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§I. Introduction 

ON THE OUTPUT OF ACOUSTICAL SOURCES 

by 

Harold Levine 

Joint Institute for Aeronautics and Acoustics 

The performance of an acoustical source, whose existence and nature 

are revealed by a given inhomogeneous term in a wave equation, depends on its 

environmental aspects; this means, in particular, that changes in the power 

output and directivity pattern for any individual source of prescribed type 

can reflect, in a sensitive manner, those made in the surroundings through 

the disposition of objects, the admission of a background flow or a variation 

in configurational parameters. Isolated source characteristics are relatively 

easy to determine on the basis of linear wave equations and a hypothetical 

uniformity in the setting, although the interaction or coupling of sources 

with their surroundings generally poses a formidable problem. Ingard and Lamb 

(1957) consider the simplest type of interaction problem, with fixed and 

localized sources of either monopolar, dipolar, or quadrupolar nature lying to 

one side of a rigid and indefinitely extended plane reflecting surface; and 

they calculate exp11citly the so-called power amplification factors or ratio 

of total radiated power throughout the half-space containing the source to 

that generated by the same source in the whole of a uniform free space. Jacques 

(1971) has subsequently discussed the radiation from fixed mulipolar sources 

situated above an infinite plane surface at which an invariable complex impedance 

condition is chosen; his method of specifying power radiation factors, in common 

with that employed by Ingard and Lamb, rests on the field and energy flux de­

terminations at great distances from the source. Integrals of the flux over an 

appropriate directional range yield formulae whose evaluation is accomplished by 

numerical processes. 
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Acoustical source problems have come to the fore in contemporary 

developments of aerodynamic sound theory which now encompass both the model-

ling of the sources themselves and the tracing of effects due to nearby sur-

faces or structural elements. With their prediction of a substantial rise in 

power output for suitably oriented quadrupolar sources lying close to the 

straight edge of an extended plane, Ffowcs Williams and his collaborators 

(Hall, Crighton, Leppington, and Howe, 1970-) ushered in a more systematic 

study of interaction effects whose objective is, typically, that of estimating 

the wave function or sound level far away from the source. Inasmuch as the 

distant field patterns of virtually all source-surface configurations possess 

a complicated nature it is difficult to obtain analytical measures of the 

total power output through direct angular integration. An alternative to the 

latter procedure is given in what follows, this being arrived at via manipu-

lation (apart from solution) of the pertinent equations for a well posed linear 

boundary value problem and exemplified by the particular 

Theorem: Let there be a time-periodic monopole source situated at a 

+ 
fixed point P in the homogeneous region exterior to a closed (or infinite) 

rigid source S and suppose that the spatial part of the complete wave function 

+ 
¢(r) (1) 

+ 
¢p(r) characteristic of the isolated is realized from a singular component, 

(free) source and a regular component, 
+ 

¢s(r) , attributable to the presence of 

the rigid surface S. Then the ratio, BP, of the time average power output 

of the source, with and w1thout the reflecting surface, is directly expressible 

in terms of the imaginary part of the regular component at the location of the 

source, viz. 
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&' = 1 + ~n 1m CPs (p) • (2) 

The advantage of such a representation for calculat10nal purposes, in comparison 

with a conventional one that involves an integral of the energy flux, or /cp/2, 

over the normal directions to a distant control surface, is readily apparent. 

A first indication of the fac1lity afforded by (2) appears in the problem which 

envisages a point source at distance h from an infinite rigid plane (z = 0) 

-7- and the pertinent equations 
r 

-7-
P (Source) 

~ = 0 
dZ 

Z = 0 

---~------ S (z=O) 
it is a simple matter to confirm that 

I 
I 
I 

~ 

-7-
cp(r) 

ik/t-P/ ik It-Q/ 
~e_______ + _e ______ _ 

4n/t-PI 4n/t-QI 
z > 0 

-7-
Q (Image) in these circumstances; and util1zation 

of (2) furnishes the (familiar) result 

4 1k/P-Q/ 
1 + ~ 1m e = 

k -7--7-
4n/P-Q/ 

1 + sin 2kh 
2kh 

more expeditiously than does the reduction of an integral 

n/2 2 
f Icp(r) I ·2n sin e de} 

o 

made precise with the asymptotic form 

ikr 
-7- e 

cp(r) ~ 2 cos (kh cos e) ~ 

of the outgoing wave function. 

(3) 
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After presenting (in §2) theoretical arguments which justify a 

calculation of the net power output at the source position in particular 

instances, the remaining sections (§3-6) are given over to various more 

complicated applications and extensions having to do with different half-

plane problems, an impedance boundary condition and, finally, with the effect 

of a background flow in the medium. 

§2. A Theoretical Basis for Local Power Calculation 
-+ 

Consider a fixed object surrounded by a uniform • P 

compressible medium extending indefinitely outwards in 

all directions; and suppose that the velocity potential 

R ( t/,(-+r) e-iwt) d .. f . I di b e ~ escr1pt1ve 0 acoust1ca stur ances 

in the medium, associated with a time-periodic and 

-+ 
isotropic point source at P, can be sought after 

through the inhomogeneous wave equation 

-+-+ 
-o(r-P) • (4) 

and 
-+ 

p(r) designate the local velocity and variable pressure, p the 

equ1libr1um density of the medium, with the expressions 

-+ 
v = -'Yep p = -iwpep (5) 

in terms of the scalar function 
-+ 

ep(r) ; and note the concomitant representation 

for the time-average energy flux vector 

N = (p~) = T 1m ep * 'Yep , (6) 

where * symbolizes complex conjugation. 
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* On mUltiplying (4) with ~ and rearranging it follows that 

~ 1m 'i/ • (~*'i/~) 
2 

wp -+ -+ *-+ 
= - :r 1m o(r-P)~ (r) • 

Integration of the latter relation throughout the region V outside the sur-

face S of the object yields 

]p - wp 1m f ~* ....2!. dS = 
2 SanS 

wp -+ -+ *-+ - :r 1m f o(r-P)~ (r) dV 
V 

where ]p is the net power delivered at infinity. In case that e~ther 

a~/dnS = 0 
on S or 

~ = 0 

then 

(7) 

according to the resolution (1), and this implies 

or 

as stated in (2). 

If the source at P 
-+ 

has a dipolar nature, with the unit vector n 

pointing along its axis, and the inhomogeneous equation (4) is replaced by 

2 2 -+ -+ -+-+ 
('i/ +k )~(r) = -n • 'i/po(r-P) (8) 

the counterpart of (7) becomes 
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Since 

it follows that 

and 

(9) 

expresses the dipole power amplification factor. 

-+-
For a vertical dipole at P(z = h) in the presence of a uniform rigid 

plane (z = 0) 

z > 0 

-+- -+-
where Q(z = -h) is the image of P relative to the plane; and the application 

of (9) yields 

2 
a' = 1 + .1.. _d_ (sin k(z+h» 

k3 dz2 z + h z=h 

3 
= 1 - 2kh [(1 2 ) sin 2kh + 2k\ cos 2kh] 

(2kh)2 

in conformity with Ingard and Lamb. The corresponding power representations 

for other multiple sources can be obtained in similar fashion. 

An independent derivation of (2), without recourse to the delta 

function, relies on the detailed versions 



and 
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eikl~-pi 

47T1;-pl 

+ + 
= G(r ,P) 

+ 
cp (r) = -

S 
S 

++ + f G(r,r')KP(r') dS' 

(10) 

of the singular and regular parts of the wave function, the latter being formed 

in terms of an as yet unspecified distribution of (secondary) sources on the 

surface of the object, with the density 

+ 3 + 
~(r) = ---3 cp(r) 0 

nS 

At a considerable distance from S , where 

+ + 
G(r,r') 

ikr + + 
e -ikn.r 

!:::: 47Tr e r = 

the total wave function acquires the asymptotic form 

with an angular or directivity factor 

A(+) - -ikri.P n - e -

+ 
+ r 
n=­

r 

r + 00 

and it follows, having regard for the energy flux vector (4), that 

g; = .l f IA(n) 12 dn 47T + 
n ++ ++ 

= JL J {I - 2 Re e-iknoP J e-iknor ~(!) dS + 
47T S-~ 

where dn designates an element of solid angle about the direction of 
+ 
n 

f dn+ = 47T 0 

n 

(ll) 

(12) 

(13) 

+ n and 
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To simplify (14), and thereby confirm the central place of the 

power formula (2), information about the function -+ 
rs,(r) is relevant; 

thus, if a (soft) boundary condition, ~ = 0 , holds on S the function 

+ 
rs,(r) satisfies an integral equation of the first kind, 

++ + f G(r,r')rs,(r') dS' 
S 

+ 
r on S 

1+ +, 1 f cos k r-r ~(;') 
+ + I --p S 4rr Ir-r' 

dS' + i = 

The consequence of multiplying in (15) by the complex conjugate function 

integrating over S and extracting the imaginary part therefrom, is that 

* + * + sJ..n_k 1;-;' I + 1m frs, (r)4p(r) dS = frs, (r) -_. rs,(r') dS dS' 
S S 4rrl;-;' I 

inasmuch as 

++ 
sin kr = JL f eiknor dn 

kr 4rr + 
n 

(15) 

* + rs, (r) , 

(17) 

Use of the latter result along with prior expressions for ~P' ~S and the 

soft boundary condition on S implies that 

-ikl;-pl *+ + + e * 1m frs, (rHp(r) dS = Im( frs,(r) + + dS) 
S S 4TIlr-PI 

Im( frs,(;) cos kl;-pl dS - i frs,(1:) sin :I;-pl 
S 4rrl1:-pl S 4TIlr-PI 

* dS) 

+ + sin kl;-pl * 
= Im( -~S (p) - 2i f rs, (r) dS) 

S 4TII;-pl 

(18) 
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and, after (16), (18) are combined with (14), the relation (2) is directly 

forthcoming. 

When line rather than point sources are contemplated, the two-

dimensional analogue of (2), 

(19) 

is apph.cable. 

§3. Source Radiation in the Presence of a Half-plane 

As the first of several illustrative problems selected to underline 

the relative ease of power calculations made at the source itself, consider 

the output from a periodic and fixed monopole which interacts with a rigid 

half-plane. Suppose that the straight edge of the half-plane extends along 

the z-axis of a cylindrical coord1nate system 

and that 

e o , 2rr 

on the respective faces, where 0 < r < 00 

If the source is located at the point 

p(ro,eo'O) the wave or Green's function 

specified by the differential equation 

a2 
1 a 1 a2 a2 

2 (-- + - -;;- + -Z -- + --Z + k )<t>(r,e,z;P) 
arZ r or r ae Z az 

and the boundary condition 

o 

admits the representation 

e 

Half 

Plane 

o , 2rr 



where 

R 2 

+ 
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and designates a first order Hankel function of the first kind. 

The power factor 8P of this source is, in accordance with (2), 

found from 

8P= 

and the outcome 

1 + 47f Lim 
k r+r o 

6+6 ,z+O 
o 

ikh 
Im{G(r,6,z;rO,6

0
,0) - ~7fR_} 

(20) 

involves the first order Bessel function Jl(~)' It follows from (21) along 

with the result 

a > 0 

that 

(21) 



:::: 1 sin 2kh 
+ 2kh 

where 

-11-

h = rO sin 80 

specifies the finite normal distance between the source and the plane; agree-

ment of the latter estimate for a source far removed from the edge of the half-

plane with the previous determination (3) for the same source in the presence of 

a full rigid plane is only to be expected. 

An infinitesimally thin rigid screen does not, evidently, exercise any 

influence on the output of a coplanar monopole point source; and the requisite 

value i§J=1 is assumed by (21) when 80 
= TT , inasmuch as 

-2kr 
J l (0 2kr 0 J (I;) 

1 0 

2 f dl; = _ 1. f 1 dl; 
0 I; 2 0 I; 

and 

The power factor that replaces (21) in the case of a soft half-plane, 

at which $ itself vanishes, is 

2krO cos 
1 

dl; - - f 
2 0 

(22) 

(featuring opposite signs of the second and fourth terms relative to those in 

(21)) and the particular deductions therefrom, namely 



and 
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sin 2kh 
~ ~ 1 - 2kh ,krO cos 80 + 00 , h 

~= 
o 

2krO J (~) 
f _1-,-._ d~ 

~ 
8 = rr o (23) 

are noteworthy. The latter function of a dimensionless argument a = krO ' 

where is the least distance from the source to the edge of a coplanar 

screen, possesses a regular nature for all a and has the limiting behaviors 

~ + 1 , a + 00 , ~+ a , a + 0 • 

In two dimensions the source or Green's function which satisfy (4) take 

the respective forms 

=! [~H (l)(kR ) 
2 l4 0 -

+.1.. 
2rr 

+! H (l)(kR ) +.1.. 
- 4 0 + - 2rr 

when rigid or soft boundary conditions hold at the trace 8 

of a half-plane; and the designations 

R 2 22-= r + rO - 2rro cos (8 + 80) 
+ 

(24) 

0(2rr) , 0 < r < 00 

refer to the (squared) distances between the source, and its 1rnage in the plane, 

from an arbitrarily located point r,8. 

The power factor which bears direct correspondence with (23), that is 

for an isotropic line source located in the extension, and parallel to the edge, 

of a half-plane proves to be 



2krO 
2 

[§J=- J 
7T 0 
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sin S d~ = ~ Si(2kr ) 
~ 7T 0 

where Si(~) denotes the sine integral, and this also evidences a regular 

behavior, as a function of krO ' on the range 0 ~ rO < 00 • 

(25) 

A rather different behavior of the output generally obtains 1f higher 

order primary sources (with more intense near fields) are chosen; and, spe-

cifica11y, this means an indefinite rise in power amplification as the source 

moves closer to the edge of the plane. Consider, for example, a dipole source 

which is oriented normally to the line that issues from the trace of a rigid 

half-plane and passes through its center. 

The appropriate (two-dimensional) power 

formula in this circumstance, 
8=0 

2n 

where ~S denotes the regular (secondary) part of a source function defined 

by the equations 

2 2 o(r-rO) a 
(Il +k )C = - 2 as O(8+7T) 

and rO 

ac - = 0 a8 
e = 0,27T r > 0 

yields, on employing the (monopole) source representation (24), 
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2ro 
e) _...!... J 

sin ~ Ic e 2 2 
2 s1n(k (2rO cos 2) +~ 1. 

1 + cos -2 2 
1T 0 / e 2 2 j e=1T 

v(2rO cos 2) +~ 

1 + 
8 a r kro . e e 1 e 

2kro = 2 as l-4- S1n 2 J l (2krO sin 2) - - cos - sin 
(krO) . 

41T 2 

e 
2rO 

sin "2 (k ;; e 2 2 
1 2 cos(k (2rO cos 2) +~ 

+ 21T rO sin e J e 2 2 
0 (2r

O cos 2) + ~ 

I e 2 2 
sin(k/(2rO cos 2) +~ 

[(2r
o 

cos ~)2+~2]3/2 

sin 2krO 4 
---...;.+-
1T(kr

o
)2 1T 0 

cos 1') dT • 
i 

Since 

E E 

sin Td(--L) 
21'2 

sin 2krO . 1 2krO 
S1n E + - J 

2(2kr
O

)2 + 2E2 2 E 

it turns out, finally, that 

sin 2krO 2 {. f!lJ = + _ Lim S1n E _ 
2 1T 2 

21T(kr 0) E+O. E 

2krO 1 
J ~dt 

2 I> 
E l' 

" 
sin 2krO 

= ~ Si(2kr ) + ---":::-2 + 1T 0 
21T(kr 0) 

cos l' dT 
l' 

(26) 

Thus the output factor approaches unity when the dipole source recedes far away 

from the edge (kr
O 

-+ (0) and, as the estimate 

kr -+ 0 o 

makes plain, becomes arbitrarily large when the source nears the edge. 
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Before concluding this section an idea may be given of the intricate 

analysis which is in prospect for total power calculations along conventional 

lines. As regards, in particular, the relatively simple problem of an iso-

tropic line source symmetrically placed with respect to a half-plane, whose 

power factor involves the sine integral [cf. (25)], let it be observed that 

the mUltiple integral characterization 

IzkrO sin ~ . 2 2 2 2rr 
f!lJ=- f 

rr2 0 
f e~ll dll 

o 

is consequent to joint use of the far field estimate 

1 ik(r+rO cos e) 
<t>~-~-e 

Izkr 

12kro 

f 
o 

e 
sin -

2 . 2 
~ll e 

de (27) 

kr» 1 

and the energy flux vector (4). 

ikrO cose 12kro sin ~ i 2 

Taking account of the Fourier series development 

e fell dll = 
o 

-rri(mt) /2 n 
e (-1) sin(n~)eJ l(krO) 

n+z 

the power integral (27) goes over to a single sum formula 

00 

2 
2 

I: J 1 (kr
O

) 
n=O n+z 

which, after transformations based on Bessel function properties and a change 

of integration order, reverts to a single definite integral, namely 

rr/2 00 ./2 {I 2krO 
cos ljJ 

JO(~) d~} do {§J=!!.. 4 
f I: J 2n+1 (2krO cos ljJ) dljJ = - f - f 

rr 0 n=O rr 0 2 0 

2krO 
-1 

2krO 
2 

cos (~/2krO) 
2 -l-L f d~ JO(~) f dljJ = - f JO(I;) cos 2krO d~ • 

rr 0 0 rr 0 
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Since the function 

el 
-1 ~ l(el) = J JO(~) cos d~ 

0 el 

has the first derivative 

dl el 
5; rr/2 

-= J JO(~) d~ = f sin 1/1 JO(el del 0 1a2_~2 0 

and the initial value 1(0) = 0 , the determination 

l(el) 
el col ... ~ 

= J ~d~ 
o ~ 

Si(el) 

follows, and this secures the anticipated result 

sin el sin 1/1) dl/1 = el 

§4. Radiation from a Line Source Near an Edge at which a Kutta Condition Holds 

It is natural to speculate on the link between enhanced sound radiation 

for (multipolar) sources near a sharp edge and the presumption of locally in-

compressible flow; Jones (1972) undertook, in this regard, to analyze the effect 

on sound excitation by a time-periodic line source near the edge of a rigid 

half-plane when a Kutta condition suppresses the unbounded nature of the edge 

velocity that is characteristic of incompressible and inviscid flow. His model 

problem, wherein the trace of a rigid plane 

occupies the half-line y = 0 , x < 0 , 

envisages both a course at P(xo'YO) and the 

existence of a wake (or discontinuity line) 

elsewhere along the x-axis. 

y 

+ 
I 

--------- ----~x 

WAKE 
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The postulated equations for the coordinate factor 

velocity potential comprise 

and 

a -cp= 0 ay 
y = 0 x < 0 

CP(x,O+;P) - CP(x,O-;P) = AeiKX , x > 0 

++ 
<j>(r,P) of a 

(28) 

wherein the latter (or wake) condition involves two constant parameters A 

and K; only one of these constants, namely A, can be fixed by means of the 

foregoing equations along with the further hypothesis that acp/ay (i.e., the 

normal velocity) is continuous at the wake and the Kutta requirement. The other 

parameter, K, is assigned a positive (though indeterminate) value, as befits 

an outgoing wave or radiation condition. 

Let the superscripts + differentiate the wave factors in 

respectively, and define the function 

Vex) = HI 
ay y=O 

x > 0 

then, if Yo > 0 , say, the representations 

cp(+)(x,y;P) = t H6l)(k~x-xO)2+(Y_YO)2) + t H6l)(k~x-xO)2+(Y+Yo)2) -

> yO, 
< 

(29) 

- ; ; H6l)(k~X_x,)2+y2)V(X') dx' 
o 

and 

(30) 

comply with the first two equations of the set (28) and jointly provide, on im-

posing the wake condition, a linear integral equation for V, viz. 
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00 

: H~l)(klx-x'I)V(x') dx' =tH~1)(ki<X-XO)2+Y02) + iAeiKX , x> o. (31) 

A formal resolution of the boundary value problem is thus achieved by solving 

the integral equation and employing the representations (30). There is no need, 

in fact, to investigate that part of the solution which obtains in the absence 

of a wake discontinuity (A = 0) , since the corresponding source or Green's 

function of a rigid half-plane is known. Application of the Wiener-Hopf method 

to the integral equation that contains the wake term alone, 

00 

f H~l) (klx-x' I>~(x') dx' = iAe iKX , x > 0 
o 

(32) 

A 

yields, in sequential order, the complex Fourier transform of V(x) , namely 

A 

= ; eil;;x ~(x) dx = - ! lK+k h+'E o 2 r,; + K + iE ' 
E > 0 V(r,;) 

and thence the function itself, 

A 1 
V(x) = 2TI 

00 e -ir,;x II;+k 
f . dr,;. I; + K + l.E 

_00 _00 

On referring to an alternative form of the latter, 

A 

- 4~ lK+k { ; e -il;x dr,; - (K-k) ; 
_00 h+'E -00 

e -ir,;x dr,; } 

~ (1;+K+iE) 
V(x) 

and the result 

00 -ir,;x 
f e dr,; = 2e-irr/ 2 00 iTX r.; 

f .;;.e __ dT = 21 ~ ei (kx-rr/4) , x > 0 
_00 ~ k h-k x 

the singular part of V(x) at x = 0 is isolated, viz • 

A 

V(x) . _..!.. /! (K+k) ei (kx-rr/4) 
2rr x 

,x-+O+. 

(33) 

(34) 

(35) 
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A calculation made with the Green's function of a rigid half-plane 

lying on the negative x-axis reveals that 

V(x) 

2/xrO 

J 
a 

2lxrO 

J 
a 

dS} 
8=0 

80 
cos -2 (ik /2 2 2 8

0 
+ t"2) exp vx +ro - xro cos ~ 

------2------2~--~-----~------dS 
x + ro - 2xro cos 80 + s2 

(36) 

where the first term alone exhibits a singularity at x = O. Hence the full solution 

of (31), V(x) = V(x) + V(x) , remains finite in the limit x ~ 0+ if 

. 80 
1 s~n T e ikrO _ ~ 1rr(K+k) e -iTT/4 = a 

or 

2TT - 2TT 
Ira 

80 sin -
A = -L __ .:.2_ 

1TTro lK'+k 

(37) 

This agrees with a determination by Jones utilized, in turn, for estimating the 

distant sound field amplitude along directions close to that of the wake and 

elsewhere. 

A different measure of the effect brought about by imposing a Kutta 

condition, namely the change in total energy radiated, can be given; in order 

to arrive at this, consider the integrals of an identity obtained from the first 

equation in (28), 
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W() * - ~ Im{o(x-x )o(y-y )~ } 
2 0 0 

which are taken, separately, over the adjacent domains y > 0 with a common 
< 

boundary at the half-plane and the wake. After replacing the (two-dimensional) 

divergence integrals by curvilinear ones along great semi-circular arcs in 

and line integrals along y = ~ , adding the results and employing the last 

two equations of (28), it turns out that 

y > 0 
< 

(38) 

where the (familiar) term involving the value of the secondary wave function 

at the fixed source point P(xO'YO) is supplemented by a non-local term, on 

account of the postulated wake or discontinuity line for the velocity potential. 

There is no contribution to the latter term stemming from the function Vex) 

and, specifically, its Fourier transform (cf. (33» 

V(-K) = ; e -iKX ~(x) dx = _ ! lK+k vk-K 
o 2 ie: 

if K > k and Ik=K has a wholly imaginary value, for then 

*" 1m A V(-K) = 0 • 

This means that the Kutta condition affects terms in (38) which depend linearly 

on the complex magnitude A and appear in the combined form 
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{ 

" 00 (1) I 2 2 A * 00 " 

!J.fjJ= 4 1m - t J HO (k/(x-xO) +yo )V(x) dx + A J e -l.KXV(X) 

122 

{ 

00 -il;xO+iYk--C YO A} *-
= - ~ 1m i I e V(I;) dl; + 4 1m A V(-K) 

7T -00 122 
vk--1;-

(39) 

whose details are shaped by the representation (30) and the 

00 il;(x-xO)+i~2_1;2IYol 
Hankel function integral 

H~l) (k;(x-x
O

)2+Y02) = ~ I ..;;.e ________ dl; • 

~2 _1;2 -00 

It suffices here, in view of the crude model, to merely estimate 

when krO and KrO are very small; thus, relying on the explicit determination 

(33) for V( 1;) the first term of (39) becomes 

" +" rz-z 

{ 1
00 c=e_-_l. I;_X_o_l._vk __ - --_CI; __ y_o d I; } 

~ 1m i! lK+k - -
7T 2 _00 I; + K + ie: A-I; 

and, since the integral remains finite in the limit xo,yo + 0 , this has an 

approximate value 

00 } 1 v'K+k { 1 dl; 
7T K+k 1m A _! I; + K + ie: ~ .I 

= 2 1m A 

On retaining just the initial and predominant term in the representation (36) 

of V(x) 

00 

I 
0 

it follows 

and noting the relation 

il;x 1 rO e 0 1 l.krO ( h ik(x+r») . 
e - - dx=- e 

that 

27T x x + rO 27T 

60 * 
2 sin T 1m A 

00 
i (k+l;) rOT 

I 
e dT 

0 IT (l+T) 
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Accordingly, 

eo 
b. fff' = 2 1m (A-A sin 2) 

eo eo 
sin 2 (I-sin T) 

= 
II (K+k)ro 

(K+k)ro « 1 (40) 

wh1ch result indicates that enforcement of a Kutta (or finite velocity) con-

d1tion at the edge of a half-plane signif1cantly elevates the power output from 

a fixed line source situated nearby, if eO is not too small. 

§5. Radiation by a Point Source Above a Plane Impedance Boundary 

Consider an infinite plane surface S which is locally reflecting and 

characterized by the uniform normal impedance pcl;; ; then, if z = 0 on the 
,htoZ 
: r l Pt---------_ 

o 

Q 

I , 
- -- - -R- ~ 

plane, the boundary condition 

~ + ikn¢ = ° , z ° (41) 

applies, with 1 
n = - termed the specific 

l;; 

admittance. It follows directly from (41) 

and the normal (z-) component of the flux 

vector (6) at the surface that 

N = ~ Im(¢* 11) = - ~2 Im(iknl¢1
2

) 
z 2 dZ z=O 

and thus energy leaves, rather than enters 

the half-space z > 0 if 

Re n > 0 • (42) 

Let the equation (4) describe a source at 
-+ 
P(O,O,h > 0) and introduce 

the sp11t 
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4- 4- 4-
$(r) = $p(r) + $s(r) 

= 

4- 4-/ eiklr-P 4-

4-4- +$s(r) 
41T/ r-P / 

, z > 0 (43) 

4-
where $S(r) is regular everywhere above the surface S. Multiplication of 

* (4) by $ and subsequent integration over the half-space z > 0 leads to the 

relationship 

(44) 

in which 

~= 41T Lim {r
2 f /$12 dn} (45) 

r~ 

represents the energy outflow rate in all directions above the impedance sur-

face and 

!iJ = 41T Re {n 2 
f /$/ dx dy} (46) 

s 

represents the rate of energy loss or absorption at the complex impedance surface, 

both of these measures relative to the power output from an identical source in 

a completely homogeneous environment. 

If the component parts of the wave function (43) are given explicit 

and indiv1dual expression through the integral 

00 
JO(I;R) {e _..t2 - k2 Iz- h l vt2 _k2 + e-,i2-k 2(z+h) } 4-

$(R, z) 1 
f ikn $(r) = =- + d~ 

41T 0 
4;2_k2 4;2_k2 _ ikn 

~ 
o , ~ > k 

arg ~ -k = (47) 
-1T/2 , ~ < k 

that takes account of both the cylindrical symmetry round the line OP normal to 

the surface and the boundary condition (41), it appears that 
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+ =...!..; ~ V + ikn -2ri
2

_k
2

h 
~S(P) = ~S(O,h) 4TI 0 ~ ~ e d~ 

I~--k- I~--k- - ikn 

and hence 

where a,S denote the real and imaginary parts of the admittance, i.e., 

n = a + is . (49) 

On referring to the pair of Fourier-Bessel integrals which stem from 

(47), namely 

and 

00 

~(R,O) =...!.. f F(~)~JO(~R) d~ 
2TI 0 

_.i2_k2h 
e 

F(~) = f ~(R,O)RJO(~R) dR = ------

o ri2 _k2 _ ik(a+iS) 

00 

it is next found that 

00 00 

f '~(R,O) ,2 dx dy = 2TI f '~(R,O) /2 R dR 
_00 0 

00 00 

= 2lTI t R dR t ~~'JO(~R)JO(~'R)F(~)F*(~') d~ d~' 

00 

1 
=- f 

2TI k 

(50) 

(51) 
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All the integrals encountered in (48) and (51), save for 

k 
I = J 

o 

1 
= J 

o 
]..Id]..l 

1 (l+a) 2 + (32 a -1 1 + a 
= "2 log a 2 + (32 - m (tan 181 

are reducible to the exponential type, i.e., 

larg zl < 'IT (52) 

and the consequent determinations of the total power factor ~, radiation 

factor 8, and absorption factor ~ prove to be 

and 

1 
8 = 1 + sin 2kh - 2a J 

2kh 0 

1 
9lJ = 2a J 

o 

122 
In + v'l-]..I-I 

(53) 

(55) 

with proper limiting values if a, 8 -+ 0 or a, 8 -+ 00 (the hard or soft surface 

conditions, respectively). 

Ingard and Lamb state that "a rigorous solut10n is not so easily ob-

tained (for absorbing surfaces) since the evaluation of the reflected field 

cannot be obtained directly by simple image procedure but would have to draw 

upon the analysis of reflection of a spherical wave by a boundary." Ingard's 
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own study of the latter problem (1951), which expresses the complete wave 

function as a sum of primary and "image" source contribution (see figure) 

ikt"l 
-+-

cp(r) = _e __ + 
4'ITI'1 

ikr
2 Q..,.e __ 

4rrr
2 

with a complex and variable amplitude factor 

00 
-kr ~ 

e 2 d,; 

cos 

affords, it may be noted, a ready determination of ~; thus, from (44), 

~ = 1 + i; 1m Q(2h,O) ~rr.2h { 
2ikh} 

sin 2kh 
1 + 2kh 

00 -2kh~ } t -:-l-+-=e;....n-+-i.,....~ d~ 

(56) 

(57) 

in agreement with (53). The wave function (56) is, on the other hand, less 

suited than the version (47) in terms of cylindrical coordinates (R,z) for 

determining the absorption factor 9lJ. 

§6. Power Output of a Point Source in a Uniform Flow 

Acoustical excitations and their power indices are strikingly affected 

by the existence of a background flow or a relative motion between the source 

and its environs. Assume that the convected wave equation 

2 1 d -+- 2 -+--+-V <I> - - (~+ U • V) <I> = -o(r-P)f(t) 
2 at (58) 

c 
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characterizes the velocity potential for a monopole source at the fixed point 

-+ 
P , with temporally variable amplitude rendered by the function f(t) , in a 

fluid which streams uniformly and steadily at velocity 
-+ 
U • Multiplication of 

(58) by -pa~/at, where p designates the constant density of the fluid in the 

absence of acoustical perturbation therein, and the subsequent recasting of 

ind1vidual terms leads to the relation 

where 

and 

aw + V • N = 
at 

-+ -+ a~ 
po(r-P)f(t) at 

N = -p ~: V~ + -% u ~: (~: + U . V~) • 
c 

(59) 

(60) 

(61) 

The scalar and vector quantities -+ W ,N may be identified as measures of the 

acoustical energy density and flux, respectively, the latter being directly 

applicable to calculations of energy transfer across fixed surfaces in the fluid. 

-+ 
When P lies at the origin, f(t) = -iwt 

e and the streaming velocity 

-+ 
U (U,O,O) is along the positive x-direction, the time-periodic (complex) 

source function deduced from (58), 

-+ 
~(r,O,t) 

ikR . t e -1W =--e 
47TRl 

k = w/c 

has both non-symmetric amplitude and phase factors with the specifications 

at Mach numbers M U/c less than unity. 

R = 
-Mx + R 

1 

(62) 

(63) 
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The determination of energy output from this source by integrating 

-+ 
the flux vector N is facilitated with a suitable choice of the enveloping 

control surface; and an evident one comprises a cylindrical (curved) portion, 

aligned with the flow dlrection and having the source on its symmetry axis, 

together with plane end sections normal to the flow. If 0 = ~2:z2 = constant 

defines such a cylindrical surface, the normal flux thereat is 

and thus, taking into account the representation 

d<P = J:.. {_ (I-M
2

)O + ik ..2-} 
dO 4n R 3 R 2 

I I 

the time-average measure 

exp (-iw(t -!)) 
c 

follows. Since a vanishingly small energy flux passes outwards across finite 

plane areas perpendicular to the cylinder axis at remote sites (where Ixl -+ 00 ), 

the whole power delivered by the source has the magnitude 

8 = 2n 

2 
_ ~ I 
- 8nc I _ M2 • 

(64) 

An ldentical result is secured on integratl0n of the right-hand side, 

or source term, in the time-averaged version of the energy balance equation 

(59), namely 



I 
Iff = - Re 

2 

00 

f 
_00 
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iwt acp 
po(x)o(y)o(z)e at dx dy dz 

00 

I + ~t = 2 pw 1m f o(x)o(y)o(z)cp(r,O,t)e dx dy dz 
_00 

= ~ 1m f 00 exp ( ikcr) 
_00 A_M2 

o(y)o(z) dy dz 

A_M2 

(65) 

Consider next an identical source at distance h above a rigid wall 

occupying the entire plane z = ° ; then the relevant wave function is composed 

of two like terms 

+ + + + 
cP = cp(r,P,t) + cp(r,Q,t) z > ° (66) 

+ + 
where P(O,O,h) and Q(O,O,-h) are mirror image points in the plane, and the 

radiated energy can be directly found by recourse to a source integral of the 

form (65), viz. 

00 

I + + + + iwt 
8 = - pw 1m f o(x)o(y)o(z-h)(<p(r,P,t) +<p(r,Q,t»e dx dy dz 

2 

2 
- .lli!L 
- 87TC 1 

_00 

I + ~ sin (2kh/ .0) 
2 87T I? 

- M 2h/l-M2 

The relative power factor obtained from the ratio of (67) and (64) 

~ _ I r-2 sin(2kh/~) 
- + il-Mr 2kh 

(67) 

(68) 



-30-

which incorporates the effects of both a background flow and a hard reflecting 

surface, generalizes the earlier expression (3). 

It requires a rather more involved procedure to arrive at (67) by 

calculation in the far field; thus, introducing the spherical polar coordinates 

r,e,~ through the transformation formulas 

x = r cos e y = r sin e cos ~ z = r sin e sin ~ 

with the ranges 

o < e < 'IT r > 0 

appropriate to the half-space z > 0 , and employing the asymptotic character-

izations 

~2+(l_M2)[y2+(Z+h)2] vi_M2 2 - 2 sin e sin 1/J R ~ sin e r + h(l-M ) 
+ vi_M2 o 2 e S1n 

r+ oo 

-Mx + R 
+ 1 {U{-M2 o 2 - 2 sin e sin i!} ~ S1n e - M cos e)r + h(l-M ) 

1 - M2 1 - M2 A_M2 o 2 e S1n 

an estimate for the complete wave function, 

<I> 1 ~c.;;.O.;;.S~(k;;.;h~s;.;;i~n~e:;:s=i=n~1jJ~/=vi~1_-M;.;;2.-...;s;;;.;;i:;.;;n;;...2--:;e.L.) exp {ik ...;..vi_l_-M_2---'s;;...i;....n_2_e~-_M=--c"-o_s~e r-iwtl~ , 
~ 2'ITr / 1 - M2 or 

v1._M
2 sin2 e 

r + 00 (69) 

is obtained from (66). On employing the latter along with the radial component 

of the energy flux 

a <I> 2 2 a <I> M2 sin e cos 
Nr = -P at {(l-W cos e) ar + r e 1.2. _ !:! cos e .£!} 

ae c at 
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the average radiated power in the half-space z > 0 acquires the versions 

7T 7T 
(r2N ) ~= f dtjJ f sin e de Lim 

0 0 r r-+oo 

7T 7T 

{ iW (.l)2 cos2 (kh sin B !l! ) f dtjJ f sin e de sin 

0 0 27T A-; . 2 e S1n 

• [k 
A-; sin

2 
e - M e 1 _ M2 2 e cos cos 

1 - M2 1 _ M2 . 2 
e S1n 

M2 . (A_M2 sin2 + k S1n e cos 8 1 d 8 - M cos e) 2 _ M2 de 1 - M2 

7T 
= -E.. ( ~) 2 f dtjJ 

2c 271 0 

sin e 1 

_ :~s s:n2 B]} + kM 
1 

f 7T __ -:::--_s_in-:::-_e_::-:-=- cos2 (kh sin e sin ~) de 
o (1_M2 sin2 e) 3/2 / -2 2 

v'l-M sin e 

7Tp (2~) 2 =4'C 71 ; /in ~ 3/2 {1 + J O Gkh -;~s=in=8:;=e:-)} de 
o (l-M sin e) \ A_M2 sin2 

where J O denotes the zero order Bessel function. 

(70) 

That part of (70) which does not involve the Bessel function agrees 

precisely with the first term in (67); to link the remaining parts a change of 

the integration variable proves convenient. If e is replaced by y in (70), 

such that 

sin e sin y o ~ 8 ~ TI/2 

A_M2 o 2. y ~ TI/2 

and 

sin y sin e = ---:;..=;~----
A_M2 cos2 e 

cos e de = cos y dy 

, (1_M2 sin2 8)3/2 A_M2 
, tan e = A_M2 tan y 
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TI 
J 

o 

since 
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sin 9 J (2kh sin 9 
sin

2 
9)3/2 0 ;i-~ sin2 9 ) d9 • 

2 J _sin 9 J 2kh sin 9 TI/2 ( 

o (1_M2 sin2 9)3/2 0 Ii_M2 sin2 

sin y J
O 

(2kh sin r ) dy 

Ii-~ 

TI/2 
J sin T JO(a sin T) dT 

o 
sin a 

a 

and the full compatibility of (67), (70) is demonstrated. 
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