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FOREWORD

a	 This final Technical Report covers the work performed by the Materials
Research and Engineering group, Detroit Diesel Allison Division, General
Motors Corporation under NASA Contract NAS 3-21263. The NASA Project
Manager was Dr. R. C. Bill, of the NASA Lewis Research Center.
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S UMFLM

The objective of this program was to develop a plasma-sprayed dual
density ceramic abradable seal system for direct application to the UPT
seal shroud of .smallgas turbine engines. The system concept is based
on a moderately high density ceramic layer adjacent to the metal shroud
to provide thermal-stress cushioning for the abradable outer layer,
consisting of a specially formulated reduced-density ceramic.

The program scope consisted of three iterations on each of two different
coating systems. The investigations included coating processes,
abradability, erosion resistance, permeability, and microstructural
characterizaVion.

Results obtained p ith the polyester-filled system showed excellent
abradability but relatively poor erosion resistance characteristics.
The cenosphere-fillet, system produced somewhat less-impressive
abradability characteristics but was much more erosion resistant than
the polyester system. Blade tip distress was not considered excessive
for either system.

Both systems require additional effort to optimize the balance between
abradability and erosion resistance before commitment to engine evaluation
can be made.

, J
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Iti i RODUCTION

Efficiency of small gas turbine engines in the size class of the Army's
800 shp Advanced Technology Demonstrator Engine (AIDE) is extremely
sensitive to operating clearances between compressor and turbine blade
tips and the stationary seal components, from the standpoint of specific
fuel consumption (SFC) the single most significant blade tip clearance
location is the high pressure turbine (HPT), The plasma-;sprayed ceramic
seal system investigated in this program was prompted by the lack of a
satisfactory available seal system adaptable to the HPT application,

Two different, yet similar, concepts were selected for development,
each incorporating a dual density plasma- sprayed ceramic system to be
applied directly to the HPT seal shroud. Both systems employ a moderately
high density ceramic layer of approximately 12% porosity adjacent to the
metal shroud substrate and metallic bond coat to mitigate the mismatch
in thermal expansion characteristics between the metallic and low density
ceramic components of the system. The low density ceramic outermost layer
of the system provides abradability.

The two systems selected for development differ only in the approach taken
in improving the abradability of the outer layer, One system uses a
sacrificial filler to produce the desired density reduction through
controlled porosity brought about by thermal decomposition of the filler.
The second approach employs a temperature-resistant low density filler
which is distributed throughout the abradable layer and remains intact
following exposure to elevated temperature.

A	 T	 .	 6	 •	 • i 1	 .	 •	 I
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SEAI, SYSTEM DEVELOPMENT

The seal systems developed during this program have built upon the
ever -increasing; background of success obtained with the NASA-developed
yttrla-stabilized zirconin (YSZ) thermal barrier coating systems, The
basic philosophy guiding the program has been to start with a proven high
temperature material, preferably one with significant engine experience,
and to modify the coating structure toward the end of improving the
abradability of the material while retaining the desirable high temperature
characteristics of the original coating system. The and result becomes an
"abradable thermal barrier".

Coating Cbnfipuration

Typically, the NASA coating successes have been achieved with "thin"
coating systems--i.e., bond coats 0.013-0.018 cm (0.005-0.007 in.) and
oxide layers 0.038-0.051 cm (0.015-0.020 in.) thick, as shown in Figure la.
Further, the coatings have been "duplex" in that only two discrete layers
are present, with no "graded" or mixed-composition layers.

From the structure of the dunk-density coating system, shown in Figure lb, it
is readily apparent that the concept involves essentially the addition of
a 0.046-0.051 cm (0.018-0.020 in.) reduced-density abradable layer super-
posed on top of the basic NASA thermal barrier coating. An incursion of
turbine blades into a rub track, particularly in small engines such as the
GMA 500/AIDE, is unlikely to exceed 0.025-01038 cm (0,0104,015 in.) without
considerable damage being incurred by the rotor system. -The coating system
geometry selected has provAdcd for this margin in the abradable outer layer.

Specimen Fabrication

The basic concept of an abradable thermal barrier depends on devising a
method whereby the density in the blade track region of the seal is reduced
below that normally obtained in the plasma-spray process. One attractive
method for accomplishing the desired density reduction is to "co-spray" a
sacrificial "filler" concurrently with the YSZ of the thermal barrier. This
procedure interrupts the continuity of the YSZ and is followed by thermal
decomposition of the filler to produce a controlled level of porosity.
A major difficulty in using this technique arises from the significantly
different temperature capabilities (melting points) of YSZ and candidate
fillers, It is this feature that prevents the constituent powders from
being bound together and sprayed as a single composite material., since
particle temperatures adequate for softening YSZ (required for good de-
position) would surely result in premature decomposition of the filler.

A workable solution to the problem of spraying materials with such vastly
different characteristics has resulted from providing different residence
times in the plasma stream for each constituent powder according to its
particular requirements. This is accomplished by introducing the high-
temperature component (YSZ) through a powder feed port directly into the
plasma-spray gun body. The low-temperature component (polyester) is fed
by a separate powder feeder into the plasma stream external to the gun
body at a point downstream from the nozzle. The polyester filler currently
used in preparing specimens of one system for this program is subsequently

n
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thermally decomposed by heating in air at 982 oC(1.800ot) for a period of
4 hours, This non-optimized heat treatment tans proven to be adequate for
removing the filler constituent, k[owever, no attempt has been made to
determine whether lower temperatures and/or, lesser times would also suffice.

Y'abrication g ui2ment

The plasma spray equipment used in constructing the various coating
specimens was identical to that used by NASA in developing the yttria-
stabilized zirconia thermal barrier coating system, The Plasmadyne
Model SG-ID plasma-spray gun used exclusively sor deposition.of all layers
of the coatings has powder teed ports Located both internal and external,
to the gun body. Normally, only one of these ports is used at a time.
however, because of the peculiar requirements of the filled coating; layer,
separate Plasmadyne Model, 1000-A powder feeders are used to supply bath
ports simultaneously - the YS7, being introduced within the gun body and
the filler powder injected into the plasma stream through the external
downstream port. With this arrangement the optimum parameter ranges
for the multiple component system reflect a compromise of the requirements
of the individual component powders.

Filler Constituents

Polyester-Filled Systems

The sacrificial"fi.11ar" powder used to create the controlled porosity in tl;a
• abradable layer of the Is-F, 11-P, and 111-P systeme was Metoo 600, a
commercially available polyester powder suitable for plasma spray applica-
tions. Additional charneterization of this powder beyond that provided
by the manufacturer was limited by the tendency of the powder to adhere to
the walls and screens of the various sieves during attempts to document
particle size distributions. Thermally, the powder was found to char at a
temperature of approximately 552 0C (10250P) which is appreciably below the
982 C (18000F) temperature selected for thermal. decomposition.

Cenosphere-Filled Systems

Alumino-silicate spheres ("cenospheres") comprise the "filler" used to
improve the abradability of the outer Layer of the I-C, II-C, and 111-C
systems. This material,, which was supplied for the program investigations
by NASA is essentially "fly-ash", a pollution by-product derived from the
electric power generating industry. Low density, hollow cenospheres are
reported to be selectively separated from solid spheres by a flotation
process in which the heavier solid particles sink to the bottom of the
container. The buoyant hollow spheres are skimmed from the surface of
the liquid and dried prior to subsequent use.

Sieve analysis of the cenospheres was inconclusive, as in the case of
the polyester powder. The particles displayed a pronounced tendency to
adhere to the screens and walls of the sieves, probably as a result of
static electrical charging of the particles. However, under optical
examination at 30X magnification, an extremely broad particle size
distribution was observed. No attempt was made to reduce the range of
particle sizes since no difficulty was encountered in spraying the material
in the as-received condition.

4



ProcessinA Procedures

All Btibstratev materials used in this investigation were flastolloy X.
This is the name material 

as 
that used for the shroud segment" of the

QKA 5001ATDE as ,, ensures that a fully developed coating system will be
compatible with 

k 
engine hardware.

The elapsed time between plasma spray processing steps was held to the
minimum possible consistent with exorcising care and good technique,
and in no case was allowed to exceed 2 hours. This condition thus required
that all specimens be completed the same day that they were started.

Prior to deposition of each particular coating system, the substrates
were prepared by vapor degreasing, followed by grit blasting with 60 grit
aluminum oxide. Because of the number of specimens (12) prepared for
each itararion i faorication was accomplished in two batches of six specimens
each.

Powder flow rates were precisely determined by collecting and weighing
timed specimens of material delivered by thepowder feeder. Spray
distances were the same as those established by NASA for the several
discrete layers of the coatings, with the same distance maintained for both
the standard density layers and the filled layers, regardless of 

the 
filler

employed, All spraying was done with hand-held equipment, specimens oriented
vertically, and cooling air supplied to the rear face of the sp(zc1men
coupons. Deposit efficiency appeared to play a significant role in the
preparation of the cenosphere-filled coatings, since little variation in
attainable composition was achieved*,, 	

It

Bond Coat Powder

The bond coat employed in all instances was NiCrAlY obtained from Alloy
Metals, Inc., Troy, Michigan, with the following chemical composition:

Cr 16.2%
Al 5.5%
Y 0, 6%
Ni Balance

Mesh specification was -200 +325. The material was identical to that
developed for the NASA thermal barrier coating, including the source of
supply. A 13.6 kg (30 lb.) developmental heat of the material yielded a
nc,t of 12.3 kg (27 lbs) of which only 2.3 K& (5 lbs) was within the -200
+325 mesh required for plasma spraying. The remaining material was nearly
equally divided between +200 and -325 mesh sizes, neither of which was
found to feed or spray satisfactorily.

0	 1	 1

Oxide Layer Powder

The yttria-stabilized zirconia powder employed in this investigation marked
a potentially significant departure from the NASA-developed thermal barrier
materials. Because the material used in the NASA-developed coatings was

tquite expensive and had a history of lengthy delivery times, ki co 202-NS

was selected for the oxide layer component in the interest of controlling costs



and expediting the execution of the program. The principal difCarence
between the two powders is in the method of stabilization. Mateo 202-NS
Achieves stabilization during the spray process instead of by pro-alloying
and Is available off the shelf at a fraction of the cost of the pre-
stabilized material.

Recent, and an yet unpublished, investigations at DDA on various combinations
of bond coat and yttria-stabilized zirconia materials indicates that the
NASA developed material possesses superior thermal shock/fatigue resistance
compared to other materials tested. Should this factor Lventually prove
troublesome with the dual-density systems under development, a minimum of
effort is expected in order to affect a material change if required,

Standard Density Layers

p
arameters and techniques identical to those used by NASA were employed in

depositing the standard density intermediate layer for cacti coating configuca-
tion. As previously mentioned, however, Mateo 202-NS was substituted
for the pre-alloyed yttria-stabilized zirconia used in the NASA-developed
thermal barrier coatings.

Abradable Layers

The most significant parameter to evolve in the preparation of abr3dable
layers, regardless of the "filler" employed, was the ratio of zirconia to
filler material, Since the deposit efficiencies of the materials generally
differ, the starting ratios wera likewise different from the ratios in the
deposited coating.

Some modification of the standard density layer parameters was required to
optimize the deposition of the high melting point zirconia without incurring
premature softening or melting in the filler materials. Even though the filler
powders were introduced into the plasma stream through an external feed
port, a significant reduction in both arc current (-20%) and operating voltage
(up to -10%) were required. These parameter variations were initially
established for the polyester-filled system and carried through for the
cenosphere filled-system without any further changes. The spray parameters
for each of the coating systems are listed in Table I.

Surface Machining_

The surface of each specimen was prepared by machining with a single-point
cutting tool of the replaceable carbide insert variety prior to any further
conditioning (e.g. $ burn-out In the case of polyester-filled coatings).

Machining parameters weZe determined for the I-P coating system by trial
and error using both single-point machining and wet grinding techniques.
The coating was found to machine easily with either method, and as expected,
the smoother surface was obtained by grinding. Specimens subjected to the
grinding operation were flushed with clear water and dried in vacuum to
remove any contamination from the grinding coolant. The parameters
established for the I-P system were used for the machining of all subsequent
coating systems. These parameters were:



µ

o	 Cutting tool Carbide Insert - TPG 431-KG8

o	 Work Speed 118.9 ant/min (390 ft/min)

o Cross Peed 0.015 cm/min (0.006 in/min)

o Material removed per pass 0.025 em (0.010 inches)

Roughness measurements were made prior to thermal decomposition of the
polyester filler for the I-P system. These measurements included readings
for both a ground as well as a machined surface. The order of magnitude
of attainable surface finish for the I-P system represents an upper bound
when compared to high density coating systems as can be seen from Table II.
This table is a compilation of the surface roughness of each of the coating
systems as taken after surface machining.

Hardness of the I-P coating system was measured for the as-sprayed and
machined configurations, both before and after thermal decomposition
of the polyester filler. The R15Y superficial hardness Poale (15 kg load,
1.27 cm N inch) diameter ball indenter) was found to be satisfactory for
the softer coatings typified by the I-P system, but lacked sufficient
definition for the harder coatings. Consequently, some of the harder
coating systems necessitated use of the R15W scale (15 kg load 0.32 cm (1/8 inch)
diameter indenter) as an alternate measurement system. Measurements
obtained from both systems are provided in To.,ble III.

7
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TEST APPARATUS

Hi^eed AbradabilitZ Rig,

The abradability evaluations were conducted on the high speed, high tempera-
ture test rig shown in Figure 2. This rig consists of a steam turbine-
driven spindle with replaceable test disks. The program test condition of
228.6 m/sec (750 ft/sec) requires the unit to rotate at 29,650 rpm, approxi-
mately one-half the design limit.

The heat source for this test unit is a quartz lamp furnace which is limited
to 76000 (14000x) due to mechanical design constraints of the disk/shaft
attachment. Evaluation temperatures of 5380C (1000 

O
F)were specified for

this program. This temperature was achieved during rig warmuB at 5000 rpm
but could not be maintained at levels greater than 302% (575 F) when the
disk was brought to operating speed because of cooling resulting from excessive
windage in the furnace cavity.

The mechanism used to provide the rub incursion motion is designed around a
rigid frame system which supports the test coupon above the rotating IN 792
test disc in the quartz lamp heated cavity. The vertical incursion drive
is fixed to the frame above the test coupon through a thin flexure which
essentially isolates the normal and tangential forces produced by the
rub, The rub interaction rates of 0.0025 cm/sec (0.001 in/sec) and
0.025 ern/sec (0.010 in/sec) are achieved by controlling the pulse rate of a
stepping motor which drives a lead screw. Normal force signals are sensed y
a load cell positioned between the lead screw and the flexure leaf. The
tangential Force signals are transmitted by a rigid load frame through swivel
couplings to two Load cells mounted outside the heated cavity. The tangential
force signals are then summed electrically to provide the instantaneous
tangential force signal.

Erosion Test Rig

Erosion tests were conducted on the apparatus shown in Figure 3. The speci-
men is mounted at the prescribed angle to the impinging air/particulate
stream. The tests were performed at room temperature with the particulate
flow rate 3set at a nominal 20 gms/hr (0.044 lb/hr) and the air flow nominally
at 11.2 m /hr (400 ft/ hr) with a supply pressure of 482.3 KPag (70 psig).
A timer shuts the rig off at the predetermined time. The erosive medium
used was AC Coarse Air Cleaner Dust (Natural Arizona Road Dust) which is
primarily calcium silicate and has the following particle size distribution:

0.5 microns 12%

5-10 microns 12%

10-20 microns 14%

20-40 microns 23%

40-80 microns 30%

80-200 microns 9%

Specimen and dust reservoir weights are recorded prior to and at the conclusion
of each test.

8
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The angular incidence of the specimen with respect to the erosive air
t	 ,.

stream was selected as 15 u based on the tests of the standard density
C	 v system shown in Figures 4 through 6.	 The 15

0
 setting, Figure 6, was

considered to be most representative of engine air flow conditions and
would not unduly Penalize candidate coating systems.

Permeability Rim

Through-leakage as a result of interconnected porosity is evaluated on the
rig schematically shown in Figure 7.	 This simple fixture consists
essentially of inlet and exhaust ports which are formed in a polyurethane
insert in the cover.	 When the cover is clamped in place over the sample,
the polyurethane acts as a seal preventing leakage across the abradable
surface to the exhaust port or to the atmosphere. 	 The incoming argon is
thereby forced to pass through the abradable material in order to reach the
exhaust port.	 The .feed port is connected to a pressure gage, flowmeter
and argon tank and the exhaust port is open to the atmosphere.	 Pressure
is set at the argon tank by means of a regulator, and through-flow in the

4 coating is monitored at the flowmeter.	 The area used for the flow calcula-
tion	 is the actual cross sectional area of the specimen.

9
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FIST RESULTS

Polyester-Filled Systems

Abradablity

Abradability test results of the polyester filled systems are illustrated
in Figures 8-13.

The I-P polyester- filled system is shown in Figure 8 for the slow incursion
rate of 0.0025 nm/sec. (0.001 in / snc.` The absence of transferred metal from
the blade tip to rub track illus %r<atei the fine abradability characteristics
of this material. The blade tip ;-,Ixow_,d no evidence of distress or loss of
material. A slight burnishing was present as can be seen by the faint dis-
coloration of the tips in Figure 8. Depth of the rub was 0.013 cm (0.005 in.).

The TI-P polyester system slow incursion rate rub is shown in Figure 9.
The rub path produced by the rotating blade tips shows no evidence of metal
transfer or tendency towards glazing. Depth of the rub was 0.038 cm
(0.015 in.). The blade tip showed no evidence of the rub. Measured tip
loss was 0.00051 em (0.0002 in.) which is discounted as being within
measurement tolerance.

Figure 10 shows the slow incursion rate abradability results for the III-P
materials system. This was a well-defined clean rub trace with no evidence
of glazing or transferred metal on the surface of the abradable material.
The blade tip condition was excellent with no evidence of any distress
present. No loss of blade tip material could be measured. The depth of rub
was 0.038 cm (0.015 in.).

Figure 11 was the result of the fast incursion rate rub for the I-P material
system. During the course of this test, the penetration depth of the blade
tip exceeded the depth of the outer abradable layer and came into contact
with the more dense YSZ sub-layer. The result was a two-phase rub. Close
examination of the rub track showed that the glazed area was initiated at
0.043 cm (0.017 in.) below the surface of the coating, which is the thick-
ness of the abradable top layer. Total rub depth was 0.053 cm (0.021 in.).
The blade tips show definite evidence of a rub, as can be seen in Figure 11;
however, no severe distress is present. The apparent damage seen in Figure 11
is more of a burnishing which produces a series of color variations on the
tip of the blade rather than a physical scoring or galling of the surface.
This scoring or galling of the surface is commonly present in most all-metal
abradable systems. Measured blade tip loss was of the order of 0.00051 cm
(0.002 in.).

The result of the fast incursion rate abradability test with the TI-P
material system is shown in Figure 12. Glazing o g the material occurred
almost immediately upon contact, accompanied by thermal cracking at the
surface of the rub path and some particle pullout. No metal debris could
be seen in the rub track. The blade tip shows severe burnishing ;nd visual
indications of streaking, but there was little evidence of any physical
scoring or galling taking place. The measured rub depth was 0.013 cm
(0.005 in.) and the maximum blade tip loss was .0015 cm (.0006 in.).

10



Figure 13 shows the condition of the rub track and the blade tips for 	 ';I
the fast incursion rate with the III-P materials system. The tub track was
very clean and distinct except for a slight amount of metal pickup at one
odge of the rub path. The blade tip shows no evidence of distress and
no burnishing; is present. The maximum amount of blade tip loss was
0.0025 cm (0.001 in.) and the depth of penetration in the abradable layer
was 0.041 cm (0.016 in,) .
Erosion Resistance

Erosion tests were performed on each of the sample systems in accordance
with the test description and apparatus previously described. A particularly
unusual phenomenon occurred with the I-P system which can be observed
in Figures 18 a through d. A layering of the coating took place during
fabrication and was immediately observed after machining the samples, Figure 14a.
This layering could also be observed in the erosive patterns produced, as
seen in Figures 14 b, c, d. This did not occur in any of the other systems
and is believed to be an inconsistency in the plasma spray process, possibly
resulting from spray technique employed in fabricating early specimens.
It is also noted that the I-P system experienced the most severe total, erosion
damage of all the systems as well as the highest rate of damage. In the first
30 minute period, the sample was virtually eroded away to the more dense
XSZ sub-layer. Erosion of the II-P coating system is shown in Figures 15a
through d. The layering observed in the I-P coating, Figure 14a, was not
present in the II-P coating, Figure 15a. Improved erosion resistance of the
11-P coating over the Z-P system can be observed as early as the completion
of the 30 minute test (Figures 15b compared to Figure 14b). Erosion of the
111-P coating system, shown in ,Figures 16a through d, behaved similar to the
I-P system. The specific erosion resistance plotted as a function of time
is shown for all the systems in Figure 17.

Permeability

Gas flow permeability for each polyester-filled coating system was checked
in accordance with the procedure previously described. Static input pres-
sures up to 344.5 KPag (50 psig) were applied with zero leakage noted.
These results are compared with the results obtained for conventional
abradable materials in Figure 18.

Cenosphere - Filled Systems

Abradability

Figures 19 through 21 are the results of the slow incursion rate abradabilit-y
tests on the cenosphere-filled coating systems. These coatings were
generally characterized by a very audible telegraphing of the rotating
blade tip contacting the abradable surface. The presence of severe glazing and
thermal cracking in the surface of the abradable layer during the slow incur-
sion rate tests suggested a more rapid incursion rate could result in possible
damage to the test rig and were therefore deleted from the test program.
In all instances, the wear scar appeared to be glassy in nature and layered
above the surface of the wear path. The layering appears to start at the
entrance to the rub zone and builds in thickness as the blade path exits the
material. The blade tips all exhibit heavy burnishing and some scoring and
it is likely that some glazed material adherred to the blade tips, thereby
preventing an accurate measure of blade tip loss. This loss as best determined, 	 `+
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measured 0.0025 cm (0.001 in.) on the I-C test, 0.00051 cm (0.0002 in.) on
the II-C test and 0.00015 cm (0.0006 in.) on the 111-C test, Depth of rub
was 0.013 cm (0.005 in.), 0.031 cm (0.012 in.) and 0.023 cm (0.009 in.)
for the I-C, II-C, and III-C tests respectively.

Erosion Resistance

Erosion test results of the cenosphere-filled systems are shown in Figures
22 through 24. No evidence of layering, as was observed in the I-P system,
was present in any of the cenosphere-filled coatings. Erosion resistance of
the cenosphere-filled systems was significantly improved over the polyester-
filled systems. The specific erasion resistances, as plotted in Figure 17,
of the three cenosphere filled systems were very similar in erosive performance,
as could be expected when comparing the final composition listed in
Table IV,

Permeability

Permeability for each coating was checked to 344.5 KPag (50 psig) with zero
leakage noted. Both polyester- and cenosphere-filled systems displayed
superior Leakage characteristics in comparison with more common abradable
materials, as shown in Figure 18.

Microstructure Determination Polyester-Filled Systems

Porosity Level

The porosity level of the specimens I-P, 11-P, and III=P were measured and
tabulated in Table IV. Section views of the I-P, II-P, and III-P coatings
(100X) are displayed in Figure 25a, Figure 26a, and Figure 27a. The
progression of the iterations I-P, II-P and III-P leading to lower porosity
levels shows that both the pore size and pore distribution decreased in
subsequent iterations. It may be noted that the thickness of the porous oxide
layer., as shown in Figure 25a, is inconsistent with the thickness shown in
Figure lb. This resulted from sectioning the coating at the end of the
specimen, where the outer layer spray pattern tapered slightly toward the
substrate.

Ceramic Particles Morphology

Cross-section views at 1000X of I-P, II-P, and III-P are shown in Figure 25b,
Figure 26b, and Figure 27b. The views shown display the coating fine
structure resulting from plasma spray co-deposition of the polyester and
YSZ powders followed by the burn-out of the polyester phase. The level of
polyester powder in the plasma spray operation affects the coating structure.
Particles of polyester are trapped to form voids and provide a foreign
material to weaken the mechanical bonding between the deposited ceramic
YSZ particles. Figure 25b, showing the porous oxide layer of specimen series
I-P, shows evidence of a spongy area surrounding some of the YSZ particles
which likely lessens the inter-particle bond strength.

Interconnectivity of Coating Pores

A specimen from series II-P was examined by Scanning Electron Microscopy
(SEM) at 200X. Figure 28 discloses that the voids resulting from the
polyester deposition and burn-out are only randomly connected and rarely

12
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communicate between pores over a path exceeding .013-.024 cm (.005-.008
inches). The "closed pore" structure therefore explains the low permeability
of the polyester/YSZ coating series compared to the leaky characteristics
of abradable materials such as the sintered metal type of coating structure.

Additionally, figure 28a and b displays the level of Zr and Y as the sensor
traverses over the surface and void areas. The straight line across each
view defines the line being scanned for the given element. A minimum level
for Zr and Y is indicated as the scan progresses over the void areas.

Figure 29 displays the results of an X-ray analysis of elemental distribution
on the surface of the cross section of a II-P specimen. Zone 1 is shown
to be a void or surface hole. Zone 2 shows the polished YSZ surface with
a major indication for zirconium and a minor indication for yttrium. Minor
traces of calcium, silicon and sodium were also noted.

Microstructure Determination Cenosphere-Filled Systems

Porosity Level

The porosity level of the test specimen series I-C, II-C, and III-C is
achieved by the in-situ trapping of the hollow cenospheres during plasma
spray co-deposition with the YSZ ceramic material. Section views of specimens
from the series in I-C, II-C and III-C coatings are displayed in Figure 30a,
Figure 31a, and Figure 32a. The progression of the iterations of the I-C,
II-C and 111-C series was to increase the cenosphere percentage with a goal
of improving abra;jatbility. The level of cenosphere entrapment was measured
by a point-count technique and found to be 30, 35 and 32 volume percent
respectively for I-C, II-C, and 1II-C as shown in Table IV,

Cenosphere/YSZ Particle Morphology

Cross-section views at 100X of series I-C, II-C, and III-C are shown in
Figure 39b, Figure 31b, and Figure 32b. The high magnification reveals
that the yttria-stabilized zirconia coating matrix encloses both identifiable
whole cenosphere particles and solidified agglomerates of the cenosphere
material. The solidified agglomerates appear as fairly smooth glassy type
particles with little evidence of fracture through the phase. In contrast,
the zirconia matrix exhibits both irregular voids and crack or internal
fracture patterns.

Figure 33 illustrates the same I-C series coating at 20OX magnification
with elemental line scans for zirconium and yttrium identifying the yttria
stabilized zirconia (YSZ) zones. The dark grey cenosphere particles and
solidified agglomerate zones are indicated by noting the areas where the
zirconium line scan is at the minimum level.

A view of the II-C series coating at 20OX magnification is presented in
Figure 34 with the accompanying elemental line scans again shown for
zirconium and yttrium. The II-C SFM micrographs (Figure 31) reveal the
zirconia matrix as slightly more spongy in appearance. The size distribution

s	 of the cenosphere balls and the solid cenosphere material distributed within
the coatings are likely related to the distribution of cenosphere particle
size supplied to the plasma spray gun.
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DISCUSSION OF RESULTS

The slow incursion rate abradability tests on the polyester-filled systems
display very similar wear scar characteristics. The striking dis-similarity
between the three coatings in this matrix is the variation in apparent
density between I-P, II-P and III-P as seen in Figures 25, 26 and 27. The
intent of the variation in coating system composition was to decrease the
polyester content as the testing progressed in order to produce an
abradable system which also possessed the desired erosion resistance
characteristics.

The IP coating system was targeted for a volume ratio of 65% zrO and 35%
polyester, The actual measured results were 72% and 281 0 respectively. The
IIP coating was designed to nominally increase the ZrO density of the
coating by 10% over the IP system. The measured resuli was 79% dense
instead of the targeted 75%. The resultant hardness, abradability and erosion
tests results support the observed increase in density, The hardness
increased from 13 to 89 on the R15Y scale. The specific erosion decreased
as expectedand the fast incurion rate abradability test resulted in a glazed
track which occurred solely in the porous top layer. In the I-P test, the
glazed track did not appear until the blade tip passed through the abradable
layer and came into contact with the subsurface standard density layer.
It was observed that the I-P system was so soft that the porous surface
layer was eroded during the first 30 minutes of testing. Subsequently, the
erosion was presumably taking place in the standard density layer, which
naturally offered much more resistance. This accounts for the wide variation
in slope between 30 and 60 minutes for the I-P test.

The III-P system which, although more dense than the II-P system exhibited
some of the performance characteristics of a softer coating. The 10OX
micrographs indicate the density of the porous oxide layer is increasing
as intended, from I-P to II-P to III-P. However, the hardness decreased
substantially from II-P to III-P and the specific erosion resistance of
III-P was very similar to that of I-P. The forces encountered during the
slow incursion rate rubs support the oxide layer composition analysis. That
is, the normal and tangential forces increase in value with increasing
density for this series of runs. However, for the fast incursion rate
tests, the normal forces follow the glazing trend. For example, the II-P-F
run, which had a glazed rub, also had a high value for the normal load.
Glazing in the I-P-F run is discounted due to the blade tip striking the
standard density layer. Normal loads were not recorded for the I-P-F run due
to an instrumentation failure.

The desired increase in density for the polyester-filled system was nominally
achieved through variation of the polyester content during spraying.
Projected increases in coating density were achieved by this method and
proportionate increases in hardness and erosion resistance occurred for
the II-P system, when compared to the I-P coating. However, the 1II-P
system, although more dense than either the I-P or II-P coating systems,
did not reflect the increased density in the hardness survey or in the
erosion test. This paradox has not been satisfactorily explained.
Abradability tests at slow incursion rates did not result in any discernable
differences in the rub paths; fast incursion rates produced observable variations
as noted above.

Compositional changes in the cenosphere-filled system to provide for a more
abradable coating were not as pronounced as expected. The desired ceno- .
sphere percentages were never achieved and only nominal differences were

14
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observed in the erosion test resjtls. However, these coatings all resulted
In significantly better erosion resistance than any of the pol.yster-filled
systems. The normal forces registered during the rubs of the cenosphere
filled system were appreciably lower than the glaze-producing normal, forces
encountered for the polyester systems. No explanation has been ,found for tie
Inability to achieve the desired porosity level., Since the coatings deposited
readily, the explanation may be related to the particle size distribution
of the cenospheres.

Additional studies could prove beneficial for the continued development of
the cenosphere system. It was noted that the cenosphere particles had a wide
variation in size. This may have resulted in poor reproducibility of the
coating as well as the inab^l.ity to effectively control the density of the
top layer. In addition, a large proportion of the smaller particles appeared
to be solid in nature which could result in an extremely closely-pricked
structure and contribute to the formation of the glassy phase observed in
some of the cenosphere tests. future effort should therefore include:

0	 More effective particle screening. This would reduce the cenosphere
particle size distribution to one more appropriate for plasma spray
operations.

0	 Removal of solid cenosphere particles. This would enhance the
resultant abradable structure and tend to reduce the tendency
towards smearing.

0	 Investigation of additional filler materials other than the ceno-
spheres. Further work with the polyester filler is not strongly
recommended.

CONCLUSION:

The application of a sacrificial, faller material to provide controlled or
predictable porosity in a ceramic abradable seal, system offers some degree
of promise. The use of a co-sprayed polyester filler material did indeed
provide an impermeable, porous structure which was readily abradable. However,
erosion resistance was notably lacking. Attempts to improve the erosion
performance while still maintaining adequate abradability were only
marginally successful in that although densities were measurably increased
by 15%, hardness and erosion resistance were unpredictable. Co-spraying
of a cenosphere-filled system did provide acceptable erosion resistance
but abradability performance did not appear to be as good as for the
polyester-filled systems. A glazed wear scar appeared to be a prominent
feature of each of the cenosphere-filled iterations. Attempts to decrease
the density of the abradable layer by increasing the percentage of ceno-
spheres in the coating did not appear to be effective. Blade tip measurements
made on both the polyester and cenosphere systems indicate a lower tip loss
was recorded for the cenosphere-filled than for the polyester-filled system.
At present, the effect of the presence of the glazed wear scar in an actual.
engine configuration is unknown, particularly when successive blade tip
contacts are made.

Results of the through flow leakage, or permeability tests indicate no
significant leakage was present for either of the systems in any of the
iterations.
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cytlt le^ $ystem 	 I-P II-P III-P

f	 Parameter..

Operating Voltage	 32 32 32

Current-,Amps	 450 450 450

Primary Are Gus	 AR Alt AR

CFN	 60

f

60 60

Line Pressure psis	 50 50 50

Feeder Carrier Gas	 AR AR AR

CPI: biller /YSG 	 12/10 12/10 12/10

Line Pressure psig	 50 50 50

Feeder Pot. Setting	 15/30 13/35 15/55
Filler /YSG

-	 Spray Distance Cm.	 7.6 7.6 7.6
Inches	 (3) (3) (3)

Powder Injection Port	 Ext/ Ext/ Ext/
Filler/YSZ	 Int Int Int

Aasic Equipment - Plasmadyne

0	 Power Supply

Model #PS -61M

Open Circuit Voltage CJV

.	 0	 Gun

Model SG-1-B

Anode S1-3-F

Cathode S1-3-R

0	 Powder Feeders

Rotofeed Model 1000A

Gears

Table x	 Plasma Spray Parameters

IBC 11-C I

32 30 30

450 450 450

AR AR AR

60 60 60

50 50 50

AR AR AR

12/12 12/12 12/12

50 50 50

30/30 36/24 40/20

7.6 7.6 7.6

(3) (3) (3)

Ext/ ut/ Ext/
Int Int Int



Surface Roughness p-in.
Coating System n,_(RMS) (After MachLin

I-P	 350-400

II-P	 300-400

III-P	 270-350

I-C	 300-400

II-C	 350-400

III-C	 170-220

Additional Measurements: Sample I-P (Before Burnout or Machining)

Condition P-in.	 (RMS)

As Sprayed 300-350

Ground 80-120

Machined 160-200

Table II	 Surface Roughness Measurements
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Hardness
( beat-Trcated Condition

hardness Scale
Coatina S stem R15W R15Y

-I' G 13

11-P 81 89

111-P 43 61

-C 63 78

11-C 72 82

111-C 81 85

Additional Hardness Determination - 1-P
(Non-Heat `treated)

Condition
	

fixSY

As Sprayed
	

73

Machined
	

83

Ground
	

88

Table III	 Coating System Hardness
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Coating System
v/o Zr0	 ti

Filler
v o Cenos lYeres

U, ash RnaG on XqMat	 jMcaeured Ia	 C Measuredf Target fteEu ed 

65	 (72) 35 (28) 0 ^«-«

II-P 75	 (79) 25 (21) 0 ---

III-P 80	 (83) 20 (17) 0 p---

I-C 50	 (70) 0 --- 50 (30)
I1-C 40	 (65) 0 __- 50 (35)

III-C 30	 (68) 0 - - 70 (32)

Table IV	 Coating System Composition
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Rub Depth Change in Normal Farce Ton8ential Farce
cm Blade Length Newtons Newtcna

5 ^,	 ncli _am (T nchJ 1bc^. (lbs. )_

-P-S+6 0,013  0 --- +5.12
(0,005) (1,15)

I-P-P 0.053 -01005 --- 20,82/47.95
(0,021) (-0.002) (4,68)/(10.78)

T.T.-P-S 0.038 -010005 11.61 6.98
(0.016) (-0.0002) (2,61) (1.57)

II-P-r 0.013 -0,0015 52.22 28.24
(0.005) (-0.0006) (11.74) (6.35)

zll-P-S 0,038 0 25.93 11.30
(0.015) (5.83) (2,54)

III-P-P 0.041 -0.003 35.58 28.60
(0.016) (-01001) (8.0) (6.43)

I--C-S 0,013 -0.003 11.25 7.34
(0.005) (-0.001) (2.53) (1,65)

I-C-F -._- --- --- ---

II-C-S 0.030 -0.00 05 !-v,2 914

(0,012) (-0.0002) (6.3) (7.0)

II-C-F --- ..... --- ---

III-C-S 0.023 -0.0015 20.15 29.80
(0.009) (-0.0006) (4,53) (6.7)

III-C-F --- -__ --- ---

Table V	 Summary ,of Abradability Tests
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0.005-0.007 NiCrAIY bond coat 0.005-0.007 NiCrAlY bond coat

RI:PRnnCC[1311 I'VY 
OF THN:

c ►Rlc;l^At, I'^Gl;
is POOR

[I

0.018-0.020 filled,
yttria-stabilized ZrO2

abradable layer

A.

Substrate
	

Substrate

(a) Typical NASA duplex	 (b) Dual -densitylcomposit ion abradable
thermal barrier coating	 thermal barrier coating

Figure 1	 cross sections of thermal barrier coating configurations
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Huh

plrectiun

Thadc track c,.	 rr

Blade tip	 nditIon

Incursion rate.:
.0025 cm/sec
(.001 in/see)

Blade tip speed:
229 m/ sec
(750 ft/sec.)

Figure 8	 Slow incurston rate ahradahility test results for specimen
con  1;411ration I-1' 	 %tagn: 5X
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li1ride tip speed:
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(150 ft/sec)

Figure 9	 Slow incursion rate ab radabilit}' test results
for specimen con figuration lI-P Magn: 5X
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Figure 10 Slow incursion rate abradability test results for
specimen configuration 111-1'	 Magn: 5X
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Incursion rate:
.U25 ^m/sec
(.010 !n/scc)

Blade tip spec,l :
229 m/sec
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Figure 11	 Fast incursion rate abradabl l ity test results for
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b.	 Ceramic particle morphology (outer la.^^r)

Figure 25 Porosity characteristics and ceramic particle morphology of coating
system I-P.
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Figure L6 Porosity characteristics and ceramic particle morphology

of coating system 11-P
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Figure 27	 Porosity characteristics and ceramic particle mo rphology ofcoating system III-P.
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Figure 28	 Elemental Iine scan analysis of coating system 11-P
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Figure 30	 Porosity characteristics and ceramic particle morphology of
coating system I-C
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Figure	 31	 Porosity characteristtes and ceramic particle morphology of
coating system II-C
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