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ABSTRACT

The problem of forced fluid sloshing in a partially filled spinning
spherical tank is solved numerically using the finite element met;lod.
The governing equations include Coriolis acceleration, empirical fluid
damping and spatially homogeneous vorticity first introduced by Pfeiffer.
An exponential instability similar to flutter is detected in the present
simulation for fill ratios below 50%. This instability appears in the
model as a result of the homogeneous vortex assumption since the free
slosh equations are neutrally stable in the Liapunov sense.
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I. SUMMARY

The Galileo dual-spin Jupiter orbiter spacecraft carries an amount
of fluid that represents about half of the total weight. The fluid is
contained in four tanks symmetrically located about the spin axis of the
spacecraft. In order to evaluate the behavior of the fluid slosh in the
spinning configuration as it affects the attitude control, an analysis
was initiated early iri the project. An analytical slosh model that
accounts for the steady mcecraft spin was performed by Messerschmitt-
Bo1kow-B1ohm Company (MB 	 at Munich, W. Germany, as part of the effort
of manufacturing the retro-propulsion module for the Galileo spacecraft.
The MBB analysis had several simplifying assumptions:

(a) In order to arrive at a practically solvable set of equations,
the vorticity was taken to be independent of the spatial
coordinates while it is a function of time only. This model
was first introduced by Pfeiffer at MBB in 1974.

(b) The steady-state spin as well as angular perturbation was felt
instantaneously in the fluid. This assumption is inconsistent
with the mechanism of vortex transfer from the tank wall into
the fluid.

(c) The Coriolis acceleration was retained inside the fluid but
was neglected in the free surface pressure boundary conditions
in order to arrive at an exact differential form.

The assumption of homogeneous vorticity was found to lead to fic-
titious instabilities for certain fluid fill ratios. The inconsistency
of this model was further substantiated by a stability analysis per-
formed by T K. Caughey, who showed that a Liapunov function of the free
vibration equations had a vanishing first time derivative leading to a
neutrally stable system. It was concluded that the MBB analysis is only
valid for fluid fills above 55%.

An equivalent simplified dynamic pendulum model to represent the
fuel slosh was proposed for quick assessment of the fluid effect on the
attitude control system.. Further investigation by JPL concluded that it
is impossible to achieve such a simplified equivalence for rotating
tanks where Coriolis acceleration and vorticity prevail. Therefore, a
pendulum model can only give an incomplete fluid behavior representation.

A complete analytical investigation of the fluid behavior is now
believed to be a very complex undertaking that for cost and schedule
reasons is not recommended. Instead, a testing program of the complete
spacecraft with its appropriate inertia, fluid fill, and spin rates is
suggested to obtain an understanding of the attitude control/fluid
interaction.



II. INTRODUCTION

The problem of liquid slosh in spinning containers has lately
received substantial attention as it is an essential step in analyti-
cally assessing the destabilizing energy dissi pation in dual-spin space-
craft, The solution of the governing equations is involved due to the
occurrence of the Coriolis term which destroys the self -adjointness of
the Euler equations. An alternate set of equations that excludes the
pressure gradient can be obtained by applying the curl operator on the
Euler equations, thus obtaining the Helmholtz equation of vorticity.

In 1974, Pfeiffer (Ref. 1) introduced the concept of homogenous
vorticity; he argued that the spatially independent vorticity assumes
the value of its average over the fluid volume. Although the assumption
is valid for completely filled ellipsodial cavities, it is only an
approximation for a partially filled cavity.

The fluid perturbation velocity relative to rotating coordinates
fixed in the center of the tank is expressed by:

u	 V^ - s" - ^+ ilx r

where ^ is a velocity potential, ^i is the homogenous vortex vector, and
T is the Stokes - zhukovsky potential, The process of solution starts
with the determination of trial functions ^ n satisfying the problem;

V 2^ n 	 O	 in V

za^n'n
2

'5n	
-	

q ^h
n 	on S F (free surface)

Hin

Ean	
= 0	 on Sw (wetted surface)

where On are the eigenvalues of the potential slosh problem. The poten-
tial i satisfies the problem;

V 2 rp	 0	 in V

1
"	

rxn	 =onS 4.S
Fy n	 F	 w

2



Substituting the set {fin , ") and ^ intro ho linearized Helmholz
equation and free surface boundary conditions and using the orthogonal-
ity of the 0nl set, we arrive at a system of linear ordinary differen»
tial equations in the dependent variables r^( t) and Fn(t) (the general-
ized coordinates in the trial function expansion).

The steady spin of the spacecraft is assumed to be felt all over
the fluid instantaneously, although the periodic angular motions from
control and nutation are only transmitted to a very thinboundary layer
of fluid adjacent to the wetted surface of the tack with a radial thick-
ness on the order of7 7os where v is the kinematic viscosity and ^,; the
frequency.

The method of finite elements was adopted in determining Ian, inl
as well as the coefficients in the resulting ordinary differential
equations. Evaluation of the characteristic eigenvalues indicated that
the equations possess an instability for a range o f the angle v (angle
formed by the resultant gravitational acceleration and the spin axis).
The phenomenon is very similar to flutter in the fact that two eigen-
values coalesce in the range of instability. As in the case of flutter
where bending and torsion frequencies approach each other, the present
motion involves the free ^, ,rface and vortex motions. The range of
instability was found to O crease as the fluid volume ratio Nfluid/
stank) increased, up to P. 5516 volume ratio, beyond which the motion was
stable for all o.

A stability analysis wa;o then performed on the original governing
equations. A Liapunry functional was established and shown to hkve a
vanishing first time derivative. This proves that the motion is neu-
trally stable. It would, therefore, appear that the assumption of
homogenous vorticity may be true for filling volumes more than 5514,
while for lesser volumes this assumption cannot possibly be true, even
approximately.

Great care should then be taken in using Pfeiffer's model in flow
problems involving intrinsic resonances.

III. EQUATIONS OF MOTION

Let XYZ be a rotating orthogonal coordinate system with origin at
the CG of the spacecraft such that the Z corresponds to the spin axis.
Let xyz be a local rotating orthogonal coordinate system with its origin
at the center of the spinning spherical tank and parallel to XYZ. The
angular velocity vector of XYZ with respect to inertial space is:

wR =	 Q t w	 (1)

3
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where tl = tij is the steady-state spin about Z, and t-, is the perturba-
tion angular velocity vector applied to the spacecraft from control,
rigid body, and ela ,̂ tic appendage motions.

Let R be the position vector from the spacecraft cente ►, of mass C
to any point P in the volume V or boundary S of the sphere. Then,

R X Ro + `r	 (2)

R4 is the radius vector from C to the sphere center o, and r is the
radius vector from o to any point in V or on S (Figure 1).

The il otal velocity vector at P(x,y ) z) is:

"v	 R 3 d (Ro +r) X '+u+ h X	 (3)

where vo - dRo/dt, and a is the liquid particle velocity relative to

(xyz)-

At this point it is necessary to understand the mechanisms of
transfer of vorticity from the boundary of the tank to the contained
fluid. Assume that the tank is motionless for t , to and that the spin
about Z reaches its steady-state value of no by accelerating smoothly
in order not to incur any ripples on the free surface. Vorticity can
only be transmitted to the liquid by stresses tangential to the boundary
as those generated by viscosity. It can be shown that vortex motion in
a viscous fluid is governed by the diffusion equation. It is evident
from the solution that the time it takes to achieve a uniform fluid
vortex is of the order:

2(^a)t .. 0(
i4v

where a is the radius of the sphere, and v is the kinematic viscosity of
the liquid. Furthermore, enforcing a steady periodic excitation to the
same wort • city equation shows that only a thin boundary layer of fluid
is entrained, having a radial thickness of

rLaP
(4b)r = p

i	 1
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(7)

(81)

The results (aa, b) demonstrate that although a steady-state spin
equilibrium may be reached throughout the viscous liquid after some
transient time, small periodic rotations will never be transmitted in
the core of the liquid and can, therefore, be neglected.

The above argument explains the use of (aio x i) rather than (aR x `r)
in equation (3), since the latter fomi is inconsistent with the proper
mechanism of vortex transmission discussed above.

The total acceleration vector at P(x,y,z) is:

_ 6 _ WxAo + s'to x (sto X A) +^+M x u	 ( )

The centrifugal acceleration term so x (sa x R) does not include the
perturbation angular velocity u, since th?s latter motion is not felt by
the fluid. Using the definition of the substantial derivative d/dt and
the identity:

u ' vu	 ^Vu u x (v x u)

in the momentum equation, wq get:

at +Tu2 u x(vxu)+Mo x u

(6)

+w x Ao +std x(stox ^t)	 - gip+f

where p and p are the fluid density and pressure, respectively, and f is
the constant body force per unit mass, Superscript ('" denotes the par-
tial derivative with respect to time. For an incompressible liquid, the
continuity equation has the form:

v > V = 0=> v- u = 0

We distinguish two sets of kinematic boundary conditions:

A Neuman condition on the wetted surface Sw enforcing
no flow through the boundary

v n	 0==> is . n = 0 on Sw

5
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Let F(R,t) - 0 be th4 equation of the free surface, Then,

dF( ,t)	 aF(R,t) + u	 vF(R,t) = 0	 (8b)
dt	 at

In addition to the kinematic relations, the dynamic condition of
constant pressure at the free surface S F is imposed:

	

p(R,t) = constant	 on S F 	(8c)

In general, the relative velocity vector u can be expressed as a
combination of an irrotational potential and a rotational term to allow
for vorticity:

u	 v'P +	 x r	 (9)

where

	

2v x v = S1 	 = sto +

is the total vorticity. Using the definition in (10) and relation (3):

2(n + 5
0
	 = v x v = v x u + v x (5

0 
x "r )

^vxu = 2(s +5	 vx(5 xr) = 25

f
Therefore,

-u x (vxu) = 2Sa x u

Substituting (9) in (7) leads to:

¢	 p2V	 0	 (10)
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Substituting (9) in (8a), we arrive at the boundary condition i"or (p:

vq n+ (s x F) . n = 0

an	 -(r x n) 
n	 on 

S 

The form of the boundary condition (11) suggests representing S p in the
form

We now introduce the concept of homogenous vortex moticn (Ref. 1).
Assume that the vorticity si is independent of the spatial coordinates
and is only a function of time. This assumption is an approximation for
the partially filled tank, while it is an exact description for rotating
motions of ideal fluids totally filling spheroidal containers (Ref. 2).
Based on this assumption, (11) can be rewritten as:

Tn	 an	 all	 w

Since the operator on Tj and associated boundary condition can be
prescribed arbitrarily, let:

v 2^ = 0 in V;a = r x n	 on 
Sw + SF

(T3)

v2 ^ = 0 in V; a = 0	 on Sw

The Stokes- Zhukovsky potentialvector	 is used to satisfy the
inhomogenous boundary condition (11). The scalar potential 1, satisfies
a homogenous Neuman condition on S W and, as will be shown later, the
linearized free surface condition. Substituting (13) in (10) with the
assumption that n	 5(t):

h

(12)

(14)u = -vO - s	 v^ +5 x r

7
I



The linearized free surface condition is now derived. At first we
define the steady-state equilibrium free surface equation by estimating
all time-dependent quantities in the momentum equation (6):

5o x (5 x R) = -1 Po + f

where subscript "o" denotes quantities at equilibrium. Rewriting the
cross product in the form of a gradient and using the dynamic condition
on the free surface (8c):

Po
	 1(5 x R)z - f	 R = const.	 (15)

If the body force is a thrust -go along the Z axis, then f•R= -goZk,
where k is a unit vector along z. The steady-state free surface equa-
tion becomes:

	

F`o(X^Y^Z) = 2
°2( X2 + Y 2 )	 goZ - Co = 0

Fo(X,Y,Z) = 0 describes a paraboloid of revolution, where C o is a con-
stant that can be determined from the known fluid volume (Figure 2.)

Let n be the perturbation wave height in the direction normal to
the free surface and (^,p) its components in the Z and R directions.
Incrementing R b p and Z by ^ and retaining terms to the same order of
smallness in (15^,

P' = 
s^o2 Rx p - 

9 ° 4	 r(16)

where p' is the perturbation free surface pressure. Let nR and nZ be
the direction cosines of the unit normal to the free surface. Then
(Figure 2),

n	 - -	 aF°	
2R

 f2° x
R	 gR a R	 gR

	

1 8F°	go	 (17)

	

nZ _ - 9R a Z	 9R

9R =	 92 + ( ^o2Rx)2



Substituting (17) in (16) and noting that

n =-nRp+nz4

we obtain the perturbed free surface boundary condition

I
's 90(18)

By definition,

n = n	 u	 on S F	(19)

Substituting (14) in (19) using (13),

n = - n , vO - -an	(20)

(20) states that the perturbation velocity normal to the free surface
results only from the potential ^, while 	 is purely geometric. Substi-
tuting (14) in (6) using (3) and (5),

p {_^_ 8t	
^'+p - f	 R+ 2u2 + (wx Ro )	 r --z(	 x R)2}

 
(21)

+at x r +2stF x u - o

• The physical meaning of each of the terms in (21) is elaborated in
what follows:

t

8t	 unsteady translational potential satisfying the
free surface boundary condition

PI -
P

f R	 pressure and body forces

1 u 2	 convective acceleration

9

e,



perturbation tangential acceleration caused by
(W x Ro)
	

r	
rotation about the spin axes assuming that only

translational oscillations are transmitted to the
liquid

1(5o x R)2
	 steady-state centrifugal acceleration

3t x r	 tangential acceleration from vortex oscillations

255 x u	 total Coriolis acceleration from spin and vortex
motions

In order to express the perturbation pressure at the free surface
p' (equation 18) explicitly in terms of the 	

-
,^, and si o , the terms

sex ^+25 R x u 	 (22)

are omitted in (21) so that the momentum equation may be expressed as an
exact differential. That is,

PI ==^+0 • ^- (WxRo )	 r	 (23)

The neglect of the acceleration terms (22) is consistent with the
linearized free surface condition (18). Eliminating p'/n from (18) and
(23), we obtain the perturbed free surface boundary condition:

9Rn = at + 0	 + (r x Ro )	 w	 (24a) i

Differentiating (24a) with respect to time and eliminating n using (20),

r2 ^..^ 	 u
gR •+

8_ 	
=- sz ^,450 xr)xRo1 w

1	
(24b)- (r x Ro )	 w

An approximate solution to the slosh problem can be found by adopt-
ing the Galerkin technique. A set of simple trial functions is sought

10
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that satisy the boundary conditions of the irrotational problem (equa-
tion (24b) with si  M 

n, 
0). A candidate set is composed of the eigen-

functions of the problem:

v2$0 	 = 0	 in V

an	 = 0	 on Sw	 (25)

a0 0 	a2^o
0 ° +	

8tz	
0	 on SF

an	 9R

The eigenfunctions of problem (25) satisfy the orthogonality condition:

9R ¢
m OndS = Sinn

SF

where amn is the Kronecker delta,

The functions 0 and n in (24a) are expressed in terms of a trunca-
ted series in on:

N

an(t)^n(R)
R	 nil

'	 N	
1	

-	 (26)

n( R ) _	 9R9nMO (R)

n=1

Combining (20) and (25) using (26), we obtain:

-
!On 

_	
cn

2
PA
an	 n	

n an	 .n	 g R n ^n

Rn 9 
^n On	 (27)

I
where {6n } are the eigenfrequencies of problem (25).

11



Equation ('27) yields to relations between P' ►1 and an

gn =
	

°n2xn	
(28)

Substituting (26) and (28) in (24a),

N

^idn to
+ 4n IOn •'	 +(rxRo) w	 (29)

n-1

Multiplying both sides of (29) by ^ n
/gR , integrating over the

free surface, and using the orthogonality of the {fin} 
set,

N

n + °n 2 n =	 (Ainw + Ci
-nai)

i=1

{Ain) =
	
rn ^ Ro^ bin}

( CinI = Yn fain)

Yn	 f ^n/ gRdS	 (30)

SF

'

	 fy, a^ain  	 axn n
k dS = fin an dS

5	 k	 S

f(r x n) i ^n dS

S

fOn
	 Ln 

ax

bin	
xiaxn nk dS 	 axe n k dS

S	 k	 5k

fOn  ni dS

_	 S

[ RoJ is the skew symmetric tensor form of Ro.

x
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The total vort'c'ty n F is governed by the Nelmholz equation in
rotating cordinates:

dn*

^+ n
p X	 _	 ^^	 q) y

11 F 	 =	 2 X V
(31)

(31) can be derived by applying the curl operator to both sides of the
momentum equation.	 In order to remove the spatial dependence, we define
an average vorticity over the volume:

nF	 -	 f 5F dV	 =	 n + 50

Averaging equation (31),

dstF	 1	
"v_

dt + 5
o x 5F	 =	 V1

	v)dV

(32)V

The expression for v is found by combining (3) and (14):

V	 =	 -	 x Ro + n	 x F - st	 Vii	 vO (33)

The gradient of the first two terms in	 (33) vanishes identically.
The contribution of the third terms v( 3 ) is:

3

(5 F 	 '	
v)vi(3)	

_	 -	 n	 5	 V^j ax 	 ( F_'	 ),7
j=1

Averaging throughout the volume and linearizing,

3

-1
V	 f  ^^F	

v)v (3) dV	 =	 - L	 RJ	 13
V	

3 = 1

R i j	 =	
V	 f d

i

 (5F • v0 j ) dV
R

(34)
V

1	 Qo a
f (5F	 voj ) n i dS = V r

:xn i dSJ	 3
S	 S

13,

i

•mss

i



(37)

(38)

The linearized average of the fourth term v (4) can be expressed as;

V f
( F  p ) ^ 4) dV n

V	 n - 1 -nU
(35)

a^hn .. V f-L(Vo n ) 'V = ^^ az n d 

V	 S

The linearized vector equation for homogeneous vorticity is then:

h
st 4. (R + no )st

	

	 n	 (36)

tn-- n

where R is a tensor whose components are given by (34),'F is the vector
defined in (35), and 7.r

0 
is the skew symmetric tensor of vector ^o;

The coupled equations given by (30) and (36) define the approximate
rotational unsteady slosh motion of an ideal fluid with homogeneous
vorticity in a spinning tank. The time history can be calculated once
the truncated sets K  and (an )are determined.

IV. SLOSH FORCES AND MOMENTS

The slosh force and moment vectors (F, T), acting at the spacecraft
reference point, are given by:

F_ fpfidS  = fVpdV
S	 V

T _ f R x p5 dS= rR x vp dVJ
S	 V

14



Using the expression for Vp in (6) and the definitions of a in (19),

vp	
_PBt+1 5 2 +SEX u+ 2Sto x U+wa x Ro

+Ito X (no x R)	 f}	 (39)

U	 -VO 	 + rl x r

:t	 n 0n
n=1 an

1

.. 1 9R 4n On

Substituting (39) in (37),

F - M
R

 - $1o x ( 50 x	 0 x w)

a bn ^ n + 2s 0 x bn n + a n2 d n4 n	 (40)

n-1	
n

- 
V fRdV

 = Ro + s (fluid CG)

V

nbin	 axi dU - S ^pn 
ni 

dS

V

d.	 - f	 n. dS
3F

n ^

F

The terms M(T - Ti x (5o x S)) represent the equilibrium constant
thrust and centrifugal obody forces. The term M(Ro x,,,) is the trans
lational force (constant throughout the fluid) generated b the per-
turbation angular acceleration 6. The last bracket of (40) involves the
slosh unsteady forces as it depends on the generalized coordinates rn
and their derivatives:

6 J
	 ---.► translation inertia of slosh

250 x 6n ^n 	 Coriolis force due to relative velocity

d 
n 

g 
n 
a 
n 2
	 restoring force frc.<n potential energy

}
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Note that the Coriolis effect is equivalent to a velocity proportional
damping farce, Substituting (39) in (38),

T M (3? + S O OS5q) + MOSw

+ (Q + A)ca + 2(U - U)5

r .A, 1 a +Rb	 +2OW 	+ 2	 (41)

n- 1	 Qn	 n a n	 n rr o n	 4n 	 On

is the skew symmetric tensor of vector a in	 (40)

A pfrrdV

V

B
T

p	 r n W	 dS

I
S

pJ r r^ dV
V

ft

D	 =
f

-pQ0 6	 f1	 (V^j ) ^ dV^3

V

F
n =
J"r(V^n) 'dV

V

f r n	 dS =
rr	

dSf-a	 =
n ^S	 n

e 
n nSF

b f
	

dS
- f	

dS=n
n

S	 n g n n
S F	 n

fn = in + Ro9n -	 RS	 oR 0 "s+	 Ro

[(MR
o

sT +C) coo 	 - MRo sDoT

V	 = p - M Ro 60 "s

41 n - Fn - Ro bn
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where M* is the total number o
Within each element, the field
its values at the nodal points

Ni(J)(x,y,z)

(k)(x^Yz)

E
l

,

r
_j

Quanti ti acs superscri pted by (") are tensors, whil e (`) denotes the
skew symmetric matrix form of a vector. The first, three moment terms
in (41) result from th e first three force terms i n (40), while the Cn
dependent contributions are born from the slosh unsteady forces, The

and ri dependent terms correspond to the couples produced by the vortex
tangential acceleration and Coriolis acceleration, respectively.

V. PROCESS OF SOLUTION

The eignevalue problem (25) and the inhomogeneous potential problem
►̂ are solved using finite elements, Essentially, the fluid domain
bounded by the sphere wall and the equilibrium free surface is sub -
divided into isoparametric finite elements, The Laplace equation and
free surface boundary condition are written in a quadratic integral
form:

I (?	 J (vO)-2dV	 ^' f - OdS	 42a
V	

gR	
(	 )F

14 1 )
l  f(V^i ) 20  - J (r x n)*. ds	 (42b)

i	 VS	 is

The condition that the first variation of the functional in (42a)
be stationary leads to the Laplace equation and free surface boundary
condition in (25). A similar process on (42b) leads to the Laplace
equation and inhomogeneous Neumann conditions of the potential j,.

The functional I(^) can be discretized as;

(43)
kEl

t

F finite elements in the fluid volume V.
variable ^ can be expressed in terms of
using the interpolation functions

n*
=	 Ni(k)(x Y)Z) ^ (k)	 (44)i-1

.
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n* denotes the number of nodes for some element and 	 is the field
variable at node I. The condition that the functional I be stationary
is

U*rl

614)	 r, 61
j x I

x 0	 i x 1,...,n

Using (42a) and (44),

ON I	 i !ON 
i+	 M + - OZ dV
]

j	 rlx	

ON aN

	

 
O 	 y By 6 F	

I

N
dS	 0	 41

S
F 

R

which can be written In matrix form for each element as:

n*

E (A j
() _ B (

i
k ) )Oj . 0	

V i ji	 i
j=1

A (k) 4 (!N i !Nj + !Ni	
over V	 (45)Ox

ax	

ay lay + !a TZ )k

B(k)	

N
on SI 

i

	

	 F
9LR
I it

where ^j denotes the column—vector of_the nodal values `ri. Furthermore,
by Splitting ^ -into ^j and ^2, where ^2 contains the free surface nodes
only, (45) becomes;

I A2 	

01	

;l	 0
BI  B 

2	
B	 ¢21

(46)

a
2 

- B, Al 
I 

Ad	 BI ;2	 0

;l = 
„A11 A

2 ;2

I
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9	 1

t

►

Applying tnu above procedure to the functiona l. 1f;.0) ) with the same
interpolation functions Ni(x lypz) leads to a set of inhomogeneous
simultaneous equations of the form:

n	

A
ii
(k)^J , b*i --I- A^ X
	

(47)

A( k) is identical to the matrix in (45) and
U

b	 f (i x h) i N i dS
S

VI. SLOSH DAMPING SIMULATION

The energy dissipation associated with a sloshing liquid is
governed by many complex processes that depend mainly on:

(a) Fluid kinematic viscosity

W Frequency and amplitude of excitation

(c) Tank geometry and fluid volume

(d) Ratio between centrifugal and thrust accelerations

To date, no theoretical investi ation exists that models even
qualitaLively the damping mechanism ?Ref.3-11). It is thought in this
work that the problem is tractable only through empiricism that relies
largely on experiment,

Summer and Stofan (Ref. 5) measured slosh forces on spherical tanks
subjected to translational periodic motions of vario,, ,The
liquid kinematic viscosity rangedfrTfl 2.29 x 10-7 111 ^ sec (10- 9 f	 sec),	

1for water to a maximum of 9.29 x 0- m /sec	 0	 ft /sec) for glycerine.
For some fixed geometry and liquid properties, the nondimensional first
mode slosh force Fs/ogD 3 was found to vary linearly with the excitation
amplitude parameter X O /D for small X O /D, where

F s = slosh force

p = liquid density

g	 gravitational acceleration (or thrust)

D = tank diameter

X 0 = amplitude of periodic excitation

0
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A smooth transition region follows, beyond which the slosh force
asymptotes to a constant value depending on liquid kinematic viscosity.

The observed trend can be explained as follows. For small amplitude
vibrations, F S is proportional to Xo as expected for a linear oscillator
with constant proportional damping:

Fs = CF Pg D3 D

	

	 1	
$ D S 0(1)

(Wz - W zr ) z + ( 2; WWr)2
D

C F = force coefficient function of geometry and fluid filling
W,Wr = excitation and resonant frequencies, respectively

b = equivalent viscous damping

4 depenae only on kinematic viscosity fur linear motions. As the ampli-
tude increases, free surface motions become nonlinear while the observed
asymptotic behavior suggests that 4 is proportional to X 01D kNC^Xo/D)

X 2
Fs = CF P9D3 w_u rC^	 p	

> 0(1)

It appears from the above limiting cases that the ^ variance with
X 0/D is a hyperbola:

F+ 4 2 X 1 ( 
D)4

F

	

	 An empirically derived expression for c 0 is given in (Ref. 5) in
the form:

C	
0.131 v x 104 0.359

f (h )
0	 2^r

F9M1 s
	 h a

(49)

f ( 
h) = 

1 + 0 .46 2 - ha	 for h = h > 1
h a	 1.46(2- ha	 a	 a

f h (h a ) = haa	 1
`	 h is the depth of the quiescent liquid in the tank.

(48)

20



V —
	 --

In order to determine the dependence of 5 1 on the liquid and
geometric parameters, the steady-state slosh was computed for a periodic
excitation corresponding to the fundamental slosh resonance in transla-
tion. A viscous damping term, proportional to the free surface normal
velocity, was introduced in equation (30);

n + 2C 	 En + vn 2 i:n - f(w, n,)
	

(50)

The damping factor K wai varied until a numerical value of the
slosh force Fs coincided with the experimental value. A hyperbola was then
fitted to the resulting {c, X o/D} set in the form:

X Y=	 Z02 + 10(1 + 27rco)( D 	 (51)

The frequency response spectrum was computed for a periodically
excited spherical tank based on the damping factor expression (51). The
geometric and liquid characteristics were:

k

a = 18.4 cm (7.25 in.)

P = 1000 kg/m3 (62.2 lb/ft 3)

0.5 < n* < 2.0

D	 0.5

D—o = 0.0083

g	 9.81 m/sec t (32.2 ft/sect)

n* is the nondimensiona'l frequency parameter

n* = W 9
i Figure 3 compares the pres

The correlation is satisfactory
mental slosh resonance. Beyond
estimate the slosh force, while
quency. A possible explanation
follows.

°nt analysis with test data from Ref. 12.
up to n* = 1.3 just after the funda-
this point, the analysis tends to under-
the err-or increases uniformly with fre
for this discrepancy is given in what

Liquid slosh in spherical tanks falls in one of four different
regimes:

(1) At low frequencies (Ti* < 1.1) the small amplitude free surface
motion is in phase with the excitation. The liquid is mainly
acted upon by slug forces (externally applied translational
accelerations). The response is very similar to that of a

21
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linear damped single degree of freedom oscillator having a
mass equal to the total fluid mass.

(2) As the frequency increases beyond q* = 1.1, the fundamental
resonance is approached. This results in an increase of the
liquid mobility (degrees of freedom) and greater free surface
amplitude. The slosh wave is broken down into small drops as
a result of splashing against the tank wall. In addition, it
froths due to surface cavitation and release of entrained
vapor. These phenomena are associated with an appreciable
increase in energy loss that is considerably higher than that
in the linear regime.

(3) Beyond the first resonance (n* ? 1.25), the excitation and
response are out of phase. This leads to an increase in
relative velocity between the slosh wave and the solid
boundary. Breaking of the slosh wave as it follows the
adverse slope of the wall occurs whenever the tank is more
than 40% full and the wave amplitude is sufficiently large.

It is believed that the dissipation mechanism is far more complex
in the case of a spinning tank. Experiments were conducted at Hughes
Aircraft in 1972 (Ref. 13) on a spinning table supported by an air
bearing. The measured rate of energy dissipation from slosh was found
orders of magnitude higher than that predicted analytically. In fact,
the energy dissipation from slosh has destabilizing effo cts for a
certain range of the ratio between spin and transverse inertias of the
spacecraft.

VII. NUMERICAL RESULTS

Since the resultant gravitational acceleration g R enters as a
parameter in th^ definition of the nondimensional frequencies, a value
gR = 9.81 m/sec was assumed throughout the computations while the
angle

't
t

tan -1 ( R
ox + 

s  )st0 2	 1
B =	

g

was varied by changing both thrust g and spin rate 0
0 for a mixed geom

etery and fluid volume. The "'Galileo" tank was assued with the follow-
ing parameters:

a = 0.37 m

Rox	
0.64 m

22
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P = 872 kg/m3	(light-fluid)

v = 0.277 x 10-6 m2/sec

V liquid 
V
tank - 0.5

The tank was spun to a constant rate (90 ) on a rigid platform with
a superimposed periodic excitation about the spin axis such that the
equivalent maximum oscillatory amplitude at the center of the tank was
always one percent of the tank diameter (X o/D = 0.01). Thus,

w	 = wo s i n cot R

wo	 = 0.O1 D
ox

where wo and w are the excitation amplitude and frequency, respectively.

Table 1 shows three test cases in the ^ range of interest.

The variation of steady-state nondimensional circumferential force
Fy/(pg D3Xo/D) with frequency parameter n* for the three cases in
Table ^ are shown Figures 4,5, and 6. As expected, case A (no spin)
exhibits one resonance at n* = 1.25. A similar behavior is noticed for
case C (no throst) except that the resonance occurs at a lower n* = 1.04.
The response for case B is different in that three resonances are
encountered. The first resonance is associated with a vortex dominant
motion. The next two resonance correspond to mostly potential irrota
tional modes about two orthogonal axes on the free surface. A weak
fourth resonance can be detected at n* = 1.6 and relates to the slosh
mode with two circumferential nodes at the free surface.

In the process of numerical experiments, a slosh instability was
detected fluid fills G = ( V fluid/Vtank) less than 0.55. The exponential
instability was found to exist in a range of R angles that depends on
the fluid fill G. 'the range is largest at the lower G and decreases

Table 1. Representative test cases

Case A li liq uid

t
o

00' g' 2
m/s

gR'2
m/s

R ,
RPM Deg

A 0.5 2.0 9.81 9.81 0.01

B 0.5 31.5 5.50 9.81 52

C 0.5 34.0 0.0 9.81 90
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uniformly as V increases to a V of 0.55, be ond which the instability
vanishes. The stability boundary (Figure 7^ is independent of the
resultant gr .;,ivitational acceleration 9R'

The unexpected occurrence of the instability suggested further
investigation into its nature and mechanism. The complex characteristic
eigenvalues of the governing system of linear differential equations
(30) and (36) were determined for different V in the range 0 < 0 <
90 deg. The variation of the nondimensional -imaginary roots "Fepr ;^sent-
ing the frequencies and their corresponding nondimensional real parts
representing the damping is Plotted versus 0 in Figures 8 through 14
with V as a parameter. For low V (nearly empty tank) the first fre-
quency vanishes at ^ = 0, then rapidly increases to coalesce with the
second resonance in the range of instability. The two frequencies then
separate once more in the stable regime, while the lowest frequency
approaches a finite value as 0 reaches 90 deg. The damping associated
with the first frequency starts at zero for 0 = 0, while that corre-
sponding to the second frequency is finite. As the instability region
is approached, the first mode damping assumes larger negative values,
while the second mode becomes overly damped. This behavior ceases as
we exit the instability range. The frequency separation between the
first two modes increases uniformly with fluid fill V, an indication of
a weaker instability. The dashed lines represent the first two reso-
nance rp of the approximate eigenvalue problem (25). The different
negative damping parameters of the first mode are plotted against
with V as a parameter in Figure 15.

The phenomenon bears resemblance to aeroelastic flutter in which
the bending and torsional elastic wing frequencies coalesce (Ref. 14).
In the present model, the vortex and irrotational slosh frequencies
couple in a manner similar to the wing frequencies in flutter.

VIII. STABILITY ANALYSIS OF FREE SLOSHING

A separate stability analysis on the "free-slosh" equations was
performed for all cavity fill ratios and all values of 0 < $ < 90 deg.

Consider Euler's equation for fluid motion in a rotating system
(Eq. 6 with @ = W4 =_ 0) with hu'llogeneous boundary conditions given by
(8a,b,c). The steady-state solution is given by (15).

Let V(x,t) be the infinitesimal perturbational velocity of the
fluid, and ^1(x,t) be the infinitesimal perturbational pressure. Then,
using (6) and T15), the equation of perturbed motion of the fluid is:

av

at + 2P x v = - P Vp,	 (52)

V - ^ = 0	 in Vo

4
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Outside of V0 there is a "gravitational field" ge given by:

g e = w 2 1XI + Y11 ¢ sk	 (53)

As a result of the perturbed motion, the free surface is perturbed.
Let the elevation of the perturbed free surface relative to the equili-
brium free surface SF be denoted by g, measured normal to S F .

0	 0
From (15) and (53) it is easily seen that g e is normal to the free

surface, and is directed into the fluid,

As before,

v n = 0	 on SW

0
i

The pressure on the equilibrium free surface SF is given by:
o

p l 	 = P 9n	 on S F	 (correct to OW)

i
SFo	

o

Consider the Liapunov functional (Ref. 15):

L- 2 f p v 
v dVo + 2 P ge f ^2  d SF	 (54)

Vo	

SF	

o
0

r

ge = ge . n

Consider the time derivative of L:

L fp v' 8t 
dV o + f P ge 

8t 
d S F	 (55)

Vo	
SF	

o

Using (52) in (55):

L= - f P (2 Q x v - v+ 1 v v p) dV + J p ge a dSF
V	 P	 1	 o	

SFo	
o

V
o 

f

H
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Using the divergence theorem on the remaining terms in the first
integral note c4—V- v = 0),

L = -f p,v v dVo - f p 1 v . n dS F - ,1 pl v , n dSw + f pge ^: dSF
Vo	 SF	 o S	 o S

o	 wo	 Fo

Now

v•v ^ O in Vo ;	 G•n ^ OanSw 	v•n = ^^onSF

	

o	 0

pl = p ge 4 on SF
0

Hence, L = 0. Thus, the functional

L=	 J pv . vdV + 1 J g n^2dS
2 Vo	° 2 SF e	 Fa

o

is conserved in free sloshing. Therefore, free sloshing is stable
(marginally stable).

This proves the assumption of homogeneous vorticity is invalid for
problems of free sloshing and, therefore, by implication, for problems
of forced sloshing.
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