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1 .O EXECUTIVE SUMMARY 

1.1 Purpose and Scope 

The ove ra l l  ob ject ives of the e f f o r t  have been t o  c r i t i q u e  the 

design and assess the  performance o f  the Orb i te r  S-band communication 

equipment. The work has three p r i n c i p a l  aspects/goal s : 

(1) Review and analys is  o f  the  a b i l i t y  o f  the various S-band 
subsystem avionic  equipment designs t o  i n te r face  w i t h  and operate on s ig -  

nals  from/to ad jo in ing  equipment. 

(2) Assessment o f  the performance o f  the hardware against the 
spec i f ied  system and subsystem requirements. 

(3 )  C r i t i que  o f  t e s t  plans, procedures and r e s u l t s  o f  t es t s  
conducted on the S-band hardware LRU's. 

TRW, Redondo Beach, Cal i f o r n i a ,  i s  the hardware contractor  f o r  

s i x  S-band avionic  systems o r  LRU's. These LRU's t o  which Axiomatix's 

e f f o r t s  have been addressed are: 
0 rn 

(1 ) Network Transponder 

(2 )  Network Signal Processor (NSP) 

(3) FY Transmitter 

( 4 )  Ft4 Signal Processor (FMSP) 

(5)  Payload In te r rogator  (P I )  

(6) Pay1 oad Signal Processor (PSP) . 
TRW's respons ib i l i t i es  inc lude design, design analysis, breadboard, engi- 

neering model , f l  i g h t  u n i t  production, and acceptaiice and qua i f  i c a t i o n  

tes t i ng  o f  each LRU. Although TRW has overa l l  cognizance and bu i l ds  most 

o f  the hardware, ce r ta in  subassemblies are subcontracted t o  o ther  

manufacturers. 

1.2 Approach and Execution 

Tile general approach has been t o  work w i t h  cognizant NASA per- 

sonnel and ind iv idua ls  a t  the p r i nc ipa l  prime contractor  (Rockwell I n t e r -  

na t iona l )  and equipment subcontractor (TRW). A v i t a l  p a r t  o f  the a c t i v i t y  

involved Axiomatix attendance and p a r t i c i p a t i o n  i n  the regular  monthly 

program reviews, as we l l  as a l l  special  meetings, a t  TRW and R I .  A t  



these reviews, the  s ta tus  o f  each LRU was presented i n  a formal fashion. 

Technical ly  de ta i l ed  discussions, which d i d  no t  necessar i ly  requ i re  the  

attendance o f  a l l  par t ic ipants,  were general ly  he ld  a t  the end o f  the day 

o r  on the fo l lowing day. These l a t t e r  gatherings usua l ly  involved 

de ta i l ed  discussions on design and spec i f i ca t i on  issues t h a t  surfaced a t  

the regular  monthly reviews. Axiomatix a lso  worked w i t h  TRW engineers 

on an ad hoc basis. 

During the cont rac t  performance period, three pre l iminary 

design reviews (PDR's) were held and attended by Axiomatix. The PDR's 

covered the PSP LRU, P I  LRU and the P I  t r i p l e x e r .  Also, a number o f  

special  meetings i nvo l v ing  Axiomatix engineers were he ld  a t  TRW and R I  . 
These gatherings addressed very spec i f i c  issues and were instrumental i n  

gain ing consol idated understanding o f  various problems and, i n  most cases, 

pointed the way t o  solut ions. 

Axiomatix engineers spent extensive periods i n  review of design 

documents, c r i t i q u e  o f  t e s t  procedures, and performing design v e r i f i c a t i o n  

analysis. Important r e s u l t s  were communicated t o  appropriate NASA/JSC, 

R I  and 'I I I W  engineers as soon a! they were obtained. Each month, ~xi&natioMtlx 

prepared a monthly technical repor t  which contained a b r i e f  summary o f  

a1 1 re levant  technical  a c t i v i t y ,  i n c l  udinq design reviews, technical con- 

ferences, design and analys is  e f f o r t s  and resul ts ,  c r i t i c a l  problem areas, 

and a forecast o f  e f f o r t  f o r  the next monthly repor t ing  period. Deta i led 
r e s u l t s  from evaluat ions o r  analyses of current  i n t e r e s t  were a lso 

appended t o  the monthly reports.  

1.3 Summary o f  A c t i v i t y ,  Studies, Results ahd Assessments 

A major po r t i on  of the work over the contract  period (approxi- 
mately n ine months) invo l  ved analysis and c r i t i q u e  o f  the TRW-produced 

LRU's. Many o f  the issues addressed have been o f  concern f o r  over two 

years. Since t h i s  repor t  covers a 1 imi ted time span, the reader who 

wishes t o  obta in a longer term h i s t o r i c a l  perspective i s  re fe r red  t o  the 

previous equipment design repor t  [I] which covered the period January 1978 

through January 1979. (See, especia l ly ,  Table 1 i n  the Executive Summary.) 

An issue out1 i ne  covering the per iod February through Octobcr 1979 can be 

found i n  Table 3.1 o f  t h i s  report .  



The fo l lowing subsections present highl ights, abstracted from 

the body o f  the report, on those subjects o f  primary interest .  Numbers 

i n  parentheses fo l lowing a statement r e fe r  t o  sections i n  which more 

detai led information may be found. 

1.3.1 Pay1 oad Interrogator Eva1 uations 

(1) The P I  receiver input has been protected by a diode power 
i 

l i m i t e r  ( i n  l i e u  c f  switched attenuator pads i n  the t r ip lexer )  which both 

protects the preamp1 i f i  e r  from overload damage and a1 1 ows the receiver t o  

e f fec t i ve ly  function up t o  input  power leve ls  o f  +I0 dBm (see subsections 

3.2.2 and 4.1.2.2). 

(2) Axiomatix was instrumental i n  convincing TRW tha t  a non- 

coherent type AGC loop should be employed by the P I  receiver f o r  out-of-  

lock conditions and tha t  the use o f  such an AGC would reduce the receiver 

fa lse lock propensity (see subsections 3.2.3 and 4.1.5). 

(3) TRW changed the technique o f  avoiding PI  receiver side- 
- band lock ( id !  s e  lock! f r o - a  dependence anl 1 r,ck detector threshold * .  * 

d iscrimination t o  preventing lock by use o f  a su f f i c i en t l y  rap id  receiver 

sweep ra te  (see subsections 3.2.4 and 4.1.7). 

( 4 )  The current P I  receiver design wideband output bandwidth 
i s  nominally 6 MHz rather than the specif ied 4.5 MHz--an unacceptable 

value for which some redesign w i l l  be necessary t o  correct (see subsec- 

t ions 3.2.5 and 4.1.3). 

(5) The signal ragulat ion loop o f  the P I  wideband output t o  
the various interfaces (PSP, CIU, KuSP) w i l l  be an RMS type located wi th in  

the P I  proper and w i l l  be responsible f o r  some suboptimum l i n k  perfomance, 

especially as i t  af fec ts  the bent-pipe (see subsections 3.2.6 and 4.1.4). 

1.3.2 Payload Signal Processor Eva1 uat ions 

Axiomatix has reviewed the en t i re  PSP design and has concluded 

that  i t  i s  we1 1 -designed and embodies up-to-date implementations. Nowhere 

i n  the PSP c i r cu i t s  o r  perfomance measurements has Axiomatix found s ig-  

n i f i can t  weaknesses nor are there any important open issues (see 

subsections 3.3 and 4.2.1). 



1.3.3 Network Transponder Design and Performance 

(1) The f i r s t  and second I F  modules are assessed as design 
and performance marginal (see subsection 3.4.1 ) . 

(2) The measured BER degradations which have been observed 
t o  occur i n  the STDN high-power duplex mode i s  apparently ca~sed  by some 

nonl inear act ion o r  i on ic  breakdown i n  cer ta in  RF connect1 ons fabr icated 

from sta in less steel and f i t t e d  w i th  a Kovar center p i n  (see subsection 

3.4.2). 

1.3.4 FM Transmitter Performance 

A problem w i th  seemingly excessive frequency o f fse t  and d r i f t s  

has been traced t o  the moisture content o f  the sealed un i t s  and i s  being 

remedied by more str ingent  vacuum bake procedures (see sect ion 3.5). 

1.3.5 Network Transponder Qua1 i f  i ca t ion  Test Procedures 

1 The en t i r e  QTP f o r  the network transponder was ,reviewed 
d l '  0 '  

as t o  the nature o f  the t:!sts, appropriateness o f  the tests, inconsisten- 
cies, omissions, usefulness o f  the t es t  data, tes t  procedures, equipment 

and methods, and was judged t o  adequately meet the in ten t  of the t e s t  

speci f icat ion as a whole (see section 4.3). 

(2)  Some inconsistencies and omissions were discovered, and 
three i tems concerning thermal cycle tests, BER measurements and RF com- 

mon por t  overload protect ion need some at tent ion and resolut ion (see 

subsection 4.3.5). 

1.3.6 ESTL Network Equipment Ver i f i ca t ion  Tests Evaluation 

(1) To date, only the ESTL STDN mode tes t  procedures have been 
eval uated and, overal l  , these procedures are we1 1 thought out, we1 1 - w r i t -  

ten and generally meet the requirements as defined hy "System Development 

Test Requirements and Status (TRAS) Report fo r  STDN S-Band Di rec t  Link," 

JSC 11300, September 28, 1977. 

(2 )  O f  the inconsistencies and omissions discussed, most have 
been addressed by the ESTL personnel. The-e i 5 a major concern that  
some tes ts  were conducted w i th  the NSP i n  a *node wh!cn no longer r e f l ec t s  

the current operational practices (see suvsection 4.4.3.1 ). 



(1) Future detai led Involvement wi th  respect t o  TRW's a c t l v i t y  
on the S-band network hardware LRU's w i l l  be orlented toward performance 
and ma1 function problems, 

(2) Deslgn, c l r cu l  t , and performance evaluatlon and supporting 
analysls w l l l  continue on the P I  and PSP u n t l l  they complete t h e l r  c r i  t- 
i ca l  deslgn revlew and QTP phases. 

(3) Review o f  the ESTL network equlpment ver l f l ca t lon  plans 
w l l l  be extended and completed w i th  formal recomnendations on problem 
areas. 



2.0 INTRODUCTION 

2.1 Statement o f  Work 

2.1 -1 Objec tl ves 

The overal l  objectives o f  the e f f o r t  have been t o  c r l t l que  the 

design and assess the perfewiance o f  the Orbiter S-band commrnlcation 

equi pment . The work has three p r l nc i  pal aspects/goal s : 

(1) Review and analysis o f  the abi ll ty o f  the various S-band 
subsystem avionic equipment designs t o  Interface w l  t h  and operate on s lg-  

nals f W t o  adjoining equipment. 

(2) Assessment o f  the performance o f  the hardware against the 
speciCied system ana subsystem requtremnts. 

(3) Cr i t ique o f  t es t  plans, procedures and resul ts o f  tests 
conducted on the S-band hardware LRU's. 

The S-band hardware LRU's being produced by TRW t o  whfch the 

e f f o r t s  have been addressed are: I 

(1 ) Network Transponder 

(2) Network Signal Processor (NSP) 

(3) FM Transmitter 

(4 )  FH Signal Processor (FMSP) 

(5) Payload Interrogator ( P I  ) 

(6) Pay1 oad Signal Processor (PSP) . 
2.1.2 Specific Tasks Outline 

The contract statement o f  work specif ies that  the fol lowing 

pr incipal  tasks w i l l  be conducted over the contract period: 

Task #I, S-Band Network E u i  ment Ver- ig. t ion Plans Evalua- -+- tion. Reviews K e  var ous ver i f i ca t ion  tes t  plans (especiai IY 
WRW qua1 i f i ca t ion  and JSC/ESTL system plans) as t o  bppro- - 
priateness and va l id i t y ,  monitors tests and analyzes results. 

Task #2, S-Bend Payload Comnut;:cations Sq'stem Specification 
m e w .  Continually compares the equipment spec1 f icat ions 
' I ~ S P ,  KuSP, PDI,  MDM/GPC) re la t i ve  t o  the hardware design/ 
performance t o  e: sure that  inter face compati b i  ? i t y  , performance 
requirements and operational needs are being met. 



Task Y3, S-Band Payload Commrnlcatlon Equipment Desiqn Eval- 
w t l o n  and Oevelomnt Support. Performs detai led design 
and performance assessments o f  the TRW equipment desl gns , 
provides supporting analysis and experlmental t nvestigatlons 
o f  the functional c i r c u i t s  and recommends appropriate design 
changes t o  NASA, Rockwell and 7 R W .  

2.1 ,3 General Approach 

The genera1 approach has been t o  work w l  t h  cognizant NASA per- 

sontrel and i n d i v l d r i ~ l s  a t  the pr inc ipa l  p r i m  contractor (Rockwell In ter -  

national) and equipment subcontractor (TRW), A v i t a l  par t  o f  the a c t i v l t y  

involved Axiomatix attendance and par t lc lpat ion i n  the regular monthly 

program reviews, as w e l l  as a l l  spcclal meetings, a t  TRW and R I .  These 

l a t t e r  gatherings usual ly involved detai led discussions on design and 

speci f icat ion issues that  surfaced a t  the regular monthly reviews. 

A x i w i t i x  also wcrked wi th  TRW engineers on an ad hoc basis. 

Each month, Axiomatix prepared a Monthly Technical Report which 

(I 
contained a b r ie f  sumnary o f  a l l  relevant technical ac t i v i t y ,  Including 

design reviews, technical conferences, design and analysis~effor3.s and 

results, c r i t i c a l  problem areas, and a forecast o f  e f f o r t  f o r  the next 

monthly report ing period. Detailed resul ts from evaluations o r  analyses 

of cu rwnt  in terest  were also appended t o  the monthly reports. 

Axiomatix engineers spent extensive periods i n  review o f  design 

documents, c r t t i que  o f  t es t  procedures, and performing design v c r i f i c a t  ion 

enalysls. Important resul ts were communicated t o  app r~p r i a te  IYAS&JSC* R I  

and TRW engineers as soon as they were obtained. 

The work herein reported was related t o  and interacted wi th e f f o r t s  

performed under other act ive M U  contract;. Contract NAS 9-15240E and F, 

"Shuttle Ku-Band and S-Band Communications 1mp:ementation Study," involves 

the system aspe~ ts  that  t i e  t o ~ e t h e r  the S-band equipment i n  the performance 
o f  speci f ic  conmunication functions. Two other contrdcts, US 9-154096, 

"Orbiter CIU/IUS Comnunicat~ons Hardware Evaluation," and NAS 9-1 5604C, 

"ShuttlelPayload Comnunicdtrons and Data System Interface Analysis," are 

concerned with the P I  and PSP hardware from a functional payload comnuni- 
c a t i ~ n  l i n k  perspective. These l a t t e r  studies are concerned primari ly wi th  

inter face and throughput issues. 



2.2 Organization o f  the Final Report 

The two sections following (4.0 and 5.0) address i n  de ta i l  the 
various aspects of the work performed. 

Section 3.0 i s  an expos6 o f  the ongoing issues and a c t i v i t i e s  as 
they developed and were addressed a t  regular monthly reviews, PDR's and 

special technical meetings. Use has been made o f  tables and charts t o  sum- 

marize the v i t a l  nature o f  each important issue and t o  show i t s  t imel ine 

h i  story. Following t h i s  sumnary, selected topics .are reviewed i n  greater 

depth. 

I n  Section 4.0, supporting studies and analyses performed by 

Axiomatix are delineated. Since both the P I  and PSP were subject t o  pre- 

l iminary design reviews during trlt: i~epor t ing period, each i s  given a com- 

prehensive design and performance cr i t ique.  A1 so examined i n  depth are 

the Network Transponder qua1 i f  icat ion t es t  procedures (QTP' s) and the ESTL 

network equipment ve r i f i ca t ion  plans. 

2.3 Avionic Equipment and System Descriptions 

Some readers may not be wholely fami l i a r  w i th  the S-band hard- 

ware and the pr incipal  comnunication equipment wi th  which i t  interfaces. 

As a primer, therefore, Appendix A contains a system overview followea by 

functional descriptions of the most important LRU' s, including block 
diagrams. 

As regards the PI and PSP, Appendix A does not include over- 

view descriptions. Rather, detai led descriptions are found, respectively, 
i n  sections 4.1 and 4.2.1. 



3.0 RESULTS OF MONTHLY REVIEWS, PDR' S AND TECHNICAL MEETINGS 

TRW, Redonda Beach, Cal i f o r n l a ,  i s  the hardware contractor  f o r  

the s i x  S-band av ion ic  systems l i s t e d  under sect ion 2.1 .I, TRW's responsi- 

b i l i t i e s  inc lude design, design analysis, breadboard, engineering model, 

f l i g h t  unit production, and acceptance and qua1 i f i c a t i o n  t e s t i n g  o f  each 

LRU. A1 though TRW has ove ra l l  cognizance and bu i lds  most o f  the hardware, 

ce r ta in  subassembl i e s  are subcontracted t o  other manufacturers. 

As the means f o r  regu la r l y  addressing a l l  progress and problems, 

TRW scheduled monthly reviews which were attended by NASA, R I  and Axiomatix 

personnel. (No review was held during the month o f  September 1979. ) A t  
these reviews, the s ta tus  o f  each LRU was presented i n  a formal fashion. 

Technical ly de ta i led  discussions, which d i d  no t  necessari ly requ i re  the 

attendance o f  a l l  par t ic ipants,  were general ly  held a t  the end o f  the day 

o r  on the fo l low ing day. Since the TRW monthly reviews were regu la r l y  

attended by many readers o f  t h i s  repo r t  and handouts o f  the mater ia l  pre- 

sented by TRW were made ava i lab le  t o  each attendee, i t  i s  no t  necessary i n  

t h i s  repo r t  t o  address a l l  subjects and de ta i l s .  What i s  contained i n  the 

present repor t  are summaries and assessments o f  those subjects/areas i n  

which Axiomatix was i n t i c a t e l y  involved by v i r t u e  o f  the contract  task 

statements. 

During the contract  performance period, three pre l iminary design 

reviews (PDR's) were held and attended by Axiomatix. A review o f  each i s  

given i n  sections 3.2, 3.3 and 3.4, fo l lowing.  

Also, a number o f  special  meetings invo lv ing  Axiomatix engineers 

were held a t  TRW and R I .  These gatherings addressed very spec i f i c  issues 

and were instrumental i n  gaining consolidated understanding o f  various 

problems and, i n  most cases, pointed the way t o  solut ions. 

3.1 Summary o f  Important Issues/Problems and t h e i r  
reso l  ut ion/Status 

Many o f  the subjects o f  concern are no t  new i n  t h a t  they have 

been a t  issue f o r  periods o f  more than a year. Since t h i s  repor t  covers 

about a nine-month t ime span, the reader who wishes t o  obta in a longer term 

h i s t o r i c a l  perspective i s  re fe r red  t o  the previous equipment design repor t  

[ I ]  which covered the period January 1978 through January 1979. 
Table 3.1 sumnarizes the major issues. Issues pre f ixed w i th  a + 

are ones o f  long standing and w i l l  be found addressed i n  [I]. If  no issue 

p r e f i x  i s  indicated, the issue has surfaced w i t h i n  the l a s t  nine months. 



Table 3.1. Major Issue Sumnary 

Issue Issue Nature E f f o r t  Toward Resolution Resolution 

3.2.1 P I T r i p l e x e r  Location o f  arc suppres- TRW examined conf igurat ion and Awaits EMC tests.  
Design sion diodes may cause EMI. believes t ha t  i t  w i l l  pass EMC 

tes t ing  . 

3.2.2+# P I  Receiver 1. TRW desired a diode 1. TRW obtained l i m i t e r  and 1. L im i te r  replaced 
Input l i m i t e r  i n  place o f  conducted tes ts  t o  show tha t  attenuator pads 

switched attenuators. i t  would work without com- i n  the t r i p l e x e r  
promising performance. design . 

2. Receiver performance 2. TRW conducted tes ts  up t o  2. Receiver performed 
i s  undetermined f o r  +10 dBm signal levels. w i t h i n  speci f ica-  
signal leve ls  above t i o n  f o r  leve ls  
-20 dam. up t o  +10 dBm. 

3.2.3* P I  Receiver Receiver has no AGC p r i o r  Axiomatix recomnended the use Noncoherent AGC i s  now 
Preacquisit ion t o  lock when coherent AGC o f  a noncoherent AGC. TRW employed when the 1 
AGC i s  obtained. studied tl,e performance ar~d receiver i s  out  o f  

chose t o  adopt the noncoherent lock. : 

AGC approach. 

3.2.4+# P I  Receiver 1. The receiver should 
False Lock not lock onto c a r r i e r  
Susceptibi 1 i ty sidebands that  are 

< -26 ~ B c .  - 

2. Receiver fa l se  lock 
performance i s  unde- 
f ined f o r  nonstandard 
payload modulations. 

1. Lock detector threshold d is -  
cr iminat ion was i n i t i a l  solu- 
t ion.  This has been sup- 
planted by a c r i t i c a l l y  f a s t  
sweep r a t e  method. 

2. Axiomatix defined allowable 
modulation forms and param- 
e te r  ranges. 

1. Testing shows t ha t  
the requirement 
w i l l  be met by the 
f a s t  sweep rate. 
Some performance 
questions remain. 

2. A revised payload I 

ICD w i l l  incorpor 
ate the A x i m t i x -  
gene; ated constraints. L, 



Table 3.1. Major Issue Sumnary (Cont'd) 

Issue Issue Nature E f f o r t  Toward Resolution Resol u t ion 

3.2.5# P I  Receiver The 3 dB bandwidth i s  TRW i s  t o  investigate alterna- Open issue. 
Wideband specified a t  4.5 MHz. t i v e  f i l t e r  specif ications and 
Output The PDR disclosed i t  may I F  and baseband c i r c u i t  designs 
Bandwidth range between 4.5 & 8 MHz, t o  correct the problem. 

depending upon conditions. 
A wide bandwidth may com- 
promise Ku-band l i n k  
performance. 

3.2.6+ P I  Receiver 
W i  deband 
Output 
Regulation 

3.2.7+# P I  Receiver 
Sweep Range 

1. Incompatibi l i ty between 1. A working cornnittee was 1. Compatibi 1 i t y  
P I  and KuSP specifica- established t o  define the established. 
tions. interface speciffcation. 

2. An RMS type regulator 2. An RMS regulator was selected 2. Suboptimum bent- 
does not optimize bent- rather than a peak regulator pipe performance 
pipe 1 ink performance. due t o  high redesign costs. f o r  cer ta in  types 

o f  waveform; w i l l  
be tolerated. 

. The regulator should be 3. Costs o f  placing the regulator 3. Regulator w i l l  
i n  the KuSP i n  order t o  i n  the KuSP here unacceptably remain a par t  o f  
handle attached pay1 oad 1 arge. the PI and attached 
inputs . payload inputs t o  

the KuSP w i l l  not 
be regulated. 

The i n i t i a l  design sweep Analysis by both Axiomatix & TRW Sweep range design as 
was too small t o  cover the defined the proper sweep range o f  the PDR i s  probably 
worst-case frequency error maximum values. Requirement OK, but marginal. 
& P I  transmitter sweep must be regular ly updated, 
turn-around frequency - 
1 i m i  ts. 4 



Table 3.1. Major Issue Sumnary (Cont'd) 

Issue Issue Nature E f f o r t  Toward Resolution Resolution 

3.2.8# PI Receiver 1. Maximum s t a t i c  phase 1. Axiomatix believes the 3' 1. Speci f icat ion 
Tracking Loop er ror  i s  specified a t  spec i f ica t ion i s  too s t r i c t ;  rev is ion  
Phase Error 3". The receiver SPE 8" due t o  biases i s  reconraended . 

compat ib i l i ty  i s  about acceptable. 
8". 

2. TRW has included the 2. Axiomatix recomnended tha t  2. TRW accepted 
c i r c u i t  phase e r ro r  the subject e r ro r  not  be the reccnmnendation. 
between the t racking included i n  the SPE account- 
loop and wideband phase ing  i n  terms o f  meeting the 
detector i n  the SPE Rockwell specif icat ion. 
accounting. 

3.2.9+ PI Transmi t t z r  The phase noise performance Axi m a t i  x has requested tha t  Open Issue. 
Phase Noise remains unknown and analyt- TRW measure the spectrum on the 

i c a l  predict ions are not  breadboard synthesizer and trans- 
assuring. m i t te r .  Axiomatix w i  11 evaluate 

resul ts.  

3.2.10 PI Transmitter The two sweep rates of Analysis by Axiomatix as t o  The nominal sweep 
Sweep Rate 30 kHz/s and 540 Hz/s are proper rates & review of c i r c u i t  ra tes have been 

generally improper for  performance capabi l i  t i e s  by TRw reduced t o  10 k k / s  
most ant ic ipated payloads. have lead t o  a lowering of the and 250 k / s .  

rates. 

3.3.1 PSP Comnand The Rockwell spec i f ica t ion Axiomatix requested tha t  possible The spec i f ica t ion has 
I d l e  Pattern ca l led f o r  the pat tern t o  requirements f o r  a speci f ied end been amended t o  c a l l  

begin w i th  a 'I", but no s ta te  be investigated. f o r  the i d l e  pat tern 
end state spec i f ica t ion t o  end w i t h  a 
was given. 



Table 3.1. Major Issue Sumnary (Cont'd) 

Issue Issue Nature E f fo r t  Toward Resolution Resolution 

3.3.2+ PSP Overall PSP degradation Breadboard-measured maximum Par t i t i on ing  o f  the 
Performance i s  speci f ied a t  -1.5 dB. losses f o r  both the t racking loss has been deter- 
Losses Par t i t i on ing  of the loss loop and synchronizer working mined unimportant 

between the subcarrier together are about -0.8 dB. since the combined 
tracking loop and b i t  syn- loss i s  so f a r  below 
chronizer i s  unknown. the maximum l i m i t .  

3.4.1+ Network Tran- .The f i r s t  and second I F  Through c r i t i c a l  parts screening Issue closed. 
sponder F i r s t  modrrles have a h is to ry  o f  and select ion plus very s t r i c t  
anc! Second marginal performance and alignment procedures and test ing, 
IF  Modules have been very d i f f i c u l t  the problems have been minimized 
C r i t i c a l  t o  a l i gn  t o  maximum per- and no redesign has been 
Performance forniance specif icat ions. necessary. 

3.4.2 Network Measurements a t  TRW, AIL A series of tests over a nine- F ina l  reso lu t ion not  
Transponder and ESTL have a l l  disclosed month period have iso la ted the made. A l i k e l y  solu- 
BER Degradation that  s ign i f i can t  and major i ty  of the problem t o  s m  t i o n  i s  replacement 
i n  the Duplex unexplained losses, as pecu l ia r i t i es  of the preamp o f  the connectors wi t h  
Mode measured by observed BER, assembly RF connectors. ones which do not have 

occur i n  the duplex the manifest problem. 
operating mode. 

3.5+ FM Transmitter Most un i t s  have shown a Design hnalysis and tests  have 
Frequency general and s ign i f i can t  shown tha t  accumulated moisture 
D r i f t  upward frequency d r i f t  my a f fec t  the un i t s  and, i n  

over a long period o f  part icular ,  a ce r ta in  capacitor 
time. Some s h i f t  i n  un i t s  i n  the frequency-determining 
having accumulated shel f  c i r cu i t s .  
(off) time has also been 
observed. 

Problem not completely 
resolved but some pro- 
duc t i  on changes w i t h  
regard t o  increased 
subassembly and LRU 
vacuum bake time t o  1 

remove residual mois- 
t u re  has apparently d 

W 
j 

brought the problem 4 I 

under control. 



Where a # i s  used, the problem arose due t o  the P I  PDR i n  October. And, 

where +# occurs, the issue i s  old, was once supposedly resolved but  has 

been reopened by the P I  PDR. Each of the issues i s  addressed i n  discus- 

s ion form under the appropriate sect ion headings fol lowing. 

F ina l ly ,  Figure 3.1 portrays the issues on a calendar basis, 

i nd i ca t i ng  t h e i r  beginnings, periods of a c t i v i t y  when Axiomatix made ac t i ve  

contr ibut ions and po in t  o f  reso lu t ion  (or  probable resolut ion) .  Figure 3.1 

includes past h i  story/progresslresol ut ions from the standpoints t h a t  i t  

repeats the CY78 a c t i v i t y  as taken from Figure 7, page 30, o f  [l] . Note 
t h a t  a number o f  issues have been opened and closed two o r  more times. 

3.2 Pay1 oad Interroqator  Isstie Discussion 

3.2.1 P I  Tr ip lexer  Design 

Transco, the t r i p l e x e r  suppl ier,  elected t o  mount the arc sup- 

pression diodes fo r  the coaxial  switch co i  1s external t o  the switch hous- 

ings as a method of ensuring switch r e l i a b i l i t y .  (The l o g i c  o f  t h i s  
approach has not  been f u l l y  comprehended. ) A question therefore arose as 

t o  if, because the diodes and t h e i r  leads are unshielded, an EM1 problem 

i s  created. It was noted that ,  by def in i t ion ,  the switches are pulsed 
only during nonoperational ( i  .e., nonreceiving ) periods. A1 though t h i s  

may be correct  and any EM1 (it i s  only momentary i n  nature) created by 

the switches should not  a f fec t  the P I  operation, i t  could have an e f f e c t  

on other av ionic equipment. 
Analysis and some measurements made by Transco show tha t  EM1 

should not  be a problem. TRW i s  conf ident t h a t  the conf igurat ion w i  11 

pass EMC tes ts  when the t r i p l e x e r  i s  f u l l y  enclosed w i t h i n  the P I  housing. 

3.2.2 P I  Receiver Input S e n s i t i v i t y  Range 

A t  the February 1979 TRW monthly program review, a problem was 

out1 ined concerning excessive s ize  of the s e n s i t i v i t y  attenuator pad trans- 

f e r  switches w i t h i n  the t r i p l e x e r  (see sect ion 5.1 o f  [I] f o r  a descrip- 

t i on ) .  One proposed so lu t ion  was t o  replace the two t rans fer  switches 

w i th  four  SPOT coax switches which could be f i t t e d  i n t o  the t r i p l e x e r  

physical envelope. A second solut ion, and the one most favored by TRW, 

was t o  e l  iminate the attenuators and switches completely, replac ing them 

wi th  a breakdown diode power overload protector  f o r  the preampl i f ier  input.  





This solut ion assumes tha t  the only purpose f o r  the base1 ine attenuators 

i s  tha t  of protect ing the preampli f ier from overload and possible burnout 

conditions. 

One object ion raised t o  the breakdown diode power l i m i t e r  was 

tha t  i t  could possibly introduce in-band spurs i n t o  the receiver f o r  high 

signal levels as a r esu l t  of the nonlinear diode characterist ics. TRW was 

therefore requested t o  obtain and t es t  the l i m i t e r  for  intermodulation 

products for several interference signal conditions, The resu l ts  of these 
tests, presented a t  the March monthly review, proved negative. Further- 
more, the diode l i m i t e r  character ist ic  showed tha t  the maximum output o f  

the l i m i t e r  was +13 dBm f o r  an input signal level o f  +22 dBm and less 

than 13 dBm for a1 1 other input levels up t o  1 W (+30 dBm). Since the 

preamplif ier maximum allowable input i s  +20 dBm, a 7 dB protect ion margin 
i s  obtained w i th  the l im i te r .  

Axiomatix believed that  the diode l i m i t e r  would serve t o  protect 

the preampli f ier and that  i t  would not generate s ign i f i can t  in-band spurs. 

There was, however, a question of receiver signal level  back-off and i f  
such capabi l i ty  should be retained, The question was not one o f  impro- 

p r i e t y  of the l i m i t e r  but i f  the en t i re  P I  receiver could function prop- 
e r l y  under a condition o f  front-end 1 im i t ing  i n  the preamp1 i f i e r ,  f i r s t  

mixer and f i r s t  I F  c i rcu i ts - -a  condition that  the input power protector 

cannot obviate. Thus, if the base1 ine design selectable attenuator pads 

were deleted from the t r ip lexer  ( i n  favor of using the input power over- 

load protector exclusively), there would be no way o f  backing o f f  the input 

power t o  a point where receiver l i m i t i n g  i s  prevented ( input  signal level  

c -20 dBm). 
A decision was made by TRW and R I  t o  proceed wi th incorporation 

of the diode l i m i t e r  and t o  el iminate a l l  switchable pads. No tests, how- 

ever, were subsequently conducted t o  determine if the receiver would func- 

t i o n  properly above -2G dBm. Axiomatix therefore submitted a R I D  a t  the 

October P I  PDR requesting TRW t o  conduct the necessary tests and deternine 

t o  what l i m i t  above the -20 dBm level  the receiver can be expected t o  pro- 

vide nondegraded output and remain essent ia l ly  imnune t o  fa lse lock. TRW 

quickly responded and provided the information tabulated i n  Table 3.2 which 

shows that, a t  an RF car r ie r  level  of +10 dBm (a level a t  which the IF 

stage amplif iers are saturated), the receiver performs essent ia l ly  the 

same from a false lock perspective as i t  does a t  -20 dBm. Output waveform 

degradation measurements have not yet  been made. 



Table 3.2. P I  Receiver Strong Signal False Lock Performance 

RF Frequency RF Input Level Sideband False Lock Level 

2209.926 MHz +I0 d h  -27 dBc 

-20 d8m -26 dBc 

-50 d h  -26 dBc 

2210.074 MHz +I0 d h  -26 dBc 

-20 d h  -26 dBc 

-50 dBm -25 dBc 
> 

Axiomatix determtned more than one year ago tha t  the lack o f  

receiver gain control during periods when the coherent tracking loop was 

out of lock and, therefore, coherent AGC i s  not generated, was giv ing r i s e  

t o  several problems--false lock states, i n  particulc:. (See section 6.1.1, 

page 133, of [I] for the detai led assessment.) Our recomnendation t o  TRW 

i n  January 1979 was that  a noncoherent AGC voltage should be generated when 

the receiver i s  out of lock and used t o  set the overal l  receiver gain. 
Af ter  showing TRW the expected performance, they read i ly  adopted the sug- 

gestion and redesigned the AGC portions of the receiver. Breadboard tests 

have proven that  excel l en t  performance i s  obtained. Additional detai 1s on 
the design of the receiver AGC subsystem may be found i n  section 4.1.5. 

3.2.4 PI Receiver False Lock Susceptibi 1 i t y  

The problem of avoiding lock on small discrete frequency type 

sidebands that fa1 1 wi th in  the PI receiver acquis i t ion frequency sweep 

range has been considered i n  great depth. Sideband lock has been given 

the generic designation 'false lock." Extensive analysis on the subject 

appears i n  [I], Section 5.3, pp. 66-89, and i n  [2], Section 5.1, pp. 65-89. 
Pr ior  t o  new information supplied by TRW a t  the October PI PDR, 

the capabi l i ty  o f  the PI receiver t o  preclude false lock was based upon the 

operation o f  the PLL lock detector and i t s  discrimination against i nh ib i t -  

ing receiver sweep frequency acquis i t ion wi th  respect t o  small d iscrete 



sideband leve ls  as compared t o  t h a t  o f  the t r u e  c a r r l e r  component. 

Axianratix had i d e n t i f i e d  several basic and mechanistic problems w i t h  the 

TRW approach, as follows: 

(1) The "threshold" o f  f a l se  lock (general ly spec i f ied  by TRW 
t o  be -26 dBc) would have a la rge tolerance due t o  AGC ar~d lock detector 

bias errors. 

(2) There was a range o f  uncerta inty below -26 dBc over which 
fa l se  lock may o r  may not  occur, depending upon various conditions. 

(3)  The lock detector fil t e r  bandwidth was s u f f i c i e n t l y  wide 
t o  pass the  t r u e  c a r r l e r  beat note frequency w i t h  enough amp1 i tude t h a t  

the receiver  sweep could be discontinued prematurely. 

(4) Overal l  performance was bas ica l l y  no t  analyzable and would 
have t o  be determined by measurements. 

It was revealed a t  the recent P I  PDR tha t  the basic philosophy 

o r  mechanism by which the P I  receiver i s  rendered imnune t o  sidebands lock  

has been changed. The new approach has been given a pre l iminary evalua- 

t i o n  by Axiomatix and determined tha t  i t  may be c l a s s i f i e d  as a False Lock 

Avoidance (FLA)* technique ra ther  than the False Lock Detection (FLD)* 

method which characterized the e a r l i e r  design. It i s  bel ieved t h a t  the 

change i s  good i n  tha t  i t  resu l t s  i n  somewhat be t te r  understood and more 

predictable performance. The method involves sweeping the receiver  VCO 

s u f f i c i e n t l y  f a s t  t h a t  sideband lock i s  precluded. This approach was sug- 

gested by Axiomatix a year ago, but  was not considered p rac t i ca l  because 

o f  the nearly complete design s ta te  of the receiver  a t  t h a t  time. Subse- 

quent problems w i th  the receiver  breadboard operction, however, forced TRW 

t o  adopt the fas te r  sweep (approximately 330 kHz/s ra ther  than 10 kHz/s). 

Since the change i s  so recent, f u l l  evaluat ion has not  been made, 

The basic theory and c i r c u i t  mechanisms are discussed under sect ion 4.1.6. 

3.2.5 PI Recef ver Wideband Output Bandwidth 

At the P I  PDR, i t  was disclosed t h a t  the receiver  wideband output 

bandwidth could be expected t o  range between 4.5 MHz (speci f icat ion value) 

and 8 MHz as a function of received signal operating l eve l  and f i  1 t e r  element 

*see [I], pp. 66-67. 



tolerances. A R I D  was i n i t i a t e d  by Axiomatix on t h i s  issue. Ax imat i x  
be1 ieves tha t  a bandwidth on the order o f  8 MHz could compromise Ku-band 

l i n k  performance. Axiomatix also maintains tha t  noise bandwidth rather 

than 3 dB bandwidth should be the c r i t i c a l  measure o f  output bandwidth. 

The wideband output lawpass bandwidtlr o f  the current receiver 

design I s  not established sole ly by the lowpass f i l t e r s  fo l lowing the 

wideband phase detector (as had previously been believed based upon con- 

ceptual design information). Rather, the l a s t  I F  f i l t e r  j u s t  p r i o r  t o  

the wldeband phase detector i s  the most i n f l uen t i a l  i n  meeting the 4.5 MHr 
lowpass requirement. This f i l t e r  has a 3 dB bandwidth o f  about 12 MHz 
(6 MHz lowpass equivalent) whi le the actual lowpass f i l t e r s  i n  the base- 

band c i r c u i t s  have respectlue bandwidths o f  12 and 8 MHz. TRW's design 

philosophy has been t o  basl; the overal l  bandwidth on the cascade o f  the 

bandpass and lowpnss f i l t e r s  i n  a manner wherein a1 1 these f i l t e r s  have 

a s ign i f i can t  contr ibut ing e f fec t .  The resu l t  i s  that, w i th  temperature 

and signal operating level  var ia t ion (AGC) effects, p1 us a1 1 owances f o r  

component tolerances, the e f fec t i ve  3 dB lowpass bandwidth may range any- 

where between 4.5 and 8 MHz. Thus, 4.5 MHz i s  the low-end l i m i t ;  the 

expected bandwidth i s  on the order o f  6 MHz. 

I n  t h e i r  analysis supplied t o  date, TRW has even included the 

t r i p l exe r  r i pp le  character ist ics f n t h e i r  resu l t .  A1 though t h i s  may be 

appropriate t o  signal transfer, i t  has no e f fec t  on the noise produced a t  
receiver output as the e f fec t ive  noise sources follow the t r ip lexer .  I t  

i s  Axiomatix's posi t ion that  noise bandwidth i s  more important than s ig-  

nal bandwidth. To t h i s  end, therefore, TRW i s  i n  the process of reviewing 

t h e i r  design w i th  an eye t o  widening the I F  bandwidth and narrowing the 

output LPF bandwidth. 

As t h i s  report i s  being wr i t ten,  TRW i s  i n  the process o f  sev- 

era l  a c t i v i t i e s  t o  determine how the problem rncy be circumvented without 

the need f o r  major redesign. Their invest igat ion w i l l  include: 

(1) Measurement o f  the output noise equivalent bandwidth on 
the receiver breadboard 

(2) Analysis o f  decreasing the bandwidth o f  the post-detection 
(output) 1 owpass f i 1 ter .  



(3) Review of I F  bandwidth f i l t e r  requirements. 

h l m t l x  w i l l  fo l low t h i s  a c t i v l t y  ciosely. Ir, addition, Axiornatix w l l l  
perform an independant assessment, the beginnings of which are summarlzed 

i n  section 4.1.3. 

3.2.6 P I  Receiver Wldeband Output Regulation 

The issue o f  what type of regulator i s  needed and where i t  should 

be located (PI versus KuSP) has a long-term h ls tory  whfch may be summar- 

ized as follows. 

Axiomatix had previously analyzed the required nature of the 

output slgnal regulator i n  order t o  optlmize the performance of the bent- 
plpe l i nk .  (See [I], subsectlon 4.2.1.1, pp. 31-36, and [2], subsection 

4.3.2, pp. 57-59, subsectlon 4.4.2, pp. 63-64, and section 5.4, pp 134- 

149.) A slgnal-peak type o f  regulating loop located i n  the KuSP, rather 

than an RMS typs o f  loop w l  t h i n  the P I ,  was Axlomatix's recomnend~d 

approach . 
Hughes A l r c ra f t  ( the KuSP hardware subcontractor) was requested 

t o  provide engineering and cost estimates f o r  including the peak regulator 

I n  the KuSP. Thls information was made avai lable a t  the February Hughes 
monthly review but was judged by NASA and R I  t o  be too costly. .Qs a 

resul t ,  TRW was asked t o  estimate the cost o f  redeslgnlng the basellna PI 
RMS regulator so that  It would have a peak regulat ing capabil i ty. TRW's 

estimates also proved t o  be qu i te  costly. The f ina l  approach, therefore, 

was t o  re ta in  the RMS regulator and accept the overal l  suboptimum perfor- 

mance o f  the wideband bent-pipe l i nk .  

Having made t h i s  decision, the f i n a l  problem was to properly 

define the signal inter face between the P I  and the un i t s  t o  which t b t  

wideband o ~ t p u t  in te r  faced, n<.nely, the PSP, KuSP and C I U  (payload stat ion).  

Agal:~, Axiomatix presented the resul ts o f  analysis involving the peak-to- 

peak t o  RMS ra t ios  f o r  various types of expected output waveforms. It was 
declded that  sm noise peak c l ipping (and the resul tant  loss i n  SNR) 

could be tolerated f o r  the KuSP interface (bent-pipe l i nk ) ,  but that  a 

lesser amount o f  c l ipping should be a1 lowed a t  the inputs o f  the PSP and 

CIU. Ftnal ly, i t  was resolved a t  a meeting held a t  R1 on Ap r i l  26, 1979 

that  the specification o f  the P I  wideband outputs should be the following: 



Output t o  PSP and CfU Output t o  KuSP 

2.0 *0.4 V RMS 2.0 20.4 V RMS 
8 V p-p maxlmrnn 7 V p-p maxlmum 

This resolut lon was hased I n  par t  on the f ac t  tha t  the TRW regulator char- 

ac te r l s t l c  Is, I n  fact, reasonably close t o  a t rue RMS measure (U = 2) as 

detannlnad by breadboard measurements. 

For de ta l l s  concerning the RMS regulator and output c l r c u l t s  

desl gn and performance, see sect 1 on 4.1.4. 

The frequency range over whlch the PI  n c e l v e r  must sweep t o  
se.~rch for ca r r i e r  lock due t o  nominal frequency uncertainty has stead1 l y  

widened over tha past year. Or ig ina l ly  specified a t  950 kHz, the range grew 

t o  370 kHz (Amendment C-01) and then became i85  kHz ear ly  i n  1979 (Amend- 

ment C-01, Revislon C) .  These Increases were due prtmar i ly  t o  the under- 

lying frequency stab1 1 i t I es associated w i t h  the independent frequency 

sources employed i n  the P I  transmitter and receiver, and viewed worst-case 

when the two subsystems operate as a pair .  I n  February 1979, Axlomatix 
rev i t red  the then understood design and performance status and predicted 

tha t  the range could be as large as 4145 kt4z. A t  the October P I  PDR, TRW 
presented that  the minimum requirement was then +I11 kHz and tha t  worst-case 

(due t o  temperature variat ion, production tolerances and aging) may be 

2132 kHz. The measured %readboard recctver pertonnance shows a minimum 

range o f  2111 kHz agd a maximum range of *I21 kHz over temperature. Thus 

the s i tuat ion would appear t o  be somewhat marainal. 

LJt t lc .  addit ional information i s  avai lable from TRW. Their PDR 

Data Package, Volume I, page 4-27, indicates, af ter  some redesign t o  Incor- 

porate a 300 kHz narrow I F  f i l t e r  ( rather than 200 kHz), that  the nominal 

sweep range w i l l  be +I25 kHz. Minimum capability can be expected as 

k l l ?  kHz, and maximum range could be 2132 kHz. Presently, i t  i s  somewhat 

coii;usinp as t o  whether a problem does o r  w i  11 exist.  

3.2.8 P I  Receiver Tracking Loop Phase Error 

TRW estimates that  up t o  8' of equivalent tracking s ta t i c  phase 

er ror  (SPE) may accrue due t o  uncontrollable d i rec t  voltage offsets i n  the 

PLL c i rcu i t s .  The t o t a l  specif icat ion on PtL SPE I s  3'. It should be noted 
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t h a t  the 3' i s  allowable f o r  s t a t i c  frequency er ror .  Since the DC loop 

gain fo r  TRW's design i s  very large, frequency o f f s e t  SPE i s  no problem. 

Axiomatix fee l s  t h a t  the spec i f i ca t ion  i s  somewhat s t r i c t  and perhaps no t  

apprapriate i n  l i g h t  o f  TRW's approach but, before a new value i s  suggested, 

a be t te r  understanding o f  the receiver 's  t rue  capabi 1 i ty  i s  needed. 

TRW has i d e n t i f i e d  a second type o f  phase error,  namely, t h a t  

which w i l l  e x i s t  bi  tween the PLL phase detector reference and the wideband 

detector reference (due t o  uncompensated c i r c u i t  phase s h i f t .  ) A 6 O  value 

has been advanced f o r  t h i s  phase e r r o r  by TRW; Axiomatix bel ieves t h a t  t h i s  

i s  a reasonable value. The number has not been s p e c i f i c a l l y  speci f ied by 

R I .  TRW should not, however, add the 6' f i gu re  t o  the 8' and ind ica te  

t h a t  the maximum s t a t i c  phase e r r o r  i s  out  o f  spec i f i ca t i on  by 11'. 

Further i d e n t i f i e d  by TRW i s  a dynamic (but constant) phase e r r o r  

due t o  the need t o  t rack the frequency ramp generated by sweeping the P I  

t ransmit ter  and "turned around" by the payload transponder. The value i s  

1.7'. No deta i led  analysis supporting t h i s  number appears i n  the PDR 

documentation. Since, f o r  an imperfect second-order PLL, t h i s  dynamic phase 

e r r o r  increases w i th  time, addi t ional  inves t iga t ion  o f  t h i s  area i s  war- 

ranted. The maximum mean t racking phase e r ro r  f o r  a1 1 sources combined i s  

cot  t o  exceed 15'. C l a r i f i c a t i o n  o f  d e f i n i t i o n  appears t o  be needed. 

3.2.9 P I  Transmitter Phass Noise 

The ear ly  issue on t ransmit ter  phase noise centered on i f  the 

integrated phase noise from the c a r r i e r  frequency plus 10 Hz t o  some a rb i -  

t r a r i l y  large r e l a t i v e  value (say, 5 MHz) would be less than 10' RMS. DS 

payloads having transponder receiver bandwidths as small as 13 Hz ( a t  abso- 

l u t e  threshold) formed the basis f o r  the speci f icat ion.  Subsequent studies, 

however, determined that ,  a t  maximum Orbi ter lpayload communication distances, 

the minimum expected operational DS transponder receiver  bandwidth shouldn't  

be less than 150 Hz. This, i n  turn, suggests t h a t  some re laxat ion  o f  the 

spec i f i ca t ion  may be i n  order. But, before any such determination can be 

assessed, adequate measurements o f  the P I  t ransmit ter  phase noise spectrum 
must be made. Analyses performed by TRW t o  date are not  assuring without 

experimental ve r i f i ca t i on .  Axiomatix has therefore submitted a R I D  t o  

request tha t  TRW measure the phase noise spectrum from the c a r r i e r  frequency 

plus 10 Hz t o  the c a r r i e r  frequency plus 5 MHz. Axiomatix w i l l  evaluate the 

potent ia l  phase noise magnitude and imp1 i c a t i  ons once the spectrum measure- 

ments become avai lab1 e. 



3.2.10 PI  Transmitter Sweep Rate 

I t  had been established from information supplied by JPL 

concerning the frequency ramp tracking ra te  o f  the DS standard transponder 

tha t  the maximum tolerance 600 Hz/second P I  transmitter sweep ra te  would 

1 i kely  be too rap id  for re1 i abl e transponder receiver acquisit ion. 
A t  a meeting held a t  R I  on Ap r i l  26, 1979 t o  review PI spec i f i -  

cat ion issues and problems, the question o f  an appropriate P I  transmitter 

slow sweep ra te  f o r  DS payloads was again raised. Suggestions were made t o  

the ef fect  tha t  perhaps the sweep ra te  should be lowered t o  100 tiz/second 

(rather than the 540 260 Hz/s). TRW comnented that  t h e i r  design approach 

of using an RC-type o f  integrator  t o  provide the sweep voltage t r iangular  

waveform could not be eas i ly  changed t o  provide the lower ra te  without some 

sacr i f ice i n  l i near i t y .  Since l i n e a r i t y  was considered t o  be a ttsoft' ' 

requirement, TRW was requested t o  perform some evaluation tes ts  on the 

breadboard transmitter t o  ascertain j u s t  how low the sweep ra te  might be 

reduced without the need f o r  major redesign. TRW conducted tests on the 

PI  transmitter breadboard which showed that  the 540 Hz r10% sweep ra te  

could be lowered t o  100 Hz 240% without changing the basic c i r c u i t  design 

or construction. O f  the +40% tolerance, 223% i s  sweep period var ia t ion and 

the remainder i s  a t t r ibuted t o  variat ions from a s t ra ight  l i ne .  

One problem wi th  a 100 Htlsecond ra te  i s  the very long time nec- 

essary t o  sweep the ent i re  frequency uncertainty range of 233 kHz. It 

would take 11 minutes since the sweep p r o f i l e  i s  such tha t  the t o t a l  range 

must be covered twice. Axiomatix therefore f e l t  that, a1 though the sweep 

ra te  cer ta in ly  ought t o  be lowered, 100 Hz/second could be unnecessarily 

too slow. For t h i s  reason, Axiomatix undertook an analyt ical  study t o  

determine the proper sweep ra te  f o r  the mininium operating conditions t ha t  

would prevai l  between the Orbi ter  and DS payload. 

Axiomatix' s analysis involved the use o f  the phase-plane method 

t o  obtain c r i t i c a l  sweep ra te  values as a function o f  PLL natural frequency 
and damping factor. O f  par t icu lar  importance i s  the fac t  that  over the 

conditions o f  interest ,  the DS transponder has a damping factor on the 

order o f  3. Af ter  obtaining by computer solut ion the c r i t i c a l  o r  absolute 

maximum values, a 20% backoff c r i t e r i on  was applied t o  a1 low for mechanis- 

t i c  performance. I n  addition, the sweep ra te  specif icat ion was based upon 
the transponder tolerance minimums i n  order t o  guarantee tha t  the sweep 

ra te  would be proper f o r  any transponder. 



It was f i n a l l y  establ ished through working w i t h  TRW engineers 

t h a t  a *30% tolerance on the sweep r a t e  would be appropriate. Thus, the  
new specif ied r a t e  was selected so t h a t  the +30% value would equal the 

20% absolute maximum backoff from the value calculated fo r  the l e a s t  fav- 

orabl e transponder to1 erance conditions. 
The new slow sweep r a t e  f o r  the P I  t ransmi t te r  i s  250 Hz/second 

~ 3 0 % .  This value has been incorporated i n t o  the TRW design and appears i n  

Rockwell ' s Revi s i  on 0-C32 amendment. 

3.3 Payload Signal Processor Issue D i  scussion 

3.3.1 PSP Comnand I d l e  Pattern 

At  the PSP PDR, Axiomatix submitted a R I D  against t he  comnand 

i d l e  pat te rn  spec i f i ca t i on  which, a t  t h a t  time, read: 

"The i d l e  pat te rn  o f  a l t e rna t ing  '1 's  and '0's s t a r t s  w i t h  
a 'I1." 

Axiomatix suggested that ,  if the i d l e  pat tern s t a r t  s ta te  i s  specif ied, 

perhaps the end s ta te  should a lso be specif ied. The r e s u l t  has been a 
spec i f i ca t ion  change, t o  w i t :  

"The i d l e  pat te rn  o f  a l t e rna t ing  '1 's  and '0 's  s t a r t s  w i t h  
a '1' and ends w i th  a 'O' ."  

3.3.2 PSP Performance Losses 

I n  [I], pages 34, 48 and 140, Axiomatix expressed concern over 

PSP in te rna l  losses due t o  subcarr ier t racking error,  b i t  sychronization 

er rors  and implementation-related degradations. Much o f  t h i s  ea r l y  con- 

cern was due t o  insuf f i c ien t  design and performance deta i  1s from TRW. 

These problems have more recent ly  been d ispe l led  by various actions. 

The PSP PDR supplied answers t o  essent ia l l y  a1 1 o f  the questions 

and, as a r e s u l t  o f  the d e t a i l s  and data supplied, a1 1 major concerns were 

resolved. I n  pa r t i cu la r ,  the SNR degradation performance of the combi ned 

subcarr ier and b i t  synchronizer t racking loops was determined by breadboard 

measurement t o  be -0.8 dB f o r  worst-case conditions. Since the spec i f ied  

overa l l  loss i s  not  t o  exceed 1.5 dB, there i s  s u f f i c i e n t  margin, and i t  

i s  r e l a t i v e l y  unimportant as t o  the p a r t i t i o n i n g  o f  loss between the two 
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3 .3 .3  M i n o r S p e c i f i c a t i o n C h a n g e s I d e n t i f i e d b y t h e P S P P D R  
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The PSP PDR was held a t  TRW on May 2-3, 1979. The review was 

wel l  prepared and presented, and no s ign i f i can t  problems i n  design were 

uncovered. TRW has done an outstanding j ob  o f  designing the PSP i n  a tech- 

n i ca l  l y  excel lent  fashion t o  comply w i t h  the design and performance speci- 

f i ca t ions .  Axiomatix's de ta i led  assessment o f  the PSP design and per for-  

mance i s  presented under sect ion 4.2. 

Four over-speci f icat ion items were noted by TRW, as fol lows: 

(1) Power 32W versus 26W 

(2) I n i t i a l i z a t i o n  Time 3 ms versus 1 ms 
Upon Power Transient 

(3) I n i t i a l  Command :.5 b i t  time versus 1.0 b i t  time 
Data Output Time 

(4)  Input  Common Mode < 40 dB (0-1 MHz) and c 30 dB (1-2 MHz) - 
Rejection versus 240 dB (0-2 MHz) 

No object ions were ra ised concerning these items and R I  took an act ion t o  

incorporate them i n t o  a spec i f i ca t ion  amendment. 

As o f  the w r i t i n g  o f  t h i s  repor t ,  the PSP design i s  complete. 

Four recent PSP/dDM in ter face  changes are i n  the process o f  implementation. 

These changes resul ted from R I D ' S  submitted a t  the May 2-3 PSP PDR, I n  

terms o f  the EM breadboard which i s  essent ia l l y  complete through the assem- 

b l y  phase, the changes w i l l  be ef fected by means o f  "haywiresl' on the com- 

mand processor boards. 

3.4 Network Transponder 

3.4.1 i F  Module C r i t i c a l  Performance 

As reported on page 141 of [I], the network transponder second 

I F  module has had a chronic probldm i n  terms o f  a1 ignment and maintaining 

performance specif icat ions w i th  time. More recent ly,  the f i r s t  I F  modules 

i n  the f l i g h t  LRU's were found t o  exh ib i t  degrading "dips" i n  t h e i r  f r e -  

quency response and had t o  be realigned. I t was determined tha t  the pro- 

cedures employed upon i n i t i a l  adjustment were not correct.  



These modules have been assessed as marginal by Axiomatix due t o  

the basic nature o f  t h e i r  analog c i r c u i t  design. TRW has solved tne most 

press1 ng problems--not by redesign--but by c r i  t i c a l  par ts  screening and 

select ion, and exhaustive a1 ignment and performance v e r i f i c a t i o n  on the 

pa r t  o f  the o r i g i n a l  design engineer. A1 though t h i s  approach has proven 

e f f e c t i v e  i n  the short  term, the long-term performancelrel iabi l  i t y  would 

appear t o  be speculative, and i t  i s  wondered how e f f e c t i v e  fu tu re  "repairst t  

w i l l  be i f  wholely d i f f e r e n t  ind iv idua ls  are involved. 

3.4.2 BER Degradation i n  the Duplex Mode 

Ear ly  i n  1979, ESTL tes ts  o f  b i t  e r r o r  ra te  (BER) u t i l  i r i n g  the 

network transponder i n  the STDN high-power duplex mode showed a marked per- 

formance decrease r e l a t i v e  t o  t h a t  o f  nonduplex o r  power amp l i f i e r  o f f  

operation. ESTL had measured losses i n  excess o f  1 dB whi le TRW had inde- 

pendently (using d i f f e r e n t  equipment) noted losses on the order o f  0.5 dB. 

The fo l lowing summarizes the chronology h igh l igh ts  o f  the invest igat ions 

tha t  followed. 

I n i t i a l l y ,  diagnostic tes ts  by TRW o f  the observed STDN high- 

power duplex mode BER degradation began t o  narrow the probable cause t o  

receiver increased noise f i gu re  due t o  suspected leakage i n  the diplexer.  

TRW consistent ly  measured an NF increase o f  0.4 dB, which corre lates wel l  

w i th  the observed BER degradation o f  0.5-0.6 dB. The problem d i d  not 

appear t o  be caused by spurs o r  frequency coherence condit ions. 

As the tes t i ng  continued, i t  rap id l y  became apparent t ha t  there 

was no read i ly  i d e n t i f i a b l e  cause for  the problem but, rather,  i t  appeared 

to  be some elus ive "greml i n u  w i th in  the transponder. Thus, i n  order t o  

i so la te  the source, a series o f  tes ts  invo lv ing  equipment subs t i tu t ions  

and conf igurat ion changes took place. The resu l t s  o f  t h i s  a c t i v i t y  may 

be summed up by the fol lowing observations (expressed by TRW a f t e r  about 

four  months o f  t es t i ng ) :  

( 1 )  NF degradation i s  the same w i th  the power LRU amp l i f i e r  

and the AIL TWT amp1 i f i e r  

( 2 )  BER degradation i s  approximately 0.2 dB higher than NF 

degradation, probably due to  t e s t  set contr ibut ions f o r  BER 



( 3 )  BER degradation i s  approximately t h e  same i'or t he  AIL t e s t  
d i p l exe r  and t he  NASA t r i p l e x e r  

( 4 )  BER i s  approximately t he  same f o r  t he  AIL paramp and t he  
Avantek t r a n s i s t o r  ampl i f i e r  

(5 )  BER degradation i s  sub ject  t o  v a r i a t i o n s  which appear t o  
be r e l a t e d  t o  phasing and temperature i 

(6)  The most s i g n i f i c a n t  con t r i bu to r  t o  h igh  values o f  BER 
degradation appears t o  be the d ip lexer :  

(a)  Previous t e s t  r e s u l t s  i n d i c a t e  BER degradat ion i s  p r i -  
m a r i l y  caused by t he  preamp LRU 

(b) BER degradation does no t  change when t he  paramp i s  

rep1 aced w i t h  a t r a n s i s t o r  ampl i f i e r  

( c )  High BER degradation i n  t he  q u a l i f i c a t i o n  preamp LRU 
i s  d e f i n i t e l y  caused by the  dip; <xer and/or connectors. 

As t ime increased, the  possi  b i  1 i t y  grew t h a t  t he  diplexer lpreamp 

connectors were the source o f  the  problem. Some t e s t s  were conducted t o  

determine i f  the h e m e t i c a l  l y  sealed connectors used w i t h i n  the  d i p l e x e r l  

preamp1 i f i e r  assembly were operat ing nonl i n e a r l y  as a f unc t i on  o f  i n c i den t  

power. Sincu the  cables and t h e i r  connectors w i t h i n  the  assembly cou ld  

no t  be changed, some spec ia l  cabl  es w i t h  hermet ical  l y  sealed connectors 

were fab r i ca ted  and added i n  se r ies  w i t h  the  cable from the  t e s t  se t  t o  

the  p reamp l i f i e r .  The theory was tha t ,  i f  the connectors were a problem, 

add i t i on  o f  the  externa l  cab le  w i t h  i t s  connectors would r e s u l t  i:i f u r t h e r  

degradation. I n  order  t o  negate the  e f f e c t s  o f  the  added cable  apar t  from 

the hermet i ca l l y  sealed connectors, t e s t s  were a lso  run w i t h  " i d e n t i c a l "  

cables having comnercial connectors. The t e s t s  appeared t o  i nd i ca te  t ha t ,  

indeed, the  add i t i ona l  he rmet i ca l l y  sealed connectors con t r ibu ted  about 

0.2 dB o f  degradation as measured by BER. However, Axiomatix caut ioned 

t h a t  the t e s t  r e s u l t s  should be regarded as inconc lus ive ( a t  t h a t  stage) 

because: 

( 1 )  The performance degradation observed was w i t h i n  the  accur- 

acy to leranccs o f  such t e s t s  

( 2 )  No attempt was made t o  determine i f  the  hermet i ca l l y  sealed 

connector cables and the  commerci a1 connector cabl es were t r u l y  " i den t i ca l  

i n  terms o f  i n s e r t i o n  loss ,  VSWR, e tc .  



(3) The tes ts  were based upon only  one cable tested f o r  the 
stated condi t ion only. 

Continuing tes ts  disclosed no addi t ional  possible reasons f o r  

the BER losses. The evidence continued t o  show tha t  the most probable 

causes were a combination of VSWR and RF connector heating which might 

invoke some s o r t  o f  contact metal "diode phenomena. " During September, 

AIL and NASA conducted some ra ther  conclusive tes ts  which ver i f ied  tha t  

some phenomena associated w i t h  the connectors does cause the BER degra- 

dation. Two s ign i f i can t  observations were made: 

(1) Replacement o f  the qua1 i f i c a t i o n  u n i t  52 connector (a con- 
nector w i t h  magnetic s ta in less steel  she l l  and Kovar center p in )  w i th  a 

comnercial (brass) connector reduced the t e s t  case noise f i gu re  degrada- 

t i o n  from 0.7 t o  0.1 dB. 

(2) Appl icat ion o f  a magnetic f i e l d  perpendicular t o  the nor- 
mal 52 connector using Alnico magnets reduced the t e s t  case noise f i gu re  

degradation from 0.7 t o  0.1 dB. 

The mechanism by which the magnets reduce the degradation i s  essent ia l l y  

unknown; i t  i s  suspected tha t  the magnetic f i e l d  e f f e c t i v e l y  saturates 

the connector she1 1 and Kovar p i n  so tha t  the nonl inear  act ion resu l t i ng  

i n  the degradation i s  suppressed. 

ESTL also conducted a series o f  tes ts  i n  both the STDN and TDRS 

transponder operating modes f o r  which a magnetic f i e l d  was applied t o  the 

52 connector. The resu l t s  o f  these tes ts  are summarized as fol lows: 

(1) Degradation w i t h  power ampl i f ie r  on varies between 0.7 and 

1.6 dB 

(2) Degradation i s  not af fected by TDRS spreading, convolu- 

t i ona l  encoding o r  encryption/decryption. 

( 3 )  Use o f  magnets w i th  1000 gauss strength caused degradation 
reductions o f  0.5-0.8 dB i n  the high-frequency mode and 0.1-0.3 dB i n  the 

1 ow-frequency mode. 

A recent analysis made by TRW shows tha t  the t ransmit ter  dummy 
# 

antenna high-power load temperature r i s e  can contr ibute up t o  0.3 dB o f  

noise f i gu re  increase. 



Fina l ly ,  some tes ts  a t  both AIL and TRW ind ica te  tha t  there may 

be some in te rm i t t en t  i o n i c  breakdown i n  some o f  the cables under high-power 

stress. Further e f f o r t  i s  needed t o  v e r i f y  t h i s  possible problem. 

Just what the f i n a l  reso lu t ion  w i l l  be i s  no t  y e t  f u l l y  apparent. 

Based on a1 1 the evidence t o  date, the plan would appear t o  c a l l  f o r  

rep1 acement o f  a1 1 52 connectors exhi b i  ti ng the above-mentioned degradation 

phenomena w i t h  approved equivalents having nonmagnetic propert ies. 

3.5 FM Transmi t t e r  Freqtlency D r i f t  

It was noted i n  [I], page 51, t h a t  two FM t ransmit ters had experi-  

enced an unexplained upward frequency d r i f t  over a prot racted period o f  

time. Figure 3.2 graphical ly  portrays the h i s to ry  o f  S/N 202. I n i t i a l  

invest igat ions disclosed t h a t  the problem was not  caused by run-away i n  

the temperature compensation c i r c u i t s  associated w i th  the frequency 

osci 11 ator.  

A l l  evidence t o  date indicates t h a t  the rea l  problem i s  probably 

the e f fec ts  of moisture on several o f  the frequency-determining capacitors 

tha t  are not hermet ica l ly  sealed. Moisture tes ts  on an Er ie  capacitor 

showed tha t  i t  was capable o f  a 0.18 p f  change f o r  a 0-96% humidity change. 

This, i n  turn, could r e s u l t  i n  a 700 kHz frequency var iat ion.  

Two production changes resul ted from the months o f  inves t iga t ion  

i n t o  the FM t ransmit ter  d r i f t  problem, as fol lows: 

(1) Increase subassembly vacuum bake from 12 t o  24 hours and 

implement environmental contro l  subsequent t o  bake 

(2) Add a 24-hour LRU vacuum bake w i th  cover removed j u s t  p r i o r  
t o  sealing. 

I n  addit ion, the ESTL LRU w i l l  have i t s  Er ie  capacitor (suspected 

t o  have a high moisture s e n s i t i v i t y )  changed f o r  a sealed capacitor and the 

u n i t  w i l l  then continue t o  be monitored t o  ascertain i t s  d r i f t  h is to ry .  
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4.0 AX IOMATIX SUPPORTING STUDIES AND ANALYSES 

4.1 Assessment o f  the P I  Desiqn and Performance 

A pre l iminary design review on the Payload Interrogator  (PI) was 

held by TRW October 10-11, 1979. As a r e s u l t  o f  t h i s  PDR, a large data 
package (D02694) covering the P I  design, performance analysis and t e s t  
data was made avai lable. 

I n  the fol lowing subsections, Axiomatix presents i t s  evaluat ion 

o f  the P I  design. Several object ives are considered, including: 

(1 ) Design soundness 
(2) C i r c u i t  i n t e g r i t y  

(3)  A l te rna t ive  approaches ( tha t  may have been be t te r )  
(4) Perfcmance c r i t i q u e  

(5)  Expected fu tu re  problems. 

The subsection topics o r  headings are representative of the areas tha t  
have received the most i i t t en t i on  by Axiomatix over the two-year period 

i n  which the PI design has evolved. 

4.1.1 Overall Phi losophy 

Basical ly,  the PI i s  a transceiver consis t ing o f  a receiver and 
a t ransmit ter  which are frequency exci ted or  referenced t o  a universal f r e -  

quency synthesizer tha t  a1 lows the PI t o  operate on any o f  861 channel pairs.  
The t ransmit ter  operates on two d i s t i n c t  bands--1 763-1840 MHz (L-band) and 

2025-2120 MHz (S-band) and the receiver covers the band 2200-2300 MHz (S- 

band). Table 4.1 l i s t s  the p r i nc ipa l  operating charac ter is t i cs  o f  the 

receiver, and Table 4.2 are those fo r  the t ransmit ter .  

Figure 4.1 shows a funct ional block diagram for the Pi and w i l l  
be used t o  i l l u s t r a t e  the fol lowing descr ipt ive discussion, 

A s ingle RF po r t  connects the P I  t o  the payload antenna cable as 

the payload antenna serves t o  simultaneously receive and transmit signals. 
This por t  connects i n t o  the receiver input and t ransmit ter  output through 

an assembly known as the t r i p l e x e r .  The t r i p l e x e r  consists o f  s i x  cavi ty-  
based bandpass f i l t e r s  which d iv ide  the receiver band and hoth transmit 
bands approximately i n  ha l f .  A de ta i led  descr ipt ion o f  the t r i p l e x e r  i s  

found under section 4.1.2. Immediately fo l  lowing the t r i p l e x e r  receive 
switch and located a t  the input  t o  the preampli f ier i s  a power overload 
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Table 4 , 2 .  Principal P I  Transmitter Characteristics 

Phase Modual tor  

Parameter 

L-Band Frequency Range 

S-Band Frequency Range 

Carrier Frequency To1 erance 

Carrier Phase No1 se 

bitput Spurs 

Frequency Sweep Ranges 

Frequency Sweep Rates 

Value 

1763 - 1840 

2025 - 2120 

i0.0012 

10 max 

< -65 

Power Level : High 

Medium 

Low 

Unf t s  
I 

MHz 

MHz 

X 

degrees-RMS 

d8c 

radians 

kHz 
kHz I 





t i m i  tar.  This 1 imi ter  functions t o  protect the FET preamplif ier i t s e l f  

from any damage for applied power levels as large as +36 dBm. The preamp- 

I l f f e r  output i s  input through an image frequeticy-rejecting BPF t o  the 

f t t s t  mixer, 

The function of the f i r s t  mixer I s  t o  downtranslate the recei ved 

signal t o  a fixed intermediate frequency ( I F )  o f  215 MHz. Sir:ce the input 

sigfial carr9er frequency may correspond t o  any one of the designated chan- 

nals on the range 2200-2300 MHz, the mixer reference suppl fed by the 

receiver synthesizer (RX)  must a1 so cover a 100-MHz range (1 985-2085 MHz ) . 
Following the mixer i s  a wideband If ampl i f ier  assembly (IFAS) consisting 

of several stages of gain-controllable (AGC) ampli f icat ion and bandpass 

f 1 ters  . 
A second mixer further downconverts the 215 MHz f i r s t  I F  signal 

t o  the 31 MHz second IF .  The reference for t h i s  second mixer i s  derived 

from the tracking ioop VCXO, so the second mixer represents the input t o  a 

quasi long loop phase-locked loop (PLL) arcni tecture. The secand mixer I s  

followed by an IFAS. A t  the output of the IFAS, the signal i s  effect ively 

sp1 l t i n to  two pr incipal  channels, 

The wideband channel provldes for modulation recovery and output 

t o  the appropriate processing units. A wideband phase demodulat?r refer-  

enced t o  a 31 MHz osc i l l a to r  (which becomes phase coherent wi th respect 

t o  the signal car r ier  component by v i r tue o f  the car r ier  tracking loop dis- 

cussed subsequently) translates a1 1 of the signal f i rst-order sidebands t o  

tne lowpass or baseband frequency region. The baseband waveform (which 

generally consists of signal-plus-noise) i s  then regulated t o  a fixed RMS 

value p r i o r  t o  being output. 

A second 31 MHz channel i s  narrowband (approximately :Is 0 kHz I F  
bandwidth) by v i r tue o f  the placement of a crystal  BPF p r i o r  to  two quadra- 

ture reference-driben demodulators. One of thrse demodulators, known as the 

loop phase detector. produces a car r ier  frequencylphase er ror  vcl tsge whlch 

i s  subsequent1 y f i l t e red  and appl ied to  the voltage control input of the 

P l L  VCX3.  Thc VCXO output i s  frequency mu1 t i p1  ied by a factor of 10, whence 

i t  becomes the reference t o  the second n~ixer, thus completing the PLL c l r -  

cu i t .  r o r  the conditions o f  proper PLL tracking, the frequency and phase 

of the received signal dfscrete car r ier  component a t  the input t o  the loop 

phase detector i s  i n  frequency-synchronous phase-quadrature with the 31 MHz 

der i  ded reference. 
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P r i o r  t o  achieving a condi t ion o f  phase lock, the frequency f 

dtfference between the received signal and the receiver  references may be a 
t 

very large (22100 kHz). Thus, as an a i d  t o  a t ta in ing  lock, the VCXO fre- : i 
-I. 

quency i s  swept over the uncer ta inty  range by means o f  the sweep loop. 

Once a s ta te  of lock i s  established, the sweep loop i s  disabled by the 

lock  detectcr  c i r c u i t .  

,:. The second demodulator of the narrowband quadrature p a i r  i s  known 

I as the  coherent zmplitude detector (CAD). If, when the PLL i s  locked, the 

input  and reference t o  the loop phase detector have a 90' phase difference, , 

the input  ar:d zferknce t o  the CAE have a 0° phase re lat ionship.  As a 

resu l t ,  the CAI rlutput i s  a d i r e c t  (zero frequency) voltage w i th  ampl i tude 

proport ional t o  the leve l  o f  the received ca r r i e r .  Such a voltage has two 

d i s t i n c t  uses: (1) as a means of ind ica t ing  phase lock, and (2) the basis 

f o r  receiver automatic gain contro l  (AGC) . 
4 

To implement a lock  detector, the CAD output i s  input  t o  a 

two-pole small bandwidth LPF which i s  f o l  lowed by a comparator referenced 

t o  a f ixed threshold. Wnen the PLL i s  out of lock, any d i r e c t  signal com- 

ponent and noise voltage appearing a t  the LPF output are essent ia l l y  smaller 

than the threshold so tha t  the comparator output w i l l  ind icate a "false" o r  

out-of-lock status. Conversely, i f  the PLL i s  locked, the d i r e c t  voltage 

appearing a t  the LPF output i s  su f f i c i en t l y  greater than the threshold so 

tha t  the comparator output becomes "true", ind ica t ing  a s ta te  of in- lock. 

An AGC voltage i s  formed by simply o f f s e t t i n g  the CAD output 

( i  .e., adding a reference voltage, RC), lowpass f i l t e r i n g ,  and feeding the 

r e s u l t  back t o  the vol tage-control l ab le  gain ampl i f i e r s  w i th in  the f i r s t  

and second IFAS's. Since AGC i s  also needed f o r  receiver acqu is i t ion  con- 

d i t i o n s  when the PLL i s  out of lock and no d i r e c t  voltage i s  produced a t  

CAD output, a noncoherent AGC voltage i s  derived and used i n  t h i s  state. 

The implementation involves r e c t i f y i n g  the 31 MHz output o f  the c ryz ta l  BPF 

t o  obtain the AGC measure, adding a reference voltage RN, and switching the 

r e s u l t  i n t o  the AGC LPF ( i n  l i e u  o f  the CAD output). Switching between non- 

coherent and coherent AGC i s  dependent upon which o f  the respect ive voltages 

i s  the largest  (see sect ion 4.1.5 f o r  de ta i l s ) .  

Frequency synthesis for  both the receiver and t ransmit ter  i s  

based upon a master 80 MHz temperature-control 1 ed c rys ta l  o s c i l  l a t o r  (TCXO). 

Transmitter c a r r i e r  phase modulation takes place a t  a f i xed  frequency 
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which i s  subsequently translated to  the proper output frequency wt  'hin the 
transmitter synthesizer (TX) . In order to  frequency sweep the transmitter 
carrier, ii VCXO sweep circuit  i s  used, with i t s  output also being input to 
the transmitter synthesizer. Thus, the output of the transmitter synthe- 
sizer i s  a discrete carrier, phase modulated and frequency swept signal 

t 

w i t h  a nominal (no sweep) carrier frequency coresponding to the designated & 
channel. 

The transmitter synthesizer output i s  amplified t o  a level neces- 

I sary to drive either of the output power amp1 if iers .  Separate power amp- 

8 l i f i e r s  are used for L-band and S-band channels (respectively, LPA and SPA). 

Only one amplifier may be on or active a t  a given time. Either amplifier 
is  capable of providing three selectable output power levels as listed in 
Table 4.2. Power amplifier output i s  switched into the appropriate t r i -  

. . plexer subband. 
Overall, the PI design philosophy i s  sound. The architecture, 

i n  terms of the frequency plan, appears to  be excellent. Circuitwise, 
the trfplexer, preamplifier, IFAS and transmitter power amp1 i f ie rs  are 
well designed and implemented with up-to-date ( b u t  conservative) technol- 
ogies. The frequency synthesizers embody acceptable designs; however, 
their  performance evaluation awaits future testing . Margi nal (and poten- 
t i a l ly  troublesome) designs (at  least philosophically and, in some cases, 
due to circuit  choices) exist in the phase-lock and frequency sweep func- 
tions. Detailed assessments are found in the following subsections. 

4.1.2 Receiver RF and IF Circuits 

4.1.2.1 Triplexar design and performance 

Transco Products, Inc. i s  the subcontractor for the t r i  plexer. 
Figure 4.2 is  the triplexer functional diagram. A brief descriptir . of 
the triplexer design follows. 

The triplexer consists of two sets (highband and lowband) of 
three f i l te rs .  Each set  has a receive f i l t e r ,  NASA (S-band) transmit 
f i l t e r  and DOD (L-band) transmit f i l t e r .  Either the highband or lowband 
sat i s  selected or switched by means of four coaxial switches. The f i l -  
t ~ r s  proper are implemented by means of cascaded cavities with adjustable 
resonators. 
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Figure 4.2. Tr iplexer  Functional Diagram 

High/Low 
Band - 

1) 

Low Frequency F i l t e r  Set 

High/Low 
Band 

t 

0 0 c LPF 
0 

c 
0 

b A 
m 

, 
,, High/Low 

Band 

,+- - 
P 

Xmi t 
NASA 

X m i t  
DOD 

Receive 
b 

. 
Limi ter  

A 

4 . 
To 

High Frequency 

LPF High/Low F i l t e r  Set 
LPF 

t 

Band 

I 

I 
DOD 

I 
NASA - 

From Transmitter 

r 

Receive 

X m i t  
DOD 

X m i t  
NASA 

A * 

+ 

,, 

A - 
,, - 



Each fi 1 t e r  channel u t i  1 i zes high-Q comb1 ine  st ructures w i t h  an 

integrated cross-coupled notch network t o  provide optimum e l e c t r i c a l  char- I 

e l l i p t i c - t y p e  stop-band response are used f o r  the respect ive low and high 1 

ac te r i s t i cs .  Select ion o f  the appropriate f i l t e r  channel i s  provided by i 

frequency receive channels. These designs have been chosen t o  provide I 

I 

the best possible amplitude response charac ter is t i cs  w i t h i n  the mechanical I 

a switch matr ix  which i s  in tegrated i n t o  the t r i p lexe rs  without the neces- I 

l 

s i t y  f o r  external RF cables. Each switch u t i l i z e s  an i den t i ca l  modifica- 

t i o n  o f  a space-qualif ied design tha t  a1 lows in tegra t ion  without RF cables. 2 

Thus, the resu l tan t  i nse r t i on  loss i s  reduced and the r e l i a b i l i t y  i s  / 

enhanced. Addi t ional ly ,  lowpass f i  1 te rs  are incorporated i n t o  the three 

RF inter faces t o  obtain high stop-band attenuat ion up t o  16 GHz. 

The DOD and NASA transmit f i l t e r s  are o f  ident ica l  form i n  each 

band set. They embody, respect ively,  N = 6 and N = 8 resonator sections 

w i th  e l l i p t i c - t y p e  response. N = 8 and N = 10 resonator sections w i t h  1 

conf igurat ion constraints.  

Each f i 1 t e r  has been designed using exact synthesis techniques. 

The physical conf igurat ion consists o f  an aluminup block w i th in  which the 1 
ind iv idua l  cav i t i es  have been machined (or  m i l l e d  out).  This block, 

ca l led  the housing, i s  designed f o r  maximum ef f ic iency.  It provides suf- 

f i c i e n t  wal l /sur face material  f o r  covers and components mounting whi l e  

maintaining miniumum wal l  thickness by a special undercut machining oper- 

at ion. This maximizes the unloaded Q, allows low inse r t i on  loss and min- 

imizes weight. The e n t i r e  housing i s  s i  lver-plated. 

The covers, together w i th  the housing, form complete resonator 

cavi t ies,  and are also fabr icated from an aluminum block and s i lver-p lated.  

Resonator tuning i s  at ta ined by adjustable capacitors f o r  each cav i t y  and I 
constructed as shown i n  Figure 4.3. The capacitor posts and hats are 1 
fabr icated from a1 umi num rods and s i  1 ver-pl ated. Each resonator tuning I 
screw i s  provided w i th  a lock nu t  which i s  t ightened a f t e r  proper a l ign-  I 
ment i s  attained. It i s  a lso noted t h a t  the coupling t o  the f i l t e r  non- I 
common por ts  i s  capaci t ive and tha t  coupling t o  the common junc t ion  (see 

Figure 4.2) i s  inductive. 

The switches are mounted on the sidewall s of the housing w i th  

the actuat ing leaves pro ject ing through the housing wal l  . Associated w i th  

each switch c o i l  i s  an arc suppression diode, and a l l  diodes are f i x e d  t o  

a comnon board which i s  also mounted t o  the housing sidewall. 
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each switch c o i l  i s  an arc suppression diode, and a l l  diodes are f i x e d  t o  
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Overall, the t r i p l e x e r  design, both e l e c t r i c a l l y  and mechanically, 

i s  judged very sound. The only po ten t ia l  mechanical problem i s  t ha t  the 

capacitor adjust ing screws can be turned so tha t  the two hats w i l l  make 

physical contact. This would appear t o  be a problem only during a1 ignment 

and should be prevented by means o f  very carefu l  procedures. It i s  

believed that,  once co r rec t l y  adjusted, the capacitor hats have s u f f i c i e n t  

clearance t o  prevent contact due t o  temperature expansion o r  other  mechan- 

i c a l  stresses on the t r i p l e x e r  housing. 

The mounting of the  arc suppression diodes ex terna l ly  without 

a cover caused some i n i t i a l  concern over the p o s s i b i l i t y  o f  EMI. However, 

considering t h a t  the t r i p l e x e r  w i l l  be mounted w i th in  the P I  sealed hous- 

i n g  and based upon some i n i t i a l  EM1 measurements by Transco, there does 

not  appear t o  be a problem. 

Transco fabr icated a brassboard tri p l  exer and made performance 

measurements i n  order t o  v e r i f y  the calculated design and obtain the 

data necessary f o r  r e f i n i n g  the engl neering model design. The engineering 

model passband measured resu l t s  are tabulated i n  Table 4.3.* I n  terms o f  

the measured stop-band performance f o r  the engi neeri  ng model , both receive 

channels were w i th in  spec i f i ca t ion  whi l e  the transmit channel f i 1 ters  

were found t c  be outside o f  spec i f i ca t ion  (worst case 5 dB) a t  ce r ta in  

high frequency points.  These problems w i  11 be corrected by minor redesign 

o f  the lowpass f i l t e r s  and some resonator readjustments. 

4.1.2.2 Power 1 i m i  t e r  and preamp1 i f  i e r  

The t r i p l e x e r  design show i n  Figure 8, page 54, o f  [I] had two 

fixed-pad attenuators capable o f  being switched i n t o  the c i r c u i t  between 

the t r i p l e x e r  output and the preampli f ier input  so as t o  accomodate very 

strong received signals. As was pointed out on page 46 o f  [I], however, 

no operational c r i t e r i o n  had been established as t o  how and when these 

attenuators should be set t o  the various options (0, -13 o r  -33 dB). 

Cer ta in ly  they could not  be r e l i e d  upon as "burnout protect ion"  f o r  the 

preamp1 i f i e r  as there was no guarantee tha t  they would be set  a t  maximum 

attenuat ion when an excessively strong signal might be appl ied t o  the 

receiver  input. 

" 
The t r i p l e x e r  specif ied performance may be found on pages 

53-59 of [I]. 



a c E I V E  CHANNEL 

INSERT IOCI LOSS 

PASSBAND RIPPLE 

PASSBAND VSUR 

DO0 TRANSHIT 

INSERT ION LOSS 

PASSBAND .RIPPLE 

PASSBAND VSWR 

NASA TRANSMIT 

INSERTION LOSS 

PASSBAND RIPPLE 

PASSBAND VSUR 

Table 4.3. Passband Performance Sumnary 
P I  T r i p l e x e r  Engineering Mod51 

REWIRaTNT Law FREQ 

1.9 dB, M X *  1.5 dB 

+ 0.2 dB, max. - + 0.1 dB 
0 

1.25:l MX* 1.25:1 

1.7 dB, max. 1.1 .dB 

+ 0.2 dB max. - + 0.1 dB - 
1.25:l max. < 1.25:l 

1.7 dB, WX* 1.2 dB 

+ 0.2 dB max. + - 0.1 dB 

1.25:1 max. s 1.25:l 

HIGH FREQ 



As the i n i t i a l  design o f  the t r i p l e x e r  evolved, i t  became c lea r  
t 

t o  Transco and TRW tha t  the attenuator pads and t h e i r  associated coaxial  

switches were j u s t  too bulky t o  fit w i t h i n  the t r i p l e x e r  physical envelope 

specif icat ion. As a resu l t ,  TRW sought t o  e l iminate them i n  favor of an 
overload diode-type o f  l i m i t e r  placed between the t r i p l e x e r  output and the 

preamp input. (Actually, t h i s  had been an e a r l i e r  design approach t h a t  was 
abandoned by TRW when they believed t h a t  the 1 i m i t e r  would s i g n i f i c a n t l y  

degrade the overa l l  receiver noise f igure,  The subsequent se lect ion o f  a 

very low noise FET input  preamp minimized t h i s  objection. ) 
The use of a power l i m i t e r  solves both the problem o f  operating 

the receiver  a t  very strong signal leve ls  and protect ing the preamp against 
excessive input  damage. Aertech Industr ies supplies TRW w i th  both the l i m -  
i e e r  and the preampli f ier,  a1 though the l i m i t e r  i s  phys ica l l y  placed a t  the 

t r i p l e x e r  assembly and the preamp i s  contained w i t h i n  the f i r s t  IF  module. 
The preamp i t s e l f  can to le ra te  up t o  +20 dBm without damage, whereas the 

maximum output allowed by the l i m i t e r  i s  +13 dBm for  any i npu t  power up t o  
+36 dBm. Thus, a 7 dB safety margin ex is ts .  

The l i m i t e r  begins t o  take e f f e c t  a t  about a OdBm input. Mechan- 

ized using PIN type diodes, the l i m i t e r  appears as a nonlinear r e s i s t o r  i n  
shunt w i th  the 50n coaxial signal path. As a resu l t ,  as maximum 1 i m i t i n g  

takes place, a mismatch occurs, increasing the VSWR. However, t h i s  hap- 

pens f o r  signal leve ls  higher than any operating value and therefore has 
no receiver operational impact. For input  leve ls  below the l i m i t i n g  thresh- 

old, the i nse r t i on  loss i s  about 0.5 dB and the impedance i s  50n. 
The preamp1 i f i e r  has between a 26 and 31 dB gain and employs 

input  FET's t o  obtain a maximum noise f i g u r e  ( inc luding the l i m i t e r )  of 
3.1 dB. Maximum 1 dB gain compression output power i s  specif ied t o  be 

+5 dBm. 
Overall receiver noise f igure,  as seen a t  the source input, i s  

determined by the preamp NF, plus i nse r t i on  losses associated w i th  the 
t r i p lexe r ,  cables and connectors. TRW calculates a combined component, 

worst-case, noise f i gu re  o f  6.8 dB. The speci f ied maximum value i s  7.0 dB. 

Axiomatix has reviewed TRW1s analysis and ear ly  t e s t  data, and believes 

t h a t  the projected NF maximum i s  cor rec t  and plausible. 



4.1.3 Bandwidth and Transfer Character! s t i  cs 

As o f  the P I  PDR i n  October 1979, the modulation ( c a r r i e r  side- 

bands) t rans fer  charac ter is t i cs  o f  the recei  ver were dependent upon the  

cascade o f  a number o f  f i l t e r s  w i t h i n  the receiver  IFAS'S. Figure 4.4 

shows the various f i l t e r  and amp1 i f i e r  cascades t h a t  comprise the receiver  
from the preamp through t o  the wideband output. 

I n  designing the receiver  frequency se lec t ive  cap -b i l i t i es ,  
T R W  was concerned w i t h  simul tamzausly meeting two speci f icat ions : the 
f i r s t  deal ing d i r e c t l y  w i t h  the wideband output 3 dB bandwidth, and the 

second implying r o l l  - o f f  o r  attenuat ion charac ter is t i cs  outside a centra l  

region about the ca r r i e r .  These two speci f icat ions are (paraphrased): 

(1) The wideband output channel t o  the KuSP sha l l  have a 
one-sided t dB bandwidth o f  4.5 MHz 

(2) The presence o f  a -65 d h  signal, modulated o r  unmod- 
ulated, w i th in  the frequency regions outside o f  the 
c a r r i e r  frequency 515 MHz sha l l  not degrade the per- 
formance o f  the receiver  by more than 1 dB. 

Frankly, Axiomatix does not  f u l l y  understand TRW's design p h i l -  

osophy o r  explanations of fered f o r  performance estimates, They maintain 

that,  i n  order t o  meet the in ter ference speci f icat ion,  (2) above, the 
f i r s t  I F  f i l t e r s  (BPF2 + BPF3) must have a minimum attenuat ion o f  -12 dB 
a t  215 MHz from center frequency. However, TRW's analysis (see subsec- 

t i o n  4.23.2, page 4-155 o f  the FDR Data Package, Vol. I) and Axiomatix's 

analysis (see sect ion 5.2, pp 59-66 of [ I ] )  o f  the in ter ference degrada- 
t i o n  mechanism do not  include the s k i r t  responses o f  the I F  f i l t e r s  as 
they have no e f f e c t  on the problem. Yet, when TRW was asked (by Axiomatix) 

why they cannot widen ce r ta in  I F  f i  1 ters, t h e i r  response has been t h a t  
they can i f  the in ter ference spec i f i ca t ion  i s  relaxed somewhat. A t  t h i s  

point,  i t must be noted (as was previously done on page 66 of [ I ] )  t ha t  

TRW o r i g i n a l l y  misread the interference spec i f i ca t ion  i n  t ha t  they took 
the degradation t o  be -0.1 dB rather  than -1.0 dB. Thus, a 14 dB margin 

on equivalent noise spectral  density generated by the in ter ference a1 ready 

ex is ts ;  no speci f icat ion re1 i e f  therefore appears necessary. 
Turning now t o  the centra l  problem created by the current  

receiver f i l t e r  design, Table 4.4 ! i s t s  the parameters f o r  the f i l t e r s  
i d e n t i f i e d  on Figure 4.4. As may be seen, the narrowest f i l t e r  t ha t  





Table 4.4. P I  Recel ver Prlnclpal F I  1 t e r  Parameters 

(Refer t a  Figure 4.4) 

I 
I Nominal 

F i l t e r  Center Number o f  
Deslgnatlon 

-3 dB 
Frequency Poles Bandwldth 

I 

I 150 MHz 

LPFl I 215 MHz 1 3 1 600 MHz 

18 MHz 

215 MHz 

BPF4 I MHz I 3 1 31 MHz 
I 

LPF/ Baseband 2 
HPFl 

12 MHt 
1 400 Hz 

LPF/ Baseband 2 
HPF2 I 

8 MHz 
1 700 Hz 



should predominate the wideband output bandwidth i s  BPF,., which has a 

two-sided I F  bandwidth o f  12 MHz or  a one-sided lowpass equivalent band- 

width of 6 MHz. Now, TRW's design philosophy i s  t ha t  the 4.5 MHz lowpass 
3 dB bandwidth i s  met by the cascade of a1 1 f i l t e r s  1 !sted i n  Table 4.4. 
Thus, each f i l t e r  contr ibutes more o r  less and, when each and every f i l -  
t e r  i s  represented by i t s  nominal parameters, the 4.5 MHz i s  attained. 

The problem i s  that,  w i t h  temperature and other  var iat ions (agfng and 
manufacturing tolerances), each f il t e r  e l  ther  s h i f t s  i t s  center frequency 
(some upward and some downward) o r  detunes, t o  the e f fec ts  that,  under 

worst-case condl t ions, the cascaded response may be as la rge  ss 8 MHz. 
A nominal bandwidth on the order o f  6 MHz can be expected. 

Axiomatix does not  understand why some o f  the IF f i l t e r s  cannot 
be widened, especia l ly  BPFZ, BPF3 and BPF5, and the baseband LPFIHPF f i  l- 
t e r s  narrowed so tha t  these l a t t e r  f i 1 te rs  predominate and e f fec t i ve l y  
es tab l ish  the wideband output bandwidth. Since the baseband f i l t e r s  are 
RC types, they are much less subject t o  temperature changes and aging and 

manufacturing tolerance var ia t ions  than are the I F  f i l t e r s .  Such, i n  

l i e u  of addl t i ona l  qua1 i f y i n g  factors, i s  Axiomatix's recornendation, 

4.1.4 Wideband Output Regulation 

As was indiceted i n  subsection 3.2.6, a wideband output RMS type 

o f  regulat ing loop was selected based upon economic considerations. Axio- 
matix 's preference and recamendation p r i o r  t o  the decision was tha t  the 

regulat ing loop be o f  the signal-peak type (see 5.4.1, pp 134-142 o f  [Z];. 
This was based upon the f a c t  t ha t  the peak regulator optimizes the Ku-band 

l i n k  FM deviat ion f o r  a l l  types o f  waveforms, providing maximum bent-pipe 
SNR performance f o r  a l l  waveform condit ions. The RMS regulator,  on the 

other hand, may have i t s  output scaled t o  provide optimum deviat ion f o r  
sny chosen waveform, but  the deviat ion f o r  a1 1 other waveforms w i  11 be 

suboptimum. If, f o r  example, the RMS regulator  output i s  optimized f o r  
the Gaussian waveform (charac ter is t i c  o f  P I  low SNR condit ions),  the FM 
transrni t t e r  w i  11 be underdeviated f o r  a1 1 other waveforms (high SNR 

condit ions).  Table 4.5 l i s t s  the FM t ransmit ter  mean deviat ions fo r  the 

two types of regulators and various waveforms. 
I n  addi t ion t o  wanting optimum mean deviation, there i s  same 

maximum deviat ion (se t  by spec i f i ca t ion  and design) which can be allowed. 

Again, the peak regulator  always sa t i s i f es  the maximum dev ia t ion  c r i t e r i o n  



Table 4.5. Bent-P., ,e FM Transml t t e r  Mean Devlat lons (MHz) 

fWS Regulator Peak Regul a  to r  

One Slnusold 3.7 

Two Slnusolds 3.7 

Three Sinusolds 3.7 

Four Slnusolds 3.7 

Square 3.7 

Gausslan 3.7 

bu t  the RMS regu la to r  may not. The maximum dev ia t i on  f o r  the bent-pipe 

t r ansm i t t e r  i s  11 MHz. Now suppose the RMS regu la to r  i s  used and 1 t s  

output i s  scaled t o  prov ide optimum dev ia t ion  f o r  a  s ing le-s inusoida l  

waveform. From Table 4.5, the mean dev ia t ion  w i l l  be 7.8 #Hz. I f  a 

Gaussian waveform ra the r  than the s i ng le  s inusoid then appears a t  the 

I npu t  t o  the RMS regulator ,  the RMS regu la to r  wi 11 automat ica l ly  sca le  

the Gaussian waveform t o  cause a mean dev ia t i on  of 7.8 MHz. But the 

peak-to-peak t o  RMS r a t i o  o f  a  Gaussian waveform i s  on the order o f  3:l; 

therefore, the peak dev ia t i on  w i  11 be 23.4 MHz, o r  more than two times 

l a rge r  than the maximum dev ia t ion  l i m i t .  

To prevent overdeviat ion, an amp1 i tude c l i p p e r  i s  usua l l y  

employed a t  the inpu t  t o  the FM t ransmi t te r .  Thus, fo r  the Gaussian 

waveform example j u s t  c i ted ,  i t  would be c l ipped  a t  i t s  1.40 :evel, caus- 

i n g  d i s t o r t i o n  and SNR loss. For the spec i f ied !ti.rformance f i n a l l y  

agreed upon (see 3 . 2 . 6 ) ,  the nominal c l i p p i n g  l e v e l  should be 1,750, 

and worst-case, 1.46~. TRW's RMS regu la to r  design and performance i s  

now rev i ewed . 
Figure 4.5 i s  a  b lock diagram of the widetand output regulator .  

Regulation e r r o r  i s  generated by the RMS detector  r e l a t i v e  t o  a  vo l tage 

reference, and s ignal  d r i v e  co r rec t i on  t o  the 1C video amp l i f i e r  i s  made 

v i a  the vo l tage-cont ro l led var iab le  at tenuators.  The at tenuators  are 





simply two L-pads w i th  the shunt arms being formed by FET's which funct ion 

as vol  tage-variable res is tors.  Overall, the regulat ion loop design i s  

sound. 

Two observations concerning the regulator  pe r f  omance are made. ! 1 
3 '  

The f i r s t  i s  tha t  the tolerances f o r  temperature, production and aging 
4 1 

are such t h a t  a k0.34 V va r i a t i on  o f  a 2.0 V RMS sine bave can be 

expected. This i s  w i th in  speci f icat ion.  

The second comnent i s  t ha t  the RMS detecior does not have a 

t rue  RMS charar+sr is t ic  w i th  respect t o  a1 1 wavefon~s, Measurements made 
. I 

on the breadboard established that, if, f o r  a sine wave, the nominal output 

i s  2.0 V RMS, for a square wave i t w i l l  be 1.93 V RMS,and f o r  6 MHz lowpass 

noise, the output w i l l  be 2.33 V RMS. Table 4.6 tabulates the expected 

RMS output f o r  t rue  RMS (v=2) and t rue  l i nea r  (v= l )  charac ter is t i cs  f o r  I 

comparison w i th  TRW's measurements. It i s  seen that,  f o r  a square wave, 
4 

the regulator  i s  between l i nea r  and RMS, whi le  the Gaussian (noise) wave- ! 
form case would appear t o  ac t  as v c l  (although i t  i s  expected tha t  com- 

pound nonl i nea r i  t i e s  obscure the actual detector character is t ics) .  The 

net  resu l t  of the TRW performance charac ter is t i c  i s  t ha t  bent-pipe FM per- 

formance w i l l  be even more suboptimum than for  a t rue  RMS regulator,  which 

has already been established as s ign i f i can t l y  suboptimum r e l a t i v e  t o  a 

peak regulator f o r  the case o f  square wave (data) signals (see Table 4.5). 

Table 4.6. Regulator Character ist ic Comparison 
1 

Nominal RMS Output (Vol ts)  

Waveform True RMS (v=2) True Linear ( v = l )  TRW Character is t ic  

Gaussian 2.00 2.24 2.33 

Sinewave 2.00 2.00 2.00 I 
Squarewave 2.00 1.82 1.93 

----. .-- - -  - - - 



TRW states that ,  by ind iv idua l  u n i t  adjustment, the t0.33 V 
change when going from a sine wave t o  nofse can be reduced t o  t0.25 V. 
Thus, the overa l l  tolerance on a noise waveform w i l l  be k0.59 V. Taking 

the worst-case pos i t i ve  tolerance value o f  the regulator  output t o  be 

2.59 V RMS, the peak c l i pp ing  t o  RMS r a t i o  o f  the noise w i l l  be 1 .35~ .  

This means t h a t  the noise w i l l  be c l ipped s f a i r  percentage o f  the time. 

The estimated SNR degradation due t o  t h i s  process i s  about -0.2 dB. 

4.1.5 AGCDesign 

Figure 4.1 shows tha t  the receiver  AGC loop switches between 

the coherent (CAD) and noncoherent ( r e c t i f i e r )  sources. The method by 

which t h i s  i s  ac tua l l y  accomplished i s  shown i n  the c i r c u i t  o f  Figure 4.6. 

Diodes DC and ON act  as the switch. When the  PLL i s  out o f  lock, the 

d i r e c t  voltage output of the CAD i s  zero and, because o f  the 8.2 V Zener 

bias established by the coherent AGC amp1 i f i e r ,  ?'le diode DC i s  reverse 

biased (switch open). On the other  hand, the AM detector ( r e c t i f i e r )  

produces a voltage which the overa l l  AGC loop seeks t o  maintain constant. 

The noncoherent AGC amp l i f i e r  output i s  such tha t  diode ON i s  forward 

biased (switch closed). 

Now when PLL lock i s  attained, the CAD output i s  s u f f i c i e n t  t o  

close the switch DC. Further, i n  order t o  t o t a l l y  disable the noncoher- 

ent  AGC (i.e., open DN), the luck detector output (COMP output) i s  

switched i n t o  the noncoherent AGC ampl i f ier ,  w i th  the r e s u l t  t ha t  diode 

DN i s  forced t o  a reverse-bias s ta te  i r respect ive  o f  the AM detector 

input  l eve l .  Thus, the noncoherent AGC voltage makes no cont r ibu t ion  t o  

the receiver  gain contro l  funct ion when the receiver i s  i n  lock. 

The design o f  the AGC loop and coherent/noncoherent switching 

c i r c u i t s  i s  both proper and prac t ica l .  I n  discussing the design w i th  

TRW' s engineers, Axiomatix noted tha t  the e f fec t i ve  noise bandwidth o f  the 

AGC ampl i f iers  (they have a un i t y  gain plus proport ional in tegra l  t rans fer  

charac ter is t i c  w i th  regard t o  t h e i r  + inputs)  i s  large. TRW had observed 

t h i s  f a c t  i n  the breadboard tes t i ng  and has since decided t o  incorporate 

an addit ional AGC LPF w i th in  the overa l l  loop. The loca t ion  o f  t h i s  f i l -  

t e r  i s  shown i n  the upper right-hand corner o f  Figure 4.6. 
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4.1.6 Tracking Loop Design and Performance 

I t  i s  s tated a t  the onset t o  t h i s  subsection tha t  the c i r c u i t  

designs f o r  the PLL f i l t e r  and sweep funct ions are, i n  Axi9matix1s opin- 

ion, some o f  the l eas t  acceptable found w i th in  the P I .  The primary prob- 

lem i s  centered on the f a c t  t h a t  a s ing le  operational ampl i f ie r ,  whose 

conf igurat ion zero-frequency gain i s  equal t o  the ampl i f  i e r  open-loop 

gain, i s  used both f o r  the PLL second-order loop f i l t e r  and t o  generate 

the receiver  frequency sweep sawtooth waveform. Figure 4.7 shows the 

funct ional  aspects of the ac t ive  c i r c u i t  conf igurat ion. 

The loop f i l t e r  t ime constants are rl = RIC and r2 = R 2 C  i n  
open loop, the PLL w i l l  have a gain o f  GK, where G i s  the zero frequency 

gain o f  the LM 108 operational ampl i f i e r  (about 110 dB), and K i s  the 

remainder o f  the PLL loop gain and comprises the phase detector sens i t i v -  

i ty,  the VCXO t rans fer  gain, the frequency mu1 t i p 1  i c a t i o n  fac to r  ( X I  0) , 
and any miscellaneous gain (o r  loss).  For the current TRW design, 

9 GK 5.1 x 10 . 
One good feature o f  the loop f i l t e r  conf igurat ion i s  t ha t  the 

t ime constant r, depends only  upon the gain K and not  the gain GK. Thus, 

the res i s to r  and capacitor values are o f  reasonable e l e c t r i c a l  size. 

Further, the very large open-loop gain, GK, forces the loop s t a t i c  phase 

e r r o r  (SPE) f o r  very la rge  frequency e r r o r  t o  be qu i te  small. For 

example, when the tracked frequency e r ro r  i s  100 kHz, the SPE w i  11 be only  

0.007'. Although t h i s  appears t o  be qu i te  commendable ( i n  fact ,  i t  i s  

over design), there i s  an equivalent p r ice  paid i n  terms o f  amp l i f i e r  

o f f s e t  voltage and currents and t h e i r  d r i f t  w i t h  temperature and aging. 

Generally, the higher the ampl i f ie r  gain, the la rger  the output o f f s e t  

vol tage. Therefore, when the operationai ampl i f i e r  has no e f f e c t i v e  

feedback a t  zero frequency, the output o f f s e t  voltage can be expected t o  

be large. TRW' reports t ha t  the equivalent SPE due t o  offset voltage i s  

expected t o  be 8". What i s  meant by t h i s  i s  t ha t  the phase detector 

must generate a cancel l i n g  voltage a t  i t s  output i n  order t o  maintain a 

proper phase lock condit ion. 

It i s  educational t o  ca lculate what j u s t  a l i t t l e  zero frequency 

feedback stabi 1 i za t i on  around the operational ampl i f i e r  might accomplish. 

Suppose tha t  a res i s to r ,  R3, were connected across the operational ampli- 

f i e r  as shown i n  Figure 4.7. Assuming, f o r  the sake o f  example, t ha t  
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a l l  of the output o f f s e t  vol tage i s  due t o  an input  o f f s e t  m u l t i p l i e d  by 

the gain, G, o f  the ampl i f ie r ,  the re la t i onsh ip  between the input  and 

output o f f s e t  voltages i s :  

Now, when R3 = -, 

"o f f se t  2 [I + GI v0 . 

However, l e t  R3 now be chosen so t h a t  R3/R1 = G/100. Then, 

The r e s u l t  i s  t h a t  t h e  zero frequency gain i s  reduced by a f a c t o r  o f  100, 

but so i s  the output o f f se t .  This w i l l  correspondingly reduce the o f fse t  

vol tage equivalent SPE t o  ( i d e a l l y )  0.08'. A t  the same time, the SPE due 

t o  the maximum tracked frequency e r r o r  w i l l  increase from 0.007° t o  0.7O, 

so t h a t  the ove ra l l  SPE from both e f fec ts  w i l l  be about 0.8'. I n  rea l -  

i t y ,  the improvement w i l l  no t  be q u i t e  so pronounced as not  a l l  o f  TRW's 

8OSPE equivalent e r r o r  i s  generated by the subject amp l i f i e r .  The po in t  

i s ,  however, there e x i s t s  a feedback constrained gain which minimizes the 

overa l l  SPE e f fec ts ,  and TRW should determine the best value f o r  Rg and 

include R j  i n  t h e i r  c i r c u i t .  

The second major concern i s  the method f o r  implementing the 

sweep voltage and contro l  c i r c u i t s .  Viewed from the sweep perspective, 

the conf igurat ion o f  Figure 4.7 acts as an operat ional i n teg ra to r  having 

two switched time constants, RSC and R R C  With the sweep re t race switch 

open and the sweep switch closed, the output o f  the operat ional amp1 i f i e r  

i s  a pos i t i ve  slope ram? tha t  begins nominally a t  -VS and increases t o  

+VS. When the +VS l i m i t  i s  reached, the l i m i t  detector and Schmitt t r i g -  

ger assembly close the sweep re t race switch which connects the +12 V 

source i n t o  the c i r c u i t  through tha short- t ime constant (RRC), fo rc ing  a 

rap id  re turn  t o  the -VS voltage. This l i m i t  i s  detected and the sweep 

re t race switch opened, a t  which po in t  the cyc le repeats. 



The sweep r a t e  o r  ramp slope i s  af fected by (1) the RSC t i n e  

constant, and (2)  the e f f e c t i v e  charge source voltage (se t  by the 5 kn 

pot) .  I n  addi t ion,  the t o t a l  sweep l i m i t s  are establ ished by the accu- 

racy o f  the l i m i t  detect ing Schmitt t r i gge r .  This l a t t e r  c i r c u i t  i s  

mechanized using a type 741 operat ional a m p l i f i e r  connected i n  a posi-  

t i v e  feedback conf igurat ion.  Since TRW has not, t o  date, documented the 

design (espec ia l l y  the Schmitt t r i g g e r  c i r c u i t ) ,  i t i s  no t  a t  a l l  c l ea r  

t o  Axiomatix why they selected t h i s  p a r t i c u l a r  approach. (Axiomatix 

be1 ieves a number o f  superior and l ess  p o t e n t i a l l y  troublesome designs 

should have been studied. ) The concern i s  w i t h  the performance var ia-  

t i ons  t h a t  may be expected w i t h  temperature, aging and power supply 

changes. Further, there are three pots t h a t  must be adjusted* i n  order 

t o  b r i ng  the c i r c u i t  parameters w i t h i n  operat ing speci f icat ions.  I t  can 

only  be wondered t h a t  there w i l l  no t  be t roub le  encountered w i t h  the 

f l i g h t  un i ts .  The design appears t o  be too dependent on small tolerance 

component values and perhaps c r i t i c a l  adjustments. Axiomatix therefore 

suggests tha t  po ten t i a l  f a i l u r e  mechanisms be i d e n t i f i e d  and evaluated. 

Since the receiver  fa1 se lock  performance i s  dependent upon maintaining 

a proper sweep r a t e  (see sect ion 4.1.7 fo l lowing) ,  any c i r c u i t  changes 

which can cause the r a t e  t o  f a l l  outside i t s  prescribed l i m i t s  ( e i t h e r  

too f a s t  o r  too slow) are po ten t i a l  f a i l u r e  mechanisms. Also, f a i l u r e  

o f  the Schmitt t r i g g e r  t o  switch when e i t h e r  sweep l i m i t  i s  reached i s  

a f a i l u r e  which w i l l  render the receiver  essen t i a l l y  inoperat ive. 

4.1.7 Acqu is i t ion  and False Lock Suscept ibi l  i ty 

A background f o r  the problem o f  swept acqu is i t ion  l ock  on car- 

r i e r  modulation sidebands ( ca l l ed  f a l s e  lock)  i s  found i n  [I], pp 66-75. 

From the time t h a t  [I] was w r i t t e n  i n  January 1979 t o  the P I  PDR held i n  

ea r l y  October 1979, the philosophy used by TRW t o  abrogate fa l se  lock  

changed s i g n i f i c a n t l y .  

TRW's o l d  approach was t o  sweep the P I  receiver  t rack ing  loop 

VCO frequency a t  a moderately slow r a t e  (10 kHz/second) and r e l y  on the 

d iscr iminat ing performance o f  the 1 ock detector t o  ind ica te  c a r r i e r  lock  

* 
An examination o f  the schematic diagram f o r  the c i r c u i t  board 

o f  the phase lock  and telemetry assembly discloses t h a t  no less than s i x  
pots are ava i lab le  f o r  alignment, three f o r  the sweep c i r c u i t ,  one f o r  
the AGC and two fo r  the AGC telemetry. 



(and thus d isable the sweep) but  no t  i nd i ca te  sideband lock. As a resu l t ,  

accurate receiver  gain cont ro l  i n  both the out-of- lock and in - lock  phases 

was essent ial ,  as a s ing le  f i x e d  lock  detector threshold voltage was 

employed, A very serious problem w i t h  t h i s  o l d  approach was that,  a t  

strong s ignal  condi t ions  , the beat note frequency between the rece i  ved 

c a r r i e r  and the receiver  e f f e c t i v e  reference could, i f  the lock  detector 

lowpass bandwidth were large, cause the sweep t o  be terminated before the 

beat note frequency had become s u f f i c i e n t l y  small t o  a l l ow  the phase-locked 

loop t o  self-capture. As a r e s u l t  o f  these problems, the acqu is i t i on  per- 

formance was d i f f i c u l t  t o  analyze. 
1 

The new method allows the receiver  frequency sweep t o  be very 

fast - -suf f  i c i e n t l y  rap id  tha t  sS deband lock i s  obviated--but no t  so f a s t  

t h a t  t rue  c a r r i e r  l ock  i s  compromised o r  uncertain, even a t  threshold 

SNR' s. Furthermore, the 1 ock detector 1 owpass bandwidth i s  ra ther  narrow 

(approximately 4 Hz, see Figure 4.6;. thereby e l im ina t ing  the beat note 

problem. I t  should be noted that ,  from both conceptual and theore t ica l  

perspectives, the new approach i s  the cor rec t  one (as Axiomatix had advo- 

cated when sideband lock f i r s t  became an issue). 
TRW now bases the select ion o f  the PLL parameters on maximizing 

the acquisition sweep rate.  Thus, the la rges t  PLL natura l  frequency 

allowable i s  desired. A minimum PLL SNR o f  6 dB corresponding t o  acqui- 

s i t i o n  ca) r i e r  threshold o f  -122.5 dBm i s  spec i f ied  by TRW. Taking a 

receiver  maximum noise f i g u r e  o f  7 dB and a l lowing a 2 dB margin f o r  

implementation losses, a receiver  noise bandwidth (2BL) o f  about 3230 Hz 

i s  calculated, which corresponds t o  a PLL natura l  frequency o f  on = 

3 2560 radianslsecond ( loop damping fac to r  s l  i g h t l y  l a rge r  than u n i t y ) .  

Although TRW calculates the maximum al lowable sweep r a t e  f o r  

0.9 p r o b a b i l i t y  o f  acqu is i t ion  on the t rue  c a r r i e r  when the PLL SNR i s  

6 dB, they have found by running tes ts  on the breadboard t h a t  the theo- 
3 r e t i c a l  sweep r a t e  i s  too f a s t  f o r  re1 i ab le  performance. Gardner's 

formula ([3], equation 4-33) gives 



which, f o r  the above stated condit ions, resu l t s  i n  fsw(max) = 520 kHz/s. 

TRW' s experimental inves t iga t ions  have determined, however, t h a t  fsw = 
330 kHz/s i s  the p rac t i ca l  rate.  This number includes allowance f o r  the 

received signal c a r r i e r  sweep o f  17 kHz/s which could add d i r e c t l y  t o  

the receiver  l oca l  sweep, tolerances and some acquis i  t i o n  margin (not 

del ineated by TRW) . 
Axiomatix had prev iously  establ ished t h a t  the r a t i o  o f  sideband 

t o  c a r r i e r  amp1 i tude given by 

w i l l  t h e o r e t i c a l l y  preclude fa l se  lock. Calculat ing the r a t i o  f o r  fsw = 
330 kHz/s and TRW's la rges t  expected value o f  wn = 2923 rad/s resu l t s  i n  

an answer of <-12.3 dBc. This r e s u l t  assumes, however, t h a t  both the 

c a r r i e r  and the sideband leve l s  remain r e l a t i v e l y  unaltered i r respect ive  

of the frequency e r r o r  o r  sweep process. I n  r e a l i t y ,  such i s  no t  the 

case as, for  l a rge  frequency errors,  the c a r r i e r  may ac tua l l y  be attenu- 

ated by the s k i r t s  o f  the c rys ta l  I F  f i l t e r .  When t h i s  happens, the non- 

coherent AGC increases the receiver  gain so tha t  W, a lso increases. Thus, 

allowance must be made f o r  t h i s  condit ion. I n  t h e i r  analysis presented 

i n  the P I  PDR Data Package, Vol . I, page 4-36ff, TRW accounts f o r  t h i s  

phenomenon i n  an unacceptable (and d i f f i c u l t  t o  comprehend because o f  i t s  

sketchiness) manner. Their  predict ions, especia l ly  those deal ing w i t h  

ext rapolat ions from measured breadboard resu l t s  t o  f l i g h t  u n i t  expected 

performance on page 4-37, should, i n  Axiomati x ' s  opinion, be disregarded. 

TRW's breadboard measurements showed t h a t  f a l s z  lock  would no t  occur i f  

the sideband leve l  were <-23 dBc, This i s  over 10 dB d i f f e r e n t  from the 

1 i rn i t  ca lcu lated using equation (4-5) .  Although several dB o f  t h i s  d i f -  

ference can be accounted for  due t o  the aforementioned c rys ta l  f i l t e r  

e f f e c t  and tolerances, the remainder i s  unexplained. A t  t h i s  po in t ,  

Axiomatix fee ls  t ha t  more carefu l  measurements should be taken and t h a t  

f u r the r  ana ly t i ca l  development i s  needed. The matter o f  reso lu t ion  and 

predicted performance f o r  the f l i g h t  u n i t s  therefore remains open. 
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4.1 .8 Frequency Syn thes I s 

Figure 4.8 I s  a s impl i f ied functional diagram o f  the P I  
frequency synthesizer. The pr!ncipal frequency source i s  the temperature- 

control led crys ta l  osc i l l a t o r  (TCXO) havlng an output frequency o f  80 MHz. 
Frequency output o f  the receiver synthesizer port ion I s  given by 

RX M H z ,  

where N I s  a frequency d iv i s ion  integer tha t  establishes the desired 

channel frequency and D i s  the interchannel step s ize scaling factor. N 

and D are tabulated i n  Table 4.7 f o r  the various payload options. 

Table 4.7. Synthesizer Integer Values 

3 

Integer STON DSN SGLS 

N CN + 519 CN - 431 40CN - 35460 

D 1280 432 1280 

E 240 240 256 

F 22 1 221 205 
I 

CN = Channel Number - 

The transmitter output frequency i s  e i ther  S-band (STDNIDSN) 

or  L-band (SGLS) and i s  given respectively by: 

(S-band) fTx = E60 10 fyS t 12801 MHz (4-7) 

NF (L-band) fTx = E60 + 6 fvL + 12801 MHz (4-8) 

here the r a t i o  F IE  i s  the payload transponder receive-to-transmit f re -  

quency r a t i o  (see Table 4.7), and fvS and fyL are, respectively, the 
w 

S-band and L-band sweep VCXO nominal frequencies. 





Channel frequency synthesis I s  Implemented using an l nd l  r ec t  

phase-lock method. TRW has done a good Job wl th  respect t o  design de ta l l  

and analysls. Because the changes o f  Integer values d l r e c t l y  af fect  the 

PLL loop gain, TRW has placed a three-posi t l o n  attenuator i n  the loop 

followlng the loop f i l t e r .  This attenuator, automatically swltched 

according t o  the channel number selected. holds the PLL natural frequency 

wi th in  prescribed var ia t ion l l m i t s  (about 23 dB) over the en t l r e  set o f  

channels. TRW makes use of a rather novel PLL phase detector ( l den t l f  led 

as the FSP-IX), which produces a d i rec t  voltage output as a function o f  

both frequency e r ro r  and phase er ror  (when the two input frequencies are 

ldent lcal) .  This i s  a very important feature when i t  i s  considered that  

the loop i s  required t o  frequency-slew as much as 100 MHz (e.g, , from 
Channel 1 t o  Channel 808 i n  the STDN mode). Without some form of AFC 
acqui s i  t lon, the bas! c PLL cannot accomnodate such frequency steps and 

sel f-acquire. The combinat ion frequency/phase e r ro r  character ist ics 

also diminishes the poss ib i l i t y  o f  fa lse lock. Another good performance 

feature I s  that  the loop i s  designed t o  operate i n  the in- lock state 

wi th an intent lonal  phase error. This property avoids the generation o f  

"d ig i ta l "  phase noise which occurs a t  the phase detector output w i th in  

the v i c i n i t y  o f  O0 phase error. 

One concern o f  Axiomatix has been the phase noise output o f  
both the transmitter and receiver svnthesizers. Most o f  the receiver 

synthesizer phase noise may be t raced back to the inherent i n s t a b i l i t y  

o f  the TCXO. If the TCXO has a phase noise modulation denoted by eT(t), 

the receiver synthesizer output has a phase noise given by 

This has a maximum value o f  eRx( t )  2 26eT(t). The transmltter, on the 

other hand, has phase noise components derived from both the TCXO and 

one of the VCXO's and, f o r  the STDN mode, the transmitter phase noise i s  
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when ev ( t )  1s the phase noise modulation o f  the VCXO. The maximum value 

I s  eTx(t) 2 16eT(t) 1 C V ( t ) .  I n  addi t ion t o  the crys ta l  oscillator 
sources cited, other phase noise components ar ise from the synthesizer 

P!.L VCO's and the frequency d iv i s ion  and phase detector c i r cu i t s .  A1 1 

of these l d t  t e r  components tend t o  make the1 r greatest con t r l  but ions out- 

side o f  the syntheslrer PLL bandwidth, 4.e.. >54 kHz from the nominal 

ca r r i e r  frequency. Most o f  the phase nolse data suppl fed by TRW t o  date 
has been taken from breadboard measurements and i s  both sketchy and some- 

I what imprecise (due t o  the l im i ta t ions  o f  the t es t  equipment avai lable). 

t &  One possible performance problem i s  tha t  the phase noise spectra1 density 

of the receiver synthesizer k15 MHz from the nominal frequency may be 

some 3 dB greater than that  needed t o  meet the -65 dBm interference degra- 

dation speci f icat lon. Axiomat i x  has requested ref ined phase no1 se mea- 

surements o f  both the transmitter and recei ver synthesizer outputs. 

Probably the poorest c i r c u i t  design found i n  the en t i re  frequency 

synthesizer i s  the sweep generator. The sweep waveform ( t r iangular )  i s  

obtained from c i  r cu i  t s  not unl i ke those a1 ready described for the receiver 

sweep (see sectton 4.1.6). An operational integrator  u t i l  i z i ng  an LM108 

ampl i f i e r  i s  employed i n  conjunction wi th an LM139 voltage comparator 

which dete,ts the ramp l im i t s .  By the use o f  an integrator  input polar- 

i t y  revet sal switch and comparator reference value switches, a t r iangular  

waveform i~h i ch  begins a t  0 V, increases t o  +4 V, reverses and decreases 

t o  -4 V and reverses again t o  re turn  t o  0 V, i s  generated. 
The most c r i t i c a l  problem associated w i th  the sweep c i r c u i t  

design i s  that, a t  the slow sweep ra te  (250 ~ z / s ) ,  the nominal integrat ion 

period (+4V to  -4 V) i s  some 246 s. Because o f  operational ampl i f i e r  o f f -  

set voltage and ccrrent d r i f t s  over such a rather long time, TRW can mzet 

the slow sweep rate wi th  a tolerance of no bet ter  than 230%. Nor w i l l  
the sweep be per fec t ly  l i near  over the en t i re  period. 

As a resu l t  o f  the sweep c i r c u i t  design philosophy, no f l e x i b i l -  
i t y  outside o f  providing two d i s t i n c t  rates has been possible. One desir- 

able feature would be t o  begin the sweep a t  the -4 V 1 i m i  t, Increase t o  
+4 V, reverse and decrease t o  0 V. This would save 25% o f  the time 

requlred t o  make the sweep cycle (important a t  the slow rate) .  S t i l l  

another capabi l i ty  could be the s t ~ r t i n g  of the sweep a t  any prescribed 

value and ending (a~rd holding) a t  a second value. Such would a1 low f o r  



a p r l o r l  knowledge o f  the probable payload recelve frequency t o  be used 

t o  s l g n l f l c a n t l y  shorten the a c q u l r l t l o n  tlm a t  the slow rate, !a order 
t o  accomwdate such capabil 1 t i es ,  an e n t l  r e l y  d l  f fe rent  sweep design 

must be employed. An approach would make use o f  an up/down counter nhlch 

could be se t  and stopped a t  any prepmgramned 1 lmi ts ,  a varlable/selectable 

counter clock frequency, and a d i g i  t a l  40-analog converter havlng an I n t e r -  

po la t i ve  step f l l t e r .  Not only can f l e x i b l e  sweep p ro f l l es  be generated 

by such a mechanlration, but  the tolerance problems associated w i t h  slow 

ramps are virtually ellmlnated. Further, a la rge number o f  sweep r a t e  

optlons are posolble by slmply changlng the counter clock frequency 

through a programnable d i v ide r  operating from a master clock source. 

Therefore, Axiomatlx recomnds  that,  whenever some fu ture  PI redesign/ 

upgrade program I s  I n l t i a t e d ,  the suggested approach be adopted t o  

rep1 ace the analog opera t l ona l  -1 ntegrator  method. (This recomnendaticn 
a lso appl ies t o  the receiver  sweep c l r cu l t s . )  

4.1.9 Transmltter Power Amp1 i f i e r  

The transnil t t e r  power ampl i f  i e r  i s  an excel 1 ent example o f  mod- 

ern sol Id -s ta te  design using d i  s t r l  buted micros t r ip  technology, together 
w i t h  para1 l e l  combining o f  the power t rans is tors  using hybr id coup1 lng. 

Emphasis has been given t o  e f f i c i ency  and the problem a f  heat dissipat ion. 

Detal led, we1 1 -wri t ten, descr lpt  f ons of the deslgn and performance are 
given i n  the TRW PDR Data Package, Vol . I. 

It i s  Ins t ruc t i ve  t o  b r i e f l y  review the method by which the 

three power leve ls  are obtained. Figure 4.9 shows the power switching 

conf igurat ion along w i t h  the PIN diode switching matix. The input i s  

nominally 4 W a t  node A. I n  the high-power mode, the 4 W i s  s p l i t  

( i nse r t i on  loss i s  ignored i n  t h i s  s imp l i f i ed  discussion) i n t o  2 W a t  

each power ampl i f i e r  (PA)  input;  1 i t t l e  s ign i f i can t  power i s  re f lec ted 

t o  por t  0. Each PA produces about 8 W a t  i t s  output, w i th  the combination 

appearing as 14 W a t  the output node D. I n  the medium and low-power 

modes, the PA's make no cont r ibu t ion  t o  the output as the P I N  diodes a t  

t h e i r  inputs and outputs are shorted, thus provid ing r e f l e c t i v e  loads t o  

the hybr id ports. As a resu l t ,  the power inc ident  a t  A i s  re f l ec ted  t o  
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Output Power 

Mode Measured Specif ication 

High 40.6 - 42.2 dBm 40.2 - 43.5 dBm 

Medi um 30.9 - 33.5 dBm 30.2 - 33.5 dBm 

LOW 10.5 - 12.8 dBm 7.2 - 10.5 dBm 

Spurious 
Products - <-70 dBc - c- 67 dBc 



Table 4.9. PI Receiver Car r i e r  Threshold Performance 

of these losses appears i n  Table 4.10 f o r  both standard and nonstandard 

(bent-pipe) modulations. For the standard modulation case, the margin, 
by design, i s  small and a reasonably high confidence preva i ls  t h a t  the 

f l i g h t  u n i t s  w i l l  a t t a i n  the ind ica ted  l eve l  o f  performance. As f o r  the 
nonstandard modulations, the  ra the r  l a rge  f i l t e r i n g  loss  i s  based upon 

the p o s s i b i l i t y  t h a t  the receiver  throughput bandwidth could be as nar- 

row as 3 MHz (see the discussions under 3.2.5 and 4.1.3). This i s  a 
worst-case estimate and could improve by b e t t e r  than 0.5 dB i f  a band- 

width c loser  t o  the 4.5 MHz spec i f ied  value i s  attained. 
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Acqufs i t lon 
Thresh01 d 

Tracking 
Threshold 

t 

Table 4.10. Ant ic ipated P I  Receiver Throughput Losses 

Measured 

-1 24.3 dBm 

-127.1 dBm 

Component 

F i  1 t e r i n g  

Inter ference 

Tracking and 
Phase Noise 

- Nonlinear 

To t a  1 

A l loca t ion  

Margin 

Speci f i ed 

-122.5 dBm 

-124.0 dBm 

Margin 

1.8 dB 

3.1 dB 

Standard 
Modulation 

-0.2 dB 

-1.0 dB 

-0.5 dB 

-0.2 dB 

-1.9 dB 

-2.1 dB 

+0.2 dB 

Nonstandard 
Modulation 

-1.0 dB 

-1.0 dB 

-0.5 dB 

-0.4 dB 

-2.9 dB 

-2.1 dB 

-0.8 dB 



4.2 Assessment of the PSP Design and Performance 

TRW held a prel iminary design review f o r  the  Payload Signal 

Processor May 2-3, 1979. A design data package and the viewgraphs used 

a t  the formal presentation were d is t r ibu ted.  I n  the subsections t h a t  

fol low, Axiomatix presents i t s  assessment o f  the PSP design, performance 

and potent ia l  problems. 

4.2.1 Overall Phi 1 osophy 

The PSP consists o f  two basic processors--one t o  handle telem- 

e t r y  data and the second t o  process and encode command messages. Telem- 
e t r y  input  i s  i n  the form of data biphase modulated onto a subcarr ier 

which i s  s e r i a l l y  processsed i n  such a manner as t o  (1) PSK demodulate 

the data from the subcarrier, (2) b i t  synchronize and matched-f i l ter  

detect the  data, and (3) frame synchronize the data. Table 4.11 l i s t s  

the  pr inc ipa l  PSP telemetry signal processing capabil i t i e s .  

Comnands are handled i n  such a manner as t o  (1) accept command 

messages i n  "burst" form and bu f fe r  store, (2) perform a va l i da t i on  
check, (3) r a t e  convert t o  the appropriate b i t  r a t e  and p r e f i x  w i t h  an 

i d l e  pattern, and (4) biphase modulate the s e r i a l  comnand word onto a 

subcarrier. Data rates and signal charac ter is t i cs  f o r  the comnand s ig -  

nal generation po r t i on  of the processor are tabulated i n  Table 4.12. 

Table 4.12. PSP Command Signal Character ist ics 

Parameter 

Subcarrier Waveform 

Subcarrier Modulation 

Subcarrier Frequency 

I d l e  Pattern 

B i t  Rates 

Value 

Sinusoidal 

PSK, 290 

16 

A 1  t e r n a t i  ng 
"ones" & "zerosu 

N 2000 s 2 , 
N = 0,1,2 ,..., 8 

Uni ts  

- 
Degrees 

kHz 

bps 



Table 4.11. PSP Telemetry Signal Processing Capabil l t i e s  

Parameter Value Uni ts  

Subcarrier Waveform S i  nusoidal I - 

Subcarrier Frequency I 1 ,024 I MHz I 
Subcarrier Modulation 

B i t  Rates 

B i t  Format 

PSK, k90 

kbps 

Degrees I 

I Word Length I 8 I 8 i  t s  I 

I Master Frame Length I 1 t o  256 I M i  nor Frames I 
M i  nor Frame Length 

I ( Transi t ion Density ( 2 64 t rans i t i ons  i n  512 b i t s  

8 t o  1024 Words 

I c 64 consecutive b i t s  w/o t r a n s i t i o n  - 
1 



A funct ional  block diagram o f  the PSP appears as Figure 4.10 
and the ensuing paragraphs provide a descr ip t ion  o f  each o f  the p r i nc ipa l  
blocks/functions, 

Telemetry signal input  may be derived from e i t h e r  the Payload 

In te r rogator  (PI) which represents the operat ional input ,  o r  ground sup- 

p o r t  equipment (GSE) f o r  p r e f l i g h t  t e s t  purposes. AS the i npu t  s ignal  i s  
a biphase-modul ated suppressed subcarr ier  waveform, the PSK demodulator 

funct ions t o  regenerate a coherent subcarr ier  reference which i s  used t o  

phase demodulate the data from the subcarr ier.  Thus, the  output from 

the  PSK demodulator i s  the telemetry b i t s .  Subcarr ier regeneration and 

t rack ing  i s  accompl i shed by means o f  a po l  a r i  ty- type Costas loop, de ta i  1 s 

of which are found under subsection 4.2.2. 

The b i t  synchronizer i s  a d i g i t a l  data t r a n s i t i o n  t rack ing  loop 

(DTTL) o f  proven design and performance. Data detect ion i t s e l f  i s  per- 

formed by i n teg ra t i ng  across an e n t i r e  b i t  (in-phase i n teg ra t i on  o r  

averaging) and tak ing  the r e s u l t i n g  p o l a r i t y  as representat ive o f  the b i t  

value (+1 o r  -1). B i t  c lock synchronization i s  accomplished by means o f  

i n teg ra t i ng  between b i t s  (mid-phase i n teg ra t i on  o r  averaging) and using 

the resu l t i ng  measure as an e r r o r  signal which subsequently corrects the 

l oca l  b i t  t iming clock source phase t o  maintain proper alignment w i t h  

the received b i t s .  Deta i l s  o f  the b i t  synchronizer are provided i n  

subsection 4.2.3. 

A t  the output of the b i t  synchronizer, a received s e r i a l  telem- 
e t r y  data b i t  stream ex i s t s  and i s  i den t i ca l  t o  t h a t  generated by the 

payload, w i t h  the exception o f  occasional b i t  er rors.  This data stream 

consists o f  random ( inso far  as processning i s  concerned) telemetry i n f o r -  

mation, p lus regu la r l y  inser ted frame synchronization words. I t  i s  these 
frame synchronization words tha t  the frame synchronization processor 

searches fo rand locks onto so t h a t  the telemetry stream output by the 

PSP i s  frame synchronized. 
PSP contro l  /mode informat ion  and command data are transferred 

t o  the PSP from the general-purpose computer (GPC) v i a  the MDM in ter face.  

For t h i s  purpose, a s e r i a l  b i l a t e r a l  data bus operat ing a t  a r a t e  o f  

1 Mbps i s  employed. Also, over t h i s  same s e r i a l  bus, the PSP i s  able t o  

transmit a s tatus message t o  the GPC f o r  the purpose o f  conf igurat ion and 
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comnand data va l ida t ion .  Input/output i n  the proper mode i s  establ 1 shed 

t o  the PSP from the MOM using d<screte (one-bit  message) l i nes .  

Wi th in the PSP, a 1 MHz s e r i a l  data i n te r face  i s  provided 

which performs data word detect ion and synchronization. A l l  t iming i s  

generated from a master 12 MHz clock, The word val i d a t i o n  l o g i c  examines 

the  s e r i a l  i n te r face  output t o  (1) check the i n t e g r i t y  o f  the Manchester 

data waveform, (2) check pa r i t y ,  and (3) look f o r  end-of-data i d e n t i f i c a -  

t ion .  Fa i lu re  t o  pass any o f  these tes ts  r e s u l t s  i n  i n h i  b i t i n g  the 

Manchester-to-NRZ conversion operation. 

A l l  word v a l i d  Manchester data i s  converted t o  s e r i a l  NRZ-L 

data, a f t e r  which i t  i s  clocked i n t o  the dual bu f fe r .  The dual bu f fe r  

consis ts  o f  two storage memories: one which receives current  data a t  

the 1 Mbps ra te ,  wh i le  the  other  i s  clocked out  a t  a r a t e  proport ional 

t o  the 1.024 MHz clock. Thus, new command messages from the GPC/MDM may 

be received and stored a t  the 1 Mbp; r a t e  whi le,  a t  the same time, com- 

mand data may be t ransferred t o  the command subcarr ier  m d u l a t o r  a t  the 

selected payload command b i t  rate. 
The message v a l i d  l o g i c  examines a l l  messages received from 

the GPC/MDM f o r  i l l e g a l  codes. Any i l l e g d l  form detected i s  s u f f i c i e n t  

t o  i n h i b i t  f u r the r  processing operations. A f a i l u r e  t o  pass message 

va l i da t i on  i s  t ransmit ted through the status message generator back t o  

the GPC and a message repeat i s  requested. 
The po r t i on  o f  the GPC message which corresponds t o  the PSP 

conf igurat ion information i s  processed by the conf igurat ion contro l  

which, i n  turn, i s  responsible f o r  s e t t i n g  the PSP modeloperating pararn- 

eters.  Configurat ion status i s  t ransmit ted back t o  the GPC v i a  the 

status message generator. Command message v e r i f i c a t i o n  i s  a1 so made 

using status message reportback t o  the GPC. 

Va l id  comnand b i t s  t o  be t ransmit ted t o  the payload are clocked 

from the command bu f fe r  a t  the proper b i t  ra te.  Each command i s  pre- 

f i x e d  w i t h  a command i d l e  pa t te rn  o f  a1 te rna t ing  "ones" and "zerosN. 

( I n  fac t ,  the command i d l e  pa t te rn  can be transmitted any time when 

requested and i n  l i e u  of actual command bits .  ) Command b i t s  o r  i d l e  

pa t te rn  b i t s  biphase modulate a 16 kHz sinusoidal subcarr ier  which i s  

output t o  the PI. 



Overall, the PSP, i n  Axiomatix's opinion, i s  well-designed and 

embodies up-to-date implementations. A good por t ion,  both e l e c t r i c a l l y  

and mechanically, i s  patterned a f t e r  the Network Signal Processor (NSP) 

which has successful ly completed qua1 i f  i c a t i o n  test ing.  Nowhere i n  the 

PSP c i r c u i t s  o r  performance measurements has Axiomatix found s i g n i f i c a n t  

weaknesses. Therefore, the ensuing discussions w i  11 n o t  be extensive, 

and w i l l  touch on only  some o f  the more sal  i e n t  design de ta i l s .  

4.2.2 Subcarr ier Demodulator 

I n  some respects, i t  i s  useful  t o  show the subcarr ier  demodu- 

l a t o r  and b i t  synchronizer as i n teg ra l  u n i t s  since they funct ion together 

t o  produce the detected telemetry b i t s  from a noisy i npu t  signal.  Fig- 

u re  4.11 shows the combined block diagrams. Basical ly ,  the subcarr ier  

demodulator and t racker  are implemented using analog c i r c u i t s  wh i le  the 

b i t  synchronizer, on the other  hand, i s  mechanized i n  a sampled data 

fashion using a microprocessor programmed a1 gor i  thr,. The analog-to-digi t a l  

i n te r face  i s  comprised o f  a three-bi  t A/D converter (two b i t s  nagni tude 

p lus  sign). ADC sampling r a t e  i s  1.024 MHz f o r  an analog i npu t  process 

whose 3 dB frequency i s  250 kHz and r o l l s  o f f  a t  a r a t e  o f  12 dB/octave, 

Figure 4.12 i s  a funct ional  c i r c u i t  diagram o f  the subcarr ier  

demodulator. The i r p u t  BPF i s  a six-pole LC T-section design which has 

a 3 dB bandwidth o f  550 kHz. This would seem a b i t  more elaborate than 

i s  necessary as i t s  only  rea l  funct ion i s  t o  attenuate the input  noise 

spectrum above, say, 1.25 MHz, so t h a t  no s i g n i f i c a n t  cont r ibu t ion  from 

t h i s  region i s  made due t o  frequency t rans la t i on  by the odd harmonics o f  
the fo l low ing phase detector references. The phase detectors themselves 

are doubl e-bal anced transformer-dr i  ven diode-r ing mixers ( WJ-M9BC) . 
Following each mixer i s  a selectable bandwidth single-pole lowpass f i  l- 

t e r .  A somewhat curious aspect o f  the design i s  t h a t  TRW chose t o  switch 

the capacitor ra ther  than the r e s i s t o r  t o  change the bandwidth. Presum- 

ably, t h i s  i s  done t o  maintain the r e s i s t i v e  load t o  the mixer constant. 

However, i t  should a lso be noted tha t  the mixer load i s  1.16 kn ra the r  

than the usual 50n loaJ- - th is  probably t o  minimize mizer conversion loss. 

Another i n te res t i ng  observation i s  t h a t  TRW spec i f ies  1 % to1 erances f o r  

the arm f i l t e r  capacitors. Since the actual 3 dB bandwidth o f  the arm 
f i l t e r s  i s  no t  c r i t i c a l  t o  the noise performance o f  the t rack ing  loop as 









TRW selected the Costar loop tracklng bandwldth of 2BL = 100 Hz 
(ml nlmum) based upon the maximum frequency uncertalnty o f  the recel ved 

subcarrler and the loca l  VCO. The design bandwldth i s  about 150 Hz t o  

al low for tolerances and aglng. Analysls and tes t lng by TRW has estab- 

l i shed tha t  a loop mtnlrmnn SNR o f  10.5 dB i s  required t o  meet the sub- 

ca r r l e r  acqulslt lonand tracklng requlrements, Slnce t h l s  value I s  needed 

Independent of data rate, the mlnlmum Eb/NO tha t  may be accmodated I s  

a functlon o f  data rate. Table 4.13 shows the mlnlmum Eb/No for  each 

datd rate. 

Table 4.13. Minlmurn PSP Eb/NO Needed t o  Meet Costas Loop 

Acqulsi t l o n  and Tracking Requirements 

- 
DataRate A c q u i s i t i o n E ~ N O  Tracking $,/NO 

1 kbps 9 dB 8 dB 

2 kbps 7 dB 7 dB 

4 kbps 5 dB 5 dB 

3 kbps 3 dB 3 dB 

1c kbps 3 dB 2 dB 

4.2.3 B i t  Synchronizer and Frame Sync Detector 

A microprocessor i s  u t i l i z e d  t o  implement nearly a l l  o f  the 

b i t  synchronizer functions portions o f  the frame synchronization algorithm. 

Figure 4.13 shows the functional embodiment o f  the b i t  synchronizer oper- 

a t ing i n  the NRZ data mode, The microprocessor external presuming oper- 

ations are necessary i n  that  the clock rates are too fast t o  be accmodated 
wi th in  the microprocessor. Basical ly ,  the presums represent integrat ions 

(ADC samples sums) over quarter-b i t  periods. Thus, a t  the 16 kbps data 

rate, they are sums taken over 16 three-bi t samples. The presums are 

then added i n  pa i rs  (as indicated i n  Figure 4.13) t o  obtain ha l f - b l t  

integrals which are input t o  the microprocessor. 





The microprocessor operates t o  ca lcu la te  the quant i t ies  needed 

t o  form the d i g i t a l  data t r a n s i t i o n  t racking loop (DTTL) algorithm. 

Pr inc ipal  functions include in-phase and mid-phase i ntegrate-and-dumps, 

a t r a n s i t i o n  detector, and a clock phase advance/retard capab i l i t y .  This 

l a t t e r  operation adjusts the epoch o f  the presum process. Data detect ion 

f s  obtained by ex t rac t ing  the sign o f  the in-phase integrator .  

The microprocessor i s  an e ight-b i  t machine developed by TRW. 
As TRW has done a comnendable job of documenting the a lgor i thm and pro- 

gram i n  the PSP PDR Data Package, Vol. I, f u r t h e r  explanation and c o n e n t  

i s  unnecessary here. Addit ional l y  , the telemetry frame sync algori thm i s  

both standard and straightforward, and no special problems e x i s t  w i th  

respect t o  i t s  performance. 

P r io r  t o  breadboard implementation, the PSP b i t  synchronizer 

functions were simulated and tested using a general-purpose d i g i t a l  com- 

puter. Breadboard measurements were subsequently performed w i  t h  regard 

t o  acquf s i  t i o n  and b i t  e r r o r  probabi li ty (BEP). Table 4.14 sumnarizes 

t yp i ca l  NRZ acqu is i t ion  performance, and Table 4.15 l i s t s  the BE? devia- 

t ions  from theoret ica l  as measured i n  dEb/NO (dB). 

4.2.4 Data Processing 

The comand data processor i s  a very complex algori thm t h a t  

performs the major functions out l ined under subsection 4.2.1. I t  i s  

mechanized by means of hardwired log ic .  Because o f  i t s  extensive nature 
and the f a c t  t ha t  no major design def ic iencies have been uncovered, a 

fu r the r  explanation of i t s  operation w i l l  no t  be presented i n  t h i s  report.  

The interested reader i s  referred t o  the PSP PDR Data Package, Vol. I, 
Sections 3.1.5 and 4.1.5. 

4.2.5 Command Modulator 

k feature of the 16 kHz subcarr ier biphase command modulator 

i s  t ha t  thc- e n t i r e  modulated waveform i s  synthesized by means o f  a sam- 

pled data method. Figure 4.:4 shows the funct ional  conf igurat ion. A 

l i nea r  upldown counter i s  used t o  produce sample values of a t r i angu la r  

wave o f  frequency 16 kHz. Thus, the 1.024 MHz clock i s  e f f e c t i v e l y  

divided by 64, o r  there are 64 samples per cycle. Whenever the  com~and 

b i t  reverses p ~ l a r i t y ,  the d i rec t i on  o f  the count i s  reversed a t  a po in t  



Table 4.14. B i t  Synchronization NRZ Acquisition Performance 

# 

'biNO 
Data No. B i t s  
Rate Mean Bi ts  STD Bi ts  for 90% 

(dB) (kbps) To Acquire To Acquire Lock Prob. 

2 16 212 90 272 

4 16 180 237 

6 16 160 199 

10 16 144 164 

2 1 21 7 379 

4 1 1 ?3 3 7 216 

6 1 165 33 208 

10 1 153 2 0 178 
L 

0.1% Data Rate Uncertainty 
50% Transit ion Density 



Table 4.15. B i t  Synchronizer Measured BER Degradations 

0.00% Data Rate Uncertainty 

50% NRZ-L Transi t ion Density 

Data Rate AEb/NO (NRZ-L)--dB AEb/NO (Manchester )--dB 





corresponding t o  the next t r i angu la r  wave zero-crossi ng . For example, 

if the counter i s  increasing i t s  count, when i t  reaches the value cor- 

res?ondi ng t o  the zero-crossi ng (a designated number), the  counter i s  

changed t o  the decreasing mode so t h a t  the count begins t o  decrease 

( rather  than cont inuing t o  increase, had the c ~ m a n d  b i t  p o l a r i t y  

remained unchanged). This, i n  e f fec t ,  causes b i  phase modulation o f  the 

t r i angu la r  wave. 

The t r i angu la r  wave sample values are used as sequential 

address locat ions f o r  numbers stored i n  the PROM. These numbers repre- 

sent sample values o f  a 16 kHz sinewave. Therefore, the output o f  the 

DAC i s  a series o f  pulses whose amplitudes synthesize i n  a stepwise fash- 

i on  a sitewave w i th  64 steps per sample. Since the addressing t r i angu la r  

wave samples are biphase modulated, so i s  the resu l t i ng  sinewave, 

A two-pole lowpass f i l t e r  w i th  a 3 dB frequency o f  512 kHz i s  

used t o  smooth the step-approximated sinewave. I t s  output thus becomes 

a near ly  pure biphase modulated sinewave (harmonic content = 0.2%), w i t h  

a nominal fre:uency (16 kHz) accuracy o f  +0.001%. 



4.3 Netwark Transponder OPT Evaluations 

4.3.1 Task Plan 

The purpose o f  t h i s  report  i s  t o  sumnarize t h l  f indings a f t e r  
reviewf ng the TRY S-band network transponder qua1 i f i c a t i o n  t e s t  procedure 
(QTP) WR-069-04, Rev. A2. This report  i s  the resu l t  o f  a very extenslve 
review o f  the TRW QTP and meets the task objectives. 

The object ive o f  the TRW network transponder QTP review was t o  
examlne the t e s t  procedure i n  deta i l .  To be included was an assessment 
o f  tha to1 lowlng I tems: 

(1) Nature o f  the tes ts  
(2) Appropriateness o f  the tests 
(3) Inconsistencies 
(4) Omi ss i ons 

(5) Usefulness o f  the t e s t  data 
(6) Test procedures, equipment and methods. 

4.3.2 Approach 

The review was divided i n t o  two phases. The f i r s t  phase addressed 
the overal l  TRW QTP tes t  philosophy. Phase I examined the major t e s t  
i terns such as thermal cycle, v ibra t ion and I f  f e  tests. 

The second phase addressed the indiv idual  TRW tests t o  determine 
whether the t e s t  sa t i s f ied  the appllcable paragraphs o f  the Rockwell 
International (RI) specif icat ion. Phase I 1  examined the detai led t es t  
items such as acquisit ion, b i t  e r ro r  rate and RF power output tests. I n  
both phases, the baseline document was R1 Specif icat ion MC 478-0106, 
Rev. E, Seq, 04. 

During the f i r s t  or  major t es t  i tern review phase, some omissions 
and inconsistencies were discovered. For the second o r  detai led t es t  i tem 

review phase, a t e s t  matrix was constructed t o  help uncover omissions and 
inconsistencies and determine the appropriateness o f  the tests. Thfs 
tes t  matrix also indicated some omissions and inconsistencies. Many o f  
these apparent omissions and inconsistencies are being addressed o r  have 
been explained by the appropriate R I  personnel. 



4.3.3 QTP Descr ipt ion 

The ob jec t ive  of any QTP i s  t o  q u a l i f y  the equipment design 
whereas the acceptance t e s t  procedure (ATP) ob jec t ive  i s  t o  v e r i f y  t h a t  

the equipment has been c o r r e c t l y  manufactured. A proper QTP, therefore, 
w i l l  t e s t  equipment a t  spec i f i ca t ion  l i m i t s  t o  uncover design 

def ic iencies.  

The purpose of TRW QTP WR-06Q-04, Rev A2, i s  t o  ensure t h a t  

the S-band network transponder design meets Rockwell In te rna t iona l  (RI ) 

equipment spec i f i ca t ion  MC 478-0106, Rev E, Seq. 04 and, f o r  the most 

par t ,  the QTP t e s t s  the transponder a t  the spec i f i ca t i on  l i m i t s .  Once 

qual i f i c a t i o n  t e s t i n g  i s  concluded, subsequent transponders are accepted 

upon completion o f  the less r igorous ATP. Qua1 if i c a t i o n  test ing,  there- 

fore, i s  v i t a l  i n  assuring t h a t  the transponder w i l l  meet i t s  mission 

requirements. 

The two-volume TRW network transponder QTP consists o f  the 
RI-speci f ied tes ts  shown i n  Table 4.16. The f i r s t  f u l l  funct ional  t e s t  

shown i n  t h i s  t ab le  provides the base1 i ne  data f o r  comparing the t ran-  

sponder performance before and a f t e r  the qual i f i c a t i o n  tes t .  During each 

tes t ,  selected funct ional  t es t s  are conducted t o  v e r i f y  t ha t  the u n i t  i s  

meeting the performance requirements. A t  the end o f  most t es t s  (such as 

thermal cyc le and v ib ra t i on ) ,  a l i m i t e d  funct ional t e s t  confirms t h a t  

the transponder has no t  been degraded from the previous tes t .  I n  the 
event o f  a f a i l u r e ,  the l i m i t e d  funct ional  t e s t  serves t o  i s o l a t e  the 

t e s t  phase during which the f a i l u r e  occurred. For add i t iona l  de ta i l s ,  

Table 4.17 l i s t s  the object ives o f  each t e s t  shown i n  Table 4.16. 

Table 4.16. Test Sequence 

1. F u l l  Funct ior~al  Test 7. Thermal Vacuum Test 

2.  Power Test 8. L imi ted Functional Test 

3. Thermal Cycle Test 9. L i f e  Test 

4. L imi ted Functional Test 10. Shock Test 

5. V ib ra t ion  Test 11. F u l l  Functional Test 

6. L imi ted Functional Test 12. Leakage Test 

13. EMC Test 



Table 4.17. Test Purposes 

1. F u l l  Functional Test 

Provides base1 i n e  comparative data. 

2. Power Test 

Selected funct ional t es t s  are performed t o  assure tha t  the 
transponder meets a l l  performance requirements inc lud ing  power 
consumption under h igh and low primary input  power condit ions. 

3. Thermal Cycle Test 

The u n i t  i s  cycled l i m i t - t o - l i m i t  10 times and selected funct ional  
t es t s  are conducted a t  h igh and low temperature extremes t o  v e r i f y  
acceptable performance. 

4. L imi ted Functional - Test 

This t e s t  v e r i f i e s  the postthermal cyc le transponder performance, 

5. V ib ra t ion  

The u n i t  i s  subjected t o  two d i f f e r e n t  v i b r a t i o n  tes ts  i n  each o f  
three orthogonal axes--qua1 if i c a t i o n  acceptance v ib ra t i on  t e s t  
(QAVT) and f l i g h t  v ib ra t i on  tes t .  Selected funct ional t es t s  are 
performed during both v ib ra t i on  tests. 

6. Limi ted Functional Test 

This t e s t  v e r i f i e s  pos tv i  b r a t i  on transponder performance. 

7. Thermal Vacuum Test 

Selected funct ional t es t s  are conducted t o  assure tha t  the t ran-  
sponder meets a l l  performance requirements i n  a low-pressure, 
constant-temperature environment, 

Limited Functional Test 

This t e s t  v e r i f i e s  postthermal vacuum transponder performance. 

9. L i f e  Test 

The transponder i s  subjected t o  a given number o f  on/of f  cycles i n  
each prime mode o f  SGLS, STDN and TORS, fol lowed by a selected 
funct ional  tes t .  



Table 4.17. Test Purposes (Cont'd) 

10. Shock Test 

With the u n i t  o f f ,  the transponder i s  shock-tested i n  each of 
three orthogonal axes (both di rect ions) 

11. Fu l l  Functional Test 

By comparing t h i s  t es t  wi th the f i r s t  functional t es t  results, 
any performance degradation i s  detected. 

12. Leakage Test 

Since the u n i t  i s  pressurized in terna l ly ,  the leak ra te  must be 
ver i f ied.  

This tes t  determines the electromagnetic compati b i  1 i t y  of the 
transponder. 



4.3.4 QTP Assessment 

Overall, TRW i s  very adequately meeting the in ten t  o f  the R1 
speciflcation, however, some questions need t o  be resolved. There are 
some signi f icant  questlons concerning the t es t  procedures and t es t  meth- 
ods used f o r  verifying the transponder performance as well  as some ques- 

t ions re la t ing  t o  the QTP documentation i t s e l f .  

The documentation questlons are included i n  t h i s  report because 

the QTP contains basellne data that  w t l l  be required i n  the future. Any 
potent ia l  confusion o r  inconsis tencles w i  11 hlnder personnel I n  uslng the 
datz o r  the t es t  procedure. 

The QTP assessment i s  divided i n to  three sections, The f i r s t  one 
discusses questions dealing wi th  the major QTP tests, the second discusses 
questions dealing w i th  the detai led QTP tests, and the t h i r d  discusses 

questions deal i ng  w i th  R I  speci f icat ion paragraphs not  tested during the 

TRW QTP. 

4.3.4.1 TRW major QTP t es t  items assessment 

This section discusses those questions dealing w i  t h  the major 

t es t  items such as thermal cycle and v ibra t ion tests, (Reference Table 4.18 
f o r  sumnary. ) 

Each major t es t  i tem was reviewed i n  detai 1 and compared against 

the R I  requirements. Also, each major t es t  item was reviewed from the 

viewpoint o f  an independent observer. 
Since the network transponder i s  very compl icated, some judgments 

had t o  be exercised by R I  and TRW as t o  how to  adequately tes t  the u n i t  

i n  a reasonable time frame. The judgments exercised by R I  and TRW appear 

t o  be adequate t o  ensure proper testing. Five observations made during 

t h i s  phase o f  the QTP assessment are described i n  de ta i l  below. 

4.3.4.1.1 Paragraph 1.3, Test Description, '!ol. 1: Page 1 

This comment concerns the QTP documentation. The tes t  sequence 
outl ined i n  Table I o f  the QTP i s  s l i g h t l y  d i f fe ren t  than the sequence 

outl ined i n  the R I  specification. TRW tests EMC fo l lowing the shock 

test ,  ye t  R I  specifies EMC fol lowing the power test ,  The purpose f o r  

mentioning the difference i n  sequences i s  t o  avold any future qua l i t y  

assurance and inspection problems. 



Tab1 e 4.18. S-Band Network Transponder 

TRW Major QTP Tests from WR-06Q-04 Rsv A2 

b 

Item TRW QTP 
No. Paragraph Comments Resolution 

1, 1 . 3  TRW t e s t s  EMC following shock 
test,  ye t  R 1  specif ies EMC 
fo l lowing power test.  

2. 2.3 TRW document WR-06H-20 i s  
required f o r  tes t  3.3.14, 
BER, but t h i s  document i s n ' t  
1 is ted i n  Paragraph 2.3, 
Appl i cable Documents. 

3. 3.7 R I  specifies that  the u n i t  R I  states that  the + 9 5 O F  a i r  
be cycled between two tem- and +4!i°F a i r  are the absolute 
peratuw extremes of +120°F worst-case temperatures tha t  
a i r  and -20°F a i r  but a1 lows the u n i t  w i l l  experience. Fur- 
tLe functional tests t o  be ther invest igat ion i s  warranted 
performed a t  +95OF and +4!i°F, t o  determine i f  adequate margins 

exist .  

4. 3.9 R I  requires specif ic speci- Many o f  the items a n  i nd i r ec t l y  
f i ca t i on  paragraphs t o  be tested since a l l  telemetry, 
tested during vibrat ion; how- input power and transmitter out- 
ever, TRW included only some put power are continuously mono 
o f  the detai led QTP tests t o  i to red  by s t r i p  chart. The 
t es t  these paragraphs and only concern i s  that  there i s  
eliminated others. The most no speci f ic  QTP paragraph tha t  
apparent reason for t h i s  i s  requires s t r i p  charts t o  be 
the 1 imited amount o f  time reviewed, 
avai lable t o  conduct tes ts  
during vibrat ion. 

5. 3.9 Confusing nomenclature, 
"phase noise," used instead 
of "car r ier  phase s tab i l i t y .  " 

i b 



4.3.4.1.2 Paragraph 2.3, Applicable Documents, Vol. I, Page 2 

For the  BER tes ts  (TRIJ Test 3.344). TRW document WR-06H-20 I s  
referred t o  i n  QTP Vo1. 1, pp 68, 78, 131 and 168, and i n  QTP Vol. 11, 
QP 115 and 157. This document i s  n o t  1 i s t e d  i n  Paragraph 2-3, A v ~ l i c a b l e  

Documents , however. 

4.3.4.1.3 Paragraph 3.7, Thermal Cycle Test--General , Val. I, Page 9 

The them81 cycle t e s t  conslsts of 5.5 cycles from +120°F rlr 
(+122OF baseplate) t o  -20°F a i r  ( + 3 7 O F  baseplate), w i th  major functional 

t es ts  a t  the end of the 5.5 cycles. The major funct ional  t es ts  are con- 
ducted a t  +95OF a i r  (+112°F baseplate) and +45OF a i r  (+72'F baseplate). 

R I  states t h a t  +9!i°F and +45OF represent the absolute worst-case 

temperature extremes t h a t  the transponder w i l l  experience i n  actual oper- 

at ion. If there i s  a p o s s i b i l i t y  t ha t  the transponder w i l l  ever experl-  
ence these temperature extremes, i t  would be prudent f o r  qualification t o  

require the u n i t  t o  funct ion a t  higher and lower temperatbres than those 
present ly  speci f ied,  

4.3.4.1.4 Paragraph 3.9, Vibrat ion, Vol. I, Page 20 

R I  specif ies tha t  a number of tes ts  be performed during v ib ra t i on  
yet ,  i n  Table 8, QAVT Vfbrat ion Test Matr ix,  Vol. I, p 26, and i n  Table 9, 
F l i g h t  Vibrat ion Test Matrlx, Vol. I, pp 27and 28, TRW performs only some 

of these tests.  Because of the r e l a t i v e l y  short time avai lable f a r  qual- 
l f l c a t i o n  and f l i g h t  v ib ra t ion  and the r e l a t i v e l y  long tfme requlred t o  
perform the RI-specif ied tests, i t  seems t h a t  TRW made a reasonable choice 

o f  t es ts  to  f i t  i n t o  the time a l l o t t e d  f o r  v ibrat ion.  

TRW uses very spec i f i c  and deta i led tes ts  t o  v e r i f y  power consump- 

t i on ,  loop st ress telemetry, AGC, t ransmit ter  output power s t a b i l i t y  and 

the t ransmit ter  output power monitor. TRW el iminated these spec i f i c  tests; 

however, many o f  these i terns are tested i n d i r e c t l y  since a l l  telemetry, 
input  power and t ransmit ter  output power are monitored continuously on a 

s t r i p  chart  recorder. The only concern i s  t h a t  there i s  no spec i f i c  

paragraph i n  the QTP requ i r ing  t h a t  the s t r i p  charts  be reviewed f o r  

out-of -speci f icat ion conditions. 



This cement concerns nomenclature which might cause contusion. 
Using the term "phase noise" i n  four places t o  describe TRU Test 3.3.18 
seems confusing since a l l  the appropriate data sheets i n  the QTP and the 

I 

ATP use the term "car r ler  phase s t a b i l i  ty." "Phase noise" I s  used I n  
Table 8, Vol. I, p 26, items 1-4; Table 9, Vol. 1, p 27, items 1-4; para- 

, 

graph 3.9.4.1, Vol. I, p 29; and paragraph 3.9.5.!, Vol. 1, p 31. 

I 4.3.4.2 TRW detal led QTP tes t  assessment 

This section discusses those questions deal ing w i th  the detai led 

t es t  items such as acquisit ion, b i t  e r ror  ra te  and RF output power t e s t s  . 
(Reference Table 4.19 f o r  s m a r y .  ) 

Each detai led tes t  was reviewed and compared against the R I  
requirements. The detai led tests appear very adequate and only s i x  obser- 
vations were made, as described below. 

I 4.3,4.2.1 Test 3.3.1, Power Consumption Test 

This comnent concerns documentation. I n  Configuration 1, the 

input frequency should be 1775.733 MHz, not 1775.713 MHz (probable typo). 

Test 3.3.1 data sheets are i n  Vol. I, pp 43, 44, 111, 148 and 185, and i n  
Yol. I f ,  pp 65 and 134. 

4.3.4.2.2 Test 3.3.3, Operational Modes Test 

This i s  another documentation comnent. I n  Configuration 7, the 
input leve l  should be -70 dBm--not -80 dBm (probable typo). Test 3.3.3 

data sheets are i n  Vol. I, pp 47, 113 and 150, and Vol. 11, pp 65 and 134. 

4.3.4.2.3 Test 3 . 3 . 9 . 3 ,  Ac9uisit ion Time and Carrier False Lock 

This t e s t  allows an acceptable acquis i t ion t.ime o f  2 12 seconds 

f o r  a l l  four primary modes. Twelve (12) seconds applies only t o  the TORS 

mode and 2 6 seconds should be specified f o r  SGLS, STDN and STON Hi-Power 
modes, as per the R I  specif icat ion. Test 3.3.9.3 data sheets are i n  Vol. 1 ,  
pp 48-51, 117-118, 154-155, 188-189, and Vol. 11, pp 46-47, 66-67, 82-83, 
106-107, and 140-141. 





4.3.4.2.4 Test 3.3.1.14, @ 

There are th ree  comnents concerning the b i t  e r r o r  r a t e  tests.  

The f i r s t  comment concerns the  t e s t  po in ts  which TRW selected t o  v e r i f y  

compliance w i t h  the BER requirements. Figure 4.15 i l l u s t r a t e s  both the 
R I  spec i f i ca t i on  BE2 versus input  s ignal  and the TRW t e s t  points.  TRW 

conducts extensive BER t e s t s  but, as Figure 4.15 indicates, TRW i s  t e s t -  

i n g  a t  points  higher on the 6ER curve than the  range which the R I  speci- 

f i ca t i on  covers. The comnent i s  that ,  a t  l eas t  sometime dur ing the QTP, 
proper operat ion w i t h i n  the R I  spec i f i ca t i on  range should be ve r i f i ed .  

There i s  no issue t h a t  TRW i s  t e s t i n g  a t  points  higher on the  BER curve 

than the  range o f  the R I  spec i f i ca t ion .  This i s  reasonable since per- 

forming a l l  o f  the BER t e s t s  w i t h i n  the R I  spec i f i ca t i on  range would 

requ i re  extremely long t ime periods. For example, t o  v e r i f y  e r r o r  ra tes  
8 o f  loo6, a sample o f  a t  l e a s t  10 counts would be required t o  perform 

the tes t .  Besides requ i r i ng  long time periods t o  perform the BER tes ts  

. . a t  keeping t e s t  condit ions . constant . o f  52.1 minutes i s  d i f f i c u l t .  

The issue i s  that ,  even though the transponder performs adequately a t  

points  higher on the BER curve, anomalies may s t i l l  occur a t  the lower 

BER levels .  

One good t e s t  i nd i ca to r  would be t o  v e r i f y  the BER w i t h i n  the 

R I  spec i f i ca t ion  range dur ing v ib ra t i on  since v ib ra t i on  tends t o  i n t r o -  

duce phase i n s t a b i l i t i e s .  Another good t e s t  ind ica tor  would be t o  

v e r i f y  the BER w i t h i n  the R I  spec i f i ca t i on  range over temperature. 

The second comment concerns an out-of-speci fication condit ion. 
By extrapolat ing the R I  BER curve, i t  appears t h a t  TRW t e s t s  a t  input  

signal leve ls  t h a t  adequately meet the R I  BER spec i f i ca t i on  f o r  a l l  

d i r e c t  modes. However, f o r  the case o f  STDN high power, high data r a t e  

w i th  ranging, the TRW t e s t  points  are outside the extrapolated R I  curve. 

The t h i r d  comment concerns the TDRS BER tes ts  which appear 

inadequate. For the nonspread spectrum, uncoded transponder modes o f  

SGLS, STDN and STDN HI-POWER, the BER q u a l i f i c a t i o n  tes ts  are s t ra igh t -  

forward. The transponder receives data a t  a given RF power l eve l  and 

rate, and the data i s  sampled f o r  a given number o f  counts. During the 

sampling time, the input  data i s  compared w i th  the output data t o  deter- 

mine the number o f  b i t  er rors.  F ina l l y ,  the number of e r ro rs  i s  compared 

t o  the pass / fa i l  c r i t e r i a .  





I 
3 The BER tests f o r  the TDRS mode become somewhat camp1 icated 

because the TORS mode employs convolutional encoding. One method tha t  
can be used t o  ver i fy  the TDRS BER performance i s  t o  monitor the data 

p r i o r  t o  encoding, encode the data, input  the RF signal t o  the transpon- 

c!:r a t  a given power level,  and monitor the output o f  the network signal 

processor (NSP) . This would simulate actual opera ti ng conditions . By 
careful l y  cal  i bra t i  ng the t e s t  setup, a most representative measure o f  

the system BER performance would be obtained. I n  fact, t h i s  method i s  
as straightforward as t ha t  employed f o r  the other three primary modes. 

8 I n  order t o  implement t h i s  tes t ing method, however, an NSP would have t o  

be dedicated t o  the acceptance and qua1 i f i ca t i on  tests. 

TRW elected not t o  dedicate an NSP t o  the transponder acceptance 

and qua l i f i ca t ion  tests, so they selected a second method t o  ver i fy  TDRS 

BER performance. Appendix B i s  TRW document WR-06H-20A, "Procedure t o  

Calibrate the Shutt le LRU Test Set Comnercial B i t  Synchronization Against 

the EM NSP B i t  Synchronization." This document, along wi th  the tran- 

sponder QTP; out1 i nes a methdd to '  test tht BE2 performance w i  thoui? a 

dedicated NSP. 

The TRW approach i s  out1 ined as follows: 

(1) The BER performance a t  32 kbps coded and 32 kbps uncoded 
i s  measured using the engineering model (EM) transponder and the EM NSP. 

(2) The BER performance a t  32 kbps uncoded i s  measured using 
the EM transponder and a c m e r c i a l  b i t  synchronizer/detector. 

(3)  By comparing the uncoded resul ts obtained wi th the NSP and 
t 

the uncoded resul ts obtained wi th  the comnercial b i t  synchronizer/detector, I 

a ca l ib ra t ion "delta" between the two BER curves i s  obtained. 

(4 )  With the c m e r c i a l  u n i t  then "calibrated" against the NSP, 

the input data ra te  i s  dropped from 32 t o  10.29 kbps t o  simulate the 

"coded" b i t  rate. 

( 5 )  The 10.29 kbps b i t  ra te  was determinzd by TRW t o  be tha t  
ra te  a t  which the uncoded BER curve intercepts the 32 kbps coded BER 

curve a t  an er ror  probabi l i ty  of  PE = 10.~. Thus, I R W  uses 10.29 kbps 

uncoded t o  simulate 32 kbps coded. 



(6) A BER curve i s  generated w i th  the resu l ts  obtained a t  
10.29 kbps. By taking t h i s  curve and adding 0.3 dB, a pass/fail curve i s  
generated for  the EM transponder and comnercial synchronizer combinations. 

(7) By using the ca l ib ra t ion "delta" and the curve obtained f o r  
10.29 kbps, TRW states tha t  the resu l ts  are equivalent t o  the RI specl- 
f ica t ion a t  an e r ro r  p robab i l i t y  o f  PE = 10'~. 

(8) Subsequent transponders tes ied w i  t h  the comnercial synchron- 
i ze r  are now compared t o  the EM resu l ts  a t  PE = loo4 f o r  a 10.29 kbps 
data rate; a c r i t e r i o n  f o r  passing i s  tha t  the resu l ts  f a l l  w i th in  the 
M BER passl fa i l  curve a t  PE = 10'~. 

(9) I n  the QTP, TRW ident i f ies  and quantif ies various sources 
of data degradation, such as spread spectrum code phasing error, f i l t e r -  
ing, phase noise, phase bias and phase bias s h i f t s  over temperature, as 
addit ional indicators t o  the transponder performance. These sources o f  
data degradation are used as addit ional pass/fail c r i t e r i a  f o r  both the 
TDRS low (32 kbps o r  96 ksps) and high (72 kbps o r  216 ksps) data rates 

as simulated by 10.29 kbps and 26.18 kbps, respectively. The 26.18 kbps 
i s  used t o  simulate the 72 kbps high data ra te  and i s  derived i n  a man- 
ner s imi lar  t o  that  used t o  derive the 10.29 kbps used t o  simulate the 
32 kbps low data rate. 

There are three problems wi th the procedure TRW uses t o  v e r i f y  
TDRS BER performance, l i s t e d  as follows: 

(1) There i s  an underlying assumption that  the ca l ib ra t ion 
"delta" between the EM NSP and the comnercial b i t  synchronizer i s  con- 
stant since i t  i s  measured only once. S l ight  changes i n  the t es t  setup 
and time could influence t h i s  "delta. " 

(2)  The re l a t i ve  BER performance o f  a1 1 transponders i s  being 
ver i f i ed  a t  only one point, PE = and a t  only the low data ra te  o f  
coded 32 kbps as simulated by uncoded 10.29 kbps. The BER performance 
i s  not ver i f ied a t  the high data ra te  o f  coded 72 kbps. 

(3) The transponder bandpass character ist ics are designed t o  
accommodate the specif ic high data ra te  of 72 kbps (216 ksps), but making 
ver i f icat ions a t  the simulated lower r a te  o f  10.29 kbps does not indicate 
the amount o f  f i l t e r  loss. It i s  possible that  there could be degradation 
a t  the high data ra te  that  would not be detected when using the simulated 
iow rate, 



The method used by TRW t o  v e r i f y  the TORS BER performance raises i 
some questions as t o  the adequacy o f  the test .  TRW states i n  the docu- 
ment shown i n  Appendix B t ha t  the method used 'I... i s  s ign i f i can t l y  
poorer than t ha t  which can be obtained using the method out l ined i n  the J 

i 
functional t e s t  procedure (FTP). This i s  why the FTP method i s  used f o r  
primary set 1 -off .  " 

i ! 
I 

TRW i s  using the same method i n  the QTP as i n  the FTP t o  ver i fy  5 
I 

BER performance, but  t h i s  applies only t o  the SGLS, STDN and STDN HI-POWER i 

MODES. The method out l ined i n  t h i s  report  i s  the one used t o  ve r i f y  
TDRS BER performance. Since the TDRS t e s t  method i s  s ign i f i can t l y  poorer 
and TDRS perfomance i s  somewhat c r i t i c a l ,  i t  i s  strongly suggested tha t  
an NSP be used t o  ve r i f y  the TDRS mode, especial ly a t  the 72 kbps data 
rate. 

4.3.4.2.5 Test 3.3.21 , Transmitter Frequency Response Test 

Pass l i m i t  should be specif ied as - c2.0 dB--not - e1.0 dB f o r  the 

TDRS mode. Test 3.3.21 data sheets are i n  Vol . I, .pages 143 and 180, and a 

Val. 11, page 170. 

4.3.4.2.6 General 

This comment concerns documentation, I n  each t e s t  data sheet, 

switch posi t ion changes are 1 is ted so that  the operator can change t e s t  
modes. While t h i s  review d id  not get i n t o  the de ta i l  o f  whether or  not 
the switch posi t ion changes l i s t e d  actual ly  place the transponder i n  the 
required mode, there are two s i tuat ions tha t  appear suspic!ous. I n  

tes t  3.3.14, BER, configurations 13 and 15 show no switch posi t ion appears 
t o  change modes. Also, i n  tes t  3.3.22, Loop Stress Telemetry, no switch 

posit ion changes are shown. 



Test 3.3.14 data sheets l l s t i n g  configurations 13 and 15 are i n  
Vol. I, pp 65, 75, 128, 165 and 193, and Vol. 11, pp 51, 70, 87, 112 and 
154. Test 3.3.22 data sheets are i n  Vol. I, pp 92, 93, 114, 181 and 203, 
and Vol. 11, pp 61, 97 and 171. 

4.3.4.3 R I  paraqraphs not  tested durinq QTP 

This section discusses those questions deal ing w i t h  the RI para- 
graphs not  tested during the QTP. A t e s t  matr ix  was constructed t o  com- 
pare the R I  specif  i ca t ion  paragraphs wi th  the appropriate TRW detal l ed  
tests. This t es t  matr ix  i s  shown i n  Table 4.20. 

As the matr ix  indicates , TRW does not  necessarily t e s t  each R I  
paragraph i n  a l l  four primary modes. During the review, the requirements 
f o r  each paragraph were compared t o  the t es t  methods used and the modes 
tested. The conclusion i s  tha t  the modes which TRW selected f o r  tes t ing 
each paragraph are comprehensively adequate. 

Table 4.21 l i s t s  those 10 paragraphs which were not tested during 
the QTP. Some of. the paragraphs are tested p r i o r  t o  f i n a l  assembly and . .  . 
one paragraph ( R I  10.3.2.1.2.1.3.1), dealing u l t h  RF overload 
a t  the conmon por t  appears t o  have been overlooked. 

1.3.5 Recomnenda t 1 ons 

Overall, TRW i s  meeting the in ten t  o f  the R I  specif icat ion. The 
t es t  methods and procedures used t o  perform the R I  speci f icat ion v e r i f i -  
cations adequately tes t  the S-band network transponder i n  a l l  the c r i t i c a l  
modes. It i s  recommended tha t  a l l  issues discussed i n  t h i s  report  be 
addressed and resol ved, especial l y  the three f o l  lowing i tems: 

(1) Section 4.3.4.1.3, Thermal Cycle Test. 

To determine i f  adgquate performance margins exist ,  the 
functional tests should be conducted a t  the speci f icat ion extremes o f  
+120°F and -20°F instead o f  t95OF and t45OF. 

(2)  Section 4.3.4.2.4, BER. 

Proper operation wi th in  the RI-specified BER range 
should be ver i f i ed  a t  least  once 

e An NSP should be used t o  perform the TDRS BER tests. 

(3) Table 9, item 4 
e Test the comnon por t  f o r  RF overload protection. 
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Table 4.21. S-Band Network Transponder 
G 

R I  Specificaticn Paragraphs (From MC 478-0106, Rev. E, Seq. 4) 
Not Tested During TRW QTP 4 

IU RI Specification 
T v 

Item Not Tested 
Ilo . Paragraphs During QTP Resolution 

1. 

2. 

3. 

4. 

5. 

6. 

. 
7. 

8. 

9. 

10. 

10.3.2.1.2.1.1 

10.3.2.1.2.1.1.1 

10.3.2.1.2.1 .1.1 

10.3.2.1.2.1.3.1. 

10.3.2.1.2.1.3.2 

10.3.2.1 -2.1.4 

10.3.2.1.2.1.4 

10.3.2.1.2.1.4.1.3.5 

10.3.2.1.2.1.5.2 

10b3.2b1 .2.1.5.2.1 

Warm-up time 

Transmitter output 
disabled dur l  7 prime mode o r  req. 
mode switching . 
NSP 1/2 transmit 
data disable. 

NodamagefrunRF 
overload a t  com- 
mon port. 

TORS ranging 
requ i rement . 
Recei ver not re  
figure. 

Receiver frequency 
response. 

Tracking phase 
error. 

RF power output dis- 
able (same as 112). 

Power output 
s tab i  1 i ty. 

1 

Engr'g model to r ts  indicrted 
design greatly ertceeds rqm'ts.  

I 

W i l l  be done a t  integration o f  
SRU ' s pr lo r  t o  QTP. 

I 

Requirements t o  be deleted. 

R I  investigating. 

a 

Requirements t o  be deleted. 

I 

Measured p r io r  t o  f i n a l  assy. 

Data suppl ied by tri plexer 
vendor. 

No ext. test  points avr i lablo 
t o  make measurements. Loop 
stress measurment can be 
translated t o  s ta t l c  phase 
error. 

W i l l  be done a t  integration 
of SRU's p r l o r  t o  QTP. 

No spectfic test, but RF output 
power continuously recorded on 
s t r i p  chart. 

e 

a 
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4.4 ESTL Network Equipment Ver l f tca t lon Plans Evaluatlon 

4.4.1 Task Plan 

The purpose o f  t h i s  report  I s  t o  sumnarlze the findings t o  date 

a f t e r  evaluating the network equipment ve r i f i ca t l on  t es t  plans. These 
tests, which a r e  performed I n  the NASA Lyndon B. Johnson Space Center 

(JSC) Electronlc System Test Laboratory (ESTL) , are designed t o  estab- 

l i s h  tha t  the conmunlcatlon l l nks  between the Orbi ter  and ground stat ions 

are compatl b le  and tha t  the system performance w i l l  meet the requirements 

o f  the Shutt le program. 

To Implement these tests, Orbl ter  and S-band netwcrrk equlpment 

hardware has been obtained and Ins ta l led  I n  a representative mlssion con- 

f lgurat lon On the ESTL, Therefore, the c o m n l c a t l o n  l i n k s  t o  be evalu- 

ated during the tes ts  are equivalent t a  those which w i l l  be used during 

an Orbi ter  mission. The only s igni f icant  d i f fe r? ice  I s  that  the RF paths 

w i l l  be through hard-1 ine, space-loss sir,diators. 

The object ive of the network equipment ve r i f i ca t ion  t es t  plans 

evaluation was t o  examine the ESTL S-band tqt procedures ln.rletalls To .. 
be Included was an assessment o f  the fo l lowing Items: 

(1) Nature o f  the tests 

(2) Appropriateness of the tests 

(3) InconsistencJes 

(4) Omlsslons 

(5) Usefulness o f  the t es t  data 

(6) Test procedures, equipment and methods, 

4.4.2 Approach 

Before discussing the approach used i n  reviewing the ESTL tes t  

procedures, some h is tory  o f  the ESTL tes t  program i s  necessary. NASA 
Task 501, as defined by Space Shuttle Program Manager Direct ion No. 51, 

establishes the sc3pe of  the Shuttle c m u n i c a t f o n  and tracking systems 

space- to-space and space- to-ground radio frequency performance and com- 

p a t i b i l i t y  evaluation conducted i n  the JSC ESTL. This evaluatlon i s  

accompl ished through systms ver i  f ica t ion/cer t i f i ca t ion tests using Orb1 t e r  
prototype and qua l i f i ab le  or  f l i g h t  equ1;ialent hardware as avai lable i n  

conjunction w l th  other Shutt le communications and tracking elements t o  
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evaluate baslc end-to-end sys tea cmpa t i  b i t  i ty and performance and t o  
ve r l  f y l c e r t l  f y  tha t  operational system performance meets program requl re- 
ments ~ r l o r  t o  manned f1 l gh t  usages. 

the evaluation i s  dlvided l r t to t es t  series, w l th  each serles 
Snvol vlng the Orbl t e r  hardware and equipment representative o f  m e  o f  

the elements w l th  which the Orbl t e r  must commrnlcate. Seven t es t  series 

have been designated. These series are: 

(1 ) Orbl ter  (ALT configuration) - STDN and ATR direct I l n k  

(2) Orbi ter-STDN S-band d l  rec t  1 ink 

(3) O r b f  ter-TORS S-band re lay  1 ink 
(4) Orbiter-EVA UHF 1 ink  

(5) Orbier-AF/SCF S-band d i rec t  1 ink  
(6) Orblter-TORS Ku-band re lay  l l n k  

(7 )  Orb1 ter-Payload S-band 1 Ink 

For each series o f  system ve r i f i ca t i on  tests, a systems develop- 

ment tes t  requirements and status (TR45) report  i s  published I n  accordance 

w!th the "Space Shutt le Program, NASA Task 501, Comnunications and Tracklng 
Q 1 

1 .. 
~y&ems Grdund Test ing , system ~ e b e l  opment Plan ," 'JSC 09687, kcemb& '1 975. 

The TRAS reports, which are reviewed and approved by the Communications 
and Tracking System Ground Test (CATSGT) panel, thus provide the tes t ing 

c r i t e r i a  f o r  systems ver i f ica t ion.  

Once the TRAS reports Cave been accepted, a tes t  plan i s  devel- 

oped which outl ines the strategy w l th  which the TRAS requlrments w l l l  be 

accomplished. Af ter  the tes t  plan, a set o f  detai led tes t  pr~cedures i s  

generated which outl ines the system ver i f i ca t ion  tes t  methods. 

As previously mentioned, the objective o f  t h i s  report  i s  t o  

sumnarize the findings t o  date a f ter  evaluating the ESTL S-band tes t  pm- 
cedures i n  deta i l .  To accompl i sh t h i s  objective, the appropriate S-band 

TRAS reports were studied and summarized. Next, the appropriate S-band 

t es t  procedures were studied and summarized and, f i na l l y ,  the TRAS sum- 

maries and the tes t  procedure summaries were compared t o  each other t o  

determine inconsistencies and orniss:rl~~r. 

r Axiomatix has been supplied by NASA wi th  three TRAS reports 

required f o r  t h i s  evaluation which are 1 iated as fo?lows: 

@ System Development Test Requiremeris and Status (TRAS) 
Report f o r  STDN S-Band Direct Link, JSC 11300, 
September 28, 1977 



System Development Test Requfrements snd Status (TRAS) 
Report f o r  TORS S-Band b l a y  Link, JSC 11757, 
Se9tmaer 26, 1979 

@ Systembcveloprnnt Test Rcquiremcnts and Status (TMS) 
Report f o r  AF/SCF $-Band DJrect Link, JSC 13022, 
Apr i l  11, 1978. 

These three TRAS reports represent the three primary S-band equipment 

operational modes o f  GSTDN, TORS and AFISCF (SGLS). Axlomatix has 

requested tks three corresponding t es t  procedures but NASA has supplied 

Axiomattx w i th  only one o f  the requSred t es t  procedures, "System Veri- 

f i ca t i on  Test Procedures f o r  STDN Pi4 Direct Link," EE7-78-107, June 1978, 

V O ~ U ~ W S  I-IV. 
The approach used i n  t h l s  report, therefore, i s  t o  compare the 

STON TRAS report  w l th  the STDN tes t  procedures, I n  order t o  continue 

fur ther  t es t  procedure evaluations, NASA must furnish Axlomatix w i th  the 

TDRS and AFiSCF tes t  procedures. 

The cvaluat$on t o  date compares the STDN TRAS report wl th the 

SfDN tes t  procedures. I n  Table 4.22. the requfred tes t  parameters are 

1 i s ted  f o r  each TRAS number, along wi th  the equipment operational mode 

i n  which the tests are t o  be conducted. 

Table 4.23 1 i s t s  the STDN PM d l rec t  1 ink ESTL tes t  procedure 

sections, along wi th  the TRAS number each tes t  section professes t o  meet. 

The purpose o f  t h l s  table i s  t o  give the reader an overview o f  the ESTL 

STDN S-band tests and, a t  the same time, correlate the t es t  procedure 

sections wi th  the TRAS requirements. 

Table 4.24 l i s t s  the STDN Pt4 d i rec t  l i n k  ESTL tes t  procedure 

sectfons, a b r i e f  tes t  descript ion and the operational mode i n  whfch each 

tes t  i s  conducted. This table allows the reader t o  quickly determine 

the condil!ons f o r  each tes t  and, a t  the same time, h igh l ight  any "holes" 

i n  the test ing program. 

By comparing Tables ,4.22 through 4.24, any omissions and incon- 

sistencies are apparent. Also, by careful ly  studying the STDN t es t  pro- 

cedures, coments are possible concerning the nature and appropriateness 

o f  the tests, equlpmgnt and methods. 
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I Table 4.22. Orbi ter-STDN Direct PM S-Band TRAS Requirements 1 
i 

I 

I 

1 

High-Frequency Mode 
High data rate wi th  
& without ranging 
Low data rate 

Low-Frequency Mode 
Selected tests  

High-Frequency Mode 
High data ra te  wi th  
& without ranging 
Low data ra te  

High-Frequency Mode 
High data rate with 
& without ranging 
Low data ra te  

High-Frequency Mode 
High data ra te  wi th  
& without ranging 
Low data ra te  

ss. (1 

BER 

l BER 
Synchronization Lock 
Percent data loss 

Synchroni ra t ion  data qua1 i t y  

SD-103 accompl i shed concur- 
ren t l y  with SD-102 

BER 
Message  re ject ion rate 

SD-105 PM Up1 ink Comnand Cmand data qual i ty  H i  gh-Frequency Mode 

Channel 
t o  be 

Tested 

TDM 

Synchronization 
(TDM 

Synchroni ra t ion  
(TDM) 

Comnand 

, 

w 
cP 

d 

0 
+l 

ul 

Link 

PM Uplink 
(Forward Link) 

PM Uplink 
(Forward Link) 

PM Up1 ink 
(Forward Link) 

PM Uplink 
(Forward Link) 

t 

i 

I 

TRAS No. 

SD-101 

SD-102 

SD-103 

SD-104 

lT)Rll parameters t o  be tested as a function o f  RF t o t a l  received p m r .  l a  

- - . - .. . - - - ---- 
* -". .  . A  " , . 

(Forward Link) 
SD-105 accompl i shed concur- 
ren t l y  with SD-104 

High data ra te  with 
& w i t h o ~ t  ranging 

a Low data ra te  

A 

s 



Tab1 e 4.22. Orbi ter-STDN Direct PM S-Band TRAS Requi remnts 
(Cont'd) 

TRAS NO. 

SD-106 

SD-107 

SD-108 

[ '  )AI 1 parameters t o  be tested as a function o f  RF to ta l  received power. 

Link 

PM Up1 ink 
(Forward Link) 

PM Downlink 
(Return Link) 

SD-109 

PMDownlink 
(Return Link) 

Channel 
t o  be 

Tested 

Voice 

TOM 

PMDownlink 
(Return Link) 

Telemetry 

Parameters (1 ) 

Voice qua1 i t y  
I n t e l l i g i b i l i t y  
Speech-to-noise r a t i o  - -  . . . . . . . . . . . . . . . . . . . . .  

a Signal-to-noise r a t i o  
BER 
Percent data loss 

BER 

Tel erne t r y  

O ~ e r a t i  onal Modes 

Selected Modes 

- - - - -  
High-Frequency Mode 
a High d a h  ra te  wi th  

& without ranging 
a Low data ra te  

High-Frequency Mode 

BER 
Synchronization lock 
Percent data loss 

a High data ra te  wi th  
& without ranging 
Low data ra te  

Low-Frequency Mode 
a Selected tests  
Additional selected tests  1 without uplink phase lock 

High-Frequency Mode 
a High data ra te  w i th  

& without ranging 
a Low data ra te  

Telemetry functional 
capacity 

SD-109 accmpl i shed concur- 
ren t l y  with 50-108 

High-Frequency Mode 
a High data ra te  w i th  

& without ranging 
Low data ra te  



Table 4.22. Orbiter-STDN Direct PM S-Band TRAS Req*~irements 
(Cont'd) 

TRAS No. 

SD-110 

SD-111 

SD-112 

Link 

PM Downlink 
(Return Link) 

PM Uplink and 
Downlink (For- 
ward and Return 
Links) 

PM Uplink 
(Forward Link) 

1 
A l l  parameters t o  be tested 

Channel 
t o  be 

Tested 

Voice 

- 

Voice 

RF Carrier 

( ' ) ~ i  t h  doppler offsets. 

as a function o f  

Parameters (1 ) 

Voice qua1 i t y  
In te l  1 i g i b i  1 i t y  
Speech-to-noi se r a t i o  
Signal-to-noi se r a t i o  
BER 
Percent data loss 

- 

Voice functional capabi 1 i t y  
SD-111 uplink accomplished 
concurrently with SD-106, 
SO-111 downlink accom- 
plished with SD-110 
Voice qual i ty  

RF acquisit ion thres oldiLJ. 
RF acquisit ion time 12) 
RF acquisit ion probabi 1 i ty  
(2 ) 
Mean time t o  unlock(*) 
Carrier t o  noise r a t i o  

Omrational Modes 

High-Frequency Mode 
High data ra te  wi th  
& without ranging 

e Low data ra te  

- 

High-Frequency W e  
• High data ra te  wi th  

& without ranging 
Low data ra te  

High-Frequency Mode 
High data ra te  wi th  
& without ranging 
Low data ra te  

Low-Frequency Mode 
Selected tests  

False lock suscept ib i l i ty  
A b i l i t y  toswi tchf romPSK 
t o  ranging (PM) mode 

RF to ta l  received power. 

Selected tests  without 
uplinkTDMmodulation 



Table 4.22. Orbiter-STDN Direct PM S-Band TRAS Requirements 

Omrational Modes 

High-Frequency Mode 
8 H i g h d a t a r a t e w i t h  

& without ranging 
La data ra te  

Low-Frequency Mode 
Selected tests  

High-Frequency Mode 
• High data ra te  wi th  

& without ranging 
Low data ra te  

I 
I1 

High-Frequen~y Mode 
High data rate wSthout 
ranging 
Low data ra te  

I 

Hi gh-Frequency W e  
• High data ra te  

- 
A l l  parameters t o  be tested as a function o f  RF to ta l  received power, 

( 2 ) ~ i  t h  doppler of fsets 

(Cont'd) 

Parameters (1 1 

RF acquisi t ion time ( 2  1 
RFacquisitionprcbability 
(2  
RF acquisit ion threshold(2: 
Mean time t o  unlock(2) 
Carrier-to-noise r a t i o  
Fa1 se lock susceptibi 1 i t y  
Reacquisition time (2)  

RF acquisit ion time (2) 

RF Acquisition functional 
capabi 1 i t y  

SD-115 accomplished concur- 
ren t ly  with SD-114 

Ranging 30 error  • Subcarrier predet c t ion  YN 
Acquisition time 72)  
Acquisition threshold 
Postdetection SIN 

Channel 
t o  be 

Tested 

RF Carrier 

RF Carrier 

RF Carrier 

Ranging 

TRAS No. 

SD-113 

- - 

50-114 

SD-115 

- -- 
SD-116 

Link 

PMDownlink 
(Return Link) 

PM Up1 ink and 
Down1 ink (For- 
ward and Return 
Links) 

PM Uplink and 
Down1 ink  (For- 
ward and Return 
Links) 

- 
PMUplinkand 
Downlink (For- [, lward and Return 
Links) 

0 * 
01 



Table 4.22. Orbiter-STDN Direct PM S-Band TRAS Requirements 
(Cont'd) 

- 

Channel 
t o  be 

TRAS No. Link Tested 

PM Uplink and 
Downlink (For- 
ward and Return 
Links) 

Ranging 

-- 

PM Up1 ink and I Two-Way Doppler 
Downlink (For- 
ward and Return : 

PM Up1 ink and 
Down1 ink (For- 
ward and Return 
Links) 

Doppl er Track i ng 

( ' ' ~11  parameters t o  be tested as a function o f  

Parameters (1 ) Owrational Modes 

Ranging functional capa- High-Frequency Mode 
b i l i t y  High data ra te  

SO-1 1 7 accompl ished concur- 
ren t l y  wi th  SD-116 

Doppler accuracy High-Frequency Mode 
High data rate w i th  
& without ranging 

a Low data ra te  
Low-Frequency Mode 
a Selected tests  

I 

Doppler accuracy High-Frequency Mode 
High data ra te  wi th  
& without ranging 
Low data ra te  

0 Lw-Frequency Mode 
Selected tests  

J 
Doppler functional capa- High-Frequency Mode 
b i l i t y  High data ra te  wi th  

SD-120 accomplished concur- & without ranging 
ren t l y  with SO-118 & SD-119 Lon data ra te  

tF t o t a l  received power. 1 



Table 4.23. Orbi ter-STDN D i rec t  PM S-Band STDN Test Procedure 

. 
STDN PI4 

Direct  Link 
ESTL Test Channel 
Procedure t o  be 
Section TRAS No. Link Tested Type o f  Test 

5.2.1.1.1 SD-101 PMuplink TDM Up1 ink  BER and AGC voltage v e r i  f icatjon--dai 1 y 
(Forward 1 i nk )  measurement 

5.2.1 -2.1 SD-101 PM upl ink TDM B i t  e r ro r  r a t e  (act ive voice and conrilands) 
& SD-102 (Forward l i n k )  

-- - 

I 5.2.1.2.2 SD-107 PM up l ink  TDM B i t  e r ro r  r a t e  ( inact ive voice and cannands) 1 & SF :L.. ;Fo;ward l i n k )  

-+r- - - 
-- 

5.2.1.23 t : PMuplink TOM Percent data loss 
8 SO-103 (Forward l i n k )  

5.2.1.3.1 SD-104 PM up1 ink  Comnand Message re jec t ion  ra te  (act ive voice) 
& SD-105 (Forward l i n k )  

5.2.1.3.2 SD-104 PMuplink Comnand Message re jec t i on  ra te  ( inact ive voice) 
& SC-105 (Forward l i n k )  

5.2.1.3.3 SD-104 PM upl ink Comnand Ver i f i ca t ion  o f  rece ip t  o f  10,000 error- f ree ' 
& SD-105 (I-omard l i n k )  comnands 

5.2.1.4.1 SO-106 PM upl ink Voice B i t  e r ro r  r a t e  
81 SD-111 (Forward l i n k )  

5.2.1.4.2 SD-106 PM upl ink  Voice Postdetection SNR ( A N  output) 
& SD-111 (Forward 1 i nk )  

w 



Table 4.23. Orbiter-SfDN Direct PM S-Band STDN Test Procedure 
(Cont 'd) 

. 

TRAS No. 

SD-106 
& SD-111 

SO-106 
& SD-111 

SO-106 
& SD-111 

SD-106 
& SD-111 

SO-106 
8 SO-111 

SD-106 
& SD-111 

SD-106 

* 
STDN PH 

Direct Link 
E S ~  Test 
Procedure 
Sect i on 

L 

5.2.1.4.3 

5.2.1.4.4 

5.2.1.4.5 

5.2.1.4.6 

5.2.1.4.7 

5.2.1.4.8 

5.2.1.4.9 

Link 

PMuplink 
(Forward 1 ink) 

PM uplink 
(Forward l i n k )  

PM uplink 
(Forward l i n k )  

PM uplink 
(Forward l i n k )  

PMuplink 
(Forward l i n k )  

PM uplink 
(Forward l i n k )  

PM up1 ink 

5.2.1.4.10 

5.2.1.4.11 

5.2.1.4.12 

(Forward l i n k )  

PM up1 ink  
(Forward l i n k )  

PMuplink 
(Forward l i n k )  

PM up1 ink 
(Forward l i n k )  

& SO-111 

SD-106 
& 50-111 

SO-106 
8 SO-111 

SO-106 
& SD-111 

Channel 
t o  be 

Tested 

Voice 

Voice 

Voice 

Voice 

Voice 

Voice 

Voice 

Type o f  Test 

Postdetection SNR (AIU output) 

Postdetection SP/N r a t i o  (AW output) 

Postdetection SP/N r a t i o  (AIU output) 

Postdetection SP/N r a t i o  (ATU output)--HCC/ 
GSTDN s i  te/return loop voice 

Subjective voice qua l i t y  (ATU output)--active 
comnands 

Subjective voice qua1 i t y  (ATU output) 

Subjective voice qua1 i t y  (AIU output) 

Voice 

Voice 

Voice 

Subjective voice qua l i t y  (SMU output) 

Subjective voice qua1 i t y  CATU output)--MCC/ 
GSTDN si te/return loop voice 

Word i n t e l l  i g i b i l  i ty (ATU output) 



Table 4.23. Orbi ter-STDN Direct PM S-Band STDN Test Procedure 
(Cont ' d ) 

Type o f  Test 

Word i n t e l l i g i b i l i t y  (AIU output) 

Word i n t e l l  i g i b i  1 i t y  (ATU output)--PICC/GSTDN 
s i  te l re tu rn  loop voice 

B i t  error ra te  (active voice) 

B i t  error ra te ( inact ive voice) 

, B i t  error ra te ( inact ive voice)--effects o f  

Evaluation o f  frame sync strategy--330 b i t  
sync/403 frame sync canbination 

Percent data loss (active voice)--330 b i t  
sync/403 frame sync combination 

Eva1 uation o f  frame sync strategy--317D b i t  
sync/MSFTP- I I decom system canbination 

Percent data loss (active voice)--3170 b i t  
syncIMSFTP- I I decom system combination 

B i t  er ror  ra te ( inact ive voice) 

t 

Channel 
t o  be 

Tested 

Voice 

Voice 

TDM 

TDM 

TDM 

T@M 

TDM 

TDM 

TDM 

Telemetry 

STDN PH 
Direct Link 
ESTL Test 
Procedure 
Section 

5.2.1.4.13 

5.2.1.4.14 

5.2.2.2.1 

5.2.2.2.2 

5.2.2.2.3 

5.2.2.2.4.1 

5.2.2.2.4.2 

5.2.2.2.5.1 

5.2.2.2.5.2 

TRAS No. 

SD-106 
L SD-111 

SD-106 
& SD-111 

SD-107 

SD-107 

SD-107 

SD-108 
& SD-110 

SD-108 
& SD-110 

SD-108 

Link 

PM up1 ink 
(Forward l i n k )  

PM up1 ink 
(Forward l i n k )  

PM downlink 
(Return 1 ink)  

PMdownlink 
(Return 1 ink )  

PMdownlink 
(Return 1 ink )  

PM downlink 
(Return l i n k )  

PM downlink 
(Return l i n k )  

. PM downlink 

(Return l i n k )  

PM dawnlink 
(Return l i n k )  

5.2.2.3.1 

& SD-110 

SD-108 
& SD-110 

SO-108 
& SO-109 

(Return l i n k )  

PM downlink 



Table 4.23. Orbi ter-STDN Direct PM S-Band STDN Test Procedure 
(Cont'd) 

h 

STDN PM 
Direct Link 

ESTL Test Channel 
Pmcedure t o  be 
Sect ion TRAS No. Link Tested Type o f  Test 

L 

5.2.2.4.1 SO-110 PMOownlink Voice B i t  er ror  ra te  

5.2.2.4.2 

5.2.2.4.3 

5.2.2.4.4 

5.2.2.4.5 

& SO-1 11 

SO-110 
& SO-111 

SO-110 
& 9-111 

SO-110 
& SO-1 11 

SO-110 
& SD-111 

(Return 1 ink)  

PM Downlink 
(Return l i n k )  

PM downlink 
(Return l i n k )  

PHdownlink 
(Return 1 ink) 

PM downlink 
(Return l i n k )  - 

SD-110 PMdownlink Voice 
& SO-111 (Return l i n k )  

Postdetection SPIN r a t i o  (ATU input ) -XC/  
GSiDN s i te l re tu rn  loop voice 
y 

Subjective voice qua l i t y  (ATU input) 

Subjective voice qua1 ity (AIU input) 

- 

Subjective voice qua l i t y  (W input) 

Sub jec t ivevo icequa l i t y  (ATU input)--MCC/ 
GSTDN si te/return loop voice 

5.2.2.4.7 

5.2.2.4.8 

5.2.2.4.9 

5.2.2.4.10 

Voice 
, 

Voice 

Voice 

Voice 

C 

Postdetection SNR (ATU input) 

Postdetection SNR (AIU input)  

Postdetection SP/N r a t i o  (ATU input) 

Postdetection SPIN r a t i o  (ATU input)-*C/ 
GSTON s i  te j re tu rn  loop voice 

$0-110 
& SO-11 1 

SO-110 
& SO-111 

SO-110 
& SO-111 

SO-110 
L SO-111 

PMdownlink 
(Return l i n k )  

PM downlink 
(Return l i n k )  

PM downlink 
(Return l i n k )  

PM downlink 
(Return l i n k )  

Voice 

Voice 

Voice 

Voice 



Table 4.23. Orbi ter-STDN Direct PH S-Band STDN Test Procedure 

2 
cp 
(0 

C" 

0 
I t  

QI 

* 
STDN PH 

Direct Link 
ESTL Test 
Pmedure 
Sect ion 

5.2.2.4.11 

5.2.2.4.12 

5.2.2.4.13 

5.2.3.1.1 

5.2.3.2.1 

5.2.3.3.1 

5.2.3.3.2 

5.2.3.3 3 

5.2.3.3.4 

5.2.4.1 

TRAS No. 

50-110 
8 SO-111 

50-110 
& 50-111 

SO-110 
SO-111 

SD-112 

SO-113 

SO-112 
& 50-113 

SD-113, 
-114 8 -115 

SO-1 12 
(L 50-113 

9-113 
-114 & -115 

SO-116 - 
d 

rn P 

Link 

PH downlink 
(Return 1 ink) 

PM downlink 
(Return l i n k )  

P M d m l i n k  
(Return l i nk )  

PMuplink 
(Forward 1 ink) 

PM downlink 
(Return 1 ink) 

Two-way 

Two-way 

Two-way 

TWO-nay 

TWO-way 

(Cont'd) 

Channel 
to be 

Tested 

Voice 

Voice 

Voice 

RF 
Carrier 

RF 
Carrier 

RF 
Carrier 

RF 
Carrier 

RF 

RF 
Carrier 

Ranging 

Type o f  Test 

Word i n t e l l i g i b i l i t y  (ATUinput) 

Word i n t e l l  i g i  bi 1 i ty (AIU input) 

Word i nte l  1 i g i b i  1 i ty (ATU input)--f-ICC/GSTDN 
s i  te/return loop voice - 
Rfacqu is i t i on t ime  

RF acquisit ion time 

- 
RF acquisit ion 

RF acqui s i  tion/arode switching 

Carrier tracking threshold 

RF acqui s i  t i o n  (dynamic doppler) 

Ranging subcarrier predetection SeSR 



Table 4.23. Orbiter-STDN Direct PH S-Band STDM Test Procedure 
(Cont'd) 

S 

- 9 ' A - .  .. .r r . cr - I I - -  

y-i J 

STDN PM 
Direct Link 

ESTL Test 
Procedure 
Section 

5.2.4.2 

5.2.4.3 

5.2.5.1.1 

-- 
5.2.5.2.1 

- 

TRAS b. 

50-116 

SO-116 
& SO-117 

SD-102 
-103 8 -118 

SO-119 
(L 50-120 

Link 

Two-way 

Two-way 

Up1 ink 
(Forward l i nk )  

Two-way 

5 

- 

Channel 
to  be 

Tested 

Ranging 

Ranging 

One-way 
Doppler 

Two-way 
Ooppl e r  

Type o f  Test 

Ranging tone postdetection S/H 

30 ranging error  and range acquisit ion time 

Ooppl e r  accuracy 

Doppler accuracy 
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Tab1 e 4.24. STDN Test Procedure versus Opera t i  anal Modes (Cont ' L, , 
3 

;T IN  Mr STCN Mtqh Pnrrr W c  

I f T r (  rn 1- r r w u ~ c y  Miph Frrr)umry lor fr-y f r w c n c p  

' ~ t r c r *  l i n t  I n  ~ t a ' l l i  b t a  Lo Data lli Data tn l b t a  W i  W t a  
I i \ r t  T-st 
1 PCI* C ~ I C C  no 

10-  t 

' 7  1 . 4 .  Itpltmt Voicr Chmnr l  - F n r l b t r c * f o n  W (hurlin 

! I n t r r f a r ~  lhl? f b ~ f  p l ~ f )  

ml' - lnl, M tun roc?\ Cgnc,\trtd) I I I I I I  I l 1 1 1  I 
mr - wnu  krbPRrnr f i t t ~ t c  r n a h l d  

.voice 1  [ntlr-1) 
-Vn*re 7 181'!-F\ 

5 7.1 .4 .4  I b l { ? ~ b  Bnlc- C h n n r T  - P n s t d r t r r t i m  SF'W Da*&o 
( A d  n 1 - m i ~ l  l h l t  nutrut) 

rrTF - mfl WAD (Mn T c s * ~  Cmht r t r ( ( )  1 1 1 1 I  I I I I I I  1 1 1 1 1  - n - W J L V  ) ~ ~ k / n r t l r  P u t w t  t n r b l d  - 
-ATtl-L (Vnice 1) 

I 
-hlIl-D 't',ll~P 2 )  I I I I I I  1 1 1 1 1  

5 2.1 4.5 I b l t n t  V o t w  C h m m l  - P ~ s t C t r r t i m  SPIR Pa t io  I 
( h t 4 i ~  lntmrfac- !hf? f h ~ t p v t )  

R:P- PfV W- (No T r c ~ t  r m d * w t M )  

I A' - lA'.h r h * r l A r r r l  h l t m t t  I n u b l d  I I I I I I  
I 

i - V . # i p  1  fh l l l -1)  m A - l  I I I I I I I I  -bnicc 7 fn l tJ -P)  X 
5 . 7  1 . 1  6 I v l f n b  hit- Ch-1 - r c s t + r y t t m  W R  Rat io  I I I 

I (budin 1-rmlnal lhl t  I l l t?r t r t )  -fR.'(C/C:TW Site! 
1 rettcrn twtp Vnlce 

1 ~l~~ - WD && (*n Trrtr C d t c t r d )  I 
n s ~  - nn-4 k r d r r s r t ~ t  h t p t t  r ~ b l r r l  I l l l l  1 : I l J  I I I I I I  I l l 1 1  

1 1 1 1  
I 

I -hTTl-t (-'v.ir- i! I 
- ~ T I * - P  ( V C ) ~ C L  :) 1 1 1 1 I  X f 

r Y I I I I I I  I I I I  I 
I W I f n b  V94-e fiaetwl - 5 v h j c r t t w  V n i r *  rhf ial i ty 

( At~rJro T e r r ~ n n  1  Ihi r ) l~?p~ l t  

W f r -  ICI.lr 0)- Trqts rnnductrr)) 1 1 1 1 1  
U-J. - nr:a r n b l n r r l ~  I)(I~PI~ fn r~h ls4  l l r i ~  I I ! I I  I l l 1 1  - -1 

7.1 .4 .7  -fin)-1 ( V - i v  1 )  Rr? tv r  C-rdc I I - 
-htlJ-o f V n 1 - c  2 )  h r t t r m  fnnn*nd\ r I -. 

d 

5.7.1.1.R - IT r l - l .  f V n i t r  1) I n a c t i w  C - 4 %  X K l r  - Q, 
I -flTll-@ (Vncc- 7 )  Inact4vr C m n d c  < -- 



t t : ~  rn 
1,irect link 

F \ l l  Trst  
Prm e l ) u r ~  

F r c t i m  -- - 
5.2 1 4 . 1  1411 i+. V n i r r  Chrmrl - l ' os rb r t cc t i on  WP (Audio 

I n t c l p fa re  !hit (rut  r ~ ~ t )  
IITP InO IhrJ. (No I o c t ~  Conc'urted) I I I I I I  1 1 1 1  
l I \P - NAqh h 4 r ' A t C U  fhrtpt~? Tnat l& n 
.votce 1 (1111-1) 
-Vorce 2 (h l t l -P )  m I i l l l  X  I I I I I I  1 1 1 1 1  1 

U g l i r 4  V o i c e  Charmet - P n s t C t r c t i m  SP1U Ri'io 
( A d  n T e r r ~ ~ l  Unit n u t l m t )  

rltr - rnn %& (mn T ~ C ? S  C o n d r c t 4 )  I I I I I I  1 1 1 1 1  
b iP - NASA WdeIMCIJ Output Cnrblcd -1 - 
-ATU-1 (Voice I) I I I I I I  l l l l l  

- 

1 -4111-R (Vnrcr 2 )  X  X  
! @ l i n t  Vofcc Channel - P o s t c k t c r t l w  SPfN P a t l o  
(A t r l i -  I n t e r f a r -  hi+ O u t p ~ t )  

rrrlJ 1 1  1 1  1 1  I 
I l l  lZlZI I I lt;F - TKIP W" (No T r < t ~  CnM)qrtrd) 

N!P - NA'4 rndr lbrr  11 Outmot f n r b l r d  
I I I I I I  1 1 1 1 1  

- .  

- v d i v  I (A l t l -L )  I I I I I I  -PF~cI! 2 (AIV-R) I I 
!@l ink  Voice Chmnel - f 'ost+tctt ion SFlM Ra t i o  I 
(Ludro T e m ~ o r l  U n i t  &?pu t )  -l)F.C/CSTm Site! 
P c t ~ r r n  t nap V F ~ C P  

tlqP - Dnb )b& ( In  T F ~ ~ s  Crmdrcted) 1 
r NSF - Wh'A RodefFf CU Ou tp r t  Fnrb lc r l  m 1 I I 1  I I I 1 I I  1 1 1 1 1  - 4 

- f i f t l - L  (;:t {ro 1 )  I 
-AT('-R I V o ~ c c  ;) I m I d  I I 4 X  4 I I I I I I  I WlinC Voice C h a r n l  - S tob j r r t i ve  Vnirr % a l i t r  1 1 1  1 

(&#d in  Temina)  Unit 0 l r?yut t  

L-I~ITTi7--?1 I 1 1  I 
.- 

1 1 1 1  
-- - - M U ' -  tm, %rk (No Trc ts  r m d u c t w t )  

a N*& - NA;b f h + / A f r l J  firtr.tr1 rnahl.4 -- 
-All)-1 (V3 ic r  I) n c t i v c  ~ w m a n d c  

L. I 
-ATU-P (Vnrcr  2)  Artvvcr C - d c  

-- I d 

. -- 4 
- R i l l - 1  (Volce 1 )  I n a c t i r t  C m n d s  X X X X  - 0)  

-hTU-R (Voice 2 )  l n a c t r v r  C m n d t  
- - - -----  



1 1 1 1 1  I 1 1 1 1  X I I I I I I  1 1 1 1 1  I 
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1 1 1 1 1  1 1 1 1 1  X I I I I I I  1 1 1 1 1  I 

STDN PM 
Direct  Link 
ESTL Test 
Procedure 
Section 

5.2.1.4.9 

5.2.1.4.10 

5.2.1.4.11 

5.2.1.4.12 

5.2.1.4.13 

5.2.1.4.14 

1 1 1 1 1  1 1 1 1 1  X X I I I I I I  1 1 1 1 1  X X 

Ta3le 4.24. STDN Test Procedure versus Operational Modes (Cont Id )  
STDN Mode STOW Hlgh-Power nDde 

Low Frequency Hlgh Frequency low Frequency High Freqwncy 

Lo Data Hi  Data Lo Data H i  Data Lo Data H i  Oata Lo Data HI Data 

Test 

Uplink Voice Channel - Subjective Voice Qual i ty  
(Audio Interface Unit Output) 

NSP - 000 Mode (No Tests Conducted) 

a NSP-NASA Mode/ACCU Output Enabled 

-Voice 1 AIU-L 
-voice 2 InIu-Rl 

Uplink Voice Channel - Subjective Voice Qual i ty  
(Speaker Microphone Unit Output) 

a NSP - DOD Mode (No Tests Conducted) 

NSP - NASA Mode/ACCU Output Enabled 

-Voice 1 (SMU-1) 
-Voice 2 (SMU-R) 

Up1 ink Voice Channel - Subjective Voice Qual i ty  
(Audio Tern~inal Unit Output) - MCC/GSTDN 
Si te/Retum Loop Voice 

NSP - DO0 M O ~ F -  (No Tests Conducted) 

r NSP- NASA Mode/ACCU Output Enabled 

-ATU-L (Voice 1) 
-AT!)-R (Voice 2) 

Uplink Voice Channel - Word I n t e l l i g i b i l i t y  
(Audio Terminal hit Output) 

NSP - WD Mode (No Tests Conducted) 

NSP - NASA Mode/ACCU Output Enabled 

-ATU-L (Voice 1) 
-ATU-R (Voice 2) 

Uplink Voice Channel - Word I n t e l l i g i b i l i t y  
(Audio Interface Unit Output) 

NSP - 000 Mode (No Tests Conducted) 

NSP - NASA Hode/ACCU Output Enabled 

-Voice 1 (AIU-1) 
-Voice 2 (AIU-R) 

Uplink Voice Channel - Word l n t e l l l g i b i l i t y  
(Audio Terminal bit Output) - MCC/GSTON 
Site/Return Loop Voice 

a NSP - DOO Mode (No Tests Conducted) 

NSP - NASA Mode/ACCU Output Enabled 

1 1 1 1 1  1 1 1 1  X I I I I I I  1 1 1 1 1  I 

. - -  
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Tab1 e 4.24. STDN Test Procedure versus Operational Modes ( ~ o n t  Id) 
L 

STUN Mode RON High-Power )lode 

Low Frequency High Frequency Low Frepuency High F-Y 
STUN PM r 

Lo Data Hi  Data Lo Data Hi  Data LO Data H i  Dsta Lo mta H i  Data 
O i r e c t  LInk 
EST1 Test 
Procedure 

Section Test 

5.2.2.2.1 Down1 ink TW channela - B i t  Error Rate 
(Active Voice) 

a NSP - DOD ModeIACCU Output Enabled 

-BER/330 B i t  Sync Outplt 
X --. 

-BER/317D B i t  Sync Output X - - I  - I  - - _ _  _ - - - - - - - - . - - - - - -  _ -- . -C  - - - 
NSP - NASA Mode (No Tests conducted) 

5.2.2.2.2 D o w n l i n k T O n ~ h a n n e 1 ~ - B i t E r r o r R a t e  

I 

(Inactive Voice) 

a NSP - DDD Hode/ACCU Output Enabled 

-330 B i t  Sync Output 
Both FM Xmtrs Off. 0 Doppler x x xb xb X X xb xb X X X X 

*60 kHz Doppler X X X X  X X X X X X  

a 01 FM Xrntr On. 0 Doppler 
i 60  kHz Doppler 

OFI FH Xmtr On. 0 Doppler 
%60 kHz Doppler 

Both FM Wntrs On, 0 Doppler X X 
t60 kHz Doppler 

-317D O i  t Sync Output 
Both FM Xmtrs Off. 0 Doppler X X X X  

t60 kHz Doppler X X X X  

FM Xmtrs On (No Tests Conducted) _ - - -  - _ _ _ _ _  _ _ .  -- - - - - -  - - - -  . -  - --  - - --  - - -  
a NSP - NASA Mode (No Tests Conductcr~) 

5.2.2.2.3 Dormlink TOM channela - B i t  Error Rate 
(Inactive Voice) - Effects of HFR Channel 
Gain Differences 

NSP - OOD WetACCU Output Enabled 

-330 B i t  Sync Output 

o CHA = CHB poweEC 
o CHA 6 dB CHB 
o CHA 10 d~ CHB' 
o CHA 16 dB ' cMBC 
0 CMA 20 d~ - CHB' 
o A l l  Power i n  C H A ~  _ _ _  _ - - . -  - - -  - - - . -  - - - -  

-3170 B i t  Sync Output (No Tests conducted) _ _ _ . _ - .  - - - -  - - - -- -. 
NSP - NASA Mode (No Tests Conducted) 

b 

a~or  a11 downlink tests. the uplink mduletcd w i th  cor resp~ ld ing  signal 
cmbination. unless noted. 

b~onducted w i th  and without up1 ink mdul  ation. 

' ~ t  various attenuator settings. 

-- r -__ , ,,, -, 
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STIJN W 
Di rec t  Link 
EST1 Teqt 
Procedure 
Section 

5.2.2.2.4.1 

5.2.2.2.4.2 

5.F.2.2.5.1 

5.7.2.2.5.2 

5 2.2.3.1 

5.2.2.4.1 

5.2.2.4.2 

Table 4.24. STDN Test Procedure versus Operational Modes (Cont'd ! 
STDN Mode STMl H i g h - P w  lbde 

low Frequency High Frequency Low Frequency Pigh Frequency 

Lo Data H i  Oata Lo Data H i  Data Lo Data H i  Oata 

Test 

Oownllnk TOM channela - Evaluat ion o f  Frame Sync 
Strategy - 330 B i t  Spc/403 Frame Sync Combination 

NSP - ? 

-Four Frame Sync Stratpgy Sett ings I l l 1 1  
Downlink TOM channela - Percent Data Loss 
(Act ive Voice) - 330 B i t  Sync1403 Frame Sync 
Canbination 

NSP - 7 r l l l l  
Downlink TOM channela - Evaluation o f  Fralne Sync 
Strategy - 3170 B i t  Sync/MSFTP-I1 OECOH System 
Cmbjnat ion 

NSP - ? 

l l l l l  -Four c r a m  Sync Strategy Sett ings 

Downlink TOM channela - Percent Oata Loss 
(Act ive Voice) - 3170 B i t  Sync/MSFTP-I1 

r NsP - ? I 1 1 1 1  
Downlink Telemetry Channela - B i t  E r ro r  Rate 

1 1 1 1 I  NSP- 7 Act ive Voice 
Inac t i ve  Voice 

O o r m 1 i n k V o i c e ~ h a n n e l ~ - R i t E r r o r R a t e  
tlSP - WD Mnde/PSS Enable On 

-Voice 1 (EWX 
-voice 2 (Emxi 

* NSP - NASA Mode (No Tests Conducted) 

Daml ink Voice Channela - Postdetection SNR 
(Audio Tenninal Un i t  Input)  

NSP - WD Mode (No Tests Conducted) 1 1 l I I  1 1 1 1 1  1 1 1  1 1 1  1 1 1 1 1  
r NSP - NASA Mode/ACCU Enable On - 

X X X X  
-Voice 2 Dorn 
-vojce Ibwt 

1 a ~ o r  a l l  

X K 

dormlink tests, the up l ink  modulated w i t h  cotresponding signal combination, unless noted. 



STOW PF! 
Direct Link 
ESn Test 
Procedure 
Section r , Table 4.24. STDN Test Procedure versus Operational Moc 

I STON node 

Low Frequency High Frequency 

Lo Data Hi  Data Lo Data Hi  Data 
No . No 

W/ Data W/O U/ W/O W/ Osta 
Test Rnq (C.0.) Rng Rng Rng Rng ( C . 0 . )  

s (Cont'd) 7 

STQI Hlgh-Parr Mode 

Low Frequency High F-Y 

Lo Data H i  Data Lo Data H i  Data 

5.2.2.4.3 Downlink Voice channela - Postdetection SNR 
(Audio Interface Unit Input) 

NSP - 000 Mo& (No Tests Conducted) 1 1  1 1 1 1 I  I I I I I I  1 1 1 1 1  I 

I l l  I 1  1 1 1 1 1  X I I I I I I  1 1 1 1 1  1 
NSP - NASA Ho&/ACCU Enable On 
-Voice 1 (Dmn 

Doitnl ink Voice channela - Postde tection SP/N 
Ratio (Audio Terminal hit Input) 

NSP - 000 Hock (No Tests Conducted) l l l l l  1 1 1 1 1  I I I 1 I I  1 ! 1 1 1  1 

I l l  I I  I I I I I I  1 1 1 1 1  I 
NSP-NASA Mode/ACCU Enable On 

-Voice 1 (Oown) 
-Voice 2 (Down) 

Downlink Voice channela - Postdetection SP/N 
Ratio (Audio Interface Unit Input) 

NSP - WO Mode (.No Tests Conducted) [ I I I I  1 1 1 1 1  I I I I I I  1 1 1 1 I  1 
a NSP - NASA &&lACCU Enable On 

-Voice 1 (Down) 
-votce 2 (Down) 

Downlink Voice channela - Postdetection SP/N 
Ratio (Audio Tenninal Unit Input) -MCC/GSTOW 
St te/Re turn Loop Voice 

NSP - DO0 Mode (No Tests Conducted) 

I l l  I 1  1 1 1 1 1  I I I I I  I 1 1 1 1 1  I X 

I I I I I  1 1 1 1 1  I I I I I I  l l l l l  I 

I I I I I  I I I I I I  1 1 1 1 1  1 
a WSP - NASA &&/ACCU Enable On 

-Voice 1 (Down) 
-Voice 2 (Oann) 

Oownlink Voice channela - Subjective Voice 
Qua1 i t y  (Audio Terminal Uni t  Input) 

NSP - 000 Mode (No Tests Conducted) 1 1 1 1 1  I I I I I I  1 1 1 1 1  I 
a NSP - NASA Mode/ACCU Enable On 

I l l  I I  I I I I I I  1 1 1 1 1  
 or a l l  downlink tests. the uplink modulated wl t h  corresponding signa 1 combination. unless noted. 



Table 4.24. STDN Test Procedure versus Operati ona1 Modes ( ~ o n t  'd)  8 

r STM Ho& STOH H l g h - P m  

L m  Frequency High Frequency Lo* Frequency High Frequency 

STUN Pn 
Direct  Link 

Lo Data Hi  Data . 
No 

LO Data H i  Data Lo Data H i  Data Lo bsta Hi  Data 

ESTL Test 
Procedure 

yIO1 y/ y/o N/ oat. N/o~ N/ UJO 

Section Test RnglRng Rnp Rnp (C.0. ) Rng, Rng RM 

5.2.2.4.8 O m l i n k  Voice channela - Subjective Voice 
Quality (Audio Interface I t n i t  Input) 

NSP - MID No& (No Tests Conducted) I l l 1 1  1 1 1 1 1  I I I I I I  1 1 1 1 1  I 
NSP - NASA Ibcle/ACCU Enable On 

-Voice 1 (Down) 1 1 1 1 1  1 1 \ 1 1  X 

-Voice 2 (Oown) 
I 

Oocnlink Voice channela - Subjective Voice 
qua1 i ty  (Speaker Microphone Uni t  input) 

NSP - 000 k.k (No Tests conducted) 1 1 1 1 1  I l l 1 1  I 
NSP - NASA NodelACCU Enable On 
-voice 1 \Down\ 
-voice 2 Down 

I 
5.2.2.4.10 Do*nlink Voice channela - Subjective Voice 

I w l i t y  ( ~ u d i o  Terminal Un i t  Input) - WCIGSTOW 
Si te/Return Loop Voice 

HSP - MID Mode (No Tests Conducted) I l l 1 1  1 1 1 1 1  1 1 1 1 1  I 
NSP - NASA HodelACCU Enable On 
-Voice 1 (Down) 
-Voice 2 (Oarn) I 

5.2.2.4.11 - l ink Voice charnela - Word l n t e l l i g f b i l i t ~  
(Audio Terminal Uni t  Input) 

NSP - 000   ode (No Tests Conducted) 1 1 1 1 1  I I I I I I  1 1 1 1 1  1 
a NSP - NASA Mode/ACCU Enable On 1 

-Voice 1 (OW) 
-Voice 2 (Down) I I I I I I  







Generally, the STDN S-band PM d i rec t  1 ink  t es t  procedures meet 

the TRAS r2qulrements. The procedures appear t o  be we1 1 thought out, 

well-wr'tten and very com?lete. It should be noted that  the STDN TRAS 

report  was wr i t ten  i n  September 1977 and the STDN PM d i rec t  1 ink  t e s t  

procedures were wr i t ten  i n  June 1978. Many o f  the STDN d i r ec t  1 ink tests 

have been recently completed i n  the ESTL; however, there has been a sig- 

n i  f i can t  time period between completing the documentation and conducting 

the tests. During t h i s  time period, a number o f  equipment operating 

parameters have been changed which are not re f lec ted i n  the STDN TRAS 

reports o r  the STDN procedures. The ESTL personnel are aware o f  many of 

these changes, have i n  some instances modified the tests t o  r e f l e c t  the 

current s i  tuat ion but have no plans t o  formally change the documentation. 

Therefore, many o f  the comnents discussed i n  t h i s  report have a1 ready 

been addressed by the approrpiate ESTL personnel . 
The STDN PM d i rec t  1 ink  t e s t  procedure comnents are divided 

i n t o  two sections. The f i r s t  section concerns the t es t  parameters and 

equipment used and the second section compares specif ic tests w i th  the 

corresponding TRAS number. 

4.4.3.1 General STDN t es t  procedure comments 

I n  reviewing the STDN S-band ESTL tes t  procedure, there are 

four comnents concerning the t es t  parameters and equipment used. The 

four comnents are: 

(1) On pages 111-4 and 111-5 describing the upl ink and down- 
1 ink signal performance requirements, respectively, the PM modulation 

indices have been changed because o f  interference on the ranging chan- 

nel. A1 so, the required Prec/No has been changed as documented i n  

"Space Shutt le Communications and Tracking Link C i rcu i t  Margin Surrmary," 

Apr i l  1979, EH2-M79-039, and w i l l  be ref lected i n  ICD 2-OD004 i n  the 

next revision (PRIN 14). On page 111-4, 66.0 dB-Hz s/b 61.8 dB-Hz f o r  

combinatic~n 25 and s/b 58.3 dB-Hz f o r  combination 25A. On page 111-5, 

63.7 db-Hi! s/b 68.3 dB-HZ, 60.7 dB-HZ s/b 65.3 dB-H, 66.0 dB-HZ s/b 

70.7 dB-Hz for combination 3 and s/b 67.7 dB f o r  combination 4. 



I I .  
(2) On page 111-6 and throughout the remainder o f  the t e s t  )1 

procedure, the maximum doppler o f f se t  specif ied i s  k60 kHz; however, i n  
1 

i 
the l a tes t  network transponder specif icat ion, R I  Specif icat ion MC 478- d 
0106 Rev. E, Seq. 04, the ~ 6 0  kHz has been changed t o  k55 kHz. i 

1 
(3) It should be noted tha t  the doppler extractor (DE) has a 1 

beer, eliminated from the S-band system; however, the DE i s  required f o r  

the ESTL t o  perform a number o f  tests. The po in t  i s  tha t  the DE which 

the ESTL possesses i s  no longer being evaluated as par t  o f  the S-band 

system but i s  being used as a piece o f  t e s t  equipment. 

(4) I n  some tests, the NSP i s  i n  the DOD mode while, i n  other 
tests, the NSP i s  i n  the NASA mode. When the STDN procedures wers w r i t -  
ten, the DOD mode indicated encrypted operations and the NASA mode i nd i -  

cated clear or  nonencrypted operations. Since the STDN operational mode 

i s  s t r i c t l y  NASA, i t  would seem i l l o g i c a l  that  a port ion o f  the tes ts  

were t o  be conducted i n  the DOD mode. 

The apparent i l l o g i c  i s  r ea l l y  a moot point  because, since 

the STDN procedures were writ ten, a number o f  operational changes have 
evolved. For upl ink operations, both the DOD and NASA modes w i l l  now be 

encrypted and, f o r  downlink operations, the 000 mode w i  11 now be encrypted 

while the NASA mode now may or  may not be ecrypted. For the purposes o f  

t h i s  report, however, DOD mode w i  11 s t i  11 mean encrypted and NASA mode 

w i  11 s t i  11 mean clear or nonencrypted. 

The comment i s  tha t  some o f  the ESTL tests no longer 
re f lec t  current operational practices. For example, there are a number 

of STDN upl ink tests tha t  are i n  the c lear mode when the encrypted mode 

should be used. It would be desirable t o  reconduct some tests. 

4.4.3.2 Specific STND tests/TRAS comments 

Table 4.25 summarizes the comnents resu l t ing from comparing the 

speci f ic  ESTL STDN tests wi th the TRAS requirements. Some o f  the comnents 

have already been discussed i n  the previous section, such as the change 

i n  the required PrecINo, the new doppler maximum of fsets  and the NSP 

being tested in  e i ther  the 000 or  NASA mode. There are, however, some 

new comments such as mean-time-to-unlock and carr ier-to-noi se r a t i o  

tes ts  not being conducted as required by the TRAS and the acqufsi t i o n  
time changing as a resu l t  o f  a network transponder performance specifica- 

t i o n  change. 



STDN PM 
Direct  Link 

ESTL Test 
Procedure 

, Section TRAS No. Test Procedure Canments 

5.2.1.1.1 + SO-101 NSP tested i n  DO0 mode only 

5.2.1.2.1 SO-101 NSP tested i n  DOD mode only 
and 

SD-1 02 

5.2.1.2.2 SO-101 NSP tested i n  DOD mode only 
and 

SO- 1 02 k60 kHz doppler o f f se t  outside o f  tran- 
sponder speci f icat ion o f  k55 kHz 

Prec/No = 66.0 dB-Hz used f o r  the high 
and low data rates, wi th ranging, success 
c r i t e r i a  has been changed t o  61.8 dB-Hz 
and 58.3 dB-Hz , respectively. 

5.2.1.2.3 SD-102 @ O K  
and 

SO- 1 03 

5.2.1.3.1 SO-104 BER' s cannot be measured for the command 
and and channel ( tes t  points not avai lable). 

5.2.1.3.2 SO-1 05 Decoded comnand channel se r i  a1 BCR extrapo- 
lated using message re jec t ion ra te  data, 

5.2.1.3.3 SD-104 OK 
and 

SD- 105 

5.2.1.4.1 SD-106 NSPtestedinDODmodeonly 
and 

50-1 1 1 

5.2.1.4.2 SO-106 NSP tested i n  NASA mode only 
5.2.1.4.3 and 
5.2.1.4.4 SO-1 11 
5.2.1.4.5 
5.2.1.4.6 
5.2.1.4.7 
5.2.1.4.8 
5.2.1.4.9 
5.2.1.4.10 
5.2.1.4.11 
5.2.1.4.12 
5.2.1.4.13 
5.2.1.4.14 

NSP-DOD mode = Encrypted 
NSP-NASA mode 5 Clear 



Table 4.25. Tests versus TRAS (Cont'd) 

STDN PM 
Direct  LInk 
ESTL Test 
Procedure 
Section TRASNo. Test Procedure Comnents 

- SD-106 Percent data loss not performed speclf lcal1y 
and for up1 Ink voice channel 

SD-*I11 

5.2.2.2.1 SD-107 NSP tested I n  DOD mode only 
PREC/No 63.7 dB-HZ; s/b 68.3 dB-Hz 

5.2.2.2.2 SD-107 NSP tested i n  DO0 mode only 

~ 6 0  kHz doppler offset outside of tran- 
sponder specif icat ion of k55 kHz 
PREC/No = 63.7 dB-Hz; s/b 68.3 dB-Hz 

9 PREC/No = 60.7 dB-Hz; s/b 65.3 dB-Hz 
PREC/No 66.0 dB-Hz; s/b 70.7 dB-Hz 
for combination 3 and 67.7 dB-Hz f o r  
combination 4 

5.2.2.2.3 SO-107 NSP tested I n  DOD mode only 

5.2.2.2.4.1 50-108 NSPmdenotspec i f Ied 
5.2.2.2.4.2 and 
5.2.2.2.5.1 SD-110 
5.2.2.2.5.2 

5.2.2.3.1 SD-i38 NSPmodenotspeclfied 
and 

SD-109 PREC NO = 63.7 dB-HZ; s/b 68.3 dB-HZ 
PREC/No = 60.7 dB-HZ; s/b 65.3 dB-Hz 
PREC/No = 66.0 dB-Hz; s/b 70.7 dB-Hz 
f o r  combination 3 and 67.7 dB-Hz f o r  
combinat ion 4 

- - I 1 S;;; 0 1 NSP tested i n  DOD mode only 5.2.2.4.1 

SD-11 1 

NSP-DOD ,node z Encrypted 
NSP-NASA mode I Clear 



130 

Table 4.25. Tests versus TRAS (Cont'd) 

I 

SlBN PH 
Dlrect  Link 

EST1 Test 
Procedure 
Sectlon TRAS No. Test Procedure Colnnents 

5.2.2.4.2 SD-110 d NSP tested In  NASA mode only 
5.2.2.4.3 and 
5.2.2.4.4 SD-111 
5.2.2.4.5 
5.2.2.4.6 
5.2.2.4.7 
5.2.2.4.8 
5.2.2.4.9 
5.2.2.4.10 

5.2.2.4.11 SD-110 NSP tested i n  NASA mode only 
and d PREC/No = 63.7 dB-Hz; s/b 68.3 dB-Hz SD-11 1 

PRECINO = 60.7 dB-HZ; s/b 65.3 dB-HZ 
PRECINO 66.0 dB-tk; s/b 70.7 dB-& 
for combination 3 and 67.7 dB-Hz for 
combination 4 

5.2.2.4.12 SD-110 NSP tcsted i n  NASA mode only 
and PRECINo - 63.7 dB-Hz; s/b 68.3 dB-Hz SD-111 

5.2.2.4.13 SD-110 NSP tested i n  NASA mode only 
and PRECINo = 63.7 dB-Hz; s/b 68.3 dB-Hz SO-1 11 

PRECINO = 60.7 dB-HZ; s/b 65.3 dB-Hz 
PRECINo 66.0 dB-Hz; s/b 70.7 dB-Hz 
f o r  combination 3 and 67.7 dB-Hz for 
combination 4 

- SD-110 Percentdata l o s s n o t  performedspecifically 
and f o r  downlink voice channel 

513-1 11 

5.2.3.1.1 50-112 i60 kHz doppler offset; s/ b i55  kHz 
4-second acquis i t ion time; I s/b 6 setcnds 
Mean-time-to-up1 ink ana carrier-to-noise I 
r a t l o  tests not conducted 
High-frequency mode, high data ra te  wi th  

I. ranging tests not conducted. 

NSP-DOD mode s Encrypted 
NSP-NASA mode a Clear 



Table 4.25. Tests versus TRAS (Cont'd) 

NSP-000 mode E Encrypted 
NSP-NASA mode n Clear 

STON PM 
Dl rect Test 
ESN Test 
Procedure 
Sectton TRAS No. Test Procedure Conanents 

5.2.3.2.1 SD-113 260 kHz doppler of fset  ; s/b 255 kHz 
The downlink tes ts  wi th  the ranging 
channel enabled cannot be performed as 
described wi th  only the car r ie r  present on 
the upl lnk 

5.2.3.3.1 

5.2.3,3,2 

5.2.3.3.3 - 
5.2.3.3.4 

5.2.4.1 

5.2.4.2 

5.2.4.3 

5.2,S.l .I 

5.2.5.2.1 

SO-113 
sD-114 

and 
SO-1 15 

S0..112 
and 

SO-113 

50-1 13 
50-1 14 

and 
SO-1 15 

SO0116 

50.!16 

SD-116 
and 

50-102 

and 
SO-1 18 

50-119 
and 

50-1 20 

Mean-time-to-un1 ock and carrier-to-no4 se 
rati., tests not conducted 

%60 k;.z doppler offset; s/b 255 kHz 
The 8-second two-way acpuisit!an time 
s/b 10 seconds (6-second upl ink acquisit ion 
+ 4-second down1 ink acqui s i  t ion) 

260 kHz doppler of fset ;  s/b 255 kHz 

Maximum transponder speci f ica t ion doppler 
ra te  i s  k5 kHz/s; maximum tes t  ra te  i t  
-4 kHz/, . 
1.0 radian modulation index as specified 
has been changed 

0.6 radian modulation index as spscjfied 
has been changed 

PREC/No > 66.0 dB-Hz; s/b 61.8 dB-Hz for 
upl ink aKd 70.7 dB-& f o r  downlink 
k60 kHz doppler offset; s lb  t55 kHz 

PRECINO 66.0 dB-HZ; s/b 61.8 dB-Hz 

260 kHz doppler offset; s/b t55 kHz 

PREC/No (up) 2 66.0 dB-HZ; s/b 61.8 dB-& 
PREC/No (down) 63.7 dB-&; s/b 68.3 dB-& 
PRECINo (down) - > 60.7 dB-&; s/b 65.3 dB-& 

0 PREC/No (down) - * 66.0 dB-&; s/b 70.7 dB-& 
260 kHz doppler offset; s/b i55 kHz 



4.4.4 Conclusions 

Overall, the STD# test  procedures are well thought out, 
well-written and generally meet the TRAS mquircrments. O f  the corrmsnts 
outlined tn  th is  report, mast have been addressed by the ES'TL personnel 
even though the ESTL has no plans t o  formally change the tes t  procedure 
docunentat i on. 

The maJor concern, of  course, i s  the STDN tests that  have been 
conducted with the HSP i n  a mode that no longer ref lects  the current 
operational practfces. It I s  reconmended that a t  least some tests be 
reconducted with the NSP i n  the proper mode i n  order t o  assure that the 
equinment w i  11 meet mission requirements. 

As previously stated, Axiomstix possesses a l l  three TRAS 
reports: STDN, TORS and AF/SCF (SGLS). Axiomatix has requested a l l  three 
corresponding test procedures but NASA has supplied only the STDN pm- 
cedures. This report. therefore, has evaluated only the STDN procedures 
and Asianstix w i l l  requlre the other two procedures should NASA desire 
a simi lar evaluation. 



4.5 Peak Requl a tor  Design and Performance 

During the f i r s t  quarter o f  1979 and p r i o r  t o  the decjsion 

being ma& t o  use the P I  internal  RMS type regulator f o r  the wideband 

bent-pipe signal ampl i tude control (see subsection 3.2.6), Axiomatix 

pu-sued a laboratory invest igat ion o f  the performance o f  a signal-peak 
type regulator. The purpose f o r  t h i s  a c t i v i t y  was twofold: 

(1) To demonstrate the simp1 i c i t y  o f  implementation using 
read i ly  avai lable integrated c i r c u i t s  

(2 To show tha t  the peak regulat ing loop would be stable 
and perforri; . a  expectations f o r  a l l  input waveforms. 

Figure 4.16 i s  a c i r c u i t  diagram f o r  the Axiomatix peak regu- 

l a t o r  breadboard, and Figure 4.17 shows the cornpanSon t iming log ic  c i r -  

cuits. Most o f  the regulator design i s  based upon operational ampl i f ie r  

configurations. The ampl i f i ers having the AD pre f  Ox are Analog Device 

types, and AD583 i s  the sample/hol d ampl i f ier .  Block AH01 52 i s  a FET 

switch used t o  discharge the peak detector capacitor (100 pf ) .  Clamp 

f o r  the e r ro r  voltage ampl i f ier  output i s  provided by the p a i r  o f  

reversed IN457 duo-diode groups. Timi ng waveforms are produced by mono- 

stable mu1 t i v i  brators. 

The RCA CA3002 was o r i g i na l l y  selected because o f  i t s  large 

gain control capabil i ty--up t o  70 dB f o r  a 1.5 V control voltage d i f f e r -  

en t ia l  range. When the ampl i f i e r  was tested t o  ascertain a l l  o f  i t s  

operating characterist ics, i t  was discovered tha t  the maximum input 

voltage had t o  be 1 imited t o  150 mv p-p. Above t h i s  value, v i r t u a l l y  

independent o f  the gain control bias, the ampl i f ie r  output exhibited a 

voltage saturation (compression) condition. The resu l t  was tha t  the 

ampl i f ier  could not be driven t o  the levels intended i n  the o r ig ina l  

design. This, therefore, necessitated an adjustment o f  the intended 

operating point and resulted i n  a regulat ing range o f  10 dB below the 

nominal input and 6.5 dB above the nominal input ( rather than t20 dB). 

I t  was decided, however, tha t  t h i s  would not compromise the prime rea- 

son f o r  the breadboard evaluation o f  demonstrating excel l en t  peak-to- 

peak regulation as a function o f  a var iety o f  complex waveforms plus 

4.5 MHz lowpass noise. 







The i n i t i a l  regulator breadboard was constructed w i th  a f u l l  

wave l i nea r  r e c t i f i e r .  This c i r c u i t  performed very well  as a function 

o f  input  frequencies up t o  2.5 MHz. Above 2.5 MHz, however, unsymnet- 

r i c a l  phase sh i f ts  appeared between the waveforms produced by the i nd i -  

vidual ha1 f-wave r e c t i f i e r  outputs. Further, the overal l  frequency 

response was l im i t ed  t o  about 3 MHz due t o  the i n a b i l i t y  o f  the AD507 

ampl i f i e r s  t o  preserve the harmonic structure o f  the f u l l  -wave waveform 

above t h i s  frequency. Rather than redesign the f u l  l -wave r e c t i f i e r  using 

d i f f e ren t  (wider bandwidth) ampli f iers, i t  was decided t o  use a l i near  

half-wave c i r c u i t  instead, as a1 1 the contemplated input waveforms are 

ampl i tude symnetrical . This change e l  iminated two AD507 ampl i f  iers, 
w i th  the resu l t  tha t  the half-wave r e c t i f i e r  response was found t o  be 

adequate up t o  4.2 MHz u t i l i z i n g  IN914 diodes. 

A l l  the remaining c i r c u i t s  performed essent ia l ly  as expected. 

The peak e r ro r  sampling ra te  was chosen as 1 kHz, and the peak detector 

averaging time per sample i s  0.99 ms. Thus, f o r  any o f  the various wave- 

form shapes considered, where the lowest subcarrier (sinusoid) frequency 

i s  expected t o  be about 30 kHz and random noise occupies the f u l l  4.5 MHz 

bandwidth, each peak sample should be very close t o  the t rue peak value 

o f  the waveform. Averaging over a thousand o r  so e r ro r  samples also 

provides the loop wi th  a reasonable rap id  response t o  dynamic input 

leve l  changes, but i s  su f f i c i en t l y  long t o  obviate response t o  very 

short signal transients o r  the poss ib i l i t y  o f  an occasional impulse 

noise burst. 

Table 4.26 summarizes the regulator performance measurements. 

As can be seen, the regulat ion range o f  -10 dB t o  +6.5 dB about the 

nominal (ca l ib ra t ion)  point  was achieved. 

The throughput frequency response o f  the regulator was measured 

exclusive o f  the LPF, and the 3 dB frequency was found t o  be about 5.2 MHz, 

the main contr ibutor t o  the r o l l - o f f  being a t t r ibuted t o  the +20 dB output 

ampli f ier.  With the input LPF connected, the throughput 3 dB frequency 

was 3.9 MHz. 
The remainder o f  the measurements made on the regulator were 

rather qua l i ta t ive  and consisted o f  mixtares o f  signal waveforms and noise. 

A 1.024 MHz sine wave (representative of a subcarrier), a 200 kHz square 

wave (representative o f  NRZ data), and random noise were combined a t  vary- 

ing levels and the regulator input and output observed on the scope. The 
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Tab1 4.26 l Measured Peak Rsgul a tor  Perfomance 
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800 1028 2.8 

I. 900 1050 

1000 1100 CA3002 Amp1 i f i e r  i n  Compression 
10.0 

A l l  voltages are i n  mV-peak 



performance was judged t o  be as expected. It was estimated that  the 
regulator was able t o  hold regulation on the 4.5 MHz noise peaks a t  
about 2.750. 

The regulator was never observed t o  exhibi t  instabi l  i t y ,  and 
was able t o  accomnodate input on/off step transients. 

Except f o r  the somewhat 1 i m i  ted regulator dynamic range o f  
16.5 dB, a1 1 other aspects o f  the peak regulator design and breadboard 
evaluation met the objectives set f o r  the ef for t .  If, i n  the future, 
i t  i s  desired t c  increase the dynamic range t o  the or iginal  design goal 
o f  40 dB, th i s  may be done by replacing the CA3002 amp1 i f i e r  wi th a FET 
or  diode current control led attenuator configuration. 



5.0 CONCLUSIONS 

This report  has covered Axiomatix's involvement and assessments 

w i t h  the evolving S-band hardware a t  TRW. The LRU's covered have been: 

(1 ) Network Transponder 

(2) Network Signal Processor 

(3) FM Transmitter 

(4) FM Signal Processor 

(5) Pay1 oad Interrogator 

(6) Payload Signal Processor. 

The f i r s t  four LRU's, which co l lec t i ve ly  represent the network 

hardware, have a l l  passed through the qua1 i f i c a t i o n  tes t ing phase o f  

development. As a resul t ,  Axiomatix's future involvement wi th  these 

un i t s  w i l l  l i k e l y  be 1 imited t o  t h e i r  performance as derived from sys- 

tem tests  and any malfunction problems tha t  might be a t t r i bu tab le  t o  

basic design flaws. 

Items (5) and (6 ) ,  the payload PI and PSP units, have both 
passed through the prel  iminary design phase, but await c r i t i c a l  design 

evaluations. (The CDR's are presently scheduled f o r  Apr i l  1980.) As 

indicated i n  Sections 3.0, 4.1 and 4.2, there exists a number o f  open 

design and performance issues on these LRU's. Thus, Axiomatix w i l l  con- 

t inue t o  monitor t h e i r  development progress and provide supporting anal - 
ys is  wi th  regard t o  design and performance f o r  a t  least  another year. 

Other work has involved evaluation o f  the network transponder 

QTP and the ESTL network equipment ve r i f i ca t ion  plans. The QTP review 

has been completed. More ac t i v i t y ,  however, i s  planned w i th  regard t o  

the ESTL procedures as the work t o  date has only c lass i f i ed  the tests 

i n  matrix form--i t  has not evaluated the t es t  configurations i n  de ta i l  

nor analized the data already produced from some test ing. 
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APPENDIX A 

DESCRIPTIONS OF THE PRINCIPAL AVIONIC EQUIPMENT 

ORBITER AND PAYLOAD COMMUNICATION SYSTEM OVERVIEW 

Figure A.l  i s  an overa l l  interconnect ion diagram showing the 
Shut t le  Orb i te r  p r i nc ipa l  comnunication hardware LRU's as wel l  as the 

funct ional  payload subsvstems. The fo1 lowing sections describe a t  a 

funct ional  d e t a i l  l e v e l  those Orb i te r  LRU's w i t h  which t h i s  contract  has 

been concerned. Descriptions f o r  the Payload Interrogator  and the Pay- 

load Signal Processor are found i n  the main body o f  t h i s  report ,  subsec- 

t i ons  4.1.1 and 4.1.2, respect ively.  

2.0 S-BAND NETWORK TRANSPONDER 

A funct ional  network transponder block diagram i s  shown i n  Fig- 

ure A.2. The received signal , processed through the preamp1 i f i e r  i n  the 

TDRS mode o r  through the transponder t r i p l e x e r  receiver  f i l t e r  (high o r  
low) i n  the SGLS o r  STDN d i r e c t  1 i ~ k  nodes, i s  ampl i f i e d  by a low-noise 

S-band input  ampl i f  i e r  p r i o r  t o  downconversion t o  approximately 240 MHz. 

A second coherent downconversion br ings the signal t o  31 MHz where, i n  

the TDRS mode, despreading i s  accomplished by the spread spectrum pro- 
cessor which uses a noncoherent code search loop. The TDRS despread 

signal i s  routed t o  the c a r r i e r  Costas loop used t o  derive phase t rack ing  
information. I n  the SGLS and STDN modes, the Costas loop conf igurat ion 

i s  a lso used t o  t rack  the residual ca r r i e r .  Demodulation o f  command and 

ranging signals i s  accompl ished using an o f f -1  i ne  wideband phase detector 
so t h a t  the Costas loop detector predetection bandwidth i s  optimized f o r  

t rack ing performance. Both tone ranging and data outputs from the 

receiver  are noncoherently AGC'd t o  maintain a constant RMS signal -plus- 

noise leve l  t o  the associated subsystems. 

A l l  frequencies are derived from two switchable VCXO subassem- 
b l i e s  and one reference c rys ta l  o s c i l l a t o r .  The reference o s c i l l a t o r  

operates a t  31 MHz and thus places the second I F  a t  31 MHz. This i s  suf- 

f i c i e n t l y  high i n  frequency t o  provide good f i r s t  I F  image re jec t i on  and 

s t i l l  a l low the use o f  narrowband second I F  f i l t e r s .  Channel se lect ion 
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Figure A.1. Orb i ter  and Payload Comnunication Equipment and Configuration 
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Figure A.2. S-Band Network Transponder Block Diagram 



i s  provided by changing the VCXO frequency. Each VCXO subassembly 

contains four VCXO's f o r  two-channel operation i n  e i ther  the SGLS o r  

STDN/TDRS modes. A simple unique mu1 t l p l  i e r  configuration i s  used, 

employing phase-1 ocked osci 11 ators t o  accompl I sh the ti25 (second LO) , 
x14 o r  x15 ( f i r s t  LO), and x15 o r  x16 (transmitter drive) multiplication, 
By simply changing the d iv ider  feedback rat ios,  the mu1 t l p l  i ca t ion  fac tor  
can be changed. Thls technique provides the wide percentage bandwidth 

multiplication required for multimode operation while y le ld lng very low 

spurious products. The f i n a l  f i r s t  local  oscl l1ator  mu1 t i p1  ica t lon r a t i o  
x6 o r  x7) i s  selected as a function o f  mode. 

The t h i r d  mixer i n  the second LO chain offsets the second LO f re -  
quency us i ng a 62 MHz reference signal so that  t he second I F  i s f lxed and 

does not vary as a function o f  received frequency. Therefore, the spread 
spectrum processor and the Costas loop preselection f i 1 ters  operate a t  

the same frequency regardless o f  input channel selection. The dr ive f re-  
quencies t o  the t h i r d  mixer are a t  twice the f i r s t  I F  and twice the re f -  

erence osc i l l a t o r  frequency. This eliminates the potential  problem o f  
generating a high-level signal a t  the t h i r d  mixer exactly equal t o  the 

f i r s t  IF  frequency, which could resu l t  i n  a self- lock condition. 
Down1 ink STDN o r  SGLS 1 inear modulation I s  accomplished a t  

about 560 MHz, then mul t ip l ied by 4 t o  S-band. An S-band sol id-state 
power amp1 i f i e r  provides a low-level (TDRS) o r  high-level (STDN/TDRS) 

output depending on mode select ion. 

3.0 NETWORK SIGNAL PROCESSOR (NSP) 

The block diagram of the Network Signal Processor (NSP) i s  

shown i n  Figure A.3. 

The NSP consists o f  individual forward l i n k  return l i n k ,  and 

record mode processing c i rcu i ts .  The three processes operate concur- 
rent ly ,  thus providing f u l l  duplex operation of the forward and return 

1 inks i n  addit ion t o  the record mode proce~sing. 

Mode controls define the par t icu lar  data rates, the nature o f  
the data, the need f o r  convolutional encoding and decoding, and the need 

for voice del ta modulating o r  demodulating. Interface controls define 
the input data source and the PCM telemetry source. 
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A l l  input data I s  introduced through the b i t  synchronizer, w i th  

four input  controls ident i fy jng the data source, one tnput control ident i -  
fy ing the data rate, and mother fnput control ldent i fy lng the hard o r  

s o f t  decisfon. When b i t  synchronization i s  achieved, a status b i t  i s  

provided t o  the MM. 
The b i t  synchronization data output and the derived clock are 

del ivemd t o  the convolutional decoder through selector A which has data 

inver t  control logic. Selector A i s  where the mode control determines i f  
the convolutional decoder i s  t o  be employed. I n  the coded mode, the con- 

vo1 ut ional  decoder provl des I t s  own data inversion capabi 1 1 ty. A t  sel ec- 

t o r  B, i f  the data i s  i den t i f i ed  as 000 data by mode control, i t  i s  gutput 
t o  the COMSEC u n l t  and clocked back ,>to the NSP af ter  decryption. 

Following detection (and decoding), the data i s  presented t o  

the fracz synchronization logic f o r  frame pattern recognl t ion. Once 
frame synchronlzation lock has been achieved, a lock signal inforins the 

MDM o f  the frame synchronization status. Final ly, the forward 1 ink func- 

t i o n  o f  demultlplexing and ra te  buf fer ing i s  performed. 
Comnand data i s  checked f o r  errors i n  the BCH decoder, modlfied 

appropriately, and stored I n  a buffer. A message-val i d  pulse i s  sent t o  

the MOM for every comnand word that  passes the BCH and vehicle address 

checks. Af ter  10 comnands have been recelved, a signal i s  sent t o  the 
#DM indicat ing a data-present status. Upon request, 32 16-bit words are 

sent t o  an associated subsystem. The f i r s t  word contains the status of 

the NSP, words 2 through 31 contain comnands, and word 32 contain a b i t  
f o r  each c o m n d  transml tted, representing the val i d i  t y  o f  that comnand, 

The return l i n k  consists o f  mult iplexing telemetry and voice 

data. The mult iplexlng function i s  keyed t o  the frame synchronfzatlon 

pattern included wi th the telemetry data. For DOD date, once the multi- 

plexing function has been performed, the data i s  routed t o  the COMSEC 

equipment f o r  encryption. A1 1 data (NASA o r  DOD) may also be convolu- 

t ional  l y  encoded as desired. Final ly, the coded o r  uncoded data i s  NRZ- 
to-Manchester converted p r i c r  t o  transmission. Return 1 ink data I s  
provided simultaneously t o  the S-band and Ku-band network. 

The record mode multiplexes the voice data only wi th the 

selected 138 kbps PCM data. I n  NASA submode 1, the 128 kbps telemetry 

I s  multiplexed w i th  the two dedicated voice channels. I n  NASA submode 2, 



the 128 kbps telemetry i s  simply routed t o  the d r i ve rs  f o r  transmission 

t o  the recorders. I n  the DOD mode, the recorder data i s  taken from the 

re turn  1 i n k  COMSEC encrypter ( e f f e c t i v e l y  bypassing the e n t i  r e  record 

mode processing log ic ) .  

4.0 FM SYSTEM 

Figure A.4 shows the diagram o f  the FM Signal Processor (FMSP) 

and Transmitter. The funct ions o f  baseband modu I ation, mixing, routing, 

impedance mat;:iing, and operat ional switching are accomplished by the 

signal processor. Payload signal s , whether they be wideband analog , 
high-rate d i g i t a l  , o r  low-rate d i g i t a l  , are buffered i n  a matching net- 

work and passed through the mode select ion and wideband ampl i f i e r  t o  

the FM transmitter.  

The FMSP and FM t ransmi t te r  provide a capab i l i t y  f o r  transmis- 

sion o f  data no t  amenable f o r  incorporat ion i n t o  the 1 imi  ted-rate PCM 

telemetry data stream. The data t o  be transmitted v ia  FM include t e l e -  

vision, d i g i t a l  data from the main engines during launch, wideband pay- 

load data, o r  d i g i t a l  data from the PR o r  the API. Video and wideband 

d i g i t a l  and analog signals are routed t o  the FM t ransmit ter  w i t h  only  

matching and f i l t e r i n g ,  but narrowbaird d i g i t a l  engine data a: 2 placed on 

subcarriers a t  576, 768 and 1024 kHz. No pre-pt,lphasis o r  other special 

processing i s  employed. 

The FM t ransmit ter  provides the functions o f  c a r r i e r  frequency 

modulation and RF power ampl i f icat ion.  It operates a t  2250 MHz wi th  an 

output power o f  10 W. Both baseband and RF f i l t e r i n g  are provided t o  

reduce out-of-channel interference t o  the Network Transponder, PI, and 

payload receivers. The nominal RF bandwidth i s  10 MHz. 

4.1 Ku-Band Signal Processor (KuSP) 

The Ku-Band Signal Processor (KuSP) shown i n  Figure A.5 performs 

the functions o f  data and signal processing f o r  the Ku-band forward and 

return l inks .  For the forward l i n k ,  two modes are avai lable: 

(1) A special mode f o r  ampl i t i c a t i c n  and impedance matching 
o f  data from the Ku-band receiver and communication processor assemblies 

f o r  del ivery t o  the NSP. 
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(2) A normal mode which performs the operations o f  b i t  

synchronization, c lock generation, ambiguity reso lu t ion  (data and clock),  

b i t  detection, frame synchronization, and data decomnutation o f  Ku-band 

received data. 

Return 1 i n k  s ignals are handled i n  the KuSP by modulating the  

data i n  one o f  two modes before up-conversion t o  Ku-band frequencies. 

The two selectable modes mu1 t i p l e x  three channels carry ing a wide va r i -  

e t y  o f  data. I n  mode 1, the PM mode, the high-rate data channel i s  con- 

vol  u t i ona l  l y  encoded before modulation onto the car r ie r .  The 1 ower r a t e  

data channels 1 and 2 are QPSK modulated onto a square-wave subcarr ier  

which is ,  i n  turn, PSK modulated i n  quadrature w i t h  channel 3 onto the 

ca r r i e r .  

6.0 PAY LOAD DATA INTERLEAVER (POI ) 

A block diagram o f  the Payload Data In te r leaver  (POI) i s  shown 

i n  Figure A.6. It i s  bas i ca l l y  a mul t ip lexer  capable of combining va r i -  

ous asynchronous data streams i n t o  a s ing le  s e r i a l  data stream. The PDI 

provides f o r  recept ion o f  up t o  s i x  asynchronous payload PCM streams, 

f i v e  from attached payloads and one from the PSP tha t  i s  ac t i ve  (detached 

payload). An input  switch matr ix  selects four  o f  the inputs f o r  the b i t  

synchronizers. The "chain" funct ions o f  b i t  synchronization, decomnuta- 

t i o n  and word select ion are provided f o r  up t o  four  simultaneous PCM 

streams i n  two possible modes: 

Mode 1: I n  t h i s  mode, a chain b i t  synchronizes, master-frame 

synchronizes, minor-frame synchronizes, and word synchronizes t o  the 

incoming data stream. The word selector  blocks data i n t o  proper words 

f o r  s to rage in  the data RAM and/or toggle bu f fe r .  PCM code type, b i t  

ra te,  PCM format, synchronization codes, and word select ion are program- 

mable under contro l  o f  the decomutator format memories. Two word 

select ion capabil i t i e s  for t h i s  mode o f  operation are as fol lows: 

Type I: The f i r s t  type selects a l l ,  o r  a subset o f ,  the 

words i n  a payload PCM format minor frame ( o r  master frame fo r  formats 

without minor frames) f o r  storage i n  the toggle buf fer .  
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Type I 1  : The second type of word se lec t ion  i s  by 
parameter. The spec i f i ca t i on  o f  a parameter consists o f  i t s  word loca t ion  

w i t h i n  a minor frame, the f i r s t  minor frame i n  which i t  appears, and i t s  

sample rate. The spec i f i ca t ion  i s  provided as p a r t  o f  the decomnutator 
cont ro l  memory format load, 

Mode 2: I n  t h i s  mode, a chain b i t  synchronizes t o  the incoming - 
data, blocks i t i n t o  8 -b i t  words, blocks the 8 - b i t  words i n t o  frames, sup- 

p l i e s  synchronization pa t te rn  a t  the s t a r t  o f  each frame, and includes 

the status r e g i s t e r  as the l a s t  three 16-b i t  words o f  each frame. A 
homogeneous data se t  f o r  t h i s  mode o f  operat ion i s  def ined as a l l  i n f o r -  

mation w i t h i n  t h i s  PDI-created frame, Code type, b i t  rate, frame length, 
and synchronization pa t te rn  are programnable under contro l  of the decom- 

mutator format memories. The frames are supplied t o  the toggle b u f f e r  

f o r  storage as homogeneous data sets. No data i s  suppl i e d  t o  the data 
RAM i n  t h i s  mode of operation. 

A status reg i s te r  containing the status and time f o r  a given 
chain operat ion i s  provided by the word selector  t o  the Toggle Buffer 

(TB) cont ro l  log ic .  This l o g i c  regulates access t o  and from the h a l f  
bu f fe rs  by the word selectors and the data buses. A1 1 requests for  TB 
data by the data bus por ts  are processed through the Fetch Pointer Mem- 

o ry  (FPM) and the Toggle Buffer I d e n t i f i e r  (TBI). The TB contro l  l o g i c  
a lso p a r t i t i o n s  data from the word selector  i n t o  homogeneous data sets 

f o r  access by the data bus ports.  

The FFP! i s  used t o  i d e n t i f y  which TB i s  t o  be accessed by a 
data bus por t .  It also allows access t o  any loca t ion  i n  the data RAM 

by any o f  the PDI data bus por ts  a t  any time. FPM contro l  l o g i c  routes 
a l l  requests f o r  TB data t o  the loca t ion  i n  the FPM i d e n t i f i e d  by the 

data bus command word. It fu r the r  provides f o r  loading and reading o f  
formats t o  and from the FPM a t  any time by the data bus ports.  

A data RAM f o r  storage o f  data from the word selector  by param- 
e t e r  i s  provided. The data RAM contro l  l og i c  steers data provided by 

the word selector  i n t o  addresses i n  the data RAM spec i f ied  by the decom- 

mutator contro l  memory. 
There are three data bus por ts  f o r  in ter face w i t h  the Orb i te r  

GPC t h a t  have read and w r i t e  access i n t o  the switch matr ix,  the decom- 

mutator contro l  memory, the FPN, the PDI ,  and the data RAM. 
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7.0 MULTIPLEXER/DEMULTIPLEXER (MDM) 

The primary in ter face u n i t  between the GPC and other subsystems 

i s  an MDM, shown i n  Figure A.7. The MDM's ac t  as a GPC-tooorbiter format 

conversion un i t .  They accept s e r i a l  d i g i t a l  information from the GPC's 

and convert o r  format t h i s  information i n t o  analog, d iscrete o r  se r ia l  
d i g i t a l  form f o r  t rans fer  t o  Space Shut t le  subsystems. The MDM's can 

also receive analog, d iscrete o r  se r ia l  d i g i t a l  information from the 

Space Shut t le  subsystems and convert and format these data i n t o  se r ia l  
d i g i t a l  words f o r  t rans fer  t o  the GPC. I n  addit ion, MDM's are used by 
the instrumentation subsystems, but only i n  a receive mode. Each MDM i s  

cont ro l led  through e i t h e r  the primary po r t  connected t o  the primary ser- 

i a l  data bus o r  through the secondary po r t  connected t o  the back-up 
s e r i a l  bus i f  f a i l u r e  i s  encountered w i th  the primary system. The input  

and output o f  the MDM are v i a  a mul t ip lexer  in ter face adapter (MIA). 
When the Word Discrete i s  switched t o  d l og i ca l  "1" state, the Orbi ter  

subsystem i s  enabled t o  transmit ind iv idua l  words t o  the MDM. The burst  

data ra te  t o  the MDM i s  1 Mbps, and the f i r s t  three b i t s  o f  each MDM 

word are used f o r  word synchronization and are d i f f e r e n t  from the normal 
Manchester-coded b i t s .  When the Message Discrete i s  switched t o  a l o g i  - 
ca l  "1" state, the Orbi ter  subsystem i s  i n i t i a t e d  t o  t rans fer  mu1 t i p l e  
words under the contro l  o f  the Word Discrete, beginning w i th  the f i r s t  

word. 
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APPENDIX B 

PROCEDURE TO CALIBRATE THE SHUTTLE LRU TEST SET 
COMMERICAL B I T  SYNCH AGAINST THE EM NSP B I T  SYNCH 



7 

I 

I 
I 

f 

7 - 1  - - - 
b 

* 
4 

TRW 
m r r m r  uarr 

ONC SPACE PARK REOONDO BEACH, CALIPO~NIA 

COM I M N I  11982 

9 
TITLE 

PROCEDURE TO CALIBRATE THE SHUTTLE 
LRU TEST SET COMMEPICAL BIT SYNCH 

6 AGAINST THE Elf t4SP B I T  SYNCH. 

DATE JUNE 22, 1978 NO. WR-06H-2OA 

SUPERSEDING: WR-06H-20 
MAY 1 5 ,  1978 

REFERENCE PClm 
EOHnGliF."..TIJII 8 DhTA MIlrYAGIMm 

ISsm 

I 

JUN 141979 

rm MI BE uw'till~~m ~1mj 

PREPARED BY: w.A. &&+ u. R. Hook 

APPROVAL SIGNATURES: 

p L ~ L  74 ;7g  

fl f l  fd* 7- 6-7F D a- ~i,h4/7 5 ~ 7  C d 

D A + C  

mvm~swm u n f i  n s u * ~  



9 1. OBJECT 

The general object  of t h i s  procedure i s  t o  ca l ib ra te  the LRU tes t  set  

c m e r c i a l  b i t  synchronizer against the EM NSP b i  t synchronizer I n  order t o  

allow a meaningful evaluation of the absolute BER performance of the f l l g h t  
I, transponder when tested w i th  the LRU tes t  set. The speci f ic  information 

which can be obtained from th f s  ca l ib ra t ion data includes: 

a Ver i f i ca t ion  tha t  the f l i g h t  transponders wi71 perform approximately 

the same as the EM transponder when operated wi th the EM NSP. 

a Ver i f i ca t ion  that  there are no anarnolous and/or catastrophic BER 

degradations which w i l l  not be detected usfng the (primary) 

functional t e s t  procedure pass l fa i l  degradation c r i t e r i a  and 

t e s t  method. 

This ca l ib ra t ion data I s  not t o  be used i n  the calculat lon o f  the - 
(RI specified) transponder degradation perfornance. Rather i t  i s  t o  be 

used t o  carry out an independent cross-check which w i l l  increase con- 

fidence t ha t  the BER performance of the f l i g h t  transpoqder, when operated 

wi th  f l i g h t  NSP1s, w i l l  be as expected based on the resu l ts  of the LRU tests. 

T -, 7- dsgr.dr t ioh-J ts.,uhiCh.-T,~,abfrW 
~ ~ t h i a c a t ~ b r a ~ ~ n i l ~ ~ i ~ a i f ~ t . o t l y  p m t x ~ & h u A a & ~ h i c h .  can be .- 
dbhinedwsiq:* mmtimd artlhat ia,the ,functions l test  practdurt-4Ra. 
T ~ i t ~ 7 n e t M W ~ f g r i ~  s e l l  -of f .  Nevertheless , 
each transponder must pass the t es t  outl ined i n  th fs  procedure, as well  as pass 

the primary FTP test.  

2. APPROACH 

The general approach i s  t o  measure the performance of the EM transponder 

wfth the EM NSP b i t  sync using the subsystm tes t  set a t  TRW Redondo Beach. 

Next, t o  ship the EM transponder t o  TRW CE Colorado Springs and t o  remeasure the 

same data using the comercia1 b i t  sjmc wfth the LRU Test Set. Final ly ,  t o  

ship the EM transponder back t o  TRW Redondo Beach and t o  confinn tha t  the 

shipping process did not change performance. The speclf  i c  steps f nclude: 



2.1 Measure the BER performance a t  32 Kbps coded and 32 Kbps uncoded using 

the EM transponder and EM NSP; use the subsystem tes t  set; obtaln BER as a 

funct ion of C/No. (Typical curves are shown i n  Figure 2-1s and 2-lb). Ver l fy  

tha t  BER perfonance i s  compara b l  e t o  prevf ous measured results. 

2.2 Shlp EM transponder t o  TRU CE. 

2.3 Measure the BER perfonance a t  32 K ~ P S  uncoded using the EM transponder 
and the conmerclal b i t  sync; use the LRU Test Set; obtain BER as a function o f  

C/No (see Figure 2-lc f o r  typ lca l  n s u l  t ) .  The difference ("del t a w )  between 

t h i s  curve and t h ~  uncoded curve obtained f n  Step 2.1 I s  the ca l ib ra t ion fac tor  

which allows the predict ion of the ul t imate subsystem performance o f  f l i g h t  

un i t s  tested w i th  the LRU t e s t  set. Notice that  t h i s  dif ference "delta" ln -  

cludes the difference between the subsystem tes t  set measurement of C/No 

and the LRU t es t  measurement of C/No, as well  as the i n t r i n s i c  perfomncc 

dif ference between the two b i t  syncs. 

2.4 Measure the BER performance a t  10.29 KBPS uncoded using the EM 

transponder and the comnercial b i t  sync; use the LRU t es t  set; obtain BER 
as a function of C/NO (see Flgure 2-2a for typ ica l  resu l t ) .  This 1s the 

curve that  allows a d i r ec t  comparison of the f l i g h t  transponder wi th  the EM 
transponder, and i s  the basfs for the secondary pass/ fa i l  c r i t e r i a ,  which t h i s  

procedure i s  designed t o  provide 

2.5 Establish the f l i g h t  transponder secondary pass/ fa l l  l fmf t by 

adding 0.3 dB t o  the resu l ts  of Step 2.4, as shown i n  Figure 2-2b. (The 

0.3 dB includes an allowance for b i t  sync performance variation, plus an 

a1 1 owance for C/No set t ing uncertainty). 

2.6 Ship EM transponder to  TRW Redondo Beach. 

I 2.7 Repeat Step 2.1; ve r i f y  tha t  resu l ts  are wi th in  0.2 dB o f  Step 2.1. 
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APPENDIX A - MEASUREMENT OF C/No USING THE SUBSYSTEM 

TEST SET 

9 

There are two C/N programs (C/NB and CNO); both programs have a 

d i f ferent  method of measuring C/N. It f s  understood tha t  the ideal  
receiver i s  set  up properly when the answers o f  both the programs 

(C/NB and CNO) agree wf t h f  n .06 dB. A br ie f  descript ion of the 

programs i s  contafned below. Figure A1 i s  the t e s t  setup. The 

FORTRAN l i s t i n g s  are also attached. 

1 .  PROGRAM CINB 

a) Measure noise leve l  a t  D wf t h  A and B terminated and C 
f n  th ru  posftion. 

b) Set signal t o  same leve l  a t  D as measured a t  D above 
w i th  signal routed i n  thru  d i rec t iona l  coupler por t  v ia  B,  

and C terminated. 

c )  Add nofse t o  above (b) signal by switching C t o  th ru  
pos:tion wi th  separate signal and noise now appl ied 

t o  the Ideal RX a t  coupler. Note leve l  a t  D. (Thfs 
should be 3.0 dB f ncrease. ) 

d) Add s ignal  t o  noise a t  A and terminate B. Use "Power 
Set" program t o  set level  noted a t  step (c )  above. 

e) lvParer Set" l eve l  i n  (d) above i s  leve l  tha t  ca r r i e r  

equals noise. 

2.0 PROGRAM CNO 

a )  Suppress signal a t  A and terminate 6 and C i n  
th ru  posf t ion. 

b) Measure noise a t  D (note leve l ) .  

c )  Using "Power Set" program increment sf gnal untf 1 leve l  
f s  w i th in  .O1 dB of the leve l  measured i n  (b) above 

+3.00 dB. (Note Power set  1 eve1 . ) 
d) Power set  leve l  I n  (c)  above f s ca r r i e r  equal nof se. 
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I O R E R  C / W O  T E S T  P R O G R I M  
20FEK a t o e e ~ ~ o * ~ * ~ o * e ~ t * * e o * a  * * o v o e * o + *  
3 0 R E R  S I C W f i L  C W O I S E  R A T C H I N C  & S U N U I N C  
@ORE! 
SORER = t s =  t~ t = t  f t  r t t  = t c = = r = f ~  = = r  = = = = I = = =  =I=== ~ = ~ = = = = 8 8 8 = ~ r n = c = c ~ ~ ~ ~ ~ ~  

6 0 R E Y  GET PROCRA?! TUPM-OH P A R f i Y E T E k S  L l H l T I A L l Z E  
7 3 R E t  -------------------------me------ ----------  
80 RE tl 
1 2 0 R E R  P Z  = UUT C O N F I C U E a T I O N  0 FOR C/NO T E S T  - TEST SETUP B Y P k S S  
1 3 0 R E l r  = W E C f i T l V E  V G L U E :  Cf iUSES TEST SET  SETUP B Y P A S S  
1 4 0 R E t l  = 9 9 4 9  : C k U S E S  U U T  C O ~ F I C L ~ F * T I C I ~  6'i'FnSS 
150R€R 
1 6 0 R E H  P 3  = <UNUSED> 
1 7 O P E R  
1 8 0 R E M  P4 = I N P U T  S I C N f i L  POYER FOE C/WO S E T P O I N T  - TRUE V Q L U E  I N  DBR 
1 9 O R E f l  = 0  : UUT C O H F I C U R A T I G N  T f i E L E  VALUE 
2 0 0 R E R  
2 4 0 P E V  
2 5 0 L E T  P 2 r 7 0 0 1  
2 6 0 t E T  P 3 - 0  
2 7 0 L E T  P4.0 
29 CIP E Pl 
2 8 0 P E H  L 9  = L U  a FOR HQPDCOPY GUTPUT 
3 0 0 L E T  L 9 = 6  
3 1 3 R E t l  L9 = L U  4 FOR DEBUG O U T P U T  
3 2 0 L E T  L s - 3  RT,,ROD UCmll ,ITY OF 
3 3 3 R E t l  0 = N O I S E  B d W D U I D T H  ( 0 0 )  
3 4 3 L E T  B=O 

pi\Gi.: 1s PC('!' 
OUIGWAL 

350REW R = I N I T I A L  PUR R E S E T  FOR F I N A L  C / N - -  
3 6 0 L E T  R = - 1 0 1  
3 7 0 R E l l  
380REW 
3 9 0 P R I N T  8 L ? ; w T U R H O N  PAPRS ' ;P i? ,P3 ,P4  
4OOPEW 
4 :  C p E E  = = I = = = =  ~ L L D = = = L ~ = x L ~  r e = c = = t e ~ = e r = = = = ~  t t t = =  = = = = s = = = = =  K = = c =  = = = =  
4 2 0 R E t l  TEST  S E T  S E T U P  
4 3 0 R E R  -------------- 
44OREW 
450!F ( P 2 < O ) C O T O  5 0 0  
4 6 0 L E T  El=SETUP( 7 0 0  
4 7 0 J F  ( E 1 I O ) C O T O  3 4 4 0  
4 9 0 P E l l  
4 9 0 p E f i  r = = = =  t = e r t  rr r t t  r t  r X=I=D=~=X=I=~IL: = r : r = = = z = =  = e = c = = = = e c e c c = =  = = x =  
S O O P E N  U U T  t I N P U T  SI CNALS C O N F I C U R A T I  ON 
5 1 0 ~ ~ ~  . . . . . . . . . . . . . . . . . . . . . . . . .  -------- 
5 2 0 R E R  
S 3 O P P I N T  'C/W - PUP L E V E L  C O R R E L A T I O H *  
5 4 O m C 1 M T  @LB:. C / H  - PUR L E V E L  C O R R E L f i T 1 O f l w  
550?f-3 B A S I C  T I R E - D h T E  COHVERSIOH L P R I N T O U T  
S C O 1 . F T  D 9 = T I R (  2 )  
570FOP H 9 = l T 0  12 
! !SOLET S 9 = 3 1  
5 9 0 I F  ( R q . 2  ) L E T  S9=28 
6001' ( R 4 = 4 0 R  R 5 = 6 0 R  R 9 = 9 0 R  M 9 = l l  ) L E T  S 9 = 3 0  
6 1 0 1 F  ( b 9 < =  S 9 ) C O T O  640  
6 2 6 L E I  V9=6)-!99 - 
6 3 0 H E X T  H 9  
6 4 0 P P I W T  P L 8 : '  DATE = m ; 1 1 9 : * / w ; D 9 ; w / m ; T I R ( 3 ) ,  * T I R E  = w ; T I t l (  1 ) ;  * :  '; T r r c o  1 



6 5 O P P I U T  DCONf I C U R 4 f  I O N  0  mD;P2  m-06H-20 A 
6 6 O P R I M T  818; '  C O N F I C U R A T I O M  8  m e t P 2  
6 f O P R I N T  
6QdPP1WT a T € R U f U B T E  POYER VEIER tXTERWaL T O R T  t N  3 0  OHRS' 
C9OPAUSE 
?OORER 
7 1 0 1  F l ( l B S ( P 2 ) = 9 9 9 9  )COT0 760 
72OREM 
7 3 3 L E T  E l * C F ( A B S ( Q P ) )  
7 4 0 I F  (E1OO)COTO 3 4 4 0  
?SORER 
~ ~ O I F  ~ n e s ~ e 4 ~ = o ~ c o r o  7 9 0  
770GGTG 5 7 0  

-?BORER 
7 9 0 I F  ( A B S t P 2 ) 1 9 9 9 9  ) C O T 0  830 
8OOLET E l = - 9 0 1  
81OGOT0 3 4 4 0  
62ORER 
&3ORE H R E T R I E V E  C O H F I C  1 aBLE POUER 
6 4 0 C A L L C T P U R ( P 4 )  
%SORER 
8 6 O R E t  B = X ~ B ~ ~ = X ~ ~ X ~ ~ ~ = = ~ ~ ~ ~ = ~ ~ I ~ . L B I ~ ~ I I I X ~ ~ C ~ = X ~ B ~ ~ = = C ~ = = B = B B B = ~ ~ = ~  

6 7 0 P E I l  PARARETER RECOVERY 
8 9 0 R E R  ------------------ 
l390RER 
5OOLET P s - A B S i  P I )  
9 1 0 R E N  
9 2 0 C A L L R 0 8 1 T ( 3 6 1 8 1 C )  
9 3 0 1  F ( c r  I ) G O T O  9 7 0  
9 4 O P i ? I H T  'STDN H I - P U R  RODE' 
9 5 0 P R I H T  OL8; '  STDN HI -PUR MODE'  
9 6 0 C O T 0  1 0 6 0  
~ ? O C A L L R D B I T ( ~ ~ I ~ , G )  
9 8 0 I F  ( C 1 1  ) C O T 0  1030 
9 9 O L E f  C = G + l  
1OOOPRl NT ' T D R S  f lObE '  
l o l 0 P R I H T  # L e i  T O R S  R O D E m  
102SCOTO 1 0 6 0  
l O 3 O L E T  € 1 1 - 9 0 2  
1040GOTO 3446  
1 0 5 0 R E H  
1 0 6 0 C R L L R D B I  T( 3 6 1  1 I F )  
1 0 7 3 1 F  ( F = O ) P R I N T  ' F R E O  LO' 
1083Ic < F = O ) P R I M T  OLCI;~ FREQ LOm 
1 0 4 3 1 F  ( F = 1  ) P R I N T  'FREO H I m  
11631F ( F = l ) P k I N T  # L O ; '  FREO H I D  
1 1  I O P R I  WT ' N O I S E  BY r 8 , 0  
1133PRINT OL8; '  N O I S E  BY =',B 
1;3OPRI WT # L a  
1 VqOVER 
I l f a R E R  I = = = = =  = 8 8 = r  '88 t ~ c m r m e  m 8 8 1 ~ 8 = 8 8 ( ~ =  =SIB e18c= c ~ 1 ~ e m ~ m m 1 ~ c ~ c 8 ~ ~ 8 ~ 8  

l l 4 O R E R  t b  SETUP % NODE R E S E T  
$1 ?egEn --- -------- ---------- 
I l b O R E R  
1 1 9 :  LET E l = C R ( 6 1 , 0 )  
1203IF C C 1 8 0  ) C O T 0  3 4 4 0  
121ORER 

'1223 Tr TF- 
1 2 3 3 L E T  E i l F O ;  1 r 2 0 4 1 . 9 4 7 v B l i )  
1 2 4 9 1 F  < E 1 @ 0  )COT0 3 4 4 0  



I~EPRODUCIBIl , l~y  OF THE 
ORIGmAI. PAC C IS POOR 

0 1 2 6  132bIF ( E l 0 0  )COT0 3 4 4 0  
0 1 2 7  1330REH 
6 1 2 9  l 3 4 O L E T  E l = h T \ 2 , 1 3 3 )  
0 1 2 9  i 3 5 0 1 F  ( E l 0 0  )COT0 3 4 4 0  
0 1 3 0  13COLET E l s S Y I  2 7 t O )  

) 0 1 3 1  1 3 f O I F  < E l O U ) C O T O  3 4 4 0  
0 1 3 2  138OLET E i c S U t  2 6 1  1 )  
0 1 3 3  1 3 5 3 1 F  ( E l f i O  )COT0 3 4 4 0  

+ 0 1 3 4  1 4 0 3 L E T  E l e S U C  4 4 , 1 )  
I 0 1 3 5  1 4 1 0 I F  < E 1 1 3 ) C O T O  3440 
1 0 1 3 6  1423REM 

0 1 3 7  1 4 3 0 L E T  € l = P M C  - 1 0 0 0 )  
I 

0 1 3 6  1 4 4 . ? I F  ( € 1  i 6  ) G O T O  3 4 4 6  
I 

i 0 1 3 9  14SOLET E l t S Y i  4 4 8 1 )  
0 1 4 0  1 4 6 0 I F  (E18O)COTO 3 4 4 0  
0 1 4 1  1470REM 
0 1 4 2  140*?LET E l . S Y C 4 6 ' 6 )  
0 1 4 3  1 4 9 S l F  ( € 1 0 0  )COT0 3 4 4 0  
0 1 4 4  1 5 0 0 L E T  E l r S Y \ 4 7 , 0 ~  
0 1 4 5  1 5 1 3 i F  ( E l 0 3  )GOTO 3 4 4 0  
0 1 4 6  1 5 2 3 L E T  E!=SU< 4 8 1 6 )  
0 1 4 7  1 5 3 3 I F  ( € 1 # 3  )COT0 3 4 4 0  
01 ' "  1543REH 
0 .  1553REM S U I T C H  ASSY CONNECTIONS 
0 1 5 0  1560REW LH --) F H  TX 2 
0 1 5 1  1573REW UL - - >  DPLXR H I  O R  LO 
0 1 5 2  1 5 6 3 F 3 0  K - 4 7 T 0  58 
0 1 5 3  1 5 9 - > L E T  E l = C W ( K , O )  
0 1 5 4  1 6 0 0 1 F  ( E l # O ) C O T O  3 4 4 0  
0 1 5 5  1610NEXT K 
0 1 5 6  162OLET E l = C H (  4 8 1  1) 
0 1 5 7  1 6 3 0 1 f  ( € 1 0 0  )COT0 3 4 4 0  
0 1 5 8  1643LET E l = C N ( 5 4 , 1 )  
0 1 5 9  1 6 5 0 I F  I E I # O  )COT0 3 4 4 0  
0 1 6 0  1 6 6 0 L E T  E l = C W <  5 5 , l )  
0 1 6 1  1 6 7 3 1 F  (E1OO)COTO 3 4 4 0  
0 1 6 2  I b f l h I F  ( F = O ) L E T  E l s C R ! S l I l )  
0 1 6 3  1 6 9 3 1 F  < € l a 0  )COT0 3 4 4 0  
0 1 6 4  1 7 0 0 1 c  ( re f  ) L E T  E l = C N ( 5 2 , 1 )  
0 : 6 5  1710IF ( € l a 0  )COT0 3 4 4 0  
0 1 6 6  1723REV 
0 1 6 7  1 7  33REn r t = ~  n r ~ a ~  ==~~IcL=~.~xIII ~ s s ~ ~ ~ ~ c ~ e e e c e t = e  = = = e x  = a = t = = = 8 = 8 = = S * =  

Of68 ,1%QEll IWSTRUCTTON QUTPUT 
0 1 6 9  sf S o p  EN ------ ------------ 
0 1 7 0  37&9RLW 
0 1 7 1  J??OPRINT . C O W H E C T  P R E l M P  OUT PUT ' J I '  TO I D E A L  RCVR S - B A N D  l W P U T D  
0172 t ? b 3 P k I N T  aCONHECT S Y  A S S Y  OUTPUT ' J 7 '  T O  C O U F L E D  POUT OF 1 0  Db C O U P L E R '  
0 1 7 3  1 7 9 O P P I V T  . P O Y E P  UP ' R F ' ,  ' I F ' ,  A Y D  ' L O '  a M P L I F E P S D  
O !  1 9 0 0 P k I H T  .COYHECT I D E A L  RCVP ' I F '  a f lc  OL'rF'UT T O  SPECTRUW A W R L Y L E R  
0 : l R 1 Q P P I W T  .CQYWECT I D E A L  l C V R  'LO' TO U P L I N K  SOURCE PORT' 
e I t 6 '  1 d t d R E R  
0 1 7 7  IfI30REH 
0 1 7 8  1 8 4 3 P E R  R ~ ~ ~ ~ ~ ~ ~ W W ~ ~ ~ ~ W ~ W B W C C ~ R ~ C W ~ W ~ W W ~ I ~ ~ ~ B ~ ~ ~ ~ I C ~ C ~ ~ ~ ~ ~ ~ ~ ~ ~ C C ~ ~ ~ ~ ~  



1853REn TUNE ' I F '  F I L T E R  
1660REH 
18fOREW 

-tBb*SCRiUT W 9 T @ R . ' * l t F 8 1  * ¶ C 4 . + l t , R S  QW %WRI€R fit 260 U M Z m  
l 0 9 O P A U S E  

-3909LtT * t r t Y < * * , t *  
1 9 1 6 1 F  (E !#O)COTO 3 4 4 0  

19WLET E l m S M i  4 7 , t  > 
1 9 3 S I F  ( E l m 3  ) C O T 0  3 4 4 0  

1 9 4 0 t E T  E l = S U ( * B , l )  . 
1 9 5 0 I F  ( € 1 4 3  ) C O T 0  3 4 4 0  
. i , r o ~ ~ n  
1 9 7 6 ~ E T  El=PY: - A B S i  P 4 ) + 1 0 )  

--It: ( € 1 0 0  )COT0  3440 
1 9 5 3 L E T  E l = S U < 4 4 ,  I )  

96601F-<Ei#O )COT4 3446  
2 0 l O F t E f l  
2 0 2 3 P R I N T  mCO!4NECT I D E A L  R C V R  ' I F '  AMP OUTPUT TO POVER HETER E X T  PORTm 
2 0 3 3 P k I H T  ' D l S C D N H E C T  10 DB COUPLER COUPLED PORT I N P U T  & T E R I l I N A T E m  
2 0 4 3 P R l N T  l ' C O U P L E R '  Y I T H  50  O H R  LOADw 
2 0 5 3 P k I N T  .OO MOT H A K E  A M Y  P O Y E R  M E T E R  C l L L S  Y H I C H  R E Q U I R E  Z E R O I N G  
2060REH 
2 0 7 o P a U S E  
2 0 8 3 R E H  . 
2093REU * ~ ~ = = = P ~ L = = ~ S ~ = = X I I I I ~ I ~ I I  t = t i = =  I= == = = = = a = = = = = =  ====I m =  = B  

i l O 1 ~ R E t !  R E 4 0  P k E A I P  N O I S E  L E V E L  
2 1  1 O R E n  ------ ---- ------------- 
21 2SREU 
i l 3 3 L E T  E l t S U i  3 7 , l )  
2 1 4 3 I F  ( E 1 O O ) C O t O  3 4 4 0  
2 1 5 S P k I H T  m U 2 1 T  FOR N O I S E  L E V E L  OH PUR HETER TO S E T T L E m  
21 6OPCIUSE 
2 1 7 O L E T  E l ~ P M ( l ~ M ~ - I O )  
2 1 0 3 1 F  t E 1 O O ) C O T O  3440 
21 9 0 P R I  HT 
2 2 0 0 P R I  WT mOUTPUT P R E A f f P  UOISE PYR.mzU 
2 2 l O P k I  NT B L B ; '  OUTPUT PREAHP WOISE P U R = ' t N  
2 2 2 0 P R I ) I T  
2 2 3 O R f H  

. 2240REM f = = = r n f  = = = u = = m = = t e  f 8 I = = t t m = m m f I t 1 t t = f I I ( I = 8 = - ~ m ~ t ~ ~ f ~ = I f I * ~ ~ I ~ m  

2233REV REOD ' I F '  AMP M O I S E  FLOOR 
2 2  60 R Efl ------------------------- 
2 2 7 0 R E H  
2 2 0 O P R I M T  aOISCOWMECT THRU P O R T  I M P U T  
2 2 9 0 P R I H T  * T E R N I N A T E  COUPLER Y I T U  5 0  OHH L O A D m  
2 3 0 0 P A U S E  - 
2310REM 
2320LET E l = P f f ( l . Y ~ - l O )  
tSt6IF t E l = O  )COT0  2380 
2 w . f ~ ' t ~  la-241 SCC)T6 344e 
2 3 S v p R t U T  #LB:. 'IF' AMP M O I S E  FLOOR < ? O m  
Z T 6 4 P f i l f i T  *JffA--WIQ l l 0 l S E  f L U O R  i-?V 
237D"rORI 2420 
2 3 0 i P R I W T  * t . % t m d i f '  4I1P I O I S E  f L O O R  m g t Y  
2 3 9 a P R I H T  " I F '  ARP N O I S E  FLOOR r g r Y  
2 4  0OREfl 
341QPEf l  r e r ~ m ~ ~ m ~ r ~ r r m m r m m m m ~ ~ m m w m m m m m m ~ m m m ~ m ~ m ~ m ~ n ~ m m e m m m m m ~ m m f m ~ m 8 ~  

--24 m € c ) - u € n B ~ t ~ t -  
2 4 3 0 Q E n  ------------------- 
2 1  40 R EM 

f 4  



3239 '     SO PRINT o ~ ~ c ~ ~ ~ ~ c ~  COUPLED P O R T  INPUT l YI-O~H-20 A 
> 2 4 0  24bOPAUSE 
3 2 4 1  2470REf l  
:2d'', 2 4 9 ? i E T ~ i = ? ~ : ! . ; S , - 1 0 >  
3 2  249OPRIMT OLT: gOUT?UT 81CMAL f M I m " , S  
324, - 2 5 0 0  I F  ' (E1aO)COTO 3446 
3245  2516RER SICNAL POYER HORINC LOO? 
3 2 4 6  2520FOR U = l T O  3 0  
3 2 4 7  253SLET E*S-N 
3 2 4 8  9 5 4 0 L E T  I=-( I W T ( 1 0 0 * E ) / 1 0 0 )  
3 2 4 9  2 5 5 0 I F  < d B S (  I )=O)COTO 2 6 4 0  
3 2 5 0  2 5 6 0 L E T  P * P * I  
1  2 5 7 0 P R I N T  aL9 ;  ' SIGNAL lNCmm;  1 1  ' INPUT S I G N A L  P U f . = " ; F  
3 2 5 2  ' P S 8 3 ~ f f  E l=AT3CIDC- I )  

' > 2 5 3  2 5 9 3 1 F  ( € 1 8 3  )GOTO 3 4 4 0  
3254  2 6 0 0 L E T  E l e P R <  1  ~ S I - 1 0 )  
3255  2 6 l O P R I N T  OL9; 'OUTPUT SICNAL ?UR='r S 
3 2 5 6  2 L 2 3 I F  ( E l O 3  )COT0 3 4 4 0  
5 2 5 7  2630HEXT K 
3 2 5 8  i 6 4 S R E t l  
9 265SPRINT .IUPUT SIGNAL PYR TO COUPLER = ' t P  
3 2 6 0  2 6 6 0 P R I H T  OL8: '  IWPUT S I C N Q L  PUR TO COUPLER r W : P  
2  2 6 7 3 P R I H T  'OVTPVT S I C N Q L  s ' ;S, 'NOISE ' ; M  
3 2 6 2  2603PRIWT 8 L 8 ; '  OLITPUT StCNRL PUP = ' : S  
3 2 6 3  2693RER 8 t z 8 = 8 8 n 8 r r r = r r t r r = 8 8  8 8s 118 8 1 c m r 8  8 8 . : ~ ~  . : 18~s=8e8  8 8 s  8s 8 8 8 8 8 8 8 8 = 8  

4 5 7 0 4 R E t i  R E w D  C u  SIGNAL + N O I S E  LEVEL 
3 2 0 5  2710REPl 
3 2 6 6  2729PRINT  'RE-CONNECT THPU PORT INPUT ' 
5 2 6 7  i 730PAUSE 
9 2 6 '  2740LET E l=PW< 1 , T 1 - 1 0 )  
3 5 2 7 5 0 1 F  ( E l # 3 1 C O T O  3 4 4 0  
0 2 7 ~  2763REM 
9 2 7 1  277OPRINT 
0 2 7 2  2783PRINT  BOUTPUT S I C H f i L  + NOISE 
3273 2790PI t IWT $L8: .  OUTPUT SICNAL + NOISE O U R  = .;T 
0 2 7 4  2800PRINT  OL0 
0 2 7 5  2910PRINT  
0 2 7 6  2820REM 
0 2 7 7  2833REf l  r 8 s t  rrr m r r r = r =  m s ~ t r  8 t  8 t 8188  1 8 t r m  t 8 t 8 8 1 8  88  = 8 s = 8 = 8 =  8s.: 8 8 = =  = 8888  

0 2 7 8  284OREM RESET PUR 
0 2 7 9  2850REf l  ---------------- 
0 2 8 0  2960REfl 
6 2 8 1  i S 7 4 P t i I U T  mTEUf l INATE P O Y E R  HETER EKTEkHAL P O R T n  
0 2 8 2  2 8 8 Q P I U S E  
0 2 8 3  2890REM 
0 2 8 4  2 ? 3 3 L E T  E l s S Y i  4 6 8 0 )  
3 2 8 5  29 1 C  I F  t E 1 8 3  )COT0 3 4 4 0  
0 2 8 6  29;!LET E l = S Y <  47 ,O)  
0 2 8 7  P?361F I E 1 1 O  )COT0 3 4 4 0  
620B * 4 * t E ?  E l + V (  4 8 1 V )  
0 2 8 9  2 9 5 0 I F  (E1OO)GOTO 3 4 4 0  
0 2 9 0  - . ( U R E N  
0291 .S970LET f - R  
0 2 3 2  2 9 8 0 L f T  El=PU<P. lO) 
0283 2B901F <EIOO)COTO 3 4 4 0  
0 5 3 0 0 3 L E T  E l = S Y ' 4 4 , 1 )  
4 2  3 0 1 0 1 C  < € l # O ) C U T O  3448 
$ 2 9 6  - - W 2 O R E R  
0 2 9 7  3OJOPkINT gRECONNECT * I F '  OUTPUT T O  PUR l E T E R  EKTEENAL PORT' 
0 2 9 8  3040PAUSE 

I 6  



- 
d 

0239 3 3 3 0 F E R  
0300 3060REM 
0301 3O?OLEf f!leSUi3?, 1)  
a302 3083TF t ~ t m o ) t o ~ b  3180 
O3e '  3099LET € l m P ) l i  I r K r - 1 0 )  
031 31001F ( E t t 0 ) C O T O  3410 

8 0 3 0 5  SllOPkIMT I L 9 : ' O U T P U T  PYRe',K 
0366  3120RER 
0 3 0 7  3 1 3 0 p E n  S I C n a L  POVEP HOnIWC LCOP 
0 3 0 8  3140FOR K . 1 1 0  30  
0 3 6 9  3153tET E e K - T  
0 3 1 0  3 1 6 0 L E T  I . - (  I U T (  1 0 3 * E ? / 1 0 0 )  

0312 l l O O L E T  PmP+1 
0 3 1 3  319OPFlNT I L 9 ; '  S I G N A L  J H C . ' ;  I ,  ' I N F L I T  S l C H A L  P U R t ' ; ?  
0314 3200LET € l = R T 3 l b ( - t  ) 

0 3 1 5  3 i l v l F  ( E I b u ) G O T O  3 4 4 0  
" 3 1 t  3226LET E l = P H <  1 , % , - l o )  

317  323SPKINT 8 L 5 ; ' O U T P U T  PUR. ' ,W 
0310 3 2 4 3 1 F  ( E ¶ # O ) C O T O  3 4 4 0  
0 3 1 9  3Z53NEKf K 

R E P R ( - ) I ) U ~ ~ n ~ l , l ~ y  (11.' 1.11 E 

6320 . 326ORER ORIGNnL P~zc,I< IS P()( 

0 3 2 1  3 2 7 6 P P I H f  
0 3 2 2  3280PRINT ' I H P U T  S I G N A L  PUP T O  PREBRP -.;P 
0 3 2 3  3253PKlNT # L 8 ; '  lMPUT S I C H A L  P Y R  T O  PREAHP rB;P 
0 3 2 4  3 3 3 0 F K I N T  'OUTPUT P O V E R S  8 ' ; X , T  
0 3 2 5  3 3 1 3 P R ! N T  @ L e i m  O U T P U T  S l C H a L  + N O I S E  P U P  e ' ; X  
0 3 2 6  3 3 2 3 P R I H T  @ L P  
0 3 2 7  33SSREt1  
0 3 2 8  3340LET € l = A f (  1 ,-1LY60) 
0 3 '  33531F < E l # d  ) C O T 0  3 4 4 0  
0 3  ?3€?LLET E t = A T < 2 , - 1 3 0 0 )  
0 3 7 1  J 3 7 O I F  ( E l # O ) C O T D  3 4 4 0  
0 3 3 2  3383LET E1sSUi 271 1 ) 
0 3 3 3  33931F ( E l l 0  ) C O T 0  3 4 4 0  
0 3 3 4  3400REV 
' 3 ? 5  3 4 1 O R E U  

Tb 342*>STOP 
33;  3433REtl ; \ ' . \ \ \ \ \ \ ~ ' , \ ' ~ . \ f ' , l ' . ~ \ ' \ ' 8 . . \ \ ' , \ \ \ \ ; \  ' $ \ \ \ ' . ~ \ ' , \ " \  \ \', "5\"\'\\'\\ : l \  

0338  344SREH IRPbR HAHQLIWC *Ct?TJWE 
0 3 3 9  3450REM 
0 3 4 9  3 4 6 O ' G ! N T  P19 ;  ' E R R O R ' , E l  

t ~ 3 . 1 1  3 4 7 h ~ E T  f J = E k i i i L \  El j 
0342  3483LET E l m 0  

I 0 3 4 3  3453STOP 
0 3 4 4  3500PEf l  
6 3 4 5  3510PEn ' \ f \ . \ \ \ \ \ \ f \ \ \ \ \ ' \ \ \ . \ \ ' b \ : \ \ ' r f \ \ \ i \ ' \ \ ' \ \ \ \ f ' , \ \ \ \ ' \ \ ~ \ \ ' \ \ i \ \ ' \ \ ~ \ \  

0 3 4 6  3 5 2 3 P E V  ~ , \ ~ f ~ , ~ , \ ~ ' , ' , ' \ \ ~ \ f ' , \ ~ ' . f ' . \ ~ f f ' . f " , f ' , f ' ~ ' , \ * , f ' . " \ '  ' , " , f O  \'.',\',\~',\~.f"~'. 
0 3 4 7  C530REU V Q R I f i B L E  DEF I H I T I G N S  
0348  ~ ~ H R E U  
0 3 4 9  35537itI B = W G I S E  B A H D U I D T H  I N  0 0  
6 3 5 0  836OREM E = POYEP L E V E L  E R R O R  
0 3 5 1  j3S7OREfl E l  = E R R O P  QETURN CODE 
0 3 5 2  3 5 5 3 v t M  F = MI-LO FREO I N D E X  
c153 3593PEfi C = SGLS OP T O P S - S T D W  UODf I N D E X  
f f 3 c p  3 6 0 3 F E C  1 = PCJYER 1 W C P E R E N T  EY P I N  D I O D E  a T T E N U Q T b B  
0 3  36lOPEW U - i40P 9HbEX 
0 3 4 "  '3C23PTq Y t d > *  W C I P D C V W - I T b t S W ? '  
0 3 5 7  3633kER < L 9 ) =  D E B U G  LIST LU fi 
0 3 5 6  J 6 4 O P E q  U * I U p U T  WD!S€ ?OVfp 

16 

--- 
A 



F 8 i N F  1'; SI t r k l  F O V E F :  UR-06H-20A 
PI COWSOLE LU I F O R  I N S T K U C T I  GN OUTPUT 
P i  U U T  C O H F I C U F ~ A T I O N  b F G R  C r ~ a  T E S T  - T E S T  S E T U F  E Y P k S S  

q? = tntWtFb P 9 P g  
~4 tneuT s i c n ~ ~  QOUEP F O C  cbno - T ~ U C  v a ~ u E  rw a m  
R 8 PYR R E S E T  VALUE 
T S I C U J L  + Y O I S F  QUTPLIT PUP 
x = SICNaL * N O I S E  O l f T P U T  PUR 
* .  1 c m  nuc  yo!^^ r ~ 3 ~ 7 r  



C no 
S 9 0 P l  t w t  
b O O ? U ~  0 0 0  1 
6 1 0 P R l Y f  REHOVE F R , o o 6 z  
LZOPRIN!  ' LA7 Firs€& O O C  
1 3 3 P A U S E  OOC 
f i 401 ru r  i , 6 3 @ C I ~ ~ e C 4 ~ @ r o 9 ~  ood5'  
650RLR PlrMOlSE L E V E L  0 0 0 6  
6 A O P f  M W = T O T S E * S I C N b L  000: 
h7;RE): P J = ) i l ; l C , E  4 3  0 G B  OOOg 
68OREW 0 0 0  9 
6 9 0 L E T  ImSU;  4 5 1  1  ) 0 0 1  0 
7 a n L r t  y e ~ v . ? ?  ! 1 0 v l l  
J ~ Q L L T .  I = P K \  l , P r ,  - I C  1 oe ,2  
7 ? ? ' , C T  b ? * E  ~ . v l  3 
7 ~ 3 ~ E K ~ * ~ o ~ r r ~ o e r r o o * ~ o ~  0 0 1  4 
7 4 C L E T  I - S Y r 4 9 . 0 )  0 0 1  5 
7 5 6 L C t  W.0 0 0 1 6  
7 6 Q L f T  I m P R l  I , P 2 , - 1 0 ~  0 0 1  7 
7 7 O L E t  ? 3 = P 1 4 2  - - (*"I c 
, : :I7 & F S I  C Z - P j  :*: f ! T H E b :  0 0 1 9  
?POLET @ I = - (  P3-92 ) @ 0 2  0  
8 0 0 L E T  02-Of  /2 PO21 
6 1 b ~ E T  D 3 * b Z + D 3  0 h_' 2 
6 2 i ~ E 7  G 4 * - G 3 *  i 0 (t to f 3 
 LET D f  = L I  * @ 4  U U : ~  

8 4 O L E T  I - A T 3 1 F f D 2 )  O(l:S 
e 5 O P R I N T  ' 0 0 2 6  
:.&3COT@ 7 6 0  i *PZ:  
67irFEM B A S I C  T I R E  D k T E  C o o p  
B o 9 L E T  D Q = T l R :  2 0  0: 
t i9OFOF R 9 = l T O  12 0 0 -  
90 OLE 1 S9=S1'  0 0 3 1  
4 1 ~ : '  ? M 4 - 2 ; L E T  S 9 = ? 6  0 0 3 2  
9201 F (W9mqUR 1 9 * 6 O R  H 9 =  
5 3 ~ I i  ! t%= S9)G l iTG 9 3 3  o a 3 4  
5 4 0 L t T  F -@?-S9  3 3 5  
? S O Y E Y f  9 9  -#? 
5 i O F D l N T  ' m D : R 9 : * /  0 0 3 ,  
5 7 9 F R I N T  # 6 ;  w D I T E  = * : R 9 .  092'8 
9BOPR I N T  ' 1 DEaL R X  C t  0019 
~ ~ ~ P V I U T  m c : .  1 w a L  v ~ , , ~ ; ~  
l a o f i r r r  M T  V E T M O D :  0 0 4 1  

t m 3 0 0 0 4  I S  ON CROOOOZ U S I N G  0 0 0 1 2  BLKS R m O O l i  

IOREM 
~ O R C C !  ' I V ~ L  V ~ C E T V ~ R  .ttm t t ~ r ~ t u ~ a t t e v  ?r 
JORER r Y E E  

. 40REW 
:a REu T A B L E S  B P , U n  
60 Rl?U 
i v L E T  P Z * G T P l k <  2 )  
@OREW 
)ORE?! 
IOORCU P Z w U U t  CONFI  CURATION 4 
l l o t i r ,  i ; = R L C ~ T I  , J E @  T E S T  SET i f P d S S  
2 0  9 2 . 9 9 9 9  UUT BVPOSS 
IJGFEP! 
l 4 0 I F  ( P Z ~ C ~ C f l T O  710 
1 5 O l F  (P2 .9955  rCOT0 1 8 0  
1COPEW L E T  E l  =CF( icBS(  P 2 ) )  
l : G R E R m m o * r 8 * * o * * * * e o a * - e * *  LO F O P  I D E a L  R X  A T  
I P V - E T  1 . s ~ ;  2 7 ,  or  
1 9 0 L E T  1 * S U i  2 6 .  1 )  
ZOOLET I * S U (  44  # 1 )  
2 1 5 P E m  P f n t  U U t  FREO WOFE 01.0 = F R E t  
2 ? f ) r u L L P ? P ! T ( 3 6 , 1  . E l  ) 
; ? U P € @ !  R E a b  U U T  R O t E  SCLS/TDRSS 82.0 = S C ,  
i 4 ~ i ~ ~ L F i [ ~ B l T ( 3 6 ~ ?  . b Z  ) 
2 5 C l I F  b l = l f i u :  E L f l G O T O  2 9 6  
2601 :  P l = Q N D  B i = l C O T O  3 2 0  .... . - 

: A .  C i = l O v :  P i = O G @ T O  3 5 0  
2 o 0 1 ~  e l ~ o e Y u  ~ ~ = O C O T O  J B O  
i 9 O L E T  L a 1 5 0 6  
3 0 0 L E T  8.406 
3 l O C P ? O  4 !  0 
3 2 0 L E f  A - l d 4 1  
3 T X E T  8 - 9 4 ?  
340COTO 4 1 0  
3 5 d L E T  0 ~ 1 6 3 1  
? r n L E '  8=787' 
?.:uGDTO 4 1 0  
3 3 O L E T  k=15?3 
39OLET F.733 
4 @ 0 P E *  K ? i  i 5  SCLS - S T b N , S T D N  L 0 , l D R S S  
4 1 E L i T  I * F G r  2 , A # B , 3 )  
: - - *  . - -  7 7  1 = a q . '  2 1 3 -  7 

431,PEK m r * r * . . * * * w * * * * * * .  S E T  PF I N P U T  f @  I D € :  
44.-pc!u: . T E S f l l M a T E  E x 7  P D V f P  WETEP I N T O  
4TkrPnUSE 
4 i 3 P C , I N T  ' ' 
I 7 O L E r  L l = - 9 9 0  

+ 9 m r t ? = o u (  t! ) 
q 9 6 L E f  1. S J i  4 4 , l )  
s + ~ u ~ n ~  
~ W R ~ U T  ' 4 )  BREaK I F  OUTPUT OF F I R S T  RIWEF 
5 2 O P P I H T  . SpEC7PUR nNALYZER at40 TUNE S-P- 
: 'JCIPI. ' INT :3e  + - s o  % H Z  ~ N F  R E C O N N E C T   nu^ 
5i ;FRfEiT ' . 
5 T + ' P P I H f  l ' 

T b f i 9 P l ) c T  - 2 3  MfBK TT QUtPUT Ut ?m W 1 1 C  
5 7 0 P P I M T  . I w @ L Y Z € P  1 M D  1UME WOISE f I L T E E  
: ~ O P P ~ W T  . S Y R L T P I C ~ L  U E S P O M S E -  



G I O P R I N T  " 1 5  ~ E ~ O V E  F Q O ~  rnnLtzEa  nwo c o w w ~ c t  T O  ' 
L Z O P R I N T  l E & i  F J Y E R  HCTEk J i G  T H E N  T Y F E  C3' 
6 3 3 P A U S E  
~ ~ O R E R . ~ @ * @ ~ ~ ~ ~ O . * - O ~ O  ' m a S U I E  9 0 f S E  Y I T M  P? *....**eoe*om... ! ( I  
6 5 0 1 ~ 1 1  P I ~ M O I S E  L E V E L  
6 G O P E R  ~ ~ R O ~ + S I C H A L  
673REPl P 3 = h S l S E  * 3  0 b e  
6 B O R E H  
6 t b l E T  I = S M :  4 3 , l  ) 
7 o n ~ f t  r ~ y u .  ! I 

JAQLLT.  X S P R ,  r , P r ,  - l c  
7 Z A L E T  P ? . ?  
? 3 ~ R E ~ m m ~ n e . e . m ~ . r ~ m ~ m o ~ ~  m E & S U R E  S ~ C M A L  Y I ~ H  pw r r e r * o ~ * r r . c b e ~ + a  
?4C,LE? I s S U : 4 9 . 0 1  
75OLEt U-o 
? C O L E ?  f=PR:  I .P2, -1  0 9 

7 7 O L E t  P 3 - P i e 3  - - , : . ; I F  i z - P 3  r .  : : ? H E * !  8 ;  . 
190LET D l = - (  P 3 - F 3  ) 
80bt €1 D Z m D T ' t 2  
6 1 O L E 1  C 3 m D Z + D 3  
€ ; b ~ E 7  G 4 = - G Z ? ; :  

S ? ! > L E T  D S = L l  * P 4  
0 4 O L E T  I - A T 3 A @ f D ? ~  
E S O P 2 l W T  ' ' 
L c 3 C O T @  t 6 C  
6 7 v R E R  B A S I C  T I N E  D a T E  C G N V E C S l O N  & P R I H T O U T  
8 9 3 L E T  D ? = T I  M: 2 
f iqOFPP f l q = l T D  I f  
9 0 4 L E T  S 9 - 3 1  
41;;; i ) r s = z ; L E T  S ' J = z i ,  
9231: ( ! l S = l O R  R9=6Oi) W 9 8 9 O R  W 9 t l l 7 L E T  S 9 = 3 O  
5 . 3 u i i  ! t i ? , =  5 9  /C,ClrC 9 3 :  
9 4 0 L E T  D q = @ q - S ?  
~ S ' J N E Y T  95 
4 6 9 p 0 : N T  P Q f E  = e : R ~ : * / e : P q ' m , ~ m  ' T I R l  3 \ . e T 1 r ( E  s L . T 1 ? '  1 ' T I 9 '  f ! 

9;;FF!;NT ( 6 ; ' D d T E  =';R9;'/';D9:'Im:TIn:3r;'TI~~ = ' : T I Y ~ . l ) ; ' . " ; T I R ~ ~ ! )  
9 9 O P R I W T  . I D E C L  R Y  C / W O  W E Q S U R E f l E N T m  
? q Q P m l M r  W 6 :  I F E O ! .  f Y  C / U . T  W E O C I I P E M E U T m  

1Clo6oGfWT l * E T H 0 3 :  S l C M S ?  I H C P E r ( E ~ ~ T E [ ~  T O  3 0 0 + -  O l b B  4 P D V E  U C l I S E '  


	0015A02.TIF
	0015A03.TIF
	0015A04.TIF
	0015A05.TIF
	0015A06.TIF
	0015A07.TIF
	0015A08.TIF
	0015A09.TIF
	0015A10.TIF
	0015A11.TIF
	0015A12.TIF
	0015A13.TIF
	0015A14.TIF
	0015B01.TIF
	0015B02.TIF
	0015B03.TIF
	0015B04.TIF
	0015B05.TIF
	0015B06.TIF
	0015B07.TIF
	0015B08.JPG
	0015B08.TIF
	0015B09.TIF
	0015B10.TIF
	0015B11.TIF
	0015B12.TIF
	0015B13.TIF
	0015B14.TIF
	0015C01.TIF
	0015C02.TIF
	0015C03.TIF
	0015C04.TIF
	0015C05.TIF
	0015C06.TIF
	0015C07.TIF
	0015C08.TIF
	0015C09.TIF
	0015C10.TIF
	0015C11.TIF
	0015C12.TIF
	0015C13.TIF
	0015C14.TIF
	0015D01.TIF
	0015D02.TIF
	0015D03.TIF
	0015D04.TIF
	0015D05.TIF
	0015D06.TIF
	0015D07.TIF
	0015D08.TIF
	0015D09.TIF
	0015D10.TIF
	0015D11.TIF
	0015D12.TIF
	0015D13.TIF
	0015D14.TIF
	0015E01.TIF
	0015E02.TIF
	0015E03.TIF
	0015E04.TIF
	0015E05.TIF
	0015E06.TIF
	0015E07.TIF
	0015E08.TIF
	0015E09.TIF
	0015E10.TIF
	0015E11.TIF
	0015E12.TIF
	0015E13.TIF
	0015E14.TIF
	0015F01.TIF
	0015F02.TIF
	0015F03.TIF
	0015F04.TIF
	0015F05.TIF
	0015F06.TIF
	0015F07.TIF
	0015F08.TIF
	0015F09.TIF
	0015F10.TIF
	0015F11.TIF
	0015F12.TIF
	0015F13.TIF
	0015F14.TIF
	0015G01.TIF
	0015G02.TIF
	0015G03.TIF
	0015G04.TIF
	0015G05.TIF
	0015G06.TIF
	0015G07.TIF
	0015G08.TIF
	0015G09.TIF
	0015G10.TIF
	0015G11.TIF
	0015G12.TIF
	0015G13.TIF
	0015G14.TIF
	0016A02.TIF
	0016A03.JPG
	0016A03.TIF
	0016A04.TIF
	0016A05.TIF
	0016A06.TIF
	0016A07.JPG
	0016A07.TIF
	0016A08.JPG
	0016A08.TIF
	0016A09.JPG
	0016A09.TIF
	0016A10.JPG
	0016A10.TIF
	0016A11.JPG
	0016A11.TIF
	0016A12.TIF
	0016A13.TIF
	0016A14.TIF
	0016B01.TIF
	0016B02.TIF
	0016B03.TIF
	0016B04.TIF
	0016B05.TIF
	0016B06.TIF
	0016B07.TIF
	0016B08.TIF
	0016B09.TIF
	0016B10.TIF
	0016B11.JPG
	0016B11.TIF
	0016B12.JPG
	0016B12.TIF
	0016B13.JPG
	0016B13.TIF
	0016B14.JPG
	0016B14.TIF
	0016C01.TIF
	0016C02.TIF
	0016C03.TIF
	0016C04.TIF
	0016C05.TIF
	0016C06.TIF
	0016C07.TIF
	0016C08.TIF
	0016C09.TIF
	0016C10.TIF
	0016C11.TIF
	0016C12.TIF
	0016C13.TIF
	0016C14.TIF
	0016D01.TIF
	0016D02.TIF
	0016D03.TIF
	0016D04.TIF
	0016D05.TIF
	0016D06.TIF
	0016D07.TIF
	0016D08.TIF
	0016D09.TIF
	0016D10.JPG
	0016D11.JPG
	0016D12.TIF
	0016D13.JPG
	0016D14.TIF
	0016E01.TIF
	0016E02.JPG
	0016E03.JPG
	0016E04.TIF
	0016E05.JPG
	0016E06.TIF
	0016E07.TIF
	0016E08.TIF
	0016E09.TIF
	0016E10.JPG
	0016E11.JPG
	0016E12.JPG
	0016E13.JPG
	0016E14.JPG
	0016F01.JPG
	0016F02.JPG
	0016F03.JPG
	0016F04.JPG
	0016F05.JPG
	0016F06.JPG
	0016F07.JPG
	0016F08.JPG
	0016F09.JPG
	0016F10.JPG
	0016F11.JPG
	0016F12.JPG
	0016F13.JPG
	0016F14.JPG



