

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19800008506 2020-03-21T19:19:53+00:00Z

December 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

;

JPL PUBLICATION 77-37, Revision 1

\ VICAR Image Processing System
Guide to System Use
J. B. Seidman
A. Y. Smith

(NASA-CR-162693) VICAR IMAGE PROCESSING	 M80-16766
SYSTEM GUIDE TO SYSTEM USE (Jet Propulsion
Lab.) 77 p AC A05/MF A01 	 CSCL 09B

onclas
63/61 46964

F

3

I{

-4,y

__..w,-,....^.^.,,.	 -ate•*	 ,,

JPL PUBLICATION 77-37, Revision 1

VICAR Image Processing System
Guide to System Use

J. B. Seidman
A. Y. Smith

December 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

PREFACE

The work described in this document was performed by the
Observational Sya,ema Division of the Jet Propulsion Laboratory,
California Institute of Technology. This document is a revision of
the original issued on October 1, 1968 9 wAd revised in May 1977
WPL Document 77-37).

PRECEDING PAGE BLANK NOT FILMED

iii

ABSTRACT

This document is designed both to instruct the new user
in the use of thr. VICAR (Video Image Communication and Retrieval)
System and to serve as a reference manual for the more experienced
user. The document has been divided into nine sections which describe
the functional characteristics and operating requirements of the VICAR
System.

SSection 1 presents a general statement regarding the history
of the VICAR System.

Section 2 lists other documents which the user will find
pertinent to the System.

Section,A provides a general overview of the operation
of the VICAR System.

Section 4 defines some of the major concepts used by the
System.

Section 5 presents the rules for general VICAR ,job setup.

Section 6 details the use and function of VICAR control
statements. This section constitutes the main body of
this document.

Section 7 describes the use of the EVIL2LIB Procedure
Library.

Section 8 presents an introduction to TTM usage.

Section q lists error meassages which the user is liable
to encounter and appropriate actions to be taken in response
to these 0633ages .

iv

9

i

i

CONTENTS

i INTRODUCTION --- 1-1

2 PREREQUISITE PUBLICATIONS ---------------------------- 2-1

3 OVERVIEW OF VICAR ------------------------------------ 3-1

4 THE VICAR ENVIRONMENT -------------------------------- 4-1

4.1 IMAGE -- 4-1

4.2 VICAR LABEL -- 4-2

4.3 DATA SET --- 4-5

4.4 TAPE -- 4-5

4.5 PROGRAM PARAMETERS ----------------------------------- 4-6

5 VICAR JOB SETUP -------------------------------------- 5-1

6 VICAR CONTROL STATEMENTS ----------------------------- 6-1

6.1 CONTROL STATEMENT FORMAT ----------------------------- 6-1

6.2 CONTROL STATEMENT FUNCTIONS -------------------------- 6-1

6.3 CONTROL STATEMENT SPECIFICATIONS --------------------- 6-2

6.3.1 RESERVE, BLOCK, A, B --------------------------------- 6-2

6.3.2 SAVE and CATLG --------------------------------------- 6-4

6.3.3 FIND and RELEASE --- - ------ --- ------------------ ------ 6-7

6.3.4 READ, PREAD, WRITE, PWRITE, TAPE and PTAPE ----------- 6-9

6.3.5 EXEC, E ------------•---------------------------------- 6-13

6.3.5.1 DO GROUP -------- - ---- - ------------ - --- - ------ --- --- -- 6-14

6.3.6 PARAMS, P -- 6-19

6.3.7 LABEL, L, RELABEL, R --------------------------------- 6-21

6.3.8 NOTE ---• 6-22

v

F "^.

6.3.9 END -- ------ 6-23

6.3.10 TINE --- ------ 6-23

6.3.11 REGION --- ------ 6-24

6.3.12 NCLIST --- ------ 6-24

6.4 PREPROCESSOR STATEMENTS (EVIL) ----------------------- 6-25

6.4.1 DEFINE, D -------------------------------------- ------ 6-25

6.4.2 END -- ------ 6-26

6.4.3 CALL, C -- ------ 6-26

6.4.4 GET, G --- ------ 6-27

6.5 USE OF PREPROCESSOR STATEMENTS ----------------------- 6-27

6.5.1 The DEFINE Control Statement ------------------- ------ 6-28

6.5.2 The CALL Control Statement --------------------- ------ 6-28

L.5.3 The GET Control Statement ---------------------- ------ 6-29

6.5.4 The DO Library Procedure ----------------------- ------ 6-30

7 PROCEDURE LIBRARY OPERATIONS ------------------- ------ 7-1

7.1 SAVE --- ------ 7-1

7.2 DELETE --- ------ 7 -2

7.3 LIST --- ------ 7-2

7.4 NAMES -- ------ 7-3

7.5 EXAMPLES OF PROCEDURE LIBRARY OPERATIONS ------- ------ 7-3

8 INTRODUCTION TO TTM ---------------------------- ------ 8-1

9 ERRORS --- ------ 9-1

9.1 VTRAN ERRORS (FIRST JOB) ----------------------- ------ 9-1

9.2 EXECUTION ERRORS (SECOND JOB) ------------------ ------ 9 -2

vi

T

.r

APPENDIXES

A	 TAPE FORMAT CODES ------------------------------------ A-1

8	 JCL INSERTIONS IN SECOND VICAR JOB ------------------- B-1

C	 JPL IMAGE PROCESSING LABORATORY
CONVENTIONS AND DEFAULTS ----------------------------- C-1

•	 D	 EXAMPLE JOBS --- D -1

14

vii

I

SECTION 1

INTRODUCTION

The VICAR system is a set of computer programs designed
to facilitate the acquisition, processing, and recording of digital
image data. VICAR was developed at the Jet Propulsion Laboratory in
the late 1960's to process picture data produced by the planetary
exploration program. Its application has since been expanded to all
areas in which picture processing may be desired, including astronomy,
Earth resources, land use, biomedicine, and forensics. System objectives
are ease of use by personnel who may not be expert programmers, and
simplified programming for future expansions.

r

	

	 VICAR was originally designed for operation with the IBM
360/44 Programming System (44PS). It was subsequently modified to
run with the IBM OS/360 operating system. It will run with all versions
of OS including virtual storage versions. At the present time there
are known to be about one dozen installations in the world using'VICAR.

Image processing with VICAR is performed with the aid of the
VICAR language. The VICAR language consists of a series of statements
with which the user describes the source of the original data, the
desired sequence of processing steps, and the destination of the processed
data. The user in effect writes a "program" in the VICAR language
to perform his job. Only two fixed Job Control Language (JCL) statements
precede the VICAR statements, virtually eliminating the need for knowledge
of JCL. The VICAR language is simpler and easier to use than JCL.

Data processing under VICAR is performed by "application
programs" residing in a program library that forms a part of the VICAR
system. In order to accomplish a prescribed operation on an image,
the user must identify an application program, or a sequence of programs,
which perform the jeb. The VICAR system includes in its program library
an extensive assortment of general application programs which can be
used to perform a wide variety of functions. These functions are written
in standard programming languages, primarily Fortran and Assembly.
The program generally can be manipulated for specific processing through
the use of control parameters that can be specified by the user in
VICAR language statements.

New technology and changing applications require the addition
of new programs to the library. The VICAR sytem provides a standard
set of subroutines for performing input/output and access to user-supplied
control parameters. These subroutines comprise the interface between
the application programs and the VICAR system. They are designed to
reduce some of the routine labor involved in writing an application
program.

VICAR is primarily a batch-oriented system, which requires
that the entire sequence of operations be described before processing
can begin. Once the sequence has begun, the user cannot influence
the course of the processing. There exists a related interactive system

1-1

called LIBEXEC, which allows the selection of each application program
dynamically after previous processing has occurred. LIBEXEC makes use
of the same program library as VICAR. As of the date of this publication,
LIBEXEC has not been distributed outside JPL.

1-2

SECTION 2

PREREQUISITE PUBLICATIONS

VICAR is designed so that the user needs very little knowledge
of the operating system. However, the following publications may prove
to be useful.

•	 (1)	 "IBM System/360 Operating System: Introduction,"
IBM Publication GC28-6534.1

(2) "IBM System/360 Operating System: Job Control
Language Reference," IBM Publication GC28-6704.1

(3) "IBM System/360 Operating System: Messages and Codes,"
IBM Publication GC28-6631.1

(4) Stephen Caine and E. Kent Gordon, 3Z: A _MaeroysngyM
for Batch Processing , Programming Report No. 8, Booth
Computing Center, California Institute of Technology,
Pasadena, Calif. (ongoing)

In addition, the user will require user guides which describe the function
and detailed usage requirements for the various application programs
available in the VICAR program library.

1 If 03/360 is not the operating system utilized, equivalent applicable
publications should be referred to.

2-1

SECTION 3

OVERVIEW OF VICAR

This section describes generally how the VICAR System programs
function in relation to each other. It is not essential to use of
the system, but a general understanding of the system operation should
prove helpful.

A VICAR image processing fob actually consists of two computer
fobs. The first computer ,job, sometimes called the VTRAN ,job, is initiated
by the user. It processes the VICAR language statements and, based on
their specific content, generates a second ,job which is submitted to
the operating system to be processed. The second ,job, sometimes called
the "X-fob," performs the actual image-processing functions. In most
installations, the second ,job is submitted automatically without inter-
vention by the user. The user thus receives two ,job listings for each
,job he submits. Normally the first listing can be discr,rded unless it
indicates an error. The second listing contains all pertinent information
about the processing which has been performed. It should be noted
that the second ,job will not be generated if an error, such as failing
to adhere to VICAR format conventions, has been detected.

VICAR processing is initiated by an OS JCL statement, which
invokes the VICAR catalogued procedure. This procedure, in turn, executes
three OS Job steps. The first step invokes the program TTMSA, which
functions as a preprocessor, under control of the TTM library string
EVIL2. The preprocessor scans the control statements for preprocessor
statements, each of which is translated to zero or more non-preprocessor
statements. Output from the preprocessor is passed to the second step
which invokes VTRAN, the main VICAR language translator program. VTRAN
generates JCL statements and "task queues" for the second ,job. The
last step of the VICAR procedure passes the JCL and task queue to the
operating system internal reader.

The second ,job consists of one or more ,job steps, as determined
by VICAR control statements. Each step is processed as follows. The
operating system processes the JCL statements to allocate the necessary
permanent and temporary disk data sets, tapes, and special devices needed
for the processing. Control is then passed to the VICAR System program
VMAST. VMAST contains the I/O and parameter service routines used
by all application programs. Immediately after receiving control,
VMAST passes control to VICAR System program VMJC. VMJC reads the
task queue to determine what processing is to be done. For each task,
VMJC sets up the VICAR control blocks in VMAST according to the particular
data sets to be used, converts the program parameters to internal format,
and performs standard processing of the VICAR image labels. Finally
VMJC passes control to the application program specified for the task.
When the application program terminates, control returns to VMJC, which
repeats the process until the task queue is exhausted.

3-1

SECTION 4

THE VICAR ENVIRONMIENT

This section describes the characteristics of the data
elements which are manipulated by VICAR. We will distinguish the following
entities which form a part of the VICAR environment: image, label, data
set, tape, and program parameters. A fairly clear comprehension of these
concepts is a prerequisite for understanding this manual.

4.1	 IMAGE

An image is a set of data to be processed by an application
program. The data normally represent a visual "picture," although
this is a matter of interpretation, since an image may take various forms.
For example, a VICAR "image" may represent the topography of a section
of the Earth's surface, or it may represent the population of each

of a collection of census districts.

VICAR presently has no standard way of handling multispectral
data. However, programs which process multispectral data adopt one

of two common conventions. In one, each spectral band 13 stored as
a separate image. Programs pr -saaing data in this form require one
input image for each spectral band to be processed. This convention

is similar to what is often called "band sequential." The second con-
vention is called MSS fcrmat. and stores all the spectral data from
one scanner Une on one image line, one band at a time. This conven-
tion is equivalent to what is usually called "line sequential."

The format of image data is very simple. An image can

contain between 1 and 2 31 -1 "lines," each of the same length. In the
"picture" interpretation, each line represents one raster scan line.
The sequence of lines represents the sequence of raster scan lines
beginning with line 1 at the top of the picture and proceeding down.
Within each line is a sequence of bytes whose length is fixed for
a given image. The length of a line may be from 1 to 32767 bytes.
In the picture interpretation, the data represents the brightness value
of each sample or "pixel," on the raster scan line. Every pixel value
is represented by 1, 2, 4, or 8 bytes. Most commonly one byte corresponds
to one pixel, the unsigned binary value representing the brightness.

The possible representations for pixel value are given in Table 4-1.
It should be emphasized once more that these interpretations are con-
ventional but not mandatory.

4-1

Table 4-1. VICAR Pixel Representations

Name	 Pixel Code Bytes/Pixel	 Format

Byte	 L	 1	 Unsigned binary integer (0 to 255)

Halfword	 I	 2	 Signed, two's-complement binery
integer (-32,768 to +32.7u1)

Eullword	 I	 4	 Signed, two's-complement binary
integer

Heal	 R	 4	 IBM floating point

Complex	 C.	 8	 A pair of "real" values

Images residing on disk 2Bk have a standard VICAR label in
order to be processed by the VICAR system and by most application programs,
unless the program's name begins w±th "V." Images residing on tape need
not have a standard VICAR label, but in order to be processed, they must
be moved to disk and labeled. VICAR provider a way to add a label and
copy the simple tape formats listed in Appendix A. More complex formats
necessitate a special purpose program, called a "logging program." The
logging program, whose name starts with " ll , reads the data and converts
it to standard VICAR format, adding the staua.ird VICAR system label and
often several lines of text extracted from the original data. The follow-
ing section describes the VICAR label in detail.

4.2	 THE VICAR LABEL

An image may or may not have a "standard" VICAR label
preceding it. When it does, the image is said to be in standard VICAR
format. A label consists of one or more label lines preceding the image
data lines. These label lines are always 72 bytes in length, and usually
consist of textual data. Label lines are grouped into label records
360 bytes long consisting of 5 label lines each. The last label record
may have fewer than 5 label lines. The first label line is called the
VICAR system label and must always be present. It contains the format
of the image and its size (number of lines and number of bytes per
line). The current format in use for the VICAR system label is shown

%	 in Figure 4-1.

4-2

1 2 3	 16 17	 24 25	 32 33 36
I D I	 I	 NL	 i	 NS	 1 NL 1 (___

37	 40 41 42 43 44 45	 70 71 72
NS ,	I P C 15	 P I	 1S lC__

All fields are EBCDIC characters. Undefined fields should be blanks.

ID - "77"• This label identifier distinguishes this new label format
from any previously in use.

NL - number of video lines (or logical data records, excluding the
entire label) in the image (data set), right justified,
in decimal.

NS - number of bytes in each video line (or logical record), right
justified, in decimal.

NL' - same as NL if less than 10000; otherwise all blanks.

NS' - same as NS if less than 10000; otherwise all blanks.

PC - pixel code; legal values are:

II bL" - unsigned binary integer
1151" - two's-complement signed binary integer
1116R" - single precision 360 floating point
1114C" - two single-precision floating point values (complex data)
1 !416" - (two blanks) - no implication about pixel format.

BP - number of bytes per sample, right justified, in decimal; or blanks.

S - "S"; identifies label as a "system label."

C - continuation character, "C" if more labels follow, "L" in the
last label.

Figure 4-1. VICAR Standard System Label

7
I

3

4-3

The label lines following the

specifications. Character 72
label: a "C" (EBCDIC) indica'

else (normally "L") indicates
a general category into which

scheme in Table 4-2.

system label conform to the following
is used to indicate continuation of the
r.es another label line follows, and anything
the last label. Character 71 indicates
the label line falls, according to the

Table 4-2• VICAR Label Line Categories

Character 71	 Type	 Notes

blank	 Any	 1,

	

S	 System	 2, 6

	

G	 History 1	 2, 3

	H 	 History	 1

	

k'	 parameters	 2

	

U	 User annotation (printed)	 1

	

A	 User annotation (not printed)

Program generated (character-)	 1

	

U	 Prograx generated (non-character) 	 4

	

Notes:	 1.	 The label line is normally printed when the label

is printed, unless it is the first label line.

2. The label line is normally not printed, but may be
printed by special program or program option.

3. History 2 contains a subset of the data in History 1.
history 1 may riot be present..

4. Label line should not be printed directly because
it may not be in character format.

5. Any label line could have a blank in character, 71.
but the correct non-blank character i s preferred.

6. The System label must be the first label line; the
first label line is assumed to be the System label,
regardless of character 71.

t

4-4

1
I

4.3	 DATA SET

The term "data set" is ambiguous in common usage associated
with VICAR; it has two distinct meanings. The first meaning is a "set
of data." This meaning includes the concept of image as previously
defined, as VICAR images are often referred to as VICAR data sets.
The second meaning refers to a storage place on a disk in which an image
can be stored. This section will further define the second of these
two concepts. In common usage the term data set is often used for
both meanings. The reader must infer from the context which meaning
is intended.

A data set is an area on a disk storage device allocated to
hold a single set of data. The data set is referenced by a name which
the user may specify. Names for data sets may be up to 44 characters
in length and must conform to rules specified in Ref. 2 in Section 2
as well as to any local installation rules.

Data sets are characterized by a block size and a record
length. The record length in bytes is selected by the VICAR user,
who must ensure that it is not less than the image line length for
each image to be stored. Since images on disk must nave a VICAR label,
the record length must not be less than 360 bytes, the length of a
V1CA. label record. The VICAR System will ensure that this requirement
is met. The data set block size must be an integral multiple (greater
than zero) of the record length. The user may allow the VICAR System
to select a block size, or he may specify one of his own. The block
size must be no greater than the track length for the specific type
of disk being used.

Data sets are allocated with a specific number of records
selected by the user. The number of records selected should equal
or exceed the number of label records plus the number of image lines
for each image to be stored in the data set.

4.4	 TAPE

A tape (magnetic tape) is a physical storage medium which
can st.o:e a number of separate images. Up to 999 images can be stored
on a tape for access by the VICAR System. Unlike separate images stored
on a disk, tape images are not referenced by unique names. Instead,
the entire tape is given a symbolic name and an individual image is
referenced by a unique file number indicating its sequential position

on the tape.	 A special record called an end-of-file (EOF) mark, or
tape mark, separates sequential images on the tape. The last image
on the tape is followed by two such EOF marks.

1 3ome syntactical forms in the VICAR language allow only 2-digit file
sequence numbers. However, there is always a way to process 3-digit
file sequence numbers.

4-5

Under VICAR a tape image can be processed in two ways:
either by first copying it to a disk data set, or by causing the applica-
tion program to read the image directly from the tape during processing.
Because of the sequential nature of tape images, only one tape image
at a time can be read from a given tape.

4,5	 PROGRAM PARAMETERS

Program parameters are, in a sense, another form of data
on which an application program operates. They are distinguished from
image data in two ways: by their function and by the way in which
they are usually passed to the application program under the VICAR
system. Functionally, program parameters are used to control the specific
way that an application program processes image data. Their usage
can be as varied as the application programmer wishes, but there are
two common uses. One is to select one of several "modes" in which
the program can operate. The other is to provide auxiliary numerical
data to be used in processing image data.

The second distinction of program parameters is that they
are usually written in the syntax of the VICAR language. They are
included by the user in his VICAR language "program" as a description
of the processing to be performed. This is in contrast to the image
data which is usually written by an application program or an outside
source; the user only describes to the VICAR system where to find image
data.

It should be noted that it is also possible for program
parameters to be written by an application program directly onto a
data set. The parameter data may even exhibit some attributes of a
VICAR image, including a fixed "line" length and a VICAR label. Only
a few application programs have been written to accept parameters in
this form. Specific programs with this capability can be found through
the program user guides. (A special program, PAR, in effect provides
this capability to any other program.)

4-6

SECTION 5

VICAR JOB SETUP

Syntax notation used in subsequent pages of this document
is as follows:

Braces i) indicate that a choice must be made from among
•	 the optional parameters indicated.

Brackets [] indicate that the field or subfield is optional.

Characters presented in upper case are required and must
be coded exactly as shown.

An ellipsis . . . indicates that additional parameters
(subfields) may be coded.

A VICAR job is normally initiated by submitting to the
computer a card deck containing the VICAR control statements and the
job control statements which cause the operating system to give control
to VICAR. The VICAR job has the following form.

//jobname	 JOB . . .
EXEC VICAR[,DISP=SHR]

VICAR control statements

Additional information on the job card is installation dependent. An
optional job termination card with // in columns 1-2 and blanks in
columns 3-72 may be used at the end. The optional parameter DISP=SHR,
if used, allows permanently allocated data sets to be processed by two
or more VICAR jobs concurrently. Normally, only reading of those data
sets should be done in such jobs. Example jobs may be found in Appen-
dix D.

The JCL statements are processed by the operating system
job control processor and invoke cataloged procedure VICAR. Section
3 gives a thorough discussion of the subsequent steps that occur in
a VICAR job.

5-1

SECTION 6

VICAR CONTROL STATEMENTS

This section constitutes the core of this document. It

describes in detail the syntax and usage of each type of VICAR control
statement.

.

	

	 Due primarily to the implementation of the VICAR system,
there are two broad classes of VICAR control statements: standard
statements and preprocessor statements. These statements may be freely
intermixed as described subsequently. However, it is convenient to

describe them separately. Therefore, sections 6.1 to 6.3 describe
the standard statements, while sections 6.4 and 6.5 describe the pre-
processor statements.

	

6.1	 STANDARD CONTROL STATEMENT FORMAT

VICAR control statements are designed for an 80-column
punched card format. Statements may start in column 1 and cannot extend
past column 71. Except for a few statement types, statements may be
continued to another card by placing any non-blank character in column
72, or by making the last non-blank character before column 72 a percent
sign (%). Up to 15 continuation cards may be used for each statement.

Each statement contains from one to seven fields. Fields
are separated by commas. A field consists of one to ten subfields.
Subfields are also separated by commas. If a field includes more than
one subfield, the field must be enclosed in parentheses. Parentheses
are optional if the field consists of only a single subfield. Except
where explicitly specified, subfields are limited to eight characters.

In general, blank characters are ignored except where otherwise indicated.

Certain statements permit a field or fields to be defaulted
(not coded). If there are additional fields to follow, the defaulted
field must be indicated by coding a comma.

	

6.2	 STANDARD CONTROL STATEMENT FUNCTIONS

A list of the control statements and a brief description
of their function follows.

(1)	 RESERVE,BLOCK,A,B
	

Reserve temporary direct
access storage (data sets).

U	
(2)	 SAVE,CATLG
	

Reserve permanent data sets
for use in a subsequent ,job.

(3)	 FIND,RELEASE
	

Access data sets created
in a previous ,job.

6-1

(4) READ,PREAD,WRITE Specify device and data formats
PWRITE,TAPE,PTAPE for tapes.

(5) EXEC,E Specify task, input and output
data sets and required parameters.

(6) PARAMS,P Define a symbolic name for a set
of parameters.

(7) LABEL,L,RELABEL,R Specify label lines to be added
to an output data set.

(8) NOTE Print a message on the output listing,
and control certain VICAR functions.

(9) END Indicate the last control
statement for a job step.

(10) TIME Set a limit on job CPU time.

(11) REGION Set a limit on job main storage
utilization.

(12) NOLIST Suppress listing input statements
on second (X) job.

6.3	 CONTROL STATEMENT SPECIF'ICAfIONS

The following specifications define control statement field
and subfield requirements. Refer to the examples in Appendix D to
clarify the following explanations.

6.3.1	 RESERVE, BLOCK, A, B

The RESERVE control statement is used to allocate temporary

disk storage space (data sets). A temporary data set, is automatically
deleted at the end of the job step.

Operation
No.	 of

data sets Length
No. of

records Volume ID
lla`,a	 set.

names

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

NESENVF;

BLOCK (, (name 1,
A ,n ,(rl	 (,b1]) ,nr ,[volidJ name2 r 	.	 .)J
B

6-2

rr i^.
	 .-A

RESERVE or BLOCK or A or B. All are
equivalent.

II is an integer from 1 to 9 specifying
the number of data seta to be allocated.

1:1 is the record length (bytes per line).
If r1 is less than 360, a value of 360
is used to accommodate labels. No image
to be stored in the data sets allocated
may have a line length exceeding r1.
kJ is the block length. U may be omitted,
in which case VICAR will use either the
largest multiple of r1 not exceeding
6447, or rl if it is already greater.

= is the number of records to be alloca-

ted in each data set. Sufficient records
for data plus labels should be included.

volid is the volume serial number of a

disk pack, for example, IPLSYS. Alter-
natively, an asterisk or null field may
be coded, in which case the operating
system will assign a volume from the
public SYSDA device pool.

name1 name?.. . . are names to be assigned
to the allocated data sets. The names may

be from one to eight characters in length.
The first character must be alphabetic.
Names may be omitted for any or all data

sets. Unnamed data sets will be used
by VICAR when undefined names appear

in subsequent EXEC statements.

is thought of as a place where an image can be

.located, a data set is "empty." An image is
by an application program as the result of an

UEC statement. wnen an image is stored in a data set which already
contains an image, the new image replaces the old image and the old
image is lost. A temporary data set is automatically deleted at the

end of the job step.

The user's main concern when allocating a data set is its
size (number of records and number of bytes/record). The user must
know the sizes of the images with which he is working. Any image which
is stored in a data set should not exceed the size of the data set.
The required number of records is the number of data lines plus the
label records. If the user tries to store an image in a data set which
is too small, the job will usually oe aborted. If only the number of

records is too small, the operating system attem ;ts to allocate additional

6-3

a
i

ie.

disk space for the data set equal to 20% of the original number of
records. If the attempt is successful, the ,job continues, but may
be using disk space wastefully.

Normally the user does not specify the data set block size,
but allows VICAR to calculate it. However, he should be aware that,
usually, the larger the block size, the more main storage is required
by the programs that process the data set. At the same time, the larger
the block size, the lower the overall execution time for the processing
programs.

6.3.1.1	 LLARRIU

(1) RESERVE,5,1024,500,SPOOLl

This statement allocates five data sets on disk volume
SPOOLI. Each data set will consist of 500 records of 1024 bytes each.
Optional names have not been specified and the system will therefore
assume that these data sets are scratch and available for assignment
by VICAR if required.

(2) A,3,(600,7200),70O,•,(A,B,C)

This statement will reserve three data sets on disk volumes
assigned by the operating system. Each data set will consist of 700
records of 600 bytes each. The records will be grouped into blocks
of 7200 bytes each. The data sets will be named A, B and C. The explicit
assignment of optional names will cause the system to treat these data
sets differently than the scratch data sets in the previous example.
To modify a named data set, the programmer must specify the data set
name in the output data set field (field 4) of an EXEC control statement.

(3) B,2,1024,1024,IPL304,(X04,Y07)

This statement will reserve two data sets an disk volume
IPL304. The data sets will be named X04 and Y07. The names consist
of the tape names X and Y with a two-digit file sequence number appended
thereto. Again, the system will treat these data sets differently
than scratch data sets. If a tape-file name is specified in the input
data set field (field 3) of an EXEC control statement, the system will
generate a utility task to copy the specified tape-file into the reserved
data set, where it will remain for the remainder of the ,job.

6.3.2	 SAVE and CATLG

The SAVE and CATLG statements are used to allocate permanent
disk storage space (data sets). They differ only in how data set cataloging

` •	 is handled.

6-4

,/ f

'mac	 ,,:s-:::z;	 _-•,--.:;T	 ..__:.--.r"-^-.r;_..^^.-.,^.-.-...; .r az--rx	 --r:--.;,'4^„_	,,.S..;rsr°..-.—rzs'^='+^,^s-_.,--^---^,'F-*v"'^.:^a5'x".,	 ..;.f..^._+ r

No. of No. of
Operation data sets Length records Volume ID

Field 1 Field 2 Field 3 Field 4 Field 5

SAVE
CATLG .n ,(rl	 [,bl]) ,nr ,[volid]

Data set Temporary
names file names

Field 6 Field 7

,[(dsnamel, ,[(fnamel,

d3name2,.	 .	 .)] fname2,.	 .	 .)]

It

Field

1

Content

SAVE or CATLG.	 They are not equivalent.

2 A is an integer from 1 to 9 specifying
the number of data sets to be allocated.

3 ZI is the record length (bytes per line).

4 = is the number of records to be allocated
in each data set.	 Sufficient records
for labels must be included.

5 volid is the volume serial number of a
disk pack, for example, IPLSYS. 	 Alter-
natively, the field may be an asterisk or
empty, in which case the operating system
will assign a volume from the storage
SYSDA pool, and the data set will be
entered in the operating system catalog.

6-5

	

6	 danameI - damaL. . . are names to be
assigned to the allocated data sets. A
name may be from onm to forty-four char-
acters in length if a file name is given
and one to eight characters if it is not.
Permanent data set names should oonform
to installation and operating system
rules.

	

7	 fgamel, JA&W, . . . are temporary file
names associated with the data sets named
in field 6. The file name is optional,
unless the corresponding data set name
exceeds eight characters. The file name
must begin with an alphabetic character
and must not exceed eight characters.

A permanent data set is used similarly to a temporary data
set, except that when the job step terminates it is not deleted. It may
be accessed in a subsequent job or job step by using the FIND or RELEASE
statement. A permanent data set will remain available to VICAR jobs until
processed by the RELEASE statement or deleted by non-VICAR methods.

The concept of the file name allows processing of data sets
whose names exceed eight characters. The file name is a short, temporary
name assigned to a data set for the duration of the fob step. The name by
which a data set is referenced in an EXEC statement cannot exceed eight
characters, but in a large multi-user environment, longer names are often
needed. Therefore, the file name when defined is used for reference in
the EXEC statement. (This use of the term "file" should not be confused
with the concept of a tape file.)

SAVE and CATLG are very similar; they differ only in the way
use is made of the system catalog. They are identical if a volume serial
number is omitted from field 5. The operating system selects a volume,
and it is entered in the catalog with the data set name. If the volume
serial number is specified, the SAVE statement does = cause it to be
cataloged; references in subsequent jo*n or job steps then require
respeeifieation of the volume serial number. CATLG always causes the
data set to be cataloged regardless of whether the volume serial number
is specified. Use of the system catalog relieves the user of the burden
of remembering and specifying the volume serial numbers of his permanent
data sets.

6.3.2.1	 EXARRI a

	(1)	 SAVE,3,600,700,IPL302,(A,B,C)

The above statement will reserve three data sets, named A,
B, and C, on disk volume IPL302. All three data sets will be preserved
for use in a subsequent job.

6-6

(2) SAVE,1,(1000,7000),800,e,JM5.G1

The above statement will allocate a permanent data not
named JM3.G1 on a storage disk in the SYSDA pool. The data set will
be cataloged in the operating system catalog. The data set will have
800 records of 1000 bytes each. There will be seven records per physical
block.

(3) CATLG,1,512,512 „ JQP5I.TSAVE.DATA3,A

The above statement allocates a permanent data set named
JQP5I.TSAVE.DATA3 on a storage disk in the SYSDA pool. The data set
will be cataloged in the operating system catalog. The data set will
have 512 records of 512 bytes each. The data set must be referred
to by the name A in EXEC statements.

(4) CATLG,3,1000,1000,JPL008,(JQP.Ml,JQP.M2,JQP.M3),(A,B,C)

The above statemen . allocates three permanent data sets on
the disk named JPL008. They o.11 be cataloged in the system catalog with
names JQP.M1, JQP.M2, and JQP-M3. Within the current VICAR fob step they
will be referred to as A, B, and C, respectively, in EXEC statements.
Even though the names in field 6 do not exceed eight characters, file
names may still be defined in field 7. In this case, only the file names
may be used in EXEC statements even though the data set names do not
exceed eight characters.

6.3.3	 FIND and RELEASE

The FIND and RELEASE control statements are used to access
a disk data set created in a previous job or fob step. They are required
In order to refer to the data set in an EXEC statement.

Operation Data set names and volume IDs Temporary file names

Field 1 Field 2 Field 3

FIND
RELEASE ,(danamel, volt,	 dsname2,	 vol2,.	 .) [,(fnamel,fname2,.

6-7

FIND or RELEASE. They are not equivalent.

2	 Amu 1, volt , Agan:2, y=# . . . are
up to five pairs of data set naves and vol-
ume serial numbers. The name is identical
to the name specified when the data set
was allocated. The volume serial number
Is that of the disk containing the data
set. Alternatively, the volume serial
number may be entered as an asterisk
or omitted if the data set is entered
In the operating system catalog.

3	 nMel,.tana,. . . are up to five temporary
file names associated with the data sets
named in field 2. The file name is optional,
unless the corresponding data set name
exceeds eight characters. The file name
must begin with an alphabetic character
and must not exceed eight characters.

As with the SAYE and CATLG statement, the file name is
a short, temporary name assigned to a data set for the duration of
the fob step. The file name, required for a data set whose name exceeds
eight characters, is used to refer to the data set in EXEC statements.
Note that a file name may be required even if it is never referenced,
as when deleting data sets whose names exceed eight characters.

The effects of FIND and RELEASE are almost identical.
RELEASE causes the data set to be deleted at the end of the job step;
FIND causes it to be retained. Use of RELEASE to do processing and
deletion in the same Job step is obviously dangerous since the processing
may fail and the data set deletion would prevent the fob from being
rerun.

When using FIND or RELEASE on a cataloged data set, the
catalog will be ignored if the volume is specified in the statement.
With RELEASE, the catalog entry will not be deleted if the volume is
specified. It is, therefore, recommended that the volume not be specified
with RELEASE when the data set is cataloged.

6.3.3.1	 A&ML21U

(1)	 FIND,(A,IPLSYS,JMS.Gt,e)

`-

	

	 Data set A on disk volume IPLSYS and cataloged data set
JMS.G1 are assumed to have been created in a previous fob. The above
statement will cause the system to access then data sets and will
enable the user to reference the data sets in hnEC statements by their
actual names.

6-8

(2) RELEA3E,(A,IPLSY3,C,IPLSYS)

The above statement will cause the system to access data
sets A and U on disk volume IF'"M"S and will enable the user to reference
the data sets in EXEC statements by their actual names. The data sets
will be deleted at the end of the job.

(3) FIND,(JBS.M1,e,JB3.M2,e,Jb3.M3,4),(X1,X2,X3)

This statement will make available the three data setr.
JBS51.M1, JBS51.M2, and JBS51.M3. All the data sets are catalogc,t
in the system catalog so they can be located automatically. They will
be referred to by the names X1, X2, and X3 in EXEC statements.

(4) RELEASE, JBS5I.TSAVE.DATA3,X

This statement makes available the data set JBS5I.TSAVE.DATA3
which is cataloged in the system catalog. This data set and its catalog
entry will be deleted at the end of the current job step. The data
set must be referred to by the name X in any EXEC statemente	 ch
appear in the step. Even if it is not referenced in an EXEC 	 tement,
the name in field 3 is still required because the data set nay.. in
field 2 exceeds eight characters.

6.3.4	 READ, PHEAD, WHITE, ?WHITE, TAPE, and PTAPE

Une of these statements must be included for each tape drive
to be used in the job step, whether for reading, writing, or temporary
storage. The statement specifies the attributes of tapes to be used on
the erive, and assigns a symbolic name for reference in EXEC statements.

Operation
Symbolic
dovice
name

I
Tape ID and

data set names

Symbolic
tape
name

Format
code

Blocking
data

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

READ ,dev ,(volser,namal, tname ,fmt [,(rl[,bl])]
DREAD name2,.	 .)
WHITE
PWRITE
TAPE

j

PTAPE

6-9

^.:_^,;^,^.^	 ..-7^'T7°4^^-Ra.ems-n^°`^"^4a^►T^'^'^"^'-:.; ^.F'?^n-
	 -^;.^. ,..., m^	 .,	 _

1

1	 READ, PREAD, WRITE, PWRITE, TAPE, or
PTAPE. They are not all equivalent.

2	 An should normally be an asterisk or
omitted, causing a unique tape drive to
be assigned to the tape. By entering the
same symbolic name of up to eight characters
for two or more such statements, the same
physical tape drive can be assigned to
several tapes.

3	 yolser is the volume serial number of
the actual magnetic tape reel desired.
It can be up to six alphanumeric characters.
This name will appear in a message to
the computer operator instructing him
to mount the tape.

namel, name2, . . . are optional names
of data sets that are specified in field
4 of EXEC control statements, and are
copied to the output tape following execu-
tion of the program named in the EXEC
statement. This feature does not apply
to READ and HEAD.

4	 name is a symbolic name assigned to
the input tape. It may be from one to
six characters in length and the ficst
character must be alphabetic. This name
is used in EXEC statements to refer to
the tape.

5	 = is a one- or two-character format code
which specifies the data format of the
tape. The valid codes are listed in
Appendix A. If field 5 is omitted, the
system will assign a default format code.

6 This field is used for blocked tapes and
for unblocked tapes whose records exceed
7200 bytes. ml is the record length and
bl is the block length, specified in
bytes. If 11 is omitted, it is assumed
to be equal to Z,. If both are omitted,
a default value of 7200 is assumed for
both. If the assumed or specified values
of 1:1 and." are equal, they will be
treated as upper limits for the actual
size. (Some application programs may
be written to ignore the values in this
field.)

6-10

, f .. .+ .r.^ ♦ i+.	 __ _-. x ..-	 .—m..^-^sa•.-,.,. m.,a .y<'v.v-.mow °+Y^rsTi""'^Y^'"^`^F''^ "'r# '.i'.` __	 _ _

I'

The total of tape specification statements (READ, etc.)
may not exceed an installation-defined limit.

All of the statements -- READ, PREAD, WRITE, PWRITE, TAPE,
and PTAPE -- are very similar and can usually be used interchangeably.
The differences are described below.

WRITE and TAPE are always equivalent; PWRITE and PTAPE
are always equivalent. The "P" prefix (PREAD, PWRITE, PTAPE) causes
the last tape used on the designated unit to be made available to the
next job step. The tape will not be unloaded from the tape drive when
the current job step ends. However, an appropriate tape definition
statement is still required in the next job step. Without the "P"
prefix (READ, WRITE, and TAPE), the tape is unloaded at the end of
the current job step, making the tape drive available to other jobs.
For jobs consisting of a single job step, PREAD and READ are equivalent,
PWRITE and WRITE are equivalent, and PTAPE and TAPE are equivalent.

The remaining differences are concerned with the VICAR
feature called "indirect tape input and output." The VICAR system
will "automatically" copy images from tape to disk and from disk to
tape if the user wishes. The user can take advantage of this feature
by appropriate specification on the tape description statement, and
on the EXEC statement. (The use of this feature at the Jet Propulsion
Laboratory is very low.)

To cause a tape image to be copied automatically to disk
the user must: (1) allocate a temporary disk data set which is either
unnamed, or has a name of the form "tnamexx" where "tname" is a symbolic
tape name appearing on a HEAD or PREAD statement and xx is a two digit
file sequence number; and, (2) specify an input data set name on an
EXEC statement in the form "tnamexx" or "tname/xyz" where "xyz" is a
file sequence number descriptor. (See the section on the EXEC statement
for more complete information on its syntax.)

To cause a disk image to be automatically copied to tape,
the user must enter the name of the data set containing the image into
field 3 of a WHITE, PWRITE, TAPE, or PTAPE statement. Each time the
data set name appears as an output data set on an EXEC statement, the
image written on the data set as a result of the EXEC statement is
automatically written onto the tape. The file sequence number depends
on the previous position of the tape, and must be inferred from the
previous sequence of processing steps. The format of the image is
converted to that specified on the WHITE (or equivalent) statement.

If field 2 is defaulted, a unique tape drive is automatically
assigned for the tape specified in field 3. For reasons of economy,
it is often desirable to "share" the use of a tape drive among several

y	 tapes. One method is to specify a unique symbolic name in field 2
of two or more tape-specification statements. This allows all tapes
with the same name in field 2 to use the same physical tape drive.
Tapes are then unloaded and mounted automatically as called for in
the processing tasks. This feature is particularly useful in job steps
which require use of a single tape drive for two or more tapes having

6-11

F

the jMg number of tracks, but different formats otherwise. By specifying
a different format code in field 5 and assigning the same symbolic name in
field 2, the user can assign one tape drive for all tapes. (However, the
user should be careful never to assign 7-track and 9-track tapes to the
same drive!)

The above method, while useful in certain situations, is not
economical in terms of time. A tape is not unloaded until a new tape is
called for in an EXEC statement, so processing must necessarily halt while
the new tape is mounted. To efficiently conserve elapsed time, the VICAR
program MOUNT should be used for sharing tape drives. A MOUNT task can
be specified immediately after the last use of a tape, allowing the
operator to mount the next tape while other processing steps are being
executed. This provides for the next tape to be ready when it is called
for in an EXEC statement. However, it should be noted that VMOUNT does
m& allow for any tape format changes.

Tape images may be blocked or unblocked. "Unblocked" means
that each data record is written on the tape as one physical block.
"Blocked" means that two or more records are combined and written together
on the tape as one physical block. The block is the smallest unit of data
the tape drive can read or write. Blocking tape data reduces the amount
of tape needed for storage, reduces the number of tape operations needed
to process an image, and can speed up processing. Under VICAR, the user
must describe the blocking information in field 6 of the tape specifica-
tion statement; otherwise VICAR assumes the tape is unblocked.

6.3.4.1	 Examples

(1) READ,*,SCR001,X,8F

The above statement will cause VICAR to access tape SCRO01 and
assign the symbolic name X to this tape. In addition, VICAR will record
the format of this tape as 8F.

(2) READ,7I,SAVEI,Y,8

READ,7I,SAVE2,Z,5A,(510,10400)

r	 The first statement above will cause VICAR to access tape
I

	

	 SAVE1 and amsi,gn the symbolic name Y to this tape. VICAR will record
the format of this tape as 8. The second statement will cause VICAR
to access tape SAVE2 and assign the symbolic name Z to this tape.
In addition, VICAR will record the format of this tape as 5A and will
record the record length of 510 bytes and a block size of 10400 bytes.
Since the same symbolic device name was used in field 2 of both state-
ments, the same physical tape drive will be used for both tapes. This,
of course, implies both tapes are not needed simultaneously for the
same task.

6-12

(3)	 WRITE,e,(IPSZ8I,C,D,E,F),Z,8F

This statement will cause VICAR to access tape IPSZ81 and
to assign the symbolic name Z to this tape. The system will record
the format of this tape as 8F. In addition, the data set names C,
D, E and F will cause VICAR to create a utility task to copy each of
these data sets to the output tape, whenever they appear in the output
data set field of an EXEC control statement.

(4)	 WRITE,e,(JBS005,AA,DD),Z,8F

EXEC,FILTER,(X/1-10),AA „ P1

The above EXEC control statement will create 10 tasks,
each of which will filter one frame. The output of each task will
be written in disk data set AA. Specification of the data set name
AA in the WRITE control statement will cause this data set to be written
on the output tape, JBS005, following each execution of the program
FILTER.

6.3.5	 EXEC, E

The EXEC control statement is used to specify a task or
a sequence of tasks. It is also used to specify the input and output
data sets as well as the parameters required for the specified tasks.

Operation
Program
name Input data sets

Field 1 Field 2 Field 3

EXEC) ,pname ,*
E ,namel

,(namel,name2,	 .)
,(tname/filesd,name2,name3.	 .	 .	 .)
,(e tname/filesd,name2,name3. 	 .	 .	 .)

Output data Sets Output size parameters

Field 4 Field 5

(sl,	 ss,	 nl,	 ns)
I(SL=sl,, e SS=ss, NL=n1, NS=ns)

,namel
,(namel,name2.	 .	 .	 .)

6-13

Optional parameters

Field 6

I,
	 U paraml, param2, . . .)]

1	 EXEC or E or *EXEC or •E.
The optional asterisk (0) in this field
indicates that the task specified is one of
a sequence of tasks in a "DO group," and is
not the last task in the sequence. See
below for a discussion of VICAR DO groups.

2	 2a= is the name of the program to execute.
The name is one to eight alphanumeric
characters, beginning with a letter. The
program must exist in the VICAR program
library. If the first character in the
program name is the character "V," automatic
label processing is suppressed and VICAR
will not write system or user labels on any
of the output data sets. In this case, the
program itself must write any required
system or user labels. Such programs are
normally used to process data sets or tapes
which are not in any of the standard formats.

3	 As shown, there are several optional com-
binations which may be used to define the
input data set field. The number and function
of the input data sets is program-dependent.
A maximum of 10 data sets may be specified.

The field may be omitted entirely, in which
case the primary output data set from the
last EXEC statement will be used as the
input data set.

A single asterisk is used to indicate that
the task has no input data sets.

name L, name?., . . . are names of data sets
or tapes or tape files to be used as input
images for the task. The format for each
is dgaAMI or fnamg or fig, or tnamgxx or
• tnamexx, whera _dAa= is the actual name
of a disk data set, fnamg is the file name
of a disk data set if defined, tpa@ is
the symbolic name of a tape, and xx is a

6-14

i
t.

two-digit file sequence number. If the
format is tname, VICAR will use the next
sequential file following the last one pro-
cessed on that tape, or 1 if the tape has
not been used. The application program will
read the image directly from the tape. In
that case, the tape format musL be logically
equivalent to the standard VICAR format
(5,6,8, or g). If the format is JDAMM,
VICAR will generate a utility task to copy
the tape image to disk and convert the
format as necessary. The user must allocate
a temporary disk data set with no name, or
with the name tnam@gg; otherwise the ,job
will fail. If the format is • tnamexx, the
tape will be positioned to file AL; the
application program will read the image data
directly from tape. Again, the tape format
must include standard VICAR labels.

tname/filesd is a tape name followed by a
slash and a file sequence descriptor. The
file sequence descriptor consists of one
or more file sequences separated by commas,
of the form A" or xxx-vvv where xxx and yyy
are positive decimal numbers of one to three
digits each. A single number specifies a
single file; two numbers separated by a hyphen
specify a continuous sequence of files.
Several individual files and/or ranges may
be specified separated by commas. When more
than one file is specified, a "DO group" is
implied (see the explanation below). As with
the format for tname&g, a preceding asterisk
implies the tape is read directly by the
application task; absence of an asterisk
implies indirect input, requiring an
unnamed data set to be allocated.

4	 A single asterisk is used to indicate that
the task has no output data sets.

ngmel,name2, .	 are up to four disk
data set names, file names, or tape names
to be used for program output. The number
and function of the data sets is program
dependent. Tape file numbers may not be
specified for output tapes.

This field may be defaulted completely, in
which case VICAR assigns a single output data
set from among the unnamed data sets allocated.
If there are none available, the ,job will fail.

6-15

P

5	 (sl.as.nl ,ns) The output size parameters are
optional. If this option is used, all four
parameters must be coded as shown. Each
parameter is s positive integer from 1 to 99999.

(SLzAl,SS=sA.NL:nl,NS=ns) The size parameters
may also be specified in keyword format,
as shown. When keywords are used, any or
all four parameters may be coded, and the
order is of no significance.

a and A& are, respectively, the number of
data records (image lines) and the number
of bytes/record to be processed from the
input data set. joil and A& are, respectively,
the starting data record and starting byte
in the input picture at which processing
is to begin. These parameters allow the
user to specify that a rectangular subsegment
of the input image is to be processed.
In general, it is advised that the user
specify = if A& has been specified and
ml if 11 has been specified. The exact
interpretation of these parameters is deter-
mined by the application program, and may
differ from that given here.

When size field parameters are defaulted,
values for 11 and AM of 1 will be assumed,
and values for ILI and IA will be assigned
equal to the values of these parameters
in the primary input data set system label.
In this way, the output data set will be
equal in size to the input data set.

6	 2araml.,°aram2, . . . are names of parameter
sets as defined in PARAMS control statements.
Optionally, they may be any of the types of
parameters permitted on parameter statements,
providing that each individual parameter
is equal to or less than eight characters.
Parentheses may be omitted if a single
parameter or parameter set name is used.
Since the maximum number of subfields
within a field is limited, if the desired
number of parameters exceeds 10, one
or more parameter sets delimited by a
PARAMS control statement must be used.

Each program has unique requirements for the parameters which
may or must be specified, as well as the number of input and output data
sets and their content. Programs may have restrictions on the size of
pictures which can be processed. This information must be obtained from
the user guide for the individual program.

6-16

	

6.3.5.1	 EXAMD"A

(1) EXEC,GEN,*,AA,(NL:3000NSz400)

This statement will generate a single task using the program
GEN. The asterisk in the input data set field (field 3) specifies that
the task has no input data sets. The output data set is named AA and
the size is specified as 400 samples by 300 lines. (The default sample
size for GEN, as for most VICAR programs, is one byte.)

(2) EXEC,LIST,AA,* „ PLIST

This statement again will generate a single task using the
program LIST. The asterisk in the output data set field (field 4) speci-
fies that the task has no tape or disk output data sets.

(3) EXEC,PICAVE,(A,B,C;,AA

This statement will also generate a single task using the
program PICAVE. The task will have three parallel input data sets, A,
B, and C. The output data set is AA. Data set A (the first data set
in the input data set field), is the primary input data set. The system
will copy the labels from the primary input data set A to the output
data set AA, while adding a "history label" containing the program
name, PICAVE.

(4) EXEC,STRETCH,A,B „(LINEAR,60,225)

The above statement shows how the user may include parameters
in field 6 of the EXEC control statement. In this case, the restriction
is that the field may contain up to 10 subfields separated by commas,
and each subfield may contain a maximum of eight characters.

	

6.3.5.2	 DO GROUP. The VICAR DO group provides a way of repetitively
executing a fixed sequence of VICAR tasks, using a different input tape
file each time the sequence is repeated. This capability is useful when
the input data to be processed exists as multiple files on a single tape,
and when all processing steps are identical, including data set names and
program parameters. A more advanced iterative capability described later
employs the preprocessor procedure capability and the library procedure, DO.

The first statement of a VICAR DO group must be an EXEC statement
whose first input data set name is of the form tname/filead or *tnama/filead.
The file sequence descriptor, f1j, lists the file numbers from the input
tape to be processed. Each time the statements of the DO group are executed,
the next file in sequence is used as the first input data set for the first
task. The file sequence descriptor is a single file number, or a contiguous
set of numbers from AM to y.U, written as "xxx-yyy," or any combination of
these forms separated by commas. (Non-monotonically-increasing sequences
cause inefficient motion of the input tape). The complexity of the file se-
quence descriptor is limited by the VICAR restriction of 10 subfields to a
field, and the fact that each comma and slash within a subfield is treated as
a subfield separator. File numbers may have from one to three digits each.

6-17

The list of tasks which form part of the VICAR DO group
is denoted by preceding each EXEC statement in the group except the
1 ,%j with an asterisk. A DO group may consist of a single statement,
in which case the leading asterisk is not used at all.

6.3.5.3	 UNUalu

(1) READ,O,XYZABC,X,8F

A,2,1000,1000,e,A

EXEC,FILTER,(X/1-5,7-10,13),A „WEIGHTS

The above statements will generate ten tasks using the program
FILTER. The input data sets for the tasks will be files 1 through 5, files
7 through 10, and file 13, all from tape XYZABC. In general, the above con-
figuration is employed with tape files. As shown, a READ control statement
with the tape name X is required. VICAR will also automatically generate
a utility task prior to each FILTR task. This utility task will copy the
specified tape file to disk, performing the necessary format conversion.

The programmer must reserve disk data sets which the system
can use. For the above example, the programmer has reserved one scratch
(unnamed) data set which will be reused by the system. Another alterna-
tive would be to reserve named data sets with names matching the above
files (i.e., X01, X02, X03, etc.). The system will always direct the
utility task output to an appropriately named data set, if available.

(2) READ,O,SCR001,X

READ,#,SCR002,Y

B,2,500,1000,e,A

EXEC,ICOR,(eY/1-20,XO3),A „ ICORPAR

The above statements will generate 20 tasks using the program
ICOR. The asterisk preceding the tapename Y indicates the direct tape
input option. VICAR will assign the primary input data set for the ICOR
program to tape SCR002. On the other hand, the secondary input data set
(tape file X03) is not preceded by an asterisk. The system will, therefore,
generate a utility task to copy file 3 from tape SCRO01 into a disk data
set using one of the data sets allocated in the "B" statement. Once this
file is on disk, it will then be available for each of the 20 ICOR tasks.

To use a tape file directly, without copying it to disk, its
format must be exactly equivalent to that of a disk file. As shown above,
the formats on the READ control statements have been defaulted. Assuming
the default format is equivalent to the disk format, it would have been
possible to include an asterisk prior to X03 in the input data set field.
However, considering the tape rewind time, it might be preferable to have
the secondary input file X03 on disk, since it is used in each of the 20
ICOR executions.

6-18

6.3.6	 PARAMS,P

The PARAMS control statement is used to define a symbolic name
for a set of parameters.

Parameter
Operation set name

Field 1 Field 2

PARAMS) , psname
II	 P

1	 PARAMS or P

2

	

	 21W= is a symbolic parameter set name of
from one to eight characters.

The parameters to be included in the parameter set being de-
fined are listed on one or more parameter statements immediately following
the associated PARAMS statement. The parameter statements are terminated
by the appearance of another VICAR control statement of any type.

Parameters may start in column 1 and cannot extend past column
71. Blanks or commas are used as separators between parameters. Blanks
and commas may be used in literal parameters which are enclosed between
apostrophes. Parameters may be continued on as many cards as required.
12 continuation character should be used in column 72. A parameter cannot
be split between cards. Parameter may be integer, real, alphanumeric,
hexadecimal, or literal, as listed:

Integer Parameters - Positive and negative integer parameters
may consist of an optional sign digit and up to seven decimal
digits.

Real Parameters - Positive and negative real parameters
may be represented in the format

t n 1 n2 --- nm . n --- nr 4e1%

(e 1 and e2 are both required)

or

:L n 1 n2 --- nm . n --- nr

where n 1 through nr , e 1 and e2 are decimal digits, and
^Lete2 represents the power of 10 by which the number is
to be multiplied.

6-19

glnhanumerig Parameters - A parameter containing one or
more alphabetic characters is padded with blank& on the
right, or truncated, to exactly eight characters.

gexadecim 1 parameters - They are represented by an X and
one to eight hexadecimal digits enclosed within apostrophes.
The parameter is stored in a four-byte field padded with
zeros on the left if less than eight digits.

Literal Parameters - A character string of any length up
to 69, including numbers, blanks, and special characters,
may be enclosed within apostrophes. The character string,
less apostrophes, will be padded on the right if necessary
to a length which is a multiple of four.

One or more symbolic parameter set names may be included in
field 6 of the EXEC control statement. In this case, the symbolic name
must be specified in a PARAMS control statement followed by a number of
parameter records. The system will incorporate the specified parameter
sets into the task queue.

6.3.6.1	 LUX21A

PARAMS,P2
TRANS,55: 666 777 SCALE 989.05
PARAMS,P4
'THIS IS A SPECIAL TITLE FOR A SPECIAL TASK', 42
EXEC,PROGA,A,B „(P2,P4)

As shown, two parameter sets, P2 and P4 are specified in the
above EYEC control statement. The parameters will be presented to the
program in the order specified, P2 followed by P4.

6.3.7	 LABEL,L,RELABEL,R

The LABEL control statement is used to add a label line of arbi-
trary text up to 68 characters to the output data sets of an EXEC statement.
The RELABEL statement has the same effect except that all previous labels
are deleted (except the system label). Either statement fUllows the EXEC
statement to which it applies. In the case of a DO group, only the first
EXEC statement can be followed by LABEL or RELABEL statements.

6-20

Operation
Data

set name Text

Field 1 Field 2 Field 3

LABEL , text
L name

,[I #	
1^

RELABEL
R

LABEL or L, RELABEL, or R. L is equivalent
to LABEL; R is equivalent to RELABEL.

	

2
	

ZM is a one to eight character symbolic
name which is used to add more than one
label line to a specific data set.

A single asterisk U used to indicate
that the label line is to be added to
the output data sets for each iteration
in a DO group.

	

3	 text may consist of from one to 6b charac-
ters. Text may not extend beyond column
71. LABEL and RELABEL control statements
cannot be continued, but ma; be repeated.

In the case of a DO group, only the first EXEC statement of
the group may be followed by LABEL or RELABEL statements. If an asterisk
appears in field 2, the labels are applied to the output images for each
iteration of the DO group. If no asterisk appears, the first LABEL or
RELABEL following the EXEC is used on the first iteration, the second
LABEL or RELABEL on the second iteration, and so forth until all have
been used or the number of iterations apwcified is completed.

6.3.7.1	 Exam2les

	

(1)	 E,SAR,A,B

L,1, THIS IS LINE 1 OF MY TITLE
L,1, THIS IS LINE 2 OF MY TITLE
L,1, THIS IS LINE 3

In this example, 3 lines of text are added to the history

label of data set A as it is written out on data set B. If the user
had wished to center the title he covid precede each line with blanks,

as in the next example.

6-21

(2)	 E,SAR,A,B
R,1, THIS IS LINE 1 OF MY TITLE WHICH
P,1, I WISH TO CONTINUE ON TO LINE 2.

In this case, the previous history labels of data set A will
be replaced by the lines of text specificed in the RELABEL statements.

6.3.9	 NOTE

The NOTE control statement is used to print a message on the
output listing. It is also used to control certain VICAR functions.

Operation Text

Field 1 Field 2

NOTE ,text

1	 NOTE

2	 tALL may consist of one to 64 characters.

Certain text strings are significant to the VICAR system,
as follows:

NOTE, CONTINUE causes the system to continue executing tasks,
even if a subsequent task term inatoa abnormally.

NOTE, ABORT causes the ,job to be terminated if a subsequent
task terminates abnormally.

NOTE, ABORT and NOTE, CONTINUE may be inserted anywhere and
repeated as necessary in the sequence of EXEC statements to control VICAR
response to abnormal task terminations. At the beginning of the ,job,
ABORT is in effect.

NOTE, WTO caU3e3 a message to be displayed to the computer
operator at the beginning of each task. The message includes the program
and ,job names. This feature allows a user to follow the progress of
a VICAR job in execution if he has access to a system console.

NOTE, PLAB allows program parameters and the "C" "'story label
to be inserted into the VICAR label. NOTE, NOBLAB is the	 and
inhibits the parameters and "G" label from being recorded in 	 a history
label. Either statement may be alternately specified at any pjint(s)

r	 in the sequence of EXEC statements in a VICAR ,job.

6-22

J

	

6.3.9	 END

The END control statement is used as a delimitier to terminate
a fob step. If the job consists of a single step, EWD may be omitted.

g	 Operation

f
Field 1

^s END

Field	 Contmat s

1	 END

	

6.3.10	 TIME

The TIME control statement is used to set the maximum CPU time
allowed for the second of the pair of VICAR fobs. This statement has meaning
only for operating systems with fob step timing. If no TIME statement
appears, an installation-defined default is assumed (see Appendix C).

Operation
Maximum
Time

Field 1 Field 2

TIML ,time

Zield	 Contents

1	 TIME

2	 TIME is an integer giving the numoer
of minutes set as the time limit for
the second VICAR fob. In systems with
job step timing, the job will be aborted
(ABEND code S322) after this interval.

6.3.11	 REGION

The REGION control statement is used to set the size of the
region of main storage to be used by the second of the pair of VICAR jobs.
The effect of exceeding the specified region depends on the version of
the operating system in use. In MVT systems, the fob will be aborted.
If no REGION statement appears, an installation-defined default is
assumed.

6-23

'aV

•9

Maximum
Operation	 Time

Field 1	 Field 2

REGION	 ,size

Field 	 C n_g tents
	

1

1	 REGION

2	 ,fig is the requested region size in
units of 1024 bytes, specified as an
integer followed by the letter K. If
the requested size is an odd number,
the next higher even number is used.

6.3.11.1	 Example

REGION,250K

6.3.12	 NOLIST

This statement suppresses the listing of the VICAR input
statements on the second ,job ("X" ,job).

Operation

Field 1

NOLIST

Feld	 Contents

1	 NOLIST

6.4 preorocessor Statementsemerts (EVIL)

Preprocessor statements are those which are detected and pro-
cessed by the preprocessor step of the VICAR procedure. There is little
significance to the separate processing except that implementation is sim-
plified. However, the general syntax rules of the preprocessor statements
are not always the same as for standard statements so they are described
separately. Preprocessor statements use all 80 columns of the card or
card image. Blanks generally are significant except for trailing blanks.

For historical reasons, the preprocessor is sometimes called
EVIL, and preprocessor statements are called EVIL statements.

6-24

The preprocessor statements constitute a general macro
capability within VICAR. This capability has found a great deal of
use in repetitive processing of large amounts of data using similar
or identical algorithms.

•	 6.4.1	 DEFINED

The DEFINE control statement introduces a body of VICAR
•	 control statements which are to constitute a procedure or macro. The

statement names the procedure, and defines zero or more substitutable
character-string arguments. The body of the procedure consists of any
number of VICAR statements following the DEFINE statement. The procedure
definition is terminated uy an END statement or another DEFINE statement.
Therefore, END or DEFINE statements may not appear in the procedure body.
Except for the search for another DEFINE or END statement, the procedure
body is not scanned for validity at the time it is defined. Thus, text
which would not constitute a valid VICAR statement may appear in a procedure.

Uperation Procedure name Argument Argument

Field 1 Field 2 Field 3 Field 4

(
DEFINE)

1)
,procname [,argumentl] [,argument2]

1	 DEFINE or D

2	 2r2cname is the name of the procedure being
defined. Any character string is valid.

3,4. . .	 argumentl , araument2, . . . are any number
of character string arguments. Each argument
should appear in the body of the procedure,
and will be replaced by a character string
parameter in a subsequent CALL statement.

6.4.2	 END

The END control statement is used as a delimiter to terminate
a procedure definition.

Operation

Field 1

END

6-25

J

I	 END

This statement is syntactically identical to the END statement

which terminates a VICAR job step definition. The effect of an END
statement depends on whether a procedure is being defined.

6.4.3	 CALL,C

The CALL statement is used to invoke a procedure which
has been previously defined using the DEFINE statement. All statements
from %he procedure body will be copied into the job stream, and sub-
sti`4tions of character-string parameters will be made. CALL statements
may be nested and recursive.

Operation Procedure name Parameter Parameter

Field 1 Field 2 Field 3 Field 4

^
CALLI
C

,procname [,parameterl] [,parameter2]

Contents

CALL or C

2 procname is the name of a procedure which
must be previously defined. However, the
effect of invoking an undefined procedure

is specifically defined to be null. No

error messages are given in this event.

3,4. . .	 parameterl, parameter 2,. . . are character
string parameters which are to be substituted
for corresponding arguments in the DEFINE
statement. That is, parameterl is substituted
for argumentl, paramgter2 is substituted for
argument2, etc. If the number of parameters
does not match the number of arguments,
excess parameters will be ignored, while
missing parameters will be assumed to have
null value. Virtually any character string
not containing a comma is a valid parameter.
Parameter strings are delimited by the sur-
roundinf commas, and may therefore contain
leading, trailing or embedded blanks, except
that the last one may not have trailing
blanks. Null strings are valid parameters.

6-26

6.4.4	 GET,G

The GET control statement is used to access one or more
sequences of statements stored on the VICAR procedure library. These
stored sequences normally, but need not, consist of one or more procedures
headed by DEFINE statements. It is important to understand that the
GET statement does not invoke a procedure; it merely retrieves text
from the library. A subsequent CALL statement must be used to invoke
a procedure which is retrieved by a GET statement. It is also important
to understand that the name under which the text is stored in the library
is normally, but need not be, the same as the name of the procedure
which the text defines. See Section 7 for a description of how to
store procedures in the library.

Operation Text name Text name

Field 1 Field 2 Field 3

GET
G

,textnamel [,textname2]

GET or G

2,3,.	 tg;jtname1.textname2,. . . are names of text
files in the VICAR procedure library.
Normally the text name is the same as the
name of the procedure defined in the text.
Each textname must have been previously
stored in the library.

6.5	 USE OF PREPROCESSOR STATEMENTS

The following subsections provide examples of the use of the
preprocessor statements DEFINE, CALL and GET. Use of the DO library
procedure is introduced and examples are provided.

6.5.1	 The DEFINE Control Statement

The user may include DEFINE control statements to introduce
and name a procedure, or macro, consisting of any VICAR statements except
DEFINE and END. The DEFINE statement may also list character string
parameters which are to be replaced when the procedure is invoked by a
subsequent CALL statement. Procedure definitions must precede procedural
invocation. Once defined, the procedure definition is effective until
redefinition of the same procedure name in another DEFINE statement, or
until the end of the ,job.

6-27

6.5.1.1	 Example

D,STRCLIP,FILE,BITS
E,SAR,(eX /FILE),A
E,STkETCH,A,B„(CLIP,BITS)
D,STRLIN,LOWDN,HIDN,NLX,NSX
E,STRETCH,A,B „(LINEAR,LOWDN,HIDN)
L „ LINEAR(LOWDN-HIDN)
E,BOXFLT,B,C „(NLW,NLX,NSW,NSX)
L „ LOW PASS FILTER (NLX BY NSX)
END

In this example, two procedures are defined; one called STRCLIP and the
other called STALIN. The first is terminated by the DEFINE statement
introducing the second. STRCLIP has two arguments, FILE and BITS, and
STRLIN has four arguments, LOWDN, HIDN, NLX, and NSX. STRCLIP consists
of two EXEC statements which will have the effect of executing the two
application programs SAR and STRETCH. The syntax of the "E,SAR. . ."
is not valid in that the characters following the "/" should be a one-
to-three digit number. Also, the STRETCH user guide would show that
the parameter following the keyword "CLIP" should be a number. These
apparent errors are acceptable provided that when the procedure STRCLIP
is iniaked by a CALL statement, the arguments .FILE and BITS are replaced
by numbers.

6.5.2	 The CALL Control Statement

The user may include CALL statements that invoke a procedure
and specify its parameters. The procedure must have been previously de-
fined, either by its appearance in the sequence of VICAR control statements,
or by being obtained from the procedure library using the GET statement.
The effect of the CALL statement is similar to invoking a macro in assembly
language. The parameters provided in the CALL statement are substituted
for the corresponding (positional) arguments in the procedure definition.
The expanded procedure text is then substituted for the CALL statement
in the sequence of VICAR statements. Of course the original procedure
definition is unchanged and is available for repeated CALLing with
different parameters.

If the name of the procedure in the CALL statement has not
been previously defined, the effect is to ignore the statement. Even
though there is a procedure library, there is no automatic searching of
the library. The situation is not considered an error and no diagnostic
message is produced. For this reason spelling errors in procedure names
can have startling effects which may be hard to diagnose. The user must
keep this feature of procedure usage in mind and use appropriate care.

Building on the example shown in Section 6.5.1, suppose that
that sequence has appeared in a VICAR job. The following statements
could then appear:

CALL,STRCLIP,1,3
C,STRLIN,50,150,3,3

6-28

The effect of these statements is the same as if the following sequence
had appeared in their place:

E,SAR,(*X/1),A
E,STRETCH,A,B „(CLIP,3)
E,STHETCH,A,B „(LINEAR,50,150)

L „ LINEAR(50-150)

E,BOXFLT,B,C„(NI.W,3,NSW,3)
L „LOW PASS FILTER (3 BY 3)

	

6.5.3	 The GET Control Statement

The user may include GET control statements to retrieve sets
of VICAR statements which have previously been saved on the VICAR (EVIL)
procedure library. (The process of storing text on the procedure library

Is not done by VICAR control statements, but by a TTM procedure. This
process is discussed in detail in Section 7. Because the CALL statement

does not cause automatic searching of the library, each procedure CALLed,
but not defined in the ,job, must be explicity retrieved from the procedure
library by means of the GET statement.

Although the procedure library stores arbitrary sets of state-
ments, common practice is that each set of text constitutes one procedure,
beginning with a DEFINE statement and ending with an END statement. Each
set of statements stored in the EVIL library is stored under a unique name
by which it is retrieved, the name specified in the GET statement. Common
practice is to have the name by which a set of statements is stored equal
to the name of the procedure that is defined by that set of statements.
Thus, to retrieve the procedures STRCLIP and STRLIN, which have been
previously stored on the library, the following statement is used:

GET,STHCLIP,STRLIN

It is not unreasonable nor uncommon to store under a single

name the definitions of two or more procedures which are commonly used
together. This simplifies usage by requiring the user to GET only one set

of text from the library, even though a number of procedures are to be used.

	

6.5.4	 The DO Library Procedure

The DO procedure provides an iterative capability which is
much more powerful than the simple DO group described in Section 6.3.5.
The DO procedure allows the user to repeatedly invoke any other defined
procedure, while the first parameter to the other procedure takes on, in
sequence, each of a set of values specified. The DO procedure is on the

procedure library and may be invoked after it has been retrieved with a

GET statement.

The general form of the DO procedure usage is as follows:

CALL,DO,procname,arglist,arg2,ar63, . . .

6-29

Procname is the name of a previously defined ,rocedure.
IM2, A3, . . . are arbitrary character strings not cc:(itaining commas.

Arglis < is a specification of a list of parameters of the form:

argl/argl'/argl"/. . .

If the argument list consists of positive integers in ascending numerical
sequence, then

argl/argl+l/argl+2 /argl+3/. . . / argl'

may also be written

argl-argl'

The alternative forms may be mixed using a slash (/) as a separator to
produce a list of the following or similar form:

argl/argl'-argl" . . .

The effect of the DO procedure is to invoke the procedure with name pfocname
a number of times equal to the number of items specified by aralist.

CALL,procname,argl,arg2,arB3,. 	 .
CALL,procname,argl',arg2,ar63,.	 .
CALL,procname,argl",arg2,ar63,. 	 .

or

CALL,procname,argl,arg2,ar83,. . .
CALL,procname,argl+l,arg2,ar83,. . .
CALL,procname,argl+2,arg2,ar63,. . .

The second and subsequent arguments to the specified procedure are always
the same, and are A=, Aega, etc. The first time the specified procedure
is CALLed, its first argument is the first item in the list specified by
aralist. The second time it is CALLed, its first argument is the second
item in the list, and so on until the last item in the list has been used.

6.5.4.1	 Examples

Suppose the procedure STRCLIP has been defined as in Section
6.5.1, and the following statements then appear:

(1)	 G, DO
CALL,D0,STRCLIP,3-5/7,3

6-30

The effect of these statements is as if the following had been coded:

E,SAR,(*X/3),A
E, STRETCH,A,B„(CLIP, 3)
E,SAR,(*X/4),A
E,STHETCh,A,B „(CLIP,3)
E,SAR,(*X/5),A
E,STRETCH,A,B„(CLIP,3)
E,SAR,(*X/7),A
E,STRETCH,A,B „(CLIP,3)

In this case, the same result may also be obtained using the DO group.

*E,SAH,(*X/3-5,7),A
E,STHETCH,A,B „(CLIP,3)

In the preceding example only the repetitive feature of a
DO procedure is illustrated. A more powerful feature of the DO procedure
is the ability to combine repetitive steps with variation of processing
parameters. Consider the following example:

(2)	 G, DO
D,STRF,LO
E,STRETCH,A,B „(LINEAR,LO,150)
E,FOTO,B,*
END
CALL,D0,STRF,90/100/110

In this example, the data set A is contrast enhanced using three different
variations of the low-DN parameter in program STRETCH through the use of
the STkF procedure.

These statements are equivalent to the following:

E,STRETCH,A,B „(LINEAR,90,150)
E,FUTO,B,*
E,STRETCH,A,B „(LINEAR,100,150)
E,FOTO,B,*
h,STRETCH,A,B „(LINEAR,110,150)
E,FOTO,B,*

6-31

SECTION 7

PROCEDURE LIBRARY OPERATIONS

User-defined EVIL procedures which perform repetitive proces-
sing tasks can be stored in the VICAR procedure library. This feature
allows the user to access procedures in subsequent job steps without
redefining the procedure each time.

A separate facility exists for manipulating the user-defined
statement sequences (text files). This facility is not part of VICAR,
but is an adjunct to it. There are four statements which are used to
manipulate user-defined VICAR statement sequences (text files). These
are SAVE, DELETE, LIST and NAMES. Each statement is defined in subsequent
sections of this text.

The computer job to perform library operations has the
following general form:

//jobname JOB . . .
// EXEC TTM
#<EVIL2LIB>

library manipulation statements

7.1	 SAVE

The SAVE statement is used to save a user-defined text
file in the VICAR procedure library under a specified text name.

Operation Text name Terminator

Field 1 Field 2 Field 3

SAVE ,textnaae ,ENDIN=delimiter

1	 SAVE

2	 textname is the name under which the text file
is to be stored in the VICAR procedure library.
The maximum number of characters for tgxtname
is 20.

7-1

R

1

Z";A	 Contents

3 ENDINsdelimiter. The delimiter is a user-specified
character or characters which are used to terminate
the text file contents. A typical delimiter might
be $$$$. The delimiter jUMI fit onto one computer
card; however delimiters should be kept to a reason-
able size.

7.2	 DELETE

The DELETE statement is used to delete a text file and its
associated text name from the VICAR procedure library.

Operation Text name Text name

Field 1 Field 2 Field 3

DELETE ,textnamet ,textname2

Field	 Contents

1	 DELETE

2,3 . . . textname 1. ,lextname2, . . . are the names of text
files in the VICAR procedure library. The maximum
number of characters for each name is 20.

7.3	 LIST

The LIST preprocessor statement is used to list the contents
of the text file with the specified textname in the VICAR procedure library.

Operation Text name Text name

Field 1 Field 2 Field 3

DELETE ,textnamel ,textnamet

Field	 Contents

1	 LIST

2	 textnamel. textname2. . . , are the names of text
files in the VICAH procedure library. The maximum
number of characters for each name is 20.

• J

7-2

7.4	 NAMES

The NAMES statement is used to list the text names of all
the text files currently in the VICAR procedure library. The NAMES
statement should always be used to check for duplicate text files before
SAVE or DELETE is specified.

Operation

Field 1

NAMES

Field 	 Contents

1	 NAMES

7.5	 EXAMPLES OF PROCEDURE LIBRARY OPERATIONS

7.5.1	 Ev aple 1

//NAMES JOB (DPM701,23)
// EXEC TTM
/<EVIL2LIB>
NAMES

This fob lists the text names of all the text files currently
in the VICAR procedure library. A job such as this should always be run
prior to saving a new text file to ensure that text names will not be
duplicated. If a job using NAMES is not run, an error message will appear
indicating that duplicate text names are being specified.

7.5.2	 Example 2

//SAVE TEXT JOB (DPM701,23)
// EXEC TTM
/<EVIL2LIB>
SAVE,PROCS3,ENDINx$$$$
B,2,1000,1000,0,(A,B)
D,P1,&T,&F
E,INSERT,(•&T/AF),A
E,ASTRTCH2,A,B
E,MASK76,B,VFC „ COMP
END
D,P2,6T,&F
E,INSERT,(e6T/AF),A
E,FILTER,A,B
E,MASK76,B,VFC „ COMP
END

7-3

1

a

1
D,P3,&T,6F
E,INSERT,(a6T/6F),A
E,ROTATE,A,B
E,MASK76,B,VFC „ COMP
END
ssss

Under the text name 'PROCS3', a BLOCK data set statement and
three procedures are stored as a text file in the VICAR procedure library.
In subsequent fobs, a 'G, PROCS3' VICAR control statement will retrieve
the text file, making all three procedures available to the 'CALL' VICAR
control statement. The 'B' VICAR statement will always be processed.

7.5.3	 Example 3

//USETEXT JOB (DPM701,23)
// EXEC VICAR
TAPE,*,INTAPE,S,6
TAPE,e,SCRVFC,VFC,6
G,PROCS3
C,P1,S,1
C,P1,S,2
C,P1,S,6

In this example, only procedure P1 is used out of the available
procedures P1, P2, and P3. The tape INTAPE with symbolic name S is used
in the procedure call for the parameter &T.

7-4

SECTION 8

TTM

The preprocessor function N<EVIL2LIH> used in the previous
section is invoked through the use of TTM, a recursive language designed
primarily for character string manipulation. Users may employ TTM
directly to obtain greater flexibility and economy in the manner in which
their VICAR procedures are created and executed. For example, TTM
provides a means for the conditional inclusion of VICAR statements within
a procedure when the procedure is called and executed. The following
discussion and examples are intended to present a brief introduction to
the TTM function calls and their usage. (See Reference 4 in Section 2
for a more thorough description of TTM.)

The basic form of a TTM function call is:

#<51;S2;S3; . . .;Sn>

where S1,S2,. . .,Sn are character strings and n Z 1. The first string,
S1, is taken to be the name of the function and the remaining strings
are its parameters. TTM functions may be user-defined or TTM standard
functions. Among the operations provided by the TTM standard functions
are basic arithmetic as well as logical and numeric comparisons.

In general, a TTM function call other than N<EVIL2LI8> may be
placed anywhere in the VICAR text but should not begin in column one. In
addition, the characters / ; < and > have special meaning in the TTM
'anguage. The user should consult the TTM language reference mentioned
above for correct usage. It should be noted that a TTM function call that
is placed inside a VICAR procedure is not invoked unless the procedure is
called via a CALL control statement. when invoked, a TTM function call
returns a character string which then replaces the call itself in the
VICAR text. That is, #<S1;S2;...;Sn> is replaced by the character string
that is generated by the function operation.

8.1	 EXAMPLES

(1)	 Arithmetic Operations

Suppose a user wishes to process the first 25 even-numbered
files on a tape with symbolic name S using VICAR procedure P.

D,P,&F
E,INSERT,(eS/AF),A

END.

8-1

i	 i

To perform the necessary processing, the procedure P would
have to be called 25 times:

C,D0,P,2/4/6/8/. . ./50

Using the TTM standard library function MU (multiply), the above process
may be simplified by writing the procedure P as follows:

D,P,&F
E,INSERT,(*S/1<MU;&F;2>),A

END

When the procedure P is called, the effect of the function MU
is to take the parameter substituted for 6F, multiply it by two, and
leave the rdault in place of the text of the function call. For example,

C,P,7

results in the statement sequence

E,INSERT,(eS/14),A

The first 25 even-numbered files may thus be processed by the statement:

C,D0,P,1-25

TTM function calls may have as their arguments other TTM
function calls. To illustrate this, suppose that the user wishes to
process the first 25 odd-numbered files on a tape. To accomplish this,
the procedure P may be rewritten as:

D,P,&F
E,INSERT,(§S/i<SU;i<MU;&F;2>;1>),A

END

The calls to P would again be

C,D0,P,1-25

•	 Here, the SU (subtract) and MU (multiply) TTM standard library functions
are combined to produce the file number given by (6F) X 2 - 1.

8-2

(2) Logical Comparisons

Consider Example 2 of Section 6.6.5. The only difference in
the three procedures P1, P2, and P3 is the second statement in each case.
Using the TTM standard library function EQ? (logical comparison: equality),
the three procedures may be combined into a single procedure. The form of
the EQ? function is given by

#<EQ?;S1;S2;S3;S4>

where the result of the function is S3 if S1 is equal to S2. Otherwise,
the result of the function is S4. As before, S1, S2, S3, and S4 are
character strings. A suitable procedure might be:

D,P,&T,&F,&P
E,INSERT,(*&T/&F),A

#<EQ?;&P;A;E,ASTRTCH2,A,B;>
#<EQ?;&P;F;E,FILTER,A,B;>
#<EQ?;&P;R;E,ROTATE,A,B;>

E,MASK76,B,VFC „ COMP
END

By adding a third parameter &P to the procedure definition,
the appropriate program to be executed at the second step may be specified
through the use of the EQ? function. For example, the procedure call

C,P,S,5,A

would result in

E,INSERT,(*S/5),A
E,ASTRTCH2,A,B
E,MASK76,B,VFC „ COMP

Note that S4 is a null string in this particular usage of the
EQ? function. In the above procedure call then, the logical comparison
with F and R yield null strings.

8-3

SECTION 9

ERRORS

In a system as complex to use as VICAR, error situations
occur frequently. This section gives some guidance on what to do if
a problem ocew^s.

Errors may be categorized as occurring during the first job
or the second job. Errors which occur during the first job are almost
invariably due to incorrect syntax in one or more VICAR statements.
These are caught by the program VTRAN during its execution, and a helpful
message is printed. Normally the second job is suppressed. Errors
which occur during the second job usually result in abnormal termination
of the job, accompanied by a user or system "completion code." A user
code means the error was detected by the VICAR system, while a system
code means the error was detected by the operating system.

9.1	 VTRAN ERRORS (FIRST JOB)

The most common kinds of errors occurring during the first
VICAR job are given below, along with some suggested actions to take.

PARENTHESIS ERROR
Parentheses are unbalanced.

TOO MANY FIELDS
The maximum number of fields in a VICAR statement is seven.
Look for an extra comma or a missing set of parentheses.

TOO MANY SUBFIELDS
The maximum number of subfields within any one field is ten.
Subfield delimiters are comma and slash. Look for an extra
comma.

ILLEGAL VTRAN CARD
There is an unclassifiable syntax error.

PARAMETER CARD PUNCHED IN COLUMN 72
Column 72 of a parameter card must be blank.

LABEL AT END OF DO GROUP
LABEL IN MIDDLE OF DO GOUP
Only the first task of a DO group may be labeled. Use of
preprocessor features may allow the desired processing
without using a DO group.

ILLEGAL SIZE FIELD
Look for an extra or missing comma if the size field looks
correct.

9-1

NUMBER FIELD ON RESERVE CARD NOT BETWEEN 1 AND 9
The field referred to is the second field on a RESERVE,
A, B, BLOCK, SAVE, or CATLG statement.

MORE THAN 8 TAPE DATA SETS REQUESTED
The total number of RtAu, WRITE and TAPE statements may
not exceed eight. (Implementation restriction)

T00 MANY PARAMETER SETS SPECIFIED
The total number of PARAMS and P statements may not exceed
200. (Implementation restriction)

NO DATA SET AVAILABLE FOR OUTPUT
An asterisk may have been unintentionally omitted from a
tape name in an EXEC statement. The use of the "taps-file
no." form of a data set name without an asterisk requires
the definition of a suitable data set with a RESERVE-type
statement.

LABEL CARD ENCOUNTERED UNEXPECTEDLY
The data set name field may have been omitted from a LABEL
or RELABEL statement.

9.2	 EXECUTION ERRORS (SECOND JOB)

Errors resulting in abnormal termination during the second
job may be either user errors or program errors. Program errors usually
must be solved by the application programmer responsible for the program
which terminated. User errors can be corrected by changes to VICAR state-
ments in the user's job. Distinguishing between user errors and program
errors can be quite difficult, and may ultimately depend on the intentions
of the programmer as to how his program should work.

The most common user completion codes associated with VICAR
jobs are given below, alcng with possible user errors. (Since this is not
a programmer's guide, the associated possible program errors are not given.)

USER 69
There was insufficient main storage available for buffers.
Try a larger region size.

USER 71
An attempt was made to write a record larger than the allocated
record size. Be sure the data set record size specified is
large enough to accomodate the picture being processed.

USER 72
Insufficient disk space allocated and no more space is avail-
able. Increase allocation and be sure to allow for labels.

USER 73
Write error under unusual conditions. Not normally a user
error.

9-2

USER 240
This code is produced when the ABEND is intercepted by the
Fortran run-time routine. The actual ABEND code is found
in another printed message.

USER 324
The application program intentionally terminated abnormally,
and "NOTE;, ABORT" was in effect. There should be an associated
explanatory message produced by the program. The predominant
reason is an error in parameters specified for the program.
Be sure the spelling of names of parameter sets on the EXEC
statement matches the spelling on the PARAMS statement.

USER 999
The requested program was not in the program library or was
not executable. Check correct spelling.

USER 1111
The op code in PS44 SVC simulation routine is illegal. This
is not a user error. (This code has not been observed with
this version of VICAR.)

USER 1112
The VICAR system index for a data set is invalid. Be sure
all the required data sets have been specified for the program.

USER 1200
The SYSOUT system file cannot be opened. This is not a user
error. (This code has not been observed with this version
of VICAR.)

USER 1492
The VICAR data set reference number is illegal. This is not
normally a user error.

USER 1970
There is an error in the task list passed to the second
VICAR ,job. This would occur if an error occurred in the
first job but the second job was not suppressed. Look for
a syntax or usage error in the VICAR control statements.

USER 1980
The VICAR system encountered
oarameters or data set label
sets and tapes are specified
tape format is specified and
a permanent I/O error in the

an I/O error in processing
s. Be sure the correct data
as input files, that the correct
that the tape does not have
label data.

-„	 USER 2400
The maximum number of tape units requested exceeds the
installation limit. This error is normally caught in the
first job.

9-3

APPENDIX A

TAPE FORMAT CODES

Format
Code Description Comments

9 These formates are logically identical, Standard
8 formats 9 and 6 representing nine-track VICAR

tape at 800 and 1600 bpi respectively, and formats
5 formats 8 and 5 representing seven-track
6 tape at 800 bpi and 556 bpi respectively.

8A These formats are for 7 track, 800 bpi, Used for film
9A 9 track, 800 bpi, and 9 track, 	 1600 bpi, recorder 8-bit
6A 8 bit data, unlabelleda tapes respectively. data tapes.

8F These formats are all logically equivalent, Used for film
5F with 8F, 5r, and 2F representing seven track recorder 6-bit
2F 800 bpi, 556 bpi and 200 bpi respectively. data tapes.

The data format is 5-bit, unlabelled.3

8L These formats are all logically equivalent, Used for
8L, 5L and 2L representing seven-track obsolete

5L 800 bpi, 556 bpi and 200 bpi, respectively. Surveyor
The data format is 6-bit with 80 character 6-bit data

2L labels. tapes.

a Throughout this document, "label" means VICAR label.
It should not be confused with operating system standard labels,
which are not supported by the VICAR system.

Note: These format codes are used on tape declaration statements
described in Section 6.3.4.

A-1

•'

APPENDIX B

JCL INSERTIONS IN SECOND VICAR JOB

B-1

It is occasionally necessary to modify JCL statements gener-
ated by the VICAR system. JCL procedure statements may be overridden
using standard operating system methods (see Ref. 2, Section 2). These
methods cannot be applied to the second VICAR ,job because the JCL is
generated by a program, VTRAN. However, JCL statements can be inserted
in the second ,job in either of two locations, ,just before and just after
the ". . . EXEC PGM =VMAST" statement. This is accomplished by supplying
the statements to be inserted as either of two data sets processed by the
first ,job.

To insert statements before the EXEC statement, the following
sequence is used.

//VTR.FT08F001 DD DATA

JCL statements to be inserted

/e

To insert statements mgt the EXEC statement, the following
sequence is used.

//VTR.FT10F001 DD DATA

JCL statements to be inserted

/e

Either of the above sequences is placed in the ,job deck
following the VICAR control statements. If both sequences are used,
the 11 FT08" sequence precedes the "FT10" sequence.

As an example, JCL insertions may be used to obtain a core
dump after a ,job ABEND. The following sequence inserted after the
VICAR control statements provides a dump.

//VTR.FT10F001 DD DATA
//SYSUDUMP	 DD SYSOUT cA
/#

B-2

r _^

i

Similarly, a private program library will be searched ahead
of the standard library if the following sequence is included.

//YTR.FT10F001 DD DATA

Z	 //STEPLIB	 DD DSNaprivatelibrary,DISPaSHR
DD DSNaIPLI.SDSRUN,DISP=SHR

/e

Both can be combined to perform a private library search
and dump if the following is specified.

//YTR.FT10F001 DD DATA
//STEPLIB	 DD DSN=privatelibrary,DISP=SHR

DD DSN=IPLI.SDSRUN,DISP_SHR
//SYSUDUMP	 DD SYSOUT=A
/e

B-3

_.__..

C-1
I^

17-

RY

I*

7

This appendix provides information about the use of VICAR
that may vary from one installation to another. The information in
this appendix applies to the JPL Image Processing Laboratory as of
the date of publication.

C.1	 JOB CARD

The ,job card, which is the first JCL statement of a batch
job, is written as described in Reference 2 of Section 2. Generally, 	 -
it appear as follows:	 j

i'
//jobname JOB acet,'programmer name', 	 .

where

AQkM= is one to eight alphanumeric characters beginning
with an alphabetic character,

A= is the accounting field described below,

'programmer name' may be anything enclosed in single quotes,
and	 . are other optional parameters as described in
the reference.

No embedded blanks are allowed except before and after JOB.

The accounting field has the general form

(uidprj , boxno,time,lines,eards , forms,copies , log,linect)

where

UU is a three-character user identification assigned by
the facility (v3ually the user's initials),

2= is a two- or three-digit project code assigned by the
facility,

boxno is the number of the user ' s output box assigned by
the facility,

Ual is the estimated elapsed execution time in minutes
for the job (default:30),

lines is the estimated number of lines to be printed in
units of a thousand (default:3),

cards is the estimated number of cards to be punched
(default:100),

C-2

__	 ^

f0MA is the name of a special form to be used for printing
the fob (default : STD.),

Qoniea is the number of copies of the job to be printed
(default:1),

," is N to omit the HASP log from the job listing, and

11neat is the number of lines to be printed between page
ejects, or 0 to omit page ejects (default:60).

All fields are optional except ui^ and boipg. Commas must be entered
to indicate defaulted fields preceding a nondefaulted field. Trailing
commas within the parentheson may be omitted.

C.2	 DATA SET NAMES

The names of permanent data sets should begin with the
user's three- character user identification, which is assigned by the
facility (usually the user's initials).

C.3	 TAPE. FORMAT CODE

The default tape format code is 8 (7-track, 800 bpi, 8-bit
data, VICAR labels present).

C.4	 TAPE SPECIFICATION STATEMENTS

The maximum number of tape specification statements (READ,
PREAD, WRITE, PWRITE, TAPE, PTAPE) is eight.

C.5	 TAPE DRIVES

The maximum number of tape drives which can be used in
a VICAR job step is eight.

C.6	 REGION SIZE

The default region size is 150K.

I *.b
	 C.7	 CPU TIME

The maximum CPU time a job step can use is 1439 minutes
(one day less one minute).

C-3

A

APPENDIX D

EXAMPLE JOSS

D-1

//EXAMPLE JOB (AYS900,45,10),'AYS BOX-451,REGIONa160K
// EXEC VICAR

	

11	 REGION ,160K

	

8	 NOTE ,WTO
TAPE Tl,EHT602,S,6

	

4	
NFIND

,TI,SCRGRE,GRE,9
	3	 ,(JQP.940.DATA,ERA001),WB

	

1	 1000,1060,§,(A,B)
E INSERT 1503,A,(100,425,1040,1000)

7 ''------ L ,1,HUMiOLT COUNTY AREA
L,1,WATERSHED BOUNDARIES
L 1, LANDSAT DATA

	

5	 E ,F2,(A,WB),B„PF

	

6	 P ,PF
FUNCTION,1IN1rIN2'
E,SAR,B,S
E,ASTRTCH2,B,A „(GAUSS,GSIG,2.5)
E,MASK76,A,GHE „ COMP

This is an example of a simple VICAR job using several of
the control statements defined on subsequent pages. It has been provided
to familiarize the new user with the general format of a VICAR job.
Control statements have been boxed and connected with a number at the
left which corresponds to the general definition of function provided
in Section 6.2. Using the FIND statement, the fob accesses a data set
which was saved on a disk In a previous job and assigns this data set
the file name "WB.” An image file is also read from tape and this image
is then summed with WB using the application program F2. A Gaussian
contrast enhancement is applied to the composite image output from the
program F2 and written onto tape for playback on a film-recording device.

D-2

i
i

Refer to this example for:

Use of a private library for accessing a special version
of a VICAR program.

//PD05 JOB (DPM701,23),'DPMADURA'
/#MESSAGE 15 MIN
/#MESSAGL 9 TRK:ERTS-2029 ERTS-2172 I4
// EXEC VICAR
NOTE,WTO
TAPE,#,ER2029,S,6
8,3,1500,1500,#,(B4,B7,R)

E,INSERT ,(#S/1),B4,(800,1000,1000,1000)
E,INSERT,(#S/4),87,(800,1000,1000,10001

D,F,(B7,B4),R
E,LIST,R,#

E,VMOUNT,S, # „ Eh2172

E, INSERT,(#S/1),B4,(800,1300,900,700)
E,INSERT,(#S/4),B7,(800,1300,900,700)
E,F,(B7,B4),R

E,LIST,R,#
//VTR.FT10F001 DD DATA
//STEPI.IB DD D5N=REA708.LIBRARY,DISP=SHR

DD USN=IPLI.SDSRUN,DISP=SHR
/r

D-3

^..^

Refer to this example for:

Use of preprocessing statements GET, DEFINE and CALL.

Use of a single tape drive for 2 tapes of different densities. 	 9

//LBU18A JOB (DPM701,23),'D P MADURA'
/*MESSAGE 30 MIN
/*MESSAGE 9TRK=TFC210 N4 SCRSAV(2,
// EXEC VICAR
G,DU
NOTE,WTO
TAPE,TI,TFC210,S,6
TAPE,TI,SAVDM2,GRE,9
B,3.900,4600,*,(V1,V2,V3)
B,3,900,4600,*,(S1,S2,S3)
E, INSERT, (*S: 1) , V 1
E,INSERT,(*S/2),V2
E,INSERT,(*3/3),V3
D,P,&N
E,MASK76,S&N,V&N
END
E,ASTRTCH2,V1,Sl„(GAUSS,GSIGMA,2.0)
E,ASTRTCH2,V2,S2 „(HPER,20.O,LPER,1.0)
E,ASTRTCH2,V3,S3 „(PERCENT,12.0)
C,DU,P,1-3
E, FORGRE, (V3,V2,V1) , GRE„2MIL
E,VMOUNT,GRE,* „ SAVDM3
E,FORGRE,(V1,V2,V3),GRE „2MIL

D-4

i

Refer to this example for:

Use of FIND to access a data set saved in a previous job.

r	
Use of TTM to increment parameters.

Use of preprocessor statements GET, DEFINE and CALL.

//PIXGR2 JOB (AYS900,45,180),'AYS BOX-451,REGION=150K
// EXEC VICAR
REGION,150K
G,DO
READ,e,ER2501,5,6
FIND, (AYS . CORPNT, f) , CP
B,5,2000,2400,e,(A,B,C,D,E)
D,P,&B
E,STRETCH,A,B „ PCB
P,P&B
TABLE 0,0.0,N<EQ;AB;1;;#<SU;AB;1>,0.0>,AB,1.O,i<AD;AB;1>,0.0,255,0.0
E, F2, (B, C) , D„PY
P,PY
FUNCTION 1IN1*IN2'
E,SAR,D,S
E,LIST,D,e
END
E,INSERT,*S01,C
E,VMOUNT,S, e „ ER2223
E,INSERT,*SO4,A,(400,600,1000,700)
E,SAR,CP,S
E,SAR,CP,A,(400,600,1000,700)
E,VMOUNT,S, e „ER2502
C,DO,P,43-64

D-5

Refer to this example for:

Use of FIND to access a data set saved in a previous job.

Use of preprocessor statements GET, DEFINE and CALL.

Use of a pri+ate library.

//RERSLOC JOB (GWG314,31)
// EXEC VICAR,DISP=SHR
G,DO
TAPE „ Q14340,EDR,6
B,1, 800, 805 „A
FIND,(GMY.RESL,+),RESL
8,1,4000,100 „RES
D, PROC, FILE
E,VGRLOG,EDR,A „(PIC,FILE)
E,RESLOC,(A,RESL),RES
END
C,DO,PROC,1620503/1620515/1620519
E;,VMOUNT,EDR,*„Q14350
C,PRUC,1620535
E,VMOUNT,EDR, • „Q14370
C,DO,PROC,1620950/1621006/1621010
//VTR.FT10F001 DD DATA
//STEPLIB DD DSN=VGR.SDSHUN,DISP=SHR

DD DSN=IPLI.SDSRUN,DISP-SHR

n --

D-6

1s.amole 6

Refer to this example for:

Use of TTM

Use of EVIL2LIB to save a procedure

Use of EVIL2LIB to access a procedure saved in a previous ,job.

//LOGHAW JOEL (GWG314,31)
// EXEC TTM
#<EVIL2LIB>
DELETE,VGRLOGRAW
SAVE:,VGRLOGRAW,ENDIN=???
G,DO
D,CATRAW,&FDS,&SC
CATLG,1,800,802,VGR004,VGR&SC.F&FDS.RAW,F&FDS
E,VGHLOG,EDR,F&FDS „(PIC,&FDS,PRINT)
END
D,FNDIiAW ,&FDS,&SC
FIND,(VGR&SC.F&FDS.RAW,e),F&FDS
E,VGRLOG,EDR,F&FDS „(PIC,&FDS,PRINT)
END

//LOG15 JOB (PLJ314,32)
// EXEC VICAR,DISP=SHR
TAPE „ 011340,EDR,6
G,VGRLOGHAW
C,D0,FNDRAW,1385048/1385050/1385052,1

D-7

Refer to this example for:

Use of TTM

Use of EVIL2LIB

Testing of VICAR jobs

The user has included a test of the procedure FARPHOTMAP at
the end of his job. Since data sets C and D have deliberately not peen
allocated, his ,fob will not execute, but he will be able to examine the
procedure FARPHOTMAP for errors.

//EVIL JOB (JAM317,34),FARPHOTMAP
// EXEC TTM
#<EVIL2LIB>
DELETE,FARPHOTMAP
SAVE,FARPHOTMAP,ENDIN=$$$
NOLIST
FIND,(IPLLSF,e),LSF
FIND,(GMY,RESL,e),RF,SL
B, 2,2000,1010, , (A,B)
b,1,1000,4000 „ IDS
B,1,3600,10 „PDS
READ „ #<TAPE>,X,6,(1600,6400)
B,2,3600,10„(i3,G)
D,P,FNO,SLONX,SUNLONX
E,INSERT,(eX/FNO),B
E,RESLOC,(B,RESL),(R,G)
E,RESSAR77,(B.R;,A „ HALF
E,FARENC,(A,G),B,(NL=#<NLF>,NS=#<NSF>),FAR
L,RDR ON #<TAPE>/FNO	 GEOMA(JUST TO FOOL SEARCV)
E,PHOTFUNC,B,A „(PHOT,SOLAR,#<SUNLAT>,SUNLONX,SLON,SLONX)
L „ SUBSOLAR LAT #<SUNALT>LONG SUNLONX *LAMBERT PHOTOMETRIC FUNCTION
E,F2,A,B„PF
E,MAP4,(B,IDS,PDS),A,(NL=#<NLM>,NS=#<NSM>),(MAP,LONG,SLONX,SLON,SLONX)
L „ SUB S/C LAT #<SLAT> LONG SLONX RANGE #<HMAG>
E,CCOPY,(A,LSF),TA
END
D,COPY
E,VREWIND,TA,•
E,VCOPY,TA,* „(LIST,9X)
END
P,PHOT
HALF JUPI VGR INCR 5 LAXIS #<DV;#<NLF>;2>. SAXIS#<DV;#<NSF>;4>.
MINN 1. FARE NOSE
NORA #<NORA> SLAT #<SLAT> RMAG #<RMAG>
SSCPT #<DV;#<NLF>;2>. 	 #<DV;#<NSF>;4>.
P,FAR
SUNA #<SUNA> FAR #<RMAG> LATI #<SLAT>

D-8

Example 7 (contd)

HALF AUTO GEOM 3 ANGL #(NORA) REQU 71400. RPOL 66773.
P,PF
FUNCTION 'IN1/10.' HALF OUTBYTE
?,MAP
NORA #<NORA> SLAT #<SLAT> RMAG #<RMAG>
NOPR SSCPT #<DV;#<NLF>;2>. #<DV;#<NSF>;4>.
LATI 75. FOOL 1502.38 REQ 71400. RPOLE 66773• FARE
LORA 0. PSCA 84.821 MERC SCAL #<SCALE> LINE 1. SAMP #<SAMP>
aas
NAMES
// EXEC VICAR,DISP=SHR
#<DS;SUNA;50.>
#<DS;SCALE;10.>
#<DS;TAPE;123>
#<DS;SAMP;88.>
#<DS;NORA;1.>
#<DS;RMAG;2.>
#<DS;NLF;800>
#<DS;NSF;300>
#<DS;SUNLAT;4.>
#<DS;NLM;444>
#<DS;NSM;500>
#<DS;SLAT;80.>

G,FARPHOTMAP
C,P,10,22.,33•
C,Q,1,2.93.,4,5,6,7
E,SAR,C,D

D-9

Refer to this example for:

Use of TTM

Use of private libraries

Use of option to dump program in case of ABEND

//T1297A JOB (JAM317,34,500),'FARPHOTMAP REV 1',REGION=150K
/*MESSAGE EST 2 HOURS 9 TRK JS2608 9 TRK JS2614
// EXEC VICAR,DISP=SHR
WRITE „ JS2614,TA,6,(360,3600)
#<DS;SUNA;257.>
#<DS;NORA;165.>
#<DS;RMAG;57963900.>
#<DS;SLAT;3.25>
#<DS;SUNLAT;.77>
#<DS;TAPE;JS2608>
#<DS;NLF;400>
#<DS;NSF;800>
#<DS;NLM;700>
#<DS;NSM;300>
#<DS;SCALE;400.>
#<DS;SAMP;116.>

G,FARPHOTMAP
C,P,1,69.31,46.32
E,FOTO,A, • „(ASTR,SIZE)
C,P,3,141.37,118.37
C,P,4,143.31,120.31
C,P,5,213.43,190.43
C,P,6,215.37,192.36
C,P,13,-74.50,-97.51
C,P,8,-72.56,-95.57
C,P,9,-2.44,-25.45
C,P,10,-.50,-2;.52
C,P,11,69.61,46.59
C,P,12,71.55,48.53
C,COPY
//VTR.FT10F001 DD DATA
//STEPLIB DD DSN=JAM825.LIBRARY,DISP=SHR

DD DSN=VGR.SDSRUN,DISP=SHR
DD DSN=IPLI.SDSRUN,DISP=SHR

//SYSUDUMP DD SYSOUT=A
/e

D-10	 NASA_ 1R-cane l A Cold

	1980008506.pdf
	0002@00.TIF
	0002A02.TIF
	0002A03.TIF
	0002A04.TIF
	0002A05.TIF
	0002A06.TIF
	0002A07.TIF
	0002A08.TIF
	0002A09.TIF
	0002A10.TIF
	0002A11.TIF
	0002A12.TIF
	0002A13.TIF
	0002A14.TIF
	0002B01.TIF
	0002B02.TIF
	0002B03.TIF
	0002B04.TIF
	0002B05.TIF
	0002B06.TIF
	0002B07.TIF
	0002B08.TIF
	0002B09.TIF
	0002B10.TIF
	0002B11.TIF
	0002B12.TIF
	0002B13.TIF
	0002B14.TIF
	0002C01.TIF
	0002C02.TIF
	0002C03.TIF
	0002C04.TIF
	0002C05.TIF
	0002C06.TIF
	0002C07.TIF
	0002C08.TIF
	0002C09.TIF
	0002C10.TIF
	0002C11.TIF
	0002C12.TIF
	0002C13.TIF
	0002C14.TIF
	0002D01.TIF
	0002D02.TIF
	0002D03.TIF
	0002D04.TIF
	0002D05.TIF
	0002D06.TIF
	0002D07.TIF
	0002D08.TIF
	0002D09.TIF
	0002D10.TIF
	0002D11.TIF
	0002D12.TIF
	0002D13.TIF
	0002D14.TIF
	0002E01.TIF
	0002E02.TIF
	0002E03.TIF
	0002E04.TIF
	0002E05.TIF
	0002E06.TIF
	0002E07.TIF
	0002E08.TIF
	0002E09.TIF
	0002E10.TIF
	0002E11.TIF
	0002E12.TIF
	0002E13.TIF
	0002E14.TIF
	0002F01.TIF
	0002F02.TIF
	0002F03.TIF
	0002F04.TIF
	0002F05.TIF
	0002F06.TIF
	0002F07.TIF

