A Reproduced Copy

NASA CR-162,570

Reproduced for NASA
by the
NASA Scientific and Technical Information Facility

Analysis Tecinioues for Multivariable Root Loci*

Peter M. Thompson
Gunter Stein
Alan J. Laub

ABSTRACT

Analysis techniques are developed for the multivariable root locus and the multivariabie optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci. and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

[^0](liASA-CR-16257C) ANALYSTS TECHNIQUES FOR WULTI:AHTATE ROOT LOCI (Massachusetts Inst.

N80-15853

Uncles
63/64 46595

I. Introduction

The classical root locus has proven to be a valuable analysis and design tool for single input gingle cutrat linear control systems. Research is currently underway to extend these methods to multi-input multi-outpat linear control systems and linear optinal control systems. In this paper we present analysis techniques for both of these multivariable root loci. We show how to compute angles and sensitivities for both types of loci, and how to determine the asymptotic behavior las control weights get small) of the optimal root locus.

Previous work on angles and sensitivities is contained in [1,2]. The former uses time domain techniques (the eigenvalue problem) and the Iatter uses frequency domain techniques. We extend the time domain techniques through the use of generalized eigenvalue probiems, and we show this approach to be significanily better for computing angles of approach.

Perhaps the most significant development in the understanding of multivariable root loci was the concept of multivariable transmission zeroes [3]. These form the endpoints of all asymptotically finite branches. Detemining the behavior of the asymptotically infinite branches, however, has proven to be a difficult problem and all of the details are not yet known [4]. Frequency dcmain interpetations of multivariable root loci using Riemann surfaces bave been given [5], and the behavior of the closed loop eigenvectors has also attracted some attention.

Abstract

Tho root loci of linear quadratic optimal control systems were first described for single-input single-output systens in [6,7]. These methods hare been extended to the multi-input case in $[8,9,10]$. Asymptotic propertics (which include the asymptotic behavior of eigenvectors) are used to selact quadratic weights in [11]. Optimal root loci can be considered a special case of ordinary linear feedback loci, and it tums out that the asymptotically infinite behavior of this special case is better behaved. Consequently more progress has been made in analyzing this behavior [12,13]. He extend the available analysis techniques for determining the asymptotically infinite behavior to include the behavior of the eigenvectors. In doing so we use a new type of subspace deconposition winch minplifies the previous analysis technique $\{121$.

In section II we develop the formalas for computing angles and sensitivities of the multivariable root locus. In section III these formulas are applied to the multivariable optinal root locus. Then in section IV we develop analysis techniques for determing the asymptotically infinite behavior of the multivariable optimal root locus.

The Generalized Eigenvalue Problem

The generalized eigenvalue problem is to find all finite λ and their associated eigenvectors v which satisfy
$L v=\lambda M v$.
L and M are real valued p:p matrices which are not necessarily full rank. If M is invertible then promultiplication by M^{-1} changes the
generalizea eigenvalue problem into a standard eigenvalue problea for which there are exactly p solutions. Is. general there are 0 to p finite solutions, except for the degenarate case then all λ in the coaplex plane is a colution. Reliable FORTRAN Eubroutines based on stable numerical algorithme exist in EISPACK [14] to solve the generalized eigenvalue problen. See [15] for the application of this software to a related class of problems.

Notation

Matrices are denoted by capital letters, scalars and vectors by lower case letters. A^{T} and y^{H} are the transpose and Hermitiari transpose, respectively, of A and y. A^{-t} indicates $\left(A^{-1}\right)^{T}$ or, equivalent, $\left(A^{T}\right)^{-1}$. $A \geq 0$ and $A>0$ indicates that A is positive semidefinite and positive definite. If A is symetric then $A^{1 / 2}$ is the (nonunique) decomposition of A into $A^{1 / 2} A^{1 / 2 T}$. siubspaces are denoted by script letters, with the exception of the re.il vector space \mathbb{R}^{n}. "Im A " and "ker A " are the image and kernel of the linear map A. The dimension of U is dim U, subspace inclusion is C, subispace intersection is \cap, and a linear combination of subspaces in $U+V$. An open loop linear systen is denoted by (A, B, C.
II. Angles and Sensitivities of the Root Locus

We consider the linear tima invariant output Ecedback problem

$$
\begin{array}{ll}
\dot{x}=A x+E u & x \in \mathbb{Z}^{n}, \quad u \in \mathbb{R}^{\mathrm{m}} \\
\dot{y}=C & y \in \mathbb{R}^{\text {m }} \\
u=\frac{-1}{k} K Y . & \tag{3}
\end{array}
$$

The closed loop systea matrix and its eigenvalucs, right eigenvectors, and left eigenvectors are defined in the usual way by

$$
\begin{array}{ll}
A_{C l}=A-\frac{1}{K} B K C \\
\left(A_{C l}-s_{i} I\right) x_{1}=0 & 1=1, \ldots, n \\
y_{i}^{H}\left(A_{C L}-s_{i} I\right)=0 & 1=1, \ldots . n . \tag{6}
\end{array}
$$

We make the assumptions that (A, B) is controllable, (C, A) is observable, and K is invertable. Only the case where the number of inputs and outputs are equal is treated, and we further assume that the closed loop eigenvalues are distinct.

As k is varied from infinity down to zero the closed loop eigenvalues trace out a root losus. At $k=\infty$ (to be more precisa let $\&=1 / k$ and use $\&=0$) the n branches of the root locus start at the open loop eigenvalues. As $k \rightarrow 0$, some number $p \leq n \rightarrow m$ of these branches approach transmission zeros, which are defined here to be those values of s which reduce the rank of

$$
\left[\begin{array}{ll}
A-s I & B \\
-C & 0
\end{array}\right]
$$

We further rule out degenerate cases, in other words we assume that A, B, and C do not conspire in such a way that eny value of s in the complex plane reduces the rank of the matrix. We note that if all of our asumptions are valid then this is an adequate definition of transaission zeros [3]. Also as $k+0$, the remaining $n-p$ branches of the root lccus appsoach infinity. Tha behavior of these branches concern us in Section IV.

At any point on the root locus an angle can be defined. Consider the closed loop eigenvalue s_{i} which is computed for some value cf k. If k is perturbed by an amount Δk then s_{i} will be perturbed by Δs_{i}. As $\Delta k+0$ then $\Delta s_{i} / \Delta k$ approaches the constant $d s_{i} / d k$ (14 this limit exists). The angle of the root locus at point s_{i} is then defined to be

$$
\hat{\gamma}=\arg \left(d s_{i}\right),
$$

where "arg" is the argument of a complex number. The angles of the root locus at the open loop eigenvalues are the angles of departure, and the angles at the transmissions zeroes are the angles of arrival, rigure 1 illustrates these definitiors.

Next we define the sensitivity of a closed loop eigenvalue to a change in k to be

$$
S=\left|\frac{\mathrm{ds}_{1}}{\mathrm{dk}}\right|
$$

This definition is motivated by the approximation

$$
\frac{d s_{i}}{d k}=\frac{\Delta s_{i}}{\Delta k},
$$

from which we obtais

Fig. 1. Definition of Angles

$$
-8-
$$

$$
\left|\Delta s_{i}\right| \approx\left|\frac{d s_{i}}{d k}\right| \cdot|\Delta k| .
$$

So, to first order, a change Δk till move a_{i} a distance $\left|\Delta \varepsilon_{i}\right|$ in the direction arg (ds_{i}).

Bafore precenting formulas for these angles and sensitivities, we present the following lema, which shows how the generalized cigenvaiue problem can be used to compute the closed loop eigenstructure.

Leman 1. The s_{i}, X_{i}, and y_{i}^{H} are solutions of the generalized cigenvalue problems

$$
\begin{align*}
& {\left[\begin{array}{cc}
A-s_{i}^{I} & \cdot B \\
-c & -k k^{-1}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
v_{i}
\end{array}\right]=0 \quad 1=1, \ldots, p} \tag{7}\\
& {\left[\begin{array}{ll}
Y_{i}^{B} & \eta_{i}^{H}
\end{array}\right]\left[\begin{array}{cc}
A-s_{i}^{I} & B \\
-c & -k k^{-1}
\end{array}\right]=0} \tag{8}
\end{align*}
$$

Proof. Frow (7) we see that

$$
\begin{align*}
& \left(A-g_{i} I\right) x_{i}+E v_{i}=0 \tag{9}\\
& v_{i}=-\frac{1}{k} X C x_{i} . \tag{10}
\end{align*}
$$

Substitute (10) into (9) to get

$$
\left(A-s_{i} I\right) x_{i}-\frac{1}{k} \operatorname{BKC} x_{i}=0 .
$$

which is the same as (5), the defining equation for the closed loop eigenvalues and right eigenvectors. In a similar way (8) can be roduced to (6)
and the proof is complete. Lemma 1 is not a new result but we bave been unable to find a reference for it, A precursor of this result (without consideration of closed loop eigenvectors, and without mention of the generalized eigenvalue problen) is the polynomial system matrix representation of Rosenbrock [3].

When $k>0$ then p, the number of finite solutions of s_{i} in (7) and (8), is equal to n. When $k=0$ then $0 \leq p \leq n-m$ (under stated assumptions). The ability to use (7) and (8) with $k=0$ is the major advantage of the generalized eigenvalue problea. The Einite solutions s_{i} when $k=0$ are the transaission zeroes of the system, and the x_{i} and y_{i}^{H} vecters are the right and left zero directions [15]. From (7) and (8) it is clear that as $k \rightarrow 0$ the finite closed loop eigenvalues approach the transmission zeroes and the associated eigenvectors approach the zero directions. ${ }^{1}$

The solutions of the generalized eigenvalue problems contain two vectors v_{i} and η_{i}^{H} which do not appear in the solutions of the ordinary eigenvalue problems. The importance of the ν_{i} vectors can be explained as follows. The closed loop right eigenvector X_{i} is constramed to lie in the m dimensional subspace of \mathbb{R}^{n} spanned by the columns of $\left(s_{i} I-A\right)^{-1} I_{s}$ [17]. Exactly where x_{i} lies in this subspace is detemined by v_{i}, via $x_{1}=\left(s_{1} I-A\right)^{-1} B V_{1}$. This follows from the top part of (7). If the state

[^1]of the closed loop system at time zero is $x_{0}=a x_{i}$, then the state trajectory for time greater than zero is $x(t)=a x_{i} e^{g_{i}}$, and the control action is $u(t)=-(a / k) K C x_{i} e^{s_{i} t}=a v_{i} e^{s_{i} t}$. This follows from the bottom part of (7). The η_{i}^{H} vectors play an analogous role in the dual system $s\left(-A^{T}, C^{T}, B^{T}\right)$.

For our purposes, however, the v_{i} and η_{i}^{H} vectors are also significant because they can be used to compute the angles on the root locus. This is shown by the following Theoren:

Theoren 1. The angles of the root locus, for $0 \leq k \leq \infty$ and for distinct s_{i}, are found by

$$
\begin{array}{ll}
\arg \left(\mathrm{ds}_{i}\right)=\arg \frac{-Y_{i}^{\mathrm{BXCC}} \mathrm{~B}_{i}}{\mathrm{Y}_{1}^{\mathrm{H} x_{i}}} & 0<k \leq \infty \\
i=1, \ldots, p \tag{12}\\
\arg \left(\mathrm{ds}_{i}\right)=\arg \frac{\eta_{i}^{H} x^{-1} v_{i}}{y_{i}^{H} x_{i}} & 0 \leq k \leq \infty \\
i=1, \ldots, p
\end{array}
$$

Remark. The angles of departuze are found using (11) with $k=\infty$, the angles of approach are found using (12) with $k=0$. For $k>0, p=n$; and for $k=0,0 \leq p \leq n-m$.

Proof. The proof of (11) can be found in (11. To prove (12), we first show that

$$
\begin{equation*}
\frac{d s_{i}}{d k}=\frac{-\eta_{i}^{H} K^{-1} v_{i}}{y_{i}^{H} x_{i}} \tag{13}
\end{equation*}
$$

Rewrite (7) as

$$
\begin{equation*}
\left(L-s_{1} H\right) \nabla_{1}=0 \quad 1=1, \ldots, p \tag{14}
\end{equation*}
$$

where

Let also,

$$
L=\left[\begin{array}{cc}
A & B \\
-C & -k K^{-1}
\end{array}\right], \quad H=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right], \quad v_{i}=\left[\begin{array}{l}
x_{i} \\
v_{i}
\end{array}\right]
$$

$$
u_{i}^{H}=\left[y_{i}^{H} \eta_{i}^{H}\right]
$$

Differentiate (14) to get

$$
\left[\frac{d}{d k}\left(L-a_{i} M\right)\right] v_{i}+\left(L-a_{i} M\right) \frac{d v_{i}}{d k}=0
$$

Multiply on the left by $u_{i}^{\text {Fi }}$ to get

$$
u_{i}^{H}\left[\frac{d}{d k}\left(L-g_{i} M\right)\right] v_{i}=0 .
$$

After substituting and rearranging the result is (13). The formula for the angle is shown from (13) to be

$$
\arg \left(d s_{i}\right)=\arg (d k)+\arg (-1)+\arg \left(\frac{n_{1}^{H} x^{-1} v_{i}}{y_{1}^{H} x_{i}}\right)
$$

Since k varies negatively from ∞ to 0 , arg $\langle\mathrm{dk}\rangle=180^{\circ}$, and since arg $(-1)=180^{\circ}$, the result is (12). This completes the proof.

The angles on the root locus for $0<k<\infty$ can be found using either (11) or (12). Except for k very close to zero, when numerical problems may be a factor, it is best to use (11) because it involves solving an n dimensional eigenvalue problen rather than an $n+m$ dimensional generalized eigenvalue problem. The following identities, which are obtained from (7) and (8) of Lenma 1 , can be used to pass back and forth from (11) to (12):

$$
\begin{aligned}
& C x_{1}=-k R^{-1} v_{1} \\
& Y_{2}^{H} B=k \eta_{i}^{H} x^{-1}
\end{aligned}
$$

Prom these identities we see that when $k \Rightarrow 0, C x_{i}=0$ and $y_{i}^{i H_{1}}=0$. Therefore, (II) cannot be used when $k=0$ to compute angles of approach because
-12-
arg $\left(\mathrm{ds}_{i}\right)=$ arg (0), which is not defined. ${ }^{2}$
Equations (11) and (12) are still valid when the controllability and observability assumptions are relaxod. However, angles can only be computed for modes that are both controllable and observable because only these modes move as a function of k, and thas have well defined angles.

The v_{i} and η_{i}^{H} vectors are also useful for the calculation of eigenvalue sensitivities. This is shown in the next lema. a separate proof of this lemma is not necessary because the proof follows from intermediate stens in the proof of Theoren 1.

Lema 2. The sensitivities of distinct closed loop eigenvalues to changes in k, for $0 \leq k \leq \infty$, are found by

$$
\begin{align*}
& \left|\frac{d s_{i}}{d k}\right|=\left|\begin{array}{l}
n_{1}^{H_{1}} k^{-1} v_{i} \\
y_{i}^{H} x_{i}
\end{array}\right| \quad \begin{array}{l}
0 \leq k<\infty \\
i=1, \ldots, p
\end{array} . \tag{16}
\end{align*}
$$

Equations (15) and (16) give the same anwers for $0<k<\infty$. Even though k appears only in (15), we note that both (15) and (16) are dependent on k because the vectors $y_{i}^{H}, x_{i}, \eta_{i}^{H}$ and v_{i} are all dependent on k.

[^2]
Example 1

To illustrate that above results, we define a system $S(A, B, C)$ and plot root loci for each of 3 output feedback matrices K. The system matrices are

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
-4 & 7 & -1 & 13 \\
0 & 3 & 0 & 2 \\
4 & 7 & -4 & 8 \\
0 & -1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 1 \\
1 & 0 \\
2 & 0 \\
-2 & 0
\end{array}\right] \\
& C=\left[\begin{array}{cccc}
C & -5 & 2 & -2 \\
8 & -14 & 0 & 2
\end{array}\right] .
\end{aligned}
$$

The output feedhack matrices are

Case \# 1

Case ${ }^{1} 2$
$K=\left[\begin{array}{cc}10 & 0 \\ 0 & 1\end{array}\right]$
$K=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Case \#3
$K=\left[\begin{array}{ll}1 & 0 \\ 0 & 50\end{array}\right]$

Case \boldsymbol{H}_{2} is the same as used in [1]. The root loci are shown in Figure 2. The angles of departure and approach were computed and are listod in Table 1.

The systen has tho open loop unstable modes that are attracted to unstable transmission zeroes, so for all values of k the systcris is unstable. The system has two open loop stable modes that are ittracted to $-\infty$ along the negative real axis. One of the branches first goes to the right along the negative real axis and then turns around. The turn around point is called a branch point. The reot locus can

$$
-14-
$$

be thought of as being plotted on a Riemann surface, and the branch points are points at which the root locus moves betwcen different sheets of the Riemann surface [5].

TABLE I

Angles of Departure and Approach for Example 1

Case	Angles of Departure -4 $\pm 2 i$	2	Angles of Approach 1	
1	$\pm 173^{\circ}$	0°	180°	$\mp 170^{\circ}$
2	± 149	0	180	∓ 121
3	+135	0	180	∓ 114

-15-

Floure 2. Root hoci of a fincar syatem wath output frombith

III. Angles and Scnsitivities of the Optimal Root Locus

cur attention now shifts from the linear output feedbuck problem to the linear optimal state feedback problem with a quadratic cost Eunction. As in [7. 12], we show that the optimal root locus for thia problem is a special case of the ordinary output feedback root locus. We show how to compute asymptotically finite properties of the optimal root locus and how to compute angles and sensitivities.

The linear optimsi state focdback problem is
$\dot{x}=A x+B u$
$x \in \mathbb{R}^{n}$.
$u \in R^{m}$
$u=F(x)$.

The optimal control is required to be a function of the state and to minimize the infinite timo quadratic cost function

$$
J=\int_{0}^{\infty}\left(x^{T} q x+\rho u^{T} R u\right) d t
$$

where

$$
\begin{aligned}
& Q=Q^{T} \geq 0 \\
& R=R^{T}>0 \\
& 0 \leq P \leq \infty
\end{aligned}
$$

As usual we assume that (A, B) is controllablo and that the state weighting matrix; factored into

$$
Q=H^{T} H
$$

whore Rank $(Q)=$ Rank $(H)=r$, and H e $R^{2 x n}$, produces an obsorvabla pair (H, λ).

Kalman [18] has shown (for $\rho>0$) that the optimal control is a 1 inear function of the state

$$
\begin{equation*}
u=-F x \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
F=\frac{1}{\rho} R^{-1} B^{T} P \tag{20}
\end{equation*}
$$

and P is the solution of the Riccati equation

$$
\begin{equation*}
0=Q+A^{T} P+P A-\frac{1}{\rho} P B R^{-1} B_{B}^{T} \tag{21}
\end{equation*}
$$

The closed loop system matrix is

$$
\begin{equation*}
A_{C 2}=A-E F \tag{22}
\end{equation*}
$$

As ρ is varied from infinity down to zero the closed loop eigenvalues trace out an optinal root locus.

To study the optimal root locus we define a linear output feedback problem with $2 n$ states, m inputs, and moutputs.

$$
\begin{array}{ll}
\tilde{A}=\left[\begin{array}{cc}
A & 0 \\
-Q & -A^{T}
\end{array}\right] \quad \tilde{B}=\left[\begin{array}{l}
B \\
0
\end{array}\right] \\
\tilde{C}=\left[\begin{array}{lll}
0 & B^{T}
\end{array}\right] \quad \bar{R}=R^{-1} &
\end{array}
$$

The closed loop system matrix is

$$
z=A-\frac{1}{\rho} \tilde{B} \tilde{K} \tilde{C}=\left[\begin{array}{ll}
A & -\frac{1}{\rho} E R^{-1} B^{T} \\
-Q & -A^{T}
\end{array}\right]
$$

The 2 matrix is sometimes called the thailtonian matrix. Its $2 n$ eigenvaiues are known to be symetric about the imaginary axis, and those eigenvalues in the left half plane (LIP) axe the eigenvalues of $A_{c l}[81$. We again assume that the $2 n$ eigenvalues of z are distinct. Then the right and left eigenvectors of Z can be defined to be

$$
z_{i} \quad w_{i}^{n} \quad i=1, \ldots, 2 n
$$

The right eigenvectors cin be further decomposed into

$$
z_{i}=\left[\begin{array}{l}
x_{i} \\
\xi_{i}
\end{array}\right] .
$$

Then the x_{i} vector is a right eigenvector of $A_{c \&}$ and $\xi_{i}=P x_{i}$. There is apparently not a similarly easy way to find the left eigenvecto: y_{i}^{H} of $A_{c \ell}$ from z_{i} and w_{i}^{H}.

The closed loop elgenvalues, right and left eigenvectors of 2 can be found by solving ordinary eigenvalues probleas. Alternatively, using Lemma 1, they can be found by solving the following generalized eigenvalue problems.

$$
\begin{align*}
& {\left[\begin{array}{ll}
\tilde{A}-3_{i} I & \tilde{B} \\
-\tilde{C} & -\rho \tilde{X}^{-1}
\end{array}\right] \quad\left[\begin{array}{l}
z_{i} \\
v_{i}
\end{array}\right]=0 \quad 1, \ldots, 2 p} \tag{23}\\
& {\left[\begin{array}{ll}
W_{i}^{H} & \eta_{i}^{H}
\end{array}\right]\left[\begin{array}{ll}
A-s_{i} I & \bar{B} \\
-\tilde{c} & -\rho \tilde{K}^{-1}
\end{array}\right]=0} \tag{24}
\end{align*}
$$

The number of finite generalized eigenvalues is $2 p=2 n$ if $\rho>0$ and is $0 \leq 2 p \leq 2(n-m)$ if $\rho=0$.

We can analyze the optimal root locus by using the LHP portion of the root locus of the Hamiltonian system. At $\rho=\infty$ the n branches of the optimal root locus start at the stable open loop poles for the mirror image about the imaginary axis of the open loop unstable poles). The branches of the optinal root locus always stay in the LHP. As $p \rightarrow 0$, p of these branches stay finite and approach transaission zeroes, where $0 \leq p \leq n-m$. Those transmisgion zeroes are the finite LfP solutions of the generalized eigenvalue problem (23) with $\rho=0$. The right zero directions associated with the transmission zeroes are the x_{1} portions of the associated z_{1} vectors. ${ }^{3}$

These asymptotically finite properties will be grouped together in the following way:

$$
\begin{aligned}
& s^{0}=\operatorname{diag}\left(s_{1}^{0}, \ldots, s_{p}^{0}\right) \\
& x^{0}=\left[x_{1}^{0} \ldots \ldots x_{p}^{0}\right] \ldots
\end{aligned}
$$

Each s_{i}^{0} is a transmission zero and each x_{i}^{0} is a right zero direction. Because each x_{1}^{0} is a direction it is only unique to within a scalar multiple.
${ }^{3}$ If $Q=H^{T} H$, where H er $R^{m \times n}$, then an $n+m$ dimension generalizer eigenvalue problem using $S(A, B, H)$ can be solved to find the transmission zeroes. The p branches that romain finite approach the LHP tran!mission zeroes, or the mirror image about the imaginary axis of the Rup transmission zeroos. The zero directions are the vectors associated w, th the LHP transmission zeroes. The zero directions associated with the mirror image of the RHP transmission zeroes cannot be found using this $n+m$ dimension problera.

The angles and sensitivities of the optimal root locus can be found by applying Theorem 1 and Lemma 2 to the Ifamiltonian system. The results are the following:

Theorem 2. The angles on the optimal root locus, for $0 \leq \rho \leq \infty$ and for distinct s_{i}, ere found by

$$
\begin{align*}
& \arg \left(\mathrm{ds}_{i}\right)=\arg \begin{cases}\frac{1}{w_{i}^{H} Z_{i}} & w_{i}^{H}\left[\begin{array}{ll}
0 & \mathrm{BR}^{-1} B^{T} \\
0 & 0
\end{array}\right] z_{i}\left\{\begin{array}{l}
0<\rho \leq \infty \\
i=1, \ldots, p
\end{array}\right. \\
\arg \left(d s_{i}\right)=\arg \left\{\begin{array}{l}
\left.\frac{\eta_{i}^{H} V_{i}}{w_{i}^{H}}\right\} \\
0 \leq \rho<\infty
\end{array}\right. \\
i=1, \ldots, p\end{cases} \tag{25}
\end{align*}
$$

Remark. The angles of departure are found using (25) with $\rho=\infty$, and the angles of approach by using (26) with $\rho=0$. For $\rho>0$, $p=n$; and for $p=0,0 \leq p \leq n-m$.

Lema 3. The sensitivities of distinct closed loop eigenvaives to changes in 0 , for $0 \leq \rho \leq \infty$, are found by

$$
\begin{align*}
& \left|\frac{d s_{i}}{d \rho}\right|=\frac{1}{\rho^{2}}\left|\frac{1}{w_{i}^{H} z_{i}} w_{i}^{H}\left[\begin{array}{cc}
0 & B R^{-1} B^{T} \\
0 & 0
\end{array}\right] z_{i}\right| \begin{array}{l}
0<\rho \leq \infty \\
i=1, \ldots .
\end{array} \tag{27}\\
& \left|\frac{d s_{i}}{d \rho}\right|=\left|\begin{array}{l}
n_{i}^{H} R_{i} \\
w_{i}^{H} z_{i}
\end{array}\right| \begin{array}{l}
0 \leq \rho<\infty \\
i=1, \ldots, p
\end{array} . \tag{28}
\end{align*}
$$

Remark. The computations for (25-28) can be reduced by using the following identities. First, frem (23) and (24), it can be shown that

$$
v_{i}=n_{i} .
$$

Second, from [8], let \bar{s}_{1} be the RHP mirror fmage about the imaginary sxis of s_{i}, and let $\bar{z}_{i}=\left(\bar{x}_{i}, \bar{\xi}_{i}\right)^{H}$ be the right eigenvector associated with \vec{s}_{2}. Then the left eigenvector associated with s_{i} is

$$
w_{i}^{\mathrm{H}}=\left(-\xi_{i}^{H} \mathrm{x}_{1}^{\mathrm{H}}\right) .
$$

-22-

IV. Asymptotically Infinite Properties of the Optimal Root Locus

In this section we continue to analyze the optimal root locus. We review what is known about the asymptotic behavior and then present an algorithm which can be used to predict the asymptotically infinite behavior.

Review of Xnown Asymptotic Behavior

As $\rho \rightarrow 0$ the number of asymptotically finite branches is p, where $0 \leq p \leq n-m$. These branches approach the LHP transmission zeroes of the Hamiltonian system. The associated eigenvectors approach zero directions, which are part of the zero directions of the familtonian syster, as explained in section III. The remsining n-p branches group in m Butterworth patterns and approach infinity. Let the order of the ith pattern by n_{i}. Each of the n_{i} eigenvalues in this pattern lies on one of n_{i} asymptotes ${ }^{4}$ with a distance from the origin approximately equal to

$$
\left(\frac{s_{i}}{\rho^{1 / 2}}\right)^{\frac{1}{n}}
$$

There are n_{i} right eigenvectors associated with the pattern. These span the same subspace of R^{n} spanned by

[^3]$$
B V_{i}^{\infty}, A B V_{i}^{\infty}, \ldots, A^{n_{i}^{-1}} B V_{i}^{\infty}
$$

The ordaring of these vectors can be conveniently sumarized in terms of a multi-index defined in the following way:

$$
\begin{array}{r}
\gamma=\left(01,11,21, \ldots,\left[n_{1}-1\right] 1,02,12,22, \ldots,\left[n_{2}-1\right] 2, \ldots\right. \\
\left.\left[n_{m}-1\right] n\right) \ldots
\end{array}
$$

Each component if of γ describes the vector $A^{i} E_{j}^{\infty}{ }_{j}^{\infty}$ associated witn the m Butterworth patterns.

One special case of the above asymptotically infinite structure deserves special notice. When Rank $\left(B^{T} Q B\right)=m$ then there are $(n-m)$ finite modes and the remaining m infinite modes all form first order Butterworth patterns. This is called the "generic" case. For an explanation of the word "generic," see [19]. The masymptotically infinite eigenvalues lie on the negative real axis an approximate distance $3_{i}^{\infty} / \rho^{1 / 2}$ from the origin. Their associated eigenvectors approach Bu_{i}^{∞} and, hence, the multi-inder γ is

$$
\gamma=(01,02, \ldots, 0 n)
$$

The asymptotically infinite elgenstructure $\left\{3_{i}^{\infty}, \nu_{i}^{\infty}, i=1, \ldots, m\right]$ of a generic problem can be readily computed by solving the following m-dimensional eigenvalue problem:

$$
\left[\left(s_{i}^{\infty}\right)^{2} I-R^{-1} B_{Q B] V_{i}^{\infty}=0 \quad i=1, \ldots, m ~}^{m}\right.
$$

The resulting solutions will be grouped together in the following way:

$$
\begin{aligned}
& s^{\infty}=\operatorname{diag}\left(s_{1}^{\infty}, \ldots, s_{n}^{\infty}\right) \\
& N^{\infty}=\left[v_{1}^{\infty} \ldots, v_{n}^{\infty}\right]
\end{aligned}
$$

Each of the v_{i}^{∞} vectors is a direction and is therefore only unique to within a scalar multiple.

In contrast to the generic problem, the nongeneric case does not yield to a sirailarly simple calculation of its infinite asymptotic eigenstructure. For this case, it is necessary to evaluate vectors v_{i}^{\prime} scalars s_{i}^{∞}, and also the Butterworth dimensions $n_{i}, i=1, \ldots, m$. An algorith for this purpose is provided below.

An Algorith for the Non-Generic Case

Onder our earlier assumptions, the v_{i}^{∞} vertors form a basis for R^{m}. The algorithm presented here decomposes $\mathbb{R}^{\text {m }}$ into these basis vectors. This is done in two steps. The first is to compute basis vectors for a sequence of U_{i} subspaces of \mathbb{R}^{m} (defined below). The second step is to use a series of eigenvalue problems to further break down the u_{i} subspaces into the ν_{i}^{∞} basis vectors. These same eigenvalue problems corpute the s_{i}^{∞} 's.

Let $k \leq n-m+1$ be the highest order Butterworth pattern. Define the matrices

$$
J_{i}=H_{1}^{i-1} B \quad i=1, \ldots, k
$$

and define the subspaces of \mathbb{R}^{m}

$$
\begin{aligned}
& U^{0}=\mathbb{R}^{r a} \\
& U_{1}=u^{0} \cap \operatorname{ker} J_{1} \\
& \cdot \\
& \cdot \\
& U_{k}=U_{k-1} \cap \text { ker } J_{k}
\end{aligned}
$$

These subspaces are shown pictorially in Figure 3. They are nested such that

$$
0=u_{k} \subseteq \ldots \subseteq u_{1} \subseteq u_{0}=R^{n}
$$

and their dimensions satisfy

$$
\begin{aligned}
& m_{i}=\operatorname{dim} u_{i-1}-\operatorname{dim} u_{i} \quad i=1, \ldots, k \\
& \sum_{i=1}^{k} m_{i}=m \ldots
\end{aligned}
$$

A basis for each of the U_{i} subspaces can be recursively computed. 5 The recurgion stops at the $k^{\text {th }}$ step wher $u_{k}=0$. Define

$$
u_{i} \quad i=0,1, \ldots, k-1
$$

to be matrices whose colums form a basis for the U_{i} siuspaces. The basis vectors are not unique, and without loss or generality let

$$
\mathrm{u}_{0}=I
$$

Though it is not obvious at this point, we note that the number of ith order Butterworth patterns is n_{i}. If there are no ith order Butterworth patterns then $m_{i}=0$ and $U_{i-1}=U_{i}$. The dimensions of U_{i} are mol ${ }_{i}$, where

$$
\ell_{i}=m_{i+1}+\ldots+m_{k}
$$

and λ_{1} is the number of Butterworth patterns or order greater than i. When the U_{i} matrices are computed we have enough information to form

[^4]

Fig. 3. The u_{i} Subspace:.
Y, the multi-index which lists the orders oi the m Butterworth patterns. In the generic case $k=1, n_{1}=m$, and $U_{1}=0$.

The next step in the algorithm is to use the U_{i} matrices to compute N^{∞} and S^{∞}. We decompose N^{∞} and S^{∞} into

$$
\begin{aligned}
& N^{\infty}=\left[N_{1}^{\infty}, \ldots, N_{k}^{\infty}\right] \\
& s^{\infty}=\operatorname{diag}\left(s_{1}^{\infty}, \ldots, s_{k}^{\infty}\right)
\end{aligned}
$$

N_{i}^{∞} is an mon_{i} matr2x whose columns are the ν_{j}^{∞} 's associated with ith order Butterworth patterns. S_{i}^{∞} is an $m_{i} \times m_{i}$ diagonal matrix whose diagonal elements are the s_{j}^{∞} 's associated with ith order Butterworth patterns. We noce that

$$
u_{i}=\operatorname{ImN}_{i+1}^{\infty}+\ldots+\operatorname{InN}_{k}^{\infty} \quad i=0, \ldots, k-1
$$

and that in general

$$
\operatorname{ImN}_{1}^{\infty} \Gamma_{i} \operatorname{In}_{j}^{\infty} N_{j}^{\infty} 0 \quad \text { for } i \neq j
$$

In words, these two equations tell us that one basis for the subspace u_{i} consists of the vectors ν_{i}^{∞} associated with Butterworth pattenms of order greater than i, and that in gereral the v_{i}^{∞} 's are not orthogenal. We define two more sets of matrices:

$$
\begin{array}{ll}
G_{i}=J_{i}^{T} J_{i} & i=1, \ldots, k \\
T_{1}=\left(U_{i-1}^{T} R U_{i-1}\right)^{-1}\left(U_{1-1}^{T} G_{i} U_{i-1}\right) & 2=1, \ldots, k
\end{array}
$$

When the U_{i} matrices are known then the T_{i} matrices can be coraputed in a straightforward manner. The dmensions of T_{2} are $\ell_{i-1} \times \ell_{i-1}$. The

-28-

significance of the T_{i} matrices is that they can be decomposed by an eigenvalue problem to find the N_{i}^{∞} and S_{i}^{∞} matrices. This connection is made clear in the following Theorem.

Theorem 3. The Jordan canonical form of T_{1} is

$$
T_{i}=\left[\begin{array}{ll}
W_{i 1} & w_{i 2}
\end{array}\right]\left[\begin{array}{ll}
\Lambda_{i} & 0 \tag{29}\\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
W_{i 1} & w_{i 2}
\end{array}\right]^{-1} \quad i=1, \ldots, k
$$

Λ_{i} is a diagonal matrix with positive real eigenvalues, and

$$
\begin{align*}
& N_{i}^{\infty}=U_{i-1} W_{i 1} \tag{30}\\
& \left(S_{i}^{\infty}\right)^{2}=\Lambda_{i} \tag{31}
\end{align*}
$$

Proof: Appendix A.

Note that in the decomposition (29), Wil has as many columns as there are ith order Butterworth patterns, and $W_{i 2}$ has as many columns as there are Butterworth patterns of greater than ith order. So the dimensions of W_{11} and $W_{i 2}$, respectively, are $\ell_{i-1} \times m_{i}$ and $\ell_{i-1} \times \ell_{i}$. If there are no ith order Butterworth patterns then $x_{2}=0$ and $H_{i l}$ is not present.

Note further that there are no restrictions on the multiplicity of the $s_{i}{ }^{\prime}$'s (these are positive real numbers and not closed loop eigenvalues). If $s_{i}^{\infty}=s_{j}^{\infty}$ but they are associated with Eutternorth patterns of different orders then they are solutions to different eigenvalue problems(29). Consequently there is no ambiguity in the
assciated ν_{i}^{∞} and ν_{j}^{∞} vectors. However, if $s_{i}^{\infty}=s_{j}^{\infty}$ and they are associated with Butterworth patterns of the same order then wo can only say that ν_{i}^{∞} and ν_{j}^{∞} form a nonunique basis for a two dimensional subspace of \mathbb{R}^{m}. This is known from propertios of the Jordan canonical form of T_{1} (29) and from (30).

Example 2

The algorith described above is illustrated with the following $A, B, Q=H^{T} H$, and R matrices:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-5 & -4 & 0.1 & 1 \\
0.1 & 0 & -1 & 1 \\
0 & 0 & 0 & 5
\end{array}\right] \quad B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \\
& H=\left[\begin{array}{cccc}
-65 & 0 & 0 & 1 \\
100 & 10 & 0 & 0
\end{array}\right] \quad R=\left[\begin{array}{cc}
.01 & -.10 \\
-.01 & .1211
\end{array}\right]
\end{aligned}
$$

The asymptotically finito properties are found by solving a generalized eigenvalue problen using the system $S(A, B, I I)$. Tre results are

$$
s^{0}=[10] \quad x^{0}=\left[\begin{array}{c}
1 \\
-10 \\
0 \\
65
\end{array}\right]
$$

The asymptotially anfinite propertics are found by the algorithm of Theorem 3. First we find the U_{i} subspaces and their matrices U_{i} :

$$
J_{1}=H B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad J_{2}=\text { HAB }=\left[\begin{array}{ll}
0 & -5 \\
1 & 10
\end{array}\right]
$$

Since $U_{1}=\operatorname{ker} J_{1}, \quad U_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Since ker $J_{2}=0, \quad U_{2}=U_{1} \cap$ ker $J_{2}=0$.
The number of first and second order Butterworth patterns are

$$
\begin{aligned}
& m_{1}=\operatorname{dim} u_{0}-\operatorname{dim} u_{1}=1 \\
& m_{2}=\operatorname{din} u_{1}-\operatorname{dim} u_{2}=1
\end{aligned}
$$

The T_{i} matrices and their Jordan canonical forms are

$$
\begin{align*}
& m_{1}=R^{-1} G_{1}=\left[\begin{array}{ll}
0 & 9 \\
0 & 9
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
9 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& N_{1}^{\infty}=W_{11}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \tag{3}\\
& N_{2}=\left(U_{1}^{T} R_{U_{1}}\right)^{-1} U_{1}^{T} G_{2} U_{1}=[100] \\
& s_{1}^{\infty}=\Lambda_{1}^{1 / 2}=[3] \\
& N_{2}^{\infty}=U_{1} W_{2}=\left[\begin{array}{ll}
1 / 2
\end{array}\right] \quad s_{2}^{\infty}=\Lambda_{2}^{1 / 2}=[10]
\end{align*}
$$

Therefore

$$
N^{\infty}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \quad s^{\infty}=\left[\begin{array}{ll}
3 & 0 \\
0 & 10
\end{array}\right] \quad \gamma=(01,02,12) .
$$

Each c.i \sin of N^{∞} represents a direction and is therefore only unique to with:r a scalar multiple.

V. Conclusions

Both the eigenvalue and generalized eigenvalue problems can be used to compute angles and sensitivities of multivariable root loci and optimal root loci. The generalized eigenvalue problen is superior to use for computing the angles of approach.

The elementary matrices A, B, Q, and R can be used to determine the asymptotic behavior of the optimal root locus and the associated eigenvectors. A generalized eigenvalue problen can be used to compute s_{1}^{0} and X_{1}^{0}, the asymptotically finite properties. A subspace decomposition of the control space \mathbb{R}^{m} and a series of eigenvalue problens can be used to compute s^{∞}, N^{∞}, and $\gamma_{\text {; }}$ the asymptotically infinite properties.

We are hopeful that a similar type of subspace decorposition can be used to determane the asympotically infinite behavior of arbitrary multivarisble root loci. The extension of the present method is difficult, however, because we do not in general have the symmetry of closed loop eigenvalues about the imaginary axis forced by the optimal Hamiltonian system.
-

REFERENCES

1. Shaked, U., "The Angles of Departure and Approach of the Root-Loci of Linear Multivariable Systems," Int. J. Control, Vol. 23, No. 4, pp. 445-457, 1976.
2. Postlethwaite, I., The Asymptotic Behavior, The Angles of Departurt, and the Angles of Approach of the Characteristic Frequency I.oci," Int. J. Control. Vol. 25, pp. 677-695, 1977.
3. Rosenbrock, H.H., State-Space and Multivariable Theory, John WilEy and Sons.
4. Kouvaritakas, B., and U. Shaked, "Asymptotic Behavior of Root-Loc: of Linear Multivariable Systens," Int. J. Control, Vol. 23, No. 3, pp. 297-340, 1976.
5. MacFarlane, A.G.J., and I. Postlethwaite, "The Generalized Nyquist Stability Criterion and Multivariable Root Loci," Int. J. Control, Vol. 25, No. 1, pp. 88-127, 1977.
6. Chang, s.S.L., Synthesis of Optimal Control Systems, McGraw-Hill. New York, 1961.
7. Kalman, R.E., "Fhen is a Linear System Optimal? Trans. ASME J. Basic Engr., Ser. D., Vol. 86, pp. 51-60, Mar. 1964.
8. Kwakernaak, H., and R. Sivan, Linear Optimal Control Systems, WileyInterscience, New York, 1972.
9. Kwakernaak, H., "Asymptotic Root Loci for Multivariable Linear Optimal Regulators," IEEE Trans. Auto. Control, Vol. AC-23, No. 3, June 1978.
10. Kouvaritakas, B., "The Optimal Root Loci of Linear Multavariable Systems," Int. J. Control, Vol. 28, No. 1, pp. 33-62, 1978.
11. Stein, G., "Generalized Quadratic Weights for Asymptotic Regulator Properties," IEEE Trans.Auto. Control, Vol. AC-24, No. 4, Aug. 1979.
12. Shaked, U., "The Asymptotic Behavior of the Root-Loci of Multivariable Optimal Regulators," IEEE Trans. Auto. Control, Vol. AC23. No. 3, June 1978.
13. Postlethwaite, I., "A Note on the Char. Prequency Loci of Multivariable LInear Optimal Regulators," IEEE Trans. Auto. Control, Vol. ic-23, No. 4, August 1978.
14. Garbow, B.S., et al., Matrix Eigensystens Routines - EISPACY Guide Extension, Lecture Notes in Computer Siccrece, Vol. 51, SprangerVerlag, Eerlin, 1977.
-33-
15. Laub, A.J., and B.C. Moore, "Calculation of Transmission Zeroes Using QZ Techniques," Automatica, Vol. 14, pp. 557-566, 1978.
16. Davison, E.J., and S.H. Wang, "An Algorithm for the Calculation of Transmission Zeroes of the System (C, A, B, D) Using High Gain output Feedback," IEEE Trans. Auto. Control, Vol. AC-23. No. 4, pp. 738-741, Aug. 1978.
17. Moore, B.C., "On the Flexibility Offered by State Feedback in Multivariable Systems Beyond Closed Loop Eigenvalue Assignment," IEEE Trans. Auto. Control, Vol. AC-21, No. 5, pp. 689-691, Oct. 1976.
18. Kalman, R.E., "Contributions to the Theory of Optinal Control," Bol. Soc. Mat. Mexico, pp. 102-119, 1960.
19. Wonham, W.M., Linear Multivariabie Control: A Geometric Approach, Springer-Verlag, Berlin, 1974.
20. Harvey, C.A., and G. Stein, "Quadratic Weights for Asymptotic Regulator Properties," IEEE Trns. Autom. Control, Vol. 23, No. 3. June 1978.

Appendix A - proof of Theon 3

The proof is by induction anduses the fact that all closed loop eigenvalues s_{j} and closed loop vectors v_{j} must satisfy

$$
\begin{equation*}
\left[\rho R+\phi^{T}\left(-s_{j}\right) \phi\left(s_{j}\right)\right] v_{j}=0 \quad j=1, \ldots n \tag{A.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\Phi(s) & =H(s I-A)^{-1} B \\
& =H\left(\frac{1}{s} I+\frac{1}{s^{2}} A+\ldots\right) B \\
& =\sum_{i=1}^{\infty} \frac{1}{s^{i}} J_{i} .
\end{aligned}
$$

Equation (A.1) is derived in (20]. It can also be derived by manipulations of (23). An expanded version of $\stackrel{\psi}{ }^{T}(-s) \Phi(s)$ is

$$
\Phi^{T}(-s) \phi(s)=\sum_{i=2}^{\infty}\left[\frac{1}{s^{2}} \sum_{j=1}^{j-1}(-1)^{j} J_{j}^{T} J_{i-j}\right]
$$

The first step in the incuction proof is to show that the theorem is valid for N_{1}^{∞} and s_{1}^{∞}. We assume without loss of generality that first order Butterworth patterns exist. Equaticn (A.1) can be rewritten

$$
\begin{equation*}
\left[\rho_{R}+\frac{1}{s_{j}^{2}} B^{T} Q B+0\left(\frac{1}{s_{j}^{2}}\right)\right] v_{j}=0 \quad j=1, \ldots, n . \tag{A.2}
\end{equation*}
$$

As $p+0$ the 3_{j}^{-2} tem dominates (for the assmptotically infinite eigenvalues s_{f}) and (A.2) can bo rewritten

$$
\begin{align*}
& \left(\lambda_{j} I-R^{-1} B^{T} Q B\right) \nu_{j}^{\infty}=0 \quad j=1, \ldots, m \tag{A.3}\\
& \lambda_{j}=\rho s_{j}^{2} . \tag{A.4}
\end{align*}
$$

The eigenvalues λ_{j} of $R^{-1} B^{T} Q B$ are real and nonnegative. (This is because the eigenvalues are the same as those of $R^{-1 / 2} B_{B_{Q B R}}^{-1 / 2}$, which is a matrix of the form $X^{T} x$, which is known to have real and ronnegative eigenvalues). When $\lambda_{j}>0$ we can use $(A, 4)$ to solve for s_{j}. The LHP solution is $s_{j}=-\lambda_{j}^{1 / 2} / 0^{1 / 2}$, which is a first order Butterworth pattern with $s_{j}^{\infty}=\lambda_{j}^{1 / 2}$. Therefore S_{1}^{∞} as given in Theorem 3 is valid. N_{1}^{∞} is also valid, beciuse srom (A.3) we see that the ν_{j}^{∞} vectors associated with first order Buttcruorth patterns are eigenvectors of $R^{-1} B^{T} Q^{3}$.

The v_{j}^{∞} vectors associated with Eutterworth patterns of order greater than one form a basis for the kernal of $R^{-1} R^{T} Q B$, which is U_{1}. Heuristically speaking, these v_{j}^{∞} vectors are not "trapped" by the s_{j}^{-2} term of (A.2).

The next step in the induction proof is to assume that s_{i-1}^{∞} and N_{i-1}^{∞} are valid and then show that S_{i}^{∞} and n_{i}^{∞} are valid. If S_{i-1}^{∞} and N_{i-1}^{∞} are valid then the ν_{j}^{∞} vectors associated with Butterworth patterns of order ≥ 1 form a besis for U_{i-1}. Therefore for each of these v_{j}^{∞} vectors there exists an ω_{j} vector such that $\nu_{j}^{\infty}=U_{i-1} \omega_{j}$. Substitute this into (A.1) to get

$$
\left[\rho R+\theta^{T}\left(-s_{j}\right) \phi\left(s_{j}\right)\right] u_{i-1} \omega_{j}=0 \quad i j=1, \ldots, i_{i-1}
$$

$$
-3 b-
$$

Multiply on the left to get

$$
U_{i-1}^{T}\left[\rho R+\varphi^{T}\left(-s_{j}\right) \Phi\left(s_{j}\right)\right] U_{i-1} \omega_{j}=0 \quad j=L_{r} \ldots L_{i-1}
$$

After some algebra this reduces to

$$
\left[\rho U_{i-1}^{T} R U_{i-1}+(-1)^{i} \frac{1}{s_{j}^{2 i}} \mathrm{~J}_{i-1}^{T} G_{i} U_{i-1}+0\left(\frac{1}{3_{j}^{2 i}}\right) \omega_{j}=0\right.
$$

As $\rho+0$ the g_{j}^{-21} term dominates and we get

$$
\begin{align*}
& \left(\lambda_{j} I-T_{i}\right) \omega_{j}=0 \quad j=1, \ldots, b_{i-1} \tag{A.5}\\
& \lambda_{j}=-(-1)^{1} \rho s_{j}^{2 i} \quad . \tag{A.6}
\end{align*}
$$

The eigenvalues λ_{j} are real and nonnegative, for the same reasons as for the $i=1$ case. When $\lambda_{j}>0$ we can solve for s_{j}, and the LiP solutions are recognized as an ith order Butterworth pattern with $s_{j}^{\infty}=\lambda_{j}^{1 / 2}$. Therefore s_{i}^{∞} of Theorem 3 is valid. The eigenvectors ω_{j} of T_{i} associated with the nonzero eigenvalues λ_{j} are the columns of $W_{i l}$ and therefore $N_{i}^{\infty}=U_{i-1} W_{i l}$. The v_{j}^{∞} vectors associated with Butterworth patterns of order greater than i are not "trapped" by the $s_{j}^{-2 i}$ term, and therefore they lie in U_{i}. This completes the proof.

End of Document

[^0]: The research was conducted at the NIT Laboratory for Information and Decision Systems, with support provided by the HASA Langley Research Center under grant :NA.AA/iSG-1551.

[^1]: ${ }^{1}$ In [16], transaission zeroes are computed by solving an eigenvalue problem for equation (5) with k close to zero. This is the high gain feedback method. In $\because 5$] this is shown to have the potential to be computationaliy inferior to solving equation (7) with $k=0$.

[^2]: ${ }^{2}$ In [1] a limiting argunent as $k \rightarrow 0$ is used to derive alternate equations for the angles of approach. These results are more complicated than (12) because the rank of $C B$ must be determaned. The generalized eigenvalue problem elininates the need for this rank detemmation. Furthermore, the equation given in [1] for the Rank (CB) mense (3.16b [1]) is incorrect due to an error in the derivation afte: (3.15 [1]). This error leads to the incorrect conclusion that the angles of approach are indeperdent of the output feedback matrix k.

[^3]: ${ }^{4}$ A first order Butterworth pattern has one asymptote which coincines with the negative real axis. A second order Butterworth pattern has two asymptotes which have angles of $+45^{\circ}$ with the negative real axis. In general, an ith order Butterworth pattern has i asymptotes, each of which starts at the origin and goes through the LMP solutions s of $\mathrm{s}^{22}+(-1)^{i}=0$.

[^4]: Sinmerically this ma be difficult to do. The decomposition requires determination of the kernal of a matrix and the intersection of subspaces. For beth of the singular value decomposition is a cood tool to use [14].

