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SUMMARY

A study was conducted to develop an implicit method for integrating the equations of
motion of a lumped-mass model of a rotor bearing system. The approach was, first, to use
a Nordsieck-like numerical integration directly on the second-order equations ot motion
and, second. to assume that the forces and torques on the rotor are functions of the position
and velocity at the point of application and its nearest axial neighbors. This allows the
variables to be arranged so that the Jacobian of the set of nonlinear equations is block
tridiagonal. Therefore the computational time is proportional to the number of elements in
the rotor dynamics model rather than to the cube of the number. Numerical stability was
demonstrated for any linearized homogeneous mode.

To decrease computational time, a closed~-form solution to the short-bearing theory
was derived for a damper with arbitrary motion. Explicit results were presented for no
cavitation and for full cavitation.

The vast amount of data generated by the computer code was displayed in a motion
picture showing an oblique view of the rotor bearing system. The motion of the rotor could
be easily interpreted.

An example problem of a rotor accelerating through three critical speeds with 19
mass elements in the rotor dynamics model took 0.7 second of central processing unit time
per time step on an IBM 360-67 computer in a time-sharing mode. The mode shapes at the
first and third critical speeds were similar to the predicted mode shapes and occurred at
the predicted speed. Because of the unbalance distribution, the second mode was not
excited. Above the third critical speed the rotor bearing system operated as a self-
centering device. This was also observed experimentally.

The computer code, for the first time, allows us to look at a complex rotor bearing
system with nonlinear transients and displays the vast amount of results in an easily
understood motion-picture format. A 10-minute 16-millimeter, color, sound motion-picture
supplement is available on loan.

INTRODUCTION

Nonlinear transients that are important in flexible, rotating equipment are difficult
to analyze. Such things as blade tip rubs, spline friction, and squeeze-film dampers are
difficult to predict with a linear model. Some of the transients that are important are
locked rotor starts, blade loss, and rapid deceleration due to bearing failures.

There are two basic methods for studying transient rotor aynamics. The first method
is the modal method (refs. 1 and 2). It is best suited to linear rotor bearing systems running
at a constant speed. The second method is the direct integration of the equations of mo-
tion. It can be applied easily to nonlinear systems that are varying in speed. ‘The problem
with the direct method is that it is limited by either computer running time or numerical
stability.

The equations of motion for rotor dynamies can be integrated direetly in either of
two ways, explicit or implicit integration. The explicit integration method solves the
equations of motion at the present time for higher order derivatives and then extrapolates
the displacements and velocities with a Taylor series to the advanced time (ref. 3). The
implicit method solves the equations of motion (implicitly) at the advanced time step for



the displacements and velocities, such that an extrapolation backward in time gives the
previous results.

The explicit method tends to be unstable when the produect of the critical frequency
(for any mode numerically possible) and the time step is large (ref. 4). Since the highest
frequency is related to the square of the number of elements in the rotor dynamics moael,
the computational time will be related to the square of the number of elements. Ap-
proximately five or six elements seems to be a practical limit to the explicit method (ref. 2);
that is, it can only be applied to simple assemblies.

In contrast to the explicit method, the implicit method tends to be stable for large
time steps (ref. 5); but it requires the solution of a large number of nonlinear simultaneous
equations at each time step. For every element in the rotor dynamies model there are four
degrees of freedom. For each degree of freedom there is an associated displacement and
velocity. Therefore the total number of nonlinear equations to be solved at each time step
is eight times the number of elements in the rotor dynamies model. The number of com-
putations necessary to solve these equations is proportional to the cube of the number of
equations. Therefore the computing time is proportional to the cube of the number of
elements.

This study was conducted to develop an implicit method for integrating the equations
of motion in a reasonable amount of computing time. The approach is, first, to use a
Nordsieck-like numerical integration directly on the second-order equations of motionl
and, second, to assume that the forces and torques on the rotor are functions of the position
and velocity of the point where the force or torque is applied and its nearest axial
neighbors. This allows the variables to be arranged so that the Jacobian of the set of
nonlinear equations is block tridiagonal. The computing time is proportional to the number
of elements in the rotor dynamiecs model rather than to the cube of the number of elements.

Besides the problems associated with integrating the equations of motion, there is a
problem of desecribing the nonlinear damper force at each instant of time for an arbitrary
orbit. In the past this was done by numerically integrating the Reynolds equation around the
damper (ref. 6). This required a considerable amount of computing time. As an aside, a
closed-form solution to the short-bearing theory was derived for a damper with arbitrary

motion.

SYMBOLS
A coefficients used in partial-fraction expansion
a property of shaft between mass stations defined in eq. (18a)
b property of shaft between mass stations defined in eq. (18b)
C radial clearance
c property of shaft between mass stations defined in eq. (18¢)
D diameter

1This method of numerical integration was developed by Frank J, Zeleznik of the
Lewis Research Center, For a set of first-order equations, it reduces to Gear's

method,
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o =

modulus of elasticity

force

torque

clearance in direction fi

moment of inertia

index

index

axial length between mass stations
mass of a rotor segment

number of rotor segments

radial direction at angle 6

order of error in Taylor series
pressure

order of Taylor series

radial displacement

stability matrix

element of S

time

time step

defined in eq. (5)

nondimensional veloeity of journal in rotating coordinates
real part of radial displacement
imaginary part of radial displacement
independent variable

axial coordinate

given set of constants



T angle defined in eq. (43)

€ eccentricity ratio

z damping ratio

6 circumferential angle

A eigenvalue of stability matrix
7] viscosity

w frequency

Subseripts:

B bearing

dJ journal

P polar

T transverse

+ associated with nearest axial neighbor or root of eq. (45)
0 start of integration

1 end of integration
Superscripts:

) time derivative

() axial derivative

) average or conjugate

(k) kth time derivative

d vector

unit vector

NUMERICAL INTEGRATION

Given an arbitrary function Zy(t) whose derivatives exist, Z(li) (t), a laylor series
expansion can be written:



q-k

- @l L@
z, (t + pt) = 2 ST (® + 0 1)

3=0

with Lagrange's remainder of order Og. If the arbitrary function is chosen as

k
At k
2 = 5 (2)
the Taylor series for this function becomes
= ]
2z, (t + At) E <k>2j(t) + 0q (3)
=0

where the binomial coefficients are defined as
(j)={k!(j - 1! for j =2k
k 0 for § < k (4)

If the form of the remainder is chosen as

QO =

q au (5)
the Taylor series becomes
q .
= J
2, (t + 88) = D" <k>zj(t) + au (6)
=0

where oy is a given set of constants and u can be determined from the equation of motion
at the advanced time. The equation of motion at the advanced time is

D F(r, r, ¥, t + At) = 0 N

From the definition of z, the various derivatives become

e = 2 (8)



Substituting for the various derivatives into the equation of motion and knowing the values
at the previous time result in the equation of motion being a function of

D F(u, t + At) = 0 (9

This equation can be solved for u and, from this value of u, the remainder can be used as
an error estimate to control the time step.

NUMERICAL STABILITY

The analysis of the stability of the numerical integration technique assumes a modael
of a rotor bearing system that is linearized at some instant of time. The homogeneous

equation of motion for any mode is
. . 2
r+2wr+wr=20 (10)

where w is the natural frequency and £ is the damping ratio for the moae. For every

mode that is numerically possible, with nonnegative damping ratio, the amplitude must
either remain constant or decay in time. The numerical integration is definea as unstable

if the amplitude grows in time.
From the definition of z the modal equation becomes

2
2z, + 2w At gZy+ (w At)7Z = O (11)

Substituting the Taylor series into the modal equation at the advanced time results in

q
g . 2
- 1) + 2 At T+ At
= - § hE&| ) jw At T+ (w 2) Zj(t) (12)
2a2 + Zalw At T+ ao(w At)

3=0

For this value of u, the Taylor series expresses the solution at the advanced time in terms
of the solution at the present time as

q
. Q. 3G - 1) + 2ju At ¢+ (w At)z]
2, (t + bt) = (J) - ——L () a3)

k [2(12 + 20Llw At T+ uo(w At)z]

=0

Defining the matrix element sy; to be

(j) Oy J(@3 - 1) + 2jw At 4+ (w At)z]
kj {2&2 + 20704t £+ ay(w At)z]



-> - . - 5
and the g-dimension vector Z gives the eigenvalue equation as

> ->

SZ = A2 (15)

If the |A] > 1, the amplitude grows and the method is numerically unstable. For q = 2,
the given o'sare ag=2, o] =3,and ag=1. In the limit as w At + «, the maximum
[x] = 0. Therefore if the time step At is much larger than w™l for a mode, the
amplitude of that mode will approach zero. If a mode is to have a nonzero amplitude, wh
must be small. In the limit as w At - 0, the maximum |A| = 1. Therefore the method
is numerically stable in the two limits,

EQUATIONS OF MOTION

A model of the shaft showing the complex number representation of the radial
displacement r isshown in figure 1. The radial displacement is the distance between the
shaft centerline and the axis of rotation. It can be represented by

r = x + iy (16a)

where the real and imaginary axes are fixed in space perpendicular to the axis of rotation.
The slope of the shaft along the axis of rotation is

r' = x' + iy (16b)

The position of the shaft is then described by r and r' at ail the axial locations.

The lumped-mass model of a rotor divides the rotor into N segments. The mass and
inertia of each segment are assumed to be concentrated at a point. These points are then
assumed to be connected by massless elastic beams that model the stiffness of the rotor.

The equations of motion for the lumped-mass model were derived in reference 7. The
sum of the forces EF at a point, must be zero, where

ZF = -mr + ar_- (a_+ a+)r + ar,

[ - v _ ' =
+ b r'+ (b_ b+)r b+r+ 4+ F 0 (17a)

and the sum of the torques ZG about a point must be zero, where

- *ey -1 _ []
2.6 = I E' + LwIpE' - Glr

- b r_+ (b_ - b+)r + b+r+

v _ v _ '
-cr! - 2(c_+ c+)r c,r; + G (17b)




The + or - refer to the next or previous axial location; and a, b, and ¢ are properties of
the shaft between these locations:

a = 1281/L° (18a)
_ 2

b = 6EI/L (18b)

c = 2EI/L (18¢)

If the nonlinear force F and the nonlinear torque G_are functions of displacements
and velocities of the point and its nearest neighbors, the ) F and » G are functions of the
displacements and velocities of the point and its nearest neighbors. If the Taylor series of
the numerical integration technique is substituted into the equations of motion for the
acceleration, velocity, and displacement, the form of the equations of motion becomes

0 =D2F(u_, u, u, ul, u'y, ul) (19a)

0 =EG(U_’ u, u+’ ul’ u" U_;_) (19b)

These equations form a set of 2N complex nonlinear equations in 2N unknowns.
These equations are solved by rewriting them as 4N real equations in 4N real unknowns
and then using a Newton-Raphson iterative technique to obtain a numerical solution. The
Newton-Raphson technique assumes a solution, linearizes the equations about that solution,
and then solves the linear set of equations for a correction to the assumed solution. The
form of the equations of motion results in the linear set of equations being block tri-
diagonal (fig. 2). The block-tridiagonal form allows the set of equations to be solved in a
very efficient manner. The computing time is proportional to N rather than to N3 asin

the general method.

SQUEEZE-FILM DAMPER BEARING

The configuration of the squeeze-film damper is shown in figure 3. The same con-
figuration can be used to analyze journal bearings where the journal and the bearing are
allowed to rotate. If wy is the rotational speed of the journal and wp is the rotational
sgpeed of the bearing, the average rotational speed is

w=%(wB+wJ)

(20)
For a damper this average rotational speed would be zero.
If C is the radial clearance and r is the displacement of the journal center with

respect to the bearing center, the clearance h in the direction n 1s
-
r

h=c-r .1 (21)



If T isthe velocity of the journal,

3h > A
E— = =-r s D (22)
If n is at anangle 8,
°n _ A
Y k xn (23)

where Kk isa unit vector along the axis of the damper bearing in the z-direction. If © is
defined as

» = Bk (24)
then
B‘%}él' = (W x ) +n (25)

The Reynolds equation for the short, plain damper journal bearing is presented in
reference 6 as

3
3 (h> 8P)_ -3h _ 3h
3z (12u az) © 3 * ot (26)
If the boundary conditions in the damper bearing are
P(0, 8, t) = 0 (27a)
P(L, 6, t) =0 (27b)
and if h is not a function of z,
L ~ < -
P=—M§i)-(;x¥—¥)'n (28)
h
The eccentricity ratio is
>
P
€= (29)
so that .
> %
- = E (30)
9



=
If V is defined as

v=—£-—$xg (31)

6uz(L - z)
c®(1 -2 - 8)

> ~
V-.n (32)

The pressure is zero when n is perpendicular to V, and the pressure is greater than zero
when V + n > 0.
The force on the journal due to the pressure in a segment of the film extenaing from

g to 6 is
D L .
f=-5f8y Pa dz d6 (33)
8y 70

This expression for the force can be integrated axially and becomes

> ot (1 @ - a
F=- 2 - ~3 de (34)
2C 5 (L -¢ + n)
0

The angular mtegral can be integrated by transforming the integral to the complex
plane (fig. 4). Let V be in the real direction,  be at an angle ¢, and n be at an angle
6 so that

V= |v| (35a)
lefe? (35b)
n = et (35¢)

Differentiating the expression for n yields

de = -in dn (36)

and using the definition of the complex cosine yields

-1
V.-a-Yaotn ) (37) |
2
S, -1
~ +
Z-n=—————(“€2€n ) (38)
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The expression for the force becomes

3 2, 2
F = -4 2];]§L v f n én + 1)dn . (39)
C (en” - 2n + €)
where the integral is around the unit cirele from ng to hl, where
iGO
n, = e (40a)
iel
n, =e (40b)

The pressure is zero at n = + i, and the pressure is greater than zero when Re(n) is greater
than zero.

For no cavitation the integral extends completely around the journal; and by using the
theory of residues, the force becomes

P - An(y———DL;)(V—j)A_l (41)
C €

For cavitation the integral extends from -i to +i; and by using a partial-fraction tech-
nique, the force becomes

3 j-2 j-2
3 (-n,) A, (-n_) A,

F - (V_3> - +§ : e N (42)

¢t N\z (1 + 0 (1 + n%)?

j=2
where T is defined as
VL - e

I’ - tan W—-/Qe(e) (43)

and T isin the first or second quadrant. The partial-fraction expansion coefficients are

ni(ni + 1)

A 3 (44a)

3 (n+ - n;\

11



2ni(2n§ +1) 34

A = +3
+2 ( )3 - n, - n_ (44b)
n__': - n; pund +
6n’ + 1 3A 3A
A 0, +2 +3
- -2 (44c)
+1 (n - n_)3 ni n_ (n+ - n_)2

where the roots of the denominator of the force equation are

v 2
ny = (} + VI - |e )E (45)

e |?

DISCUSSION OF EXAMPLE

The rotor bearing system described in reference 8 was used as the example problem.
This rotor bearing system consisted of a shaft with three disks mounted on two axially pre-
loaded ball bearings (fig. 5). The bearings were mounted in a squeeze-film damper journal,
and the journal had a centering spring.

The first three critical speeds for the rotor bearing system without oil in the damper
are shown in figure 6. All the modes are bent-shaft modes. The "elassical" hierarchy only
applies to stiff shafts; therefore, the classical mode shapes do not characterize the actual
mode shapes. The first mode, about 7581 rpm, classically would be the eylindrical mode.
But in this case, it has a large amount of bending outward near the shaft center. The see-
ond mode, about 9235 rpm, classically would be the conical mode. In this case, it has a
slight amount of bending outward near the shaft ends. The third mode, about 11 248 rpm,
classically would be the bending mode. In this case, it has a large amount of bending
throughout the shaft.

Experimentally the rotor was accelerated from rest through the three critical
speeds. The Lissajous patterns for the three disks were displayed on three side-by-siae
cathode ray tubes. A motion picture was taken of the CRT's plus a speed counter. The
Lissajous patterns at the three critical speeds are shown on figures 7 to 9. The three
critical speeds ocecurred at about the predicted speeas, and the Lissajous patterns corre-
sponded to the three mode shapes.

The rotor bearing system was modeled by using 19 elements. The rotor was assumed
to have a uniform, in-line unbalance, with a mass eccentricity of 0.00254 centimeter (1
mil). The equations of motion for this system were programed in FORTRAN IV on an IBM
360-67 computer in a time-sharing mode. The equations of motion were directly integrated
by the implicit integration method, with a fixed time step of 0.12 millisecond. The tran-
sient analyzed was the rotor accelerated from rest through the three critical speeds. The
rate of acceleration was 8727 rad/sec2. Each time step took about 0.7 second of CPU time.

The output at each time step of the calculation was displayed on a CRT. The display
showed an oblique view of the rotor bearing system, with the bearing centerline as the ob-
ligue axis. The transverse vibration is indicated by a series of dots. Each dot represents a

12



location of an element in the rotor dynamics model. The scale of the transverse vibration
exaggerates the amplitude of the vibration. The display on the CRT was photographed at
each time step. These photographs were then shown as a motion picture.

The computer-generated displays on the CRT at the first and third critical speeds and
at a speed much greater than the third critical speed are shown in figures 10 to 12. The
mode shapes at the first and third critical speeds were similar to the predicted mode shapes
and occurred at the predicted speed. Because of the unbalance distribution, the second
mode was not excited. The only indication of the second mode was a traveling wave super-
imposed on the first mode shape. This traveling wave decayed when the rotor went through
the third critical speed. Above the third critical speed, the rotor bearing system operated
as a self-centering device. The mass centerline coineided with the bearing centerline.
Therefore, the rotor displacement was uniform and in line, with an amplitude of 0.00254
centimeter (1 mil).

In conclusion, this computer code for the first time allows us to look at complex rotor
bearing systems experiencing nonlinear transients and displays the vast amount of resuits in
an easily understood motion-picture format. A l0-minute, 16-millimeter, color, sound
motion-picture supplement is available, on loan, that shows the test data and the computer-
made motion picture.

CONCLUSIONS

An implicit method for integrating the equations of motion for a lumped-mass model
of a rotor dynamic system was developed. The following conclusions were drawn:

1. The method was numerically stable for any time step.

2. An error estimate was available to control the size of the time step.

3. The computational time was proportional to the number of elements in the rotor
dynamies model rather than to the cube of the number,

4. An example problem with 19 mass elements in the rotor dynamies model took 0.7
second of central processing unit time per time step an an IBM 360-67 computer in a
time-sharing mode.

For the first time, this code allows the simulation of a complex rotor bearing system
experiencing nonlinear transients and displays the vast amount of results in an easily
understood motion-picture format.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 19, 1979,
505-04.
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Figure 2. - Newton-Raphson technique that leads to a linear set of block-tridiagonal equations.
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Figure 3. - Damper bearing geometry.
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Figure 6. - Undamped critical speeds.
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Figure 7. - Rotor passing through first critical speed.
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Figure 9. - Rotor passing through third critical speed.
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