@ https://ntrs.nasa.gov/search.jsp?R=19800008539 2020-03-21T19:20:10+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

Pom—

ey |

Y
e ““"l

by

U [e

L NSG-/335

RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES

SCHOOL OF ENGINEERING AND
APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

Charlottesville, Virginia 22901

A Report

ANALYSIS AND TESTING OF NUMERICAL FORMULAS
FOR THE INITIAL VALUE PROBLEM

Submitted to:

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Submitted by:

R. Leonard Brown
. Assistant Professor

’ - 9
(NASA-CR-162655) ANALYSIS AND TESTING OF w80-1679
NUNERICAL FORMULAS PQR THE IHIT;éngéﬁgs 201
PROBLEN (Virqginia fniv.) 95 p S A Tnclas
G3/64 46945

Report No. UVA/528149/AMCS80/101
January 1980

A T TSRS |

s

N T

iy sbr

ke e B i <‘;u"7‘w ' gt
g R B
Cr S vreeanat o s

e %a % mwn

ey

i s i et

[rme——— [R——

A Report

ANALYSIS AND TESTING OF NUMERICAL FORMULAS
FOR THE INITIAL VALUE PROBLEM

Submitted to:

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Submitted by:
R. Leonard Brown
Assistant Professor
Kurt R. Kovach

Jeffrey L. Popyack
Engineer

Department of Applied Mathematics and‘Computer Science
RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Report No. UVA/528149/AMCS80/101 Copy No.
January 1980

= = &'!;34%:;?,—,;;:{?%%?1‘4“ =

.\'
ol

w
t

G o

FOREWORD

This work is the result of three years' effort at
University of Virginia to assist NASA in choosing the numer-
ical integrators to be used in real time simulators for
aircraft and spacecraft. The first author was introduced to
this subject during a visit to the Institute for Computer
Applications in Science and Engineering at the NASA Langley
Research Center during Summer 1975. This was follcwed by a
grant NSG-1335 from 1976 to 1979. This report described
three interrelated software systems written under this
grant.

The principal investigator wishes to thank his co-
authors/graduate students, also students Sandra Bollinger
and Bob Athay who did some of the initial work. Dr.
R. L. Bowles of NASA both got us started and provided tech-
nical guidance along the way.

Copies of the programs for CDC equipment and IBM 360 or
370 are available from the first author. For other machines,

the IBM version is almost ANSI standard.

ABSTRACT

Three computer programs for the evaluation and testing
of numerical integration formulas for use with fixed step-
size programs to solve initial value systems of ordinary
differential equations are described. SERIES, written in
PASCAL, takes as input the differential equations and pro-
duces FORTRAN subroutines for the derivatives of the system
and for computing the actual solution through recursive
power series techniques. Both of these are used by STAN, a
FORTRAN program to interactively display a discrete analog
of the Liapunov stability region of any two-dimensional
subspace of the system. The derivatives may be used by
CLMP, a FORTRAN program, to test the fixed stepsize formula
against a good numerical result and interactively display

the solutions.

ii

TABLE OF CONTENTS

Foreword . . . ¢« ¢« v ¢ « o o« o o o o @
1. Introduction . . . « « « « « « + &

2. Stability Analysis of the
Non-linear Initial Value Problem .

STAN User Manual
Example.« ¢ ¢ v o .
3. Numerical Soiutions.
SERIES User Manual
Examples of Inputs
OULPUES. + v v v v v v v v e .
4. User's Instructions for CLMP . .
APPENDIX A - Numerical Methods .
APPENDIX B - Theorem Proofs.
REFERENCES ¢« o o o .
BIBLIOGRAPHY of NSG-1335 . . .

iii

. .29
. . 49

. 61
. 67

. . 88

. 90

hs

R

P N L]

=S cer = e T A s =
R i e T T i A

1. INTRODUCTION

Consider the numerical solution of the problem

y' (t) = £(y,t)
¥(0) = v, (1)
for £:RP*1 R?, where f is a vector valued function of
independent variable t and the dependent variable y(t) in
RY, Yo is the initial value from RP, and y(t) is often
called the state vector. This form can be used to study a
wide variety of initial value problems including the fol-
lowing: the Method of Lines (MOL) approach to solving ini-
tial-boundary value problems in parabolic systems of partial
differential equations [Ames); higher order ordinary dif-
ferential equations using a change of variable
Yi4p = & y/att
so that y'y = d3y/dt3 [Gear]; mixed differential and non-
linear algebraic systems F(y,y',t) = 0, where F (y,y',t) is
solved by an implicit numerical method using Newton's iter-
ative method or similar [Gear); and the equations of state,
including conservation laws, of an engineering simulation.
A further simplification could replace the independent vari-
able t by a new element Yn+1 such that y'n+1 =1, Yo (0) =
0. However, this will not be used in the present analysis.
If (1) were a linear homogeneous equation
y' = Ay
y(0) = y, (2)

ot

mwu pr——
. il .

. .
rum’

Wil g
[L]

' e .
W iy
"

then the solution would be trivial, as the following anal-
ysis shows. For a matrix A of full rank there exists an
Hermitian transformation P such that:
PAP* = D

where D is a diagonal matrix [Gij Ai] of the eigenvalues of
A. Write (2) as

Py' = PAP* Py (3)
Set z(t) = Py(t) so that z'= Dz is equivalent to (2) and
remember that z is complex since the eigenvalues of A may be
complex. Then the solution of (2) is obtained from (3) as

zi(t) = exp (Ai t)zi (0), (3)

y(t) = P* z(t).

It has been customary to investigate the stability and
accuracy of numerical solutions of (1) by describing the
effect of solving (2) numerically, or more simply, by in-
vestigating the complex equation

y' = Ay,

¥(0) =y, (4)
since (2) can be reduced to (4) in each component. This
linear stability analysis will be described here, and its
shortcomings pointed out, as a prelude to the description in
Chapter 2 of the mathematical foundations of software speci-
fically designed to analyze and test numerical methods on
small (< 20 dependent variables) subsystems of nonlinear

differential equations.

B T ——

Bt e il s R

Common numerical formulas for integrating the systenm
(1) are listed in Appendix A; they are either l-step methods
Yp = ¢ (Ypo1r £/ tyi h)
or multistep methods
0= L(yn, Yne1s+ -+ ¥p-k £, t h)
where Y = y(0+nh) + e, is the approximate solution after n

equal steps of size h in the independent variable t from the
initial point (yo, 0). The global error e, which depends
on h, the function f(y,t), and the numerical method is
described elsewhere [Gear, Stetter]. However, the stability
analysis is reviewed here.

One-step methods are typified by explicit Runge-Kutta

formulas

Ko = hf (ypoy0 thop)
-1 q-1

q-
= hf(yyy + I boi Ki tp+ I hd

qj J QJ) (5)
=0 j=0

X
q = 1,.-.,5-1,

s-l
Yn = Yn-l + q- gq q

which attempt to approximate the Taylor series of y(t) about

t by using a linear combination of S stages.

n-1
Typical examples include the two-stage formula

. Ko = hf (yp_10 thoy)

*
Kl = hf (yn+1 t.5 Ky t + h/2)

n-1
yn = Yn-l + K1'
3

gexe

s s s e g g F T 0 T ==

This and the typical four-stage Runge-Kutta formula are
given in Appendix A.
The result in the linear case is that
Yo = (14 DA + ()2/2 + o= (m)P/pr)v _ + 0(nP*) (6)

and the formula is called of error order p<s. Even if bqj
and gq are picked so that p is as large as possible, the
coefficients are still not fully specified and an infinite
family of coefficients, in one or more parameters, results.
In the linear case, all choices of (5) result in (6), so the
linear stability analysis can be simply stated:

let e where y, # 2, are initial values used in

n~ ¥n " %
the numerical solution, then the stability region S = (hA:

lim (n»*») e_ is finite). Since e(tn) = exp (nhit) (¥q -

n
zo), S will contain values of hA where h>Q and Re (A) < O in
the exact case. For (6), § will contain hA such that
1 + hA +---+(hA)P/p1]| < 1.

Figure 1.1 shows the stability region of Runge-Kutta for-
mulas of various order, and [Jeltsch] has shown that even if
the coefficients are not picked to maximize p but rather to
maximize the radius of the largest circle in S tangent to
the imaginary axis at 0., this region is still bounded for
finite s.

In the multistep case, predictor only and p:adictor-

corrector combinations are used. Predictor formulas have

Figure 1.1 Stability regions of Runge-Kutta methods of
order p=1,2,3,5, (increasing area and
7 {dotted outline).

p—

300

=300

LA

Figure 1.2, Stability regions for Adams-Bashforth
methods. Method of order K is stable
inside region to the left of origin.

e % e e o T T S i ST DT e T Ty

Wom—————.
1

the form

k
V= (L (35 Yoy * BDj £¥poy Tpg)) (D)

after applying an appropriate predictor, an implicit correc-
tor formula may be solved to improve the solution Yn$
0= I alyg o+l fyyy thg) (8)
j=0 J °n=]] n=J =J
This can be rewritten (assuming ag z =-1,) as
Y, = 8 + hby £y, ty) (2)
where
s=§(a‘?y.+hb'.'f(y RN (9)
jep 3 Tmed j n-j’ "n-j
doesn't change during the iteration. One can solve (9)
iteratively by letting ygo) = yP and solving
y§) = s+ moy £y,)
for i =1, 2,....Q where Q is either set to a constant
(ofteu 1), or chosen after some convergence criterion such
as Yéi)- yéi'l)! < some small value. Newton's method can
be used on the function
0=y, -8 =-hby £y, t;)
by iterating

y{) =yl o np g)y M esemby £y $17H),) (10)

where J, is a closi: approximation to the Jacobian matrix
af/dy y.te.

The linear stability analysis often assumes that (9) is
solved exactly, but in fact if Q, the number of corrector
iterations, is finite, this will affect the stability. If
Newton's method is used with the exact Jacobian A, then only
one iteration will yield the exact solution of (9), so this
ig valid in the linear case. Note that (8) is the linear,
homogeneous difference equation

(l-bg hA)y, = § (a) + b} h\)y, 4
j=1 3 J n-j
and, for each particular A, the closed-form solution can be

obtained [Gear]. This solution is of the form

k m, .
= 1 .. ni=ly xR
Yy iil (jil Wi BTT) Xg (11)
where x; is one of the S < k unique roots of the polynomial
equation
k .
0= 3 (a: + hAb%) x3,
j=0 J J

m; is the multiplicity of the ith unique root, and W, de-

1 J
pends on the k initial values Yo:===/Yg.1- Note that y,

is increasing if any root X; > 1, and also if x; =1

then any terms Wi nd=1 xT will increase if m, > 1. There-

fore, two different solutions to (8) with init’al values Yo

z, define e - 2, and e, will be bounded for any hi

n- Yn n'
and any initial conditions if and only if 3ll roots of (1l1)
satisfy the two conditions above i.e. the stability region

S = [hA: all roots of (l1) are less than one in norm, or on

8

s s AT T b
s o Em Ty s, T B TS TS B T A

i T T T e T 5 LT, e - - - e E S i —————

the unit circle and simple]. Fiqure 1.2 shows the stability
regions for selected Adams-Bashforth predictors (see Ap-
pendix A). These are plotted by allowing x = exp(i¢) for
some large number of points ¢ between 0 and 2r, and solving
(11) for hA in each case.

I1f the corrector is computed by Q iterations, then (11)

becomes instead

™M

Yoy = ¥° = I ((a; + mby) x¥3) (12)

1=1

y(8) = kS ((a] + mb]) x59) + mapg y (571),
s = 1,---,0 and for each x = exp (i¢), there will be Q
values of hA since y(Q) is a Q degree polynomial in hA.
However, the lim (Q»») y(Q) = Yy the exact solution to
(11), 1if (12) converges at all.

However, problems of interest are not linear homo-
geneous, and therefore the linear stability analysis gives
information only about the local behavior of the related
differential equation

z' = J, (z-y(t)) + £(y(t), t)
z(t,) = ¥y,

This behavior could change drastically for even small
changes in Yn and in many cases the eigenvalues of J, are
not known unless the equations were artificially linearized
before solving. A more useful stability analysis would try

to match the stability characteristics of the nonlinear

T PR il ?g
Sia : ? TR N - =

A

o et e "
gt -

T —————L

{
!

- E - s

function f(y,t) by proper choice of numerical method which
most closely approximates those characteristics in important
areas of the domain of f(y,t). This has been attempted in
the work reported here. Software has been written which
will accept a system of up to 20 nonlinear differential
equations, specified by input equations similar to simula-
tion languages such as DARE-P [Korn et. al.]. This will
output two subroutines. One of these, DIFFUN (T,Y,DY), will
return in the array DY(*), *=1,--,m, the derivatives evalu-
ate at independent variable t=T, dependent variable Y(*).
The other subroutine, SOL(T,YO,YNEW,INO) will return, in
YNEW(*), a series solution of the equation at t = T > O
given the initial conditions Yo in YO(*), if possible. This
is described in Chapter 3.

These routines are then used in the interactive gra-
phics software described in Chapter 2 which, given M-2
initial values, searches the remaining 2-dimensional plane
about an approximate equilibrium point for a connected
region of initial values having a particular precperty re-
lated to stability. These regions can be graphically dis-
played for both the exact and various numerical solutions.
The routine DIFFUN can also be used by the testing routine
CLMP described in Chapter 4. This routine, given DIFFUN,
the 1initial values, and possibiy an inhomogeneous input

u(t), will display the Fourier amplitude for the first 20

10

harmonics for both an "ideal" solution generated by state of
the art software, and also by a chosen fixed step size
numerical method. These amplitudes can be compared graphi-
cally using a bar graph, two solutions can be graphed, and
the ratios of the Fourier harmoni:s to the input can be
displayed. In summary, this software can be used to choose
the most appropriate of available numerical methods by
comparing stability domains for numerical solutions to the
same domains for the exact solution. This will insure that
the numerical solution is stable. Then it is possible to
verify that decision by testing for accuracy by observing
appropriate results of a numerical simulation. Each of the
following chapters outlines one stage in this sequence; the
first section of each chapter will give some relevant theo-
retical considerations, the second section will comprise a
user's manual for that segment of the software, with exam=-

ples.

11

bk ———

i R Y, s &

P——

-

[P

2. STABILITY ANALYSIS OF THE
NONLINEAR INITIAL VALUE PROBLEM
The standard linear stability analysis is formula
specific and describes the behavior of a numerical formula
applied to the complex test equation
y' = Ay,
y(ty) = ¥g-
Let En = [e(tn_k+l),...,e(tn_1), e(tn)] be the difference
sequence for y(tn)-z(tn) where each solves the test equation
for a different initial value Yor Zp- Then e(tn) = (y0 -
zo)exp(At) is non-increasing in norm for Real (A) < 0. Such
a condition is called stability. It is desirable for the
numerical solution Y, to be stable if the true solution is
stable, so for a given stepsize h, one finds all complex A
such that any numerical sequence E; = (e g41r €1t ©pl
has the property Iei+1| < I eil for all i, where
e, = ¥y - 24, the difference between the numerical solution
sequences with initial values Yor 2p-
For Euler's formula, Y, = (1 + hA) Ypo1' hence the
numerical solution is stable for ll + hA' < 1. For multi-
step formulas, linear stability is characterized by the

generating polynomials

k .
s(x) = 3 b, xf? (1)
1=

where r and s have no common divisors. The region of linear
stability is all hA such that r(x) + hA s(x) has all roots
inside the unit circle, or on the unit circle and simple.
For Euler's formula, the r(x) + hA s(x) is (=-x+1)+ hA.
Since this analysis is formula specific, to investigate the
formula's effect on an actual f(y,t) one considers all the
eigenvalues A; of the Jacobian matrix 3f(y,t)/3y; if all hA;
are inside the stability region for all Yo' tg of interest,
then the numerical solution will be stable. Insuring that
such a condition holds is usually not desirable and often
not possible.

To develop a stability analysis for nonlinear f(y,t)
let f(y,t) have the property

Real < y-z, £(y t)-£(z,t)> < u| vz (2
for all t,y, and z of interest. Here <u,v> = yt Qv for some
positive definite Hermitian matrix Q, and “u||2 = <y, uw.
Then for any two solutions y(t), z(t) = y(t)-e(t), e(t)
satisfies
de(t)/dt = f(y(t),t) - f(z(t),t)

and (2) implies that

a|lect)|"/at = 2 Real < e(t),de(t)/dt> < 2u ||e(t)]] 2 and
thus

e(t) < exp(pt) e(t,)

which is non-increasing J/»>r u < 0.

However, (2) is again a condition that cannot be easily

verified, so a concept relating the true solution sequence

13

T e = - - e Te s = e e i mw - ey, T e ST TombS camdRanemess W B L]

Y(tn) to the computed solution sequence Y, is presented
here. The following definitions and theorem are helpful.
They occur in [Dahlquist, 1978] and the theorem proof is
presented in [Brown, 1979a) and is reproduced in Appendix B.
Definition - a linear k step formula satisfies

k

0 =j§o aj yn_j

+ hbj f(Yn_j: tn-j) (3)

Definition - a one leg k step formula corresponding to

(3) satisfies

k k k

0 = jio aj yn"‘j + th(l/Sjio b] yn_j, 1/Sj£0 bj tn_j) (4)

where s = s(l) and without loss of generality can be set to
1 by proper scaling of the coefficients.
Theorem 1 - Let Y be a sequence which satisfies (4),

and let ?n = {?n} be such that

k
Yo © jiC bj Yn-j = S(E)Yn (5)

where E denotes the back shifting operator. Then ?n satis-
fies (3). Conversely, if ?n satisfies (3) then there exists
a sequence Y, such that ?n =8 (E) y,, and Y satisfies (4).

This shows that Y given by the one-leg k step formula
will have similar stability properties to its corresponding
linear k-step sequence Y. In [Dahlquist, 1975] there is

described a discrete Liapunov function Vs k. h which, applied

14

[

. . S
cm e T BT

[. o M

to a sequence Y, characterizes the stability of that se-
quence generated by a nonlinear system y' = f(y,t).
Let
k k

Ve,k,n, (¥n) =i§1 jil 9ij Yne1-i, Yne1-3
where G is a positive definite, k by k symmetric matrix. The
structure of G assures that VG,k,h 1S positive definite for
Yn # {0}.

Definition - The (G, k, h) domain of attraction of

(the numerical solution to) the system is all z, such that
8, x,hf%) = Vg,x,n (1) - Vg, x,n (%) £ O

where

ZO = {Z((l‘k)h),...,Z(‘h),Z(O)},

Zl = {z((l-k)h),...,zo,zl}
in the numerical case and

zl = {Z((l'k)h),...,ZO,Z(h)}

for the exact case.

Definition - The (G,k,h) stability region cf (the num-

erical solution to) the nonlinear system is all 2, such that
Va,k,n (Zo) < inf Vg oy g (Zg)
(ZOSBD)

where 9D is the boundary of the (G,k,h)-domain of attrac-
tion.

This has the following application. Rather than re-
quiring that Real <y-z, f(t,y)-f(t,z)> < 0, a connected
subset of initial values Yo is found such that y(h) will be

15

et e _ . et e i vt -a

in that subset if Y, was. This is the stability region.
This insures that the difference y(h)-z(h) is bounded since
both y(h) and z(h) are in the stability region if Yo and z,
were. If f(y,t) is autonomous, y(tn) will remain in the re-
gion as n»*». For most well-behaved functions f(y,t), the
boundary of the region around a stable point can be approxi=-
mated computationally. Once the analytic stability region
is known, the numerical stability region can be calculated
using the one-leg k-step method for the same sequence
[y((1=k)h),..., y(h), y,] to get y,. The two regions can
then be compared.

Analytically, it is possible to form a particular G,
based on the coefficients of a one-leg k step method, such
that all numerical sequences based on f(y,t) that satisfy
(2) will have a stable solution. It was shown in [Liniger
and Odeh] how to pick G for second crder two step formulas,
second order three-step formulas, and third order three-step
formulas.

It is shown below that even an arbitrary choice of the
positive definite Hermitian matrix G will generate some
usable results, and theorem 2 demonstrates that using some G
for a one-leg k step solution Yn will generate the same
stability region for the related solution ?n of the linear k
step formula for a modified &. The proof appears in [Brown

1979a] and in appendix B.

16

S TSSen TR E TS T mrmTE s, sm §F o TS E T oA s i SR T SR

Theorem 2 - If VG,k,h (Y,) =¢ for the symmetric posi-
tive definite matrix G, then there exists a symmetric, posi-
tive definite matrix &, dependent only on G and s(x), such
that Vg (2,) = c, vhere i'rn = S(E)y, are the elements of
¥, and Y.

Sufficient conditions can be developed for the exis-
tence of the (G,k,h) stability regions based on known tech-
niques such as Liapunov's direct method [Lenigk] and pro-
perty (2). An irporaiit concept in the development is the
equilibrium y*(t) of the differential function f£(y,t).
While some references define it for an initial value

y (tg) =0
in the space of the dependent variables, this is accom-
plished by an unnecessary change of variables that could be
confusing. The important point is that y*(t) satisfies
£(y"(t,),ty) be 0 at t_ = 0,

so that, if f is autonomous, then y(t) is constant, and
otherwise, the Taylor series about t, is given by y*(to) +
t-to)2 f'(z)/2 and is thus slowly varying and nearly con-
stant for t near ty-

Definition - The solution y* (t) of y' = f(y,t) for
y(ty) = 37; , such that f(yg, ty) =0, is called the equili-
brium of f(y.t).

Definition - The equilibrium of f(y,t) is said to be

asymptotically stable if there exists a t1 in (to, «) such

17

. FEEY-mstenst mmm e SWaessaesrSame,, o EessGea F EeSsr aTmE £ - SETe SR et B TS T B FE T T AT v =

that for every ¢>0 there exists d; =4, (e,t;) > 0 such that
if lyo - yS' < d,, then

lrt)-y* o< e
in [tl, »], and there exists a t, in (ty,=) and dz(t2) such
that if lyo - ygl < d;(t2) then

lin(t> =) |y(t) - y*(t)] = o,

where y(t) satisfies

y'(t) = £(y,t),

y(ty) = ¥,

Theorem 3 [Lenikg] - The equilibrium of f£(y,t) is
asymptotically stable if there exists a function v(y,t)
which is positive definite in some region D about y*(to) and
lim v(y,t) = 0 uniformly in t aslly-y*ll+ 0 there, and whose
total derivative is negative definite on D.

With this background, it can be shown that a well-
behaved f(y,t) which has a not necessarily unique Liapunov
function v(y,t) with region D implies the existence of a
(I,k,h) domain of attraction D' and stability region D'' of
both the exact solution and of a one-leg k step solution
based on a stable multi-step formula. These two theorems
are stated and proved in Appendix B and in [Brown, 1979b].

In [Dahlquist, 1978] and [Leveque et al] an algorithm
is presented for calculating a G-stability matrix given any
A-stable linear multistep method. G is guaranteed to be

positive definite and symmetric. This code is included in

18

=

ey

o T SR W SRE Bee S < o o o TS

STAN. Some notes on theoretical considerations concerning
its use are presented here. Since G can only be generated
for A-stable formulas which include the entire left complex
half-plane in their stability region, and yet only certai:.
implicit multistep methods of order no greater than two can
be A-stable, the method is not immediately useful for any
explicit and most implicit formulas. However, by considering
the modified method

r*(x) = ar(x) + bs(x)
s*(x) = cr(x) + ds(x)
then
% %
0=r(E)y, +as (E)y,
for

g = (ar + b)/(cAx + 4)
may be A-stable, even though
0= r(E)yn + As(E)yn
is not, fcr proper choice of a, b, ¢, and 4.
A further extension looks at
r{X) = r* (6x) - m(¢)s"(ox)
s**(x) = 5" (ox)
where
m(¢) = min (x = 0) Real (r (x)/s (x)).
The coefficients a, b, ¢, d, and ¢ have the following ap-
plications in the work here. If the multistep formula is

1

stable at infinity, then there exists some point m~ such

that the linear stability region includes hA such that

19

roESEr ER o= — Eerom o T

Real (hA) <« n, . whether or not the formula is stable at in-
finity, it will contain a region in the left half-plane
adjacent to 0., and we are interested in the largest stable
disk, with diameter m;, tangent to the imaginary axis at 0..
These cases are handled by setting ¢ = 1, and (a, b, ¢, d) =
(1,0,0,1) and finding m = m(1l) for the stable at infinity
case for r**, s**. For the disk case, set ¢ =1, (a,b,c,d)
= (0,1,1,0), and the diameter is -1/m(¢). Figure 2.1 il-
lustrates this for the 5% order BDF formula.

After o»staining G by these techniques, it is guaranteed
that if Yn »3 generated using (4) from

y' = £(y,t)

then

Ve, k,h (Yne1) S ¢ VYo x,n (Yn)
where

¢ if ph < m(¢)
6" ={ o((1+b(0)(uh-m(9))/(1-bo)(uh-m(¢)))*/?
if m(¢) ¢ ph < m(9) + 1/h(¢) if ph 2 m(9)
where
Real < ahf(u(y)) + bu(y)-(ahf(v(y)) + bv(y)),u(y)-v(y)>
svllu(y)-v(y)ﬂ 2
and u and v satisfy
chf(u(y)) + d(u(y)) =vy.
The term b(¢) depends on s**.

20

-

—y

C/s

I/m2

~__

Figure 2.1. Interpretation of m(¢) for methods stable
at infinity (m,) and not necessarily stable
at infinity (mz).

21

-

= i e A
e TER - e mea M S BT T " - N

|
]

However, we are interested in those initial values
corresponéing to Real < f(y)-f(z), y-z> <0, but computing
where

Ve,k,h (Y1) £ Vg, n(¥y)
G chosen as above, will show the particular numerical me:iod
to its best advantage. In the analytic case, G is chosen 8o
that.
G = {gkk =1, 9i5 = 0 otherwise}.

Since V(Y)G,k,h depends on the oss~product
<¥i, ¥ = ¥ Q¥

it is helpful to compute Q that 1s app~.: viate to the two-
dimensional subspace of the problem being solved. This is
done by computing the positive definite, symmetric matrix
that would be used as the Liapunov stability function v(y)
if only those two variables were involved. This is done by
decomposing

f(y.t) = By + g(y,t)
where B is the numerically differenced Jacobian around t =
0, y = y* the approximate equilibrium. The Q can be com-
puted so that

B'Q + QB = I

for © the transpose operator.

22

i

STAN USER MANUAL

An interactive graphics program called STability ANaly-
sis (STAN) is stored in object form on disk and can be
linked with two subroutines SOL (T, YO,YNEW,IND) and DIFFUN
(T,Y,DY). These subroutines can be written by the user or
be produced by the PASCAL program SERIES described in Chap-
ter 3. DIFFUN returns in the N-dimensioned array DY the
derivative f(y,t) given t = T, Y = y(t) an array of depen-
dent variable values. SOL returns in the N-dimensional
array YNEW the solution to y'=f(y,t) at T=t, given YO = y(0)
an N-dimensioned array of initial values at t=0. SERIES
uses recursive power series techniques for this and sets IND
> 0 if the radius of convergence is not (-1,1); if the ana-
lytic solution is known it can be programmed by the user.
STAN can also work with only a dummy routine SOL (T, YO,
YNEW, IND) which assigns YNEW(I) = YO(I), I=1,...,N, if the
analytic stability properties are never requested.

The program uses prompts to guide the user through its
execution. When the possible commands, usually strings of
no more than 10 characters, are not obvious, the command
HELP will list them. Only enough of the command to estab-
lish its unique identity need be given. Many of the com-
mands are not needed for simple jobs because the execution

of the GO command will automatically prompt the user to

23

T it e

provide the necessary information. The commands are avail=-
able to allow the user to reset his system for more compli-
cated jobs. Default values are provided for almost every
program parameter. A typical load under the NOS operating
system, given the object code of STAN and the subroutines
SOL and DIFFUN from SERIES, follows -
ATTACH, STAN.
ATTACH, SOL.
ATTACH,DIFFUN.
FTN, I=SOL, B=X.
FTN, I=DIFFUN,B=Y.
LIBRARY({IMSLLIB,PLOT10)
LOAD(STAN,X,Y)
NOGO, 2.
PLOT10 and IMSLLIB are the TEKTRONIX graphics library and
the IMSL library, respectively. 2 is the resulting load
module, to be executed.

The available commands are of three types - those that
describe the system of equations being investigated; those

describing the solution method being used, including the

analytic solution; and those describing the desired display.

These will be described here. The first group includes
INIT, CENTER, SYSTEM, NEQ, and NORM. A two-dimensional
subsystem of N-differential equations will be investigated
by holding N-2 variables constant at t=0, and varying the

other 2 "active" variables about an approximate equilibrium

24

e e e AR T e MR mg SRS

PP —

point CENTER where the derivatives of the two active vari-
ables are nearly zero. Such a point must be known in ad-
vance from analytic considerations, but the equilibrium can
be improved by using Mueller's method [Conte, de Boor] for
finding the root of 2-dimensional nonlinear function. The
commands are -
NEQ - specify N, the dimension of the system. Default is
two.
SYSTEM - specify il, i2 the two dependent variables to be
investigated. Default is il =1, i2 = 2.
INIT - set the values the N-dependent variables take at t =
0.
Default is 0.
CENTER -~ set the equilibrium point CENTER of the two-
dimensional subspace where f(y,t) = 0. When the program
prompts IMPROVE CENTER,..., a reply of YES will use the
initial value given and try to solve

fil(y,t)=0
and

fiZ(y't) = 0.

NORM - find Q such that st Q+QB=I where B is the 2 by 2
Jacobian of the system with respect to Yi1r Yio- Whenever
SYSTEM is called after the initial GO command, this is done
automatically. Calling NORM is usually not necessary unless
the stepsize H has been changed, or the initial values are
drastically changed. B is computed by differencing.

25

Commands describing the solution being used are NSTEPS,
STEPSIZE, and TYPE. These commands tell whether the ana-
lytic solution or a k-step numerical method is being used,
and what stepsize H is employed. Since the desired output
is either D' or D'', initial values of Y, and y;, such that
the function V(Y)G,k,h is decreasing, these commands are
used to set k and h. Note that one should compare the
analytic D' and D'' for the same k as the numerical method,
since D' and D'' are likely to be smaller as KH grows larger
KH < 1 is required if SOL is generated by a power series
expansion. G is picked automatically for the various numer-
ical methods, G = [gkk =1, gij = 0 otherwise] for the exact
case, so the interior of D' satisfies

<y(kh),y(kh)> < < y((k=1)h),y((k-1)h)>
for the exact solution y(t).

The commands are =
NSTEPS - set K, the number of steps in the numerical methods
being compared. When K is changed, D' and D'' for the exact
case should be recomputed. Default is 1, maximum is 10.
STEPSIZE - H, the stepsize in the independent variable, is
set. This is normally set by GO the first time, and need
not be changed unless D' is needed for various stepsizes.
TYPE - EXACT or NUMERICAL, sets indicators so that when the
GO command is given a K step numerical method and correspon-

ding matrix G are chosen.

26

- mmemmaems —F TEEm ST

B R s T ST PSR S C A

The commands that describe the display are NPOINTS,
SYMMETRIC, PARAM, and REPEAT.

NPOINTS - sets NP, the NP rays spaced at equal angular dis-
placement about CENTER in R? are generated to find the
boundaries of D' and D''. 3 < NP < 80, default 13.

SYMMETRTZ - if the system is known to be symmetric, then the
NP plotted points are concentrated in only half of R2. When
the system prompts is answered by 1, this means the system
is symmetric about Yi2= 0 (the upper half-plane is graphed);
2 means symmetry about Yi; = 0 (the right half plane is
graphed); 0 cancels the symmetric display.

PARAM - display most of the parameters that have been set.
REPEAT - repeat the last graph, allowing display limits to
be set.

The command GO initiates calculation of D' and D''. On
the first GO call, the user must supply H, then Q is com-
puted and listed. If this is a numerica! test, one of the
numerical methods in Appendix A must be chosen, or else a k
step predictor corrector (PC) is input by the user. When
asked for the predictor, enter

ags ys veer By, b0=0, bl' “oes bk'
If the number of corrector iterations is given as 0, no
corrector need be entered. Otherwise, give
S S A

The program computes G, depending on whether the corrector

27

.

§ ot s F———"

Bl

is known to be stable at infinity or not. If the approx-
imate equilibrium is not inside D, the Liapunov stability
region, then the message INVERSE REG.ON will be printed; try
a new CENTER or a different subsystem. If the system is too
irregular or too nonlinear, then the message UNABLE TO...
and a PAUSE will be printed. A carriage return will cause
the program to return to the beginning command sequence.
Choice of a different subsystem or rewriting the system of
equations may solve this problem.

After D', the domain of attraction, is computed, it can
be displayed. On the first GO call, the left, right, bot-
tom, and top values in D' are printed, and the user can
choose his display coordinates. Thereafter, these coordi-
nates can be changed or left alone. After choosing whether
to display D', one can compute and display D'' in a similar
fashion with the default coordinates being those chosen for
D'. 1In many problems, D'' may be so close to D' that only
D' need be displayed. This w:ll save a great deal of compu=-
tation. After this, the user is returned to the beginning
command sequence, but now all parameters have been initia-
lized and, after changing any of them, a new GO will proceed

faster than the first.

28

S T——————

e . O o)1+ 1ot

g

f

\.

EXAMPLE
The following set of equations form a subsystem that
models the longitudinal stability of the F4 aircraft [Stein-
metz et al] -
A = ATAN(W/U)
VZ = U2 + w2
U' = =C1*SIN ¢ - W*Q + (Cl + C2*A)VZ + C3*Q*V
W' = Cl*COS ¢ + U*Q + (C4+C5*D+C6*A) V2 + C7*Q*V
Q' = (C8+C9*(A+D))VZ + Cl0*W'/U + Cl1*Q*V
¢' =Q
D = 2%T*.174533 if 0 < T < 0.5
0.1734533 if 0.5 < T
where U is the horizontal velocity along the aircraft body,
W is the vertical velocity perpendicular to U, A is angle of
attack, ¢ is pitch, Q is rate of change of pitch, and D is
the driving function, the stabilator deflection angle. These
equations will be put in a usable form for input to SERIES
and a sample run of STAN will illustrate t}= various fea-
tures. The constants Ci appear in the program listing in

Figure 2.2.

29

e e 1 N

Figure 2.2a Input to Series

/* C=32.16, Cl=-.5018521E-9, C2=.1192125E=-5, C3=-.42110675
E-3, C4=-.14598254E-3, C5=.46345531E-5,
C6=-.45006065E~5, C7=-~.6971899E~-3, C8=~,587215E-8,
C9=-.73872E-6, C10=.3800645E-5, (l1l1=-.7422436 E=-2*/

U.==C*SIN(THETA)=W*Q+ (C1+C2*A) * (U**2+W**2)
+C3*Q* (UX*2+Wh*2) ** 5.

W.=C*COS(THETA)+U*Q+(C4+ 5*D+CO*A) * (Uk*24Wk %2)
+CTHQ* (UkX24+Wk*2) %% 5,

Q.=(U**2+Wx*2) *(C8+C9*(A+D))+(C10*((C*COS(THETA)
+U*Q+(C4+C5*D+CO*A) * (U**2+W**2)
+CT*Q* (UX*2+4Wk*2) %% 5) /U)+C11*Q)
*(Ukh24+Wh*2) k% 5,
THETA.=Q;

A.=(U*(C*COS(THETA) +U*Q+(C4+C5*D+CO6*A) * (UX*2+Wx*2)
+CT7*Q* (U**2+Wh*2) %% 5)oW*(=-C*SIN(THETA)
~W*Q(CL+C2*A) * (U**2+Wx*2)
+CI*QX (UX*2+W**2) k% 5)) /(UR*24Wx*2);
D.=.349066;;

30

AR———

T i ORISR Rt AR

Figure 2.2b.
DIFFUN, the output from SERIES used by STAN and CLMP.
SUBROUTINE DIFFUN(T,Y,DY)
DIMENSION DY(20), Y(20)

DATA C/32.16/, Cl/-.5018521E-9/, C2/.1192125E=-5/,
C3/-.421106759E-3/, +C8/~-.587215E-8/, (C9/~-.73872E-6/,
Cl10/.3800645E-5/, Cll/~-.7422436E-2/

DY(1)==C*SIN(Y(4))-Y(2)*Y(3)+(C1+C2*Y(5))*(Y(1)**2+Y(2)**2)
+C3*Y(+3)* (Y (1)**2+Y(2)**2)** 5

DY(2)=C*COS(Y(4))+Y(1)*Y(3)+C4+C5*Y(6)+C6*Y(5))*(Y(1)**2
+Y(2)*%2+)+C7*Y (3)% (Y(1)**2+Y(2)**2)** 5

DY{3)=(Y(1)**2+Y(2)**2)*(CB+CO*(Y(5)+Y(6)))
+(CLO*((C*COS(Y(4))+Y(+1)*Y(3)
+(C4+C5%) (6)+COXY(5)) *(Y(1)**2+Y(2)**2)
+CT*Y(3)*(Y(1)**2+Y(+2)%*2)*%,5)/¥(1)
+C11*Y(3))*(Y(1)**2+Y(2)**2)** 5

DY(4)=Y(3)
DY(5)=(Y(1)*(C*COS(Y(4))+Y(1)*Y(3)+(C4+C5*)(6)
+CO*6(5)) *(Y(1)**2+Y(2)**2)+C&*Y(3)*(Y(2)**2+Y
(+2)*%2)%% 5)/Y(2))+C11I*Y(3)) *(Y(2)**2+Y(2)**2)** 5
DY(4)=Y(3)

DY(5)+(Y(1)*(C*COS(Y(4))+Y(1)*Y(3)+(C4+C5*Y(6)+C6*Y(5))
X(Y(1)**2+Y(2)**2(+CT*Y(3)*(Y(1)**2+Y(2)**2)
%.5)Y(2)(=C*SIN(Y(4))=Y)2*Y(+3)
+(CL+C2*Y(5)) *(Y(1)**2+Y(2)**2)
+C3*Y (3)% (Y(1)**2+Y(2)**2)** 5))/
+H(Y(1)**2+Y(2)**2)

DY(6)=.349066
RETURN
END

31

A
4

s

Figure 2.2C - SOL, used by STAN.
SUBROUTINE SOU(T, YO, YNEW, IND)

DIMENSION YO(20), YNEW(20), 22ZB(20), TBC(20), DW (20),
TB7(20), TBD(20), +D(20), TB8(20), TBE(20), TC7(20),
TDA(20), TBF(20), TCD(20), TC8(20),TBG+(20), TCE(20),
TC9(20), TBH(20), TBI(20), TBJ(20), TDF(20), TBK(20),
TCI+(20), TDG(20), TBL(20), TCJ(20), DA(20), TBM(20),
TCK(20), TBN(20), TCL+20, DTHETA(20), DD(20), Q(20),
TBR(20), TBS(20), TBT(20), TEN(20), U+(20), TBU(20),
TEO(20), TBV(20), W(20), TBW(20), TBX(20), THETA(20),
TBY +20), TES(20), TB2Z2(20), TBO(20), TB1(20), DQ(20),
gggggg;, DU(20), TBA+(20), A(20), TBB(20), TB6(20),

DATA C/32.16/, C1/-.5018521E-9/, C2/.1192125E-5/,
C3/~.42110675E-3/, C+4/~.14598254E-3/,
C5/.46345531E-5/, C6/~-.45006065E-5/,
C7/-.6971899+E-3/,C8/~-.587215E-8/, C9/-.73872E-6/,
C10/.3800645E-5/, Cl11/-.74224+36E-2/

EPS=1.0E~10

U(1)=Y0(1)

W(1)=Y0(2)

Q(1)=Y0(3)

THETA(1)=Y0(4)
A(1)=YO(5)=ATAN2(YO(2), YO(1))
D(1)=YO(6)

IND=0

DO 1 IIl=1,19

NII1I=III

III1=]III=-1

IF(III.EQ.1) GO TO 100

TBB(III)=0. TBA(III)+O.

DO 101 JJJ=1,I1I1
TBA(III)=TBA(III)+TBB(JJJ)*(III~JJJ)*THETA(III~-JJJ+1)

101 TBB(III)+TBB(III)~-TBB(III)=TBA(JJJ)*(III-JJJ)*THETA
(I11-3JJ+1)
TBA(III)=TBA(III)/(I1I1-1.)
TBB(III)=TBB(III)/(III-1.)
GO TO 102

100 TBA(III)=SIN(THETA(III))
TBB(III)+COS(THETA(III))

102 CONTINUE
TBC(III)=TBA(III)*C
TBD(II1)==-TBC)III)
TBD(III)=0. Do 103 JJJ=1,III

32

P ——

103

Do 103 JJJ=1,1I11
TBE(III)=TBE(III)+W(JJJ)*Q(III=-JJJ+1)
TBF(III)=TBD(III)-TBE(III)
TBG(III)=A(III)*C2

TBH(III)=TBF(III)

IF (IITI.EQ.1)TBH(III)=Cl+TBG(III)
TBI(III)=O.

Do 104 JJJ=1,I11

104

105

106

108

107

110

111

113

112
114

115

TBI(III)=TBI(II1)+U(JJJT)*U(III-JIT+1)
TBJ(111)=0.

Do 105 JJJ=1,III

TBI(II1I)=TBI(III1)+W (JJJ)*W(I1I-JJJ+1)
TBK(III)=TBI(III)+TBJI(III)TBL(III)=0.
DO 106 JJJ=1,1II
TBL(III)=TBL(III)+TBH(JJJ)*TBK(III-JJJ+1)
TBM(III)=TBF(III)+TBL(III)
TBN(III)=Q(III)*C3

IF(II1.EQ.1) Go to 107

TBR(11I)=0.

Do 108 JJJ=1,IIIl1
TBR(III)=TBR(III)+(((.5+1.)*(111-J33))
/(I1I=1.)=1.)*TBR(JJJ)*TBK+(I111=-JJJ+1)
TBR(III)=TBR(III)/TBK(1)

Go to 110

TBR(III)=TBK(III)**.5

CONTINUE

TBS(I1I)=0.

Do 111 JJJ=1,111
TBS(III1)=TBS(III)+TBN(JJJ)*TBR(III~JII+1)
TBT(III1)=TBM(III)+TBS(III)
DU(III)=TBT(III)
U(III+1)=DU(III)/FLOAT(III)

IF (I111.EQ.1) Go to 112

TBU (I1I)=0.

TBV(I11I)=0.

Do 113 JJJj=1,I1IIl.
TBV(III)=TBV(III)+TBU(JJIJ)*(I11-JJJ)*THETA(III-JJJ+1)
TBU(III)=TBU(III)-TBV(JJJ)*(I11~-JJJ)*THETA(III-JJJ+1)
TBV(III)=TBV(III1)/(I1I-1.)
TBU(III)=TBU(III)/(I11-1.)

Go to 114

TBV(II1)=SIN(THETA(III))
TBU(II11)=COS(THETA(III)]

CONT.NUE

TBW(I1I1)=TBU(III)*C

TBX(111)=0.

Do 115 JJJ=1.TII.
TBX(II1)=TBX(II11)+U(JII)*Q(II1-JIJ + 1)
TBY(I11)=TBW(III)+TBX(I11I)
TBZ(I11)=D(I11)*C5

TBO(111)=TBZ(111)

33

Nty
I .

116

117

118

122
121

120
123

124

125

126

If (II1.EQ.1)TBO(II1)=C4+TBZ(I1I)
TBL(III)=A(III)*Cé
TB2(III1)=TBO(III)+TB1(III)

TB6(I1I)=0.

Do 116 JJJ=1,111I.
TB6(III)=TB6(III)+TB2(JJJ)*TBK(III=-JJJ+1)
TB7(II1)=TBY(III)+TB6(III)
TB8(III)=Q(III)*C7

TCD(I111)=0.
TCD(II1I)=TCD(III)+TB8(JJJ)*TBR(III=-JJJT+1)
TCE(III)=TB7(III)+TCD(III)

DW(III)=TCE(III)
W(III+1)=DW(III)/FLOAT(III)
TCI(II11)=A(III)+D(III)
TCI(III)=TCI(III)*CO

TCK(III)=TCJI(III)
IF(II1.EQ.1)TCK(III)=C8+TCJI(III)
TCL(III)=0.

Do 118 JJJ=1,111
TCL(III)=TCL(III)+TBK(JJJ)*TCK(III=-JJJ+1)
IF (III.EQ.1) GO TO 120
TC7(I11I)=TCE(III)=-TC7(1)*U(III)
IF(III1.EQ.2) GO TO 121

DO 122 JJJ=2, IIIl
TC7(III)=TC7(III)=-TC7(JIJT)*U(III-JJI+1)
TC7(III)=TC7(III)/U(1)

GO TO 123

TC7(III1)+TCE(III)/U(III)

CONTINUE

TC8(III1)=TC7(III)*Cl0
TCO(III)=Q(III)*Cll
TDA(I1II)=TC8(III)+TCO(III)

TDF(I11)=0.

DO 124 JJJ=1,111
TDF(I11)=TDF(III)+TDA(JJJ)}*TBR(III1=JJJ+1)
TDG(III)=TCL(III)+TDF(III)
DQ(III1)=TDG(III)
Q(III+1)=DQ(II1)/FLOAT(III)

DTHETA(III }=Q(III)
THETA(III1+1)=DTHETA(III)/FLOAT(III)
TD2(111)=0.

DO 125 JJJ=1,I11
TD2(II11)=TD2(II1)+U(JIJ)*TCE(II1I~-JJI+1)
TEN(III)=0.

DO 126 JJJ=1,111I
TEN(III)=TEN(III)+W(JJJ)*TBT(III JJJ+1)
TEO(III)=TD2(III)-TEN(III)

IF (III.EQ.1) GO TO 127
TES(III)=TEO(III)-TES(1)*TBK(III)
IF(II1.EQ.2) GO TO 128

DO 130 JJJ=2,1I1I1

34

RrS—

130
128

127
131

132

133

134

135

TES(III)=TES(III)~-TES(JJJ)*TBK(III~JJJ+1)
TES(II{% TES(III)/TBK(1)
TES(III)

TEO(III)/TBK(III)
CONTINUE

DA(III)=TES(I1I1)
A(III+1)=DA(III)/FLOAT(III)
IF(III.GT.1)DD(1II)=0.
DD(1)=.349066
D(III+1)=DD(II1)/FLOAT(III)
IF (II1.LT.4)GO TO 1
I111=111+1

22221=0.

22222=0.

DO 132 JJJ=1,1I111
22221=22221+U(JJJ)
IF(JJJ.LT.III-4) GO TO 132
22222=22222+ABS(U{1JJ))
CONTINUE
2Z221=EPS*(ABS(2222Z1)+1.)
1F(22222.GT.22221) GO TO 1
22221=0.

22222=0.

DO 133 JJJ=1,111l
22221=22221+W(JJJ)
IF(JJJ.LT.I1I-4) GO TO 133
22222=22ZZ2+ABS(W(JJJ))
CONTINUE
222Z1=EPS*(ABS(22221)+1.)
1F(22222.GT.22221) GO TO 1
22221=0.

22222=0.

DO 134 JJJ=1,11Il1
22221=22221+Q(JJJ)
IF(JJJ.LT.II1-4) GO TO 134
22222=22222+ABS(Q(JJJ))
CONTINUE
222Z1=EPS*(ABS(222Z1)+1.)
1F(22222.GT.22221) GO TO 1
22221=0.

22222=9.

DO 135 JJJ=1,1IIIl
22221=22ZZZ21+THETA(JJJ)

IF (JJJ.LT.I111-4) GO TO 135
22222=22Z2Z2+ABS(THETA(JJJ))
CONTINUE
2ZZZ1=EPS*(ABS(22221)+1.)
1F(22222.GT.22221) GO TO 1
22221=0.

22222=C.

ne i u

GO TO

35

g e T R

———

——

e —

136

137

138
140

141

142
143

144

145

147

DO 136 JJJ=1,1I111
22221=22221+A(JJJ)

IF (JJJ.LT.I11I-4) GO TO 136
22222=222Z2+ABS(A(JJJ))
CONTINUE
22221=EPS*(ABS(22221)+1.)
1F(22222.GT.22221) GO TO 1
22221=0.

22222=0,

DO 137 JJJ+1,1111
22221=22221+D(JJJ)
IF(JJJ.LT.III-4) GO TO 137
22222=22222+ABS(D(JJJ))
CONTINUE
Z2Z2Z1=EPS*(ABS(22221)+1.)
1F(22222.GT.22221) GO TO 1
GO TO 2

1 CONTINUE

2 CONTINUE

DO 138 JJJ=1,NI1II

IF(ABS(TBK(JJJ)).LT.EPS) GO TO 138

KKK=JJJ

GO TO 140

CONTINUE

22221=0.

KKK1=KKK+1

DO 141 JJJ=KKKl,6NIII
22221=22Z21+ABS(TBK(JJJ))

I1F(22221/ABS (TBK(KKK)).GE.1)IND=INDO+l

DO 142 JJJ=1,N111

IF (ABS(U(JJJ)).LT.EPS) GO TO 142

KKK=JJJ

GO TO 143

CONTINUE

22221=0.

KKK1=KKK+1

DO 144 JJJ=KKK1l,NI1lI
22221=22Z21+ABS(U(JJJ))

IF(222Z1/ABS(U(KKK)).GE.1)IND=IND+1

DO 145 JJJ=1,NIII

IF(ABS(TBK(JJJ)).LT.EPS) GO TO 145

KKK=JJJ

GO TO 146

CONTINUE 146

22221=0.

KKK1=KKR+1

DO 147 JJJ=KKK1,6NIII
22221=22221+ABS(TBK(JJJ))

IF(222Z21/ABS (TBR(KKK)).GE.1)IND=IND+1

NITI+NZII+1

36

s o

148

150

151

152

153

154

22ZB(1)=U(NIII)

DO 148 JJJ=2,NIII
22ZB(JJJ)=U(NIII-JJJ+1)+T*22ZB(JJJ-1)
YNEW(1)=22ZB(NIII)

22ZB(1)=W(NIIi)

DO 150 JJJ=2,NIII
22ZB(JJJ)=W(NIII-JJJ+1)+(T*222B(JJJ-1)
YNEW(2)=2ZZB(NIII)

222B91)=Q(NI1I)

DO 151 JJJ=2,NIII
22ZB(JJJ)=Q(NIII-JJJ+1)+T*22ZB(JJIJ-1)
YNEW(3)+22ZB(NIII)
2ZZB(1)=THETA(NIII)

DO 152 JJJ=2, NIII

27223(JJJ)=THETA(NIII-JJJ+1)+T*22ZB(JJJ~1)

YNEW(4)=2ZZB(NIII)

22ZB(1)=A(NIII)

DO 153 JJJ=2,NIII
ZZZB(JJJ)=A(NIII-JJJ+1)+T*Z22ZB(JJJ-1)
YNEW(S)=2ZZB(NIII)

Z2Z2ZB(1)=D(NIII)

DO 154 JJJ=2,NIII
22ZB(JJJ)=D(NIII-JJJ+1)+T*Z2ZB(JJJ=-1)
YNEW(6)=22ZB(NIII)

RETURN

END

37

[

R ———

{f .. o

since SERIES only accepts input with derivatives on the left

of the =, and a limited subset of FORTRAN functions of

derivative free variables on the right, the equations for A,

V2, Vv, and D must be changed. For example, since A = ATAN(W/U),

e w1

the differential equation A' = (UW' - WU')/(U2) could be

added, but then the entire expression for W' and U' would

re—

have to replace these values (the actual output SOL of
SERIES will have these common subexpressions eliminated; the
restriction was imposed to remove the problem of sorting the

input to SERIES. Scrting often is the cause of errors in

simulation languages such as ACSL and DARE.) Further, the
original formulation includes the approximation

i A' = W'/U

so this slightly simpler expression can be used to change
from an algebraic to a differential equation. Since A(0) is
a function of W(0) and U(0) and SERIES cannot handle alge-
braic constraints, the output of SERIES in Figure 2.2 has
been modified by the lines Y(5) = ATAN2(Y(2)/Y¥(1)) in DIFFUN
and A(1)=YO(5)=ATAN2(YO(2)/YO(1l)) in SOL to provide this

algebraic constraint.

Since the stepsize H usually used in a real time simu-
lation package is h = 0.032 and we are limited to k=10
steps, stabilator deflections occucrring after 0.32 sec will
never occur, so the proper equation for D is

D' = 2.%,174533,
D(0) =0

38

V2 and V are replaced by (U*U+W*W) and SQRT(U*U+W*W) where
they occur. The resulting system of equations becomes
U' = =CL*SIN 0 = W*Q+(C1+C2*A) (U*U+WAW) + C3*Q*SQRT(U*U+W*W)
W' = C1*COS ¢ + U*Q+(C4+C5*D+C6*A) (UXU+W*W)
+ C7*Q*SQRT(U*U+W*W)
Q' = (U*U+W*W) (C8+C9*(A+D)) + C10*(C1*COS ¢ +
/U*Q+(C4+C5*D+C6*A) (UXU+WAW)) /U+11*Q*SQRT (U*U+W*W) /U
o' =Q
D' = 0.349066
A' = (C1*COS ¢ + (C4+C5*D+C6*A)(U*U+W*W) +
C7*Q*SQRT (U*U+W*W)) /U

Initial conditions at t=0 are S = 0, A = ATAN(W,U), ¢ =
5.3 = 0.003 radians, Q = 0. Typical initial conditions for
U and W are U = 660.18167, W = 5.74626.

Fig 2.3 shows an extensive terminal session to deter-
mine initial conditions and best numerical method to be used
with these equations for explicit multistep or Runge-Kutta
methods for real-time simulation. Sequence A shows initial-
ization, choice of approximate equilibrium y* = (271,360)
from an initial guess of U=660.18167 and W=5.74626. This
corresponds to the plane going slow and climbing, and is
inside the Liapunov stability region. fomputation of the
Liapunov norm matrix shows that only by is not almost zero,
so this means tha W is not sensitive to changes in U or W,
and that U is not sensitive to changes in W, either. Thus,

<y,y> = U2, Both D' and D'' are disp'ayed, but since D'' is

39

¥

o g AR

proportional to D' only D' will be computed in the fol-
lowing.

At B, numerical analysis is chosen, and D' for the ABl
(Euler) method cannot be plotted. Neither of the two Runge-
Kutta methods work either, since their stability regions are
too small, and incidentally identical.

At C, the number of steps is increased to 2, and the
exact region D' is computed for k=2. As expected, this
region is somewhat smaller, at least in the W coordinate.
At D, the 2-step Adams predictor is analyzed, and at E, the
shifted trapezoidal rule. Interestingly, this last has a
much larger D' than either AB2 or the exact D', but this is
not an advantage since we want a close match, not the lar-
gest region.

At F, a study of the analytic D' for H = 1/24, and
0.016, shows that, as expected, the larger H is, the smaller
D' is.

We can now conclude that a two-step method is needed,
and at G we look at other subsystems to pick which one. The
subsystem 2,3 again is only sensitive to its second variable
Q, but the 1,3 subsystem shows a definite dependence between
U, the horizontal velocity, and Q, rate of change of pitch.

At H, we investigate AB2 and shifted trapezoid, and
conclude that AB2 most closely follows the exact case, since
shifted trapezoid slows down even when the nose is dropping

fast (Q<0) to a greater extent than is the real case.

40

5 s A
W N v

*NYLS 404 UOLSS3S |RULWMI)
€72 aanbry

(6415864928 "8SE“SHELLBOVZY * LL2) SI ¥3IINID MIN
34ViNIIV 39 LON AVW (L Y1004 404 3INTWA
*03@339X3 SNOILWYILI 40 Y3GHNN WNWIXVW
A

GOH13W S, 43T113NW A8 YIINID 3IAQUdKI
929%£°5°£9181°099

(2 A (i)A 13S
43INID

‘0

(9)A

800°

(s YA

€60°

(v)A

0

(¢ JA

L°S

(2 YA

099

(L VA

1404 SNOILIONOD WILINI 3AID
LINI

9

SIT19VIYVA INIONIdIA ANVW mo:
aN

o [

e O

P o

o

e oo

[

(aN3 SLIWIT 3I9NYHI)

NIVOVY NOI9IY LSY1 Hdv¥9 - Llyid
SI1GVIYVA

WY4904d 40 SINTVA INFHYND LSIT - Wydvd
3719vIYVA INO NI JIYLIWWAS SI

W3790¥d IHL LVHL A4123dS - JTHLIWWAS
SISATVYNY

TYOIYIWNN 40 (LINY430) 1IvX4 - 3dAL
(o¥3z SI 1Inv43q)

$379vIYVA LN3ON3d3Q 3ZITWILINI - LINI
(2°L 1y 430)

S379YIYVA INIONId3Q 3IZITVIL.NI - LINI
(2¢L 1Iny430)

1SIYIINI 40 SI1GVIUVA A4123dS - WILSAS
(77v2 09 1S¥I4 MO 13S)

H 3ZISd31S IONVHD - 3Z1Sd3LS
(02 XwW ‘2 1InY43Q)

SNOILYND3 40 ¥3aWnN 13S(3¥) - O
ONIINIYIS41a

A9 XIHLVW WYON AONNAYIT 3HL 31NdW0D - WMON
(0¥3Z ¥0 °LINI A8 13§
SINTYA 1INY430) (Q3lvWolny 38 NvI)

NIVWOQ 40 HOYY3S Y04 ¥3ILN3D L3S - ¥IINID
(1 1Inv43a) 9 404 QNYV QOHLIW

dILSTLTINW NI Sd3LS 404 3gWNN 13S - SdILSN
(g1 170v43a) AvdSIa

JHL NI SINIOd 40 u3GWNN L3S - SINIOJN

09

d13H

134y SONVWWOD 379V1IVAY

d13H ¢

41

:
i
:
H

- e s wm = e mmal

9/8G€L€9°6LL61-

$0P98LYS Syl

ON
SLIKIT AV1dSIQ 39NVHD
88956£9° /6621

[

2182€£98¢°3¢6v¢ 200¥/291°01881-

+34Y SLIKIT @31NdW0D
SIA &

NOIO3Y ALINIGYLS AvV1dSIQ

NOILJV¥LllY J0 NIVWOQ

*600L *°69vl- “°6980¢ ‘0 ¢
(d0L°109°¥°1) SLIWIT AY1dS1Q L3S

LL60L6Y2 6E022-

‘90442 9919EV06°05602-
*3¥Y SLIKWIT Q3LNdWOI
S3A ¢

NOILIVYLLY 40 NIVWOd AVIdSIQ

JINIOYIANOD 40 SNIAVY 3AVH ITEVIMVA L

25655000088€£00°

256G500088€L00°

1

5 mcrmem of

———

(L “L-) oL Tvnb3 LON
(09t “-28L) e
£9/298192€16£00°
SI XIYIVW WHON 2 A9 2
260" &
H LndNI
09 ¢

42

[.

pat ey W .

L X — - e e

_ “19€ ‘°6SE "Lz ‘692 &
{d01°109°¥°1) S1IWI1 Av1dSIQ 135

SIA ¢

: SLIWIT AYTdSIA IINYH3
SBIZLL18Y2°09f 618L2281SL°6GE S2°0L2 9S¥SY92LSL 692
134V SLIWIT Q3LNdWOD

SIA ¢

NOILOVHLLY 30 NIVWOO AY1dSIQ

P 1 I

. QOHLIW TWITYIWAN ISOOHD
(i3]

43

i
” SIxy-(L)A 9NOTv AYYONNOG ONI4 O1 319¥NN

(
;\\\\AH EXIMLVW ALITIGVIS 9

3snvd
8y ¢
QOHLIW TWIIYIWNN ISOOHD
- 093 ¢
; WIYIWON &
SISATYNY WIIHIKAN HO LIvX3
m 3dAL &
: ‘0 ¥0996815¥€92 - €60° "0 09 0LZ
13¥Y SINTWA TYILINI
3 ‘098 "0£2 = HIINID
' yo+3001L° p0+300L°- SC+300¢€° ‘0 =S1IW1T AVdSIQ
2 L =W3LSASENS EL SINIOd AV14SIG 3O HIAWNN
« Sd31S ¥38WNNL0-302€° =3715d31S 9 -LIN
. SISATVNY LI3vX3 ,
v Wydvd ¢
3 NOI934 ALlI19viS

8

b
|
b
i

; i f “ . i + 1

"y y '

" [' - 45 m—

[T B L L] win

, , e - ' , , / ,

e o R A

‘0001 °°0001-""0000€* 0

(d01°103°¥°1) SLINIY ><4nm~m 13§

SIh ¢

SLIKIT AV1dSIQ IONVHD

L0Y9BLYS GLvbL [L6016%2°6£022- °904{2 9919EV06 05602~
*3YY SLIMIT Q31NdKOD

SIh :

NOILOVYLILY 40 NIVWOO AY1dSIQ

09
Z
(0l 01 1) Sd31S 10 YIBWNN 1NdN
SdILSN
1Iv3
SISATYNY TWOIYIWNN ¥O 13¥X3
IdAL ¢

R~ NP

R —

ON ¢
NOI93Y ALINIBYIS AvVdSIQ
NOILIV¥LLY 40 NIVWOQ

ON ¢

SLIKIT AV1dSIO IONYHD
S8L2LL18Y2709E G18L222Z1SL°6SE S2°0L2 9SVS492{GL°692
*3Y¥ S1IWIT C3LNdWOD

S ¢

NOILJOVYLLY 40 NIVWOQ AVIdSIQ
2.1 0

QOHL3W TWIIYIWNN 3ISCOHD

09 ¢

ON ¢

NOIO3Y ALINIGYLS Av1dSlC
NOILIVYLLY 40 NIVHOG

J

44

T *000L* “000t- *°00005°°0 .
| (d01°108°¥°1)SLINITY AVWISIO 13S
S

SLIWIT AYMSIO 39NYHD

62SYESEE 000/ 65/9619¥°85262- °90GL¥ 8982096 889EZ-
134¥ SLIWIT 031NdH0D

, S3A ¢
NOILIVMLLY 40 NIVWOQ AV1dSIG

, "l FEEEEEEELEELE”-
, EELECELECELEE”
IXIYLVW ALITIEYLS 9

"L ¥3ILINVIO SVH 310Y1D 318vLS 15394y 3ul
0¢

r SNOTAVY3LL HOLJIYYOD ANVW MOH
, §'Gt0° 0t g
O1-N) A= ()8 (1-N) WAa(1)B70=(0)8" (A-N}As (i)Y """ .

(1) (1)v+(M)A»(0)V VINKIO04 ¥OLII03YC LNdNI _
Mo

H GOHLIN WOIUIWMN 3SO0HD
3 09 &
oN &

NOIS3Y ALINIEVIS AVIdSIQ
NOILOWLLY 40 N1VWOQ

vt ;

) “000L* "000L- * 0000V "0 ¢
. (d01°108°4" 1) SLIWIT AV4SIQ 13S
" -, SIh & C
SLIKIT AvMSIQ 3SNYHD _
LIS2PL04°6£912 b28G286%°0V502- “90ELE SLOSLYVLL SBL6L- !
IV SLIWIT Q31040CD]
: SIA &
; NOILIVHLLY 40 NIVWOG AY14S1Q
) ‘L0
: "0
| . IXTHLIVNW ALITIGYIS 9
| 8y ¢
| GOH13W WOIHIWAN ISOOHD
| 0 @
| TWILYINON ¢ ,
! SISATVNY WIIYIWON O 1IvX3 i
s IdALl &
oN & h.f
_ NOI93Y ALITIGVIS AV1dSIO N
NOILOVULLY 40 NIVIOQ |

1

45

e

. - | [— R— .

W w s

s e A A

TN

‘000! *°0001- *°000f ‘‘0 &
(d01°108°Y* 1) SL1AIT AVIdSIC 13S
SIA ¢
S1L:17 AYWSIG 39NYHD
20816909¥°692y L/b2¥090 bE691- 90112 8BOLIVII SLLIL-
13uY S1INIT Q31NAWOD
SIA ¢
AYdSIQ
03 ¢
9999999991¢0° ¢
H 1ndul
371Sd11S ¢
19vx3
SISATVRY TWIIHIWON HO 1DVX
3dAlL
1
{0t 01 1) S4I1S 30 WITWMN LNdN]
S4AUSH ¢
N ¢
NOIOJY ALITISYLS AV I4SIQ
NOLLOVYHELY 1O NIVWOO

XS

4

46

| ..0001" *0001-""00002* "0 ¢

: {d01°108°¥4°1)S1INIT AYdSIO 13S

., : S ¢

o SLIRIT AVIISIO 39NYHD
1

9VELEPOLDS "Bl YEVEBSZISY ¥BL - £9181°964SL L021€261149°52
$38¥ SLINIT 031NdW0D

SIx ¢

NOILOVY¥ILY 40 NIVKOG AY1dSIQ

‘L 48S0{S¢¥BLOE18 -

I8SOLSYBIOEIB™~ 222¥PL1V66099° SI XIYLVW HYON Z A8 2
' U :
| AUVA 11IA S3T8VINVA "d30 2 HOIHM ;
, WILSAS &
0
,. (9)A
" 800°¢
| (s A
£60° &
. (v)7}
0é
(€)
929¢L°Gi ~
(2 JA <
£9181°099¢ ;
(1 JA
404 SNOILIONOD TWILINI 3AI9
1INl ¢ !
1 ¥22€£989BLE2LO°
¥22€€9898£€210° 20980L 18E8091000° SI XIMLVW WION Z A9 2
€2
A¥VA T1IM SITBVINVA "d30 2 HOIHM ,,
WIISAS & ,
260" &
. H 10dK]
" I71SAUS &
b Z i
,, (oL 0L 1) S431S JO yigwnn 1ndNI
Sd3ISK &

, oN &
NOI93Y ALITIBYIS AVISIO
NOLLOVHLLY JO NIYWOO

9

iy

B " & - v

N 0 i o Bt W o s 4 e B e 0 . . ., R

ON

Y i
S1IHIT AYI4S1Q IONWHD

SIPP0ZBIEL VLl 6ZLUSE60L0°ELL- LI1B1°9681Y 9919968851 SEE
S34y SLIKI G31Nde0D

S ¢

NOILIVELLY 30 RIVWOD Av1dSIQ
t o

0

‘XIYLVYM ALITIGYIS 9

a i

QOHLIN TITHINON ISOOHD

09 ¢

WIYINON &

SISATYNY TYOIHINN YO 1DVX3
AL ¢

N ¢

NOIO3¥ ALITIBVLS AVIdSIQ
NOILIVYLLY 30 WIVWOQ

H

48

ar————n

RT———

&

= wEey T =F

3. NUMERICAL SOLUTIONS

The analytic solution to the problem
y' = £(y,t) (1)
¥(0) = ¥,
is attacked numerically for a restricted set of input func-
tions f using power series methods. That is we represent
each of the y(i), i=l, ..., n for n <= 20 by a power series
expanded about t=0, and given t and Yo the value of y(i) can
be calculated.

The general method of solution is to use recurrence
relations to calculate successive terms of the power series.
Algorithms for addition, subtraction, and multiplication of
power series are well known. Recurrence relations for
division and exponentiation can be derived which calculate
the nth term of the result using only the first n terms of
the operand or operands and the first n-l terms of the
result (Knuth]. The same type of recurrence relations can
also be derived for sin, cosine, natural logarithhm, and
exponential of a power series [Gibbons] along with many
other functions. The computation of the first n terms of
any of the operations or functions mentioned above can be
accomplished in 0(n?) or less multipiications and divisions.
In addition to this restricted set of inputs, any function
which can be defined as an initial value problem with ini-

tial conditions at t=0 using the given set of functions and

49

[

operations can be added to the set of equations and conse~
quently used as part of the input.
As an example of a recurrence relation, let
i§o= ta, ti°l, B = i§6 i1
and consider
B = EXP (A) (2)
differentiation of both sides with respect to t yields

B' = EXP (A) * A'

using (2)
B':B*A'
- [] [-] '
: omby t"l=3 b t"laz ia tt7d
n=1 n=1 n=1
® o n-1
:omb t™l=3 (z by (nei) a_y) tP7
n=1 n=1 1=0
equating the coefficients of g1
nb, = nab, + ... + a; b _,, nl (3)
bo = EXP (ao)
giving us our recurrence re.ation.
The general form of the input is:
/* constantl = valuel, ..., constantn = valuen */

50

N ”

variablel.= equationl;
: (4)

variablém. = equationm;;

Constantl, ..., constantn are unique variable names and
valuel, ..., valuen are numbers. Derivatives with respect
to time, represented by variable., can appear explicitly
only on the left-hand side of the equation. If derivatives
were allowed to appear on the right-hand side the equations

would have to be ordered; however, by allowing derivatives

" only on the left-hand side no ordering is necessary by

either the program or user.

The input is read as a character string from the data
file EQIN and assembled into lexical items using a scanner.
These lexical items are then sent to a recursive descent
parser which enters them into a symbol table, and generates
quadruples as the output of each operation, i.e. a*b would
become *a b tl where the result of a*b would be assigned to
tl. Finally the codetable is examined to eliminate common
subexpressions. It is from this optimized code table that
the recurrence relations are generated, [Gries], [Barton et
all].

The output from the program consists of two FORTRAN
subroutines. The first is subroutine DIFFUN which is used
in calculation of the numerical solution by other parts of

this package and is described in more detail in Chapters 2

51

o S

and 4. The second output is subroutine SOL, the subroutine
which attempts to solve the system of equations to stated
accuracy. The constant definition is transformed into a data
statement and the ¢uadruples generated by the parser are
used to generate the recurrence relations. Enough terms (up
to 20) are calculated by SOL so that all the input variables
satisfy:

n n
3 ABS(Y(i)) < EPS*(ABS(I Y(i) + 1.))

i=n-4 1=0
as used in [Gibbons]. 7Tn general this condition states that
the last five terms are negligible compared to the sum of
the series. Obviously any alternating series will be con-
vergent using this criteria and for an arbitrary power
series this test provides some assurance that the rewt of

the terms of the series can be safely neglected since values

of t only between -1 and 1 are being considered.

52

Yo ommmEs s - -

SERIES USER MANUAL
The purpose of this part of the software package is to
generate the FORTRAN subroutines necessary to solve the
input system of first order ordinary differential equations
both analytically and numerically. As stated in (4) the

general form of the input is:

/*constantl = valuel, ..., constantn = valuen */
variablel. = equationl;
variableﬁ. = equationm;;.

The first part of the input is the constant definition
section. Any number of constants can be defined, and these
will appear in data statements in both subroutines SOL and
DIFFUN. The second part of the input is the specification
of the differential equations themselves. Up to 20 first
order equations can be input to the package at any one time.
Note that at the end of each equation a semicolon must ap-
pear except for the last equation which must be followed by
two semicolons. The file EQIN is used as the input data
file for the program.

Variable names are restricted to 9 or less alphanumeric
characters, the first of which must be alphabetic. Constant
values are restricted to 20 or fewer characters. The fol-
lowing variables names are restricted; III, JJJ, KKK. EPS,

IND, YO, YNEW, 22ZB, 22221, 22222, III1l, NIII, KKRK1l, and

EE—— - - _e et e memar el ermmarmole—— Rt
TR e I = LT T

-

ERRERTIN

3-letter variable name beginning with T whose second letter
is not A, and if a variable is used as a time derivative,
for example X., then both X and DX are also reserved. The
name T is reserved for the independent variable.

The constant definition section consists of predefined
user constants. The names constantl, ..., constantn are
unique variable names, and valuel, ..., valuen are numbers.
These numbers can be integers, simple real numbers, or
exponential real numbers. Their form is identical to FOR=-
TRAN constants, for example: 1, 10.3, -.3, =~1.976E-5, and
.43795E-15 are all valid. Recall that the constant defini-
tion becomes a data statement in the FORTRAN subroutines so
that naming conventions for FORTRAN variables must be fol-
lowed.

The differential equation specification section con-
sists of a series of first order ordinary differential equa-
tions in the independent variable T, each eguation of the
form:

variablel. = equationI;. (5)
All variables used as derivatives must be real, i.e., begin
with A..H or O0..2. Only derivatives may appear on the
left-hand side of the equations; derivatives may not apvear
explicitly on the right-hand side. The right-hand side may
contain constants from the constant definition, numbers,
variables defined by differentiation on the left hand side,

operators and predefined user functions listed below, the

54

independent variable t, parenthesis, and the terminating
semicolon. Note that the syntax of the right-hand side will
be identical to FORTRAN assignment statements.

The standard operators and 4 predefined user functions
are available in this package. These operators are +, =, /,
*, and **, Operands for these operators may be constants,
expressions, the variable t, or series (variables defined by
differentiation) with the following exceptions:

1) t, when appearing by itself may be raised only to integer
powers

2) constants may not be explicitly divided by t or powers of
t

3) series may not be explicitly divided by t raised to
powers greater than 1.

The four predefined user functions are SIN, COS, LOG (natu-
ral logarithm), and EXP. The arguments for these functions

must be completely enclosed in parenthesis and may be con-

stants, t, expressions or series variables with one excep-
tion; LOG(t) or LOG(t**power) are not allowed.

The reason for these restrictions is inherent in the
method used for solution of the problem itself. In the
first case LOG(t) does not have a power series defined about
t=o0 so it along with LOG(t**power) are not allowed; however,
LOG(1+t) or LOG(constant + t**power), e.g., are allowed. The

reason that t may be explicitly raised only to integer

55

I e

. .
g O R IR = TR T A 7 hm

v

powers is that the program considers each term to be a con-

stant or a power series. If, however the term t**1/2*SIN(t)**3/2

appears one can simply rewrite it as(t*SIN(t))**1/2*SIN(t)
which is a legal expression. In most cases this problem can
be avoided by rewriting the input. Since division by power
series with zero constant term is not defined series may not
be divided explicitly by t raised to a power. However,
division by t by itself is defined so that x/t**2 could be
rewritten as (x/t)/t, or x**3/2/t**1/2 as (x/t)**1/2%%,
Note that COS(t)/(1 + t**2) or x/(8.7 + t) are no problem.
Finally, the reason that constants may not be divided by t
is that power series do not contain terms in inverse powers
of t. To avoid this problem input can simply be rewritten,
for example (const/t)*EXP(x) would become const*(EXP(x)/t)
or (3/t**2)*COS(t) would become 3.*(COS(t)/t)/t.

Other than these restrictions on inputs stated above
two other problems exist with respect to power series opera-
tions. The first is the problem encountered with division
by powers of t; a power series used as a divisor must have a
nonzero constant term. The second problem occurs when
raising a power series to a power other than 2 in which case
the series must also have a nonzero constant term. These
probiems will show up when subroutine SOL is executed and a

division by zero error message will be generated.

56

om0

The above problems occur in only a very limited number
of equations; these are not in the author's opinion major
stumbling blocks for use of this part of the software pack-
age. Although the user may be inconvenienced by having to
rewrite some of his input due to these restrictions, the
generation of SOL and DIFFUN by this program are still a

great savings in terms of time and effort by the user.

"‘j'-...,/

57

%_
i
!
i
i

., -
“"'""‘.’/

EXAMPLES CF INPUTS
a) X' ~X=2Y+X**2*SIN(T)
Y! 5X ~(T+3)/(T+4)*Y
X(0) =Y(0) =1

input would be

X. = =X=2.*y+X**2*SIN(T);

5. %X« (T+3)/(T+4.)*Y;;
YO(1) 1., YO(2) = 1.

b) X' = Y

Y' = (S*EXP(T/TS) = 1 - 3/2%Y**2)/S + (A*Y+D)/X**2+C/X**(3*G+1)
G=1.4, A= 4.0E-2, TS = 29, D = .1456,
C = 1+D

X(0) =1, Y(0) =0

Y.

input would be
/* G = 1.4, A=4.0E2, TS=29., D=.1456, C=1.1456*/
X.=Y;
Y.=(5.*EXP(-T/TS) - 1. =(3./2.)*Y**2)/X =
(A*Y+D)/X**2 + C/X**(3.*G+1.);;
YO(1l)=1l., YO (2) = 0.
c) D=.349066T
A=ATAN(W/U)
THETA'=Q
U'=C*SIN(THETA) =W*Q + (CLl+C2*A)*(U**2+W**2)
+ C3*Q*SQURT(U**2+Wk*2)
W' = C*COS(THETA) + U*Q + (C4+CS*D+C6*A)*(U**2
+W**2) + CT*Q*SQRT(U**2+Wx*2)

58

 ————._ 0 W——

Q' = (UXx*2+Wk*2) * (C8+C9*(A+D)) + (ClO*W'/U

+ Cl1*Q) *SQRT (U**2xWkx2)

C = 32,16, C1 = ,5018521E-9, C1=0.1192125E-5,
C3=,42110675E=3, C4=.14598254E-3, C5=0.46345531E-5,
C6=.45006065E=5, C7=-.69718949E-3, C8=.587215E-8,
C9=.73872E-6, C10=0.3800645E-5, Cl1=.7422436E2,
U(0)=660.16187, W(0)=5.74626, Q(0)=0, THETA(0)=5.3.
{ Notice that W' appears on the right-hand side, ATAN is not a

user function, and A and D are not in the form of deriva-
% \ tives; however, we can substitute
D.=.349066, D(0)=0.
A.=(U*W,.W*U.)/(U**2+Wx*2), A(0)=ATAN(W(0)/U(0))
3 the input becomes
| /* €=32.16, Cl=.5018521E-9, C2=0.1192125E-5,
C3=.42110675E-3, C4=.14598254E-3, (C5=0.46345531E-5,
C6=-.45006065E-5, C7=.69718949E3, (C8=.587215ES8,
C9=.73872E=6, C100.3800645E-5, C11=.7422436E-2 */
;’ ‘ U.=C*SIN(THETA) = W*Q + (Cl+C2*A)*(U**2+Wx*2)

+ C3*Q*(U**2+w**2)**.5;

[Em—

§$ W.=C*COS(THETA) + U*Q + (C4+CS5*D+CO6*A)*(U**2+ W*2)
+ CT*Q%* (Uk*24Wk*2) k% §;

Q.=(U**2+Wx*2)*(C4+C5*D+C6*A) + (C10*(C*COC(THETA)

, + U*Q + (C4+CS*D+CE*A)*(UX*2+4WXx*2)

R | + CT*Q* (U**2+Wk*2) *% 5)/U+Cl1*Q)* (U**2+WXx*2) %X 5;
THETA.=Q;

S9

e m g e e

. f’ !' I SR R

T it R

e Rt
ot y
P ——— S T ————

PSRPSN

. v

[

- EP ==
B S T L EE E
= = = e = = EEE ST =FER T E
= o= iE-= - e — RSN ENVE -1

A.=(U*(C*COS(THETA) + U*Q + C4+C5*D+C6*A) * (U**2 +
Wh%2) + CT7XQX(U**2+Wh*2)%% 5) « WA(C*¥SIN(THETA)
- WAQ + (CL+C2H*A)X(UR*2+Wh*2) + CI*Q* (UX*2+Wk*2)
X% 5))/(Uk*24Wk*2);
D.=.349066;;.

Y0(1)=660.18167, YO(2)=5.74626, YO(3)=0.,
Y0(4)=5.3, YO(5)=ATAN(W(0)/U(0)), YO(6)=0.
60
B e e e B R e .=.E;___t:_;_ﬂ§as~—;svs~f._ﬁ-f~-:—:f -l stdmmR S

' ' L N * i .- ! - k

e e E————

OUTPUTS

There are two fortran subroutines output. The first is
subroutine DIFFUN(T,Y,DY) which appears in source form on
file DIFFUN. The variables Y and DY are 20 element arrays.
The second is subroutine SOL(T,YO,YNEW, IND) which appears on
file SOL. The variables YO and YNEW are also 20 element
arrays. One important fact to notice is that the ordering
of the input equations determines the coefficients in Y, DY,
YO, YNEW, beginning at 1 corresponding to each equation, for

example if:
X.=Y;

Y.==X;;

were entered X and DX would correspond to Y¥(1), DY(1),
YO0(1), and YNEW(l); Y and DY would correspond to the sub-
script 2 for both input and output values from the sub-
routines.

The purpose of subroutine SOL is to solve the system of
equations analytically so that the first 10 significant
digits are correct. The initial values at T=0 for the
equations in order of occurrance are p.aced in YO and along
with a value of T are input to SOL. The solution to the
equations at this specific T are output in order of occur-
rence in YNEW. The value of IND at output is zero if the
radius of convergence of all series is (-1,1) and greater
than zero if the radius of convergence of any series is less
than (-1,1). Subroutine DIFFUN is explained in chapters 2

and 4.
61

r——

"'\.»/

NOS CONTROL CARD EXAMPLES

BATCH JOB FROM CARDS
JOB.

USER.

CHARGE.

ATTACH, SERIES/UN=USERNAM.

COPYBR, INPUT, EQIN.
REWIND, EQIN.
SERIES, F=105000.
REPLACE, SOL.
REPLACE, DIFFUN.
*EOR

DATA ON CARDS
*EQOF

62

R]

\ ; INTERACTIVE SUBMISSION AFTER CREATION OF FILE EQIN
a ATTACH, SERIES/UN=USERNAM
o GET,EQIN
) SERIES, F=105000
REPLACE, SOL
REPLACE,DIFFUN
*EQF
If running interactively using the SUBMIT command add the
‘ . " JOB, USER, and CHARGE cards to the above control card se-
.) : quence.
i
|
{
I
T
o
63
4 |)

ERRORS

When a compile time error occurs due to a mistake in
the user input a dump is written by the program onto file
OUTPUT. This dump contains the following information:

a) a general statement such as ILLEGAL OPERATOR to give
the user some idea of what type of error has occurred

b) a listing of the input characters up to the point
where the error was detected

¢) a dump of the symbol table that shows which variable
and constants have already been ‘“ered

d) a listing of the codetable which shows how far into
the equations the parser has progressed.
The written messages in a) are neither completely descrip-
tive nor always correct in the description given. If the
parser becomes confused the detection of an error may occur
well after the actual error has been made. 1If, for example,
an opening parenthesis is missing in the expression the
input may still remain legal until the extra closing paren-
thesis is encountered. The best way to find a compile time
error is to study the listing b) near the end of the char-
acter listing. The symbol table and code table can also be
helpful in error detection. When looking at the listing of
the symbol table all the variable names and operators that
have been encountered or generated will be listed. Next to
each name is a number in parenthesis which tells the type of

the variable:

64

2

L E’! RS

- .
oy

o

Fuyifion i,

O A e 0 e, s |

s

gy

0) user function
1) vector or series variable
2) constant
3) operator or delimeter
4) semicolon
5) differentiated variuble
6) independent variable t.
Variables of type 1 and 5 should be declared as arrays in

subroutine SOL. The code table is listed as a series of

" quadruples describing the operations which are to be per-

formed in order of occurrance. By cross-referencing between
the code and symbol tables many logical errors will be
easier to find. Note that only the first 10 characters of
numbers will be listed. Finally if the message RUNTIME
STACK OVERFLOW appears in the user dayfile simply increase
the F parameter on the SERIES control card.

65

)

g —

[———— “

s

[EOR——

T

LIMITED EXTENSIONS

The biggest thing to remember is that this part of the
package is only a compiler to generate the FORTRAN code.
All the variables need not be defined in the input at com-
pile time when the subroutines are generated. If one has
any function which does not depend on the differentiated
variables (VAR.) one could add it to subroutine SOL or
DIFFUN after creation. This could be done using a statement
function in the subroutines themselves or by use of a func-
tion subprogram used in conjunction with SOL and/or DIFFUN.
This extension is especially useful for functions of t. As
a simple example let us redo the variable D in the previous
example C. Recall that:

D = ,349066T
one could simple define the statement function,

H(R) = .349066*R
and set D=H(T) at the beginning of the program. If any of
the functions arguments are the dependent variables then one
must define the functions as an initial value problem with

initial conditions at t=0 such as A=ATAN(W/U) in example C.

66

"

e

4. USER'S INSTRUCTIONS FOR CLMP
The user of the closed Loop Modelling package (CLMP) is
faced with the following system of equations:
yi(t) = fi(t,y(t),u(t)),i=1,2,...,n (1)
where u(t) is an input function of three possible types:
(i) Damped sine wave
(ii) Spike function
(iii) sStep function
In order to use CLMP, the user must supply the fol-
lowing information:
(i) A system of equations
(11) An interval [to, tn] on which y(t) is to be deter-
mined
(iii) Initial values for y(to)
(iv) Parameters of u(t)
(v) A fixed-step-size integration routine for solving

differential equat.ons.

A System of Equations

The system of equations (1) will be stored on file
DIFFUN by the user, as outlined in section 3.

The system will be solved for y(t) for t in (to, tn)'
where ty and t, must be specified by the user. It is also
essential that the values of y(t) at the point t = to be
specified.

67

D e — T L S e = = MBIy s

ERp—"

\'_\”‘ -~

IUTYPE = 1
IUTYPE = 2
IUTYPE = 3

o

/

Figure 4.1

Function U(T)

Graphs of various u(t) input functions.

68

Should the user wish to write his own DIFFUN routine,
. rather than use the SERIES package for this, he may do so.
' The format to use is

) SUBROUTINE DIFFUN (T,Y,DY)

[é DIMENSION Y(20), DY(20)

s —

The routine simply computes DY(1) = £; (t,y(t),u(t)),

as in (1). This routine should be compiled and stored on
{ permanent file DIFFUN, as follows:
R SAVE, LGO=DIFFUN.
7/8/9
SUBROUTINE DIFFUN
6/7/8/9

Parameters of u(t)

} The first parameter is IUTYPE. If IUTYPE = 1, then

) ’ u(t) is a damped sine wave with equation
u(t) = e *sin(pt+e)

If IUTYPE = 2, then u(t) is a spike function, and if
IUTYPE = 3, u(t) is a step function (see figure 4.1).

Other parameters which must be specified are a, 'b,
Q UMIN, and UMAX, which simply indicate the domain and range
‘ of the function u(t). It should be noted that for IUILYPE = 2
{ and IUTYPE = 3, the function u(t) is different from UMIN

ISt o+ i
—

69

e A e o =

i 1 —
|
|
s

Jree——)

S ——

only on the first one-fourth of the interval [a,b]. (i.e.,
[a,at(b-a)/4]).

Integration Routine

CLMP provides the user with 7 standard fixed-step-size
integration routines to choose from. They are:

(1) Euler's method

(2) Improved Euler (2-pt. Runge-Kutta)

(3) 2-pt. Adawms=-Basiiforth

(4) 3-pt. Runge-Kutta

(5) 4-pt. Runge-Kutta

(6) Runge-Kutta-Merson

(7) 4-pt. Adams-Moulton.

It should be noted that all of these methods are self-
starting, except for (3) and (7), which use Improved Euler
and 4-pt. Runge-Kutta to start, respectively.

Should the user desire to test his own integration
routine, instead of one of the above, he may do so. Such a
routine, however, must be called NEXTPT and have the calling
sequence:

SUBROUTINE NEXTPT(T,Y,N,STEP,KTR)

NEXTPT, when given the values for y(t), should compute
y(t+h), and return this value in y. Here, h is a fixed-
step-size specified by the variable STEP. CLMP requires
that STEP < (tn - to)/32. The array Y is dimensioned as
Y(20), and yi(t) is contained in Y(I). The variable N

70

t 'rf' e e e SEsReEE T e

denotes the number of equations in the system, and cannot
exceed 20. The variable KTR may be used for whatever pur-
pose is necessary. When the first call to NEXTPT is made
from CLMP, the value KTR=0 is transmitted and remains at
KTR=0 until changed in NEXTPT. No other information is
passed through KTR.

A sample problem and terminal session follow:

- Sample Problem
1 The following equations govern the longitudinal motion

" of a jet fighter [Steinmetz et al.]:

S

2 -
e m cin e ves _ c
0 = -g sin 6=-wqg + E?h [(CX)aT,GT + Cxu(a aT) + Cx gv]
d
. pVZSE c |
W= gocos 8 +ug+ FPE[(Cy) 5+ Cy (a-uT)+CZ§V+(CZ (6-67)]
T'°T (i q 6 .
q=9-‘2’£si§[(c) +C (a-an) +C. 9€ 4 ¢ §:+c (6 =6:7)]
| Iy m “T'GT m, T my 2V mq v Mg T
|
a, =W =-gcos 9 - qu
&:%’
o = tan-1 (g)
| VT2

71

Wb

P A A

L e | emaw e 5 R s et

where all C values (cmu, etc.) are treated as constants.
These equations were set up in DIFFUN as shown in

Figure 4.2. The input for & was taken from the function

u(t) with parameters IUTYPE, UMIN, UMAX, A, and B read as

data. The data for the test run was as follows:

N 4
TO, TN 0., 10.
(YO(1), I=1,N) 660.18167, 5.74626, .5, .09251
IUTYPE 2
N UMIN, UMAX,A,B 0., 0.174533, 0., 4.
‘ STEP .1

Here, Y(1) is y, Y(2) is w, Y(3) is Q, and Y(4) is 6.
The values for Cx ' Cz , etc., were extracted from data
o o
given in [Steinmetz, et al.], and are shown in DATA state-

ments in Figure 4.2.

72

U S —

- e I EE T AETT S

W

S wAmer o Eemwaomm oo me el o a L - B S UV -

Figure 4.2 Input differential system for CLMP.

SUBROUTINE DIFFUN(T,Y,DY) REAL Y(13,20), CY(20)

Ok e e de vk o gl ok ok ok e o ok ke e ok sk ok gk o ok ok sk ok ke ke ok ok ok sk e %k ok ok ok sk ke sk ok ok vk 3k vk Jk vk e ok ok ok ok o ok ok ok Kk ok

C* THIS REPRESENTS THE LONGITUDINAL STABILITY EQUATIONS
C* FOR A JET FIGHTER. THE INPUT FOR STABILATOR DEFLECTION
C* IS FROM THE FUNCTION U(T), WITH PARAMETERS: IUTYPE=l,
C* UMIN=-.05, UMAX=.065, A=0., B=10.

(C ok e 3k 3k 5k ok ok ok ok ok ok ok ok ok sk o ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok K ok ok ok ok

REAL M, IY.
DATA s, G, M, RHO, CBAR, AT, DT, IY/530., 32.158,
1285.5, 2.125E-3, +16.04, 0., 9., 129609/
DATA CXATDT, OXA, OXQ / . 0158, 0890, =3.92 /
DATA CZATDT, C2A, C2Q, C2p / =-.121, =3.36, -6.49, .346 /
DATA CMATDT, OMA, CMADOT, CMQ, CMD / ~-.00117, =-.106,
-1.66, -1.66, -1.66, .576/

uuU=Y(1,1)
w=Y(1,2)
Q=Y(1,3)

THETA=Y(1,4)

V=8QRT (UU*UU+W*W)
ALFA=ATAN(W/UU)
DELTA=U(T)
Cl=(.5*%Q*OBAR)/V
C2=.5*RHO*V*V*g
A=ALFA-AT
D=DELTA-DT

DY(1)=-G*SIN(THETA)=-W*Q+(02/M)*(OXATDAT+OXA*A+0XQ*01)DY(2)
=G*COS(THETA) +UU*Q+(C2/M) *(CZATDT+CZA*A+C2Q*C1+C2ZD*D)

ALFDOT=DY(2)/UU
AZ=DY(2)~-G*COS(THETA)~-Q*UU

DY(3)=(C2*CEAR/1Y)*(OMATDT=CMA*A

+ =(. 5*CMADOT*ALFDOT*CBAR) /V+CMQ*C1+CMD*D)
DY(4) = @
RETURN END
73

PRIt
I

Running a Job on CLMP

As mentioned earlier, the user may either supply the
system of equations (1) directly (sect.3) or as SUBROUTINE
DIFFUN. See Figure 4.3. Procedures for running CIMP on a
CYBER 172 computer with NOS 1 operating system are given as
follows:

Equations entered directly:
(Jobcards)

COPYBF (INPUT, TAPES6)

(CLMP commands)

6/7/8/9

Equations entered in DIFFUN:
(Jobcarbs)

FTN,B=DIFOBJ.

7/8/9

PR -

e

FIGURE 4.3 SAMPLE TERMINAL INPUT

Wﬂgg IS THE RATE OF YOUR TERMINAL IN CHARACTERS PER SECOND?
>>
ng MANY EQUATIONS ARE IN THE SYSTEM?
?
GIgE {gITIAL AND FINAL VALUES OF T
? sy *
GIVE INITIAL VALUES FOR
Y(1)

? 660.18167

Y(2)
5.74626

Y(3)

.5
Y(4)
? 5.3 WHAT TYPE OF NOISE WILL BE INPUT (U(T))?
ENTER 1. FOR DAMPED SINE WAVE
2. FOR SPIKE FUNCTION
3. FOR STEP FUNCTION

-~

%y

? 1
GIV%SMINégUM AND MAXIMUM VALUES FOR U(T)
? -.05,.0
WHAT INTERVAL WILL U(T) BE DEFINED FOR?
? 0., 10. WHAT STEP SIZE WILL BE USED FOR T?
?.1
WHICH INTEGRATION ROUTINE DO YOU WISH TO COMPARE WITH DIFSUB?
ENTER 1 FOR EULER
IMPROVED EULER
2-PT ADAMS-BASHFORTH
3-PT RUNGE=-KUTTA
4-PT RUNGE-KUTTA
RUNGE-KUTTA-MERSON
4-PT ADAMS-MOULTON

NOne LN

?6

75

e =T = e —— -

SUBROUTINE DIFFUN

END

7/8/9
(CLMP commands)
6/7/8/9
The section described simply as (CLMP commands) now
follows:
GET, A=CLMP
UVAL1B, PLOT10.
ENTER./LOAD(A,DIFOBJ)/NOGO, ABS.
LABS, ABS.
(options)
Since values are output on TAPE6 and TAPE7, the user
may desire to:
(i) Save TAPE6 and TAPE7 for further use
(ii) List TAPE6 and’or TAPE7 at the line printer.

(iii) Have the values on TAPE7 punched at the card punch
These may be accomplished by entering the following commands
in the section referred to as (options):

(i) SAVE,TAPE6, TAPE7.
(ii) FEWIND,TAPE6,TAPE7.
COPYBF, TAPE6, OUTPUT.
COPYSBY, TAPE7, OUTPUT.

76

(iii) REWIND,TAPE7.
COPYBF, TAPE7, PUNCH.
Notes

The Fourier coefficients given are of the form:
-]
£(t) = §2 + &) G oo (4 + (%-’S":‘E'-) for telty, ti] (2)
= n o

Only the first N coefficients are computed however,
where N is a suitable value between 32 and 64, chosen by

CLMP. They are stored in an array in the following fashion:

ARRAY(1l) = c0/2
ARRAY(2) = 0.
ARRAY(3) = ¢
ARRAY(4) = dl

ARRAY (2N-1) = ¢
ARRAY (2N) = d,_,
Using the construction in (2) gives not £f(t), however,

n-1

but instead, f(t+ty). Hence, in order to compute f(t) for t
in [to, tn], one must first compute t" =t - ty and then
compute

. N 2knt”
f(t) = ARRAY(l) + I ARRAY(2k-1)*COS(ARRAY(2k) + (f—:E'))

1=2 n o
Smoothing
The FORTRAN subroutine RFFT is used by CLMP to compute

Fourier coefficients for f(t). RFFT requires 64 points to

77

gt T T T i STt

'y [e o _ e e mmma g Ees s e 2= RiSemeaades . o

—

o——

S SR "~ e s

be entered as tables values, whereas CLMP will supply only N
values, with 32 < N < 64. The remaining 64~ N points are
assigned value zero. The Fourier coefficients computed by
RFFT yield a function f*(t) with the following property:

Given f(t) and the interval [to, tn],f(ti) - f*(ti) =
constant for 1 < i < and f(ti) - f*(ti) has alternating
signs for consecutive values of i. The value of the con-
stant is unknown, but, because of the alternating signs, can
be virtually eliminated graphically as follows:

Given t, and f*(ti), l<1¢n,

compute Ti = (ti + ti+l)/2 and

(F(t;) = (£7(y) + £7(ty,,))/2.
Notice that f(ti) = (f(ti) + f(ti+1))/2 as well. Then by
plotting F(ti) at t;, for 1 ¢ i < N-1, asmooth graph can
be drawn that closely approx.imates f(t).

By way of an example, examine figures 4.4, 4.5 and 4.6.
Figure 4.5 shows the graphs of Y(l) computed from two
separate sets of Fourier coefficients, before sm. hing.
Notice the undesirable effects of oscillation. Figure 4.6
shows the same graphs, after smoothing. Notice how closely
the DIFSUB and NEXTPT graphs coincide on the smooth portion
of the graph (i.e., away from discontinuities in the first
derivative). This gives a very good view of what Y(1l) looks

like on that interval.

78

R SRR

oy ot

"san|eA 141X3IN sajouap 4614 uo Jeq “gNS4IQ S9I0UIP 33| UO Jeq *Sueq
30 Jind yoea uo4 *(L)A 404 SJUBLDL380) JdLuNO bur3ordag ydeay ueg b duanby 4

P 0¢ St ot S0 L0

{ E ! o

o~
b
. w

™
,,M a .g b
| 4
W &404 SIUBLOL4J900 4BLAN0S 335 03 YSIM NOK Op A B|qeLdeA ydLypy
o

TR

)
i
_,., ,, 4
,, ..aESS.__m 240439 “141%38 Aq PU® 8NS11Q Aq uan(b
ﬁ , SIusLo1 4430~ 431404 wouy P31on43suos “{1)f j0 ydeug S°y aunb
:)
¥
t
| o
' <o
1 " N | . - PP LI |
ISIM¥3IHLO -
INIHI00WS ¥04 | Y3IN3
Py oy S _— L T — i S
o R R e ‘ £ i T

*BuLyzoous 4314E ¢

§ dinbiy uy UaALs <

)£ jo Ydeuy

9°t aungyy

* Sonuliiovunem,

[— EET . [S——

(20

.

81

[oR— L—
. i

ABK Predictors

K=1
K=2
K=3

=4
K=5

=2

K=4

BDF
K=1
K=
=3
K=4

APPENDIX A
NUMERICAL METHODS

hy'n-1

h/2(3y' [y =Y'po2)

h/12(23y'_; -16y'p_5 + 5Y'p_3)
h/24(55y',_q =59¥'y 5 * 37Y' 3 =9Y' h-a)
h/720(1901y"', _, =2774y'_; * 2616y',_5

+ 251y'_¢)

+ h/1440 (4277y"n_1 -7923y' _, +9982Y'[_3

+ 2877Y' 5 -457y' ;)

(used with ABK Predictor)

h/12(5y' + 8Y'p.y -¥'pap)
h/24(9y'y + 19¥' g =5¥'pop * ¥'p-3)
h/720(251y' + 646y', ; =264y'/_, *

'19Y'n-4)

Yp = Yp1 *
Yp = ¥p1 *
Yp = ¥p-1*
Yp = ¥p-1 *
Yp = ¥p-1 7
-1274y',_4
Yo ¥ ¥p-1
~7298Y"' 4
- Corrector
Yn ¥ ¥n-1
Yp = ¥p-1 7
Yp = ¥po1 *
Yp = Yp1 t
106y', 5
Yp = ¥p1 t
482y’ 1

h/1440(475y') + 1427y’ _; -798y', o +

-173y' 4 + 27¥'pg)

- Corrector (used with ABK Predictor)

Yn = yn-l + hy'n

3Yy = 4¥pa1 “Yp-2 *2hy'

11y, = 18yny =9pp * 2¥Yp-3 *6Y'y

25y, = 48¥,.; =36y, + 16Y,_3 =3¥,.4 +12hy',

82

L e———

3
H
H
H
i
H
H
M
H
H
H
i
t
H
i
i

K=5 137Yh = 300yn_l - 300yn_2 + 200yn_3 - 75yn_4

+ 12yn_5 + 60hy'n
K=6 147yn = 360yn_1 - 450yn_2 + 400yn_3
- }.Oyn_6 + 60hy'n

RK2 - one step
K1 = hf(yn_l + KO/Z)
Yn "¥p1 * Ky

RK4 - one step
K

0o = hilyy)

L = hi(y,_| + Ky/2)

2 = hi(y,_| + K;/2)

3 = hf(yn_1 + K,)

= Ypop * B/6 (Ry + 2K + 2K, + Ky

A RN R
| | I

<
=
1

83

- 225yn_4 + 72yn_5

WA | M

o

fmew -

APPENDIX B
THEOREM PROOFS

Theorem 1.
Theorem 2.

Existence Theorems . . .

84

R T

- Tl TR TR T

e

Definition. A linear k-step formula satisfies

&
) 0= #Z:o [0/Fn—; +hbf Gy 1, D).
Definition. A one-leg k-step formula corresponding to (9) satisfies

(10) 0= 2 8;¥p_y t+ hsf (2 blyn-l' Z byt -i) i

where s = o(1). Without loss of generality, sets = 1. R
THEOREM 1 [4]. Let Y, be a sequence which satisfies (10), and let Y, =
{;'n} be such that

ot . k
i ‘] {an Yo = Z blyn-l = 0(E)yps
where E denotes the back shifting operator. Then Y sausf' Tes (9). Conversely, if ’
Y satisfles (9), then there exists a sequence Y, such that y,, = o(E)y,, and y, -
satisfles (10). !

Proof. Without loss of generality assume the system of equations is autonomous.
Write (10) as p(E)y, = = hf(0(E)y,),n =0, 1,2, This together with (11)
implies p(E)y,, = p(E)a(E)v, = - ho(E)f(¥,), whlch 1mplies that ﬁ,, satisfies (9).

‘ For the converse, Euclid’s theorem on polynomials with no common divisors
5 implies the existence of polynomials P, Q which satisfy Ax)o(x) + Q(x)p(x) = x™,
0<m < k. Writing (9) as p(E)j, = - ho(E) f(p,,) and setting y, =
E-"(P(E)3, — hQ(EYG,) gives

o(E)y, = ET"(HEYo(E)y, + UE)EN(,)) = E~"(P(E)o(E) + QUE)p(E))Y,,
which gives o(E)y, =)‘2“. Next, set
PEYY, =~ E~"h(PE)o(E) + QEYENSG,) = = hf(,) = - hf(a(E)y,), > m,

and Y, satisfies (10), proving the converse.
! This shows that Y, given by the one-leg k-step formula will have similar
‘ stability properties to its corresponding linear k-step sequence y. Dahlquist [4] has
' [described a discrete Liapunov function Vs, , which, applied to a sequence Y,

! characterizes the stability of that sequence generated by a nonlinear system (1). Let
Von(Ya) = E$=,E;__. 184y WVpisr y”_,“), where G is a positive definite, / x !
matri... The structure of G assures that V; , , is positive for Y, # {0}.

-

0D B M i 8

Bl

.y B s e el Cem e S

A

THEOREM 2. If Vg 4 ,(Y,) = c for the symmetric positive definite matrix G,
then there exists a symmetric, positive definite matrix G, dependent only on G and
o(x), such that V&‘,',‘(f’,,) = ¢, where j, = o(E)y, are the elementsof Y, and Y ,.

Proof. Without loss of generality, consider a system of only one equation Y=
S0, 1) generating the sequence ¥, = (J,_x41s ...+ Y,). Since y, and y, are
related only by the k + 1 coefficients of a(x), replace the sequences by the vectors
Wy = (yn' APENTRERR ’yn-k-H). and w:l = 0’0' FITS TR 'yn-l-k-H)" where * is
the transpose operator. Let G’ be a (k + I) by (k + /) matrix consisting of G in the
upper / by ! partition, and O elsewhere. Then V(w,) = waGw, = ¢ > 0, and
M(w,) = wiG'w, =c.

Define S such that w,, = Sw},, thus

bo bl e bk 0 oo 0
0 b by_y b, -+ 0

S =

0 bo bl tee bk

is an / by [+ k matrix. Then since G’ is of rank / because G is positive definite,
there exists a singular value decomposition of G''= UFV* for U, V1 + kby I + k
unitary matrices, and F = (g 3) for D an ! by [diagonal matrix of singular values of
G. Thus, there exists an / by / matrix G such that G’ = $*GS. This is seen by letting
S have the singular value decomposition Uy,(Z10) V,, where I is an / by / diagonal
matrix. Then

G=U(Z"" |0V UFV*VXE" 10)*U?.
If by, by, ..., b;_, are all zero, a similar argument can be made using an /
by I + k — i matrix § where b, is the coefficient of lowest index / such that b, # 0,
and
by byy by 0 0
Ss=|0 & - b, 0
0 --- oo 0

Thus, there exists a G dependent only on o(x) such that V3, ,(Y,) = ¢ for all c,
which was to be shown.

B2

[FR—

[EE——,

1T

Theorew 4. If the equilibrium (1) of f(y, t) has a Liapunov function of the form v(y, t) = y*Qy
for a positive definite matrix Q, y* the transpose of y, and f(y, ¢) is continuously differentiable
on a convex domain D whose boundary oD is defined by v'(yo, f0) =0, and if f(y, 1) has the
property on D that (y,— 2)*QU (v, 1) = f(ys) < uly: = yrlg® where u 50 and x*Qx = |ixl¢’,
then for any point # = §(t;) in the interior of D, an (J, }, h)-stability region can be constructed
using rays from , provided & < Ayl f).

Proof. Note that the solution from 2 to fo+A is spiraling in from JD toward the
equilibrium, which is inside a circle {ly(t)~ yoh <((A))M where M = lq“%xf'(z). since the

hypotheses and (8) gives ly()~ y(i)l < exp (ulhMy(ta) - $(to)l. By definition, AV;,u(Y)) =
Iy(to’ - Iv(tall’, which occurs when 0= v(y,) = v(yo, fo) = (¥ = yo)v'(2) by the mean
value theorem. Since v'(z) =0 on the boundary 4D, along any ray from y, one can find y(#)
generated by a y, on D, provided Al < hol is small enough that the trajectory from , to j is
entirely in D,

The boundary of (I, /, h)-domain of attraction D’ can be constructed of all such rays. The

" (L1, h)-stability region D" has a boundary of all points such that V;;, = v* = r?tl'n Viua which

can also be constructed.

Tueorewm . If the hypotheses of theorem 4 are met and (9/dy)Xd°f(2)/dt*) is continuous in D,
then for any y; in the interior of D, an (1,1, h) stability region can be constructed for a pth order
one-leg k-step method, for & < ho/, f).

Proof. AV = ﬂy,ﬂq’ . iy(r, ~lh)uqz where

=3 apt+ (3 00, 3, b

and y(t)) =y, + K,h**'f®'(z), the truncation error formula. If the truncation error varies
continuously as y(t,) varies along 4D, Then two solutions y, and z generated by y, 2o on 9D
have the property that y~»2 uniformly as yy—=2, and a smooth curve 4D’ exists on the
boundary of the (I,/, h)-domain of attraction. Similar arguments show the existence of the
(1, 1, h)-stability region.

B3

10.

12.

13.

REFERENCES

Ames, W. F., Numerical Methods for Partial Differ-
ential Equations, n ition, cademic ress,

Barton, D., I. M. Willers, R. V. M. Zahar, The Auto-
matic Solution of Systems of Ordinary Differential
Equations by the Method of Taylor Series, Comp., J. 14,
pp. 243-248 (1972).

Brown, R. L., Stability of Sequences Generated by Non-
%1ge?r ;gfferential Systems, Math. Comp. 33, pp. 637-
4 19 .

Brown, R. L., Stability Analysis of Nonlinear Differ-
ential Sequences Generated Numerically, Int. J. Comp.
Math with Appl. 5, pp. 187-192 (1979).

Conte, S. D. and C. de Boor, Elementary Numerical Ana-
1 5153 An Algorithmic Approach, cGraw-Hill, Y.

Dahlquist, G., On Stability and Error Analysis for
stiff Non-Linear Problems, Report NA-7508, Dept. of
Information Processing, Royal Inst. of Technology,
Stockholm (1975).

Dahlquist, G., G-Stability is Equivalent to A-Stabil-
ity, BIT 18, pp. 384-401 (1978).

Gear, C. W., Numerical Initial Value Problems in Ordi-
rary Differential Equations, rPrentice-Hall, Englewood
Clifis, N.J. (1971).

Gibbons, A. A., A Program for the automatic Integra-
tion of Differential Equations Using the Method of
Taylor Series, Comp. J. 3, pp. 108-111 (19--).

Gries, D., Compiler Construction for Digital Com=-

ﬁuters{ wiley, N.Y. (197I). II. ~ Jeltsch, g. and O.
evanlinna, Largest Disk of Stability of Explicit

Runge-Kunta Methods, BIT 18, pp. 500~502 (1978).

Knopp, K. Infinite Sequences and Series, Dover, N.Y.,
(1956).

Knu;h, D. E., The Art of Computer Programming, Vol.2,
Addison-Wesley, Reading, Massachusetts EI§€§5.

88

5%5@.??,—‘" cws xveTTT L. YL
H

14,

15.

16.

17.

18.

Lehnigk, S. H., Stabilitg Theorems for Linear Motions,
Prentice-Hall, Englewoo i1ffs, N.J. .
Liniger, W. and F. Odeh, On Liapunov Stability of Stiff

Non-Linear Multi-Step Diffference Equations, AFOSR-TR-
76-1023, IBM Thomas J. Watson Research Center (1976).

Lucas, J. J. and J. V. Wait., Dare-P User's Manual,
CSRL Report #255, University of Arizona.

Smail, L. L., GLblements of the Theory of Infinite Pro-
cesses. McGraw=-Hill, N.Y. (1923).

Steinmetz, G. G., R. V. Parrish, R. L. Bowles, Longitu-
dinal Stability and Control Derivatives of a Jet
Fighter Airplane Erxtracted from Flight Test Data by
Utilizing Maximum Likelihood Estimators, Stetter, H.

J., Analysis of Discretization Methods for Ordinary
Differential Equations, Springer-Verlag, N.Y. .

89

K

e S m’

A R T R

[

BIBLIOGRAPHY

These were published as part of the research effort on

NASA g-ant NSG-1335. They appear in approximate order of
publication.

1.

Brown, R. L., Suitability of Integrators for Non-
linear Ordinary Differential Equations, presented at
?g§7Computer Science Conference, Atlanta, February 1,

Brown, R. L., Investigation of ODE Integrators using
Interactive Graphics, Proceedings of IMACS 5135051um
on Simulation Software and Numerical Methods for Dif-

I tial Equati North-Holland, 1978.

erentia gquatlons, North-Hollangq,

R. L. Brown, Evaluation of Ordinary Differential
Equation Software, BIT 18, pp. 103-105 (1978).

R. L. Brown, Stability cf Sequences Generated by Non-
Linear Differential Sequences, Math. Comp. 33, pp.
637-645 (1979).

R. L. Brown, Software Development for Stability Analy-
sis of Non-Linear Differential Systems, Working Papers-
of 1979 SIGNUM Meeting on Numerical ODE's, Urbana, II.
(1979).

R. L. Brown, Stability Analysis of Non-linear Differ-
ential Sequences Generated Numerically; Comp. and -
Math. with Appls. 5, pp. 187-192 (1979).

	1980008539.pdf
	0008A02.TIF
	0008A03.TIF
	0008A04.TIF
	0008A05.TIF
	0008A06.TIF
	0008A07.TIF
	0008A08.TIF
	0008A09.TIF
	0008A10.TIF
	0008A11.TIF
	0008A12.TIF
	0008A13.TIF
	0008A14.TIF
	0008B01.TIF
	0008B02.TIF
	0008B03.TIF
	0008B04.TIF
	0008B05.TIF
	0008B06.TIF
	0008B07.TIF
	0008B08.TIF
	0008B09.TIF
	0008B10.TIF
	0008B11.TIF
	0008B12.TIF
	0008B13.TIF
	0008B14.TIF
	0008C01.TIF
	0008C02.TIF
	0008C03.TIF
	0008C04.TIF
	0008C05.TIF
	0008C06.TIF
	0008C07.TIF
	0008C08.TIF
	0008C09.TIF
	0008C10.TIF
	0008C11.TIF
	0008C12.TIF
	0008C13.TIF
	0008C14.TIF
	0008D01.TIF
	0008D02.TIF
	0008D03.TIF
	0008D04.TIF
	0008D05.TIF
	0008D06.TIF
	0008D07.TIF
	0008D08.TIF
	0008D09.TIF
	0008D10.TIF
	0008D11.TIF
	0008D12.TIF
	0008D13.TIF
	0008D14.TIF
	0008E01.TIF
	0008E02.TIF
	0008E03.TIF
	0008E04.TIF
	0008E05.TIF
	0008E06.TIF
	0008E07.TIF
	0008E08.TIF
	0008E09.TIF
	0008E10.TIF
	0008E11.TIF
	0008E12.TIF
	0008E13.TIF
	0008E14.TIF
	0008F01.TIF
	0008F02.TIF
	0008F03.TIF
	0008F04.TIF
	0008F05.TIF
	0008F06.TIF
	0008F07.TIF
	0008F08.TIF
	0008F09.TIF
	0008F10.TIF
	0008F11.TIF
	0008F12.TIF
	0008F13.TIF
	0008F14.TIF
	0008G01.TIF
	0008G02.TIF
	0008G03.TIF
	0008G04.TIF
	0008G05.TIF
	0008G06.TIF
	0008G07.TIF
	0008G08.TIF
	0008G09.TIF
	0008G10.TIF
	0008G11.TIF
	0008G12.TIF

