesh, the deflection of the trunnion will be in the direction to reduce the ring and sun gear gaps shown. The spherical bearing will permit the star to rotate slightly to completely match the deflections of the sun and ring gear.

3.0 DETAILED DESIGN - UTW REDUCTION GEAR

3.1 Mechanical Design

Results of the preliminary design phase were integrated into the General Electric Company overall QCSEE program and after a series of updatings and exchanges of results, the flight cycle design objectives shown in Table 3-1 were established for the UTW unit detailed design. Additional design objectives for experimental engine operation are shown in Table 3-2. Final configuration of the UTW gear assembly is defined by Figures 3-1 (assembly), 3-2 (involute gear tooth layout) and 3-3 (involute spline layout). Gear speed and bearing load data at the 100% power, 100% speed take-off conditions are shown in Table 3-3. Basic size at 100% is 9785 kW (13,116 hp) output with an output speed of 3143 rpm and a gear ratio of 2.465:1 (7747 rpm input speed). Bill of Material No. 210 is included as Appendix A. Basic gear data, stresses and materials are shown in Table 3-4. Details of the gear tooth involute profile modifications for the sun gear, star gear and ring gear are shown by Figures 3-4, 3-5 and 3-6, respectively. Gear material stresses presented in Table 2-8 are applicable to the final design. Calculated stresses expected during the experimental engine test operation are shown in Table 3-5.

The maximum bending stress of $34,819 \text{ N/cm}^2$ (50,500 psi) occurs in the sun gear during the 140% turbine power specified for one hour during the experimental engine operation, a total of approximately 2.8 x 10⁶ cycles. This is lower than the AGMA allowable stress of $38,691 \text{ N/cm}^2$ (56,117 psi) for AMS 6265 material under single direction loading, Table 2-8. The maximum bending stress in the star gear of $33,653 \text{ N/cm}^2$ (48,810 psi) occurs during the same operation noted above for the sun gear. Although this stress is greater than the AGMA allowable of 26,958 N/cm² (39,100 psi) for loading in both directions, Table 2-8, it occurs for only 6.4 x 10⁵ cycles and is acceptable. The maximum contact stress of 103,456 N/cm² (150,050 psi) occurring in the sun to star gear mesh is only slightly greater than the AGMA allowable of 102,566 N/cm² (148,760 psi) shown in Table 2-8 and, considering the small number of cycles, is acceptable. The maximum ring gear stresses are well below the AGMA allowables.

TABLE 3-1

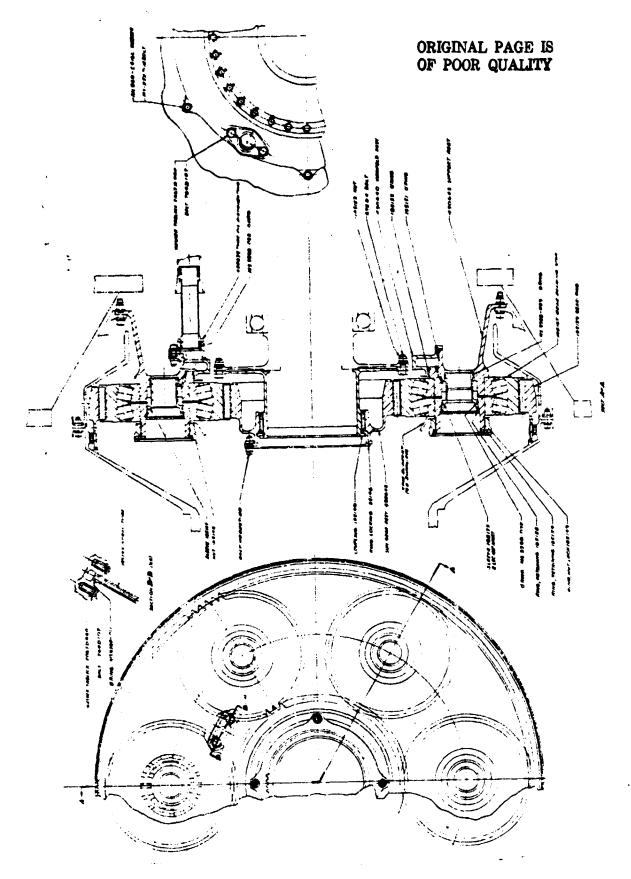
CLASS B (UTW) REDUCTION GEAR

DETAIL DESIGN OBJECTIVES

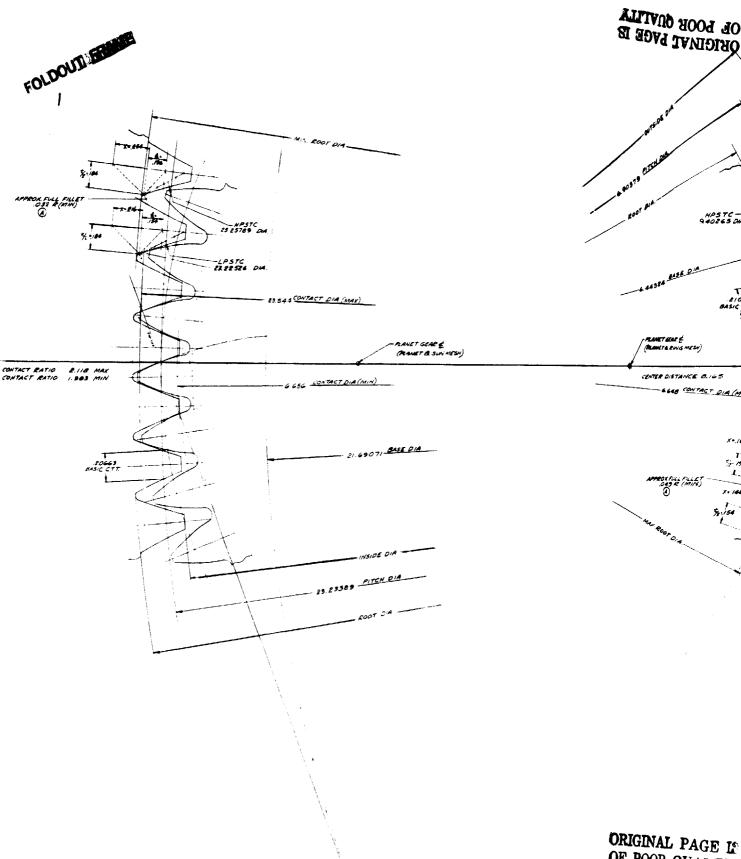
FLIGHT CYCLE

CONDITION	POWER	SPEED	TIME	OIL IN •K	TEMP.				
	<u>X</u>		7	~~~~	<u> </u>				
START	0	0-30	1.11						
IDLE	10	66.81	6.89	363	194				
TAKE-OFF	100	100	2.71	366	200				
CLIMB	85.15	102.19	22.22	369	205				
CRUISE	68.92	102.99	31.11	383	230				
DESCENT	3.27	34.489	22.22	403	266				
APPROACH	61.23	97.805	6.67	370	207				
REVERSE	62.46	109.672	0.18	364	195				
IDLE	10	66.81	6.89	363	194				
100% FAN POW	ER = 9781	kW (13116	hp)						
	100% FAN SPEED = 329 rad/s (3143 rpm)								

adjuble matternets ---

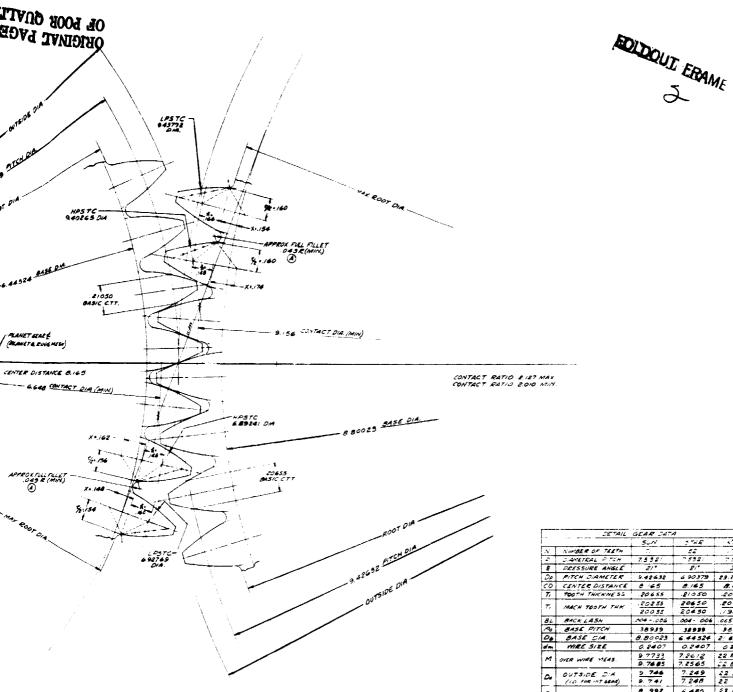

TABLE 3-2

CLASS B (UTW) REDUCTION GEAR


DETAIL DESIGN OBJECTIVES

EXPERIMENTAL ENGINE CYCLE

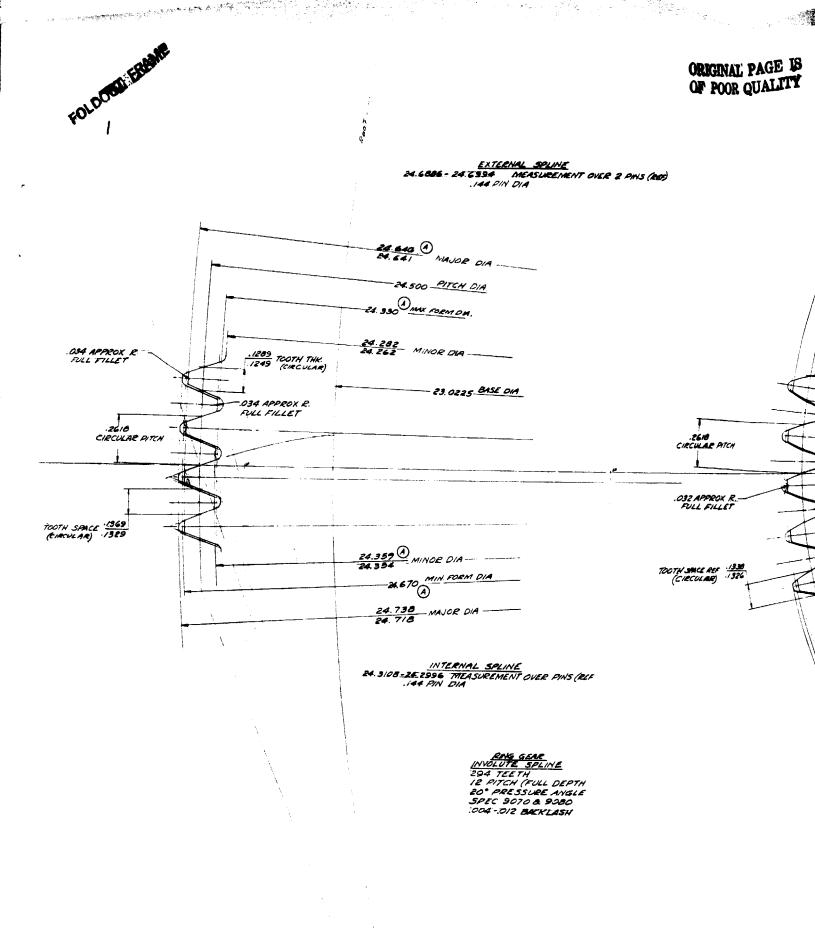
1			% TURBINE POWER
+ j	0.04	105	100
1	0.04	100	140
15	0.56	100	130
15	0.56	100	110
150	5.59	100	100
500	18.64	90	8C
1000	37.28	75	50
1000	37.28	30	10



OF POOR QUALITY

ः ः ् **ग्रि**

and the second


	DETAIL	GEAR SATA	9	
		SUN	: "#E	12:55
N	NUMBER OF TEETH		52	. 75
2	DAMETRAL P.TCH	7.5921	7552/	7 5 32.
\$	PEESSURE ANGLE	21*	21*	27
Dø	PITCH DIAMETER	9.42632	6 90 379	29.23589
0	CENTER DISTANCE	8 165	8.165	8.165
7,	TOOTH THICKNESS	20655	.21050	.20663
τ,	MACH TOOTH THK	.20255 20055	20650	20163 ./9863
84	BACK LASH	.004006	.004 - 006	.005 .000
20	BASE PITCH	.38939	38939	36939
00	BASE DIA.	8.80023	6.44524	2: 69071
da	WIRE SIZE	0.2407	0.2407	0 2407
M		9.7733	7.2612	22.8981
1.1	OVER WIRE MEAS	9.7685	7.2565	22.8800
0	OUTSIDE DIA (10. FOR INT SEAR)	9.746 9.74/	7.249	22.558
î.	ROCT DIA	8.992 8.957	6.480	23.674
r.,	FILLET RADIUS	.043 (mm)	.049 (MM)	.032 (MI
8.	OD ROLL #	27.27	29 51	19.87
8.	HESTE ROLL 4	21.56	21.71	22.17
0	PITCH CIA RELL 4	21.99	21 99	21.99"
91	LPSTE ROLL &	22.20	22.58'	21.93'
Øc	CONTACT DIA ROLL 4	16.46	14.48	24.19"
R.O	RUN OUT	001	.001	0035
	TOOTH TO TOOTH SPACING	.0002	.0002	0005
	PROFILE TOLONAKE	٠	#	4
	LEAD	.0003	0003	. 0005
	GEAR FACE (INCHES)		2.030	1806
	TIP BREAK EDGE	OI(MAX)	.01 (MAX)	OIMAS;
	PROTUBERANCE	.001005	.001005	0005- 001

SEE IN VOLUTE CHART FOR TOL.

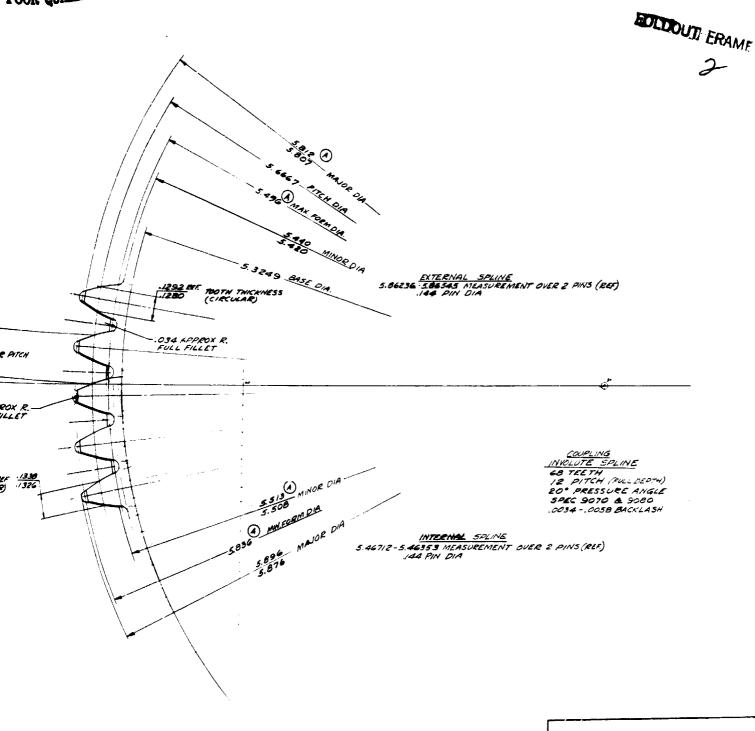

CLASS B (UTW) REDUCTION GEAR Gear Layouts

Figure 3-2

NAL PAGE LE DOR QUALITY

75-067

brannts of (in preside) compression while data furniture 1.1. Summaries of preside and president in terms of the second second 2.2. Summaries of president president and the second se

Early Domestic Disambastion Legend

CLASS B (UTW) REDUCTION GEAR Spline Layouts

Figure 3-3

TABLE 3-3

÷

.

CLASS B (UTW) REDUCTION GEAR CHARACTERISTICS AND 100% POWER, 100% SPEED DATA

	NON-DIMENSIONAL	SI UNITS	ENGLISH UNITS
RATIO	2.465		
TURBINE POWER		9885 kw	13256 hp
TURBINE SPEED		811 rad/s	7747 rpm
GEAR PITCH LINE VELOCITY		97.1 m/s	19117 ft/min
STAR SPEED		1108 rad/s	10577 rpm
BEARING LOAD		33927 N	7627 lbs
NO. OF STARS	6		
SUN GEAR TEETH	71		
STAR GEAR TEETH	52		
RING GEAR TEETH	175		
HUNTING	YES		
NON FACTORIZING	YES		

TABLE 3-4a

۱

CLASS B (UTW) REDUCTION GEAR

GEAR DATA (SI UNITS)

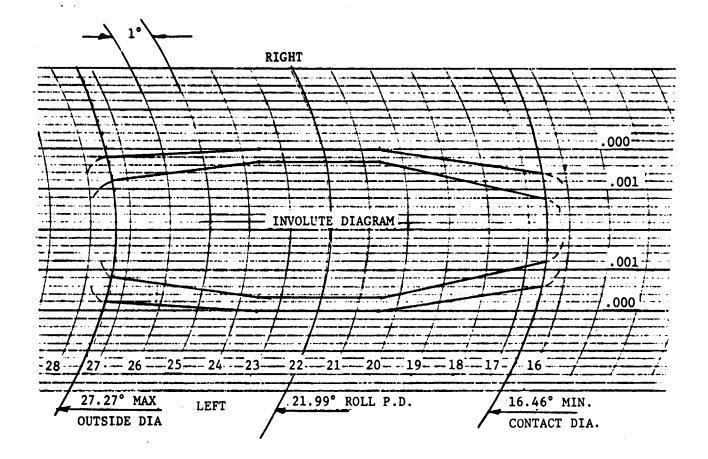
	SUN GEAR	STAR GEAR	RING GEAR
NO. OF TEETH	71	52	175
MODULE	3.3722	3.3722	3.3722
PRESSURE ANGLE, DECREES	21	21	21
PITCH DIAMETER, MM	239.43	175.36	590.14
CENTER DISTANCE, MM	207	.39 207	. 39
BASE DIA., MM	223.526	163.709	550.944
TOOTH THICK (PD), MM	5.2464	5.3467	5.2484
BACKLASH, MM	.102152	.102152	.127203
ROOT RAD., MM	1.17 (MIN.)	1.35 (MIN.)	.89 (MIN.)
CONTACT RATIO (MIN.)	2.12	688 2.11	796
(NO BREAK EDGES)			
CONTACT RATIO (MIN.)	2.01	047 1.98	347
(MAX. BREAKEDGES)			
GEAR FACE WIDTH, MM	47.1	51.5	45.9
BENDING STRESS, N/cm ²	24,869	24,042	
(100% POWER & SPEED)		23,366	19,595
CONTACT STRESS, N/cm ²	87,329	87,329	
(100% POWER & SPEED)		56,461	56,461
MATERIAL	AMS6265	AMS6265	AMS6470
	(SAE9310)	(SAE9310)	
PROFILE CORRECTION	Fig. 3-4	Fig. 3-5	Fig. 3-6

TABLE 3-4b

.

CLASS B (UTW) REDUCTION GEAR

GEAR DATA (ENGLISH UNITS)


	SUN GEAR	STAR GEAR	RING GEAR
NO. OF TEETH	71	52	175
DIAMETRAL PITCH	7.5321	7.5321	7.5321
PRESSURE ANGLE, DEGREES	21	21	21
PITCH DIAMETER, IN.	9.4263	6.9038	23.2339
CENTER DISTANCE, IN.	8	.165 8	3.165
BASE DIA., IN.	8.80023	6.44524	21.69071
TOOTH THICK (PD), IN.	. 20655	. 21050	.20663
BACKLASH, IN.	.004006	.004006	.005008
ROOT RAD., IN.	.046 (MIN.)	.053 (MIN.)	.035 (MIN.)
CONTACT RATIO (MIN) NO BREAK EDGES	2.12	688 2.11	796
CONTACT RATIO (MIN) (.010 MAX. BREAK EDGES)	2.01	047 1.98 	3347
GEAR FACE WIDTH - IN.	1.856	2.03	1.806
BENDING STRESS, PSI	36,070	34,870	
(100% POWER & SPEED)		33,890	28,420
CONTACT STRESS, PSI	126,660	126,660	
(100% POWER & SPEED)		81,890	81,890
MATERIAL	AMS6265	AMS6265	AMS6470
	(SAE9310)	(SAE9310)	
PROFILE CORRECTION	Fig. 3-4	Fig. 3-5	Fig. 3-6

ORIGINAL PAGE IS OF POOR QUALITY

CLASS B (UTW) REDUCTION GEAR

SUN GEAR

INVOLUTE PROFILE MODIFICATION

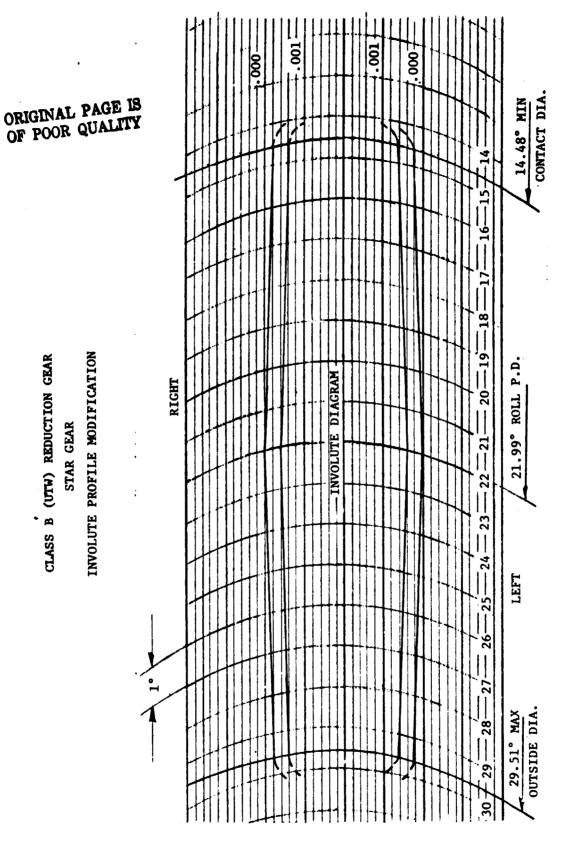


Figure 3-5

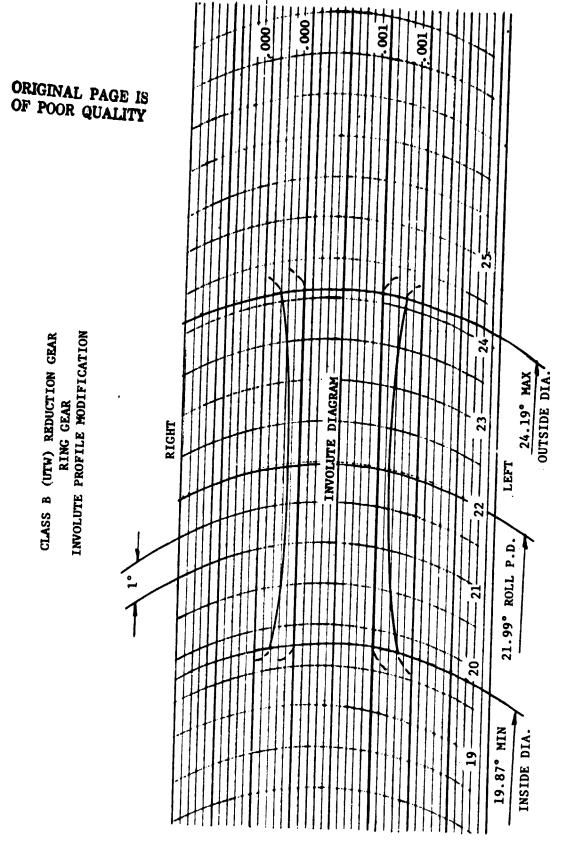


Figure 3-6

-05

TABLE 3-5

and a second sec

.

CLAS. B (UTW) REDUCTION GEAR

GEAR STRESS DATA

EXPERIMENTAL ENGINE TEST OPERATION

(SI UNITS)

TURBINE	TURBINE	BENDING STRESS - N/cm ²		DING STRESS - N/cm ² CONTACT STRE		RESS - N/cm^2
SPEED rad/s	POWER kW	SUN	STAR	RING	SUN/STAR	STAR/RING
851.8	9,885		1			
811.3	13,780	34,819	33,653	26,731	103,456	65,893
811.3	12,796	32,330	31,247	2,482	99,691	63,121
811.3	10,828	27,358	26,441	21,001	91,700	58,412
811.3	9,885	24,869	24,035	19,595	87,329	56,461
730.1	7,875					
608.4	4,922					
243.4	984					

(ENGLISH UNITS)

TURBINE TURBINE		BENDI	BENDING STRESS-PSI			CONTACT STRESS - PSI	
SPEED RPM	POWER HP	SUN	STAR	RING	SUN/STAR	STAR/RING	
8,134	13,256						
7,747	18,480	50,500	48,810	38,770	150,050	95,570	
7,747	17,160	46,890	45,320	3,600	144,590	91,550	
7,747	14,520	39,680	38,350	30,460	133,000	84,720	
7,747	13,256	36,070	34,860	28,420	126,660	81,890	
6,972	10,560						
5,810	6,600						
2,324	1,320						

The star gear bearing is a double row spherical roller type with cage-guided symmetrical rollers. The bearing outer race is integral with the star gear. Lubrication of the bearing is through radial passages in the center of the inner race. Detailed data for the bearing are shown in Table 3-6. The bearing calculated mean load, mean speed and resultant B_1 fatigue life of 6110 hours for the flight spectrum (Table 3-1) and 5780 hours for the experimental engine operation schedule (Table 3-2) are shown in Table 3-7. The life values are based on the standard AFBMA life calculation method for roller bearings with a multiplying factor of 0.23 applied to convert from B_{10} to B_1 life and a factor of 5 applied for material, operating environment and oil jet lubrication. A section through the bearing which also shows the oil passages appears in Figure 3-1.

Oil flows for the reduction gears and bearings for the flight duty cycle are presented in Table 3-8. These flows are based on a variable oil supply pressure which is a function of core engine speed. The estimated effective oil supply pressures, temperatures and available flows at the reduction gear inlet for the several engine operating conditions as supplied by General Electric are shown in Table 3-9. Maximum limit for the bearing outer race temperature has been established at 422°K (300°F). Calculated maximum bearing outer race temperature occurs during the cruise condition in the flight cycle. The required oil flow together with the effective oil pressure at this flight condition establishes the bearing oil flow control orifice size. The controlling flight condition for oil flow to the gears based on gear scoring criteria is take-off. Orifice sizes in the gear spray bars are based on this requirement. Oil inlet temperatures shown in Tables 3-8 and 3-9 are the result of General Electric heat balance iterations for the reduction gear and UTW engine.

Table 3-10 tabulates the overall UTW reduction gear efficiency for the flight duty cycle. Losses considered in calculating the efficiency are the spherical bearing loss, gear mesh loss and windage and churning losses. At the take-off condition, the calculated overall efficiency is 99.3 percent which is greater than the M50TF1611 specification of 99.2 percent for the 100 percent speed and 100 percent power operating condition.

TABLE 3-6

Ŀ

CLASS B (UTW) REDUCTION GEAR

BEARING DATA

VENDOR, PART NO.	SKF 22314 VAH
ТҮРЕ	DOUBLE ROW SPHERICAL ROLLER (SPECIAL)
NO. OF ROLLERS (PER ROW)	14
SIZE OF ROLLERS	20.5 mm X 19.65 mm
DYNAMIC CAPACITY, "C"	255,800 N (57,500 LBS.)
MATERIALS:	
OUTER RING (INTEGRAL WITH GEAR)	CARBURIZED AMS6265, Rc 60-63
INNER RING	CVM M-50 STEEL, Rc 60 MIN.
ROLLERS	CVM M-50 STEEL, Rc 60 MIN.
CAGE	AMS4616, SILVER PLATED

TABLE 3-7

CLASS B (UTW) REDUCTION GEAR BEARING LIFE DATA

FLIGHT CYCLE		
MEAN LOAD (10/3 EXP.)	23807 N	5352 lbs
MEAN SPEED	898 rad/s	8573 rpm
B-1 LIFE	6110 hrs	
EXPERIMENTAL ENGINE CYCLE	<u></u>	
MEAN LOAD (10/3 EXP.)	26147 N	5878 lbs
MEAN SPEED	694 rad/s	6629 rpm
B-1 LIFE	5780 hrs	

TABLE 3-8

1

CLASS B (UTW) REDUCTION GEAR

TOTAL OIL FLOWS

FLIGHT CYCLE (SI UNITS)

CONDITION	TOTAL STAR BRG. 3FLOW, cm ³ /s	FLOW TO GEARS (SPRAY BARS), cm ³ /s	TOTAL OIL FLOW cm ³ /s	OIL IN °K	BRG OUTER RACE TEMP. °K
IDLE	379	673	1052	363	385
то	502	887	1389	366	407
CLIMB	493	896	1389	369	410
CRUISE	490	898	1388	383	422
DESCENT	397	706	1104	403	410
APPROACH	464	858	1322	370	409
REVERSE	481	878	1359	364	410
IDLE	379	673	1052	363	385

(ENGLISH UNITS)

CONDITION	TOTAL STAR BRG. FLOW, GAL/MIN	FLOW TO GEARS (SPRAY BARS), GAL/MIN	TOTAL OIL FLOW, GAL/MIN	OIL IN °F	BRG OUTER RACE TEMP °F
IDLE	6.00	10.66	16.66	194	234
то	7.95	14.067*	22.02	200	273
CLIMB	7.82	14.199	22.02	205	279
CRUISE	7.77*	14.231	22.00	230	300
DESCENT	6.30	11.196	17.50	266	278
APPROACH	7.35	13.595	20.95	207	276
REVERSE	7.62	13.924	21.54	195	278
IDLE	6.00	10.66	16.66	194	234
*C	*CONTROLLING CONDITION				

TABLE 3-9 CLASS B (UTW) REDUCTION GEAR OIL SUPPLY DATA

(SI UNITS)

CONDITION	MAX. OIL TEMP °K	AVAILABLE ₃ OIL FLOW - cm ³ /s	OIL PRESSURE N/cm ²
IDLE	363	1129	15.2
TAKE-OFF	366	1514	27.6
CLIMB	369	1502	26.9
CRUISE	383	1451	25.5
DESCENT	403	1129	15.2
APPROACH	370	1394	23.4
REVERSE	364	1483	26.2

(ENGLISH UNITS)

CONDITION	MAX OIL TEMP °F	AVAILABLE OIL FLOW - GPM	OIL PRESSURE PSI
IDLE	194	17.9	22
TAKE-OFF	200	24.0	40
CLIMB	205	23.8	39
CRUISE	230	23.0	37
DESCENT	266	17.9	22
APPROACH	207	22.1	34
REVERSE	195	23.5	38

TABLE 3-10 CLASS B (UTW) REDUCTION GEAR OVERALL REDUCTION GEAR EFFICIENCY FLIGHT CYCLE (SI UNITS)

		OVERALL			
CONDITION	SPHERICAL BRG	GEAR MESH	CHURN & WINDAGE	TOTAL	EFFICIENCY %
IDLE	6.22	3.36	0.71	10.29	98.96
то	14.36	36.58	18.38	69.32	99.30*
CLIMB	14.33	30.31	16.06	60.70	99.28
CRUISE	13.31	25.21	13.49	52.01	99.24
DESCENT	1.90	1.33	0.05	3.27	98.99
APPROACH	12.76	21.79	10.46	45.01	99.26
REVERSE	15.82	20.99	12.91	49.72	99.19
IDLE	6.22	3.36	0.71	10.29	98.96
*S]	PEC 99.20%				

(ENGLISH UNITS)

		POWER LOSS - HP						
CONDITION	SPHERICAL BRG	GEAR MESH	CHURN & WINDAGE	TOTAL	EFFICIENCY %			
IDLE	8.34	4.51	0.947	13.80	98.96			
то	19.26	49.05	24.65	92.96	99.30*			
CLIMB	19.22	40.64	21.54	81.40	99.28			
CRUISE	17.85	33.81	18.09	69.75	99.24			
DESCENT	2.55	1.78	0.063	4.39	98.99			
APPROACH	17.11	29.22	14.03	60.36	99.26			
REVERSE	21.21	28.15	17.31	66.67	99.19			
IDLE	8.34	4.51	0.947	13.80	98.96			
*SPEC	99.20%							

Total heat rejection for the flight duty cycle, delta rise in bulk oil temperature, and the temperature of the bulk oil resulting with oil flows and inlet supply temperatures shown in Table 3-9 are presented in Table 3-11.

Table 3-12 tabulates the AGMA scoring index and Table 3-13 tabulates the Curtiss-Wright scoring index for each flight duty cycle operating condition. The two approaches to scoring index calculation and evaluation were discussed in Section 2.2. Based on Curtiss-Wright experience, the maximum scoring index (AGMA 300°F, C-W 322°F) shown for the cruise part of the flight cycle is acceptable.

The Curtiss-Wright approach to the controlled deflection of the gear components under load to insure uniform loading across the face width of all mating gears discussed in Section 2.2 is carried into the UTW reduction gear detailed design. Gear and support section modulii were selected that provide relatively close gear and tooth deflection compatibility at each gear mesh. The calculated deflections are discussed in detail in Section 3.3.

Calculated UTW gear tooth load line operating positions relative to the star gear pitch line for the ring-to-star and sun-to-star meshes are shown in Figure 3-7. The displacements are the summation of deflections resulting from the operating centrifugal forces, gear tooth radial separating forces and tangential gear tooth loads. The difference in displacements over the length of the teeth results in slopes of the load line relative to the axis of the gear of 0.001080 and 0.001066 for the ring and sun gear meshes, respectively. Since the star gear is supported by a spherical bearing it is free to seek a balanced moment load position, a rotation of 0.015 mm (0.00062 inches) relative to the plane of the inner race measured at the star gear pitch line. The star gear carrier support trunnion deflects under load in the direction that improves the alignment between the star gear and the bearing inner race. Taking the trunnion deflection into consideration the star gear operating axis and the fixed carrier support trunnion axis at 100% power and 100% speed coincide within 0.00879 mm (0.000346 inches), the difference between the support deflected position and the gear tooth position shown in Figure 3-8. This very small amount of misalignment between the planes of the star gear and the star gear bearing inner race is readily accommodated by the spherical roller bearing.

48

TABLE 3-11

CLASS B (UTW) REDUCTION GEAR

HEAT REJECTION

FLIGHT CYCLE

(SI UNITS)

CONDITION	TOTAL LOSS kW	DELTA RISE IN BULK OIL TEMP.°K	OIL IN TEMP.°K	BULK OIL TEMP.°K
IDLE	10.28	4.92	363	368
то	69.24	25.22	366	391
CLIMB	60.63	22.17	369	391
CRUISE	52.01	19.38	383	403
DESCENT	3.27	1.57	403	405
APPROACH	44.99	17.10	370	387
REVERSE	49.70	18.43	364	382
IDLE	10.28	4.92	363	368

(ENGLISH UNITS)

CONDITION	TOTAL LOSS BTU/MIN	DELTA RISE IN BULK OIL TEMP °F	OIL IN TEMP °F	BULK OIL TEMP °F
IDLE	585	8.85	194	203
то	3940	45.39	200	245
CLIMB	3450	39.90	205	245
CRUISE	2960	34.89	230	265
DESCENT	186	2.82	266	269
APPROACH	2560	30.78	207	238
REVERSE	2 8 28	33.18	195	228
IDLE	585	8.85	194	203

:

TABLE 3-12

- 14

CLASS B (UTW) REDUCTION GEAR

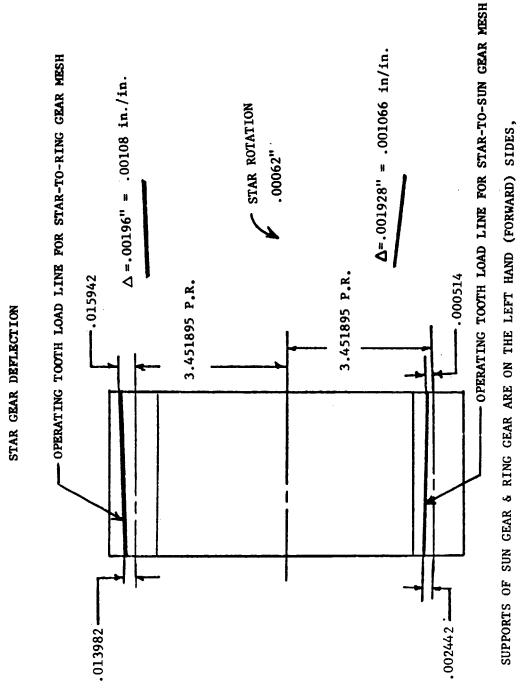
AGMA SCORING INDEX

FLIGHT CYCLE

CONDITION	OIL IN TEMP °F	AGMA 🍐 T °F	AGMA SCORING INDEX °F
IDLE	194	18.27	212
то	200	92.84	293
CLIMB	205	81.86	287
CRUISE	230	69.71	300
DESCENT	266	9.30	275
APPROACH	207	64.63	272
REVERSE	195	63.74	259
IDLE	194	18.27	212

TABLE 3-13

CLASS B (UTW) REDUCTION GEAR

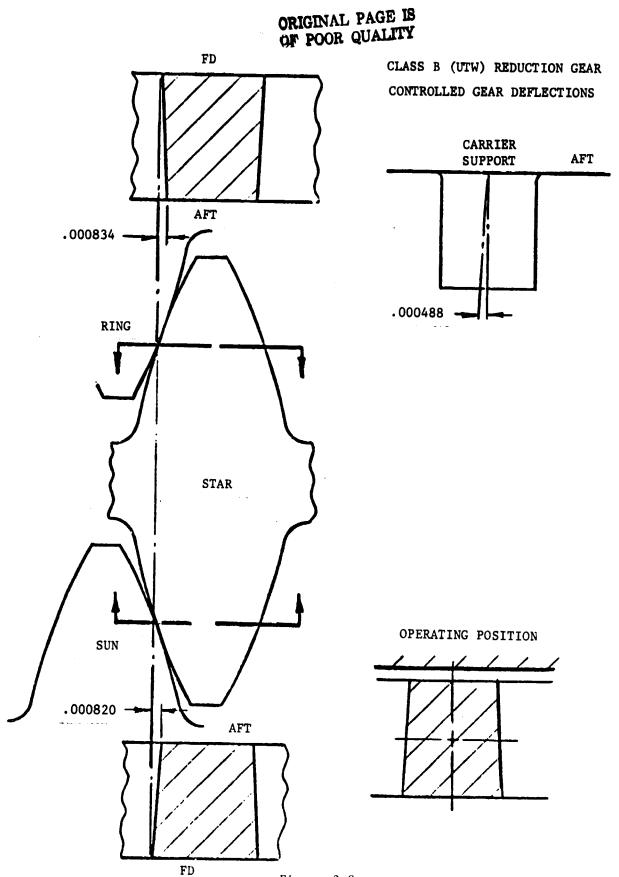

CURTISS-WRIGHT SCORING INDEX

FLIGHT CYCLE

	OIL IN TEMP	C-W SCORING INDEX - °F		
CONDITION	°F	RING-STAR MESH	SUN-STAR MESH	
IDLE	194	204	217	
то	200	252	322	
CLIMB	205	250	312	
CRUISE	230	270	322	
DESCENT	266	272	280	
APPROACH	207	243	290	
REVERSE	195	229	274	
IDLE	194	204	217	

50

. .



CLASS B (UTW) REDUCTION GEAR

;

OPPOSITE THAT OF STAR GEAR TRUNNION.

Figure 3-7

÷.

.

Table 3-14 tabulates the summary of the weight analysis. The calculated UTW unit installed weight as supplied by Curtiss-Wright is 92.63 kg (204.23 pounds). The detailed weight breakdown by part is given in Appendix B.

Table 3-15 tabulates weight reduction items to be considered for a production type reduction gear and these features would save a calculated 6.50 kg (14.36 pounds) and result in a future weight of 86.13 kg (189.87 pounds) for the UTW gear assembly. Further reduction in weight is possible with additional development effort directed toward a specific operating requirement.

3.2 Stress Analysis

AGMA gear stresses are presented in the preceding discussion and data. Additional stress analyses and evaluations for the gears, carrier support and flexible coupling were performed and are discussed in detail in this section of the report.

3.2.1 Gear Tooth Bending Stress

Maximum gear tooth stresses for 100 and 140% design torque are plotted on a Goodman diagram in Figure 3-9 for the sun and star gears, and Figure 3-10 for the ring gear. Three allowable curves are shown; the AGMA, Curtiss-Wright Experience, and the Minimum Material Properties. The Curtiss-Wright Experience curve represents the allowable design data that has been used at Curtiss-Wright for over three decades in the design of aircraft planetary reduction gear sets that have experienced years of satisfactory operation.

The design points fall within the AGMA allowables. For the 140% torque condition, which may be run during the experimental engine test stand operation, the star gear stress falls within the C-W experience range and is not expected to present any difficulties. Sun and ring gear stresses fall within the conservative AGMA allowables.

3.2.2 Backing Stresses

Sun Gear - Major loads on the sun gear come from the six star gears and centrifugal forces. The star gear mesh results in discrete radial and tangential forces, as well as torque loads, on the sun gear. Resulting sun gear backing

51

TABLE 3-14 CLASS B (UTW) REDUCTION GEAR WEICHT SUMMARY

and the second

H

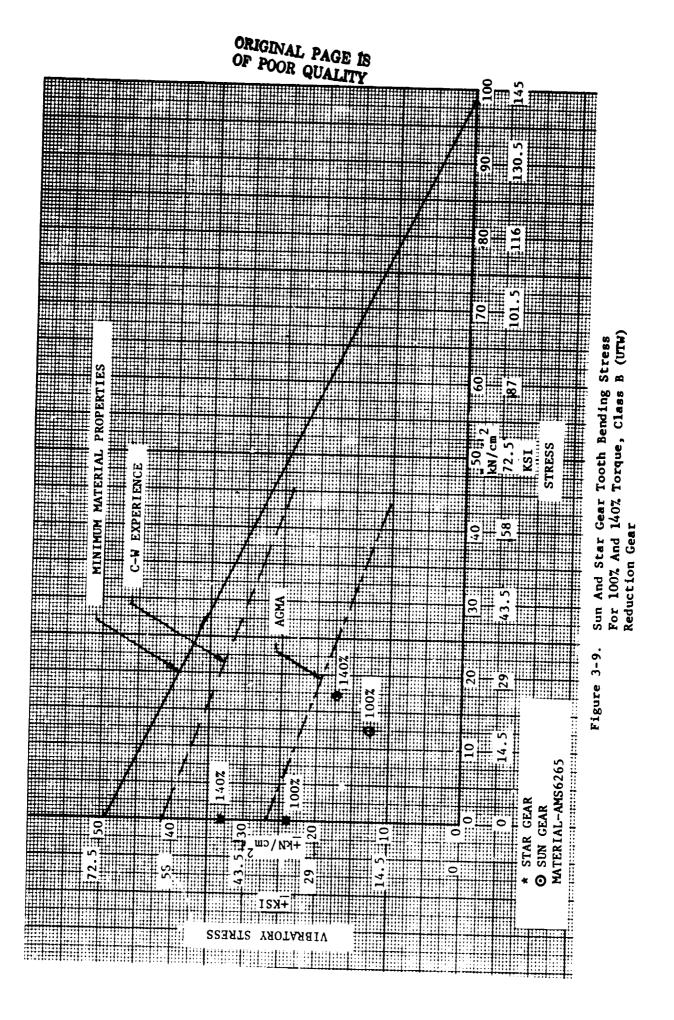
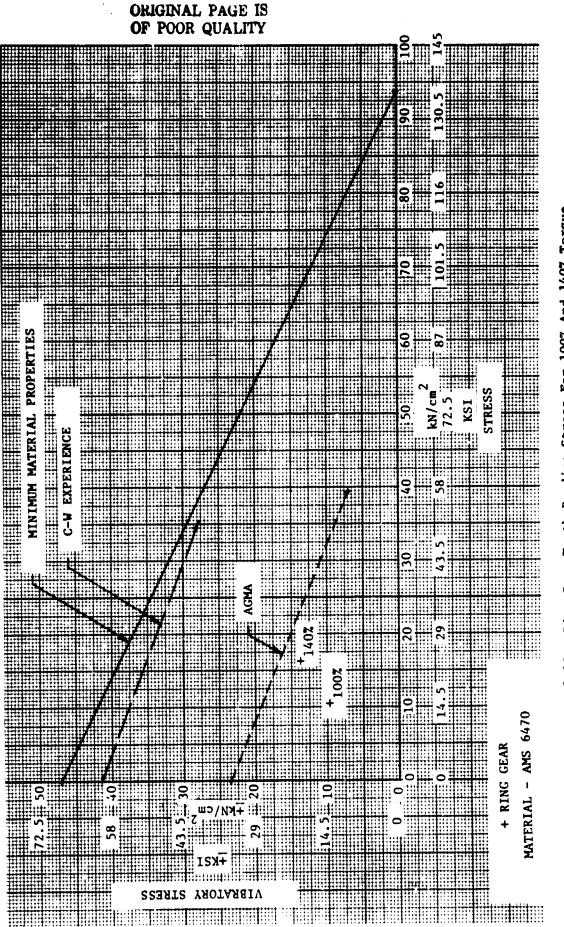

	BASIC MATERIAL	KILOGRAMS	POUNDS
SUN GEAR ASSEMBLY	STEEL	10.34	22.79
RING GEAR	STEEL	13.56	29.90
STAR NUTS	STEEL	1.74	3.83
CARRIER SUPPORT	STEEL	22.17	48.88
STARS	STEEL	41.39	91.25
STARWASHER	STEEL	.13	.29
MANIFOLD	ALUMINUM	1.54	3.40
SPRAY BARS	STEEL	.21	.47
MISCELLANEOUS HARDWARE	_	1.55	3.42
TOTAL		92.63	204.23

TABLE 3-15


CLASS B (UTW) REDUCTION GEAR

FLIGHT UNIT WEIGHT REDUCTION

(1) Integrate star gear carrier support and G.E. reduction gear							
support from fan frame to eliminate interface flange, bolts							
and nuts.							
(2) Make carrier support of titanium.							
Resulting system weight reduction:							
	kg	lbs					
FLANGE	kg 1.27	1bs 2.81					
FLANGE BOLTS AND NUTS							
	1.27	2.81					

the first of

stresses are shown in Table 3-16. Radial load at each mesh of the gear will cause bending stresses in the ring, compression in the outer surface around the point of load application (greatest in tooth fillets) and tension in an area between loads. Tangential load on the gear tooth will result in a bending moment in the backing ring. The moment will cause tensile stress in the surface at the base of the tooth on the load application side and compressive stress on the opposite side. The moment is calculated by placing the tangential load (divided by the contact ratio) at the tip of the tooth.

Since the sun gear spline is not axially in the plane of the gear teeth, a toroidal moment is set up at each gear mesh. Table 3-16 shows the various stress values for the areas of high stress shown in Figure 3-11. The "front" location in Table 3-16 is identified as "I" in Figure 3-12 and the "back" location is identified as "II". Principal stresses are first calculated including the effect of any shear stresses and then the equivalent stress is calculated.

All parts have been analyzed using the criterion of failure by yielding called " "Maximum Energy of Distortion Theory", also called "R. von Mises Criterion" which is discussed in Appendix E. Maximum and minimum values of equivalent stress are used to calculate the steady and vibratory components that are plotted on a Goodman diagram. Figure 3-13 shows the vibratory stresses for the sun gear without any stress concentration factors. Vibratory stresses would have to be multiplied by factors of 6 and larger before the allowable curve would be reached. Since the stress concentration factors for the gear are much lower than 6 the backing stresses in the sun gear are acceptable.

Stresses at points (5) and (6), Figure 3-11, would have a vibratory component equal to 2.2 times the steady torque before the minimum allowable material properties would be reached.

Table 3-17 shows the backing stresses for the sun gear at 100% speed and 140% design torque. Centrifugal stresses are the same as those shown on Table 3-16 but all other stresses are increased by 40%. The stresses are combined and the range of equivalent stress is plotted as steady and vibratory stress on

53

TABLE 3-16a

i

CLASS B (UTW) REDUCTION GEAR

SUN GEAR BACKING STRESSES (N/cm²)(SI UNITS)

100% SPEED (811 RAD/S) 100% TORQUE (1234 N-m)

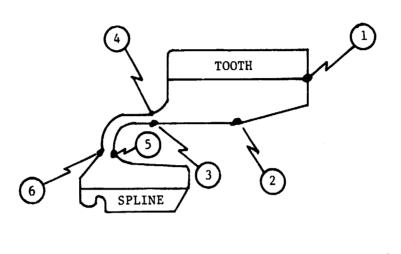
Stress			nferential					
Area	Load	At M		Between				
(Fig.3-11)	Туре	Front	Back	Meshes	Longitudinal	Shear	Equivalent	
	Rad	- 5,066	- 5,066	+ 1,067	-	-		
	Tang	+ 4,589	- 4,589	-	-	-	+ 6,729	
1	Centri	+ 9,028	+ 9,028	+ 9,028	-	-	<u>+</u> 5,361	
:	Т.М.	+ 1,995	+ 1,995	+ 1,995	-	-		
:	Total	+10,546	+ 1,368	+12,091	-	-		
	Rad	+ 3,888	+ 3,888	- 3,472	-	-		
	Tang	- 5,283	+ 5,283	-	-	+ 1,517		
2	Centri	+ 9,028	+ 9,028	+ 9,028	-	-	+13,081	
	Т.М.	+ 843	+ 843	+ 843	-	-	+ 6,163	
	Total	+ 8,476	+19,063	+ 6,399	-	+ 1,517		
	Rad	+ 3,888	+ 3,888	- 3,472	-	-		
	Tang	- 5,283	+ 5,283	-	-	+ 7,445	+19,201	
3	Centri	+ 9,028	+ 9,028	+ 9,028	- 3,935	-	+ 4,279	
	Т.М.	- 843	- 843	- 843	-	-		
	Total	+ 6,789	+17,356	+ 4,710	- 3,935	+ 7,445		
	Rad	- 3,888	- 3,888	+ 3,472	-	_		
	Tang	+ 5,283	- 5,283	-	-	+ 7,445	+15,073	
4	Centri	+ 9,028	+ 9,028	+ 9,028	+ 3,935	-	<u>+</u> 1,409	
	Т.М.	- 843	- 843	- 843	-	-		
	Total	+ 9,580	- 987	+11,657	+ 3,935	+ 7,445		
5	Total (Tang)	4,414	4,414	+ 4,414	+ 3,926	10,290	18,308	
6	Total (Tang)	+ 2,437	+ 2,437	+ 2,437	- 2,842	10,290	18,401	
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.							

TABLE 3-16b

CLASS B (UTW) REDUCTION GEAR

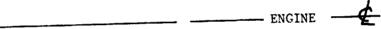
SUN GEAR BACKING STRESSES (PSI) (ENGLISH UNITS) 100% SPEED (7747 RPM) 100% TORQUE (107,392 IN-LB)

Stress Circumferential		Stress					
Are		At M		Between			
(F1g.3-	11) Loa d	Front	Back	Meshes	Longitudina	Shear	Equivalent
	Rad	- 7,348	- 7,348	+ 1,548	-	-	
	Tang	+ 6,656	- 6,656	-	-	-	+ 9,760
1	Centri	+13,094	+13,094	+13,094	-	-	<u>+</u> 7,776
	Τ.Μ.	+ 2,894	+ 2,894	+ 2,894	-	-	
	Total	+15,296	+ 1,984	+17,536	-	-	
	Rađ	+ 5,639	+ 5,639	- 5,036	-	-	
	Tang	- 7,663	+ 7,663	-	-	+ 2,200	
2	Centri	+13,094	+13,094	+13,094	-	-	+18,972
	T.M.	+ 1,223	+ 1,223	+ 1,223	-	-	<u>+</u> 8,939
	Total	+12,293	÷27,649	+ 9,281	-	+ 2,200	
	Rad	+ 5,639	+ 5,639	- 5,036	-	-	
	Tang	- 7,663	+ 7,663	-	-	+10,798	+27,849
3	Centri	+13,094	+13,094	+13,094	- 5,707	-	<u>+</u> 6,206
	т.м.	- 1,223	- 1,223	- 1,223	-	-	
	Total	+ 9,847	+25,173	+ 6,832	- 5,707	+10,798	
	Rad	- 5,639	- 5,639	+ 5,036	-	-	
	Tang	+ 7,663	- 7,663	-	-	+10,798	+21,862
4	Centri	+13,094	+13,094	+13,094	+ 5,707	-	<u>+</u> 2,043
	T.M.	- 1,223	- 1,223	- 1,223	-	-	
	Total	+13,895	- 1,431	+16,907	+ 5,707	+10,798	
5	T otal (Tang)	6,402	6,402	+ 6,402	+ 5,694	14,924	26,554
6	Total (Tang)	+ 3,535	+ 3,535	+ 3,535	- 4,122	14,924	26,688
	Abbrevi		الهيد المستحد المحاصر المحالة				


Abbreviations: Radial - Rad

ŧ

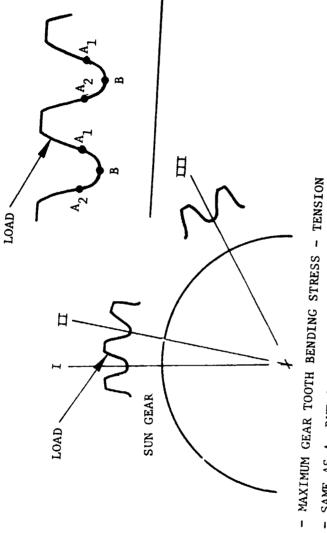
مادر فستعادة والملائدة الاستار المتعاركين


Tangential - Tang

Centrifugal - Centri Toroidal Moment - T.M.

ł

(1)

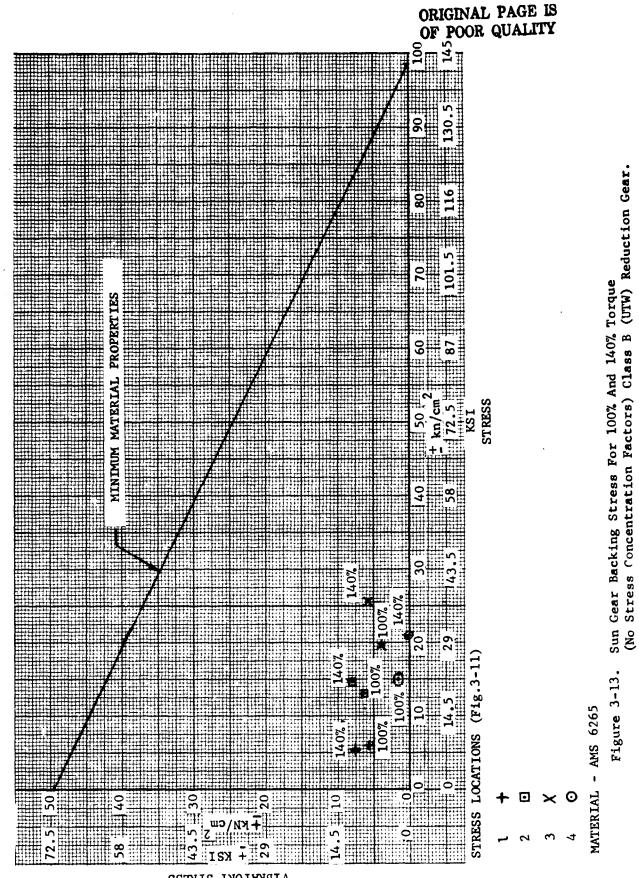


NUMBERS IDENTIFY STRESS ANALYSIS AREAS, TABLES 3-16 AND 3-17.

DATA ITEM	DATA ITEM M ENGLISH UNITS	AGNITUDE SI UNITS
100% SPEED	7,747 RPM	811 RAD/S
100% TORQUE	107,392 IN./LB	12,134 N-M
TANGENTIAL LOAD	3,798 LBS/STAR	16,894 N/STAR
RADIAL LOAD	1,458 LBS/STAR	6,486 N/STAR

REFERENCE 100% SPEED AND LOAD DATA

Figure 3-11. Sun Gear High Stress Areas (Identification For Tables 3-16 & 3-17) Class B (UTW) Reductior Gear.



or read of the

- A1
- SAME AS A_{I} BUT ON BACK SIDE OF TOOTH COMPRESSION $^{A}_{2}$
 - VALLEY OR BACKING STRESS В

 - I FRONT (LOADED) FACE OF LOADED TOOTH
- LI BACK (UNLOADED) FACE OF LOADED TOOTH LII MIDWAY BETWEEN STAR-MESH (UNLOADED TEETH)

Figure 3.12 Gear Tooth Loading for "Combined" Stress Analysis

VIBRATORY STRESS

TABLE 3-17a

CLASS B (UTW) REDUCTION GEAR SUN GEAR BACKING STRESSES (N/cm²) (SI UNITS)

100% SPEED (811 RAD/S) 140% TORQUE (16,987 N-m)

Stress		Circum	ferential	Stress			
Area			Star	Between			
(Fig.3-)	ll) Load	Front	Back	Stars	Longitudinal	Shear	Equivalent
	Rad	- 7,093	- 7,093	+ 1,494			
	Tang	+ 6,425	- 6,425	-			
1	Centri	+ 9,028	+ 9,028	+ 9,028			+ 5,812
	т.м.	+ 2,794	+ 2,794	+ 2,794			<u>+</u> 7,508
	Total	+11,154	- 1,695	+13,320			
	Rad	+ 5,443	+ 5,443	- 4,861	_	-	
	Tang	- 7,397	+ 7,397	_	-	+ 2,124	
2	Centri	+ 9,028	+ 9,028	+ 9,028	-	-	+14,915
	т.м.	+ 1,180	+ 1,180	+ 1,180	-	-	<u>+</u> 8,425
	Total	+ 8,255	+23,048	+ 5,346		+ 2,124	
	Rad	+ 6,707	+ 6,708	2 (00			
			-	- 3,400		110 424	
3	Tang Centri	- 7,397 + 9,028	+ 7,397 + 9,028	- - 9,028	-	+10,424	125 (02
	T.M.	- 1,180	- 1,180	- 9,028 - 1,180	- 5,509	-	+25,493
	Total	-1,180 + 7,159	- 1,180 +21,952	- 1,180 + 4,447	- 5,509	+19,424	<u>+</u> 5,512
	IULAI	+ 7,139	+21,952	+ 4,44/	- 5,509	+19,424	
	Rad	- 6,708	- 6,708	+ 3,400	-	-	
	Tang	+ 7,397	- 7,397	-	-	-10,424	+20,626
4	Centri	+ 9,028	+ 9,028	+ 9,028	-	-	
	T.M.	- 1,180	- 1,180	- 1,180			
	Total	+ 8,536	- 6,257	+11,248	+ 5,509	+10,424	
5	Tang	+ 6,180	+ 6,180	+ 6,180	+ 5,497	+14,406	25,633
6	Tang	+ 3,412	3,412	+ 3,412	- 3,378	+14,406	25,761
	Abbreviations: Radial - Rad Tangential - Tang				Centrifugal Toroidal	- Centr - T.M.	-i

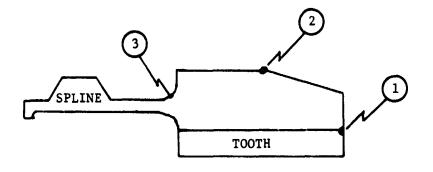
TABLE 3-17b

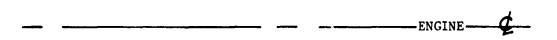
CLASS B (UTW) REDUCTION GEAR

SUN GEAR BACKING STRESSES (PSI) (ENGLISH UNITS)

100% SPEED (7747 RPM) 140% TORQUE (150,349 IN-LB)

Stress <u>Circumferential Str</u> Area At Star Be		Stress Between					
(Fig.3-1	1) Load	Front	Back	Stars	Longitudinal	Shear	Equivalent
	Rad	-10,287	-10,287	+ 2,167			
	Tang	+ 9,318	- 9,318	-			
1	Centri	+13,094	+13,094	+13,094			+ 8,430
	т.м.	+ 4,052	+ 4,052	+ 4,052			<u>+</u> 10,889
	Total	+16,177	- 2,459	+19,319			
	Rad	+ 7,895	+ 7,895	- 7,050	-	-	
	Tang	-10,728	+10,728	-	-	+ 3,080	
2	Centri	+13,094	+13,094	+13,094	-	-	+21,633
	т.М.	+ 1,712	+ 1,712	+ 1,712	-	-	<u>+</u> 12,220
	Total	+11,973	+33,429	+ 7,756		+ 3,080	
	Rad	+ 9,729	+ 9,729	- 4,932	-		
	Tang	-10,728	+10,728	-	-	+15,119	
3	Centri	+13,094	+13,094	+13,094	- 7,990] -	+36,974
	T.M.	- 1,712	- 1,712	- 1,712			<u>+</u> 7,944
	Total	+10,383	+31,839	+ 6,450	- 7,990	+15,119	
	R ad	- 9,729	- 9,729	+ 4,932	-	-	
	Tang	+10,728	- 10,728	-	-	+15,119	+29,915
4	Centri	+13,094	+13,094	+13,094	+ 7,990	-	<u>+</u> 159
	т.м.	- 1,712	- 1,712	- 1,712		-	
	Total	+12,381	- 9,075	+16,314	+ 7,990	+15,119	
5	Tang	+ 8,963	+ 8,963	+ 8,963	+ 7,972	+20,894	37,177
6	Tang	+ 4,949	+ 4,949	+ 4,949	- 5,770	+20,894	37,363
Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.							


Figure 3-13. Backing stresses in the sun gear will present no problem when the reduction gear is operated at 140% design torque at 100% speed.


Vibratory margin, that is, the allowable vibratory stress divided by the calculated vibratory stress, is over 5.0 and is much larger than any stress concentration factor that might exist. For point (5) the vibratory torque would have to be over twice the design torque to reach the allowable limit.

Ring Gear - Major loads on the ring gear are the radial loads, the tangential loads and the centrifugal forces. Stresses were calculated at specific locations as noted in Figure 3-14 for each of the major loads. The bending stresses in the ring gear due to the radial loads were believed to be conservatively calculated by assuming no restraint from the adjacent shell and spline of the General Electric furnished fan drive components. Stresses were calculated for the ring gear under the influence of centrifugal forces and radial loads (by use of a well-proven shell computer program) and found to be small, less than 4136 N/cm² (6000 psi) in the meridial direction. Tables 3-18 and 3-19 show the breakdown of individual stresses for 100% design speed and 100% and 140% design torque, respectively. The stresses are converted to equivalent stresses and the resulting steady and vibratory components are plotted on the Goodman diagram shown on Figure 3-15. Backing stresses are higher on the ring gear than the sun gear primarily due to the stresses caused by the radial loads. At points (1) and (3) where stress concentration factors would exist, the vibratory margin is over 3.3 for the design condition and 2.4 for the 140% torque operating point. Since the basic analysis is believed to be conservative, these margins are considered satisfactory.

Calculated shear stress in the cylindrical section between the ring gear and spline is 2710 N/cm^2 (3932 psi). Application of any reasonable stress concentration factor for the 9.53 mm (.375 inch) diameter radial holes (polished edges) in this section still results in a relatively low stress value in this area.

58

1) NUMBERS IDENTIFY STRESS ANALYSIS AREAS, TABLES 3-18 AND 3-19

REFERENCE 100% SPEED AND LOAD DATA

DATA ITEM	DATA ITEM D ENGLISH UNITS	MAGNITUDE SI UNITS
100% SPEED	3,143 RPM	329 RAD/S
100% TORQUE	264,704 IN./LB	29,908 N-M
TANGENTIAL LOAD	3,798 LBS/STAR	16,894 N/STAR
RADIAL LOAD	1,458 LBS/STAR	6,486 N/STAR

Figure 3-14. Ring Gear High Stress Areas (Identification For Tables 3-18 & 3-19) Class B (UTW) Reduction Gear.

TABLE 3-18a

.....

CLASS B (UTW) REDUCTION GEAR RING GEAR BACKING STRESSES (N/cm²)(SI UNITS) 100% SPEED (329 RAD/S); 100% TORQUE (29908 N-M)

		Circumferential Stress					
		At Star		Between			
		Front	Back	Stars			Equivalent
Point	Load	N/cm ²	N/cm ²	N/cm ²	Longitudinal	Shear	N/cm ²
	Rad	-12,857	-12,857	+ 8,144			
	Tang	+ 4,941	- 4,941	-			
1	Centri	+19,670	+10,670	+10,670			
	T.M.	+ 2,355	+ 2,355	+ 2,355			
	Total	+ 5,108	- 4,773	+21,169			+ 8,198 <u>+</u> 12,971
	Rad	+17,010	+17,010	- 6,988			
	Tang	- 5,725	+ 5,725				
2	Centri	+10,670	+10,670	+10,670			
	т.м.	+ 598	+ 598	+ 598			
	Total	+22,553	+34,004	+ 4,270			+19,137 <u>+</u> 14,867
	Rad	+ 6,769	+ 6,769	- 5,057	+ 276	-	
	Tang	- 1,995	+ 1,995	-	_	+2,503	
3	Centri	+10,670	+10,670	+10,670		_	
	Т.М.	- 2,282	- 2,282	- 2,282	-	-	
	Total	+13,162	+17,152	+ 3,330	+ 276	+2,503	+10,761 <u>+</u> 6,389
	Abbreviations:						
		Radial Tangential	– Rad – Tang		Centrifugal Toroidal Momer		ri

TABLE 3-18b

đ

はないま

CLASS B (UTW) REDUCTION GEAR RING GEAR BACKING STRESSES (PSI)(ENGLISH UNITS) 100% SPEED (3143 RPM); 100% TORQUE (264,704 IN-LB)

Stress Area (Fig.3-14) Point	Load	Circum At S Front	ferential tar Back	Stress Between Stars	Longitudinal	Shear	Equivalent
	Rad						
		-18,648		+11,812			
	Tang	+ 7,166	-	-			
1	Centri	,		+15,475			
	Τ.Μ.	+ 3,416	+ 3,416	\$ 3,416			
	Total	+ 7,409	- 6,923	+30,703			+11,890 <u>+</u> 18,813
	Rad	+24,671	+24,671	-10,150			
	Tang	- 8,304	+ 8,304				
2	Centri	+15,475	+15,475	+15,475			
	T.M.	+ 868	+ 868	+ 868			
	Total	+32,710	+49,318	+ 6,193			+27,756 <u>+</u> 21,563
	Rad	+ 9,818	+ 9,818	- 7,335	+ 401	-	
	Tang	- 2,893	+ 2,893	-	-	+3,631	
3	Centri	+15,475	+15,475	+15,475	-	-	
	T.M.	- 3,310	- 3,310	- 3,310	-	-	
	Total	+19,090	+24,876	+ 4,830	+ 401	+3,631	+15,608 <u>+</u> 9,267
	Abbrouiational						
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

TABLE 3-19a

and the second second

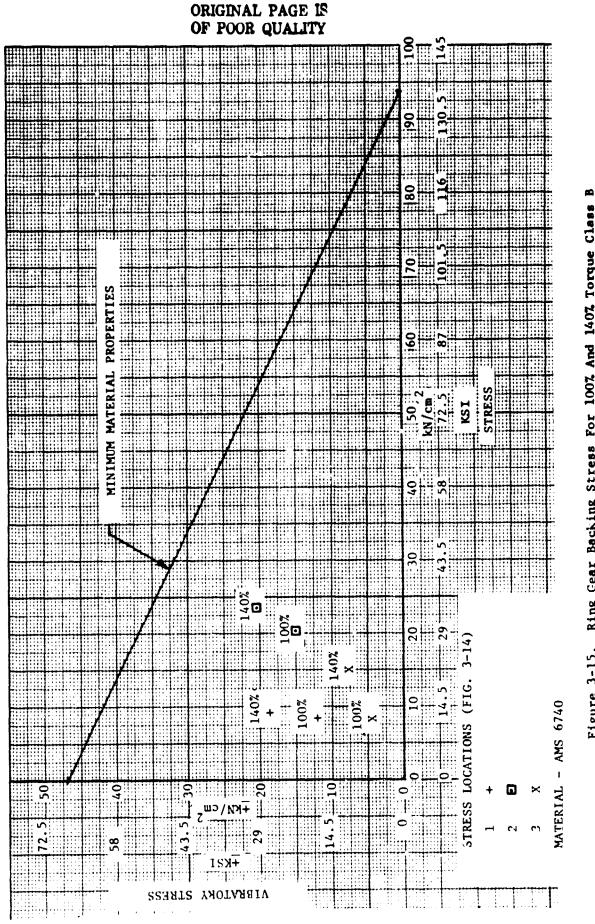
CLASS B (UTW) REDUCTION GEAR

Stress Area		Circumferential At Star		Between			
(Fig.3-1	4) Load	Front	Back	Stars	Longitudinal	Shear	Equivalent
	Rad	-18,000	-18,000	+11,402			
	Tang	+ 6,917	- 6,917	-			
1	Centri	+10,670	+10,670	+10,670			7,206
	Т.М.	+ 3,297	+ 3,297	+ 3,297		1	-18,156
	Total	+ 2,883	-10,950	+25,362			
	Rad	+23,814	+23,814	- 9,797			
	Tang	- 8,015	- 8,015	-			+22,520
2	Centri	+10,670	+10,670	+10,670			
2	Т.М.	+ 838	+ 838	838			+20,810
	Total	+27,306	+43,329	+ 1,710			
	Rad	+13,212	+13,212	+ 7,080	+ 387	-	
	Tang	- 2,792	+ 2,792	-	-	+ 3,449	
3	Centri	+10,670	+10,670	+10,670	-	-	
	т.м.	- 3,195	- 3,195	- 3,195	_	-	+13,912
	Total	+17,895	+23,480	+ 394	+ 387	+ 3,449	<u>+</u> 10,072
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

RING GEAR BACKING STRESSES (N/cm²)(SI UNITS) 100% SPEED (329 RAD/S); 140% TORQUE(41,871 N-MO)

TABLE 3-19b

-


without the

CLASS B (UTW) REDUCTION GEAR

RING GEAR BACKING STRESSES (PSI)(ENGLISH UNITS)

100% SPEED (3143 RPM) 140% TORQUE (370,586 IN-LB)

Stress Area (Fig.3-14) Load	Circur At S Front	nferential tar Back	Stress Between Stars	Longitudinal	Shear	Equivalent
	Rad	-26,107	-26,107	+16,537			
	Tang	+10,032	-10,032	-			
1	Centri	+15,475	+15,475	+15,475			10,451
	T.M.	+ 4,782	+ 4,782	+ 4,782			<u>+</u> 26,333
	Total	+ 4,182	-15,882	+36,784			
	Rad	+34,539	+34,539	-14,210			
	Tang	-11,625	+11,625	-			+32,662
2	Centri	+15,475	+15,475	+15,475			
	T.M.	+ 1,215	+ 1,215	+ 1,215			<u>+</u> 30,182
	Total	+39,604	+62,844	+ 2,480			
	Rad	+19,163	+19,163	-10,269	+ 561	-	
	Tang	- 4,050	+ 4,050	-	-	+ 5,003	
3	Centri	+15,475	+15,475	+15,475	-		
	T.M.	- 4,634	- 4,634	- 4,634	-	-	
	Total	+25,954	+34,054	+ 572	+ 561	+ 5,003	+20,177 <u>+</u> 14,608
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

Ring Cear Backing Stress For 100% And 140% Torque Class (UTW) Reduction Gear Figure 3-15.

.

Star Gear - Analysis of the backing stresses in the star gear was identical to that performed on the sun and ring gears with the exception that there is no toroidal moment applied. In calculating the effect of radial loads, forces are applied at two locations 180° apart. The bearing radial clearance is taken into consideration since it limits the amount of radial deflection caused by the gear tooth separating forces.

Table 3-20 shows the detailed star gear backing stresses for both the 100% and 140% design torque operation for the specific locations as noted in Figure 16. The Goodman diagram for the gear material, AMS 6265, is shown on Figure 3-17 for the two points at which the stresses are calculated. The lowest vibratory margins are over 7.0 for both the design torque condition and the 140% torque, a stress situation which is satisfactory.

3.2.3 "Combined" Stress

1

Curtiss-Wright practice has been to analyze the gear tooth bending stress according to AGMA methods and compare it to C-W allowables. The gear backing stresses are calculated in the manner described above and plotted on Goodman diagrams for minimum material properties. If both stress values show satisfactory margins when compared to their respective allowables, the gear component is considered satisfactory.

In response to a request from General Electric to "combine" the effect of the gear tooth bending and gear backing stresses, several methods were reviewed. The method selected is a conservative technique since it actually adds the two effects even through the locations of maximum stresses are not coincident. It should be noted that the following discussion of combined stress is not a rigorous calculation of the actual stresses that exist but is a conservative estimate of them.

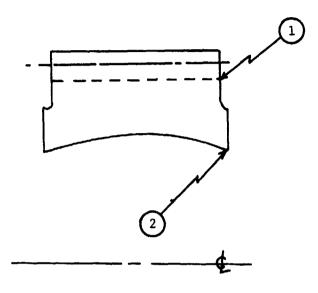
Sun Gear - In order to combine the tooth bending stress and the backing stress a more detailed view of stresses in the gear must be taken. Figure 3-12 shows the gear load acting on a particular tooth of the sun gear. Locations identified as "A" are points of maximum tooth bending stress. The subscript 1 implies tensile stresses and the subscript 2 (on the opposite side of the

63

حري

.

TABLE 3-20a CLASS B (UTW) REDUCTION GEAR STAR GEAR BACKING STRESSES (N/cm²)(SI UNITS) 100% SPEED 1,108 RAD/S

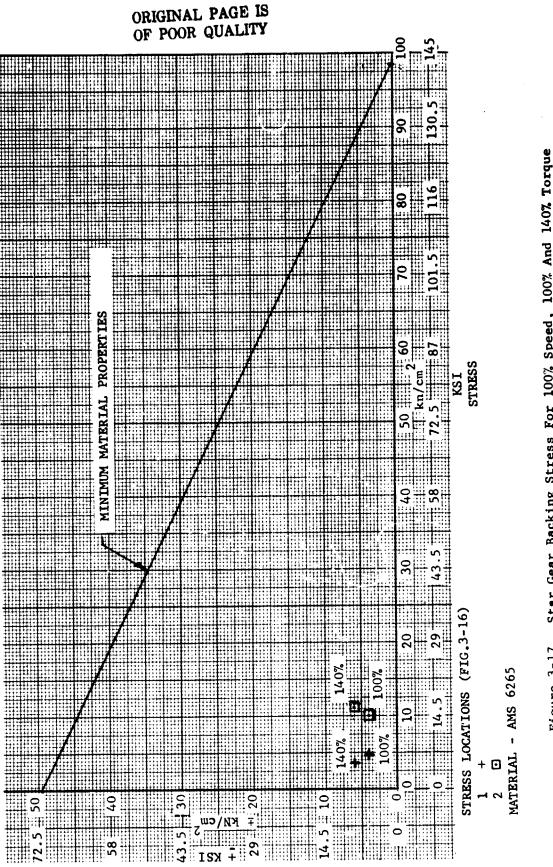

	100% Tor	que 1,481 N-m	l					
Stross Area		At	Mesh	Between				
(Fig.3-16	i) Load	Front	Back	Meshes	Equivalent			
	Rad.	- 3,697	- 3,697	2,110				
1	Tang.	+ 3,320	3,320	-	4,888			
	Centri	+ 7,341	+ 7,341	+ 7,341	<u>+</u> 4,564			
	Total	+69,637	325	9,451				
	Rad	+ 3,564	3,564	- 2,034				
2	Tang	- 3,201	3,201	-	9,706			
	Centri	+ 7,341	+ 7,341	+ 7,341	<u>+</u> 4,400			
	Total	+ 7,704	+14,167	+ 5,307				
	140% Torqu	1e 2,074 N-m		······································				
	Rad.	- 5,176	- 5,176	2,954				
1	Tang.	- 4,648	- 4,648	-	3,906			
	Centri.	+ 7,341	+ 7,341	+ 7,341	6,389			
	Total	+ 6,813	- 2,483	+10,295				
	Rad.	+ 4,990	+ 4,990	- 2,848				
2	Tang.	- 4,481	+ 4,480	-	+10,652			
	Centri.	+ 7,341	+ 7,341	+ 7,341				
	Total	+ 7,850	+16,811	_ 4,493	<u>+</u> 6,159			
	Abbreviations: Radial - Rad Tangential - Tang Centrifugal - Centri							

12.2.2

TABLE 3-20b

CLASS B (UTW) REDUCTION GEAR STAR GEAR BACKING STRESSES (PSI)(ENGLISH UNITS) 100% SPEED (10,577 RPM) +

	100% Toro	ue 13,110 In	n.Lb.			
Stress Area (Fig. 3-16) Load		At Me	At Mesh			
(118.)-		Front Back		Meshes	Equivalent	
	Rad.	-5,362	-5,362	+3,060		
1	Tang.	+4,815	-4,815	-	+7,089	
	Centri	+10,647	+10,647	+10,647	+6,619	
	Total	+10,100	+470	+13,707		
	Rad.	+5,169	+5,169	-2,950		
2	Tang	-4,642	+4,642	-	+14,078	
	Centr.	+10,647	+10,647	+10,647	<u>+</u> 6,381	
	Total	+11,174	+20,458	+7,697		
	140% Torque	18,354 In	·Lb.			
	Rad.	-7,507	-7,507	+4,284		
1	Tang.	+6,741	-6,741	-	+5,665	
	Centri.	+10,647	+10,647	+10,647	+9,266	
	Total	+9,881	-3,601	+14,931		
	Rad.	+7,237	+7,237	-4,130		
2	Tang.	-6,499	+6,498	-	+15,450	
	Centri.	+10,647	+10,647	+10,647	115,450	
	Total	+11,385	+24,382	+6,517	<u>+</u> 8,933	
	Abbreviations: Radial - Rad Tangential - Tang Centrifugal - Centri					


.

(1) NUMBERS IDENTIFY STRESS ANALYSIS AREAS, TABLE 3-20

DATA ITEM	DATA ITEM MAGNITUDE				
DATA TIEM	ENGLISH UNITS	SI UNITS			
100% RPM	10,577 RPM	1,108 RAD/S			
100% TORQUE	13,110 IN./LBS	1,481 N-M			
TANGENTIAL LOAD	3,798 LBS	16,894 N			
RADIAL LOAD	1,458 LBS	6,486 N			

REFERENCE 100% SPEED AND LOAD DATA

Figure 3-16. Star Gear High Stress Areas (Identification For Table 3-20) Class B (UTW) Reduction Gear.

VIBRATORY STRESS

Star Gear Backing Stress For 100% Speed, 100% And 140% Torque Class B (UTW) Reduction Gear. Figure 3-17.

loaded tooth) implies compressive stress. The "B" locations are backing or "valley" stresses. At a given instant of time, the notation "I" identifies the stresses in the valley (also identified as circumferential stress at mesh, front, on Table 3-16), and loaded side of the loaded tooth. The notation "II" identifies the back side of the loaded tooth and its associated valley stresses. The stresses away from the loaded tooth are identified as "III". Stress value locations shown in Table 3-21 correspond to the notations described. The gear tooth bending stress for the sun gear is 24,869 N/cm^2 (36,070 psi) which includes a stress concentration factor (1.91 in this case). This value is entered as a tensile stress at "I" and a compressive stress at "II". At point "II" the value of A_1 is zero because there is no gear load on that tooth at that instant of time. That is also the reason that A_2 is zero at point "I". At point "III", there is no load on any adjacent teeth and both A_1 and A_2 are zero. Valley stresses are from Table 3-16 with a stress concentration factor of 1.5 applied. The values for "B" at points "I", "II" and "III" are from the first, second and third columns of Table 3-16. It should be noted that the tangential stress is tension on the loaded side and compression on the unloaded side.

For point "I" the stress from the first column is totaled including a tensile stress contribution from the gear tangential load. The tangential load on the gear causes a compressive stress at point "II" which is added algebraicall, to the stresses resulting from the radial load, centrifugal force and toroidal moment. The stresses at A_1 , A_2 and B are added together for the three points of interest, I, II and III in Table 3-21. From these values a stress range is determined and finally a mean and vibratory stress is calculated and plotted on a Goodman diagram for AMS 6265 material, Figure 3-18. The "combined" stress data for the sun gear is plotted on this figure for both 100% and 140% design torque operation. With the conservative approach used to estimate the stresses, the resulting vibratory margin of 1.41 for 100% torque is very satisfactory. The margin for the 140% torque point is 1.03. The Goodman diagram was drawn for the base material and the endurance strength can be increased by 15% duf to the shot peening that will be applied to the valley area. Therefore, the 140% torque operation is considered satisfactory.

TABLE 3-21a CLASS B (UTW) REDUCTION GEAR

SUN GEAR "COMBINED" STRESS (N/cm²) (SI UNITS)

100% SPEED (811 RAD/S)

INCLUDES STRESS CONCENTRATION FACTORS

		Teo N Toudon		
Location (Fig.3-12)	I	II	III	Equivalent
Al	+24,869	0	0	
A2	0	-24,869	0	
В	+15,819	+ 2,052	+18,136	+ 8,936
Total	+40,689	-22,816	+18,136	<u>+</u> 31,753

100 % TORQUE

140 % TORQUE

Location (Fig.3-12)	I	II	III	Equivalent
A1	+34,817	0	0	
A2	0	-34,817	0	+ 7,094
В	+16,731	- 2,543	19,980	<u>+</u> 44,455
Total	+51,548	-37,361	+19,980	

TABLE 3-21b

CLASS B (UTW) REDUCTION GEAR

SUN GEAR "COMBINED" STRESS (PSI) (ENGLISH UNITS)

III

0

28,979

+28,979

.

Equivalent

+10,289

+64,476

INCLUDES STRESS CONCENTRATION FACTORS

100% TORQUE

II

Location (Fig.3-12)

A2

B

Total

f

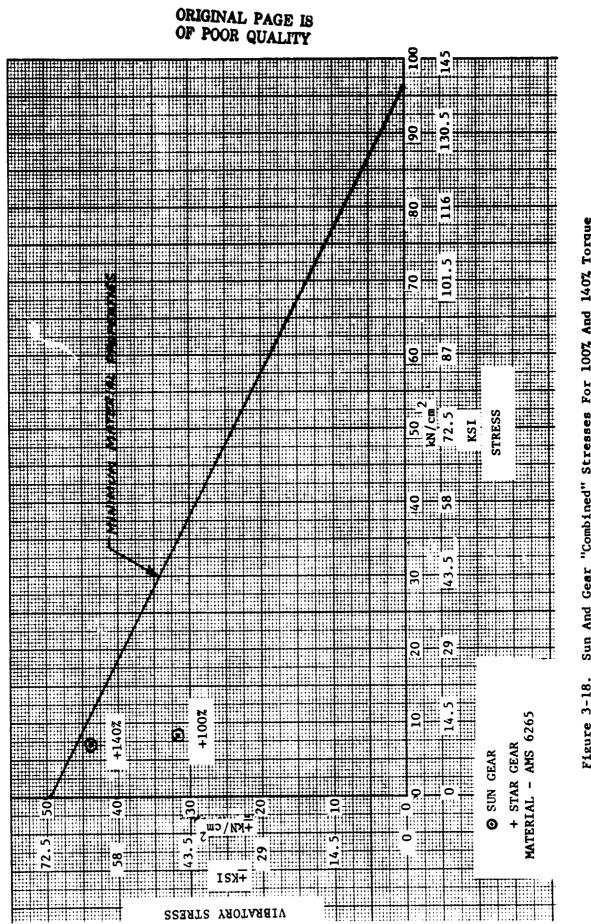
I

0

+24,266

+74,764

100% SPEED (7747 RPM)


68

A1	+36,070	0	0	
A2	0	-36,070	0	
В	+22,944	+ 2,976	+26,304	+12,960
Total	+59,014	-33,094	+26,304	<u>+</u> 46,054
**************************************		140% TORQUE		
Location (Fig.3-12)	I	II	III	Equivalent
A1	+50,498	0	0	

-50,498

- 3,689

-54,187

Sun And Gear "Combined" Stresses For 100% And 140% Torque Class B (UTW) Reduction Gear Figure 3-18.

Ring Gear - Combined stresses for the ring gear are calculated in the same manner as those for the sun gear. Table 3-22 shows the tooth bending and valley stresses at the three points of maximum stress around the ring. The stresses when added together result in a stress range and an equivalent mean and vibratory stress. The stress data for both 100% and 140% torque are shown on Table 3-22 and plotted on a Goodman diagram, Figure 3-19. Vibratory margins for the ring gear are similar to, but slightly greater than, those for the sun gear.

Star Gear - Combined stress for the star gear involves a slightly different concept in valley stresses. This is due to the fact that the tooth is loaded on one side by the sun gear and the opposite side by the ring gear. As a conservative assumption the valley stresses are added to the bending stresses for either side, that is, A_1 and A_2 are added to B individually. Two stress cycles will occur for each revolution of the star gear.

Table 3-23 shows the valley and tooth bending stresses for the star gear as well as the combined stress values. Mean and vibratory stress data are plotted on the Goodman diagram shown on Figure 3-18. The vibratory margin is 1.60 for the 100% torgue and 1.17 for the 140% torgue point.

Again, considering the relatively conservative assumptions made in arriving at the "combined" stress, the margins are considered satisfactory.

3.2.4 Stresses Due to Flight

The effect of maneuver loads called out in Specification MIL-E-5007, with exception of catapult operation and a pitch velocity during flight of 1 rad/s, and an emergency condition of 2.5 fan blades out was investigated. Input data used for the analysis was supplied by General Electric from their dynamic analysis of the complete rotating system. In their analysis, the following assumptions were made.

- 1. No torque in the main reduction gears
- 2. No radial force between the gears
- 3. Ring gear rigidly attached to fan shaft
- 4. Sun gear rigidly attached to flex coupling

TABLE 3-22a

CLASS B (UTW) REDUCTION GEAR

RING GEAR "COMBINED" STRESS (N/cm²)(SI UNITS)

100% SPEED (329 RAD/S)

INCLUDES STRESS CONCENTRATION FACTORS

100% TORQUE						
Locstion (Fig.3-12)	I	II	III	Equivalent		
Al	+19,595	0	0			
A2	0	-19,595	0	+ 2,499		
В	+ 7,662	- 7,160	+31,754	<u>+</u> 29,254		
Total	+27,258	-26,755	+31,754			

140% TORQUE

Location (Fig.3-12)	I	II	III	Equivalent
Al	+27,433	0	0	
A2	0	-27,433	0	- 2,908
В	+ 4,325	-16,425	+38,043	<u>+</u> 40,951
Total	+31,758	-43,858	+38,043	

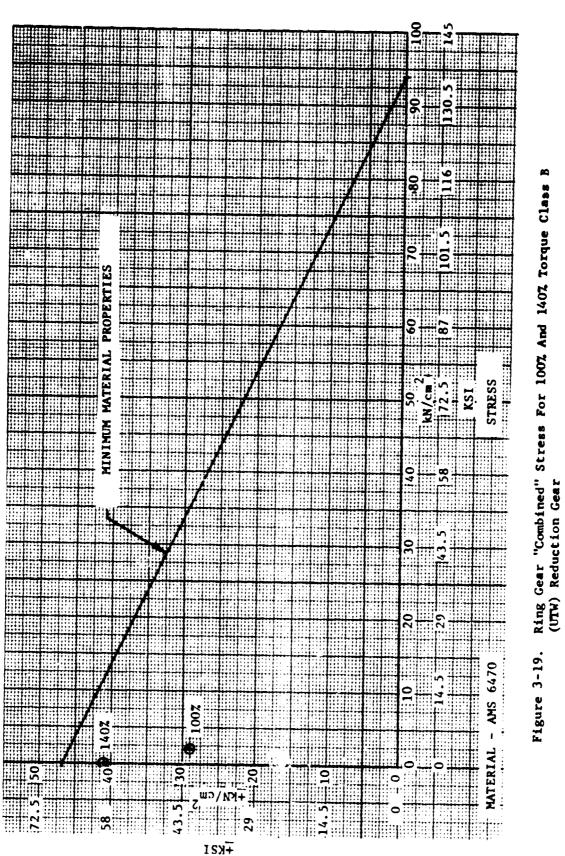
TABLE 3-22b

AND REAL PROPERTY OF

CLASS B (UTW) REDUCTION GEAR

RING GEAR "COMBINED" STRESS (PSI) (ENGLISH UNITS)

100% SPEED (3143 RPM)


INCLUDES STRESS CONCENTRATION FACTORS

		100% TORQUE		
Location (Fig.3-12)	I	II	111	Equivalent
A1	+28,420	0	0	
A2	o	-28,420	0	+ 3,625
В	+11,114	-10,385	+46,055	<u>+</u> 42,430
Total	+39,534	-38,805	+46,055	

100% TORQUE

140% TORQUE

Location (Fig.3-12)	I	II	III	Equivalent
A1	+39,788	0	0	
A2	0	-39,788	0	- 4,218
В	+ 6,273	-23,823	+55,176	<u>+</u> 59,394
Total	+46,061	-63,611	+55,176	

VIBRATORY STRESS

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 3-23a CLASS B (UTW) REDUCTION GEAR

STAR GEAR "COMBINED" STRESS (N/cm²)(SI UNITS)

100% SPEED (1,107 RAD/S)

INCLUDES STRESS CONCENTRATION FACTOR

		TOON TONGUE		
Location (Fig.3-12)	I	11	111	Equivalent
A1	+24,042	0	0	
A2	0	-24,042	o	+ 5,466
В	+10,446	+ 486	+14,176	<u>+</u> 29,022
Total	+34,488	-23,556	+14,176	

100% TORQUE

1	4(1	7	T	Ô	R	O	U	E
	-	~ .	•	•	-		ч.	-	_

Location (Fig.3-12)	I	II	III	Equivalent
A1	+33,659	0	0	
A2	0	-33,659	0	+ 3,247
В	+10,219	- 3,476	+15,441	+40,631
Total	+43,878	-37,383	+15,441	

TABLE 3-23b

CLASS B (UTW) REDUCTION GEAR

STAR GEAR "COMBINED" STRESS (PSI) (ENGLISH UNITS)

100% SPEED - (10,577 RPM)

INCLUDES STRESS CONCENTRATION FACTORS

		TOOM TORGUE		
Location (Fig.3-12)	I	11	111	Equivalent
A1	+34,870	0	0	
A2	0	-34,870	0	+ 7,928
В	+15,150	+ 705	+20,561	<u>+</u> 42 ,09 3
Total	+50,020	-34,165	+20,561	

\$

100% TORQUE

140% TORQUE

Location (Fig.3-12)	I	II	III	Equivalent
A1	+48,818	0	0	
A2	0	-48,818	0	+ 4,710
В	+14,822	- 5,402	+22,396	+58,930
Total	+63,640	-54,220	+22,396	

5. Star gear rotation not taken into account. The gears are assumed lumped weights.

GE data were supplied in the form of relative radial motion of the sun gear, star gear, and ring gear for 1 "G", 1 rad/s^2 , 1 rad/s, and 1 blade out. The relative motion was converted to differential deflections at the ring-to-star mesh and the sun-to-star mesh. Table 3-24 shows the differential deflections for each particular load and also shows how the particular maneuvers combine for the maximum loading during flight and landing. In order to relate these deflections into forces, radial spring rates of the three components must be evaluated. The following table shows the radial deflections of the individual components under a 4448 N (1000 pound) load.

Component	Deflection		
	mm	mils	
Sun	.1651	6.50	
Star	.0191	0.75	
Ring	.0305	1.20	

Table 3-25 shows the summary of differential deflections and separating loads on the gears for the flight and landing conditions. In order to calculate the increase in load on the star gears, a load of 11863 N (2667 pounds) was applied by the ring gear to the carrier support and a load of 5583 N (1255 pounds) from the sun gear to the carrier. Since the relationship between the star gears and the sun and ring gear is not fixed, this load was applied to the carrier support at different angles from directly in line with a star to halfway between two stars. The maximum increase in separating load on an individual star is just under 13% of the design load. Converting this separating load into torque results in an increase in torque as follows:

Sun	5.9%
Ring	21.7%
Star	12.8%

Since the basic gearing was analyzed and found satisfactory for 100% and 140% torque, there should be no problems for these increases in torque at design

TABLE 3-24

CLASS B (UTW) REDUCTION GEAR

MANEUVER LOADS

DIFFERENTIAL DEFLECTIONS

(BASED ON G.E. DYNAMIC ANALYSIS)

SI UNITS

Maneuver	Ring to Star mm	Sun to Star mm
10G	.05334	.1524
14 Rad/Sec ²	.05842	•04572
1 Rad/Sec	.09398	.12192
2.5 Blades Out	.2159	.1397

ENGLISH UNITS

Maneuver	Ring to Star mils	Sun to Star mils
10G	2.1	6.0
14 Rad/Sec ²	2.3	1.8
1 Rad/Sec	3.7	4.8
2.5 Blades Out	8.5	5.5

CRITICAL LOAD CONDITIONS

Condition	Flight	Landing
Power	Maximum	100%
'G' Down	6	10
'G' Side	4	2
'G' Forward	4	10
Pitch Velocity	\pm 1 Rad/Sec	0
Pitch Acceleration	0	\pm 14 Rad/Sec ²
Yaw Acceleration	0	\pm 6 Rad/Sec ²

TABLE 3-25a CLASS B (UTW) REDUCTION GEAR MANEUVER LOADS

(SI UNITS)

	Differential Deflection - mm			
Load	Ring to Star	Sun to Star		
Flight				
7.21 'G'	.038	.109		
1 Rad/Sec	•094	.122		
Total	.132	.231		
Separating Load	11,863 N	5,583 N		
Landing				
10.2 'G'	•053	.155		
15.2 Rad/Sec ²	.064	.051		
Total	.116	.206		
Separating Load	10,587 N	4,964 N		
Blade Out				
Total	.216	.139		
Separating Load	10,110 N	3,376 N		

76

TABLE 3-25b

a and the second

.

CLASS B (UTW) REDUCTION GEAR (ENGLISH UNITS)

MANEUVER LOADS

Load	Differential Deflection - Mils				
Pld-be	Ring to Star	Sun to Star			
<u>Flight</u> 7.21 'G'	1.5	4.3			
1 Rad/Sec	3.7	4.8			
Total	5.2	9.1			
Separating Load-Pounds	2667	1255			
Landing					
10.2 'G'	2.1	6.1			
15.2 Rad/Sec ²	2.5	2.0			
Total	4.6	8.1			
Separating Load-Pounds	2380	1116			
Blade Out					
Total Rad/Sec ²	8.5	5.5			
Separating Load-Pounds	4398	759			

conditions. The instantaneous increase in torque on some stars will be offset by a decrease in others. Backing stresses for the design plus flight maneuver loads are shown on Table 3-26.

Table 3-27 shows the "combined" stresses for design plus flight maneuver loads. The Goodman diagram for the star and sun gear material is shown on Figure 3-20 and the data for the design point and design plus flight maneuver point are plotted. The vibratory margins indicate a satisfactory condition for this type of operation. The ring gear shows satisfactory margins of safety, as shown in Figure 3-21.

The loads resulting from 2.5 fan blades out (equivalent to 5 blades losing just their airfoil sections) are equal to an increase in torque as follows:

Sun Gear	7.8%
Ring Gear	28.5%
Star Gear	16.8%

This increase in torque will result in lower stresses than those reported for the 140% torque condition contemplated to be run during the demonstration tests and should cause no problems to the gearing.

3.2.5 Star Gear Carrier Support Stress

In the deformation and stress analysis of the fixed carrier support several assumptions were made. Radial and tangential gear loads were uniformly distributed along the width of the mating teeth. The resulting tangential loads applied by the sun and ring gear to the stars were uniformly distributed on the carrier support posts. Loads were analyzed separately and the results superimposed. A computer program (K SHELL 1) "Analysis of a Axisymmetric Shells under Symmetrical and Unsymmetrical Loading" was used in this analysis. The program is based on work by Arturs Kalnins, published in the Journal of Applied Mechanics, Vol. 31, September 1964.

Figure 3-22 is a sketch of the carrier support as it was analyzed. The outer flange (Item 11) was fixed and three types of load were applied, tangential load from the star gear, unbalance forces due to loss of fan blades, and a vertical "G" loading.

TABLE 3-26a

CLASS B (UTW) REDUCTION GEAR BACKING STRESS (N/cm²)(SI UNITS) HOOP STRESS AT POINT NO. 1 FOR ALL COMPONENTS FLIGHT MANEUVERS PLUS 100% SPEED AND TORQUE

1		At M		Between		
Gear	Load	Front	Back	Meshes	Equivalent	
	Rad.	$-5,341 \text{ N/cm}^2$	$-5,341 \text{ N/cm}^2$	+ 1,131 N/cm ²		
	Tang.	$+ 4,864 \text{ N/cm}^2$	$-4,864 \text{ N/cm}^2$	-		
Sun	Centri.	$+ 9,028 \text{ N/cm}^2$	$+ 9,028 \text{ N/cm}^2$	$+ 9,028 \text{ N/cm}^2$	$+ 6,607 \text{ N/cm}^2$	
	т.м.	$+ 2,115 \text{ N/cm}^2$	$+ 2,115 \text{ N/cm}^2$	$+ 2,115 \text{ N/cm}^2$	\pm 5,668 N/cm ²	
	Total	+10,667 N/cm ²	+ 938 N/cm ²	+12,275 N/cm ²		
	Rad.	-21,956 N/cm ²	-21,956 N/cm ²	+13,908 N/cm ²		
	Tang.	+ 8,436 N/cm ²	-8,436 N/cm ²	-		
Ring	Centri	+10,670 N/cm ²	+10,670 N/cm ²	+10,670 N/cm ²	$+ 6,449 \text{ N/cm}^2$	
	т.м.	+ 4,022 N/cm ²	$+ 4,022 \text{ N/cm}^2$	$+ 4,091 \text{ N/cm}^2$	$\pm 22,150 \text{ N/cm}^2$	
	Total	+ 1,172 N/cm ²	-15,701 N/cm ²	+28,599 N/cm ²		
	Rad	-4,172 N/cm ²	-4,172 N/cm ²	$+2,381 \text{ N/cm}^2$		
	Tang.	$+ 3,746 \text{ N/cm}^2$	$-3,746 \text{ N/cm}^2$	-	+4,572 N/cm ²	
Star	Centri	+ 7,341 N/cm ²	$+7,341 \text{ N/cm}^2$	$+7,341 \text{ N/cm}^2$	\pm 5,149 N/cm ²	
	Total	+ 6,915 N/cm ²	- 577 N/cm ²	$+ 9,722 \text{ N/cm}^2$		
	Abbreviations:					
	Radi Tang	ial - Rad gential - Tang		entrifugal - oroidal Moment -		

TABLE 3-26b

CLASS B (UTW) REDUCTION GEAR

BACKING STRESS (PSI) (ENGLISH UNITS)

HOOP STRESS AT POINT NO. 1 FOR ALL COMPONENTS

FLIGHT MANEUVERS PLUS 100% SPEED AND TORQUE

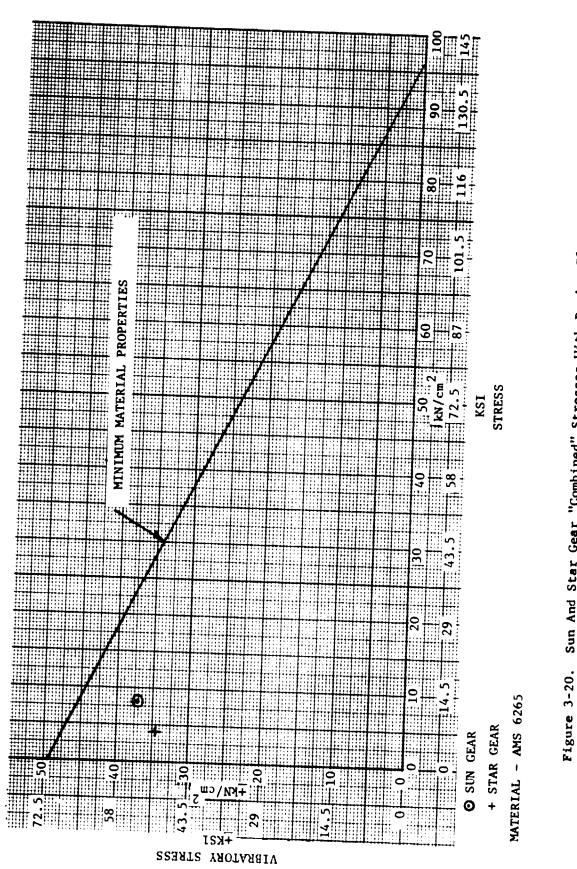
din dine

Gear Load		At M		Between	
	Load	Front	Back	Meshes	Equivalent
	Rad.	-7,746	-7,746	+1,641	
	Tang.	+7,055	-7,055	-	
Sun	Centri.	+13,094	+13,094	+13,094	+9,582
	т.м.	+3,068	+3,068	+3,068	<u>+</u> 8,221
	Total	+15,471	+1,361	+17,803	
	Rad.	-31,844	-31,844	+20,172	
	Tang.	+12,236	-12,236	-	
Ring	Centri	+15,475	+15,475	+15,475	+9,354
	т.м.	+5,833	+ 5,833	+ 5,933	<u>+</u> 32,126
	Total	+1,700	-22,772	+41,480	
	Rad	-6,051	-6,051	+3,453	
	Tang.	+5,433	-5,433	-	+6,631
Star	Centri	+10,647	+10,647	+10,647	<u>+</u> 7,468
	Total	+10,029	-837	+14,100	
A	bbreviations: Radial Tangential	- Rad - Tang		fugal - Cen al Moment - T.M	

TABL: 3-27

CLASS B (UTW) REDUCTION GEAR

GEAR "COMBINED" STRESSES

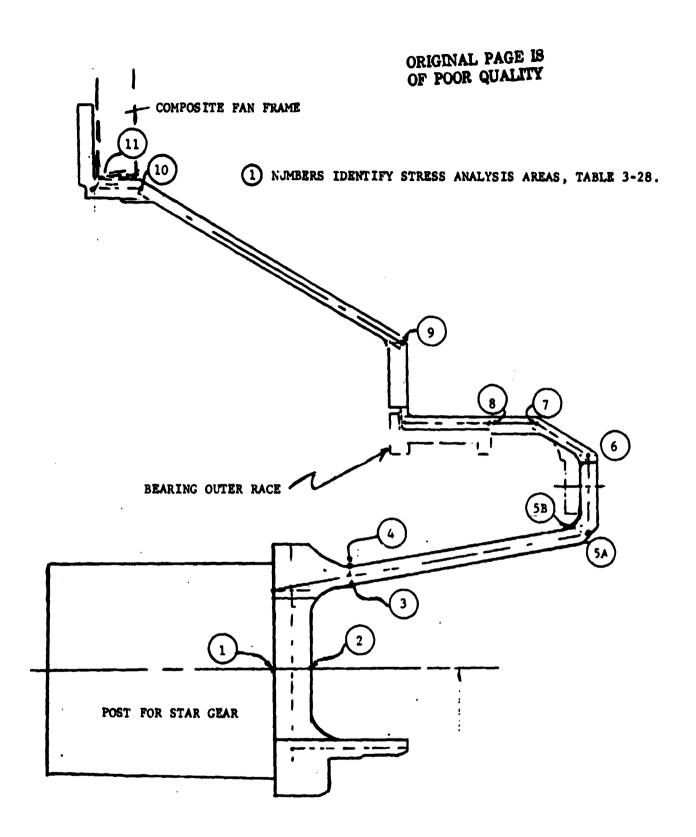

100% DESIGN PLUS MANEUVER LOADS INCLUDES STRESS CONCENTATION FACTORS

		S1	UNITS		
		Stree	$s = N/cm^2$		
Gear	Location (Fig.3-12)	I	II	III	Equivalent
Sun	Al A2 B Total	+29,630 0 +16,001 +45,630	0 -29,630 - 1,408 -28,222	0 0 +18,412 +18,412	8,705 <u>+</u> 36,926
Ring	Al A2 B Total	+23,371 0 + 1,758 +25,129	0 -23,371 -23,551 -46,922	0 0 +42,899 +42,899	- 2,011 <u>+</u> 44,911
Star	Al A2 B Total	+28,644 0 +10,372 +39,017	0 -28,644 - 866 -29,510	0 0 +14,582 +14,582	+ 4,753 <u>+</u> 34,263
	1 1	-		,	

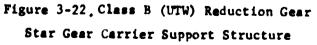
ENGLISH UNITS


	Stress - PSI					
Sun	Al A2 B Total	+42,974 0 +23,207 +66,181	0 -42,974 - 2,042 -40,932	0 0 +26,705 +26,705	12,625 +53,557	
Ring	Al A2 B Total	+33,897 0 + 2,550 +36,447	0 -33,897 -34,158 -68,055	0 0 +62,220 +62,220	- 2,917 +65,138	
Star	Al A2 B Total	+41,545 0 +15,044 +56,589	0 -41,545 - 1,256 -42,801	0 0 +21,150 +21,150	+ 6,894 <u>+</u> 49,695	

stinense saite – er sverigensk storfer formaliket i sjore sjore store store store store store store store stor Store stor



ORIGINAL PAGE IS OF POOR QUALITY


VIBRATORY STRESS

ORIGINAL PAGE IS OF POOR QUALITY

.

:

Results of analysis are shown in Table 3-28. For the normal torque loading the maximum equivalent stress occurs in the post at its base with a value of 4559 N/cm^2 (8551 psi) due to the out of plane bending load. These stresses are essentially steady and minimal vibratory stresses are expected. The stresses are low enough to not cause any concern with respect to stress concentration factors and overload conditions. The minimum material property for the carrier, AMS 6415 RC 32 is 91010 N/cm² (132,000 psi) yield strength.

For a 10 "G" vertical load which is equivalent to a load of 4448 N (1000 pounds) applied at the middle of each of the six posts, the maximum equivalent stress is 7950 N/cm² (11,531 psi), well within minimum material allowables when stress concentration factors and overload situations are taken into consideration. Data furnished by General Electric indicated that a bearing load of 200,170 N (45,000 pounds) represents the effect of operating with 2.5 fan blades out. The highest stress in the carrier will occur at point 5B where the effective stress is 6287 N/cm² (9118 psi). Because the blade out force rotates, the stress at point 5 will be vibratory. With a minimum endurance strength of \pm 51,710 N/cm² (\pm 75,000 psi) the blade out operation should not damage the carrier.

3.2.6 Flex Coupling

The sun gear is attached to the power turbine drive shaft by means of a diaphragm type flexible coupling. A common flexible coupling is used for both the UTW and OTW reduction gears. The shell computer program used to analyze the carrier support was also used to analyze the coupling. Figure 3-23 shows a model of the coupling as it was set up for analysis. Various sections of the coupling were modeled as cones and cylinders with constant or variable thickness. Three loads were applied to the coupling at the sun gear spline area; tangential and radial loads due to the torque and a vertical load of 4448 N (1000 pounds). Loads were applied separately at speed. Vertical load was used to relate vertical motion of the spline to stresses throughout the coupling. Motions or deflections of the splines as a function of blade out and maneuvers were obtained from General Electric.

TABLE 3-28

We are a straight and man

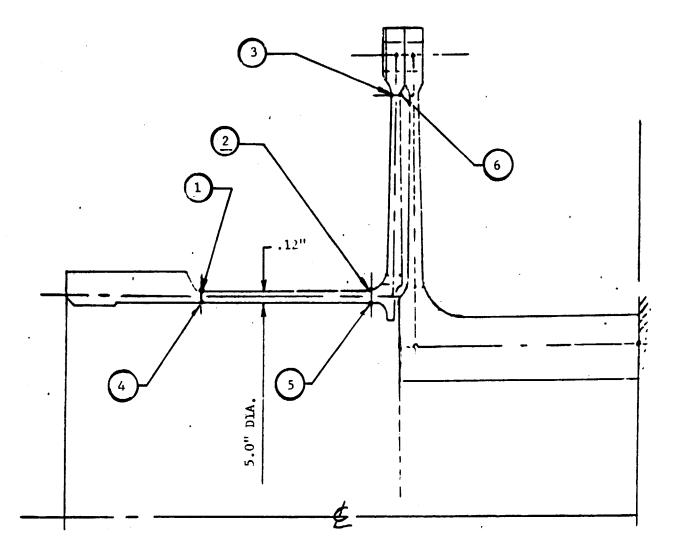
"子母子弟"

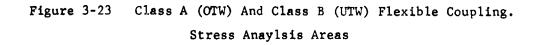
 $(m+1)_{\rm eff}$

- Andrew

CLASS B (UTW) REDUCTION GEAR STAR GEAR CARRIER SUPPORT STRESS 1007 DESIGN PLUS MANEUVER LOADS

SI UNITS


	Location		Stress	- N/cm ²	
Load	(Fig. 3-22)	Ноор	Longitudinal	Shear	Equivalent
	Post	-	3,374	+1,771	4,560
100% Torque	1	-2,959	-3,420	+ 432	3,300
	2	+2,225	+2,892	- 429	2,726
	3	+1,022	+ 932	+3,354	5,896
	4	- 422	-2,415	+2,752	5,265
	5A & 5P	-	-	+1,083	1,876
2.5 Blade Out	5A	- 265	-6,350	+ 518	6,287
	5B	+3,664	+6,411	+ 86	5,573
	3	+ 476	+ 771	+ 676	1,351
10 'G' Down	4	+ 103	- 426	+ 475	956
	5A	-4,771	-7,099	+ 47	6,269
	5B	- 171	+7,717	+ 877	7,950


ENGLISH UNITS

	Location		Stres	ss - PSI	
Load	(Fig. 3-22)	Ноор	Longitudinal	Shear	Equivalent
	Post	-	4,894	+2,568	6,613
100% Torque	1	-4,291	-4,960	+ 627	4,786
	2	+3,228	+4,194	- 622	3,954
	3	+1,482	+1,352	+4,864	8,551
	4	- 612	-3,502	+3,992	7,636
	5A & 5B	-	-	+1,571	2,721
2.5 Blade Out	5A	- 384	-9,210	+ 752	9,118
	5B	+5,314	+9,298	+ 125	8,083
	3	+ 690	+1,118	+ 980	1,959
10 'G' Down	4	+ 150	- 618	+ 689	1,386
	5A	-6,920	-10,296	+ 68	9,092
	5B	- 248	+11,193	+1,272	11,531

ORIGINAL PAGE IS OF POOR QUALITY

1) NUMBERS IDENTIFY STRESS ANALYSIS AREAS, TABLES 3-29 AND 3-30.

Data from General Electric were received in the form of relative deflections between the sun and star gears (see Table 3-24). Knowing the individual spring rates of the sun and star gear, the combined spring rate was calculated for a 4448 N (1000 pound) load. The total deflection is 0.355 mm (0.014 inches). Therefore, the stresses in the coupling for 4448 N (1000 pound) load are directly related to the sun-to-star differential deflection of 0.355 mm (0.014 inches).

Table 3-29 shows the coupling stresses for normal operation and 140% torque. Since the same identical coupling is used for both the UTW and OTW designs, the data presented here are for the higher of the two, the OTW. The OTW unit speed is about 3% higher and torque is 26% higher than the UTW unit values. The maximum stress intensity is 22738 N/cm² (32,979 psi), occurs at point No. 2, outer surface of the cylindrical section at intersection with the diaphragm fillet, and is satisfactory based on minimum material properties (AMS 6265) of 83,800 N/cm² (121,550 psi) yield strength.

Flexible coupling stress values for maneuver and blade out loads are shown on Table 3-30. The highest stress intensity or equivalent stress occurs at point 5, inner surface of the cylindrical section at intersection with the diaphragm fillet, and is 6931 N/cm² (10,053 psi) for maneuvers alone and 5195 N/cm² (7534 psi) for 2.5 fan blades out. Combining the normal design load and the flight maneuver load as a vibratory would result in a mean stress of 17,691 N/cm² (25,659 psi) and a vibratory of \pm 1523 N/cm² (\pm 2209 psi) (without stress concentration factor) at point 5; point 2 would be 18,366 N/cm² (26,638 psi), \pm 608 N/cm² (\pm 882 psi). If this data were plotted on the Goodman diagram shown on Figure 3-13, the vibratory margin would be over 20. The 2.5 fan blades out would result in a stress condition similar to design plus maneuver load condition and would not result in any stress problems for the flexible coupling.

3.3 Deflection Analysis

As discussed in Section 3.1, a key feature of epicyclic gearing systems designed by Curtiss-Wright is a controlled deflection of the gear components

TABLE 3-29a

CLASS B (UTW) REDUCTION GEAR

FLEXIBLE COUPLING STRESS (SI UNITS)

CLASS A (OTW) LOADING

100%	SPEED	(834	RAD/SEC)
		\-- .	

.

Point	Stress - N/cm ²					
(Fig.3-23)	Ноор	Longitudinal	Shear	Equivalent		
1	419	-1,600				
2	+6,652	-2,197				
3	+4,321	+2,036				
4	+1,379	+1,600				
5	+6,550	+2,197				
6	+3,036	- 565				
100% T	orque (15,30	58 N-m)				
1			+ 8,830	15,405		
2			+ 8,830	17,251		
3			+ 2,552	5,794		
4			+ 8,830	15,368		
5			+ 8,830	16,348		
6			+ 2,552	5,550		
<u>140%</u> T	orque (21,51	15 N-m)				
1			+12,293	21,371		
2			+12,293	22,738		
3			+ 3,574	7,234		
4			+12,293	21,344		
5			+12,293	22,060		
6			+ 3,574	7,040		

TABLE 3-29b

CLASS B (UTW) REDUCTION GEAR

FLEXIBLE COUPLING STRESS (ENGLISH UNITS)

CLASS A (OTW) LOADING

100% SPEED (7962 RPM)

Point	Stress - PSI					
(Fig.3-23)	Ноор	Longitudinal	Shear	Equivalent		
1	+608	-2,320				
2	+9,648	-3,186				
3	+6,267	+2,953				
4	+2,000	+2,320				
5	+9,500	+3,186				
6	+4,404	-820				
100	% Torque (136,0	16 in1b.)				
1			+12,807	22,343		
2			+12,807	25,021		
3			+3,702	8,403		
4			+12,807	22,289		
5			+12,807	23,711		
6			+3,702	8,049		
140	% Torque (190,4	422 in1b.)				
1			+17,829	30,996		
2			+17,829	32,979		
3			+5,183	10,492		
4			+17,829	30,957		
5			+17,829	31,996		
6			+5,183	10,211		

	TA	BLE 3-	-30	
CLASS	B (UT	W) REI	DUCTIO	N GEAR
FLEX	IBLE	COUPL	ING ST	RESS
MANEUV	ER AN	D BLAI	DE OUT	LOADS
	S	T UNTI	rs -	

Point (Fig.3-23)	Ноор	Longitudinal	Stress (N/cm ²) Shear	Equivalent
Maneuver Load				
1	-1,458	-1,738	- 165	1,642
2	+4,394	+7,393	- 194	6,449
3	-1,911	-4,024	- 39	3,487
4	- 498	+1,320	+1,384	2,957
5	+ 38	-6,795	+ 733	6,931
6	+1,050	+4,306	+ 67	3,890
2.5 Blade Out				
`1	- 878	-1,047	- 99	988
2	+4,370	+5,568	- 335	5,109
3	-1,149	-2,421	- 32	2,099
4	- 299	+ 793	+ 856	1,776
5	0	-5,103	+ 561	5,195
6	+ 631	+2,590	+ 53	2,341

ENGLISH UNITS

Point (Fig.3-23)	Ноор	Longitudinal	Stress - PSI Shear	Equivalent
Maneuver Load				
1	-2,115	-2,521	- 239	2,381
2	+6,373	+10,722	- 281	9,353
3	-2,772	-5,837	- 57	5,058
4	- 723	+1,915	+2,007	4,289
5	+ 55	-9,855	+1,063	10,053
6	+1,523	+6,245	+ 97	5,642
2.5 Blade Out				
1	- 1,273	-1,518	- 143	1,433
2	+6,338	+8,076	- 486	7,410
3	-1,666	-3,512	- 46	3,044
4	- 434	+1,150	+1,242	2,576
5	0	-7,401	+ 813	7,534
6	+ 915	+3,757	+ 77	3,396

under load to insure uniform loading across the face width of all mating gears. Sun and ring gear designs were analyzed for controlled deflections. Two separate analyses were made; the first calculated the toroidal twist resulting from the gear mesh separating force, and the second calculated the effect of centrifugal forces.

A time-sharing computer program is used to calculate the deflection (or rotation) of a ring under the influence of discretely positioned toroidal moments. Toroidal moments lie in the plane of the cross-section of the ring causing a rotation of the plane. The equations used for the analysis are taken from Biezero and Grammel "Engineering Dynamics", Vol. II. Centrifugal effects are taken from a shell computer program. The shell program analyzes axisymmetric shells (combinations of rings, plates, cones and cylinders connected in series) which are subject to symmetrical radial forces.

Results of the analyses are shown on Table 3-31. Data are shown for the two major contributors of deflection and given in the form of a radial slope in the axial direction as well as the effective tangential slope on the direction of rotation. For both gears the centrifugal forces cause a twist opposite to that due to the gear separating forces. For the ring gear the centrifugal effect is less than 2% of the final twist while for the sun gear the effect is almost 25%.

Deformation analysis of the star gear journal under load was done in the following manner. First the journal or post was analyzed as a cantilever beam with the radial and tangential loads from the sun and ring gears applied as uniformly distributed loads. This results in an average slope of the carrier support post of 236×10^{-6} in./in. in a tangential or torque direction. The contribution of the carrier backup structure was calculated by applying a tangential load in the plane of the carrier ring and a couple at each of the six posts. The analysis was done using the K SHELL 1 computer program which can apply discrete loads on axisymmetric shells. Results of this analysis showed the post would have an additional slope due to the backup ring of 27×10^{-6} in./in., an increase of about 10%. Table 3-31 shows that for the design condition deflections of the three gear components will result in

TABLE 3-31 CLASS B (UTW) REDUCTION GEAR GEAR TOOTH DEFLECTION

		SLOPE 10 ⁻⁶ IN./IN		
Gear	Load	Axial	Tangential	
Sun	Radial Centrifugal Total	- 461.6 + 90.1 - 371.5	- 124.0	
Ring	Radial Centrifugal Total	+1748.6 - 22.5 +1726.1	+ 575.0	
Carrier Support	Post Backing Ring Total		+ 236.0 + 27.0 + 263.0	

the following tangential slopes of the gear tooth contact lines:

Ring	575×10^{-6} in./in.
Carrier - Star	263×10^{-6} in./in.
Sun	124×10^{-6} in./in.

The star gear design has a spherical bearing between the carrier post and star gear. This will accommodate any mismatch between the deflections of the three gear elements without excessive skew. As a result, uniform tooth loading patterns should be experienced and the service life of the unit will be satisfactory.

3.4 Natural Frequencies

Excitation of ring and sun gear bending natural frequencies can be a source of excessive vibration and dynamic stress in planetary gear sets. The prime mode of vibration for the two ring type gears will be the six diameter mode (12 nodes). The estimated natural frequency values for the initial design are:

Ring Gear	960 hertz
Sun Gear	8,300 hertz

Figure 3-24 shows the interference diagram for the gears with the two major excitation sources; the six star gear passing frequency and the gear meshing frequency. At the bottom of the figure is the expected speed range of the unit. The star passage excitation (six times the speed of the gear) will not excite either gear. The gear tooth meshing frequency will excite the ring gear at 10% speed, well below the operating speed range. The sun gear natural frequency point within the operating speed range (93% speed) raised some concern about the possibility of an undesirable noise or wear condition. Since the natural frequency is a function of the gear rim thickness, a decision was made to increase the thickness by a minimum of 2.54 mm (0.1 inch), approximately 18%, to raise the natural frequency to 10,870 hz. An experimental frequency check on the sun gear prior to final machining of the rim indicated an actual natural frequency somewhat lower than calculated. To compensate for the variation between the actual and calculated natural frequencies an additional 1.5 mm (0.06 inch) was left inside the gear rim. This raises the six diameter mode frequency of the sun gear to approximately the 10,870 hz desired and results in an interference with the tooth meshing frequency at 19% above rated 100% speed and 11% above maximum operating speed which is considered acceptable.

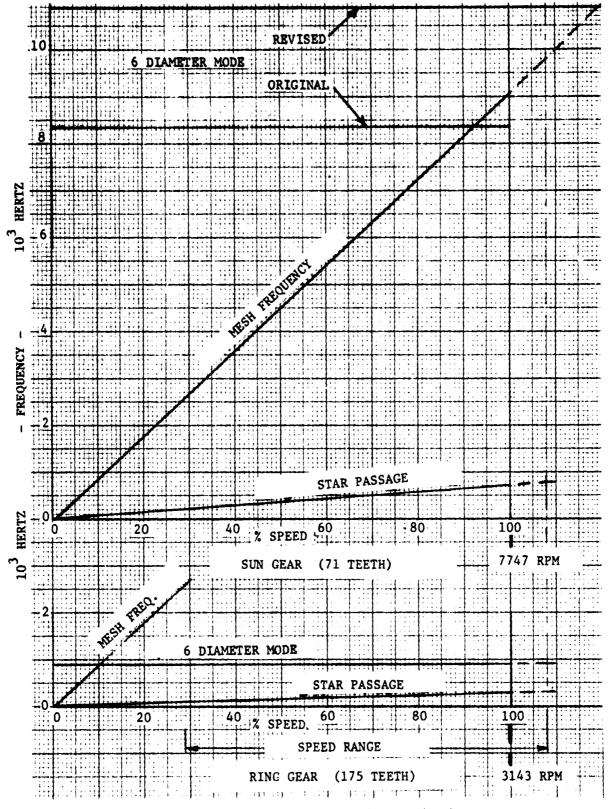


Figure 3-24. Interference Diagram Class B (UTW) Reduction Gear

ORIGINAL PAGE IS OF POOR QUALITY

4.0 DETAILED DESIGN - OTW REDUCTION GEAR

4.1 Mechanical Design

Results of the preliminary design phase were integrated into the General Electric Company overall QCSEE program and after a series of updatings and exchanges of results, the design objectives shown in Table 4-1 were established for the OTW reduction gear detailed design. Additional performance requirements for the experimental engine operation are shown in Table 4-2. Final configuration of the OTW gear assembly is defined by Figures 4-1 (assembly) and 4-2 (involute gear tooth layout). The splines are the same as for the UTW unit, Figure 3-3 (involute spline layout). Interface points between the reduction gear and engine, i.e., input coupling, ring gear spline, star gear support flange and the oil supply pipe, are identical to those of the UTW unit. Also, the sun gear coupling and spline lock ring are common to both the OTW and UTW reduction gears. Gear speed and bearing load data at the 100% power, 100% speed take-off condition are shown in Table 4-3. Basic size at 100% is 12,703 kW (17,035 hp) output with an output speed of 3862 rpm and a gear ratio of 2.062:1 (7963 rpm input speed). Bill of Material No. 211 is included as Appendix C. Basic gear data, stresses and materials are listed in Table 4-4. Details of the gear tooth involute profile modifications for the sun gear, star gear and ring gear are shown by Figures 4-3, 4-4 and 4-5, respectively. Gear material stresses presented in Table 2-8 are applicable to the final design. Calculated gear stresses occurring during the experimental engine test operation are shown in Table 4-5. Stresses shown here differ only slightly from those for the preliminary design phase shown in Table 2-9.

The maximum bending stress of 33,345 N/cm² (48,363 psi) occurs in the sun gear during the 140% turbine power specified for one hour during the experimental engine operation, a total of 3.8×10^6 cycles. This is lower than the AGMA allowable stress of $38,691 \text{ N/cm}^2$ (56,117 psi) for AMS 6265 material under single direction loading, Table 2-8. The maximum bending stress in the star gear of $30,112 \text{ N/cm}^2$ (43,674 psi) occurs during the same operation noted above for the sun gear. Although this stress is greater than the AGMA allowable of 26,958 N/cm² (39,100 psi) for loading in both directions, Table 2-8, it occurs for only 9.0 $\times 10^5$ cycles and is acceptable. The maximum contact stress of 104,287

TABLE 4-1

CLASS A (OTW) REDUCTION GEAR

DETAIL DESIGN OBJECTIVES

FLIGHT CYCLE

CONDITION	POWER	SPEED	TIME	OIL II	TEMP
	X	*	7	•R	*F
START	0	0-30	1.11	-	-
IDLE	10	67.	6.89	339	150
TAKE-OFF	100.	100.	2.71	355	180
CLIMB	79.00	95.	22.22	355	180
CRUISE	57.00	94.	31.11	375	216
DESCENT	3.34	35	22.22	396	254
APPROACH	54.	82.	6.67	385	180
REVERSE	100.	100.	0.18	355	180
IDLE	10	67.	6.89	339	150
100% FAN POWI	ER = 12,703	kW (17,03	5 hp)		
1007 FAN SPEI	ED = 404.4	rad/s 386	2 rpm		

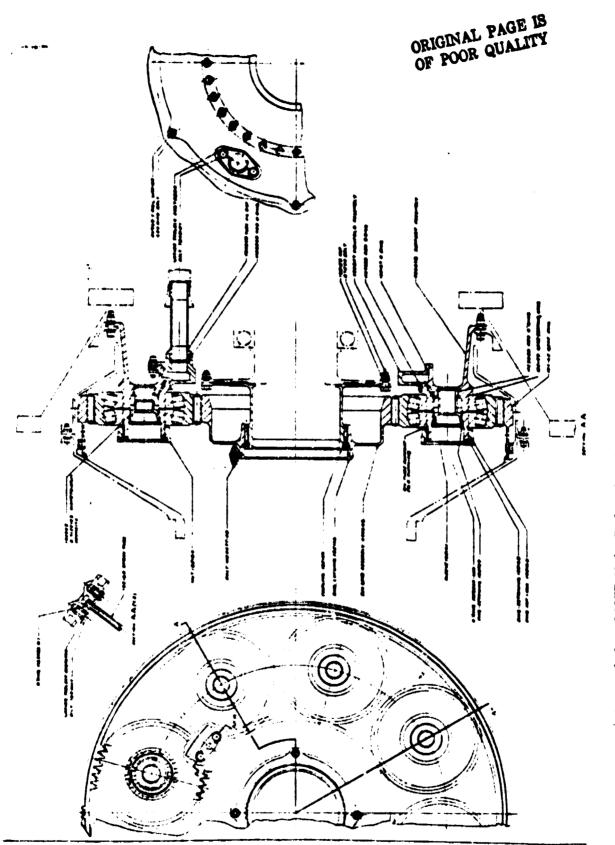
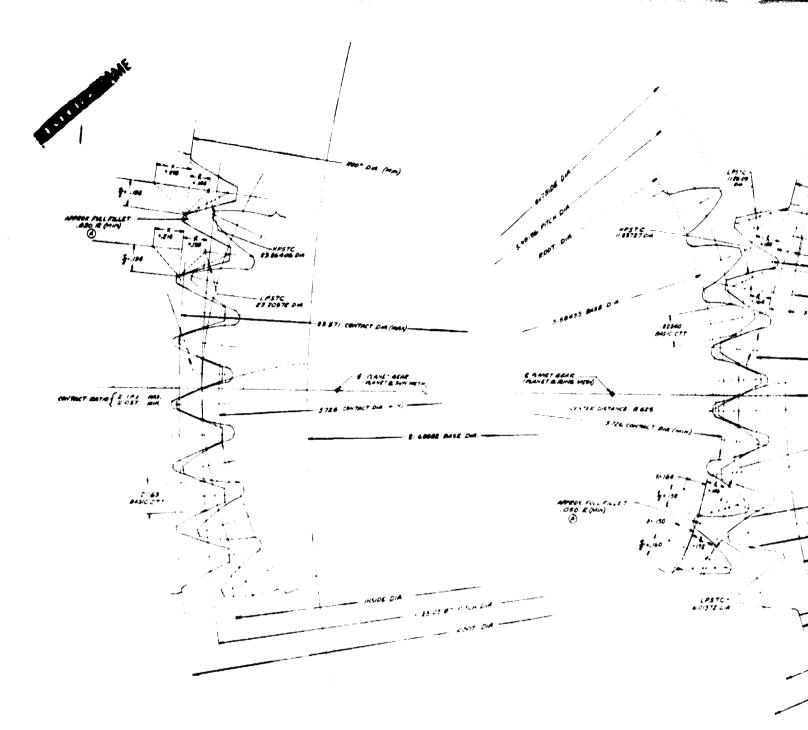
TABLE 4-2

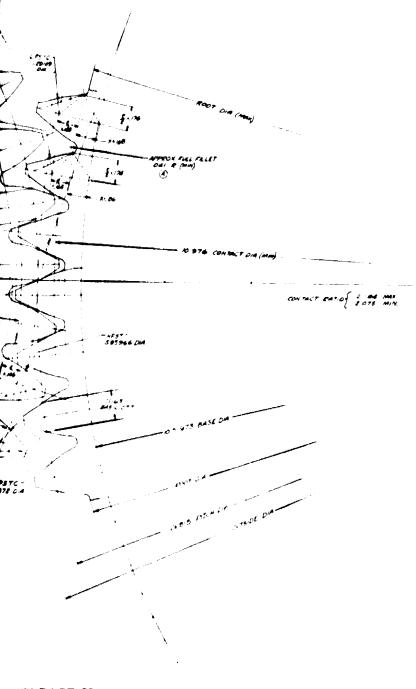
CLASS A (OTW) REDUCTION GEAR

DETAIL DESIGN OBJECTIVES

EXPERIMENTAL	ENGINE	CYCLE
CUL DUTITION TUP	FUGTUE	01000

HOURS	% TIME	% TURBINE SPEED	X TURBINE POWER
1	0.04	105	100
1	0.05	100	140
15	0.56	100	130
15	0.56	100	110
150	5.59	100	100
500	18.64	90	80
1000	37.28	75	50
1000	37.28	30	10
100% Turb	ine Power = 12,813 k	W (17,183 hp)	. .
100% Turb	ine Speed = 833.8 r	ad/s (7962 rpm)	



Figure 4-1. QCSEE Main Reduction Gear Over-The Wing (OTW) Unit.

ORIGINAL PAGE IS OF POOR QUALITY

75-064

NAL PAGE IS OOR QUALITY

•	DE 144	·	•	
1		2.4	144	' Kha Í
11	SOMPLE OF THETH	1 .=-		1
	S AMETCAL P.TCH	- 134	7.424	
. 1	PETST RE ANGLE	21	1	· • • ·
4	MICH DIA VILLE			2129 6
	14168 . 1 m. E	# 425	3 626	Hart
	Tec 14 14 . 1 (53	2.63		
+	MACH, TOOTH THR	20761	22.42	200-1-1 201-1-1
A.	BACK LASH		a.4 a.4	a.a
-	BASE F. T.H	4.90		4.961
20	3456 EVA		1.104	[* • ***]
10	WIEE 5.85			
Y	WE WER MERS		- 37.00 6 8 3 5 8 5	- #6
0.	ULTSOR DA		e 168 634/	28.938
. •	· • • •		: 146 : 5.7	11/1
$\mathbb{C}[n]$	14687 CAN -23	041.00	013 m	
	00 Acr. 4	26.34	3. 26'	9 6 7 1
	HRSTE ROLLA	1.12		11 25
	PITCH DIA RUS 4	2. 90	£! \$\$	2 99'
	LPS'C ROLL O	21.10'	. 2 49*	2.03
	CONTALF LEA COLLA		. 3#*	20 20"
60	BUY SUT	002		2295
	TOUTH TO TOUTH STAL THE	2008	0008	2005
-	PR. F.L TAREAME		••••••••••••••••••••••••••••••••••••••	
	.EAU	2003	2003	
-	alal id. (mats	413		40.
	P BELAN ICAL	31 (AMAR	0. 440)	0. (MAS)
ι.	THE BERNIE	001 - 00S	681-245	0005 00/S

A ME HINGLITE CHART FOR AN

CLASS A (OTW) REDUCTION GEAR Gear Layout

Figure 4-2

TABLE 4-3

CLASS A (OTW) REDUCTION GEAR CHARACTERISTICS AND 100% POWER, 100% SPEED DATA

	NON-DIMENSIONAL	SI UNITS	ENGLISH UNITS
RATIO	2.062		
TURBINE POWER		12813 kw	17183 hp
TURBINE SPEED		833.8 rad/s	7962 rpm
NO. OF STARS			8
GEAR PITCH LINE VELOCITY		119.3 m/s	23488 ft/min
STAR SPEED		1570.6 rad/s	14998 rpm
BEARING LOAD		26845 N	6035 lbs
NO. OF STARS	8		
SUN GEAR TEETH	81		
STAR GEAR TEETH	43		
RING GEAR TEETH	167		
HUNTING	YES		
NON-FACTORIZING	YES		

TABLE 4-4a

. .

Solution inter-

CLASS A (OTW) REDUCTION GEAR

GEAR	DATA	(SI	UNITS)	
------	------	-----	--------	--

	SUN GEAR	STAR GEAR	RING GEAR
NO. OF TEETH	81	43	167
MODULE	3.5335	3.5335	3.5335
PRESSURE ANGLE, DEGREES	21	21	21
PITCH DIAMETER, mm	286.2110	151.9392	590.0895
CENTER DISTANCE, mm	219.1 219.1		9.1
BASE DIA., mm	267.2011	141.8476	550.8960
TOOTH THICK (PD), mm	5.375	5.725	5.375
BACKLASH, mm	.102152	.102152	.127203
ROOT RAD., mm	1.12 (MIN)	1.37 (MIN)	.864 (MIN)
CONTACT RATIO (MIN) (NO BREAK EDGES)	2.18445 2.18327		
CONTACT RATIO (MIN) (MAX. BREAK EDGES)	2.0	07490 2.0 	5664
GEAR FACE WIDTH - mm	37.6	42.7	37.6
BENDING STRESS, N/cm ²	23,818	21,509	
		21,726	18,537
CONTACT STRESS, N/cm ²	88,139	88,139	
		61,383	61,383
MATERIAL	AMS6265 (SAE9310)	AMS6265 (SAE9310)	AMS6470
PROFILE CORRECTION	Fig. 4-3	Fig. 4-4	Fig. 4-5

TABLE 4-4b

ł

÷.

A STATE OF A

فاستجربهم

n ool jaargegegebe

سحارمتها ومقام

j.

.

5.

1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

CLASS A (OTW) REDUCTION GEAR

GEAR DATA (ENGLISH UNITS)

	SUN GEAR	STAR GEAR	RING GEAR
NO. OF TEETH	81	43	167
DIAMETRAL PITCH	7.1884	7.1884	7.1884
PRESSURE ANGLE, DEGREES	21	21	21
PITCH DIAMETER, IN.	11.26815	5.98186	23.23187
CENTER DISTANCE, IN	8.625 8.625		.625
BASE DIA., IN.	10.51973	5.58455	21.68882
TOOT H THICK (PD), IN.	.21163	. 22540	.21164
BACKLASH, IN.	.004006	.004006	.005008
ROOT RAD., IN.	.044 (MIN)	.054 (MIN)	.034 (MIN)
CONTACT RATIO (MIN) NO BREAK EDGES	2.	18445 2.:	18327
CONTACT RATIO (MIN) (.010 MAX. BREAK EDGES)	2.	.07490 2.()5664
GEAR FACE WIDTH - IN.	1.48	1.68	1.48
BENDING STRESS, PSI	34,545	31,196	
		31,511	26,886
CONTACT STRESS, PSI	127,835	127,835	
		89,029	89,029
MATERIAL	AMS6265 (SAE9310)	AMS6265 (SAE9310)	AMS6470
PROFILE CORRECTION	Fig. 4-3	Fig. 4-4	Fig. 4-5

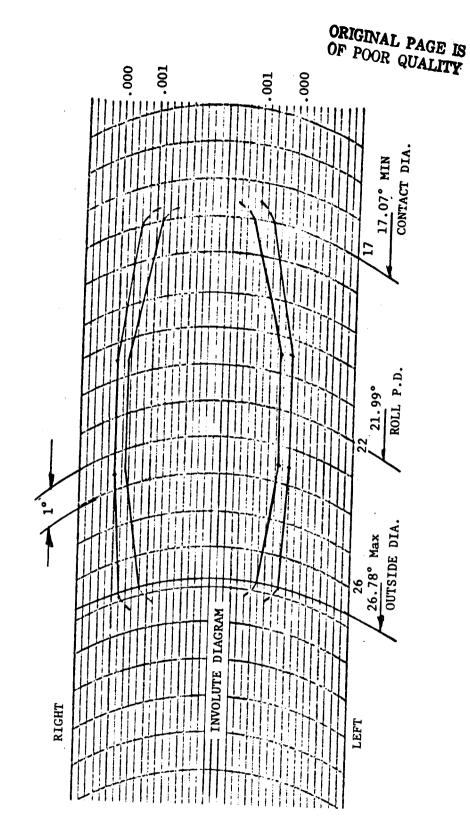


Figure 4-3

CLASS A (OTW) REDUCTION GEAR

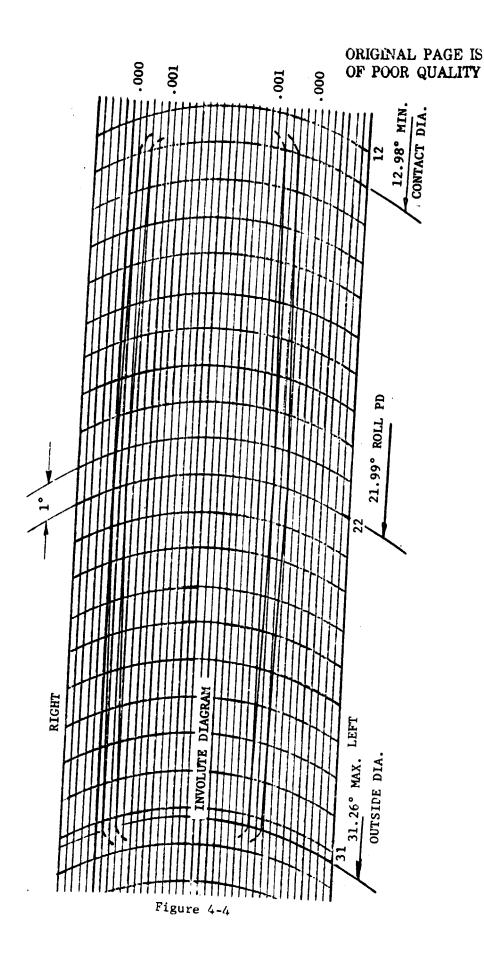
and and the state of the state

÷

.

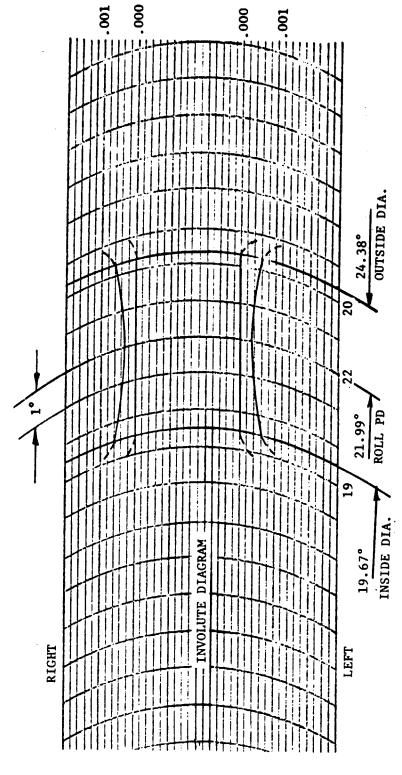
,

SUN GEAR


INVOLUTE PROFILE MODIFICATION

CLASS A (OTW) REDUCTION GRAR

State of the second


STAR GEAR

INVOLUTE PROFILE MODIFICATION

CLASS A (OTW) REDUCTION GEAR

RING GEAR INVOLUTE PROFILE MODIFICATION

+

CLASS A (OTW) REDUCTION GEAR

靓

100

GEAR STRESS DATA

EXPERIMENTAL ENGINE TEST OPERATION

TURBINE SPEED	TURBINE POWER	BEND	ING STRESS-	N/cm ²	CONTACT ST	RESS-N/cm ²
rad/s	kW	SUN	STAR	RING	SUN/STAR	STAR/RING
875.5	12,813					
833.8	17,939	33,345	30,112	25,952	104,287	72,630
833.8	16,657	30,962	27,960	24,097	100,371	69,987
833.8	14,094	26,199	23,659	20,390	92,439	64,378
833.8	12,813	23,818	21,726	18,537	88,139	61,383
750.4	10,250					
625.4	6,407					
250.2	1,281					

(SI UNITS)

(ENGLISH UNITS)

TURBINE SPEED	TURBINE POWER	BENDI	NG STRESS	- PSI	CONTACT ST	RESS - PSI
RPM	HP	SUN	STAR	RING	SUN/STAR	STAR/RING
8,360	17,183					
7,962	24,056	48,363	43,674	37,640	151,256	105,341
7,962	22,337	44,907	40,553	34,950	145,576	101,507
7,962	18,901	37,998	34,314	29,573	134,071	93,372
7,962	17,183	34,545	31,511	26,886	127,835	89,029
7,166	13,746					
5,972	8,592					
2,389	1,718					

 N/cm^2 (151,256 psi) occurring in the sun to star gear mesh is only slightly greater than the allowable of 102,566 N/cm^2 (148,760 psi) shown in Table 2-8 and, considering the small number of cycles is acceptable. The maximum ring gear stresses are well below the AGMA allowables.

The star gear bearing is a double row spherical roller type with cage guided symmetrical rollers. The bearing outer race is integral with the star gear. Lubrication of the bearing is through radial passages in the center of the inner race. Detailed data for the bearing are shown in Table 4-6. The bearing calculated mean load, mean speed and resultant B_1 fatigue life of 5063 hours for the flight spectrum (Table 4-1) and 4020 hours for the experimental engine operation schedule (Table 4-2) are shown in Table 4-7. The life values are based on the standard AFBMA life calculation method for roller bearings with a multiplying factor of 0.23 applied to convert from B_{10} to B_1 life and a factor of 5 applied for material, operating environment and oil jet lubrication. A section through the bearing which also shows the oil passages appears in Figure 4-1.

Oil flows for the reduction gears and bearings for the flight duty cycle are presented in Table 4-8. These flows are based on a variable oil pressure which is a function of core engine speed. The estimated effective oil supply pressures, temperatures and available flows at the reduction gear inlet for several engine operating conditions as supplied by General Electric are shown in Table 4-9. Maximum limit for the bearing outer race temperature has been established at 422°K (300°F). Calculated bearing outer race maximum temperature occurs during the cruise condition in the flight cycle. Required oil flow together with the effective oil pressure at this flight condition governs the bearing oil flow control orifice size. The controlling flight condition for oil flow to the gears based on gear scoring criteria is take-off. The orifice sizes in the gear spray bars are based on this requirement. Oil inlet temperatures shown in Table 4-8 and 4-9 are the result of General Electric heat balance iterations for the reduction gear and the engine.

Table 4-10 tabulates the overall OTW reduction gear efficiency for the flight duty cycle. Losses considered in calculating the efficiency are the spherical bearing loss, gear mesh loss and windage and churning losses. At

- 1

.)

a sub participant and a subject

the endine the

ċ,

٤

CLASS A (OTW) REDUCTION GEAR BEARING DATA

VENDOR, PART NO. SKF 22312 VAM TYPE DOUBLE ROW SPHERICAL ROLLER (SPECIAL) NO. OF ROLLERS (PER ROW) 14 SIZE OF ROLLERS 18 mm X 17.64 mm DYNAMIC CAPACITY, "C" 202,400 N (45,500 LBS) MATERIALS: OUTER RING (INTEGRAL WITH GEAR) CARBURIZED ASM6265, Rc 60-63 CVM M-50 STEEL, Rc 60 MIN. INNER RING ROLLERS CVM M-50 STEEL, Rc 60 MIN. AMS 4616, SILVER PLATED CAGE

TABLE 4-7

CLASS A (OTW) REDUCTION GEAR

BEARING LIFE DATA

FLIGHT CYCLE		
MEAN LOAD (10/3 EXP.)	18326 N	(4,120 lbs
MEAN SPEED	1189.3 rad/s	(11,357 rpm
B-1 LIFE	5063 hrs	
EXPERIMENTAL ENGINE CYCLE		
	20781 N	(4,672 lbs
MEAN LOAD (10/3 EXP)		
MEAN LOAD (10/3 EXP) MEAN SPEED	985 rad/s	(9,406 rp

.

Ĵ

10.000

notified and the statistics

٠

,

.

;

CLASS A (OTW) REDUCTION GEAR

TOTAL OIL FLOWS

FLIGHT CYCLE

(SI UNITS)

CONDITION	TOTAL STAR BRG. FLOW, cm ³ /s	FLOW TO GEARS (SPRAY BARS), cm ³ /s	TOTAL OIL FLOW, cm ³ /s	OIL IN °K	BRG OUTER RACE TEMP °K
IDLE	381	630	1011	339	377
то	639	1208	1847	353	413
CLIMB	626	1172	1798	353	408
CRUISE	622	1154	1776	375	422
DESCENT	512	955	1467	396	406
APPROACH	586	1119	1705	353	398
REVERSE	639	1208	1847	353	413
IDLE	381	630	1011	339	219

(ENGLISH UNITS)

CONDITION	TOTAL STAR BRG. FLOW, GAL/MIN	FLOW TO GEARS (SPRAY BARS), GAL/MIN	TOTAL OIL FLOW, GAL/MIN	OIL IN °F	BRG OUTER RACE TEMP °F
IDLE	6.04	9.99	16.03	150	219
то	10.13	19.14*	29.27	180	283
CLIMB	9.92	18.58	28.50	180	275
CRUISE	9.87*	18.29	28.16	216	300
DESCENT	8.12	15.14	23.26	254	271
APPROACH	9.29	17.73	27.02	180	257
REVERSE	10.13	19.14	29.27	180	283
IDLE	6.04	9.99	16.03	150	219

.

٤

2

CLASS A (OTW) REDUCTION GEAR

OIL SUPPLY DATA (SI UNITS)				
CONDITION	MAX. OIL TEMP°K	AVAILABLE30IL FLOW - cm /s	OIL PRESSURE N/cm ²	
IDLE	339	1243	9.0	
TAKE-OFF	353	2208	27.6	
CLIMB	353	2145	26.2	
CRUISE	375	2044	23.4	
DESCENT	396	1640	15.2	
APPROACH	353	2019	22.8	
REVERSE	353	2208	27.6	

(ENGLISH UNITS)				
CONDITION	MAX. OIL TEMP-°F	AVAILABLE OIL FLOW - GPM	OIL PRESSURE PSI	
IDLE	150	19.7	13	
TAKEOFF	180	35.0	40	
CLIMB	180	34.0	38	
CRUISE	216	32.4	34	
DESCENT	254	26.0	22	
APPROACH	180	32.0	33	
REVERSE	180	35.0	40	

CLASS A (OTW) REDUCTION GEAR

OVERALL REDUCTION GEAR EFFICIENCY

CONDITION	SPHERICAL BRG	GEAR MESH	CHURN & WINDAGE	TOTAL	OVERALL EFFICIENCY Z
IDLE	11.46	4.62	1.52	17.60	98.63
то	26.32	49.97	37.72	114.01	99.11*
CLIMB	23.85	39.48	27.34	90.67	99.10
CRUISE	20.60	28.49	18.94	68.03	99.07
DESCENT	3.46	1.84	0.13	5.43	98.73
APPROACH	18.31	26.99	13.77	59.07	99.15
REVERSE	26.32	49.97	37.72	114.01	99.11
IDLE	11.46	4.62	1.52	17.60	98.63

FLIGHT CYCLE (SI UNITS)

(ENGLISH UNITS)

CONDITION	SPHERICAL BRG	GEAR MESH	CHURN & WINDAGE	TOTAL	OVERALL EFFICIENCY X
IDLE	15.37	6.19	2.04	23.60	98.63
то	35.30	67.01	50.59	152.90	99.11*
CLIMP	31.98	52.94	36.66	121.58	99.10
CRUISE	27.62	38.20	25.40	91.22	99.07
DESCENT	4.64	2.47	0.17	7.28	98.73
APPROACH	24.55	36.19	18.46	79.20	99.15
REVERSE	35.30	67.01	50.59	152.90	99.11
IDLE	15.37	6.19	2.04	23.60	98.63

take-off conditions the calculated overall efficiency is 99.11 percent. This is slightly below the M50TF1611 specification objective of 99.20 percent for the 100 percent speed and 100 percent power operating condition.

Total heat rejection for the flight duty cycle, delta rise in bulk oil temperature, and the temperature of the bulk oil resulting with the oil inlet supply temperatures (shown in Table 4-9) are presented in Table 4-11. Table 4-12 tabulates the AGMA scoring index and Table 4-13 tabulates the Curtiss-Wright scoring index for each flight duty cycle operating condition. The two approaches to scoring index calculation and evaluation were discussed in Section 2.2. Based on Curtiss-Wright experience, the maximum scoring index (AGMA 295°F C-W 306°F) shown for the cruise part of the flight cycle is acceptable.

The Curtiss-Wright approach to the controlled deflection of the gear components under load to insure unifor- loading across the face width of all mating gears discussed in Section 2.2 is carried into the OTW reduction gear detailed design. Gear and support section modulii were selected that provide relatively close gear and tooth deflection compatibility at each gear mesh. The calculated deflections are discussed in detail in Section 4.3.

Calculated OTW gear tooth load line operating positions relative to the star gear pitch line for the ring-to-star and sun-to-star meshes are shown in Figure 4-6. The displacements are the summation of deflections resulting from the operating centrifugal forces, gear tooth radial separating forces and tangential gear tooth loads. The difference in displacements over the length of the teeth results in the slopes of the load line relative to the axis of the gear of 0.000831 and 0.000848 for the ring and sun gear meshes, respectively. Since the star gear is supported by a spherical bearing, it is free to seek a balanced moment load position, a rotation of 0.012 mm (0.00048 inches) relative to the plane of the inner race, measured at the star gear pitch line. The star gear carrier support trunnion or post deflects under load in the direction that favors the alignment between the star gear and the bearing inner race. Taking the trunnion deflection into consideration the star gear operating axis and the fixed carrier support trunnion axis at 100% power and 100% speed coincide within 0.0012 mm (0.00005 inches), the difference between the support deflected position and the gear tooth position shown

s.

.

=

CLASS A (OTW) REDUCTION GEAR

HEAT REJECTION

CONDITION	TOTAL LOSS kW	DELTA RISE IN BULK OIL TEMP [•] K	OIL IN TEMP •K	BULK OIL TEMP *K
IDLE	17.60	8.63	339	348
то	114.00	31.20	355	386
CLIMB	90.62	25.47	355	381
CRUISE	68.01	19.85	375	395
DESCENT	5.43	1.97	397	399
APPROACH	59.04	17.51	355	373
REVERSE	114.00	31.20	355	386
IDLE	17.60	8.63	339	348

FLIGHT CYCLE (SI UNITS)

(ENGLISH UNITS)

CONDITION	TOTAL LOSS BTU/MIN	DELTA RISE IN BULK OIL TEMP °F	OIL IN TEMP °F	BULK OIL TEMP °F
IDLE	1001	15.53	150	166
то	6486	56.15	180	236
CLIMB	5157	45.85	180	226
CRUISE	3870	35.73	216	252
DESCENT	309	3.54	254	258
APPROACH	3360	31.51	180	212
REVERSE	6486	56.15	180	236
IDLE	1001	15.53	150	166

- Suttant

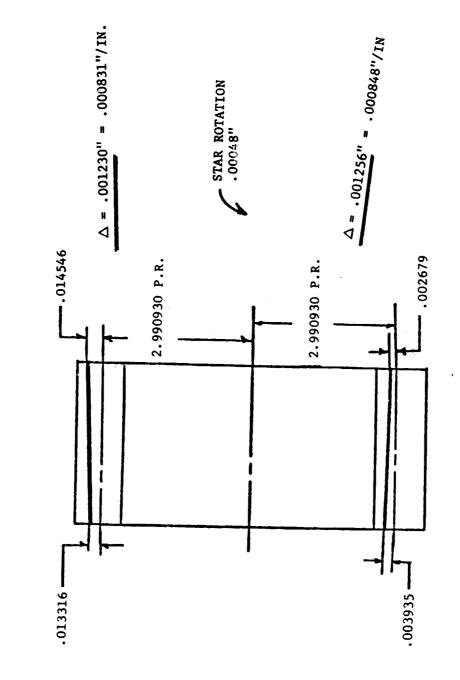
.....

CLASS A (OTW) REDUCTION GEAR

AGMA SCORING INDEX

FLIGHT CYCLE

CONDITION	OIL IN TEMP °F	AGMA 🛆 T °F	AGMA SCORING INDEX °F
IDLE	150	23.17	173
то	180	117.88	298
CLIMB	180	100.03	280
CRUISE	216	78.53	295
DESCENT	254	11.97	266
APPROACH	180	78.02	258
REVERSE	180	117.88	298
IDLE	150	23.17	173


TABLE 4-13

CLASS A (OTW) REDUCTION GEAR

CURTISS-WRIGHT SCORING INDEX

FLIGHT CYCLE

	OIL IN TEMP	C-W SCORING	INDEX - °F
CONDITION	°F	RING-STAR MESH	SUN-STAR MESH
IDLE	150	163	174
то	180	251	314
CLIMB	180	240	293
CRUISE	216	263	306
DESCENT	254	262	269
APPROACH	180	227	270
REVERSE	180	251	314
IDLE	150	163	174

SUPPORTS OF SUN GEAR & RING GEAR ARE ON THE LEFT HAND (FORWARD) SIDES, OPPOSITE THAT OF STAR GEAR TRUNNION.

1. Automotion and and

CLASS A (OTW) REDUCTION GEAR STAR GEAR DEFLECTION

ステレス かんかい かいしょう いいちょう しょうしょう ステレス かいしょう ステレス かいしょう かんしょう かいしょう しんしょう いんしょう しんしょう しょうしょう しょう

ł

STATE OF STREET, STREE

,

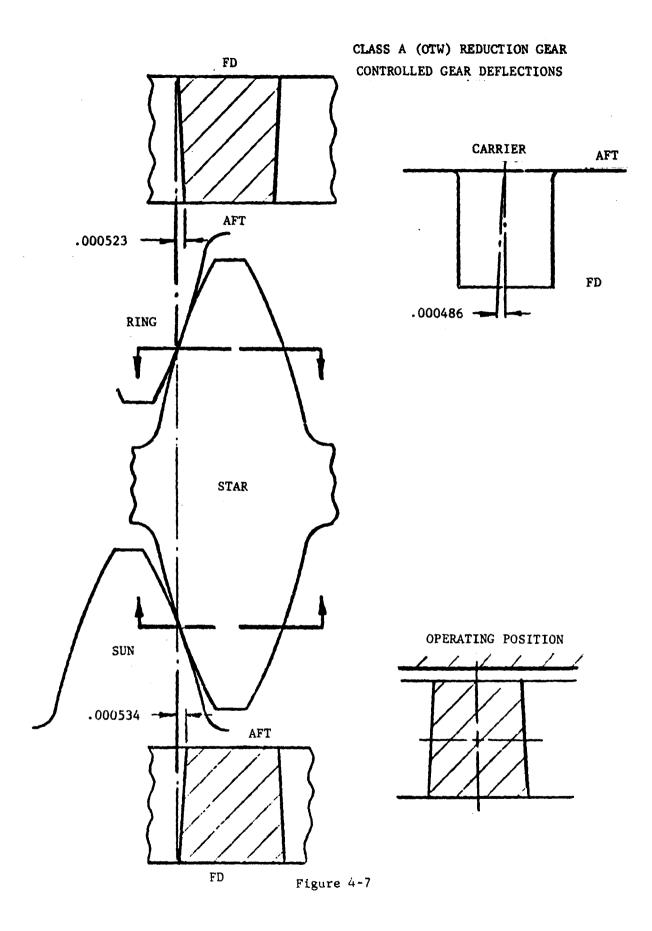
ŧ

in Figure 4-7. This very small amount of misalignment between the planes of the star gear and the star gear bearing inner race is readily accommodated by the spherical roller bearing.

Table 4-14 tabulates the summary of the weight analysis. The calculated OTW unit installed weight as supplied by Curtiss-Wright is 89.89 kg (198.18 pounds). The detailed weight breakdown by parts is given in Appendix D.

Table 4-15 tabulates weight reduction items to be considered for a production type reduction gear and these features would save a calculated 6.58 kg (14.52 pounds) and result in a future weight of 83.31 kg (183.66 pounds) for the OTW gear assembly. Further reduction in weight is possible with additional development effort directed toward a specific operating requirement.

4.2 Stress Analysis


AGMA gear stresses are presented in the preceding discussion and data. Additional stress analyses and evaluations for the gears and carrier support are discussed in detail in this section of the report. Stress analysis of the coupling is discussed in Section 3.2.6 of this report since the part is common to both the OTW and UTW units.

4.2.1 Gear Tooth Bending Stress

Maximum gear tooth bending stress for the OTW reduction gearing is less than that for the UTW design. Figures 4-8 and 4-9 show the Goodman diagrams for the gear tooth bending stresses along with AGMA allowable curves and the Curtiss-Wright experience curve. Although the star gear at the 140% torque condition exceeds the AGMA allowable by 13%, it is well below the C-W experience allowable.

4.2.2 Backing Stresses

Sun Gear - The backing stresses on the sun gear are tabulated on Table 4-16 for design conditions and Table 4-17 for the 140% torque condition. Figure 4-10 shows a cross-section of the sun gear and identifies the points of maximum stress. In general, the stresses are slightly higher for the OTW unit but the Goodman diagram shown in Figure 4-11 shows vibratory margins well over 5.0.

4

- **-**

CLASS A (OTW) REDUCTION GEAR

WEIGHT SUMMARY

	BASIC MATERIAL	KILOGRAMS	POUNDS
SUN GEAR ASSEMBLY	STEEL	11.29	24.89
RING GEAR	STEEL	12.42	27.38
STAR NUTS	STEEL	2.08	4.58
CARRIER SUPPORT	STEEL	23.02	50.75
STARS	STEEL	37.26	82.14
STARWASHER	STEEL	.14	. 31
MANIFOLD	ALUMINUM	1.80	3.97
SPRAY BARS	STEEL	.28	.61
MISCELLANEOUS HARDWARE		1.61	3.55
TOTAL		89.89	198.18

TABLE 4-15

CLASS A (OTW) REDUCTION GEAR

FLIGHT UNIT WEIGHT REDUCTION

	support from fan frame to eliminate interface flange, bolts						
(2) Make carrier support of the Resulting system weight re							
		11.0					
FLANGE	kg 1.27	<u>1bs</u> 2.81					
THENGL		2.01					
BOLTS AND NUTS	.57	1.26					
SUPPORT MATERIAL	4.74	10.45					
TOTAL	6.58	14.52					

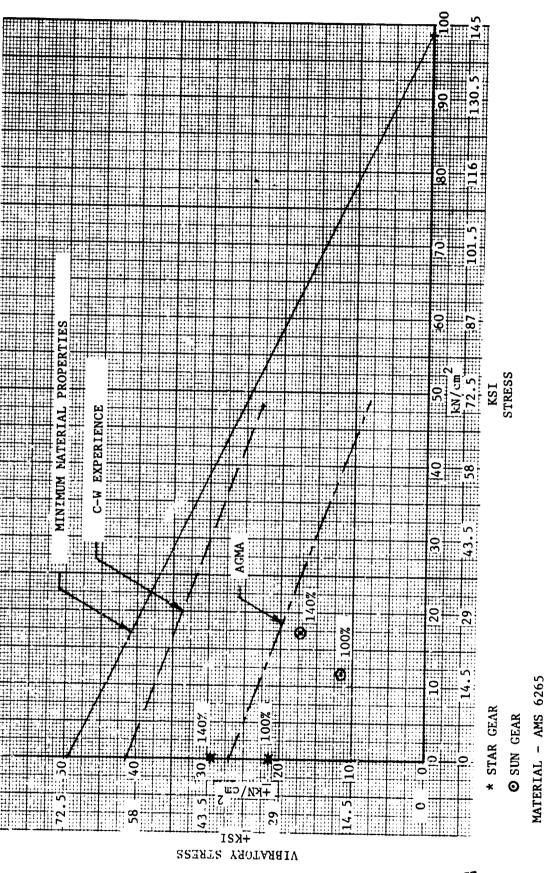
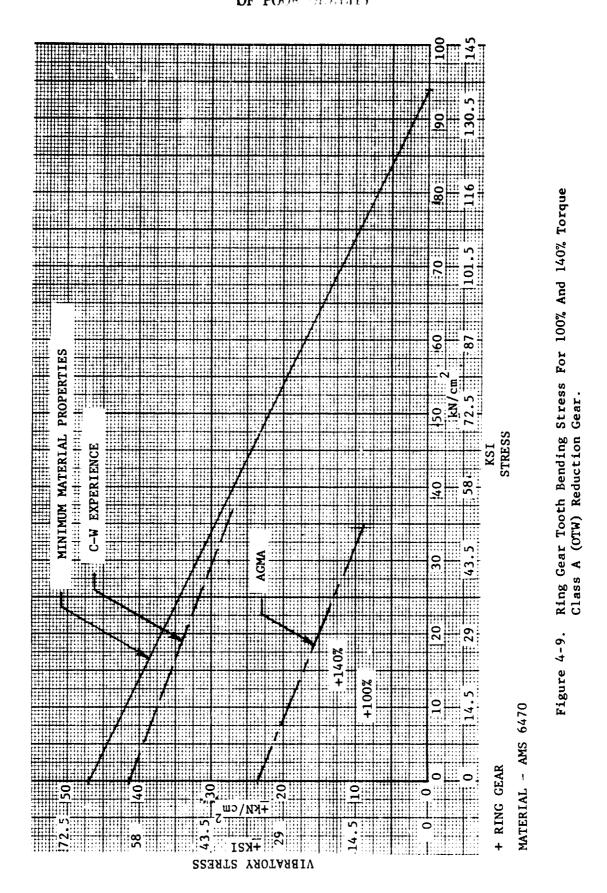



Figure 4-8. Sun And Star Gear Tooth Bending Stress For 100% And 140% Torque Class A (OTW) Reduction Gear

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR OUALITY

TABLE 4-16 a

CLASS A (OTW) REDUCTION GEAR SUN GEAR BACKING STRESSES (N/cm²) (SI UNITS) 100% SPEED (834 RAD/S); 100% TORQUE (15,369 N-M)

Stress			cumferentia	1 Stress			
Area Fig.4-10	Load		r Gear	Between	Longitudinal	Shear	Equivalent
rig.4-10		Front	Back	Star Gears			
	Rad	- 4,905	- 4,905	+ 532			
	Tang	+ 4,694	- 4,694	-			
1	Centri	+13,344	+13,344	+13,344			+10,078
	T.M.	+ 1,267	+ 1,267	+ 1,267			<u>+</u> 5,066
	Total	+14,387	+ 5,012	+15,143			
	Rad	+ 2,952	+ 2,952	- 3,426	-	-	
	Tang	- 5,321	+ 5,321	-	-	+ 1,068	
2	Centri	+13,344	+13,344	+13,344	-	-	+16,565
	т.м.	+ 678	+ 678	+ 678	-	-	<u>+</u> 5,807
	Total	+11,653	+22,295	+10,597		+ 1,068	
	Rad	+ 2,952	+ 2,952	- 3,426			
	Tang	- 5,321	+ 5,321	-		+ 5,242	
3	Centri	+13,344	+13,344	+13,344	- 5,641		+21,803
	Т.М.	+ 407	+ 407	+ 407			<u>+</u> 5,097
	Total	+11,382	+22,025	+10,326	- 5,641	+ 5,242	
5	Tang	+ 5,303	+ 5,303	+ 5,303	+ 4,495	+10,766	+19,293
6	Tang	+ 6,415	+ 6,415	+ 6,415	- 1,959	+10,766	+20,132
	Abbreviations:Radial- RadCentrifugal- CentriTangential- TangToroidal Moment- T.M.						ci .

. K

TABLE 4-16b

,

CLASS A (OTW) REDUCTION GEAR

SUN GEAR BACKING STRESSES (PSI) (ENGLISH UNITS) 100% SPEED (7962 RPM);100% TORQUE (136,029 IN-LB)

.

Stress		Cir	cumferentia	al Stress			
Area	Load	ويتحدث والمتعالي والمتعاد والمتعالي والمتعالي والمتعالي والمتعالي والمتعالي والمتعالي والمتعالي والمتعالي والم	ir Gear	Between	Longitudinal	Shear	Equivalent
Fig.4-10		Front	Back	Star Gears			
	Rad	- 7,114	- 7,114	+ 772			
	Tang	+ 6,808	- 6,808	-			
1	Centri	+19,354	+19,354	+19,354		1	+14,617
	Т.М.	+ 1,838	+ 1,838	+ 1,838		2	<u>+</u> 7,347
	Total	+20,866	+ 7,270	+21,964			
	Rad	+ 4,281	+ 4,281	- 4,969	-	-	
	Tang	- 7,718	+ 7,718	-	-	+ 1,549	
2	Centri	+19,354	+19,354	+19,354	-	-	+24,025
	т.м.	+ 984	+ 984	+ 984	-	-	<u>+</u> 8,423
	Total	+16,901	+32,337	+15,369		+ 1,549	
	Rad	+ 4,281	+ 4,281	- 4,969			
	Tang	- 7,718	+ 7,718	-		+ 7,603	
3	Centri	+19,354	+19,354	+19,354	- 8,182		+31,623
	Т.М.	+ 591	+ 591	+ 591			<u>+</u> 7,392
	Total	+16,508	+31,944	+14,976	- 8,182	+ 7,603	
5	Tang	+ 7,692	+ 7,692	+ 7,692	+ 6,520	+15,615	+27,982
6	Tang	+ 9,304	+ 9,304	+ 9,304	- 2,841	+15,615	+29,199
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

TABLE 4-17a

CLASS A (OTW) REDUCTION GEAR

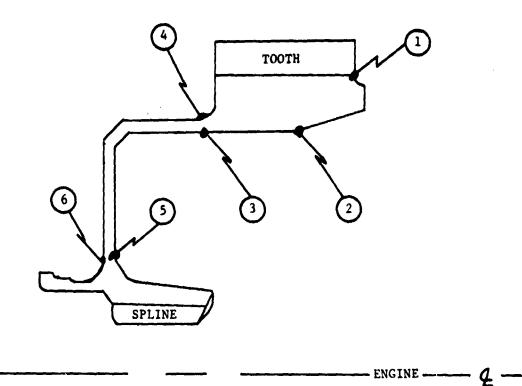
SUN GEAR BACKING STRESSES (N/cm²) (SI UNITS)

100% SPEED (834 RAD/S);140% TORQUE (21,517 N-M)

Stress		Circumferential Stress					
Area Fig.4-10	Load		r Gear	Between	Longitudinal	Shear	Equivalent
r18.4-10		Front	Back	Star Gears			
	Rad	- 6,867	- 6,867	+ 745			
	Tang	+ 6,571	- 6,571	-			
1	Centri	+13,344	+13,344	+13,344			+ 8,771
	т.м.	+ 1,744	+ 1,774	+ 1,774			<u>+</u> 7,093
	Total	+14,822	+ 1,678	+15,863			
	Rad	+ 4,132	+ 4,132	- 4,797	-	-	
	Tang	- 7,450	+ 7,450	-	-	+ 1,495	
2	Centri	+13,344	+13,344	+13,344	-	-	+17,935
	Т.М.	+ 950	+ 950	+ 950	-	~	<u>+</u> 8,091
	Total	+10,976	+25,876	+ 9,498		+ 1,495	
	Rad	+ 4,132	+ 4,132	- 4,797		-	
	Tang	- 7,450	+ 7,450	-		+ 7,339	
3	Centri	+13,344	+13,344	+13,344	- 5,641	-	+24,765
	T.M.	+ 570	+ 570	+ 570		-	<u>+</u> 6,667
	Total	+10,597	+25,496	+ 9,118	- 5,641	+ 7,339	
5	Tang	+ 7,425	+ 7,425	+ 7,425	+ 6,294	+15,073	27,010
6	Tang	+ 8,981	8,981	+ 8,981	- 2,742	+15,073	28,184
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

TABLE 4-17b

CLASS A (OTW) REDUCTION GEAR


SUN GEAR BACKING STRESSES (PSI) (ENGLISH UNITS)

100% SPEED (7962 RPM); 140% TORQUE (190,441 IN-LB)

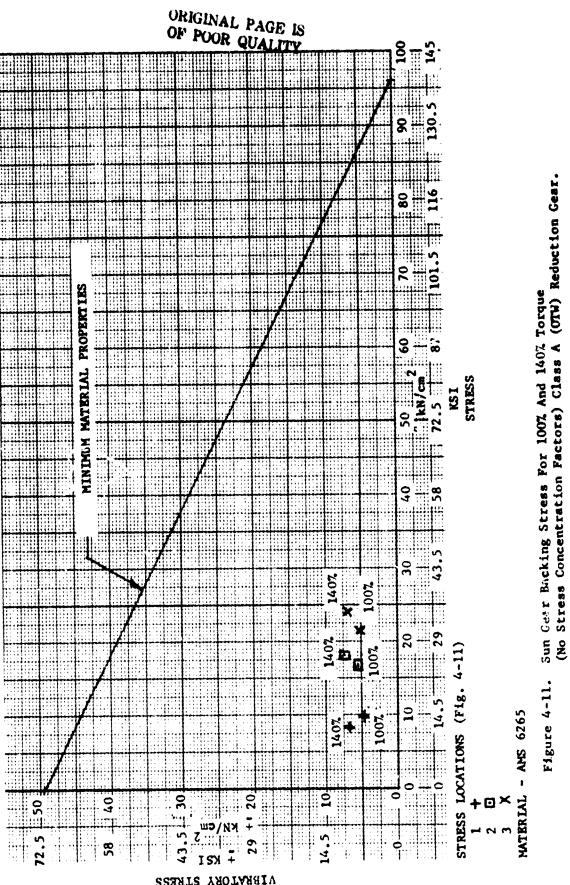
Stress							
Area	Load		r Gear	Between	Longitudinal	Shear	Equivalent
Fig. 4-10		Front	Back	Star Gears			
	Rad	- 9,960	- 9,960	+ 1,080			
	Tang	+ 9,531	- 9,531	-			
1	Centri	+19,354	+19,354	+19,354			+12,721
	T.M.	+ 2,573	+ 2,573	+ 2,573			<u>+</u> 10,287
	Total	+21,498	+ 2,434	+23,007			
	Rad	+ 5,993	+ 5.993	- 6,957	-	-	
	Tang	-10,805	+10,805	-	-	+ 2,168	
2	Centri	+19,354	+19,354	+19,354	-	-	+26,012
	Т.М.	+ 1,378	+ 1,378	+ 1,378	-	-	<u>+</u> 11,735
	Total	+1~,920	+37,530	+13,775		+ 2,168	
	Rad	+ 5,993	+ 5,993	- 6,957		-	
	Tang	-10,805	+10,805	-		+10,644	
3	Centri	+19,354	+19,354	+19,354	- 8,182	-	+35,919
	T.M.	+ 827	+ 827	+ 827		-	<u>+</u> 9,663
	Total	+15,369	+36,979	+13,224	- 8,182	+10,644	
5	Tang	+10,769	+10,769	+10,769	+ 9,128	+21,861	39,175
6	Tang	+13,026	13,026	+13,026	- 3,977	+21,861	40,878
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

.

.

Ŋ.

NUMBERS IDENTIFY STRESS ANALYSIS AREAS, TABLES 4-16 AND 4-17


	DATA ITEM MAGNITUDE					
DATA ITEM	ENGLISH UNITS	SI UNITS				
100% SPEED	7,962 RPM	834 RAD/S				
100% TORQUE	136,029 IN./LBS	15,369 N-M				
TANGENTIAL LOAD	3,018 LBS/STAR	13,425 N/STAR				
RADIAL LOAD	1,158 LBS/STAR					

REFERENCE 100% SPEED AND LOAD DATA

(1)

in the second of

Figure 4-10. Sun Gear High Stress Areas (Identification) For Tables 4-16 & 4-17) Class A (OTW) Reduction Gear.

VIBRATORY STRESS

Ring Gear - Design speed of the ring gear is 23% higher for the OTW unit design than for the UTW unit and results in 57% higher centrifugal stresses. Table 4-18 shows the stress distribution in the ring gear. The stresses due to the radial forces are somewhat lower, resulting in higher mean stress but lower vibratory stresses. Figure 4-12 is a cross-section view of the ring gear with the points of high stress identified. The vibratory margins for the points where stress concentration factors would exist will be over 3.5 for the 100% torque and 2.9 for the 140% torque. Point 2, the outer surface of the rim, has a vibratory margin of 1.71 for the 140% torque operation which is considered satisfactory since there is no stress concentration factor at that point. The stress levels at 100% and 140% torque are shown on a Goodman Diagram, Figure 4-13, for the three points identified on Figure 4-12.

Star Gear - The star gear points of high stress are identified on Figure 4-14 and the detailed stress values are shown in Table 4-19. Since the speed of the star gear is 42% higher for the OTW design, the centrifugal stresses are also much higher. Torque is also higher, so that the radial and tangential loads cause higher stresses. The Goodman diagram for the star gear is shown on Figure 4-15. At point 2, the minimum diameter of the gear rim, for the 140% torque condition a 3.77 vibratory margin is obtained and is considered satisfactory.

4.2.3 "Combined" Stress

Sun Gear - Stress data used in calculating the "combined" stresses is described in the UTW unit discussion, Section 3.2.3. Table 4-20 shows the detailed stress values and Figure 4-16 shows the Goodman diagram for the AMS 6265 material. Vibratory margins are slightly smaller than those for the UTW design, being 1.36 for 100% design torque and 0.995 for 140% torque. Since the allowable curve for the material does not include the effect of shot peening, an additional 15% margin will exist. Considering the conservative technique used to estimate the "combined" stress, the sun gear is considered acceptable.

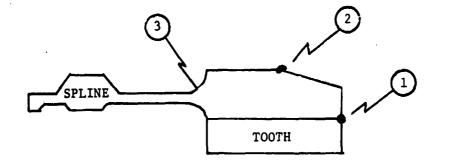
Stress		Circ	umferenti	al Stress			
Area		At Sta		Between			
(Fig.4-12)	Load	Front	Back	Star Gears	Longitudinal	Shear	Equivalent
			100% TOR	QUE (31,687	N-M)		
1,2,3	Centri	+16,750	+16,750	+16,750	-	-	
	Rad	- 9,454	- 9,454	+ 6,952			
	Tang	+ 5,404	- 5,404	-			+15,746
1	т.м.	+ 2,635	+ 2,635	+ 2,635			<u>+</u> 10,906
	Total	+15,335	+ 4,527	+26,227			
	Rad	+13,947	+13,947	- 4,481			
2	Tang	- 6,263	+ 6,269	-			
	т.м.	+ 1,173	+ 1,173	+ 1,173			+25,608
	Total	+25,601	+38,133	+13,083			<u>+</u> 12,525
	Rad	+ 3,406	+ 3,406	464	+ 276	-	
3	Tang	- 1,011	+ 1,011	-		+ 2,765	
	т.М.	+ 2,346	+ 2,346	+ 2,346		-	+22,067
	Total	+21,491	+23,514	+19,560	+ 276	+ 2,765	<u>+</u> 1,929
			140% TOR	QUE - 44,362	2 N-M		
	Rad	-13,235	-13,235	+ 9,733			
	Tang	+ 7,566	- 7,566	-			+14,906
1	т.М.	+ 3,689	+ 3,689	+ 3,689			+15,267
	Total	+14,770	- 361	+30,172			
	Rad	+19,525	+19,525	- 6,727			
	Tang	- 8,777	+ 8,777	-			+29,843
2	Τ.Μ.	+ 1,643	+ 1,643	+ 1,643			<u>+</u> 16,853
	Total	+29,141	+46,695	+11,611			
	Rad	+ 4,768	+ 4,768	+ 650	+ 276	-	
	Tang	- 1,416	+ 1,416	-		+ 3,871	
3	т.М.	+ 3,285	+ 3,285				+26,033
	Total	+29,572	+26,214	+20,684	+ 276	+ 3,871	<u>+</u> 4,289
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

TABLE 4-18a CLASS A (OTW) REDUCTION GEAR RING GEAR BACKING STRESSES (N/cm²)(SI UNITS) 100% SPEED (404 RAD/S)

.

Stress Circumferential Stress							
Stress Area			umferenti r Gear	al Stress Between			
(Fig. 4-12)	Load	Front	Back	Star Gears	Longitudinal	Shear	Equivalent
	2000		0% TORQUE			Ulicat	Equivalenc
1,2,3	Centri		+24,294	+24,294	<u> </u>	-	1
	Rad	-13,712	-13, 712	+10,083			
	Tang	+ 7,838	- 7,838	· -			+22,838
1	т.М.	+ 3,822	+ 3,822	+ 3,822			<u>+</u> 15,817
	Total	+22,242	-	+38,199			
	Rad	+20,228	+20,228	- 7,021			
2	Tang	- 9,083	+ 9,093	-			
	т.М.	+ 1,702	+ 1,702	+ 1,702			+37,141
	Total	+37,131	+55,307	+18,975			+18,166
	Rad	+ 4,940	+ 4,940	673	+ 401		
3	Tang	- 1,467	+ 1,467	-	-	+ 4,010	
	Т.М.	+ 3,403	+ 3,403	+ 3,403	-	-	+32,006
	Total	+31,170	\$34,104	+28,370	+ 401	+ 4,010	+ 2,798
				(392,637 IN	•-LB•)		
	Rad	-19,196	-19,196	+14,116			
	Tang	+10,973	-10,973	-			+21,619
1	т.м.	+ 5,351	+ 5,351	+ 5,351		:	+22,143
	Total	+21,422	- 524	+43,761			
	Rad	+28,319	+28,319	- 9,829			
	Tang	-12,730	+12,730	-			+43,283
2	т.м.	+ 2,383	+ 2,383	+ 2,383			+24,443
	Total	+42,266	+67,726	+16,840			
	Rad	+ 6,916	+ 6,916	+ 942	+ 401	-	
	Tang	- 2,054	+ 2,054	-		+ 5,614	
3	т.м.	+ 4,764	+ 4,764	+ 4,764			+37,757
, L	Total	+42,890	+38,020	+30,000	+ 401	+ 5,614	<u>+</u> 6,221
	Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

TABLE 4-18b CLASS A (OTW) REDUCTION GEAR RING GEAR BACKING STRESSES (PSI)(ENGLISH UNITS) 100% SPEED (3862 RPM)


and the second strategy is a second strategy

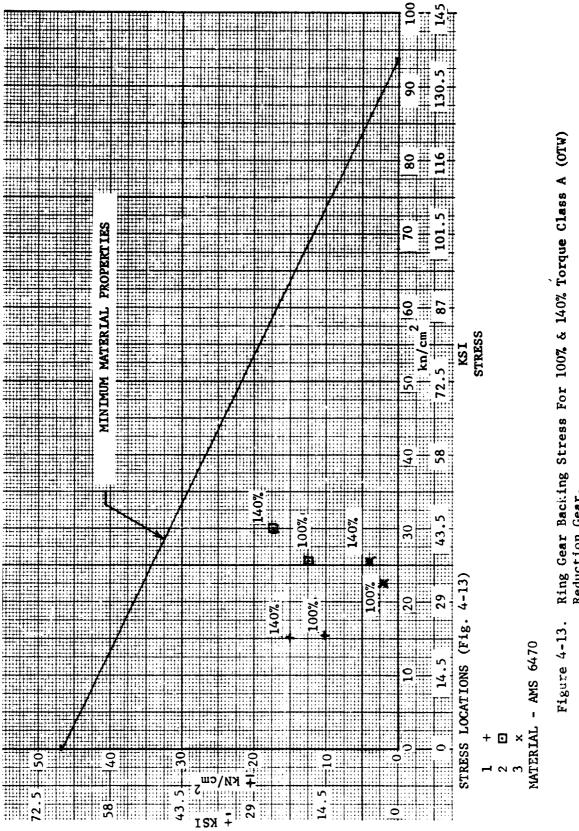
Contraction of the second second

i E

÷.

The sea - Hiller

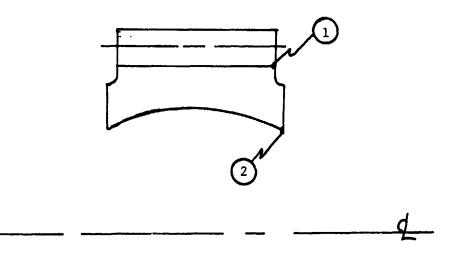
ł


(1)

NUMBERS IDENTIFY STRESS ANALYSIS AREAS, TABLE 4-18

REFERENCE 100% SPEED AND LOAD DATA

DATA ITEM	DATA ITEM MAGNITUDE					
	ENGLISH UNITS	SI UNITS				
100% SPEED	3,862 RPM	404 RAD/S				
100% TORQUE	280,455 IN./LBS	31,687 N-M				
TANGENTIAL LOAD	3,018 LBS/STAR	13,425 N/STAR				
RADIAL LOAD	1,158 LBS/STAR	5,151 N/STAR				


Figure 4-12. Ring Gear High Stress Areas (Identification For Table 4-18) Class A (OTW) Reduction Gear.

VIBRATORY STRESS

Reduction Gear.

ORIGINAL PAGE IS OF POKIR QUALITY

(1)

ŧ

In Allene

ulo s

NUMBERS IDENTIFY STRESS ANALYSIS AREAS, TABLE 4-19

REFERENCE 100% SPEED AND LOAD DATA

DATA ITEM	DATA ITEM MAGNITUDE				
	ENGLISH UNITS	ŠI UNITS			
100% SPEED	14,998 RPM	1,591 RAD/S			
100% TORQUE	9,027 IN./LB	1,020 N-M			
TANGENTIAL LOAD	3,018	13,425 N/STAR			
RADIAL LOAD	1,158	5,151 N/STAR			

Figure 4-14. Star Gear High Stress Areas (Identification For Table 4-19) Class A (OTW) Reduction Gear.

TABLE 4-19a

1

the state of the s

CLASS A (OTW) REDUCTION GEAR STAR GEAR BACKING STRESS (N/cm²) (SI UNITS) 100% SPEED - (1,591 rad/sec)

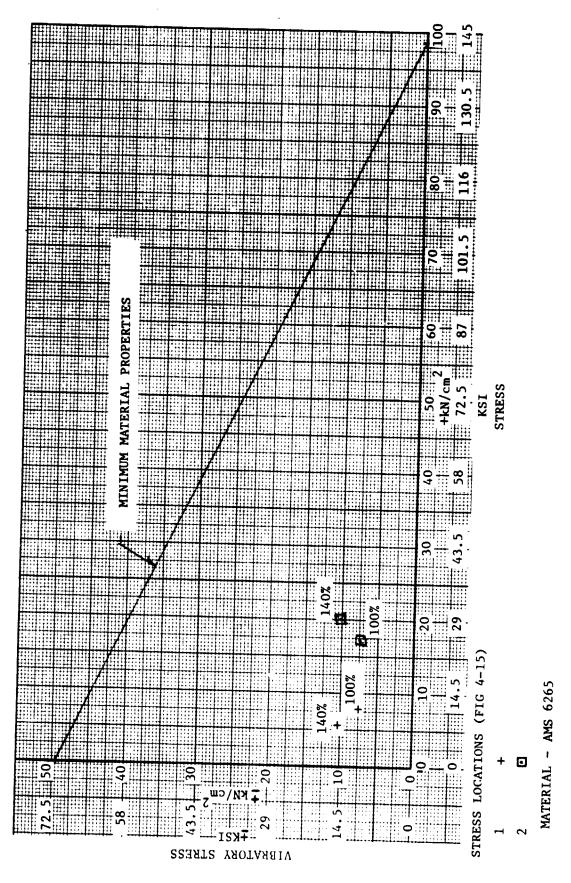

Stress		Circumferential Stress				
Area	1	At Mesh		Between		
Fig. 4-14	Load	Front	Back	Meshes	Equivalent	
100% TORQUE (1,020 N-M)						
	Rad	- 4,901	- 4,901	+ 2,269		
	Tang	+ 7,647	- 7,647	-		
1	Centri	+13 ,13 4	+13,134	+13,134	+ 8,233	
	Total	+15,880	+ 586	+16,092	<u>+</u> 7,647	
	Rad	+ 4,725	+ 4,725	- 3,226		
	Tang	- 7,373	+ 7,373		+17,570	
2	Centri	+13,134	+13,134	+13,134	<u>+</u> 7,772	
1	Total	+10,486	+25,231	+ 9,908		
·			RQUE - (2,372			
	Rad	- 6,861	- 6,861	3,176		
	Tang	+10,705	-10,705	-	+ 6,273	
1	Centri	+13,134	+13,134	+13,134	<u>+</u> 10,706	
	Total	+16,978	- 4,433	+16,310		
	Rad	+ 6,615	+ 6,615	- 4,517		
	Tang	-10,321	+10,321	-	+19,344	
2	Centri	+13,134	+13,134	+13,134	<u>+</u> 10,727	
	Total	+ 9,427	+30,070	+ 8,617		
Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.						

TABLE 4-19b CLASS A (OTW) REDUCTION GEAR STAR GEAR BACKING STRESS (PSI) (ENGLISH UNITS) 100% SPEED - 14998 RPM

r I

•

Stress		Circumferential Stress				
Area Fig. 4-14	Load	At Mesh		Between		
FI G . 4-14	road	Front	Back	Meshes	Equivalent	
100% TORQUE (9,027 IN-LB)						
	Rad	- 7,108	- 7,108	+ 3,291		
	Tang	+11,091	- 11,091	-		
1	Centri	+19,049	+19,049	+19,049	+11,941	
	Total	+23,032	+ 850	+23,340	<u>+</u> 11,091	
	Rad	+ 6,853	+ 6,853	- 4,679		
	Tang	-10,693	+10,693	-	+25,483	
2	Centri	+19,049	+19,049	+19,049	<u>+</u> 11,273	
	Total	+15,209	+36.595	+14,370		
		140% TORQUE	-(20,997 IN	LB.)		
	Rad	- 9,951	- 9,951	_ 4,607		
	Tang	+15,527	-15,527	-	+ 9,098	
1 ·	Centri	+19,049	+19,049	+19,049	<u>+</u> 15,527	
	Total	+24,625	- 6,429	23,656		
	Rad	+ 9,594	+ 9,594	- 6,551		
	Tang	-14,970	+14,970	-	+28,056	
2	Centri	+19,049	+19,049	+19,049	<u>+</u> 15,558	
	Total	+13,673	+43,613	+12,498		
	eviations: Radial Tangential -	Tang		fugal - C al Moment - T	Sentri S.M.	

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 4-20a

CLASS A (OTW) REDUCTION GEAR

"COMBINED" STRESS (N/cm²) (SI UNITS) •

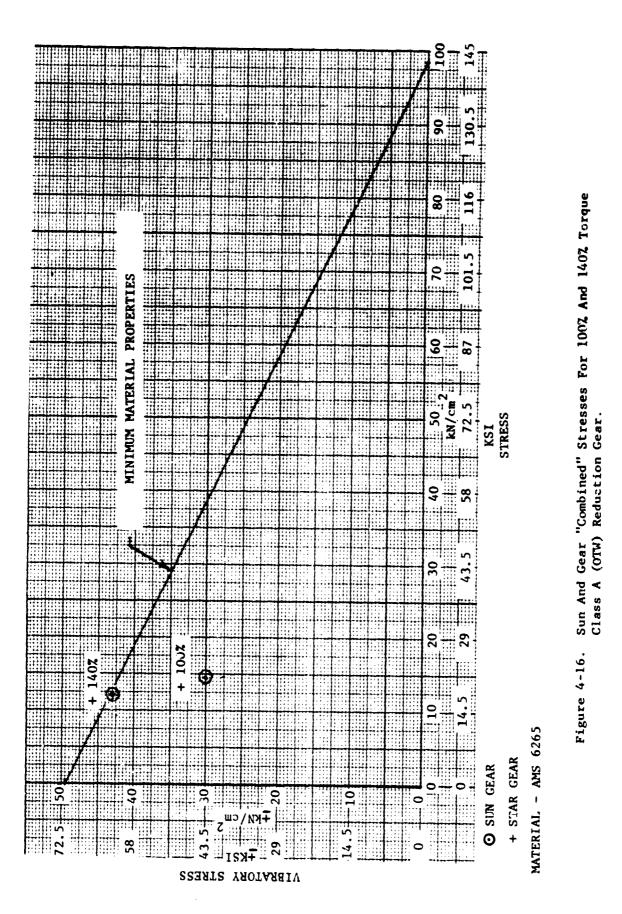
100% SPEED

INCLUDES STRESS CONCENTRATION FACTORS

Torque	Gear	Location (Fig. 3-12)	I	II	III	Equivalent
		A1	+23,818	0	0	
1007	Sun	A2	-	-23,818	0	+14,560
		В	+21,601	+ 7,519	+22,715	
		Total	+45,419	-16,299	+22,715	<u>+</u> 30,859
		A1	+18,523	0	0	
100%	Ring	A2	0	-18,523	0	+15,354
		В	+23,003	+ 6,791	+39,506	
		Total	+41,526	-11,747	+39,506	<u>+</u> 26,637
		Al	+21.618	0	0	
100%	Star	A2	0	-21,618	0	+12,350
		В	+23,820	+ 879	+23,104	
		Total	+45,438	-20,739	+23,104	<u>+</u> 33,089
		Al	+33,345	0	0	
140%	Sun	A2	0	-33,345	0	+12,375
		В	+22,234	+ 2,517	+23,794	
		Total	+55,579	-30,828	+23,794	<u>+</u> 43,341
		A1	+25,933	0	0	
140%	Ring	A2	0	-25,933	0	+10,810
		В	+22,155	- 542	+45,259	
		Total	+48,087	-26,469	+45,259	<u>+</u> 37,279
		A1	+30,265	0	0	
140%	Star	A2	0	-30,265	0	+ 9,409
		В	+25,468	- 6,649	+24,465	+46,325
		Total	+55,733	-36,915	+24,465	

TABLE 4-20b

CLASS A (OTW) REDUCTION GEAR


"COMBINED" STRESS (PSI) (ENGLISH UNITS)

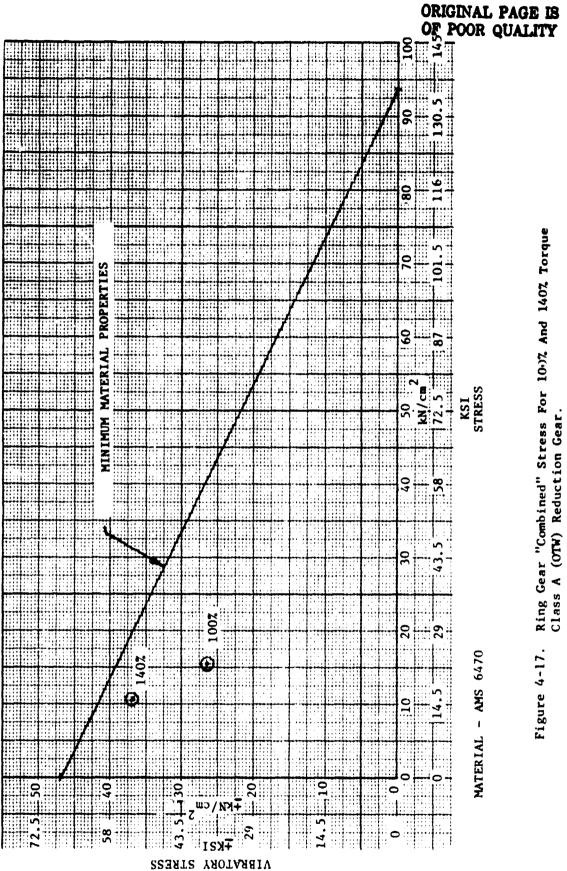
100% SPEED

INCLUDES STRESS CONCENTRATION FACTORS

		الوحدادي الكوحية معاقبي				
Torque	Gear	Location (Fig. 3-12)	I	11	111	Equivalent
		Al	+34.545	0	0	
100%	Sun	A2	0	-34,545	0	+21,117
		В	+31,329	+10,905	+32,946	
		Total	+65,874	-23,640	+32,946	<u>+</u> 44,757
		A1	+26,866	0	0	
100%	Ring	A2	0	-26,886	0	+22,269
	1	В	+33,363	+ 9,849	+57,299	
		Total	+60,229	-17,037	+57,299	<u>+</u> 38,633
		Al	+31,354	0	0	
100%	Star	A2	0	-31,354	0	+17,912
		В	+34,548	+ 1,275	+33,510	
		Total	+65,902	-30,079	+33,510	<u>+</u> 47,991
		A1	+48,363	0	0	
140%	Sun	A2	0	-48,363	0	+17,949
İ		В	+32,247	+ 3,651	+34,511	
1		Total	+80,610	-44,712	+34,511	<u>⊀</u> 62,861
		Al	+37,612	0	0	
140%	Ring	A2	0	-37, 612	0	+15,678
		В	+32,133	- 786	+65,642	
		Total	+69,745	-38,390	+65,642	<u>+</u> 54,068
		Al	+43,896	0	0	
140%	Star	A2	0	-43,896	0	+13,647
		В	+36,938	- 9,644	+35,484	<u>+</u> 67,187
		Total	+80,834	-53,540	+35,484	

117

ORIGINAL PAGE IS OF POOR JUALITY Ring Gear - The detailed stress values used to estimate the "combined" stress for the ring gear are shown on Table 4-20. The mean and vibration stresses for the 100% and 140% torque operation are plotted on the Goodman diagram shown in Figure 4-17. The vibratory margins are 1.49 and 1.12 for the 100% and 140% torque points, respectively.


Star Gear - The "combined" stress data for the star gear are shown in Table 4-20 and the Goodman diagram is shown in Figure 4-16. The vibratory margins are 1.31 for 100% and 0.963 for the 140% torque. Taking into consideration, the effect of shot peening and the conservative analysis procedures, the star gear should be satisfactory for the 140% torque operation.

4.2.4 Stresses Due to Flight

Maneuver loads for the OTW application were established in the same manner as for the UTW. General Electric supplied the results of their dynamic analysis of the entire rotating system which were converted to differential deflections at the ring-to-star mech and the sun-to-star mesh. Table 4-21 shows the deflections for the four types of loading analyzed. The blade out load condition reflects the expected damage in the fan when a severe failure occurs. The fan has metal blades compared to the composite blades for the UIW unit. The critical load conditions from the MIL-E-5007C specification are also shown on the Table 4-21. Several of the possible combinations of loads are included and were used in the analysis.

In relating the deflections to the separating forces involved, the radial spring rates of the three components were evaluated. The radial deflections for the gear under a 4448 N (1000 pound) load are:

Gear	Deflection		
	mm	mils	
Sun	0.1715	6.75	
Star	0,0183	0.72	
Ring	0.0178	0.70	

TABLE 4-21

'' -≡ulik

4

ž

ŗ,

1

÷

100

.

•

CLASS A (OTW) REDUCTION GEAR

MANEUVER LOADS

Differential Deflection (Based on G.E. Dynamic Analysis)

Maneuver	Ring to Star		Sun to Star		
	mm Mi		mm	Mils	
10 G	.0356	1.40			
14 Rad/Sec ²	.0090	0.35	.2316	9.12	
1 Rad/Sec	.0396	1.56	.0239	0.94	
0.77 Blades Out			.0719	2.83	
The states out	.1770	6.97	.0274	1.08	

Critical Load Conditions (Specification MIL-E-5007C)

Condition	Flight	Landing
Power	Maximum	100%
"G" Down	10 6 10	10
"G" Side	- 4 1.5	2
"G Forward	2 3 2	10
Pitch Velocity Rad/Sec	0 1 0	0
Pitch Accel. Rad/Sec ²	+600	<u>+</u> 14
Yaw Accel. Rad/Sec ²	0 0 0	+ 6

Table 4-22 shows the summary of the combined loads for flight and landing and indicates that the more severe case is for flight. The increase in load on the carrier support resulting from the additional radial loads from the ring gear and sun gear causes the following equivalent increase in torque:

Gear Increase - % Sun 10.3 Ring 14.5 Star 12.4

The increase in torque is for a particular star mesh and is accompanied by an equivalent decrease in torque at another star mesh. The backing stresses for this increase in torque are shown in Table 4-23 and titled "Flight Maneuvers Plus 100% Speed and Torque". For the so called "combined" stresses, Table 4-24 shows the values. The Goodman diagram for the "combined" stress is Figure 4-18 for the sun and star gears. The vibratory margins of 1.25 for the sun and 1.15 for the star are considered satisfactory. Figure 4-19 shows the Goodman diagram for the ring gear material AMS 6470. The 1.34 vibratory margin for the ring gear is satisfactory.

The fan blade out load (assumed by G.E. to be equivalent to 0.77 times the weight of one complete fan blade) is equal to the following increases in torque:

Gear	Increase - %
Sun	16.3
Ring	22.9
Star	19.6

Resulting gear stresses will be less than those for the 140% torque operation which will be run during the experimental engine tests and should not cause any difficulties. It should also be noted that operation after a fan blade failure will be an emergency condition that will not be continued for a extended period of time.

TABLE 4-22a

and the state of the

CLASS A (OTW) REDUCTION GEAR

MANEUVER LOADS (SI UNITS)

Flight		
	Differential D	eflection - mm
Load	Ring to Star	Sun to Star
7.81 "G"	.0277	.1808
1 Rad/Sec	.0396	.0719
Total	.0673	.2527
Separative Load	8313 N	5921 N
Landing		
10.2 "G"	.0378	.2461
15.23 Rad/Sec ²	.0097	.0025
Total	•0475	.2487
Separative Load	5849 N	5827 N
Blade O	ut	
Total	.1770	.0274
Separative Load	21823 N	641 N

121

TABLE 4-22b

• - - - - -

CLASS A (OTW) REDUCTION GEAR

MANEUVER LOADS (ENGLISH UNITS)

Flight	Differential D				
	Differential Deflection - Mils				
Load	Ring to Star	Sun to Star			
7.81 "G"	1.09	7.12			
1 Rad/Sec	1.56	2.83			
Total	2.65	9.95			
Separative Load	1869 lbs	1331 lbs			
Landing					
10.2 "G"	1.49	9.69			
15.23 Rad/Sec ²	0.38	0.10			
Total	1.87	9.79			
Separative Load	1315 lbs	1310 lbs			
Blade Out					
Total	6.97	1.08			
Separative Load	4906 lbs	144 lbs			

TABLE 4-23a

an Ariana Ariana

.

CLASS A (OTW) REDUCTION GEAR

BACKING STRESS (N/cm²) (SI UNITS)

HOOP STRESS AT POINT NO. 1 FOR ALL COMPONENTS FLIGHT MANEUVERS PLUS 100% SPEED AND TORQUE

			Mesh	Between	
Gear	Load	Front	Back	Meshes	Equivalent
	Rad.	- 5,410	- 5,410	+ 587	
_	Tang.	+ 5,177	+ 5,177	-	
Sun	Centr.	+13,344	+13,344	+13,344	+ 9,742
	T.M.	+ 1,398	+ 1,398	+ 1,398	+ 5,588
	Total	+14,509	+ 4,155	+15,329	
	Rad.	-10,820	-10,820	+ 7,957	
Ring	Tang.	+ 5,841	- 5,841	-	
	Centr.	+16,750	+16,750	+16,750	+15,414
	T.M.	+ 3,016	+ 3,016	+ 3,016	<u>+</u> 12,309
	Total	+14,786	+ 3,105	+27,722	
	Rad.	- 5,839	- 5,839	+ 2,703.	
	Tang.	+ 9,111	- 9,111	-	+ 7,005
Star	Centr.	+13,134	+13,134	+13,134	<u>+</u> 8,285
	Total	+16,405	- 1,816	+15,837	
Abbreviations: Radial - Rad Centrifugal - Centri Tangential - Tang Toroidal Moment - T.M.					

TABLE 4-23b

CLASS A (OTW) REDUCTION GEAR

BACKING STRESS (PSI) (ENGLISH UNITS) HOOP STRESS AT POINT NO. 1 FOR ALL COMPONENTS FLIGHT MANEUVERS PLUS 100% SPEED AND TORQUE

	[At l	lesh	Between	
Gear	Load	Front	Back	Meshes	Equivalent
	Rad.	- 7,846	- 7,846	+ 852	
	Tang.	+ 7,509	+ 7,509	-	
Sun	Centr.	+19,354	+19,354	+19,354	+14,130
	T.M.	+ 2,027	+ 2,027	+ 2,027	+ 8,104
	Total	+21,044	+ 6,026	+22,233	
	Rad.	-15,693	-15,693	+11,540	
Ring	Tang.	+ 8,471	- 8,471	-	
	Centr.	+24,294	+24,294	+24,294	+22,356
	T.M.	+ 4,374	+ 4,374	+ 4,374	<u>+</u> 17,852
	Total	+21,446	+ 4,504	+40,208	
	Rad.	- 8,469	- 8,469	+ 3,921	
Star	Tang.	+13,214	-13,214	-	+10,160
Julai	Centr.	+19,049	+19,049	+19,049	<u>+</u> 12,002
	Total	+23, 794	- 2,634	+22,970	
Abbi	reviations: Radial - Tangential -	Rad Tang		fugal - Ce al Moment - T.I	

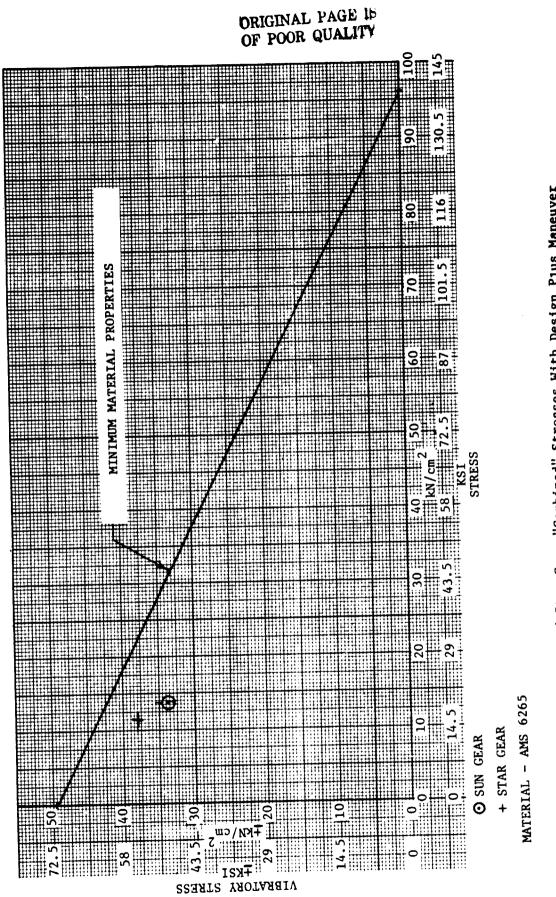
TABLE 4-24a

CLASS A (OTW) REDUCTION GEAR

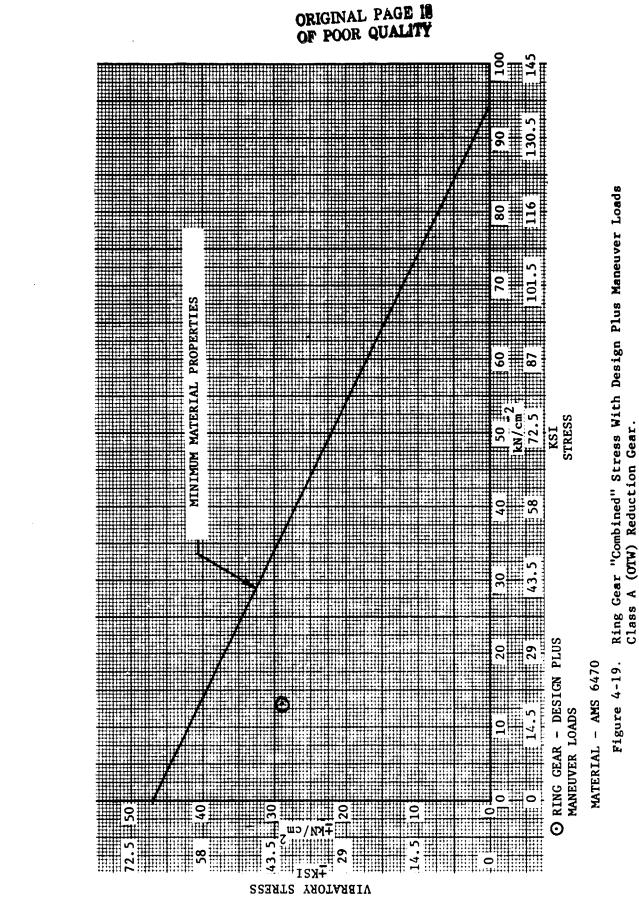
"COMBINED" STRESS (N/cm²) (SI UNITS) INCLUDES STRESS CONCENTRATION FACTORS FLIGHT MANEUVERS PLUS 100% SPEED AND TORQUE

たい違いい

Gear	Location (Fig. 3-12)	I	II	III	Equivalent
	A ₁	+26,271	0	0	
Sun	A ₂	0	-26,271	0	
Jun	B	+21,764	+ 6,232	+22,994	+13,964
	Total	+47,966	-20,039	+22,994	-34,003
	A ₁	+21,200	0	0	
Ring	A ₂	0	-21,200	0	+13,419
	B	+22,180	+ 4,658	+41,584	-29,961
	Total	+43,380	-16,542	+41,584	
	A ₁	+24,294	0	0	
Star	A ₂	0	-24,294	0	+10,942
	B	+24,608	- 2,724	+23,756	<u>+</u> 37,961
	Total	+48,902	-27,019	+23,756	


TABLE 4-24b

CLASS A (OTW) REDUCTION GEAR


"COMBINED" STRESS (PSI) (ENGLISH UNITS) INCLUDES STRESS CONCENTRATION FACTORS FLIGHT MANEUVERS PLUS 100% SPEED AND TORQUE

Gear	Location (Fig. 3-12)	Ī	<u>11</u>	<u>111</u>	<u>Equivalent</u>
	A ₁	+38,103	0	0	
Sun	A ₂	0	-38,103	0	
	В	+31,566	+ 9,039	+33,350	+20,253
	Total	+69,569	-29,064	+33,350	<u>+</u> 49,317
	A ₁	+30,748	0	0	
	A ₂	0	-30,748	0	+19,463
Ring	В	+32,169	+ 6,756	+60,312	<u>+</u> 43,455
-	Total	+62,917	-23,992	+60,312	
	A ₁	+35,236	0	0	
Star	A ₂	0	-35,236	0	+15,870
	В	+35,691	- 3,951	+34,455	<u>+</u> 55,058
	Total	+70,927	-39,188	+34,455	

3000

Sun And Star Gear "Combined" Stresses With Design Plus Maneuver Loads Class A (OTW) Reduction Gear. Figure 4-18.

State

4.2.5 Star Gear Carrier Support Stress

The OTW star gear support was stress analyzed in the same way the UTW unit support was analyzed. The loads and dimensions were changed as necessary for the eight stars in the OTW unit design. Figure 3-22 shows the location of the critical areas where the stresses were calculated. Table 4-25 shows the carrier stresses for various load conditions. At the base of the post the maximum equivalent stress due to normal operation is $5345N/cm^2$ (7,825 psi). Only the stresses at points 3 and 4, intersection of the conical inner and outer surfaces, respectively, with the ring supporting the posts, are shown on this Table since they are the largest. The stress of point 3 is 5227 N/cm^2 (7,581 psi). These stresses are due to torque and therefore little vibratory effect is expected. Taking into consideration stress concentration factors and the overload torque condition, the vibratory margins, for a minimum endurance strength of \pm 51,700 N/cm² (\pm 75,000 psi), are very satisfactory.

A total load of 4448N (1,000 pounds) was applied to the carrier through the posts to simulate a 10 'G' vertical load (conservatively estimated as 10 times the weight of the ring gear, eight stars and sun gear). An equivalent stress of 14,658 N/cm² (21,259 psi) occurs at point 5A, about one-sixth of the minimum yield strength of this material, AMS 6415.

The bearing load for the fan blade out condition was obtained from the results of the system dynamic analysis performed by General Electric. The highest equivalent stress in the carrier due to the blade out load will be 7918 N/cm² (11,484 psi) at point 5B and will be vibratory. If a conservative stress concentration factor of 3.0 is applied, a vibratory margin of over 2.0 will exist. Blade out operation will not damage the carrier.

4.2.6 Flex Coupling

The diaphragm type flexible coupling that connects the sun gear to the turbine drive shaft is identical for the OTW and UTW reduction gear designs. The method of analysis is detailed in the UTW unit discussion, Section 3.2.6. Since the normal speed and torque loads for the OTW unit are higher, the stresses calculated for them were presented in Table 3-29. The highest

TABLE 4-25

ā - **₩**2

CLASS A (OTW) REDUCTION GEAR

STAR GEAR CARRIER SUPPORT STRESS

100% DESIGN PLUS MANEUVER LOADS

SI UNITS

		STRESS - N/cm ²				
Load	Location	Ноор	Longitudinal	Shear	Equivalent	
100% Torque 0.77 Blade Out	Post 3 4 5A 5B 1 3 4 5A 5B	- + 907 + 374 -4,309 + 345 - + 806 + 154 +6,149 + 492	+ 3,748 + 827 - 2,142 - 7,415 + 7,952 + 1,014 + 1,250 + 830 -10,579 +11,347	+2,241 +3,976 +2,442 - 104 + 832 +1,781 + 917 + 705 + 150 +1,187	5,395 5,227 4,671 6,452 7,918 3,247 1,098 1,527 14,658 11,298	

		STRESS - PSI				
Load	Location	Ноор	Longitudinal	Shear	Equivalent	
100% Torque	Post	-	+ 5,436	+3,250	7,825	
	3	+1,315	+ 1,200	+4,316	7,581	
	4	- 543	- 3,107	+3,542	6,775	
	5A	-6,250	-10,754	+ 151	9,358	
	5B	+ 500	+11,534	+1,207	11,484	
10 "G" Down	1	-	+ 1,470	+2,583	4,709	
	3	+1,169	+ 1,813	+1,330	1,592	
	4	+ 224	- 1,204	+1,022	2,214	
	5A	+8,918	-15,344	+ 217	21,259	
	5B	+ 714	+16,457	+1,722	16,386	

equivalent stress occurs at point 2 (Figure 3-22), outer surface of the cylindrical section at intersection with the diaphragm fillet, where the equivalent stress is 22,738 N/cm² (32,979 psi). This stress is less than one-third the minimum yield strength of 83,806 N/cm² (121,550 psi).

Table 4-26 shows the coupling stress for the maneuver and blade out loads. The maneuver loads cause a maximum equivalent stress of 7540 N/cm² (10,936 psi) at point 5, inner surface of the cylindrical section at intersection with the disphragm fillet, just about the same as for the UTW unit. The blade out stress is only one-fifth of that for the OTW unit design. This is a direct result of the reduction in the differential deflection between the sun and star gears shown on Table 4-22 for blade out. The maximum equivalent stress is less than 1379 N/cm² (2,000 psi).

4.3 Deflection Analysis

international de la constant de la c

- States

Contraction of the second s

A detailed discussion of the method of deflection analysis for each of the three gear elements is given for the UTW unit design, Section 3.3. Table 4-27 shows the results of the analysis for the OTW unit design. Data are shown for the two major contributors of deflection and given in the form of a radial slope in the axial direction as well as the effective tangential slope in the direction of rotation. For both the sun and ring gears the centrifugal forces cause a twist opposite to that due to the gear separating forces. For the ring gear the centrifugal effect is approximately 4% of the final twist while for the sun gear the effect is approximately 34%.

The OTW sun gear tooth contact line total axial slope of 200×10^{-6} in./in. is only slightly over 50% of that for the UTW unit. The centrifugal force restoring effect is approximately one-third the gear tooth separating force effect. The ring gear axial slope of 1545×10^{-6} in./in. due to radial gear tooth separating force is slightly less than the comparable UTW unit slope, implying a stiffer ring. Although the OTW unit centrifugal force effect is greater than the UTW unit, the total or resulting slope is only 14% less than the comparable UTW unit slope.

TABLE 4-26

2-32 - C 11- 12

(h, d) and down

ż

CLASS A (OTW) REDUCTION GEAR

FLEXIBLE COUPLING STRESS

MANEUVER AND BLADE OUT LOADS

S	Ŧ	115.1	TTO
J	•	U R .	ITS

Point		STRESS	- N/cm^2	
Fig. 3-23	Ноор	Longitudinal	Shear	Equivalent
Maneuver Loads	T			
1	-1,586	-1,891	- 179	1,786
2	+4,780	+8,043	- 211	7,016
3	-2,079	-4, 378	- 43	1,900
4	- 543	+1,436	-1,551	3,217
5	+ 41	-7, 392	+ 797	7,540
6	+1,142	+4,684	- 43	4,231
Blade Out Loads				
1	- 172	- 204	- 19	193
2	+ 855	+1,089	66	1,000
3	- 225	- 474	- 6	410
4	- 59	+ 155	+ 168	347
5	0	- 998	+ 110	1,016
6	+ 123	+ 507	+ 10	458

ENGLISH UN	ITS
------------	-----

Point		STRESS	- PSI	
Fig. 3-23	Ноор	Longitudinal	Shear	Equivalent
Maneuver Loads				
1	-2,301	- 2,743	- 260	2,590
2	+6,933	+11,665	- 306	10,176
3	-3,016	- 6,350	- 62	2,756
4	- 787	+ 2,083	+2,249	4,666
5	+ 60	-10,721	+1,156	10,936
6	+1,657	+ 6,794	- 62	6,137
Blade Out Loads				
1	- 249	- 297	- 28	280
2	+1,240	+ 1,580	- 95	1,450
3	- 326	- 687	- 9	595
4	- 85	+ 225	+ 243	504
5	0	- 1,448	+ 159	1,474
6	+ 179	+ 735	+ 15	664

TABLE 4-27

and the second

and the second second

and the second state of the

and the product

n nenne ann an Arrange ann an ann an Arrange

สารสุขธุรราชสบให้เสียงเ

CLASS A (OTW) REDUCTION GEAR

,

4. H

		Slope -	10 ⁻⁶ In./In.
Gear	Load	Axial	Tangential
	Rediel	- 267	
Sun	Centrifugal	+ 67	
	Total	- 200	- 77
Ring	Radial	+1,545	
NIIIB	Centrifugal	- 63	
	Total	+1,482	+569
	Post		302
Carrier	Backing Ring		27
	Total		+329

GEAR TOOTH DEFLECTION

Deformation analysis of the star gear journal under load showed an average slope of 302×10^{-6} in./in. in a tangential or torque direction. The contribution of the carrier backup structure was calculated by applying a tangential load in the plane of the carrier ring and a couple at each of the eight posts. The analysis, using the K Shell 1 computer program, showed the post would have an additional slope due to the backing ring of 27 x 10^{-6} in./ in., the same as for the UTW unit. The total tangential slope of the OTW is 329×10^{-6} , 25% greater than the UTW unit post slope.

In summary, for the design speed and torque, the tangential slopes of the gear tooth contact lines will be:

 Gear
 Slope

 Ring
 569×10^{-6} in./in.

 Carrier - Star
 329×10^{-6} in./in.

 Sun
 77×10^{-6} in./in.

The star gear spherical bearings, between the carrier post and the star gear, will accommodate any mismatch between the deflection slopes of the three gear elements without serious skew. Uniform tooth loading patterns are expected during the service life of the unit.

4.4 Natural Frequencies

The interference diagram for the ring gear and sun gear is shown in Figure 4-20. The prime mode of vibration for the gears will be the eight diameter mode (16 nodes) and an estimate of the natural frequency values for the initial design are:

Ring Gear - 1,630 Hertz Sun Gear - 10,200 Hertz

The anticipated speed range of the unit is shown on the bottom of the figure, 15 to 102%. There will be no major resonances in the speed range due to star passing excitation. Two minor resonances, due to gear tooth meshing excitations, could occur; the ring gear near 15% speed and the sun gear at 96% speed.

The ring gear resonance is not considered serious because of the low speed at which it occurs. Raising the sun gear resonance point above the operating speed range can be accomplished by increasing the gear rim thickness and a decision was made to do this to avoid the possibility of an undesirable noise or wear condition.

Experimental tests conducted on a partially machined sun gear indicated that the actual natural frequency was somewhat lower than the calculated value. The sun gear specification was revised prior to final machining to increase the rim thickness and raise the natural frequency above 11,900 hz, placing the gear tooth meshing excitation resonance with the sun gear above 112% rated speed which is 10% above the maximum operating speed, an acceptable operating margin.

€

*

ę

ł

C. Contraction

1 4

•

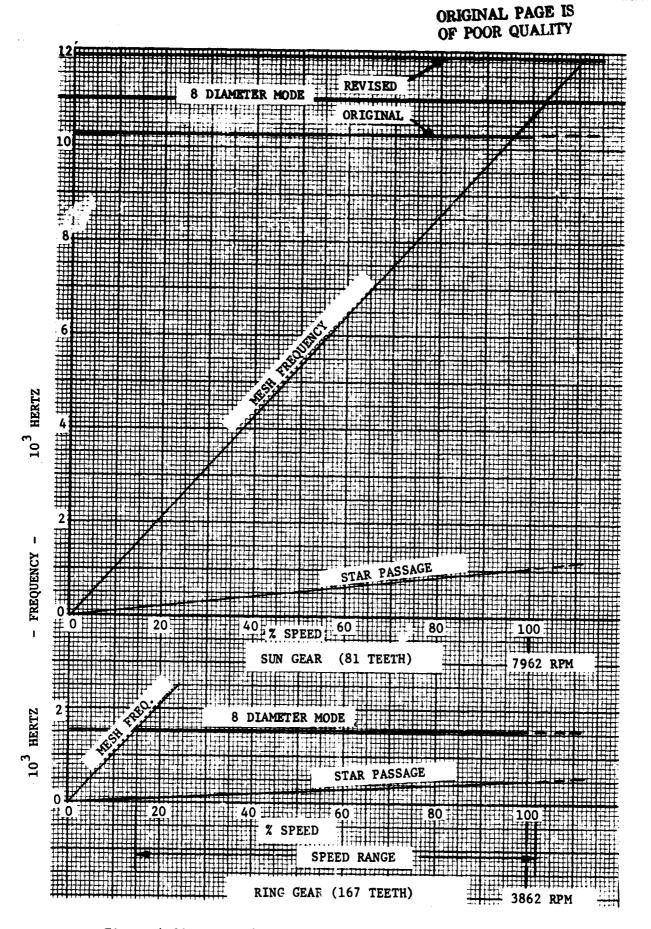


Figure 4-20. Interference Diagram Class A (OTW) Reduction Gear.

5.0 CONCLUSIONS ON SUMMARY OF RESULTS

The design and analysis effort reported herein demonstrates the practicality of lightweight engine-to-fan gear speed reducers, thus enabling the development of high performance turbofan engines utilizing high speed gas turbines driving slower speed fans.

Two epicyclic, star configuration, speed reducer gears for the General Electric/NASA Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing (UTW) and over-the-wing (OTW) configuration programs were designed and analyzed. Gear reduction ratios and input 100% power and speed design conditions are as follows:

Engine Application	UTW	OTW
Reduction Ratio	2.465	2.062
100% Power	9885 kW (13256 hp)	12813 kW (17183 hp)
100% Speed (Input)	811 rad/s (7747 rpm)	834 rad/s (7962 rpm)

Significant features incorporated in the QCSEE main reduction gear designs include the following:

- 1. Modular concept to permit installation and removal of the reduction gear and fan output shaft assembly as a unit.
- 2. Epicyclic gear with star arrangement; power input to sun gear, output from ring gear and stationary star gear support.
- 3. Identical interface points between the reduction gear and engine for the two different ratio units:
 - a. Input coupling attachment to General Electric LP turbine shaft
 - b. Star gear support interface flarge
 - c. Ring gear output spline
 - d. Oil supply tube
- 4. Flexibility in the sun gear and ring gear mountings with controlled gear deflections between the sun gear to star gear mesh and star gear to ring gear mesh.

- 5. Star gears supported by spherical roller bearings to allow selfalignment with the mating gears.
- 6. Gear tooth contact ratio of 2.0, hunting and non-factorizing tooth numbers for quiet operation.

The gear systems, input coupling interface to ring gear output interface including the star gear stationary support, weigh 96.2 kg (204 pounds) and 89.9 kg (198 pounds) for the UTW and OTW units, respectively.

.

1. N. P.S.

1

والأورم وفاستكم سنتي مرعوانهم فالتزاني وتترافأ فأنقاقه فللغام يتلوو وينكوهم مسووا والانتقاب والمقالا والمقالات والمناقعة الملامية المتعلم

The star gear spherical roller bearings have calculated B_1 lives of 6110 hours and 5063 hours for the UTW and OTW units, respectively, based on a typical flight specturm operation.

Calculated gear tooth maximum stresses at 100% power and speed conditions are as follows:

	sun gear	star gear	ring gear
UTW Unit:			
Bending stress -			
N/cm ²	24,869	24,042/23,366	19,595
(psi)	(36,070)	(34,870/33,890)	28,420
Contact stress -			
N/cm ²	87,329	87,329/56,461	56,461
(psi)	(126,660)	(126,660/81,890)	(81,890)
OTW Unit:			
Bending stress -			
N/cm ²	23,818	21,509/21,726	18,537
(psi)	(34,545)	(31,196/31,511)	(26,886)
Contact stress -			
N/cm ²	88,139	88,139/61,383	61,383
(psi)	(127,835)	(127,835/89,029)	(89,029)

ļ

The gear materials are AMS 6265 carburized and hardened to R_{c} 60-63 for the sun and star gears and AMS 6470 nitrided for the ring gears and based on Curtiss-Wright experience the above stress levels provide an adequate safety margin.

Estimated efficiencies at 100% power and speed conditions based on calculated spherical bearing, gear mesh, windage and oil churning losses are 99.3% and 99.1% for the UTW and OTW units, respectively.

Spray tube oil jet lubrication to the gears limits the calculated AGMA scoring index to 300°F maximum, an acceptable value.

The analyses predict successful operation of the reduction gears at overspeed and overload conditions of up to 105% speed at 100% power and 140% power at 100% speed as well as over the complete flight spectrum range for both back-toback component testing and experimental engine operation.

en har seinen seinen sin die Stationale seinen seinen seinen der seinen seinen seinen seinen seinen seinen sein

APPENDIX - A UTW REDUCTION GEAR BILL of MATERIAL No. 210

1

ð

- -

i i

APPENDIX - A

n⊛€7 (× 🏈

â

۰ ج .

UTW Reduction Gear Bill of Material No. 210

BILL OF MATERIAL NO.

210

QCSEE (UTW)

MODEL

Main Reduction Gear

CURTISS-WRIGHT CORPORATION WOOD-RIDGE, NEW JERSEY 07075 ORIGINAL PAGE IS OF POOR QUALITY

1-2-11 2162 4453

CURTISS-WRIGHT CORPORATION

Yood-Ridge, New Jersey

Engrg. Order Rel. 36848M

ALC: NO.

490645	Installation Braving	0riginal 12000 Date 11-20-74	Latest losse Bate		WERT THE PART 15 NOT VET REING THE SUPERSEDED PART NUMBER CLIMINATION IN SES SHOW PARTS TO BE USED. THOSE OWITTED	2 Uc 11 J10
Speci / Ication	Data Plate Marking	te Table of Limite TL 244		ORIGINAL PAGE IS OF POOR QUALITY	111 - 112 -	UTFULL IN 210
Centract Rember	Factory Order (a)	inter Chart for Table of Limite 490644	Table of Lisits Torque Values	or FOOR QUALITY	THIS BILL OF MATCHIA CODE HARM APPEND OM L BYTH THE CARCELLS L APTON, APTCHIA APPLICAT CATON,	
nodel Acces (ITU)	Customer(s)	Complete Assembly Brauling	Test Instruction		SPECIAL MOTES PANTS LISTED ON MUITL PAGES OF SED.A. T.T.E MARP. MUNES SCHIMMIA. SIMILAR SED.A. T.T.E MARP. MUNES SCHIMMIA. SIMILAR SED.A. T.T.E MARP. MUNES SCHIMMIA. SIMILAR ANATI'TIS AND 302446. NUMBER. JN SPECIAL APP	

creatings of a second

and the second

1

ì

. •

BILL OF MATERIAL

CURTISS-WRIGHT CORPORATION .000-MIDGE, NEW JERSEY 07075

į

•

٩

HILL PANT RUMBER	PART OR ASSEMBLY NAME		CNG. ORDER	i i	
		ABY	RELEASE		MATEMAL
\$0C/a	Bolt, Hex. Head3125-24 UNJF-3A X .88 (SPCL) Turbine Output Shaft Coupling to Turbine Output Shaft	32			
764n107	Bolt, Hex. Head250-28 UNJF-3A X .75 Oil Distributing Manifold Supply Tube to Manifold	*			
2067b960	Washer, .250 Dia. Bolt Tablock (Special) Oil Distributing Manifold Supply Tube to Manifold Bolt	4			
7 9190004191	Washer500 X .265 X .032 011 Distributing Manifold to Star Gear Support Bolt	Ś			•
110-986634	Packing, Preformed301 I.D. X .070 Sum Gear Oil Spray Tube	Ŷ			
NS9.188-022	Packing, Freformed989 I.D. X .070 Oil Distributing Manifold Supply Tube	r,			
NS 9 3 RB - 0 2 9	Packing, Preformed - 1.489 I.D. X .070 Star Gear Oil Retaining Sleeve - Rear	••			
	•				
11.1	woot QCSEE Main Reduction Gear (U.T.W.)				
		C 0			PAGE 1 OF 3 DATE 3-24-7 5

,

-

·

1

BILL OF MATERIAL

*,

CURTISS-WRIGHT CORPORATION MOD-RIDGE, NEW JERSEY 0773

.

۰

600

ſ .

NS 9308-032 Star Gear Oil Retaining Sleeve - Fr Star Gear Oil Retaining Sleeve - Fr NS 9557-09 NS 9557-09 Bolt, Double Hex Head250-28 UNU Sun Gear and Coupling Lack Ring to MS 9357-12 Bolt, Double Hex. Head250-28 UNU Oil Distributing Manifold to Star O IN5139 Compling, Turbine Output Shaft IN5140 Coupling, Turbine Output Shaft	- 1.864 I.D. X .070 Ining Sleeve - Front d250-28 UNUT-1A X .686 Ag Lock Ring to Sun Cear ad250-28 UNUT-3A X .875 mifold to Star Cear Support ifold to Star Cear Support	• • •			
	UNUT-JA X B to Sun Ce I UNUT-JA X MUT-JA X	* •	4		
21	UNUT-3A X Ar Gear Sup	٠	Yotoor	3-75	
	Reduction		368485	3-75	
Coupling, Turbine Out		7			ORIG OF P
	put Shaft				INAL POOR Q
Tube, Sun Gear Oil Spray					PAGE :
185146 Ring, Sum Cear and Coupling Lock	ing Lock				18 Y
185147 Sterve, Star Cear Oil Re	Retaining			;	
185148 Nut, Star Gear Retaining		, 			
185149 Ring. Star Gear Retaining	f Met Lock				
185151 Ring. Large - 011 Distrib	ibuting Manifold Seal				
185152 Ring, Small - Oil Distributing Manifold	sting Manifold Seal				
nut or unternut + 210 work + QCSEE Main Reduction Cont At 210					

A Company of the second se

BILL OF MATERIAL

 $\alpha_{ij}^{(1)} = 0$

CURTISS-WRIGHT CORPORATION WOOD-RIDGE, NEW JERSEY 67073

LINE PART NUMBER NO. AUGGEREN	PART OR ASSEMBLY NAME	j!	1000 - 100 U	5	RATERA
185153	Nt. Turbine Output Shaft Coupling Bolt	33			
105 154	Ring, Star Gear Retaining Nut Lock Ring Retaining	٠	_		~~~~
185155	Ring, Star Gear Oil Metaining Sleeve Retaining	÷			
185157 185179 490639	Cear Bearing, Star Sleeve, Star Cear Oil Retaining Tube, Oil Distributing Manifold Supply'- Assembly of	r n e	368487	2-75	0 0
490640	Munifold Assembly, Oil Distributing				RIGINA F Pr
206 C01	Bushing - Open Screw	18			L PAGE
185145 ND	Numifold, Oil Distributing) 18 'T
¢ 9064.2	Coar Assembly, Sun				
18513 8 ND	Gear, Sun				
185136	Lockmut, .250-28 UNJF-3B (Special)	•			
6 45067	Support Assembly, Star Gear				
185142 ND 185156	Support, Star Cear Lockmut, .250-28 UNJP-3B (Special)	• •			
ML OT KATEMAL + 210	woott - QCSER Main Reduction Gear (U.T.W.) C				

:

OF POUR QUALITY

.

APPENDIX - B UTW REDUCTION GEAR WEIGHT ANALYSIS

APPENDIX - B

.

A State of the second

UTW REDUCTION GEAR WEIGHT ANALYSIS

SHEET 1 Of 1

「中国市市市市」

West .

			TOTAL	WEIGHT
PART NO.	NAME	QUAN.	kg	16
675D4	Bolt	32	0.450	0.992
764D107	Bolt	14	0.101	0.223
2067D960	Washer	14	0.017	0.038
AN960C416L	Washer	6	0.004	0.008
MS9388-011	Packing	6	0.001	0.002
MS9388-022	Packing	3	0.001	0.003
MS9388029	Packing	6	0.004	0.008
MS9388-032	Packing	6	0.005	0.010
MS9557~09	Bolt	4	0.114	0.252
MS9557-12	Bolt	6	0.046	0.102
185139	Gear, Ring	1	13.56	29.9 0
18 5140	Coupling	1	2.75	6.07
185144	Spray Tube	6	0.212	0.468
185146	Ring	1	0.337	0.742
185147	Sleeve	4.	0.270	0 . 59 6
185148	Nut	6	1.739	3.834
185149	Ring	6	0.131	0.288
185151	Ring, Seal	1	0.020	0.044
185152	Ring, Seal	1	0.021	0.047
185153	Nut	32	0.125	0.275
185154	Ring, Retaining	6	0.076	0.168
185155	Ring, Retaining	6	0.035	0.078
185157	Gear and Bearing	6	41.39	91.25
185179	Sleeve	2	0.118	0.260
490639	Tube, 011	1	0.144	0.317
490 640	Manifold Assembly	1	-	-
1039D2	Bushing	18	0.090	0.198
185 145	Manifold	1	1.54	3.40
490642	Gear Assembly	1	-	-

ORIGINAL PAGE IS

APPENDIX - B

	UTW REDUCTION GEAR WEIGHT ANA	LYSIS (Continued)		SHEET 2 Of S
			TOTA	L WEIGHT
PART NO.	HAME	QUAN.	kg	16
185138	Gear, Sun	1	7.12	15.70
185156	Locknut	4	0.013	0.028
490643	Support Assembly	1	-	-
185142	Support	1	22.17	48.88
185156	Locknut	6	0.021	0.046
	TOTAL		92.63	204.23

APPENDIX - C OTW REDUCTION GEAR BILL of MATERIAL No. 211 also the second second

- Station

5

5

OTW Reduction Gear Bill of Material No. 211

CURTISS-WRIGHT CORPORATION WOOD-RIDGE, NEW JERSEY 07075

MAIN REDUCTION CEAR

QCSEE (0.T.W.)

MODEL

211

BILL OF MATERIAL NO.

CURTISS-WA'IGHT CORPORATION

ある」ないできたいまたがあるとないで、 あんとうちょうちょうしょうできたい あいちょうちょうちょうちょうちょうちょうちょうちょうちょうちょうしょうしょうしょうしょう

Contraction in the second second

,

FC4V 4914 (1.57)

-
٠.
1
-
-
•
-
-
-
•
2
-
-
-
-
_
-
-
•
-
_
-
-
-
_
_
_
_
-
-
0
0
0
-

Engrg. Order Rel. 36848 M

٧

Basic Drawing	lastallation Braving	Original Issue Date 3-12-75	Latest lases Date	ORIGINAL PAGE IS OF POOR QUALITY	MATCRIAL ARE LATEST PARTS PROVIDED FOR USE . WHERE THE PART 19 MOT VIT BEIRG PEARS ON "HE PINK SHEETS.THIS CODE MARK INDICATES THE SUPERSEDED PART NUMBER FURPENTLY IN CANCELLED PART
Specification	Data Plate Marking	Table of Limits TL245			ARE LATEST PARTS PROVIDED FOR USE " WHERE THE PART HE PINK SHEETS.THIS CODE WARK INDICATES THE SUPERSEDED PART. Part. Cas such as instrumentation. These pages shor parts to be us
Centract Number	Factory Order (a)	inder Chart for Table of Limits 490649	Table of Limits Torque Values		T THIS BILL OF R CODE MARK AT CILT WITT THE T 108 STECTAL T 108 STECTAL
Hodel	OCSEE (0.T.W.) Customer(s)	Complete Assembly Drawing 1	Test instruction		SPECIAL MOTES THAT'S LISTED ON WHITE PAGES OF STELLA TOTE WART FOLLOWS THI ALLEND A STELLA STULLE TO AL PAGES APPENDENT TO TO AL PAGES APPENDENT TO TO AL PAGES APPENDENT TO TO ATTAIN APPENDENT AP

Individued Antr on Ansten, vanc Antr on Antr on Ansten, vanc Antr on Antr Antr on Antr Antr Antr Antr Antr Antr Antr Ant	Anti Numera PART ON ASSEMENT AND PART ON ASSEMENT AND PART ON ASSEMENT AND PART ON AND AND AND PART ON AND AND AND AND AND AND AND AND AND AN	FORM 4810 18-491			WOOD-RIDGE	WOOD-RIDGE, NEW JERSEY 07075	07075
 Bolt, Hex Hd3125-24 UNJF-3A x .88 (Spc1) Turbine Ourput Shaft Coupling to Turbine Ourput Shaft Coupling to Turbine Ourput Shaft Bolt, Hex Hd250-28 UNJF-3A x .75 011 Distributing Manifold Supply Tube Masher, Tablock250 Dia. Bolt (Special) 011 Distributing Manifold Supply Tube Masher500 x .255 x .032 011 Distributing Manifold to Star Coll Distributing Manifold Supply Tube Packing, Preformed301 I.D. x .070 Coll Distributing Sleeve Packing, Preformed - 1.051 I.D. x .070 Packing, Preformed - 1.051 I.D. x .070 Carr Oil Retaining Sleeve Packing, Preformed - 1.051 I.D. x .070 Rat Gear Oil Retaining Sleeve Packing, Preformed - 1.394 I.D. x .139 Coll Duble Hex Hd250-28 UNJF-3A x .688 Sun Gear and Coupling Lock Ring to Sun Gear 	Bolt, Her Hd		PART OR ASSEMBLY NAME	jų	ENG. ORDER RELEASE	6.0. Date	MATEMAL
 Bolt, Hex Hd250-28 UNJF-JA x .75 Oil Distributing Manifold Supply Tube to Manifold Washer, Tablock250 Dia. Bolt (Special) Oil Distributing Manifold Supply Tube Washer500 x .265 x .032 Oil Distributing Manifold to Star Washer500 x .265 x .032 Oil Distributing Manifold to Star Gear Support Bolt Packing, Preformed301 I.D. x .070 Oil Distributing Manifold Supply Tube Packing, Preformed989 I.D. x .070 Oil Distributing Manifold Supply Tube Packing, Preformed - 1.051 I.D. x .070 Star Gear Oil Retaining Sleeve Packing, Preformed - 1.489 I.D. x .070 Packing, Preformed - 1.984 I.D. x .070 Star Gear Oil Retaining Sleeve Packing, Preformed - 13.984 I.D. x .139 Oil Distributing Manifold Seal Small Bolt, Double Hex Hd250-28 UNJF-JA x .688 Sun Gear and Coupling Lock Ring to Sun Gear and Coupling Lock Ring to 	7 Belt, Her Hd250-28 UNJP-3A x .75 18 0:1. Distributing Manifold Supply Tube 0:1. Distributing Manifold Supply Tube 18 0:0. Ull Distributing Manifold Supply Tube 18 0:1. Distributing Manifold Supply Tube 6 0:1. Distributing Manifold to Star 6 0:1. Distributing Manifold Supply Tube 8 1:1. Packing, Preformed - 1.051 L.D. x. 070 8 1:2.3 Packing, Preformed - 1.051 L.D. x. 070 1:2.4 Packing, Preformed - 1.051 L.D. x. 070 1:2.5 Packing, Preformed - 1.051 L.D. x. 070<		 3125-24 UNJF-3A x .88 Put Shaft Coupling to put Shaft 	33			
 Masher, Tablock250 Dia. Bolt (Special) Oil Diatributing Manifold Supply Tube to Manifold Bolt Ibi. Washer500 x .265 x .032 Oil Diatributing Manifold to Star Gear Support Bolt Packing, Preformed301 I.D. x .070 Sun Gear Oil Spray Tube Packing, Preformed989 I.D. x .070 Oil Diatributing Manifold Supply Tube Packing, Preformed - 1.051 I.D. x .070 Star Cear Oil Retaining Sleeve Packing, Preformed - 1.398 I.D. x .070 Packing, Preformed - 1.489 I.D. x .070 Packing, Preformed - 1.051 I.D. x .070 Star Cear Oil Retaining Sleeve Packing, Preformed - 1.398 I.D. x .139 Oil Diatributing Manifold Seal Star Gear Oil Retaining Sleeve Front Packing, Preformed - 13.984 I.D. x .139 Oil Distributing Manifold Seal Sun Gear and Coupling Lock Ring to Sun Gear and Coupling Lock Ring to Sun Gear 	60 Washer, Tablock250 Dia, Bolt (Special) 18 011 Distributing Manifold Supply Tube 19 161. Washer500 x .265 x .032 6 011 Distributing Manifold to Star 6 011 Facking, Freformed301 I.D. x .070 8 022 Packing, Freformed301 I.D. x .070 8 023 Packing, Freformed1051 I.D. x .070 8 024 Dil Distributing Manifold Supply Tube 8 025 Packing, Freformed1051 I.D. x .070 8 026 Oull Distributing Manifold Supply Tube 8 129 Packing, Freformed1051 I.D. x .070 8 129 Pa	764 D107	Bolt, Hex Hd250-28 UNJF-3A x .75 011 Distributing Manifold Supply Tube to Manifold	18			
 16L 16L 16L 111 111 112 111 112 113 114 114 114 115 116 /ul>	 166. Washer500 x .265 x .032 1011 Distributing Manifold to Star Gear Support Bolt 011 Packing, Preformed301 I.D. x .070 011 Packing, Preformed989 I.D. x .070 022 Packing, Preformed989 I.D. x .070 031 Distributing Manifold Supply Tube 123 Packing, Preformed - 1.051 I.D. x .070 129 Packing, Preformed - 1.489 I.D. x .070 13 Packing, Preformed - 1.489 I.D. x .070 140 Packing, Preformed - 1.489 I.D. x .070 15 Packing, Preformed - 1.489 I.D. x .070 16 Packing, Preformed - 1.501 Retaining Sieeve 17 Packing, Preformed - 1.502 UNUF-3A x .688 18 Packing, Pouble Hex Hd250-28 UNUF-3A x .688 101 Distributing Lock Ring to 201 Distributing Lock Ring to 201 Distributing Lock Ring to 201 Distributing Lock Ring to 	2067D960	Dia. Bolt Ifold Suppl	18			
 Packing, Preformed301 I.D. x .070 Sun Gear Oil Spray Tube Packing, Preformed989 I.D. x .070 Oil Distributing Manifold Supply Tube Packing, Preformed - 1.051 I.D. x .070 Star Gear Oil Retaining Sleeve Packing, Preformed - 1.489 I.D. x .070 Packing, Preformed - 1.489 I.D. x .070 Packing, Preformed - 13.984 I.D. x .139 Star Gear Oil Retaining Sleeve Front Packing, Preformed - 13.984 I.D. x .139 Star Gear Oil Retaining Sleeve Front Packing, Preformed - 13.984 I.D. x .139 Star Gear Oil Retaining Sleeve Front Star Gear Oil Retaining Sleeve Star Gear Oil Retaining Sleeve Front Star Gear Oil Retaining Sleeve Star Gear And Coupling Lock Ring to 	011 Packing, Freformed301 I.D. x .070 8 022 Packing, Preformed999 I.D. x .070 3 023 Packing, Preformed999 I.D. x .070 3 024 011 Distributing Manifold Supply Tube 3 025 Packing, Preformed - 1.051 I.D. x .070 8 026 Packing, Preformed - 1.051 I.D. x .070 8 027 Packing, Preformed - 1.489 I.D. x .070 8 128 Packing, Preformed - 1.489 I.D. x .070 8 129 Packing, Preformed - 1.3.984 I.D. x .070 8 129 Packing, Preformed - 13.984 I.D. x .139 1 120 Packing, Preformed - 13.984 I.D. x .139 1 139 011 Distributing Manifold Seal 1 139 011 Distributing Manifold Seal 1 1 Sun Gear and Coupling Lock Ring to 8 1 Sun Gear Order And Coupling Lock Ring to	A N960C4 16L	.032 fold to	Ŷ			
 Packing, Preformed989 I.D. x .070 011 Distributing Manifold Supply Tube Packing, Preformed - 1.051 I.D. x .070 Star Gear 011 Retaining Sleeve Packing, Preformed - 1.489 I.D. x .070 Packing, Preformed - 1.489 I.D. x .070 Front Packing, Preformed - 13.984 I.D. x .139 011 Distributing Manifold Seal Small Bolt, Double Hex Hd250-28 UNJF-3A x .688 Sun Gear and Coupling Lock Ring to 	022Packing, Preformed989 I.D. x .0703023011 Distributing Manifold Supply Tube3023Packing, Preformed - 1.051 I.D. x .0708233Packing, Preformed - 1.051 I.D. x .0708244Star Gear 011 Retaining Sleeve825Packing, Preformed - 1.489 I.D. x .070829Facting, Preformed - 1.489 I.D. x .070829Packing, Preformed - 1.489 I.D. x .070820Packing, Preformed - 13.984 I.D. x .139180Packing, Preformed - 13.984 I.D. x .13919Packing, Preformed - 13.984 I.D. x .13919Packing, Preformed - 13.984 I.D. x .13919Sun Gear and Coupling Lock Ring to89Sun Gear and Coupling Lock Ring to89Sun Gear and Coupling Lock Ring to8	110-886°28	.301 I.D. Tube	60			
 23 Packing, Preformed - 1.051 I.D. x .070 Star Gear Oil Retaining Sleeve - Rear Packing, Preformed - 1.489 I.D. x .070 Star Gear Oil Retaining Sleeve - Front Packing, Preformed - 13.984 I.D. x .139 Oil Distributing Manifold Seal Small Bolt, Double Hex Hd250-28 UNJF-3A x .688 Sun Gear and Coupling Lock Ring to Sun Gear 	223 Packing, Preformed - 1.051 I.D. x .070 8 2 Star Gear Oil Retaining Sleeve - Rear 2 Front - Rear Oil Retaining Sleeve 2 Front - Front 80 Packing, Preformed - 13.984 I.D. x .070 8 90 Packing, Preformed - 13.984 I.D. x .139 1 91 Packing, Preformed - 13.984 I.D. x .139 1 93 Packing, Preformed - 13.984 I.D. x .139 1 94 Oil Distributing Manifold Seal 1 93 Bolt, Double Hex Hd250-28 UNJF-3A x .688 4 94 Sun Gear 1 90 Sun Gear 200 Ling to 4	NS9388-022	Packing, Preformed989 I.D. x .070 Oil Distributing Manifold Supply Tube	ñ			
 Packing, Freformed - 1.489 I.D. x .070 Star Gear Oil Retaining Sleeve Front Front Packing, Preformed - 13.984 I.D. x .139 Oil Distributing Manifold Seal Small Bolt, Double Hex Hd250-28 UNJF-3A x .688 Sun Gear and Coupling Lock Ring to 	29Packing, Preformed - 1.489 I.D. x .0708Star Gear Oil Retaining Sleeve - Front- Front80Star Gear Oil Retaining Sleeve - Front180Packing, Preformed - 13.984 I.D. x .139180Packing, Preformed - 13.984 I.D. x .13919Packing, Preformed - 13.984 I.D. x .13919Sun Clarr Hd250-28 UNJF-3A x .68849Sun Gear and Coupling Lock Ring to59Sun GearOctar MAN DAN PARA TO1Poot Occar MAN DAN PARA TO4	MSo 388-023 :	Packing, Preformed - 1.051 I.D. x .070 Star Gear Oil Retaining Sleeve - Rear	60			
13.984 I.D. x .139 [anifold Seal 250-28 UNJF-3A x .688 ing Lock Ring to	0 Packing, Preformed - 13.984 I.D. x .139 1 011 Distributing Manifold Seal - Small 1 - Small - Small 1 Bolt, Double Hex Hd250-28 UNJF-3A x .688 4 Sun Gear and Coupling Lock Ring to 4	4S° 388-029	×	e ç			
Bolt, Double Hex Hd250-28 UNJF-3A x .688 Sun Gear and Coupling Lock Ring to Sun Gear	 Bolt, Double Hex Hd250-28 UNJF-3A x .688 4 Sun Gear and Coupling Lock Ring to 211 MODEL - OFFER MAIN BED COLL 	-280	I.D. X Seal				
-	- 211 MODEL - OFSEE WATH BED DIE 2	60	250-28 UNJF-3A x ing Lock Ring to	-4			

- ^{- - -}

.

والأقارب المراجع

1 Bolt, Double Hex Hd. BILL OF MATERIAL AAT NUMBER MS9557-12

N OZ 8

•

CURTISS-WRIGHT CORPORATION

WOOD-RIDGE, NEW JERSEY 07075

,

MATEMAL ORIGINAL PAGE 18 POOR QUALITY OF E.O. DATE 4-74 4-75 ENG. ONDER RELEASE 36848L **36858L** T SA ø 33 ە œ 60 œ œ 2 Ring, Star Gear Oil Retaining Sleeve Retaining .250-28 UNJF-3A x .875 Tube, Oil Distr. Manifold Supply - Assy of Nut, Turbine Output Shaft Coupling Bolt Ring, Large - Oil Distributing Manifold Seal 011 Distributing Manifold to Star Ring, Star Gear Retaining Nut Lock Ring, Star Gear Retaining Nut Lock Gear, Ring - Planetary Reduction Ring, Sun Gear and Coupling Lock PART OR ASSEMBLY NAME Sleeve, Star Gear Oil Retaining Sleeve, Star Gear Oil Retaining Coupling, Turbine Output Shaft Tube, Sun Gear Oil Spray Nut, Star Gear Retaining Gear Bearing, Star Ring Retaining Gear Support Gear Assy, Sun Gear, Sun 185143 N.D. 185146 185153 185160 185159 185161 185163 185164 185165 **1R5140** 185167 185168 185169 185225 490639 490646

6-11-75 5 PAGE DATE

Chg. A

QCSEE MAIN RED. CEAR (O.T.W.)

MODEL + CHOID S

211

4

HILL OF WATFRIAL

***シンン

; [

1

:1

: . j ••••

Locknut, .250-28 UNJF-3B (Special)

185156

HIND OF STREET

KATERAL		PAGE 3 01 3 DATE 3- 12-75
6.0. 0.1.6.		
CNG. ONDER RELEASE		
VNIT PER ASSY	1 2 1 2 1	
PART OR ASSENDELY NAME	Manifold Assy., Oil Distributing Bushing, Open Screw Manifold, Oil Distributing Support Assy., Star Gear Locknut, .250-28 UNJF-38 (Special) Support, Star Gear	MODEL - QCSEE MAIN RED. GEAR (O.T.W.)
LINE PART NUMBER LINE PART NUMBER NO.	490647 103902 185166 N.D. 490648 185156 185170 N.D.	or warenau 🍝 211

100 - **1**

A - 40 Links

25

APPENDIX - D OTW REDUCTION GEAR WEIGHT ANALYSIS 1

ŝ.

.

1

4.

٠

APPENDIX - D

and a subscription of the

OTW REDUCTION GEAR WEIGHT ANALYSIS

1 Of 2

			TOTAL	WEIGHT
PART NO.	NAME	QUAN.	kg	15
675D4	Bolt	32	0.450	0.992
764D107	Bolt	18	0.130	0.286
2067D960	Washer	18	0.022	0.049
AN960C416L	Washer	6	0.004	0.008
M59388-011	Packing	8	0.001	0.002
MS9388-022	Packing	3	0.001	0.003
MS9388-023	Packing	8	0.004	0.008
MS9388-029	Packing	8	0.005	0.011
MS9388-28 0	Packing	1	0.022	0.048
MS9557-09	Bolt	4	0.114	0.252
MS9557-12	Bolt	6	0.046	0.102
185140	Coupling	1	2.75	. 6.07
185146	Ring	1	0.337	0.742
185153	Nut	32	0.125	0.275
185159	Gear and Bearing	8	37.26	82.14
185160	Spray Tube	8	0.28	0.61
185161	Sleeve	6	0.330	0.728
185163	Ring	8	0.139	0.306
185164	Nut	8	2.08	4.58
185165	Gear, Ring	1	12.42	27.38
185167	Ring	1	0.023	0.051
185168	Ring, Retaining	8	0.065	0.143
185169	Ring, Retaining	8	0.028	0.062
185225	Sleeve	2	0.104	0.229
490 639	Tube, 011	1	0.144	0.317
490646	Gear Assembly	1	-	-
185143	Gear, Sun	1	8.07	17.80
185156	Locknut	4	0.013	0.028
49 0647	Manifold Assembly	1	-	-

ORIGINAL PAGE IS

APPENDIX - D OTW REDUCTION GEAR WEIGHT ANALYSIS (Continued)

≽

			TOTAL	WEIGHT
PART NO.	NAME Q	QUAN.	kg	15
	Bushing	22	0.110	0.242
1039D2	-	1	1.80	3.97
185166	Menifold	1	-	-
490648 .	Support Assembly	6	0.021	0.046
185156	Locknut	-	23.00	50.70
185170	Support	1	23.00	
	TOTAL		89.89	198.18

ORIGINAL PAGE IS

2 Of 2

APPENDIX E MISES CRITERION 1

₩**₩**₩

ALC: NO.

The subset of the state of the

¥

4

٠

€.

ORIGINAL PAGE IS OF POOR QUALITY

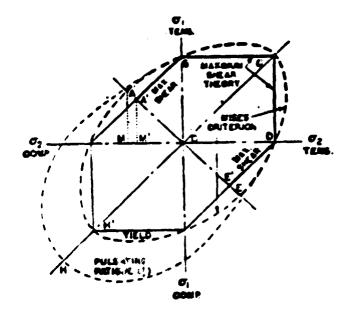
APPENDIX E

2

3

SHEET 1 of 2

Mises Criterion


The following mathematical expression was proposed by R. van Mises as representating a criterion of failure by yielding.

Where

y = Minimum Yield Value of Material at Temperature (Uniaxially loaded bar)

If $\sigma_3 = 0$ $\sigma_1 = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2}$

This relationship is shown by the dashed ellipse below where $OB = \sigma_y$ in this case.

BI-AXIAL CONDITIONS FOR STRENGTH THEORIES FOR DUCTILE MATERIALS.

SHEET 2 of 2

APPENDIX E

. Same

3

Yield tests of ductile materials have shown that the Mises criterion interprets well the results of a variety of biaxial conditions. There is evidence that for ductile materials the Mises criterion also give a reasonably good interpretation of fatigue results in the upper right half of A B C D E of the ellipse for completely alternating or pulsating tension cycling.

The eriterion states that yielding occurs when

$$\bullet_{\text{EFF}} = \sqrt{\bullet_1^2 - \bullet_1 \bullet_2 + \bullet_2^2} \quad \ge \quad \bullet_y$$

where **#**EFF = Effective fluxs

The stress analysis approach used by Cortiss-Wright consists of the following four steps.

Step 1) Find Stresses $\boldsymbol{\sigma}_{x}, \boldsymbol{\sigma}_{y}, \boldsymbol{\tau}_{xy}$

Step 2) Find principal stresses using Mohr circle of the following expressions

$$\begin{bmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{2} \end{bmatrix} = \frac{\mathbf{e}_{x} + \mathbf{e}_{y}}{2} \pm \frac{1}{2} \sqrt{(\mathbf{e}_{x} - \mathbf{e}_{y})^{2} + 4\tau^{2}}_{xy}$$

Step 3) Find the Effective Stress

Step 4) Compare it with the allowable

- Ref.: "Stress Concentration Design Factors" by R. E. Peterson 5th Printing Page 6.
- Also: "Advanced Mechanics of Materials" by B. Seely and O. Smith 2nd Edition Page 81.