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FOREWORD

This work is the result of three years' effort at

University of Virginia to assist NASA in choosing the numer-

ical integrators to be used in real time simulators far

aircraft and spacecraft. The first author was introduced to

this subject during a visit to the Institute for Computer

Applications in Science and Engineering at the NASA Langley

Research Center during Summer 1975. This was followed by a

grant NSG-2335 Troia 1976 to 1979. This report described

three interrelated software systems written under this

grant.

The principal investigator wishes to thank his co-

authors/graduate students, also students Sandra Bollinger

and Bob Athay who did some of the initial wor!c. Dr.

R. L. Bowles of NASA bath got us started and provided tech-

nical guidance along the way.

Copies of the programs for CDC equipment and IBM 360 or

370 are available from 1:he first author. For other machines,

the IBM version is almost ANSI standard.
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ABSTRPC.
f

Three computer programs for the evaluation and tasting

^	 of numerical integration formulas for use with. fixed step-
-=

size programs to solve initial value systems of ordinary

-^	 differential equations are described. SERIES, written in

PASCAL, takes as input the differential equations and pro-
=	 ^-

duces FORTRAN subroutines for the derivatives of the system

and for computing the actual solution through recursive

power series techniques. Both of these are used by STAN, a

FORTRAN program to interactively display a discrete analog

of the Liapunov stability region of any two-dimensional

^-	 subs ace of the s stem. The derivatives ma be used bP	 Y	 Y	 Y

=	 CLMP, a FORTRAN program, to test the fixed stepsize formula

-	 against a good numerical result and interactively display

-	 the solutions.

.^
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^	 1. INTRODUCTION

__.	
Consic:er the numerical solution of the problem

Y(4) = Yp	 (1)

for f : R
n+1 

-^ Rn , where f is a vector valued function of

independent variable t and the dependent variable y(t) in

__ Rn, y0 is the initial value from Rn , and y{t) is often

called the state vector. This form can be used to study a

wide variety of initial value problems including the fol-

lowing: the Method of Lines (MOL) appxoach to solving ini-
. 

_
	 tial-boundary value problems in parabolic systems of partial

.,	 differential equations [ Ames]; higher order ordinary dif-

-=	 a	 ferential equations using a change of variable

yi+1 = dl Y/dtl

__	 so that y' 3 = day/dt3 [Gear]; mixed differential and non-

;	 linear algebraic systems F(y,y',t) = 0, where F (y,y',t) is

solved by an implicit numerical method using Newton's iter-
i

ative method or similar [Gear]; and the equations of state,

^-	 including conservation laws, of an engineering simulation.
i

' A further simplification could replace the independent vari-

able t by a new element yn+1 such that Y 'n+1 = 1 ' yn+1 (4) _

0. However, this will not be used in the present analysis.

.^	 Tf (1) were a linear homogeneous equation

y' = Ay

Y( 0 ) = Yp	 (`I



^^

i.
i
i

i

i

^-

^_

^^

^.

a

then the solution would be trivial, as the following anal-

ysis shows. For a matrix A of full rank there exists an

Hermitian transformation P such that:

PAP* = D

where D is a diagonal matrix jS i^ J► i ] of the eigenvalues of

A. write (2) as

Py' = PAP* Py	 (3)

Set z(t) = Py(t) so that z '= Dz is equivalent to (2) and

remember that z is complex since the eigenvalues of A may be

complex, Then the solution of (2) is obtained from (3) as

zi (t) = exp {7^ i t ) zi (0),	 (3)

It has been customary to investigate the stability and

accuracy of numerical solutions of (1) by describing the

effect of solving ( 2) numerically, or more simply, by in-

vestigating the complex equation

S'' _ ^Y,

since ( 2) can be reduced to (4) in each component. This

linear stability analysis will be described here, and its

shortcomings pointed out, as a prelude to the description in

Chapter 2 of the mathematical foundations of software speci-

fically designed to analyze and test numerical methods on

small (< 20 dependent variables) subsystems of nonlinear

differential equations.

2
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Common numerical formulas for integrating the system

_	 F	 (1) are listed in Appendix A; they are either 1=step methods

	

_^	 Yn = ^ {Yn-1' f' tn' h)

	

((
	 or multistep methods

	

'l_	 0 = L(yn' yn-1,...,Yn-k' f ' tn' hj

	^^	 where yn = y(0+nhj + en is the approximate solution after n

	

`	 equal steps of size h in the independent variable t from the

--	 initial point (ya, 0). The global error e n, which depends

=	 on h, the function f{y,tj, and the numerical method is

	

{_	 described elsewhere [Gear, Stetter). However, the stability

analysis is reviewed here.

	

'^^	 One-step methods are typified by explicit Runge-Kutta

formulas

	

^{{	 K^ = hf (Yn-1' to-1),

	

I	 q-1	 q-1
K = hf(Yn-1 + 1 b	 K^, t + f hb ),	 (5j

-

	

^	 q	 j=0 qj 7	 n	 j=p	 qj

q = 1,...,s-1,

s-1

yn = yn-1 + q^0 gq Kq'

which attempt to approximate the Taylor series of y(t) about

tn_1 by using a linear combination of S stages.

Typical examples include the two-stage formula

^^
	

KQ = hf (Yn-1' to-1)

Kl - hf (yn+1 + ' S * KO' to-1 + h^2j

yn - yn-1 ^ K1'

3
-	 _



This and the typical four-stage Runge-Kutta formula are

given in Appendix A.

The result in the linear case is that
{

yn = (1 + h^ + (hA) 2/2 + --- (h^)p/p!)yn-1 + ^( hp+1 ) (6)

and the formula is called of error order p<s. Even if bq^

and qQ are picked so that p is as large as possible, the

coefficients are still not fully specified and an infinite

family of coefficients, in one or more parameters, results.

in the linear case, all choices of (5) result in (6), so the

linear stability analysis can be simply stated:

let en = yn - zn where y^ ^ z0 are initial values used in

the numerical solution, then the stability region S = (hl^:

lim (n-►^) en is finite). Since e(tn ) = exp (nhAt) (y0 -

z0 ), S will contain values of ha where h>0 and Re (^) < 0 in

the exact case. For (6), S will contain hA such that

Figure 1.1 shows the stability region of Runge-Kutta for-

mulas of various order, and [Jeltsch] has shown that even if

the coefficients are not picked to maximize p but rather to

maximize the radius of the largest circle in S tangent to

the imaginary axis at 0., this region is still bounded for

finite s.

In the multistep case, predictor only and piadictor-

^^	 corrector combinations are used. Predictor formulas have

4
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Figure 1.1 Stability regions of Runge-Kutta methods of
order p=1,2,3,5, (increasing area and
7 (dott;ed outline).
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Figure 1.2. Stability regions for Adams-Bashforth
methods. Method of order K is stable
inside region to the left of origin.
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^-	 the form

{	 k
^.	

yn = jll(aj y
n_ j + hbj ftYn_j • ^_j))	 C7)

^y	 after applying an appropriate predictor, an implicit correc-

for formula may be solved to ia^prove the solution yn:

k
0 = j10 a^ yn-j + hbj f(Yn- j' to-j)	 (8)

This can be rewritten ( assuming a^ _ -1.) as

yn = s + hbp f(Yn^ tn)	 (Q)

where

.,	
s = ,f (a7 Yn _j + hb j f (Yn-j' to-j)i	 (9)

^-1

doesn ' t change during the iteration. One can solve (9)

3	 iteratively by letting yn 0) = yn and solving
.	

ynl) = s + hbp f ( yni-1) , 
tn)

for i = 1, 2,...,Q where Q is either set to a constant

,-	 (ofte„ i), or chosen after some convergence criterion such

as ( yni )_ yni-1)) ^ some small value. Newton ' s method can

be u

{

sed on the function

0 = yn - s - hb0 f (yn , to )

by iterating

yni) = yni-1) - (I-hbOJn ) -1 (yni-1) -s-hbQ f(yni-i) ^ 
tn )) (10)

.	 where Jn is a cloa^: approximation to the JacGbian matrix

of/ay^y,t , .

7
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The linear stability analysis often assumes that (9) is

solved exactly, but in fact if Q, the number of corrector

iterations, is finite, this will affect the stability. If

Newton's method is used with the exact Jacobian l^, then only
i

one iteration will yield the exact solution of (9), so this

is valid in the linear case. Note that (8) is the linear,

homogeneous difference equation

k
(1-b0 ha )Yn =,f {a] + b^ ^)Yn ]

^-1	 -

and, for each particular :^, the closed-form solution can be

obtained (Gear]. This solution is of the form

Yr, = 1 { 11 wij n]-1 ) xi	 {11)
i=1 j=1

a	
where xi is one of the S < k unique roots of the polynomial

equation

k

j-^	 ]	 ]

mi is the multiplicity of the ith unique root, and 
^ij 

de-

pends on the k initial values Y4,---,yk_1. Note that yn

is increasing f any root xi > 1, and also if xi = 1

then any terms wij n]-1 x^ will increase if mi > 1. ThEre-

fore, two different solutions to (S) with init:'al values ya,

z4 define en = yn - zn , and en will be bounded for any I^

and any initial conditions if and only if X11 roots of (11)

satisfy the two conditions above i.e. the stability region

S = [hA: alI roots of (il) are less than one in norm, or on

8
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t_

the unit circle and simple. Figure 1.2 shows the stability
s

^^ regions for selected Adams-Bashforth predictors ( see Ap-

pendix A). These are plotted by allowing x = exp(i^) for

some large number of points ^ between 0 and 2n, and solving

(11) for hA in each case.

^_

	

	 If the corrector is computed by Q iterations, then (11)

becomes instead

^"	 -	 k
Y ( ^) = yp = F ((a j + hRbj) xk-j)	 {12)

j=1

y (s) = f ( (a^ + hl^b1) xk-j } + hAbO y (s-1),
j=1

s = 1,---,Q and for each x = exp (i^), there will be Q

values of ha since y (Q) is a Q degree polynomial in hA.

However, the lim (Q-^^) y (Q) = yn, the exact solution to

(11), if (12) converges at all.

However, problems of interest are not linear homo-

geneous, and therefore the linear stability analysis gives

information only about the local behavior of the related

differential equation

z' = Jn ( z -Y(t)) + f(Y(t), t)

z(tn) = yn

This behavior could change drastically for even small

changes in yn , and in many cases the eigenvalues of J n are

-^^ ^ not known unless the equations were artificially linearized

before solving. Amore useful stability analysis would try

to match the stability characteristics of the nonlinear

s

9
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. function f(y,t) by proper choice of numerical method which
E

most closely approximates those characteristics in important

,°
areas of the domain of f(y,t). This has been attempted in

the work reported here. Software has been written which

	

-^ ^	 will accept a system of up to 20 nonlinear differential

equations, specified by input equations similar to simula-

` tion languages such as DARE-P [Korn et. al.]. This will

output two subroutines. One of these, DIFFUN (T,Y,DY), will

return in the array DY(*), *=1,--,m, the derivatives evalu-

ate at independent variable t=T, dependent variable Y(*).

The other subroutine, SOL(T,YO,YNEW,INO) will return, in

YNEW(*), a series solution of the equation at t = T ^ 0

	

±	 given the initial conditions y^ in YO(*), if possible. This

is described in Chapter 3.

These routines are then used ir, the interactive gra-

phics software described in Chapter 2 which, given M-2

initial values, searches the remaining 2 -dimensional plane

about an approximate equilibrium point for a connected

region of initial values having a particular prcperty re-

lated to stability. These regions can be graphically dis-

played for both the exact and various numerical solutions.

The routine DIFFUN can also be used by the testing routine

_	 CLMP described in Chapter ^. This routine, given DIFFUN,
F^

	

F	
the initif^l values, and possibly at1 it^homogetieous input

	

`	 u(t), will di>,play the Fourier amplitude for the first Lo

1^
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harmonics for both an "ideal" solution generated by state of

the art software, and also by a chosen fixed step size

numerical method. These amplitudes can be compared graphi- 	 ^

call usin a bar	 ^y	 g	 graph, two solutions can l^c^ graphed, and

f^ the ratios of the Fourier harmani:s to the input can be
displayed. In summary, this software can be used to choose

the most appropriate of available numerical methods by

comparing stability domains for numerical solutions to the

same domains for the exact solution. This will insure that

the numerical solution is stable. Then it is possible to

verify that decision by testing for accuracy by observing

appropriate results of a numerical simulation. Each of the

following chapters outlines one stage in this sequence; the

first section of each chapter will give some relevant theo-

retical considerations, the second section will comprise a

user's manual for that segment of the software, with exam-

pies.

11
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2. STABILITY ANALYSIS OF THE

NONLINEAR INITIAL VALUE PROBLEM

.^,

	

	 The standard linear stability analysis is formula

specific and describes the behavior of a numerical formula

.	 ^_ y	applied to the complex test equation

--	 y' _ ^y,
. ^=	

y(t0) = y0.

Let En = 
[e{tn-k+1)' " '' e(tn_ 1 ), e(tn )] be the difference

^	 +

sequence for y(tn ) -z(tn ) where each solves the test equat^_^r,

for a different initial value y0 , z 0 . Then e(tn) - (y0 -

z 0 )exp(At) is non-increasing in norm for Real (^) < 0. Such

a condition is called stability. It is desirable for the

i	 numerical solution yn to be stable if the true solution is

stable, so for a given stepsize h, one finds all complex A

such that any numerical sequence En - den-k+1' " '' en-1' en ]	 '

has the property I e i+1 I < , ei I for all i, where

ei = yi - zi , the difference between the numerical solution

sequences with initia] values y0 , z0.
a

For Euler's formula, yn = (1 + hA) yn_ 1 , hence the

^ numerical solution is stable for `1 + hAf < 1. For multi-

step formulas, linear stability is characterized by the

generating polynomials

i=0

	

k	 k-i

	

s(x) = ^	 bi x	 (1)
i=1

12



whore r and s have no common divisors. The region of linear

stability is all h^ such that r(x) + hl^ s(x) has all roots

inside the unit circle, or on the unit circle and simple.

For Euler ' s formula, the r(x) + hA s ( x) is (-x+1)+ h^.

Since this analysis is formula specific, to investigate the

formula's effect on an actual f(y,t) one considers all the

eigenvalues A i of the Jacobian matrix ef(y,t)/2 y; if all h1^i

are inside the stability region for all y n , to of interest,

then the numerical solution will be stable. Insuring that

such a condition holds is usually not desirable and often

not possible.

To develop a stability analysis for nonlinear f(y,t)

let f(y,t) have the property

Real < y-z, f(y t)-f(z,t)> < ^ I) y-zII 2	(2)

for all t,y, and z of interest. Here <u,v> = y t Qv for some
2

positive definite Hermitian matrix Q, and ^Iul^ 	 _ <u,u>.

Then for any two solutions y(t), z(t) = y(t)-e(t), e(t)

^^	 satisfies

deft)/dt = f(y(t),t) - f(z(t),t)

and (2) implies that

d I,e(t)II L /dt = 2 Real < e(t),de(t)/dt> < 2N ,Ie(t)II z and

thus

e(t) < exp(^at) e(t0)

^^.	 which is non-increasing ^^r u < 0.

However, (2) is again a condition that cannot be easily

verified, so a concept relating the true solution sequence

13



!.	 -.	 __	 _ --_ . r _a-, ^ .^_ ^ _-.^:,-.^	 ^	 _

i

	

	 Y(tn) to the computed solution sequence Y n is presented

here. The following definitions and theorem are helpful.

_^

	

	 They occur in (Dahlquist, 1978] and the theorem proof is

presented in [Brown, 1979a] and is reproduced in Appendix B.

^_	 Definition - a linear k step formula satisfies

k
0 = ^	 aj Yn_j + hbj f(Yn-j' to-j)	 (3)

-	 j =0

1

Definition - a one lei k step formula corresponding to

(3) satisfies

k	 k	 k
0 = ^ a^ y	 + hsf(1/s ^	 b^ y	 ljs ^ b^ t	 ) (4)

j=0 7 n-j	 ^=0	 ^ n- ^ 	 j=0 ^ n-j

where s = s(1) and without loss of generality can be set to
i

1 by proper scaling of the coefficients.

Theorem 1 - Let Yn be a sequence which satisfies (4),

and let Yn = { yn } be such that

k
yn = F	 bj yn_j = s ( E )Yn 	(5)

j=C

where E denotes the back shifting operator. Then Y n satis-

fies (3). Conversely, if Yn satisfies (3) then there exists

a sequence Yn such that yn = S (E) yn , and Yn satisfies (4).

This shows that Yn given by the one-leg k step formula

will have similar stability properties to its corresponding

^^

	

	 linear k-step sequence Y.	 In [Dahlquist, 1975] there is

described a discrete Liapunov function ^G,k,h which, applied

14
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	i
	 to a sequence Yn, characterizes the stability of that se-

quence generated by a nonlinear system y' = f(y,t).

Let

k k

	

^_	 VG, k, h, (Yn) =i^l j=1 gij Fyn+l-i, yn+1-j>

^ where G is a positive definite, k by k symmetric matrix. The

structure of G assures that VG,k,h 1s positive definite for

Yn ^ { ^)

Definition - The G, k, h domain of attraction of

(the numerical solution to) the system is all z Q such that

t1VG ^ k ^ h{Z^) = VG ^ k ^ h ( Z1 ) - VG ^ k ^ h (ZO ) < 0,

where

ZD = {z((1-k)h),...,z(-h),z(0)},

Z1 = {z((1-k)h),...,z^,zl}

	

i	 in the numerical case and

Z1 = {z((1-k)h),...,z0,z(h)}

for the exact case.

Definition - The G,k,h stability region cf (the num-

erical solution to) the nonlinear system is all z^ such that

VG ^ k ^ h (ZQ ) < inf	 VG ^ k ^ h (Z^)

(zQEaD}

where aD is the boundary of the (G,k,h)-domain of attrac-

tion.

This has the following application. Rather than re-

quiring that Real <y-z, f(t,y)-f(t,z)> < 0, a connected

subset of initial values y^ is found such that y(h) will be

15
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^^

in that subset if y8 was. This is the stability region.
i
1

	

;^	 This insures that the difference y(h)-z(h) is bounded since

	

`^	 both y(h) and z(h) are in the stability region if ya and z^

were. if f(y,t) is autonomous, y(tn) will remain in the re-

	

^^	 gion as n^^. For roost well-behaved functions f(y,t), the 	 _

	

^	 boundary of the region around a stable point can be approxi-

	

`	 mated computationally. Once the analytic stability region

is known, the numerical stability region can be calculated

using the one-leg k-step method for the same sequence

[y((1-k)h),..., y(h), yfl ] to get yl . The two regions can

then be compared.

Analytically, it is possible to form a particular G,

based on the coefficients of a one-leg k step method, such

that all numerical sequences based on f(y,t) that satisfy

(2) will have a stable solution. It was shown in [Liniger

and Odeh] how to pick G for second order two step formulas,

second order three-step formulas, and third order three-step

formulas.

It is shown below that even an arbitrary choice of the

positive definite Hermitian matrix G will generate some

usable results, and theorem 2 demonstrates that using some G

for a one-leg k step solution yn will generate the same

stability region for the related solution yn of the linear k

step formula for a modified ^. The proof appears in [Brown

1979a) and in appendix B.

16



Theorem 2 - If VG,k,h (Yn ) = c for the symmetric posi-

tive definite matrix G, then there exists a symmetric, posi-

tive definite matrix ^, dependent only on G and s(x), such

that VG,k,h (fin)	 c, where yn = S(E)yn are the elements of

^n and Yn.

Sufficient conditions can be developed for the exis-

tense of the (G,k,h) stability regions based on known tech-

niques such as Liapunov's direct method (Lenigk] and pro-

perty ( 2) . An ir.:purta;a concept in the development is the

equilibrium y* (t) of the differential function f(y,t).

While some references define it for an initial value

y* ( t0 ) = 0

in the space of the dependent variables, this is accom-

plished by an unnecessary change of variables that could be

confusin	 The im ortantg.

	

	 p	 point is that y (t) satisfies

f;y*(to),to) be 0 at to = 0,

so that, if f is autonomous, then y(t) is constant, and

otherwise, the Taylor series about t0 is given by y * (t0 ) +

t-t0 ) Z f'(z)/2 and is thus slowly varying and nearly con-

stant for t near t0.

Definition - The solution y * (t) of y' = f(y,t) for

y(t0 ) = y0 such that f(y^, t0 ) = 0, is called the ec^uili -

brium off ,t .

Definition - The equilibrium of f(y,t) is said to be

asymptotically stable if there exists a t l in (t0 , x) such

17
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that for every s>0 there exists dl = d1 (E,tl ) > 0 such that

i f ^ y0 - y^ ^ < dl , then

in [tl , ^], and there exists a t2 in (t0 ,^) and d2 ( t3 ) such

^_ =	 that i f I y0 - YO I < dz (t2 ) then

lim(ti ^) (y{t) - y * (t)I = 0,

where y(t) satisfies

Y(t0) = YO•

Theorem 3 ^Lenik - The equilibrium of f(y,t) is

asymptotically stable if there exists a function v(y,t)

which is positive definite in some region D about y * (t0 ) and

lim v(y,t) = 0 uniformly in t as ^I y-y* ,I -^ 0 there, and whose

total derivative is negative definite on D.

^ With this background, it can be shown that a well-

behaved f(y,t) which has a not necessarily unique Liapunov

function v(y,t) with region D implies the existence of a

(I,k,h) domain of attraction D' and stability region D " of

both the exact solution and of a one-leg k step solution

based on a stable multi-step formula. These two theorems

are stated and proved in Appendix B and in [Brown, 1979b].

In [Dahlquist, 1978] and [Leveque et al] an algorithm

is presented for calculating a G-stability matrix given any
t^

A-stable linear multistep method. G is guaranteed to be

positive definite and symmetric. This code is included in

18
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STAN. Some notes on theoretical considerations concerning

its use are presented here. Since G can only be generated

for A-stable formulas which inclu:'e the entire left complex

half-plane in their stability region, and yet only certa3:.
i

implicit multistep methods of order no greater than two can

be A-stable, the method is not immediately useful for any

explicit and most implicit formulas. However, by considering

the modified method

r (x) = ar ( x) + bs(x)

s (x) = cr(x) + ds(x)

then

for

may be A-stable, even though

0 = r(E)yn + As(E)yn

is not, fcr proper choice of a, b, c, and d.

A further extension looks at

r^x) = r * (mx) - m(s)s *(fix)

**
s (x) = s (fix)

where

m(^) = min (x = 4) Real ( r*(x)/s *(x)).

The coefficients a, b, c, d, and ^ have the following ap-

plications in the work here. If the multistep formula is

stable at infinity, then there exists some point ml such

that the linear stability region includes hA such that

19
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Real {hJ^) < ml . Whether or not the formula is stable at in-

finity, it will contain a region in the left half-plane

adjacent to 0., and w^ are interested in t:he largest stable

disk, with diameter m Z , tangent to the imaginary axis at 0..

These cases are handled by setting ^ = 1, and (a, b, c, d) _

{1,0,0,1) and finding ml = m(1) for the stable at infinity

case for r** , s ** . For the disk case, set ^ = 1, (a,b,c,d)

_ (0,1,1,0), and the diameter is -1/m(^). Figure 2.1 il-

lustrates this for the 5 th order BDF formula.

After aj7taininq G by these techniques, it is guaranteed

that if Yn ^-s generated using (4) from

then

VG,k,h (Yn+l ) < ^'^ VG,k,h (Yn)

where

^ if Nh < m(^ )

	

^' _	 ^((1+b( ^)(Nh-m{^})/(1-b4)(Nh-m(^)))1/2

if m(^) < Nh < m(^) + 1/h(^) if ^h > m(^)

where

Real < ahf(u(Y)) + bu(Y)-(ahf(v(Y)) + bv(Y)},u(Y)-v(y)>

^N II u (Y) -v (Y)II 2

and u and v satisfy

chf(u(y)) + d(u(y)) = y.

The term b(®) depends on s**.

=i
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Figure 2.1. Interpretation of m(^) for methods stable
at infinity (m l ) and not necessarily stable

at infinity (m2).
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However, we are interested in those initial va?ues

corresponc,inq to Real < f(y)-f(z), y-z> <0, but computing

where

VG^k^h (Y1 I ^ VG^k^h(Y^)

.	 G chosen as above, will show the parta.^:ular numerical mEr..rod

to its best advantage. In the analytic case, G is chosen so

that

G = (qkk = 1, qi^ = 0 otherwise}.

Since V(Y)G ^^^ h depends on tht	 ass»Product

<Yi. Y^ > = Yi QY^

it is helpful to compute Q that zs app^.: yiate to the two-

dimensional subspace of the problem being solved. This is

done by computing the positive definite, symmetric matrix

that would be used as the Liapunov stability function v(y)

if only those two variables were involved. This is done by

decomposing

f(y,t) r By + gtY,t)

where B is the numerically differenced Jacobian around t =

0, y = y* the approximate equilibrium. The Q can be com-

puted so that

BtQ+QB= I

for t the transpose operator.

I
1
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STAN USER MANUAL

An interactive graphics program called STability ANaly-

sis (STAN) is stored in object form on disk and can be

linked with two subroutines SOL (T,YO,YNEW,IND) and DIFFUN

(T,Y,DY). These subroutines can be written by the user or

be produced by the PASCAL program SERIES described in Chap-

ter 3. DIFFUN returns in the N-dimensioned array DY the

derivative f(y,t) given t = T, Y = y(t) an array of depen-

dent variable values. SQL re^urns in the N-dimensional

array YNEW the solution to y'=f(y,t) at T=t, given YO = y(0)

an N-dimensioned array of initial values at t=0. SERIES

uses recursive power series techniques for this and sets IND

> 0 if the radius of canvergence is not (-1,1); if the ana-

lytic solution is known it can be programmed by the user.

STAN can also work with only a dummy routine SOL (T,YO,

YNEW,IND) which assigns YNEW(I) = YO(I), I=1,...,N, if the
3

analytic stability properties are never requested.

^-

	

	 The program uses prompts to guide the user through its

execution. When the possible commands, usually strings of

no more than 10 characters, are not obvious, the command

HELP will list them. Only enough of the command to estab-

lish its unique identity need be given. Many of the com-

mands are not needed for simple jobs because the execution
-,.^

'	 of the GO command will automatically prompt the user to

23



^	 ^^r

_ _	
x--^.

	

-	 --	 --	
-__ -_ - - ^-.m__ -	 -	 _ --.T-.-^_

	

`_ --^__. t	 - - -	 -

provide the necessary information. The commands are avail-

able to allow the user to reset his system for more compli-

Gated jobs. Default w^iues are provided for almost every

program parameter. Atypical load under the NOS operating
i

system, given the object code of STAN and the subroutines

SOL and DIFFUN from SERIES, follows -

RTTACH,STAN.

ATTACH, SOL .

ATTAGH,DIFFUN.

FTN,I=SOL,B=X.

FTN,I=DIFFUN,B=Y.

LIBRARY(IMSLLIB,PLOT10)

LOe^D (STAN , X , Y )

NOGO,Z.

PLOT10 and IMSLLIB are the TEKTRONIX graphics library and

the IMSL library, respectively. Z is the resulting load

module, to be executed.

The available commands are of three types - those that

describe the system of equations being investigated; those

describing the solution method being used, including the

analytic solution; and those describing the desired display.

These will be described here. The first group includes

INIT, CENTER, SYSTEM, NEQ, and NORM. Atwo-dimensional

^,	 subsystem of N-differential equations will be investigated

by holding N-2 variables constant at t=0, and varying the

other 2 "active" variables about an approximate equilibrium

24



point CENTER where the derivatives of the two active vari-

	

'^	 ables are pearl zero. Such a oint must be known in ad-Y	 P

	

^;
	 vance from analytic considerations, but the equilibrium can

_-	 be improved by using Mueller's method [Conte, de Boor] for

finding the root of 2-dimensional nonlinear function. The

	^	 commands are -

NEQ - specify N, the dimension of the system. Default is

two.

SYSTEM - specify il, i2 the two dependent variables to be

investigated. Default is it = 1, i2 = 2.

INIT - set the values the N-dependent variables take at t =

	

1	 0.	
,

Default
i

CENTER
t

dimensi^

prompts

initial

i

and

is 0.

set the equilibrium point CENTER of the two-

^nal subspace where f(y,t) = 0. When the program

IMPROVE CENTER,..., a reply of YES will use the

value given and try to solve

fil(y,t) =0

NORM - find Q such that Bt Q+QB=I where B is the 2 by 2

Jacobian of the system with respect to Yil' yi2' Whenever

SYSTEM is called after the initial GO command, this is done

^- automatically. Calling NORM is usually not necessary unless

the stepsize H has been changed, or the initial values are

drastically changed. B is computed by differencing.

25
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i

Commands describing the solution being used are NSTEPS,

STEPSIZE, and TYPE. These commands tell whether the ana-

lytic solution or a k-step numerical method is being used,

and what stepsize H is employed. Since the desired output

is either D' or D ", initial values of y il and yi2 such that

the function V(Y)G,k,h is decreasing, these commands are

used to set k and h. Note that one should compare the

analytic D' and D " for the same k as the numerical method,

since D' and D " are likely to be smaller as KH grows larger

KH < 1 is required if 5OL is generated by a power series

expansion. G is picked automatically for the various numer-

ical methods, G = [gkk = 1, gi] = 0 otherwise] for the exact

case, so the interior of D' satisfies

<Y(kh),Y(kh)> < < y((k-1)h),y((k-1)h)>

for the exact solution y(t).

The commands are -

NSTEPS - set K, the number of steps in the numerical methods

being compared. When K is changed, D' and D " for the exact

case should be recomputed. Default is 1, maximum is 10.

STEPSIZE - H, the stepsize in the independent variable, is

set. This is normally set by GO the first time, and need

not be changed unless D' is needed for various stepsizes.

TYPE - EXACT or NUMERICAL, sets indicators so that when the

•	 GO command is given a K step numerical method and correspon-

ding matrix G are chosen.
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.^	 The commands that describe the display are NPOINTS,

SYNIl►+lETRI C, PARAM, and REFEAT .

NPOINTS - sets NP, the NP rays spaced at equal angular dis-

placement about CENTER in R2 are generated to find the
i.

boundaries of D' and D ". 3 < NP < 80, default 13.

SYMMETR *^ - if the system is known to be symmetric, then the

NP plotted points are concentrated in only half of R2 . When

the system prompts is answered by 1, this means the system

is symmetric about yi2 = 0 (the upper half-plane is graphed);

2 means symmetry about yil = 0 (the right half plane is

	

i

	 graphed); 0 cancels the symmetric display.

} PARAM - display most of the parameters that have been set.

?tEPEAT - repeat the last graph, allowing display limits to

be set.

The command GO initiates calculation of D' and D " . On

the first GO call, the user must supply H, then Q is com-

puted and listed. If this is a numerical test, one of the

numerical methods in Appendix A must be chosen, or else a k

step predictor corrector (PC) is input by the user. When

asked for the predictor, enter

a0 , al , ..., ak , b0=0, bl , ..., bk.

If the number of corrector iterations is given as 0, no

corrector need be entered. Otherwise, give

a0 , ..., ak , b0 , ..., bk.

	

.	 The program computes G, depending on whether the corrector
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i
1
t

^	 is known to be stable at infinity or not. If the approx-
i

imate equilibrium is not inside D, the Liapunov stability

region, then the message INVERSE REG_UIv will be printed; try

a new CENTER or a different subsystem. If the system is too

i irregular or too nonlinear, then the message UNABLE TO...

and a PAUSE will be printed. A carriage return will cause

the program to return to the beginning command sequence.

Choice cif a different subsystem or rewriting the system of

equations may solve this problem.

.	 After D', the domain of attraction, is computed, it can

be displayed. On the first GO call, the left, right, bot-

^	 tom, and top values in D' are printed, and the user can

choose his display coordinates. Thereafter, these coordi-
3

nates can be changed or left alone. After choosing whether

to display D', one can compute and display D " in a similar

_

	

	 fashion with the default coordinates being those chosen for

D'. In many problems, D " may be so close to D' that only

^- D' need be displayed. This w_^11 save a great deal of compu-

tation. After this, the user is returned to the beginning

command sequence, but now all parameters have been initia-

lized and, after changing any of them, a new GO will proceed

faster than the first.

9

t
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EXAMPLE

The following set of equations form a subsystem that

models the longitudinal stability of the F4 aircraft [Stein-

metz et al] -

A = ATAN(W/U)

VZ = Uz + W2

U' _ -C1*SIN ^ - W*Q + (Cl + C2*A)Vz + C3*Q*V

W' = C1*COS ^ + U*Q + {C4+CS*D+C6*A) V Z + C7*Q*V

Q' _ (C8+C9*(A+D))V2 + C10*W'/U + C11*Q*V

^^ = Q

D = 2*T*.174533 if 0 < T < 0.5

0.1734533 if 0.5 < T
^^

where U is the horizontal velocity along the aircraft body, 	 3 ^,

W is the vertical velocity perpendicular to U, A is angle of

attack, ^ is pitch, Q is rate of change of pitch, and D is

the driving function, the stabilator deflection angle. These

equations will be put in a usable form for input to SERIES

and a sample run of STAN will illustrate t} }s various fea-

tures. The constants Ci appear in the program listing in

Figure 2.2.
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Figure 2.2a Input to Series

F

L^	
/* C=32.16, C1=-.5018521E-9, C2=.1192125E-5, C3=-.42110675

E-3, C4=-.14598254E-3, C5=.46345531E-5,

^,	 C6=-.45006065E-5, C7=-.6971899E-3, C8=-.587215E-8,

-"	 ^`	 C9=^.73872E-6, C10= .3800645E-5, G11=-.?422436 E-2*/

U.=-C*SIN(THETA)-W*Q+(C1+C2*A)*(U**2+W**2)
i

+C3*Q*(U**2+W**2)**,5;

i

W.=C*COS(THETA) +U*Q+{C4+^5*D+C6 *A)*(U**2+W**2)

^.
Q.=(U**2+W* *2)*(C8+C9 *( A+D)) +(C10 *((C*COS ( THETA)

M	 +U*Q+(C4+CS*D+C6*A)*(U**2+W**2)

+C7*Q*(U**2+W**2)**.5}/U}+C11*Q}

--	 THETA . =Q;

A.=(U*(C*COS ( THETA) +U*Q+(C4+C5*D+C6 *A)*(U**2+W**2)

+C7*Q*(U**2+W**2 )**. 5)-W*(-C*SIN ( THETA)

-W*Q(C1+C2*A)*(U**2+W**2}

+C3*Q*(U**2+W**2)**•5))/(U**2+W**2);

^.	 D.=.349066;;
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Figure 2.2b.

DIFFUN, the output from SERIES used by STAN and CLMP.

SUBROUTINE DIFFUN(T,Y,DY)

DIMENSION DY(20), Y(20)

DATA C/32.16/, C1/-.5018521E-9/, C2/.1192125E-5/,
C3/-.421106759E-3/, tC8/-.5$7215E-8/, C9/-.73872E-6/,
C10/.3800645E-5/, C11/-.7422436E-2/

DY(1)=-C*SIN(Y{4))-Y(2)*Y(3)+(C1 +C2*Y(5))*(Y(1) **2+Y(2) **2)
+C3*Y(+3)*(Y(1)**2+Y(2)**2)**.5

DY(2)=C*COS(Y( 4))+Y(1)*Y(3)+C4+C5*Y(6)+C6*Y(5))*(Y(1)**2
+y(2)**2+)+C7*y(3)*(y{1}**2+Y(2)**2)**.5

DY^3)=(Y(1)**2+Y(2j**2)*(C8+C9*(Y(5)+Y(6)))
+(C10*((C*COS(Y(4))+Y(+1)*Y(3)
+(C4+C5*)(6)+C6*Y(5))*(Y(1)**2+Y(2)**2)
+C7*y(3) *(y(1)**2+y(+2)**2)* *•5)/Y(1)
+C11*Y(3))*{Y(1)**2+Y(2)**2)**.5

DY(4)=Y(3)

DY(5)=(Y(1)*(C*COS(Y(4))+Y(1)*Y(3)+(C4+C5*)(6)
+C6*6(5))*(Y(1)**2+Y(2)**2)+C&*Y(3)*(Y(2)**2+Y
(+2)**2)**.5)/Y(2))+C11*Y(3))*(Y(2)**2+Y(2)**2)**.5

DY(4)=Y(3)

DY(5)+(Y(1) *(C*COS(Y(4))+Y(1)*Y(3)+(C4+C5*Y(6)+C6*Y(5))
*(y( 1)**2+Y(2)**2(+C7*y(3)*(y(1)**2+Y{2)**2)
**.5)I'(2)*(-C*SIN(Y(4))-Y)2*Y(+3)
+(C1+C2*Y(5))*(Y(1)**2+Y(2)**2)
+C3*y(3)*(y(1}**2+y(2) **2)**•5))/
+(y(1) **2+Y(2) **2)

DY(6)=.349066

RETURN

END
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^^
Fiqure 2.2C - SOL, used by STAN.

g	 SUBROUTINE SOT.(T , YO,YNEW,IND)

._ ^	 DIMENSION YO(20}, YNEW ( 20), ZZZB ( 20), TBC ( 20), DW (20,
TB7(20), TBD(20), +D(20), TB8 ( 20), TBE ( 20), TC7(20,

-_	 TDA(20), TBF(20), TCD(20), TC8(20) , TBG+(20), TCE{20;
TC9(20), TBH(20), TBI(20), TBJ(20), TDF(20), TBK(20;

=^ ^. TCI+(20), TDG(20), TBL(20), TCJ(20), DA(20), TBM(20,
TCK(20), TBN(20), TCL+20, DTHETA(20), DD(20), Q(20,
TBR(20), TBS(20), TBT(20), TEN(20), U+(20), TBU(20
TEO(20), TBV(20), W(20), TBW ( 20), TBX ( 20), THETA(20
TBY +20), TES(20), TBZ(20), TBO(20), TB1(20), DQ(20,
TB2(20), DU(20), TBA+(20), A(20), TBB ( 20), TB6(20

^^	 TD2(20)
t

DATA C/32.16/, C1/-.5018521E-9/, C2/.1192125E-5/,
C3/-.42110675E-3/, C+4/- .14598254E-3/,

'	 C5/.46345531E-5/, C6/-.45006065E-5/,
C7/-.6971899+E-3/,C8/-.587215E-8/, C9/-.73872E -6I,
C10/.3800645E-5/, C11/-.74224+36E-2j

EPS=1.0E-10
U(1)=Y0(1)
W(1)=Y0{2)
Q(1)=Y0(3)
THETA(1)=Y0(4)
A(1)=YO(5)=ATAN2(YO(2), YO(1))
D(1)=Y0(6)
IND=O
DO 1 III=1,19
NIII=III

IIII=III-1
IF(III.EQ.1) GO TO 100
TBB(III) =0. TBA(III)+0.
DO 101 JJJ=I,III1
TBA(III)=TBA{III)+TBB(JJJ)*(III-JJJ)*THETA(III-JJJ +1)

101 TBB{III)+TBB(III)-TBB(III)-TBA(JJJ)*(III-JJJ)*THETA
(III-JJJ+1)
TBA(III)=TBA(III)/(III-1.)
TBB(III)=TBB(III)/(III-1.)
GO TO 102

100 TBA(III)=SIN(THETA(III))
TBB(III)+CO5(THETA(III)j

102 CONTINUE
TBC(III)=TBA(III)*C
TBD(III)^-TBC)III)
TBD(III)=0. Do 103 JJJ=I,III
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. (	 Do 103 JJJ=I,III
103 TBE(III)=TBE(III)+W(JJJ)*Q(III-JJJ+1)

TBF(III) =TBD(III) -TBE(III)
TBG(III}=A(III)*C2
TBH(III) =TBF(III)
IF (III.EQ.1)TBH(III)=C1+TBG(III)
TBI(III)=0.

^	 Do 104 JJJ=I,III
^^	 104 TBI(III)=TBI(III)+U(JJJj*U(III-JJJ+1j

TBJ(III)=0.
Do 105 JJJ=I,III

j	 105 TBJ(III)=TBJ(III)+W (JJJ)*W(III-JJJ+1)
TBK(III)=TBI(III)+ZBJ(III)TBL{III)=0.
DO 106 JJJ=I,III

106 TBL(III)=TBL(III)+TBH(JJJ)*TBK(III-JJJ+1)
TBM(III)=TBF(III)+TBL(III)
TBN(III)=Q(III)*C3
IF(III.EQ.1) Go to 107
TBR(III)=0.
Do 108 JJJ=I,III1

10$ TBR(III)=TBR(III)+(((.5+1.)*(III-JJJ))
/(III-1.)-1.)*TBR(JJJ)*TBK+(III-JJJ+1)
TBR(III)=TBR(III}/TBK{1)
Go to 110

10? T$R(III)=TBK(III)**.5
110 CONTINUE

TBS(III)=0.
Do 111 JJJ=I,III

111 TBS(III)=TBS(III)+TBN(JJJ)*TBR(III-JJJ+1)
TBT(III)=TBM(III)+TBS(III)
DU(III)=TBT(III)
U(III+1)=DU(III)/FLOAT(III)
IF (III.EQ.1) Go to 112
TBU (III)=0.

Do 113 JJJ=I,III1.
TBV(III)=TBV(III)+TBU(JJJ}*(iII-JJJ)*THETA(III-JJJ+1)

_	 113 TBU(III)=TBU(III)-TBV(JJJ)*(III-JJJ)*THETA(III-JJJ+1}
TBV(III)=TBV(III)/(III-1.)
TBU(III)=TBU(III)/(III- 1.)

_	 Go to 114

112 TBV(III)=5IN(THETA(III))
TBU(III)=COS(THETA(III))

114 CONTINUE
'	 TBW(III)=TBU(IIIj*C

TBX(III)=0.
Do 115 JJJ=I.III.

115 TBX(III)=TBX(III)+U(JJJ)*Q(III-JJJ + 1)
TBY(III)=TBW{III)+TBX(III)
TBZ(II^)=D(III)*C5
TBO(III)=TBZ(III)
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If {III.EQ,1)TBO(III)=C4+TgZ{III)
TB1(IIi)=A(III)*Cfi
TB2(III)=TBO(III}+TB1(III)
TB6(III)=0.
Do 11b JJJ=I,III.

116 TBb(III)=TBfi(III)+TB2(JJJ)*TBK(III-JJJ+1)
TB?(III)=TBY(III}+TBfi(ITI}
TB8(III)=Q(III)*C7
TCD(III)=0.

11? TCD(III)=TCD(III)+TB$(JJJ)*TBR(III-JJJ+1}
TCE(III)=TB?{III)+TCD(III)
DW(III)=TCE(III)
W(III+1)=DW(III)/FLOAT(III)
TCI(III}=A(III)+D(III}
TCJ(III)=TCI{III}*C9
TCK(III}=TCJ(iII)
IF(III.EQ.1)TCK(III)=C8+TCJ(iII)
TCL(III}=0.
Do 118 JJJ=I,III

118 TCL(iiI)=TCL(IIi)+TBK(JJJ}*TCK(III-JJJ+1}
IF (III.EQ.1) GO TO 120
TC?(III)=TCE(III}-TC7(1}*U(III)
IF(III.EQ.2) GO TO 121

_	 DO 122 JJJ=2, III1
122 TC7(III}=TC7(III}-TC7(JJJ)*U(III-JJJ+1}

^:	 121 TC7(III)=TC7(III)/U(1)
GO TO 123

120 TC7(iII)+TCE(III)^nI(iII)
123 CONTINUE

TC6(III)=TC7(III)*C10
TC9(III}=Q(III}*C11
TDA(III)=TCB(III)+TC9(III)
TDF(III)=0.
DO 124 JJJ=I,III.=	 124 TDF(III)=TDF(III}+TDA(JJJ)*TBR(III-JJJ+1}
TDG(III)=TCL(III)+TDF(III)
DQ(III)='TDG(IIi)
Q(IIIjl)=DQ(III}/FLOAT(III)
DTHETa(III,'=Q(III)
THETA(III+1)=DTHETA(iII)/FLOPT(III)
TD2(III)=0.
DO 125 JJJ=I,III

=	 125 TD2(III)=TD2(III)+U(JJJ}*TCE(III-JJJ+1)
TEN(III)=0.
DO 126 JJJ=I,III

126 TEN(III)=TEN(III)+W(JJJ)*TBT(III JJJ+1)
'	 TEO(III)=TD2(III)-TEN(III)

IF (III.EQ.1) GO TO 127
TES(III)=TEO(III)-TES(1)*TBK(III)
IF(III.EQ.2) GO TO 126
DO 130 JJJ=2,III1
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130 TES(III)=TES{III)-TES(JJJ)*TBK(III-JJJ+1)
128 TES { III)=TES { III)/TBK(1)

GO TO 131
12? TES ( III)=TEO{III)/TBK(III)
131 CONTINUE

DA(III) =TES(III}
A(III+1)=DA(III)/FLOAT(III)
IF(III . GT.1)DD ( III)=0.
DD(1}=.349066
D{III+l) =DD(III) /FLOAT(III)
IF (III.LT.4)GO TO 1

I	 IIII=III+1
'	 ZZ2Z1=0.

zzzz2=o.
DO 132 JJJ=I,III1
ZZZZI=ZZZZI+U(JJJ}
IF{JJJ.LT .III-4) GO TO 132
ZZZZ2=ZZZZ2+ASS{Ui?JJ))

132 CONTINUE
ZZZZI=EPS*(ABS ( ZZZZ1) +1.)
IF(ZZZ22.GT.ZZ2Z1) GO TO 1
ZZZ21=0,
ZZZZ2=0.
DO 133 JJJ=1, I III
ZZZZI=ZZLZ1+W(JJJ)
IF(JJJ.LT .III-4) GO TO 133
ZZZZ2=ZZZZ2+ASS(W(JJJ})

133 CONTINUE
ZZZZI=EPS*(ABS(ZZZZ1) +1.)
IF(ZZZZ2.GT.ZZZZ1) GO TO 1
ZZZZI=O.

=	 ZZZZ2=0.
-	 DO 134 JJJ=1, I I I1

ZZZZI=ZZZZI+Q(JJJ}
IF(JJJ.LT .III-4} GO TO 134

4	 ZZZZ2=ZZZZ2+ABS(Q(JJJ})
134 CONTINUE

.=	 ZZZZI=EPS*(ABS(ZZZZ1}+1.)
IF(ZZZZ2.GT.ZZZZ1) GO TO 1
ZZZZI=O.
ZZZZ2=J.

^^	 DO 135 JJJ=1,I?I1
=	 ZZZZI=ZZZZI+THETA(JJJ)

IF (JJJ.LT .III-4) GO TO 1.35
y.	 ZZZZ2=ZZZZ2+AB5(THETA(JJJ})

135 CONTINUE
ZZZZI=EPS*(ABS(ZZZZ1)+1.)
IF(ZZZZ2.GT.ZZZZ1) GO TO 1
ZZZZI=O .
zzzz2=c.
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DO 135 JJJ=I,III1
ZZZZI=ZZZZI+A{JJJ)
IF (JJJ.LT.III .4) GO TO 135
ZZZZ2=ZZZZ2 +ABS(A(JJJ))

135 CONTINUE
ZZZZI =EPS*(ABS ( ZZZZl) +1.}
IF(ZZZZ2 . GT.ZZZZ1) GO TO 1
ZZZZI=O.
ZZZZ2=0.
DO 137 JJJ+I,III1
ZZZZI=ZZZZI+D(JJJ)
IF(JJJ.LT.III-4) GO TO 137
ZZZZ2=ZZZZ2 +ABS{D{JJJ)}

i3? CONTINUE
ZZZZI=EFS *( ABS(ZZZZ1) +1.)
IF(ZZZ22 . GT.ZZZZ1) GO TO 1
GO T4 2
1 CONTINUE
2 CONTINUE
DO 138 JJJ=I,NIII
IF(ABS ( TBK(JJJ)) . LT.EPS) GO TO 138
KKK=JJJ
CA TO 140

138 CONTINUE
140 ZZZZI=O.

KKKI=KKK+l
DO 141 JJJ=KKKl,NIII

141 ZZZZI =ZZZZI +ABS(TBK(JJJ)j
IF(ZZZZ1jABS(TBK(KKK)).GE.I)IND=INO+1
DO 142 JJJ=I,NIII
IF (ABS(U(JJJ)).LT.EPS) GO TO 142
KKK=JJJ
^0 TO 143

142 CONTINUE
143 ZZZZI=0.

KKKl=KY:K+1
DO 144 JJJ=KKKI,NIII

144 ZZZZI=ZZZZI+ABS(U(JJJ))
IF(ZZZZ1jABS ( U(KKK}} . GE.1)IND=IND+1
DO 14S JJJ=I,NIII
IF(ABS(TBk(JJJ)).LT.EPS) GO T4 14S
KKK=JJ3
GO T4 146

145 CONTINUE 145
ZZZZI=O.
KKKI=KKK+1
DO 147 JJJ=^:KKI,NIII

147 ZZZZI=ZZZZI+ABS(TBK(JJJ))
IF(ZZZZ1jABS(TBK(KKK)).GE.1)IND=IND+1
NIII+NiII+l
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ZZZB(1)=U(NIII)
DO 14$ JJJ=2,NIII

148 ZZZB(JJJ)=U(NIII-JJJ+1)+T*ZZZB(JJJ-1)
YNEW(1)=2ZZB(NIII)
ZZZB(1)=W(NIIi)
DO 150 JJJ=2,NIII

x.50 ZZZB(JJJ)=W(NIII-JJJ+1)+(T*ZZZB(JJJ-1)
YNEW(2)=ZZZB{NIII)
ZZZB91)=Q(NIII)
DO 151 JJJ=2,NIII

151 ZZZB(JJJ)=Q(NIII-JJJ+1)+T*ZZZB(JJJ -1)
YNEW(3)+ZZZB(NIII)
ZZ^B(1)=THETA(NIII)
DO 152 JJJ=2, NIII

152 Z?^'3(JJJ)=THETA(NIII-JJJ+1)+T*ZZZB(JJJ-1)
YNEW(4)=ZZZB(NIII)
ZZZB(1)=A(NIII)
DO 153 JJJ=2,NIII

153 ZZZB(3JJ)=A(NIII-JJJ+1)+T*ZZZB(JJJ-I)
YNEW(5}=ZZZB{NIII)
ZZZB(1)=D(NIII)
DO 154 JJJ=2,NIII

154 ZZZB(JJJ)=D(NIII-JJJ+1)+T*ZZZB(JJJ-1)
YNEW(6)=ZZZB(NIII)
RETURN
END
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Since SERIES only accepts input with derivatives on the left

of the =, and a limited subset of FORTRAN functions of

derivative free variables on the right, the equations for A,

V2 , V, and D must be changed. For example, since A = ATAN(W/U),

the differential equation A' _ (UW' - WU' )/(U2 ) Gould be

added, but then the entire expression for W' and U' would

have to replace these values {the actual output 50L of

SERIES will have these common subexpressions eliminated; the

restriction was imposed to remove the problem of sorting the

input to SERIES. Sorting often is the cause of errors in

simulation languages such as ACSL and DARE.) Further, the

original formulation includes the approximation

A' = W'/U

so this slightly simpler expression can be used to change

from an algebraic to a differential equation. Since A(0) is

a function of W(0) and U ( 0) and SERIES cannot handle alge-

braic constraints, the output of SERIES in Figure 2.2 has

been modified by the lines Y(5) = ATAN2 (Y(2)/Y(1)) in DIFFUN

and A ( 1)=YO(5) =ATAN2 ( YO(2)/YO ( 1)) in SOL to provide this

algebraic constraint.

Since the stepsize H usually used in a real time simu-

lation package is h = 0 . 032 and we are limited to k =10

steps, stabilator deflections occurring after 0.32 sec will

never occur, so the proper equation for D is

D' = 2.*.174533,

D(0) = 0
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Vz and V are replaced by (U*U+W*W) and SQRT (U*U+W*W) where

they occur. The resulting system of equations becomes

U' _ -C1*SIN cn - W*Q+!C1+C2*A) (U*U+W*W) + C3*Q*SQRT ( U*U+W*W)

W' = C1*COS ^ + U*Q+(C4+C5*D+C6*A)(U*U+W*W)

+ C?*Q*SQRT ( U*U+W*W)

Q' _ (U*U+W*W) (C8+C9*(A+D)) + C10*(C1*COS ^ +

/U*Q+(C4+C5*D+C6*A)(U*U+W*W))/U+11*Q*SQRT(U*U+W*W)/U

^' = Q

D' = 0.349066

A' _ (C1*COS ^ + (C4+CS*D+C6*A)(U*U+W*W) +

C7*Q*SQRT(U*U+W*W))/U

Initial conditions at t=0 are S = 0, A = ATAN(W,U), ^ _

5.3 0 = 0.093 radians, Q = 0. Typical initial conditions for

U and W are U = 660.18167, W = 5.7462b.

Fig 2 . 3 shows an extensive terminal session to deter-

mine initial conditions and best numerical method to be used

with these equations for explicit multistep or Runge-Kutta

methods for real-time simulation. Sequence A shows initial-
*

ization, choice of approximate equilibrium y = (271,360)

from an initial guess of U=660.18167 and W=5.74626. This

corresponds to the plane going slow and climbing, and is

inside the Liapunov stability region. computation of the

Liapunov norm matrix shows that only b ll is not almost zero,

so this means tha W is not sensitive to changes in U or W,

and that U is not sensitive to changes in W, either. Thus,

<y,y> = Uz . Both D' and D " are disp^ayed, but since D " is
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proportional to D' only D' will be computed in the fol-

lowing.

At B, numerical analysis is chosen, and D' for the AB1

(Euler) method cannot be plotted. Neither of the two Runge-

Kutta methods work either, since their. stability regions are

too small, and incidentally identical.

At C, the number of steps is increased to 2, and the

exact region D' is computed for k=2. As expected, this

region is somewhat smaller, at least in the W coordinate.

At D, the 2-step Adams predictor is analyzed, and at E, the

shifted trapezoidal rule. Interestingly, this last has a

much larger D' than either AB2 or the exact D', but this is

not an advantage since we want a close match, not the lar-

gest region.

At F, a study of the analytic D' for H = 1/24, and

0.016, shows that, as expected, the larger H is, the smaller

^	 D' is.

We can now conclude that a two-step method is needed,

and at G we look at other s^.^bsystems to pick which one. The

subsystem 2,3 again is only sensitive to its second variable

Q, but the 1,3 subsystem shows a definite dependence between

U, the horizontal velocity, and Q, rate of change of pitch.

At H, we investigate AB2 and shifted trapezoid, and

conclude that A82 most closely follows the exact case, since

shifted trapezoid slows down even when the nose is dropping

fast ( Q<0) to a greater extent than is the real case.
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3. NUMERIC^I, SOLUTIONS

The analytic solution to the problem

r	 Y{0^ = YO

is attacked numerically far a restricted set of input func-

^	 tions f using power series methods. That is we represent

each of the y(i), i=1, ..., n for n <= 20 by a power series

expanded about t=0, and given t and y0 the value of y(i) can

be calculated.

The general method of solution is to use recurrence

relations to calculate successive terms of the power series.

Algorithms for addition, subtraction, and multiplication of

^	 power series are well known. Recurrence relations for

division and exponentiation can be derived which calculate

the nth term of the result using only the first n terms of
the operand or operands and the first n-1 terms of the

E

result [Knuthj. The same type of recurrence relations can

also be derived for sin, cosine, natural logarithhm, and

exponential of a power series [Gibbons) along with many

other functions. The computation of the first n terms of

any of the operations or functions mentioned above can be

accomplished in 0(n 2 ) or less multiplications and divisions.

In addition to this restricted set of inputs, any function

which can be defined as an initial value problem with ini-

tial condit.^ons at t=0 using the given set of functions and
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operations can be added to the se t of equations and conse-

gttently used as part of the input.

relation, letAs an example of a recurrence

A = Eal 
ti-1^ A ,- f	 b . ti-1

i=b^=o

and consider

B = Exp (A)	 (2)

(	 cifferentiation of both sides with respect to t yields

^	 using (2j

.	 B' _ B * A ^

°°	 n-1	 °D	 n-1	 00	 i-1
F nb t	 = 1 b t	 * f	 i a• t

^	 n=1	 n	 n=1	
n	 n=1	 1

^	 1	 nbn to- 1	 ^	
41n b

i (n-i) an-i) to
- 1f

•	 n=1	 n=1 i=0

equating the coefficients of to -1

1

b0 = EXY (a^)

^	 giving us our recurrence relation.

`	 The general form of the input is:

/* constantl = valuel, ..., constantn = valuen */

l	
50
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variablel.= equationl;

(4)

^	 variablem. = equationm;;

Constantl, ..., constantn are unique variable names and

valuel, ..., valuen are numbers. Derivatives with respect

to time, represented by variable., can appear explicitly

only on the left-hand side of the equation. If derivatives

were allowed to appear on the right-hand side the equations

would have to be ordered; however, by allowing derivatives

^^	 ^ only on the left-hand side no ordering is necessary by

either the program or user.

The input is read as a character string from the data

file EQIN and assembled into lexical items using a scanner.

These lexical items are then sent to a recursive descent

parser which enters them into a symbol table, and generates

quadruples as the output of each operation, i.e. a*b would

become *a b tl where the result of a*b would be assigned to

tl. Finally the codetable is examined to eliminate common

subexpressions. It is from this optimized code table that

the recurrence relations are generated, [cries], [Barton et

al].

The output from the program consists of two FORTRAN

__,^
subroutines. The first is subroutine DIFFUN which is used

in calculation of the numerical solution by other parts of

this package and is described in more detail in Chapters 2

3

.^

_.	 51

_.y-	 _	 -	 ^,-	 -	 ^_ --
	 -	 - ^^.



i

and 4. The second output is subroutine SOL, the subroutine

which attempts to solve the system of equations to stated

accuracy. The constant definition is transformed into a data

statement and the ai^adruples generated by tre parser are
1

used to generate the recurrence relations. Enough terms (up

to 20) are calculated by SOL so that all the input variables

satisfy:

n	 n
F	 ABS(Y(i)) < EPS*(ABS(^	 Y(i) + 1.))
i=n-4 	-	 i=0

.t	 as used in [Gibbons. Tn general this condition states that

;^; the last five terms are negligible compared to the sum of

the series. Obviously any alfiernating series will be con-

vergent 4sing this criteria and for an arbitrary power

series this test provides some assurance that the re;^t of

the terms of the series can be safely neglected since values

of t only between -1 and 1 are being considered.

52
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SERIES USER MANUAL

The purpose of this part of the software package is to

generate the FORT^tAN subroutines necessary to solve the

input system of first order ordinary differential equations

both analytically and numerically. As stated in (4) the

general form of the input is:

/*constantl = valuel, ..., constantn = valuen */

variablel. = equationl;

variablem. = equationm;;.

The first part of the input is the constant definition

section. Any number of constants can be defined, and these

will appear in data statements in both subroutines SOL and

DIFFUN. The second part of the input is the specification

of the differential equations themselves. Up to 20 first

order equations can be input to the package at any one time.

Note that at the end of each equation a semicolon must ap-

pear except for the last equation which must be followed by

two semicolons. The file EQIN is used as the input data

file for the program.

Variable names are restricted to 9 or less alphanumeric

characters, the first of which must be alphabetic. Constant

values are restricted to 20 or fewer characters. The fol-

lowing variables names are restricted; III, JJJ, KhI:. EPS,

tND, Y0, YNEW, ZZZB, ZZZZ1, ZZZZ2, III1, NIII, RFtil, and
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3-letter variable name beginning wits T whose second letter

is not A, and if a variable is used .^s a time derivative,

far example X., then both X and DX are also reserved. The

name T is reserved for the independent variable.

The constant definition section consists of predefined

user constants. The names constantl, ..., constantn are

unique variable names, and valuel, ..., valuen are numbers.

These numbers can be integers, simple real numbers, or

exponential real numbers. Their form is identical to FOR

TRAN constants, for example: 1, 1C^.3, -.3, -1.976E-5, and

.43795E-15 are all valid. Recall that the constant defini-

tion becomes a data statement in the FORTRAN subroutines so

that naming conventions for FORTRAN variables i;^ust be fol-

lowed.

The differential equation specification section con-

sists of a series of first order ordinary differential equa-

tions in the independent variable T, each equation of the

form:

variableI. = equationI;.	 (5)

All variables used as derivatives must be real, i.e., begin

with A..H or O..Z. Only derivatives may appear on the

left-hand side of the equations; derivatives may not appear

explicitly on the right-hand side. The right-hand side may

contain constants from the constant definition, numbers,

variables defined by differentiation on the left hand side,

operators and predefined user functions listed below, the

54
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independent variable t, parenthesis, and the terminating
i

semicolon. Note that the syntax of the right-hand side will

^	 be identical to FORTRAN assignment statements.

The standard operators and 4 predefined user functions

are available in this package. These operators are +, -, /,

^ *, and **. Operands for these operators may be constants,

expressions, the variable t, or series (variables defined by

differentiation) with the following exceptions:

1) t, when appearing by itself may be raised only to integer

powers

2) constants may not be explicitly divided by t or powers of

t

3) series may not be explicitly divided by t raised to

powers greater than 1.

The four predefined user functions are SIN, COS, LOG (natu-

ral logarithm), and EXP. The arguments for these functions

must be completely enclosed in parenthesis and may be con-

stants, t, expressions or series variables with one excep-

tion; LOG(t) or LOG(t**power) are not allowed.

The reason f;^r these restrictions is inherent in the

method used for. solution of the problem itself. In the

first case LOG(t) does not have a power series defined about

t=o so it along with LOG(t* *power) are not allowed; however,

LOGO +t) or LOG(constant + t**power), e.g., are allowed. The

reason that t may be explicitly raised only to integer

55
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4	 ^.

powers is that the program consi3ers each term to be a con-

stant or a power series. If, however the term t* *1/2*SIN(t) **3/2

appears one caYi simply rewrite it as( t*SIN(t))**1/2*SIN(t)

which is a legal expression. In most cases this problem can

be avoided by rewriting the input. Since division by power

series with zero constant term is not defined series may not

be divided explicitly by t raised to a power. However,

division by t by itself is defined so that x/t**2 could be

rewritten as ( x/t)/t, or x**3/2/t**1/2 as ( x/t)**1/2**.

Note that COS(t)/{1 + t**2) or x/(8.? + t) are no problem.

Finally, the reason that constants may not be divided by t

is that power series do not contain terms in inverse powers

of t. To avoid this problem input can simply be rewritten,

for example {const/t)*EXP {x) would become const*(EXP(x)/t)

or (3/t**2)*COS(tj would become 3.*(COS(t)/t)/t.

Other than these restrictions on inputs stated above

two other problems exist with respect to power series opera-

tions. The first is the problem encountered with division

by powers of t; a power series used as a divisor must have a

nonzero constant term. The second problem occurs when

.raising a power series to a power other than 2 in which case

the series must also have a nonzero constant term. These

problems will show up when subroutine SOL is executed and a

division by zero error message will be generated.
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The above proble;,;a occur in only a very limited number

of equations; these are not in the author ' s opinion major

stumbling blocks for use of this part of the software pack-

age. Although the user may be inconvenienced by having to

rewrite some of his input due to these restrictions, the

generation of SOL and DIFFUN by this program are still a

great savings in terms of time and effort by the user.

^_

,^

^.

^\
,^:

__
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EXAMPLES OF INPUTS

a) X' _ -X-2Y+X**2*SIN(T)

Y' = 5X -(T+3)/(T+4)*Y

X(0) = Y(0) = 1

input would be	 -

X. _ -X-2. *y+X**2*SIN(T);	 -

Y. = 5.*X-(T+3)/(T+4•^*Y;;	 ,,

b ) X' = Y

Y' _ (5*EXP(T/TS) - 1 - 3/2*Y**2)/S + (A*YrD)/X**2+C/X**(3*G+1)	 .

G = 1.4, A = 4.0E-2, TS = 29, D = .1456,

C = 1+D

X(0) = 1, Y(0) = 0

input would be

/* G = 1.4, A=4.OE2, TS=29., D=.1456, C=1.1456*/

X.=Y;

Y.=(5.*EXP(-T/TS) - 1. -(3./2.)*Y**2)/X -

(A*y+D)/X**2 + C/X**(3.*G+1.);;

c) D=.349066T

A=ATAN(W/U)

THETA'=Q

U'=C*SIN(THETA) -W*Q + (C1+C2*A)*(U**2 +W* *2)

+ C3*Q*SQRT(U**2+W**2)

W' = C*COS(THETA) + U^^Q + (C4+C5*D+C6*A)*(U**2

+W**2) + C7*Q*SQRT(U**2+W**2)

SS

^^,;

',

^..
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__^ ,

Q' _ {U**2+W**2) * (C8+C9* {A+D)) + (C10*W'/U

+ C11*Q) *SQRT (U**2*W**2)

C = 32.16, C1 = .5018521E-9, C1=0.1192125E-5,

C3=.42110675E-3, C4=.14598254E-3, C5=0.46345531E-5,

C6=.45006065E-5: C?=-.69718949E-3, C8=.587215E-8,

C9=.73872E-6, C10=0.3$00645E-5, C11=.7422436E2,

U(0)=660 .161$7 , W{O)=5.74626, Q(0)=0, THETA(0)=5.3.

Notice that W' appears on the right-hand side, ATAN is not a

user function, and A and D are not in the form of deriva-

tives; however, we can substitute

D.=.349066, D(0)=0.

A.=(U*W.W*U.)/(U**2+W* *2), A(0)=ATAN(W(0)/U(0))

the input becomes

/* C=32.16, C1=.5018521E-9, C2=0.1192125E-5,

C3=.42110675E-3, C4=.14598254E-3, C5=0.46345531E-5,

C6=-.45006065E-5, C7=.69718949E3, C8=.587215E$,

C9=.73872E=6, C100.3800645E-5, C11=.7422436E-2 */

U.=C*SIN(THETA) - W*Q + (C1+C2*A) *(U* *2+W**2)

W.=C*COS(THETA) + U*Q + (G4+CS*D+C6*A)*(U**2+	 W* *2)

Q.=(U**2+W* *2)*(C4+CS*D+C6*A) + (C10*(C*C0^(THETA)

+ U*Q + (C4+C5*D+C6*A)*(U**2+W**2)

+ C7*Q*{U**2+W**2) **.5)/U+C11*Q)*(U**2+W**2)**.5;

.-^, T -

i

i

i `_

_^

.^

THETA.=Q;
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F

A.={U*(C*COS {THETA) + U*Q + C4+C5*D+C6*A} * (U**2 +

W**2) + C7*Q*{U**2+W**2) **. 5) - W*{C*SIN (THETA)

- W*Q + {C1+C2*A)*{U**2+W**2) + C3*Q*(U**2+W**2)

D.=.349066;;.
f
	

YO(1)=660.18167, YO(2)=5.74626, YO(3)=0., 	 j:.

i
	

YO{4)=5.3, YO{5)=ATAN(W{0}/U(O}), YO(6)=0.

^_	 f
fx

1

i

.	 ,
^	 E

3
t

pj^

F

5

£	

s

y

{i]]

I

{

t
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OUTPUTS

^. "here are two fortran subroutines output. 	 The first is

( subroutine DIFFUN(T,Y,DY) which appears in source form on

file DIFFUN.	 The variables Y and DY are 20 element arrays.

^_-
The second is subroutine SOL(T,YO,YNEW , IND) which appears on

file SOL.	 The variables YO and YNEW are also 20 element

^_^ arrays.	 One important fact to notice is that the ordering

^ of the input equations determines the coefficients in Y, DY,

° Y0, YNEW, beginning at 1 corresponding to each equation, for

example if:
^= X. =Y;

s

Y.	 X;,

3	 ^

were	 entered X and DX would	 correspond to Y(1),	 DY(1),

YO(i),	 and YNEW ( 1);	 Y and DY would correspond to ttie sub-

j script 2	 for both input and output values from the sub-

l routines.

^^ The purpose of subroutine SOL is to solve the system of

equations	 analytically	 so	 that	 the	 first	 10	 significant

^ digits	 are	 correct.	 The	 initial	 values	 at T=0	 for	 the

equations in order of occurrance are paced in YO and along

_	 ^ with a value of T are input to SOL. 	 The solution to the

equations at this specific T are output in order of occur-

rence in YNEW.	 The value of IND at output is zero if the

^ radius of convergence of all 	 series is	 ( -1,1)	 and greater

F, than zero if the radius of convergence of any series is less
^^
s than (-i,l).	 Subroutine DIFFUN is explained in chapters 2

and 4.
61

p-,



--

a-

	

^^

	 NOS CONTROL CARD EXAMPLES

$ATCH JO8 FR^i CARDS

JOB.

USER.

C$ARGE.

ATTACH , SERIESJUN=USERNAM.
t

	

— _^	 COPYBR , INPUT,EQIN.

REWIND,EQIN.

	

i	 ^	 SERIES , F=105000.

REPLACE, SOL .

REPLACE , DIFFUN.

*EOR

DAiA ON CARDS

	

a	 *EOF

f

i

^^

i	

3

jt

	

S	

t^
Y

a
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^	 ^^

i

s

INTERACTIVE SUBMISSION AFTER CREATION OF FILE EQIN

ATTACH , SE&IE$/UN=USERNAM

GET,EQIN

SEAIES , F=105400

REPLACE,SOL

REPLACE , DIFFUN

*EOF

If running interactively using the SUBMIT command add the

JOB, USER, and CHARGE cards to the shove control card se-

quence.

^^

1
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ERRORS

When a compile tune arror occurs due to a mistake in

the user input a dump is written by the program onto file

OUTPUT. This dump contains the fallowing information:
4
^

	

	 a) a general statement such as ILLEGAL OPERATOR to give

the user some idea of what type of arror has occurred

b) a listing of the input characters up to the point

where the error was detected

c) a dump of the symbol table that shows which variable

and constants have already been `erect

d) a listing of the codetable which shows how far into

the equations the parser has progressed.

The written messages in a) are neither completely descrip-

tive nor always correct in the description given. If the

parser becomes confused the detection of an error may occur

well after the actual error has been made. If, for example,

i an opening parenthesis is missing in the expression the

input may still remain legal until the extra closing paren-

thesis is encountered. The best way to find a compile time

arror is to study the listing b) near the end of the char-

acter listing. The symbol table and code table can also be

helpful in error detection. when looking at the listing of

the symbol table all the variable names and operators that

_, have been encountered or generated will be listed. Next to

each name is a number in parenthesis which tells the type of

the variable:

b4

t
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^^
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^-

0) user function

1) vector or series variable

2) constant

3} operator or delimeter

4) semicolon

5) differentiated variable

6) independent variable t.

Variables of type 1 and 5 should be declared as arrays in

subroutine SOL. The code table is listed as a series of

^_	 ^ quadruples describing the operations which are to be per-
.

formed in order of occurrance. By cross-referencing between

the code and symbol tables many logical errors will be

easier to find. Note that .only the first 10 characters of

numbers will be listed. Finally if the message RUNTIME

STACK OVERFLOW appears in the user dayfile simply increase

the F parameter on the SERIES control card.
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LIMITED EXTENSIONS

	

i	 The biggest thing to remember is that this part of the

	

package is only a compiler to generate the FORTRAN code.	 -

All the variables need not be defined in the input at com-

	

^^ ^	 pile time when the subroutines are generated. If one has

any function which does not depend on the differentiated
;;

	

variables (VAR.) one could add it to subroutine SOL or	 -

	

^^	 DIFFUN after creation. This could be done using a statement

	

function is the subroutines themselves or by use of a func- 	 -

	

°^	 tion subprogram used in conjunction with SOL and/or DIFFUN.s	 i	 '

}'

This extension is especially useful for functions of t. As
I

a simple example let us redo the variable D in the previous

example C. Recall that:

D = .349066T

one could simple define the statement function,

H(R) _ .349066*R

and set D=H(T) at the beginning of the program. If any of

the functions arguments are the dependent variables then one

must define the functions as an initial value problem with

initial conditions at t=0 such as A=ATAN{W/U) in example C.

._^	 .

e b6

__
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}
fi

f

^:

^_

:;

^	 \)

4. USER'S INSTRUCTIONS FOR CLMP

The user of the closed Loop Modelling package ( CLMP) is

faced with the following system of equations:

yi (t} = fi(t,y(t},u{t)),i =1,2,...,n	 (1)

where u(t) is an input function of three possible types:

(i) Damped sine wave

(ii} Spike function

(iii) Step function

In .order to use CLMP, the user must supply the fal-

lowing information:

(i) A system of equations

(ii) An interval [t^, tn] on which y(t) is to be deter-

mined

(iii) Initial values for y(t^)

(iv) Parameters of u {t)

(v) A fixed-step-size integration routine for solving

differential equations.

A System of Equations

The system of equations (1) will be stored on file

DIFFUN by the user, as outlined in section 3.

The system will be solved for y(t) for t in (t^, tn),

where t^ and to must be specified by the user. It is also

essential that the values of y(t) at the point t = t-.^ be

specified.

_^^ I

ii
i
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Should the user wish to write his own DIFFUN routine,

^^	 ether the u	 'r	 n se the SERIES package for t2^rs, he may do so.
The format to use is

6 ^^_

x SUBROUTINE DIFFUN {T,Y,DY)

DIMENSION Y(20), DY(2fl)

^: The routine simply computes DY(I) = f i ( t,y(t),u(t)),

as in (1}. This routine should be compiled and stored on

== ^	 permanent file DIFFUN, as follows:

FTN .
f.

-^	 SAVE , LGO=DIFFUN.

1 ^	 7/8/9

SUBROUTINE DIFFUN

6/7/8/9
r

j

i

Parameters of u(t)

The first parameter is IUTYPE. If IUTYPE = 1, then

^.
u(t) is a damped sine wave with equation

ti
If IUTYPE = 2, then u(t) is a spike function, and :f

IUTYPE = 3, u(t) is a step function ( see figure 4.1).

Other parameters which must be specified are a, b,

UMIN, and UMAX, which simply indicate the domain and range

^^	 of the function u(t). It should be noted that for IUrYPE = 2

and IUTYPE = 3, the function u(t) is different from UMIN
f

^^
69
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only on the first one-fourth of the interval [a,b]. (i.e.,

Integration Routine

CLMP provides the user with 7 standard fixed-step-size

integration routines to choose from. They are:

(1) Euler's method

(2) Improved Euler (2-pt. Runge- Kutta)

(3 ) 2-pt. Ac?:^ius-Basi forth

\	 ^	 (4) 3-pt. Runge-Kutta
1.

(5) 4-pt. Runge-Kutta

(6) Runge-Kutta-Merson

(7) 4-pt. Adams-Moulton.

It should be noted that all of these methods are self-

starting, except for (3) and (7), which use Improved Euler

and 4-pt. Runge-Kutta to start, respectively.

Should the user desire to test his own integration

routine, instead of one of the above, he may do so. Such a

routine, however, must be called NEXTPT and have the calling

sequence:

^^

SUBROUTINE NEXTPT(T,Y,N,STEP,KTR)

NEXTPT, when given the values for y(t),

y(t+h), and return this value in y. Here,

step-size specified by the variable STEP.

that STEP < (tn - t0 )/32. The array Y is

Y(20), and yi (t) is contained in Y(I). The v

should compute

h is a fixed-

CLMP requires

dimensioned as

ariable N
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denotes the number of equations in the system, and cannot
^.

exceed 20. The variable KTR may be used for whatever pur-

pose is necessary. When the first call to NEXTPT is made

from CLMP, the value KTR=O is transmitted and remains at

.	 KTR=O until changed in NEXTPT. No other information is

passed through KTR.

A sample problem and terminal session follow:

Sample Problem

The following equations govern the longitudinal motion

^ .^	 ^ of a jet fighter [Steinmetz et al.]:

2
tl = -g sin @ -wq + ^n^^ [(CX ) a .a + C

X (a-aT } + CX ^]
T T	 a	 q

2
w = g cos @ + uq 

+ pV^[(CZ)aT^aT + C
Za ( a -aT )+ CZ ^ + (CZS(S-ST)]

q

q =^ [(Cm)a 
^S 

+ Cm (a-aT ) + Cm ^ + Cm ^ + Cm (S -ST)]
^	 Y	 T T	 a	 6i	 q	 b

l	 e = q

aZ =w-gcos@ -qu

a u

a = tan-1 (u)

__^	 v = ,/-^"^

t

^^



	

-- _-	 --

^	 ^.

where all C values (Cm etc.) are treated as constants.
^:	 a

These equations were set up in DIFFUN as shown in

^	 Figure 4.2. The input for a was taken from the function

u(t) with parameters IUTYPE, UMIN, UMAX, A, and Bread as

^..	 data. The data for the test run was as follows:

N	 4

TO TN	 0 . 10 .

(YO(I), I=1,N)	 660.18167, 5.74626, .5, .09251
't

IUTYPE	 2

^,	 UMIN , UMAX , A,B	 0., 0 . 174533, 4., 4.
_	 x,.

STEP	 .1

^

	

	 Here, Y(1) is y, Y(2) is w, Y(3) is Q, and Y ( 4) is 8.

The values for Cx Cz etc., were extracted from data
a	 a

given in ( Steinmetz, et al.], and are shown in DATA state-{	 ^.

°^	 ments in Figure 4.2.

^^

^--

t7

i1
t

i
i

t

;.	 i

^^ i
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f

^^ Fiqure 4.2 input differential system for CLMP.

SUBROUTINE DIFFUN (T,Y,DY) REAL Y(13,20), CY(20)

!	 '^^

^^

C***********************************************************
C* THIS REPRESENTS THE LONGITUDINAL STABILITY EQUATIONS
C* FQR A JET FIGHTER. THE INPUT FOR STABILATOR DEFLECTION
C* IS FROM THE FUNCTION U(T), WITH PARAMETERS: IUTYPE=1,
C* UMIN=-. 05, UMAX=. 065, A=O., B=10.
C***********************************************************

REAL M, IY.
DATA S, G, M, RHO, CBAR, AT, DT, IY/530., 32.158,

1285.5, 2.125E-3, +16.04, 0., 0., 129609/
DATA CXATDT, OXA, OXQ / 0158, 0890, -3.92 /
DATA CZATDT, CZA, CZQ, CZD / -.121, -3.36, -6 . 49, .346 /
DATA CMATDT, OMA, CMADOT, CMQ, CMD / - . 00117, -.106,

-1.66, -1.66, -1.66, .576/

W=Y(1,1)
W=Y(1,2)
Q=Y(1,3)
THETA=Y(1,4)

V=SQRT ( W *W+W*W )
ALFA=ATAN(W/UU)
DELTA=U(T)

C2=.5*RHO*V*V*S
A=ALFA-AT
D=DELTA-DT

DY(1)=-G*SIN ( THETA) -W*Q+(02/M)*(OXATDAT+OXA*A+OXQ*0l)DY(2)
=G*COS ( THETA) +W*Q+(C2/M)*(CZATDT+CZA *A+CZQ*C1+CZD*D)

ALFDOT=DY(2)/UU
AZ=DY ( 2)-G*COS (THETA)-Q*W

DY(3)=(C2*GEAR/lY)*(OMATDT=CMA*A
+	 =(.5*CMADOT*ALFDOT *CBAR)/V+CMQ*C1+CMD*D)
DY(4) = Q

RETURN END
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{	
Running a Job on CLMP

=L
As mentioned earlier, the user tray either supply the

system of equations (1) directly (sect.3) or as SUBROUTINE

-	 DIFFUN. See Figure 4.3. Procedures for running CI1^lP on a

^.	 CYBER 172 computer with NOS 1 operating system are given as

follows:

Equations entered directly:

(Jobcards)

COPYBF(INPUT, TAPE6)

{CLMp commands)

6/?/8/9

Equations entered in DIFFUN:

(Jobcarbs)

FTN,B=DIFOBJ.

7/8/9

l

I

E

+^ .`

i
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FIGURE 4.9 SAMPLE TERMINAL INPUT

WHAT IS THE RATE OF YOUR TERMINAL IN CHARACTERS PER SECuND?
»30
HOW MANY EQUATIONS ARE IN THE SYSTEM?
?4
GIVE INITIAL AND FINAL VALt ►ES 8F T
? 0.,10.
GIVE INITIAL VALUES FOR

Y(1)
? 660.18167

Y(2)
? 5.74626

Y(3)
:' .5

Y(4)
? 5.3 WHAT TYPE OF NOISE WILL BE INPUT (U(T))?
ENTER 1. FOR DAMPED SINE WAVE

2. FOR SPIKE FUNCTION
3. FOR STEP FUNCTION

? 1
GIVE MINIMUM AND MAXIMUM VALUES ^'OR U(T)
? -.05,.065
WHAT INTERVAL WILL U(Tj BE DEFINED FOR?
? 0., 10. WHAT STEP SIZE WILL BE U5ED FOR T?
?.1
WHICH INTEGRATION ROUTINE DO YOU WISH TO COMPARE WITH DIF5UB?
ENTER 1 FOR EULER

2	 IMPROVED EULER
3	 2-PT ADAMS-BASHFORTH
4	 3-PT RUNGE-KUTTA
5	 4-PT RUNGE-KUTTA
6	 RUNGE-KUTTA-MER5ON
7	 4-PT ADAMS-MOULTON

?6
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SiJBROUTINE DIFFUN

END

7/8/9

(CLMP commands)

b/?/8/9

The section described simply as (CLMP commands) now

follows:

GET,A=CLMP

WALIB,PLOT10.

ENTER./LOAD ( A,DIFOBJ)/A14GO,ABS.

LABS,ABS.

{options)

Since values are output on TAPE6 and TAPE?, the user

may desire to:

(i) Save TAPE6 and TAPE? for further use

(ii) List TAPEb anc^,'or TAPE? at the line printer.

{iii) Have the values on TAPE? punched at the card punch

These may be accomplished by entering the following commands

in the section referred to as (options):

(i) SAVE,TAPEb,TAPE?.

(ii) F:EWIND , TAPEb , TAPE?.

COPYBF , TAPEb , OUTPUT.

COPYSBY, TAPE? , OtI'.t'PUT .

?6



(iii) REw'IND,TAPE7.
i

C4PYBF , TAPET , PUNCH.

Notes

The Fourier coefficients given are of the form:

f(t) = CO + F C cos (d + 2knt ) for tE [t	 t l (2 )
^ k=1 k	 k (^o )	 o n

Only the first N coefficients are computed however,

where N is a suitable value between 32 and 64, chosen by

CLMP. They are stored in an array in the following fashion:

ARRAY(1) = cO/2

:'

ARRAY{2} = 0.

ARRAY{3) = cl

ARRAY(4) = dl

ARRAY (2N-1) = cn-1

ARRAY (2N) = do-1

Using the construction in (2) gives not f(t}, however,

but instead, f(t+t 0 ). Hence, in order to compute f(t} for t

in (t0, tn ], one must first compute t* = t - t0 , and then

compute

f{t) = ARRAY(1) + 1 ARRAY(2k-1) *COS(ARRAY(2k) + 
{2k^n„t^*)}

i=2	 n o

- .^„ Smoothing

The FORTRAN subroutine RFFT is Used by CLMP to compute

Fourier coefficients for f(t). RFFT reduires 64 points to

77
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bt entered as tables values, whereas CLMP will supply only N

values, with 32 < N	 b4.	 The remaining 6^- N points are

;' assigned value zero.	 The Fourier coefficients computed by
i

RFFT yield a	 function	 f* (t)	 with the	 follo^►inq prC^pprty:
Given f(t)	 and the interval	 ( t^,	 tn ) , f(ti ) - f* (ti ) _

constant for	 1	 <	 i	 <	 and f{ti )	 - f* (ti ) has alternating

signs for consecutive values of i.	 The value of the con-

^
^, stant is unknown, but, because of the alternating signs, can

be virtually eliminated graphically as follows:

Given ti and f* (ti ), 1 ^ i < n,

compute T i = (ti + ti+i )J2 and

( F ( ti) =	 (f* (ti) + f*(ti+1))/2,

Notice that f(ti )	 _	 {f(ti )	 +	 f(ti+1 ))/2	 as well.	 Then by
:^

3
plotting F(ti ) at ti ,	 for 1 < i < N - 1, a smooth graph can

E i
E^

be drawn that closely approximates f(t).

^^
By way of an example, examine figures 4 . 4, 4.5 and 4.6.

^ Figure	 4.5	 shows	 the	 clraphs	 of	 Y(i)	 computed	 from	 two

t^£^
separate	 sets	 of	 Fourier	 coefficients,	 before	 su«	 hing.

Notice the undesirable effects of oscillation.	 Figure ^.6

shows the same graphs, after smoothing.	 Notice how closely

= the DiFSUB and NEXTPT graphs coincide on the smooth portion

of the graph {i . e.,	 away from diseontinuities in the first

derivative).	 This gives a very good view of what Y(1) looks

'' like on that interval.

t

1
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APPENDIX A

NUMERICAL METHODS

ABK Predictors

h=1 yn = Yn-1 + hY'n-1

K=2 yn = Yn-1 + h/2(3y'n-1 -yin-2)

K=3 yn = Yn-1 + hJ12(23y'n-1 -16y' n-2 + 5y^n-3)

K=4 
yn = yn

-1 + h/24{SSy'n-1 -59y' n-2 + 37y'n-3 -9y^n-4)

K=5 yn = Yn-1 + h/720{1901y'
n_ 1 -2774y' n_2 + 2616y'n_3

-1274y' n_4 + 251y'n-5)

K=6 yn = yn_1 + h/1440 (4277y' n-1 -7923y' n_2 +9982y'n_3

-7298y' n_4 + 2877y' n_5 -457y'n-6)

AMK - Corrector (used with ABK Predictor)

K=1 yn = Yn-1 + hj2(y ^n + yin-1)

K=2 yn = Yn-1 + h/12{5y' n + 8y'n-1 -yin-2)

K=3 yn = Yn-1 + h/24(9y' n + 19y' n-1 -5y ^n-2 + yin-3)

K=4 yn = yn_1 + h/720(251y' n + 646y' n_ 1 -264y' n_2 +

106y' n-3 -19y'n-4)

K=5 yn = yn-1 + h/1440(475y'
n + 1427y' n_ 1 -798y' n_2 +

482y 'n-3 -173y 'n-4 + 27y'n-5)

BDF - Corrector (used with ABK Predictor)

K=1 yn = Yn-1 + hy'n

K=2 3yn = 4Yn-1 -yn-2 +2hy'n

K=3 11yn = 18yn-1 -9Yn-2 + 2yn-3 +6y^n

K=4 25yn = 48yn-1 -36yn-2 + 16yn-3 -3yn-4 +12hy'n

82
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K=5 137y - 300y _ - 300y	 + 200y	 - 75yn -	 n l	 n-2	 n-3	 n-4
+ 12yn-5 + 60hy' i,

K=6 147y = 360y _ - 450y	 + 400y	 - 225y - + 72y=	 n	 n 1	 n-2	 n-3	 n 4	 n 5

t^	 - l0yn-6 + 60hy'n

RK2 - one step

KO = hf(yn-1)

K1 = hf(yn-1 + KO/2)

yn =yn-1 + K1

RK4 - one step

KO = hf(yn-1)

K1 = hf(yn_ 1 + KO/2)

K2 = hf(yn-1 + K1/2)

K3 = hf(yn-1 + K2)

yn - yn-1 + h/6 (KO + 2K1 + 2K2 + K3)

83



:$

^_

i
ii

Wiz, ;_^
---	 - --°

^_

APPENDIX B

THEOREM PROOFS
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DtJlnitton. A Unear k-step formula seti:fies
x

t=o
Deflnition. Aone-leg k-step formula corresponding to (9) satisfies

k	

\l 

^	 1 k

(10) 0 = l^ afyn-! + hsf s ^ bty^-h s ^ 6ftR-/^,

where s = o{l). Without loss of generality, set s = 1.
THEOREM 1 ]4]. Let Y^ be a sequence which satisfies (10), and let Y„ _

{yA } be such that
k

(11)

where E denotes tl:e back shifting operrator. T1^en Y p satisfies (9). Conversely, ff
Y^ satisfes (9), then there exists a sequence Y„ such that y„ = v(^y,,, and y„
satisfies (10).

t

]^

^_

4

^"^ ]

Proof Without loss of generality assume the system of equations is autonomous.
Write ( 10) as p(L7y^ _ - hj(a(^y^), n = 0, 1, 2, .... This together with (1l)
impliez p(^yn = p(E1a(L^v,^ _ - ho(^f(vn), which implies that yp satisfies (9).

For the converse, Euclid's theorem on polynomials with no common divisors
implies the existence of polynomials P, Q which satisfy P(x^(x) + Q(x)p(x) = x'",
0 < m < k. Writing (9) as p(^y^ _ - ho(^ ,^yn) and setting y„ _
E-''"(^^Y„ - hQ(^f^ti'„)) fives

Q(^Y„ = E'"'(1°'(^o(^Y„ + ^^P(^f(Y„)) =E-m(^^^^ ^' Q(^P(^)Y,,,

which gives a(^y„ = vn . Next, set

P(^Y„ _ - E- mh(p(^o(^ + Q(^p(^)j(3'n) _ - hf(1'n) _ - ltf(a(^Y„), t. ^ m,

and Y„ satisfies (10), proving the converse.
This shows that Y^ given by the one-leg k-step formula will have similar

stability properties to its corresponding linear k-step sequence y. Dahlquist [a] leas
described a discrete Iiapunov function Vc.t.h which, applied to a sequence Y„,
characterizes the stability of that sequence generated by a nonlinear system (1). I.et

Vc,t,ti( Y„) _ ^i=w,=^&/ v̂n -t+r • 3'„_i+i>. where G is a positive definite, l x 1
matri... The structure of G assures that Vc.r,h is positive for Y„ # {0}.

B1

^-

1
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TtiEORtiM 2. If V^.t,h(Y^) = c far the symmet^ po^tive deJlnitt matrix G,
then then exists a symmetric. positive deJinite matrix C, drpemient ally o» G and
a(x), such that V^.r.a(Y„) = c, where yq = o(^v„ arr the elements of Y„ and Y^.

Provf. Without lass of generality, consider a system of only one equation y' _
f(y, t) generating the sequence Y^ _ {y„ _ k+ t + ... , y^}. since y„ and y„ are
related only by the k + 1 coefllcients of a(x), replace the uquencrs by the vectors

N'n = V'n^ YK - t .... ,yn-k + t )' and w^ _ (v,,, yp _ t ^ ... , yn _t-a+ t )^ where' is

the transpose operator. Let C' be a (k + 1) by (k + n matrix consisting of G in the
upper 1 by 1 partition, and 0 elsewhere. Then T (̂wq) = wyGwn = c > 0, and

lkfine S such that w„ = Sw^, thus

bo bt ...	 bk	
0 ... 0

0 bo 	 bk-t bk ... 0

S=	 .

0	 bo	 br .•• bk

is an 1 by 1 + k matrix. Then since G' is of rank 1 because G is positive definite,
there exists a singular value decomposition of C'^ = UFV • for U, V 1 + k by l + k
unitary matrices, and F = (o o) for D an l by !diagonal matrix of singular values of
G. Thus, there exists an 1 by 1 matrix C such that G' = S•CS. This is seen by letting
S have the singular value decomposition U,(E 10) Vs , where E is an 1 by 1 diagonal
matrix. Then

G = Uj(E' t I O) V^ UFV' Vi {E - ^ 10) • U; .

tf bo, b t , ... , b^_ ^ arc all zero, a similar argument can be made using an 1

by I + k - i matrix S where br is the coefficient of lowest index 1 such that b^ # 0,

and

br br+ t	
...	 bk	 ... 0

	

S =	 0	 b^	 ...	 b: - ^ ...	 0

0	 •••	 •••	 0

Thus, there exists a G dependent only on v(x) such that V^ ^ h(Y„) = c for all c,

wtuch was to be shown.

•.
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•	 TttEOREM 4. If the equfii^ium ^(t) of f (y, t) has a Liaputwv funcdoa of the form n(Y, t) = Y'QY
	_	 for a positive definita matrix Q, y the traaspose of y, and f(y, t) is continuously difiercntiable

on a convex domain D whose boundary dD is defines by n'(yo, to) = 0, snd if f(y, t) has ttK
property on D that iYr - Y:)•Q(f(Yr. t)' I(Y:► t)) s µMY - Y:^02 where µ s 0 and x•t?x = ^z^Q ,

then for any point 3r = ,^(q) Lt the interior of D, an (1, f; h)•stability rcpon can be constructed

	

3 -	 using rays from >=r, provided h s ^^ ^.
Proof. Note that the ablution from to to to+k is spiraling in from aD toward the

e^uiGbrium, which is insi^ a citck ^y(q - y^ s ((kt>^M where M = ^ f'(t), since the

i hypotheses and (8) gives Ny(tr)-y(tr)^s exPG^^Y(to)- ^(to^. By definition, oV,,,^,(Y,)=
^Y(tr^Q - ^ y(to^Q , which ocetus when 0 = a(ya tr) - n(ya to) _ (Yr - Yo)n'(z) by thr mean
value theorem. Since n'(z) = 0 oa the boundary 8D, along any ray from yr one can Rnd y(tr)
generated by a yo on aD, provided hf <Got is stt^ll enough that the trajectory from )zo to yr is
entirely in D.

The boundary of (1, t, h)-main of attraction D' can be consaucted of al! such rays. The
(1, 1, h^stability rcfiion D" has a boundary of aU points such that Vi r,A = n' = ma V^,r,,,, which

•	 can also be constructed.
.;

^ THEOkE.M S. If the hypotheses of theorem 4 are met and (diayxd°f(z)Idt^) is continuous in D,
then for any 3r in the interior of D, an (1,1, b) stability refiion can be constructed for a pth order
one•IeQ k•step method, for h s ho(l, f)-

Proof. ^ V = ^ yr^o - ^y(q - th ?^o where

^	 r<
Yr = ^ o^Y($-^)+ hj^^ b^y(p-^), ^ bar-^^

and y(tr) = yr + K,h°">'^'(t), the truncation error formula, If the truncation error varies
continuously as y(to) varies along aD, Thcn two solutions yr and zr generated by yo, to on dD
have the property that y,-+t, unifonniy as yo--►ro, and a smooth curve dD' exists on the
boundary of the (1, t, h)-domain of attraction. Similar arguments show the existence of the
(1, 1, h)•atabvity rc^ion.

B3
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