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ABSTRACT
We show that, in the presence of the steep temperature gradients
characteristic of EUV models of the solar transition region, the electron
and proton velocity distribution functions are non-Maxwellian and are
characterized by high eﬁergy tails. We estimate the magnitude of these
tails for a model of the transition region and compute the heat flux to be

a maximum of 30% greater than predicted by collision-dominated theory.



1. INTRODUCTION

Existing models of the solar transition region, derived from
observations of the solar spectrum in the extreme ultraviolet (EUV),
make use of the assumption that the -electron velocity distribution
functions are nearly Maxwellian to compute excitation, ionization,. and
recomb}nation rates. However, these models are characterized by steep
temperature gradients which, as we shall show,_1ead to distribution
functions for electrons and protons which are non-Maxwellian in contra-
diction with the initial assumption.

Departures from the Maxwellian distribution can be substantial
{depending on the steepness of the temperature gradient) and take the
form of high energy tails for those particles which are propagating down
the teﬁperature gradient. This leads to heat fluxes differing from
those computed from collision-dominated theory and fonization, e;ccitation
and recombinat%on rates differing from those computed assuming Maxwellian
distribution functions for the electrons.

In this paper, we discuss the kinetic effects which give rise to
high energy tails in the presence of steep gradients and estimate the
magnitude of these effects for Dupreé‘s (1972) EUV model of the transition
region. We then compute various moments of the e1e£tron distribution
functions and compare these to results obtained from collision dominated
theory. A subsequent paper will compare the ionization equilibrium
populations for ions of carbon, nitrogen, and oxygen, computed with the
non-Maxwellian distribution funcfions obtained in this paper to those
computed with the usual assumption of a Maxwellian distribution function

for the electrons.



2. NON-MAXWELLIAN ELECTRON AND PROTON DISTRIBUTION FUNCTIONS
A. Departures from Maxwellian

The collision dominated kinetic theory of non-uniform gases was
developed by Chapman and Enskog in the 1920's and is expounded by Chapman
and Cowling in "The Mathematical Theory of Non-Uniform Gases" (1970).
The Chapman-Enskog theory assumes that the distribution function for a

given species, o, can be written in general as,

f (X.¥,t) = fa(o)(ialst) + fam(gg,_v_,t) + fa(z)(i,l,t) ... (D

(n)

where each of the Ty represents a successive approximation to the

total distribution function and each satisfies the condition,

(n)
;;;%:TT- << 1, for all x, v, and t. The full Boltzmann equétion
js then solved with what amounts to a perfurbation scheme. The zeroth
order solution, fa(o), is & Maxweilian distribution function characterized
by a temperature, T, density, n, and mean flow, 25.
Spitzer and Harm (1953) computed the first order electron distribution
function, fe(1)’ in the presence of a temperature gradient for a gas of

mean ionic charge Z defined by,

1= ? ni2§/ne (2)

with the sum taken over all positive jons. In Spitzer and Harm's notation,

the total electron distribution function, to first order, is given by,



fy = fe(O)(1 N uDe(u,z))_ (3)

where u is the electron speed normalized to the thermal speed and u
is the cosine of the polar angle in velocity space.
In Table II of Spifzer and Hiarm the quantity Z De(u,z)/Be is
2
2k TelvTe|

]

.is the rat%o of
nnee £ni

tabulated as a function of u, where B (=

the electron mean free path to temperature scale Tength and A is the
number of partié]es in a Debye sphere. We note that De(u,z)/Be is a
function of u only and that this quantity increases rapidly with u. In
Figure 1, we plot Be as a function of Tog Te for Dupree's transition-
region model.

Since departures from Maxwellian are large when IuDe(u,z)[ > 1, we
define a critical energy (ucz) such that |De(uc,z)| = 1. In Figure 2
we plot uc2 as a function of log T throughout the transition region for
Dupree’s model. We find that, where the temperature gradient is steepest

(T ~ 10°-2

K}, substantial deviations from Maxwellian exist at energies
greater than or equal to approximately 6 kT. WUWe will show that this
result has important implications for ionization equilibrium and heat
flux calculations.

A simiTar‘analysis can be carried out for the protons.given the first
order distributién function computed by Roussel-Dupré (1979). In
Figure 3, we plot the critical energy (uc) at which [Di(uc,z)l =1as a
function of proton temperature, assumed to equal the electron temperature.

We find that, where the temperature gradient is steepest (T ~ 105‘2

K)’
substantial deviations from Maxwellian exist again at energies greater
than or approximately equal to 6 kT. We now ask in what way we may

expect these distribution functions to differ from a Maxwellian.



B. High Energy Tail

Consider a plane-parallel layer of gas, with z as the verticail
coordinate, composed of field particles having a Maxwellian distribution
Tocally with temperature, Tf, and density, e each varying as a function
of z according to Dupree's model for the transition region. We now
inject test particles with ve1ocity,Ayb parallel to the z-direction and
determine the rate at which the test particle's velocity and kinetic
energy Ehange as a result of encounters with field particles. From these
rates, we then obtain the time, tD’ fér a test particle to undergo a 90°
deflection and the time, t;, for a test particle to thermalize to the
local field paftic}éltemperature. This problem was worked out by
Spitzer (1962), cf., his page 132.

Given that the field part%c]es have a non-uniform temperature in
the z-direction, we can define another time scale; namely, the time it
takes for a test particle with velocity, ﬁ, to travel_é temperature

scale length. We have,

Co7 -1

. dT

oy 9T
L u[‘('r"f Tz) - (4)

- Examination of the energy dependence of the ratios tD/tF and tE/tF
reveals that both ratios increase rapidly with test particle energy. It
§s possible then to define critical test particle energies, (ucz)D and
(ucz)E, above which tD/tF and tE/tF, respectively, become greater than one.
. In Figure 4, the solid and dashed curves represent plots of (ucz)D and
(uCZ)E, as a function of Log T through the transition region with
electrons as the test particles. We find that, where the temperature

gradient is steepest, the deflection time becomes on the same order as a
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time of flight (tF) for energies greater than or approximately equal to 10
kT. Since test electrons with energies greater than (UCZSD can penetrate
a temperature-scale length without undergoing a 90° deflection, high
energy electrons from the corona can penetrate quite far into the
transition region while the colder test electrons from the chromosphere
wil]znot pernetrate as far. This ieads to an anisotropic ve]ocity'distri—
bution function.
Similarly, we find ‘that tE/tF 3_} for energies > 5 kT at T = 105'2
and since test electrons wjth energy greater than (ucz)E will maintain
their energy over scales greater than a temperature scale Tength, high
energy electrons from. the corcna will popu1a£e the high energy tail of
the field electron distribution function. Thus,'the final self-consistent
distribution fuhctﬁons will possess high energy tails which are highly
anisotropic. o .

The values of (UCZ)D and (ucz)E for proton test paftic1es are plotted
as functions of Tog T in Figure 5. The protons clearly will also form
non-Maxwellian distribution functions, just as the eléctrons. An interesting
difference, however, sﬁems from the fact that for the most part electrons
and'pﬁdtons do.not exchange energy. A proton test particle may thermalize
to a temperature which is completely different}from the electron temperature.
%E ) te {p-p collisions).

e
The ions responsible for the EUV Tine emission present a different

This follows since t; {p-e collisions)

scenario. Since the fon abundances relative to the protons and electrons
are quite small, and since their masses are much larger than the electron
mass, they will interact primarily with protons. Furthermore, the

5 6

average charge of ions formed from 107K to 107K ranges from Z'= 3 to Z =

10 and since t, and te are both inversely proportional to ZZ, the ions
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will wsually isotropize to nearly Maxwellian distribution %unctions and
therﬁalize to the proton temperature. To illustrate this result, we
have carried out an analysis on Si IV similar to that carried out for
the electrons. fh Figure 6, we plot (UCZ)D and (ucz)E vs. Log T, for

Si IV and find that these critical energies are much larger than for the .
electrons and protons. Thus the ion distribution functions are nearly
Maxwellian. An interesting consequence of these results is that EUV
line profiles will reflect the proton temperature but not necessarily
the electron temperature and will not reflect any asymmetries which
might arise in either the electron or proton distribution function. UWe
note, however, that the Tatter conclusion applies only to the extent
that we have neglected the first order correction (to the zeroth order
Maxwellian distribution function) obtained from collision-dominated
theory. - Indeed, thermal diffusion (a process which is manifested in the
first.order jon distribution functions [cf., Roussel-Dupre,19791)

of the heavy ions clearly reflects the asymmetries associated with the
first order electron and proton distributibn functions.

As a final note we eﬁphasize that, while it is true that there will
always exist particles with high enough energy to be collisionless in
the transition region, the supply of such particles is Timited by the
ultimate source of energy, i.e., the solar corona. Thus, let us assume
that the coronal electron distribution function is a Maxwellian with
temperature 106K, the fraction f of particles witﬁ energy greate} thaﬁ

w2 is listed in Table I. We find that at T = 10°

Ky for example, 76
percent of coronal electrons have energy greater than & kT; however,
.only two percent have energy greater than 50 kT. The point is that the

critical energies at which electrons become collisionless are sufficiently



low through the upper half of the transition region that a substantial
number of corcnal electrons are collisionless through that region. As a
resu]t,‘large departures from Maxwellian can be expected in the region
from §05 to 106K.

3. PARTICLE ORBITS =

In the previous section, we showed 1;.hat high speed test e1ectr0ﬁs,
moving along the temperature éradient in the transition region, could
penetrate a temperature scale Tength without undergoing a 90° defiection
or losing a significant fraction of their initial energies. The analysis
which brought us to these conclusions, however, was based only on a
rather simple minded comparison of appropriate time scales. .In this
section, we shall develop these.ideas on a more quaqtitative basis.

We shall first discuss some properties of the 'dynamical-friction’
force exer%ed on a test electron as it moves through a fully ionized
gas. This farce is taken from the Fokker*Planqk collision operator
{cf., Dreicer, 1959) and is given for a tégt electron of velocity v by

the expression

1 t
3 o | Metmy fe(y') dvt
=m I — T : .
Fp "eled, ¢ Zf( i v -yl (5)
4
where Pe = iﬁ-‘%ﬁ_—!\- s
me

ff(y) is the field particle velocity distribution function, the sum is
over all field particles, and the integral over all velocity space. For |
the special case where the field particles have Maxwellian distribution

functions and consist of electrons and protons, equation (5) reduces to,
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-2 EC v
= 2 [eat s A(spu)) et (6)
m ¥
where E.=m Me/e L Bp = ﬁz
m
_{ e
% (?ET"

Afu) = ¢(u) ~ up' (u) ,

o) =2 [ exp(-td)dt
0

and n and T are the-field particle density and temperature respectively.
In Table IT we Tlist the absolute value of Fp» normalized to eE., as a
function of u. We see that the dynamical friction increases sharply up
to the proton thermail speed (Bpu = 1) and then aecreases for larger u.
For high speed test particles (i.e., u>> 1) |ED] decreases as 1/u2
while for those moving at very low speeds (i.e;, BpU << 1) [Fpl  becomes
proportional to u. This behavior of the dynamical friction force is
responsible for runaway effects associated witﬁ high speed particles and
the drifting of thermal particles in a plasma subject to an externally
applied field. For a gas with a temperature gradient, we will find that
we can describe velocity space in terms of a collision-dominated part
populated by particles whicﬂ are cooled by dynamicﬁi friction as they
move from higher temperatures to lower temperatures; and a collisionless
regime populated by high speed test particles which can penetrate down
through a temperature scale length without cooling substantially. An
electric field applied along the temperature gradient will have the
effect of accelerating electrons into the collisionless regime, leading’
to an increase in the population of the high energy tail. We will

illustrate these effects more clearly by computing the orbits of high
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speed electrons in velocity space, with an analysis similar to that used
by Dreicer (1960).

Consider a single test electron with velocity v moving through a
plane-parallel Tayer composed of electrons and protons whose distribution
functions are Maxwelliian and described by a density, n, and témperature,
T. For generality we include the effects of an externally applied
electric field and allow the temperature of the field particles to vary
along the vertical coordinate, z, of the layer but, for simplicity, we
assume that the temperature gradient and density remain constant. Under
these conditions, the Langevin equation for the change in velocity v is,

cf., Chandrasekhar (1943) for details,

’ Vv
Tt 3ot A . ()

In this equation, the acceleration due to particle-particle interactions
is separated into a time-averaged part, the dynamical friction, and a
part, A(t), describing fluctuations about the average. The second term
on the Teft hand side of equation (7) is simply the high velocity limit
of the dynamical friction. The parameter, £, represeﬁts the time as we
follow the test electron along its trajectory through the gas, and

is related to the coordinate, z, by the equation,

-, ©

Ignoring the velocity fluctuations produced by the acceleration A(t)
(See Dreicer, 1960) and combining equations (7) and (8) we can write

the Langevin equation as,
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dy v -oF
]JVa'EHT""am ;3-= r—n'; (9)

We can reduce equation (9) into two component equations which in non-

dimensional form are,

2
dax” . - .
Ha T T 2 (xz’““ (10)
b. :
ugu_ . __ 6 (1 -—112) (11)
da . Zubz x2

where

2 2,2 2 _ .o
X =u /ub, s Up —_3EC/E .

-1
. dr

_ CEL - 11 o
o » 8781 - L‘Todz} »

D
il

and a subscript zero 1nd{catés.that the parameter is to be evaluated at
the initial position of the test electron. The Flow Tines for. Fast
electrons in velocity space in any p1ane_conta1n1ng E, are obtained from

equations {10) and (11},

2- .
dx 2 2
= 1 12

The solution to‘this equation is,

2 _-2 K \
X = T?ﬁ' + (13)

T-u

4 = 2 -
where K ((]+uo)x0 + 2)(1 uo),

and'xogand Uo are the values of x and 1 at the initial position of the



-13-

test electron. Note that equation (13) generates essentially the same
flow lines obtained by— Dreicer.

The dynamical friction acts to accelerate test particles.in a
direction which always opposes their motion. This arises simply from
the fact that the field particles are distributed symmetrically in
velocity space. For the special case E = 0 the flow lines are generated
by the equation u = constant so that, in velocity space, the test particles
simply follow straight Tine orbits leading into thehorigin. The relevant
problem for a test partiﬁ]e moving through a finite layer is to find its
final velocity after it leaves the layer, given its initial velocity Uy
By computing the work done by the dynamical friction on a test electron
as it moves through the layer and given its initial velocity, we can
derive its final velocity after it leaves the layer. As shown in Appendix 1,

this is g%ven in general by the equation,

26 e 5]
uf = ul (1- c f"’) (14).

where Ue and u, are the fﬁna]nand initial speeds normalized to the
0

eEC L
kT0

(normalized to kTO) by the dynamical friction on a thermal electron

thermal speed at the top of the layer: SC = ( ) is the work done

(at To)’ which travels a temperature scale 1éngth (L) along the temperature
gradient; 60 and Bf.are the initial and final temperatures normalized

to T. Equation (14) neglects the effect of deflections in slowing a

beam of test particles.

In Figure 7, we plot, on a v_ vs. v, graph the final velocities for

z
test electrons injected into a given layer in the transition region

(characterized by its critical speed, U.> computed from Dupree's model)
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*
for two initial energies, ug = 1.5u§ and ug = 2.0u§. The circle in

*The critical speed (uc) referred to here s that for a 90° deflection

(= (u)p)-

this'pTot represents the distribution of initial velocities, all with
the same magnitude, for test electrons injected at different angles to
the temperature gradient. Note that those particles with positive
initial p-values are injected at‘thé bottom of the layer; while those
with negative u-values are injected at the top. Thg straight Tines are
the particle flow 1ines which are drawn in to simplify the tracing of
the particle trajectory from its initial velocity to its final velocity
after it leaves the layer. Clearly, particles injected at large angles
(small u) to the temperature gradient never make it out of the layer.

*
These test electrons simply come to rest somewhere in the layer itself.

*

We note that a single test particle can never actually come to rest
because of the effect of the velocity fluctuations, A(t), which we ignored
in this analysis. Furthermore, remember that our analysis only applies as

tong as the test particle speed is larger than the local thermal speed.

On the other hand, those electrons moving along the temperature gradient
have small changes in their initial speeds. Another interesting effect
isuassociated with the u dependence of the final speeds. We see that
the relative change in particle energies does not vary substantially
with ¥ until a critical value is reached, beyond which the test particle

decelerates rapidly. For higher initial energies, this critical y-vaiue
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decreases. Thus, even if a test particle undergoes fluctuations in
velocity space about its mean orbit, it does- not slow substantially
until it reaches large angles to the temperature gradient.

The effect of the statisticél fluctuations in velocity, A(t), which
was not included in this ana]ysis, is to smear out the particle orbits
in velocity space. In other words, a single test electron can jumB:from
one flow Tine to another in the course of its motion through a given
layer. The degree to which a particle is deflected to and from various
orbits depends on its speed. The larger the particle speed, the smaller
the fluctuations. Clearly, those electrons moving along the temperature
gradient have the greatest chance of escaping a given layer without a
substantial change in their initial speeds or directions. Those traveling
at large angles to the temperature gradient, will sTow because of their
Tonger path lengths and will also deflect more easily to different flow
1ines. Some will be deflected into a flow line directed along the
temperature gradient; however, if their speeds have decreased substantially
by this time, they can be easily deflected back out again before escaping
the layer. These particies become trapped in the thermal pool. Thus,
the dynamical friction and ﬂ(t) combine to thermalize and isotropize the
distribution of test particles to the field particle distribution.
However, fhey become ineffective for particles at higl‘} speeds and
traveling at small angles with respect to the temperature gradient.
This is what leads to anisotropies and a high energy tail in velocity
space for a plasma with a temperature gradient. We can conclude that
velocity space can be broken up into a thermal part and a collisioniess
part populated by high energy electrons which stream through a temperature

scale length without altering their energies substantially.
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A similar analysis can be carried out for the case where an electric
field is applied along the temperature gradient. Combining equations
(11) and (13), we obtain a transcendental equation for the final p-value

of the test electron; namely.

K2, e
_u2 T+ 1-u 1"1_[0

x. (1 + uziz (o, - ef)) (15)
b™o
From this equation and the particle trajectories (equation 13), we
obtain the final test particle velocities. Equafion (15) was solved
numerically with an iteration scheme. Our results are displayed in
Figures 8-11 with a format similar to that used for zero electric
field. In this case; howevér, the results depend on both the value of
the critical speed, Ues for a given layer in the transition region and
on 3.= E/Ec. 'In Figure 8, the final velocities are associated with

2 2 2 2

and u- = 2.0uC where Ua is the minimum

. 2
initial energies of U, = 1.5uc 5

value of'(ui)D plotted in Figure 4 and g8 was taken to be 0.5. In Figure 9,
the {nitial velocities are the same as in Figure 8, however, the value

of 8 was changed t0—1.03 We see that the larger the initial velocities
the smaller the final relative change in velocities. In addition, if

the electric field is increased the relative change in velocities increases.
In Figures 10-11, we plot the final velocities for a value of uﬁ equal

to twice the minimum value of (UE)D for the transition region and for

the same values of B. Comparing these two sets of figures, we find that
the acceleration due to the electric field increases relative to that

due to the dynamical friction as we move to higher speeds. This arises
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from the fact that the dynamicai friction force falls off as 1/u2 while
the electric field is independent of velocity.

The most interesting features of these(p10ts are the particle
orbits. As pointed out by Dreicer (1960), there exists a critical
surface which-separateg velocity space into a region where dynamical
friction dominates and a part where the electric field dominates. The
minimum distance of this surface from the origin occurs at 3 = - 1 and
is given as u= ub-where ug = 3Ec/E. The larger the electric field, the
smaller the particle speed needed for fhe electric field to dominate
over dynamical friction. Thus the region in velocity space which is
effectively coliisionless becomes larger with increasing E. We also
observe that this criticg] speed increases as p decreases. What is more
important, however, is the behavior of the final velocities as a function
of u. We find that the relative change in velocities remains approximately
constant up to a critical angle, below which a test particle experiences
Targer changes in velocity. Indeed, the latter region is quite narrow
in u and becomes narrower the Targer the initial speed of the test
particles.

Finally, the effect of an electric field is essentially to accelerate
test particles into the collisionless regime. If the electric field
points altong the temperature gradient, then the asymmetry produced by
the temperature gradient is enhanced i.e., the number of high energy
electrons moving down the temperature gradient is increased. The opposite
applies if the electric field points in a direction opposite to the
temperature gradient. Furthermore, the electric field introduces a
critical surface within which a particle's motion is dominated by
dynamical friction while outside of which the motion is dominated by the

electric field.
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4. ESTIMATE OF THE ELECTRON DISTRIBUTION FUNCTION
We have shown that the electron distribution function for velocities
parallel or anti-parallel to a temperature gradient could be divided
into a collision-dominated regime and a collisionliess regime. If the
collision dominated part of the distribution function can be represented
‘by a Maxwellian, then for all Vs Vys and for a steady state with a

Y
temperature gradient in the z-direction,

n, 12 m 2,.2,.2
e e
folVyeVy=¥222) = 1, mﬁ;) exp ['éﬁg (vVihvytvz) | (16)
for v, > -v, . while for v, < v .
51} m
_ e e 2,2
FelVyeVysVp22) = Zmer_ o [?ET"O' (Vx+vy):, Frai1(V2:2)

where Voo is the 'eritical' speed beyond which the e1ectroﬁs become-
collisionless. We noté'from equation (16) that the tail is attached
-only at negativé z-velocities. This stems from the argument that there
are very féw collisionless test particles originating from the lower
temperatures and very few high energy particles, from high temperatures,
dgf]ecteﬁ back up the temperature gradient.

Our objective, then, is to estimate the velocity dependence of the

tail (F

tail [vz,z]) of the electron distribution function throughout the

transition region, given the density and temperature profiles from
Dupree's model. We note first that the tail at a temperature, T, must
ultimately originate from the thermal part of distribution functions at

*
higher temperatures. As a result, the contribution to the tail at

*
This conclusion stems primarily from the fact that the corona is isothermal

and that the tail is populated by coliisionless electrons which stream to

Tower energies without changing their initial energies.-
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temperature, T, and velocity, Vs from .the distribution function at

T + AT and velocity v, is given by,

%

m
= e
Frai1{vyaT) = n(T+aT) (___(_YZﬂk THAT
. 'mevg .
eXp = oRk(TEATY | T Vzc(T+AT) =V, 5—'Vzc(T) {a7)

where the upper limit on v, arises from the fact that particles with

larger velocities are collision dominated (not part of the tail) and the
lower Timit is a result of the fact that particles at Tower velocities

are also collisionless-at T+ AT and fherefore originated ultimately

from the thermal part of the distribution functions with temperatures

greater than T + AT. If we take the limit of equation (17) as AT
approaches zero, we see that each température, T, contributes, at a

single velocity v, = VZC(T),-an amount given by a Maxwellian evaluated

at Vs to the tail at lower temperatures. -Therefore, the tail at tgmperathre,

T, is given in general by,

l m,, _) 2 mv,,
feain (Voo ) = 0(T) {gmrr| &0 |~ 777 (18)

for v, < -v,.(T} and where T' is a function of v_, derived from the

equation,
v, (T) = v, . (19)

The form for the tail is complete, given the critical speed as a
function of temperature. In Section 2, we estimated the critical energies

beyond which electrons become collisionless from ratios of appropriate
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time scales and from collision-dominated theory. Three sets of critical
eﬁergies were obtained, (UE)D {90° deflection), (UE)E (thermalization)
and uE {collision-dominated theory). Since the latter is based on a
precise mathematical solution of the Boltzmann equation, we feel that

u2 gives a good indjcation for the location of the tail in velocity space.

c
However, ug was also derived assuming that the first order distribution

(M £(0)

function f was equal in magnitude to . Since strong departures
from Maxwellian will occur even if f(T) is one-tenth of_f(o), the critical
energy should be chosen to be less than ug. We have chosen-to work with
(ui)E which is always less than ui throughout the trgnsition region.

This choice is somewhat arbitrary and should be considered a 1owef Timit
on the critical energy since electrons with energy iess than (UE)E a%e
thermalized. We will also present results for a critical energy equal to
(0.4)%(u§)0. This parficu1ar choice arises in connection with the calcu-
Tations of particle orbits presented in Section 3 (see also Roussel-Dupre,
'1979, p. 97) and should be considered an upper 1imit to the critical
energy. \

Given the results of Section 2 for the critical energies (ug)p, we

have

: Y-1 1/3
2 _ 2 | ndnpa | dT
uZC = 3.28 X_]O ( T {EZ— ) (20)
Combining equations (18}, {19), and (20) and assuming that the gas

pressure and the quantity q' = T'5/2 dT'/dh are constant, we obtain

8/7

) 2 2
m £ u
_ e zc
ftaﬂ(uz’To) = My (ZﬂkTo) ( 2 )

Uz

% exp [ﬁ uz2/7 u‘_11(112/7] (21)

< U .
for u, < -u .
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Equation (21) gives the final form for the tail of the distribution

function through the transition region. In Figure 12, we plot the ratio
2,2
z/uzc

of T

taﬂ(uZ,TO) to a Maxwellian evaluated at u,, as a function of u

for several values of ui We find that this ratio increases rapidly

o

with velocity i.e., the tail is overpopulated compared to a Maxwellian.
Finally, implicit to the derivation of the velocity dependence of

the tail was the assumption that the collisionless particles gain or

Tose only a small fraction of their initial energy over the extent of

the transition region as a result of work done on them by external

forces 'such as gravity. This is an excellent approximation since the

transition region is so thin and since these collisionless particles

have very high energies. In addition, the assumption that q' is constant

is also a very good approximation for the transition region since most,

if not all of the colliéion]ess particles originate from the region

6.2 ¢ where T2/2 4T/dh is indeed a constant.

T=102-10
5. MOMENTS OF THE ELECTRON DISTRIBUTION FUNCTION

In deriving equation (18) we assumed that the thermal part of the
distribution function could be approximated by a Maxwellian. In fact,
the actual distribution function is the sum of a Maxwellian plus small
correction terms which result from nonuniformities in the density,
temperature and mean flow of the gas. If the correction terms are small
they may be computed from a perturbation ana1ys%s - the Chapman-Enskog theory.
We found in Section 2 that the first order correction term computed by
Spitzer and Hdarm (1953) for electrons in a nonuniform gas, is small for
electron energies less than a critical energy, ”E’ plotted as a function

of temperature in the transition region in Figure 2. Since the correction
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term is small compared to a Maxwellian for speeds defined to be in the
thermal part of the distribution function, we were justified in our
approximation of the previous section. However, we cannot completely
ignore the contribution of the first order term to the overall distribution
function since its nonuniform nature in velocity space contributes to

the moments which determine the mean gas flow and heat flux at a given
height in the transition region. Since perturbation theory breaks down
beyond the critical speed, u., this correction term can only apply to

the collision dominated part of the distribution function and, therefore,
does not affect the tail. In fact, the tail was computed because coliision
dominated theory broke down at high velocities. The total electron

distribution function for all vy and vy becomes,

(0) (1)
fe(v WV Vo 2Z) fe (vx,v ,vz,z) + fe (vx,v ,vz,z)

X'y z Y y
for v, > -v,. and (22)
- ¢ (0)
fe(vxsvysvzaz) - fe (szvysz) ftai'](v_zsz)

for v, fi"gzc where fe(o) is a Maxwellian; fe(1) is taken from Spitzer
and Harm (1953) and ftai'1 is given by equation (21).

The electron density, mean flow temperature, and heat flux in the
transition region are defiﬁed in terms of the electron distribution
function as:

Density: n_(z) = f dy £ (v,2)

Mean Flow:  v.(z) = ‘[- dv v fe(y,z)-

M - 2
Temperature: -T(z) = §—~ery (!-ye) fe(y,z)

- K

Heat Flux: 9{2) = 5 my ‘[-dy (!_§8)2 v £ {v,2)
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From equation (19), we then find,

. - 12
Ju 2
n(z) = “0[1’2“ * o)) + fﬂ%‘)‘ dtJ -
u
c
2
n exp{~u_“)
- . =0 4 c
u(z) = n [3—\77? I3(u ) + 27
x (7 exp(u ) vi E5(ud) - 1) ] (24)
N
Te(2) = o (4-34 (u.)) (25)
e
. )
2kT 2
_ 0 4  I.(u.)}
qze(z) - ~n0kT0 ( m,, ) [' 3 2 C
: 2 2
7 exp(-u ") (3% 27 6 .12 12”
+ +EL 4 24 2y 1 (26)
VT 7 1 2 4 6
) ugoug Ul

where ¢ is the error function; E3 is the third exponentia1'integra1;
u, i$ the critical speed.at which the tail is attached; and Gze is the
mean flow of -the electron gas (which has a z-component only)} normalized

to the local temperature, T, and In(x) is defined by,
X n 2
In(x) =,£ t" exp(-t%) De(t) dt.

We note that Na and Te reduce to ny and T0 as U, approaches infinity.
This must be the case since the distribution function then reduces to, a
Maxwellian plus a correction term which does not contribute to either of
these moments (fe(1) < yu). As u. approaches infinity the mean flow and

heat flux also reduce to their values predicted from collision dominated

‘theory.
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We can evaluate the effect which the tail of the distribution
function has on the various moments discussed above by comparing the

actual moments to the values predicted by collision dominated theory

Ne s ToTo
(i.e., u> ). In Table 3, we Tist values for > and
c - _ Ny T0
979, : . . y . .
o as a function of temperature in the transition region. We find
0

that the tail has very 1little effect on the temperature and density of
the gas as predicted from collisjon-dominated theory. In other words,
n, and T0 represent the total density and mean kinetic energy of the gas
to a high degree of accuracy. 0On the other hand,-the heat flux is
enhanced from that predicted by collision dominated theory by as much as

thirty percent where the temperature gradient is steepest.

in the case of the mean flow for the electrons, we cannot define a

u u
. e - 27 . . .
guantity ——-:—-—9- since, assuming that the ions and protons are

Y20
éffectively stationary relative to the electrons and that no net charge
enters or leaves the transition region, the electric current must-equal

Zero or Gze and ﬁz equal zero. In the presence of a temperature

p
grad%ent, zero net current is maintained by -a self-consistent electric
field which drives cold electrons up the temperature gradient to compensate
for the flow of hot electrons down the temperature gradient. We can
compute the electric field, E, needed to maintain zero net current by
setting equation (24) to zero. In the collison dominated case (uc > o),
where the mean jonic charge (E) is equal to one, this electric field is
given by,

kK dT

E0 = -0.703 T

In Table 3, we 1ist values for (E - Eo)/E0 as a function of temperature

in the transition region. We see that the tail does not affect the
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value of the collision dominated electric field to any sigﬁificant
degrée. We also 1ist in Table 4, values for E/EC as a function of
temperature; we find-that the self-consistent electric field is small
compared to the dynamical friction. Correspondingly, it is still a good
approximation to assume that the high energy particles streaming down
the temperature gradient do not alter their energies substantially
because of acceleration or deceleration due to an external force (See
the results of Section 4).

Because of the difficulty in determining a precise value for the
critical energy we have presented calculations for minimum and maximum
values. The results presented in Table 4 correspond to a minimum value
for the location of the tail in velocity space. 1In Table 4, we present

q.-q
values for ——2

computed with the maximum critical energy given by
(0.4)% (ug)D° Owe see that these values are all negative, meaning that
collision-dominated theory predicts a larger heat flux than the distribution
function with a tail; however, this is not physically valid since particles
cannot transport energy any faster than 1f'they stream freely as in the
case of the high energy tail. These results indicate that if the critical
energies (used to obtain the results in Table 4) at which the tail is
attached are correct then co]Tision—domina?ed theory tends to overestimate
the electron heat flux. This is not surprising since as shown in

Section 2, collision-dominated theéry breaks down beyond a critical

energy plotted for the transition region in Figure 2, On the other

hand, the results obtained with the critical energy for the tail given

2

¢ = (uE)E, give heat fluxes which are greater than predicted by

by u
collision-dominated theory. Ue .can conclude that the actual heat flux
is quite sensitive to the Tocation of the tail in velocity space. These

results also suggest that the critical energy for the location of the
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tail cannot exceed the critical energy beyond which collision-dominated

* )
theory breaks down. We note that the latter energies are closer to the

*This suggestion stems from the fact that we have incorporated the first

order distribution function, f(1), in our total distribution function.

minimum critical energies used in our calculations. Indeed, as already
suggested, the minimum critical energies, (uz)E, are probably a better
estimate of the location of the high energy tails. An exact solution

to this problem would require solving the Boltzmann-Fokker-Planck equation

numerically - a task of enormous proportions.

6. SUMMARY
In Section 2 of this paper, we found that, based on a comparison of
" appropriate time scales, the electron and proton distribution functions
were non-Maxwellian in the solar transition region in the sense that a
high energy tail composed of hot electrons and protons streaming down
from the corona would result. We also found that this anisotropy in the
proton and electron distribution functions would not be refiected by the
ions since their‘higher charge causes them to be coliision-dominated and
results in nearly Maxwellian distribution functions. In addition, we
pointed out that the proton and electiron temperatures need not be equal
through the transition region and that the ions would reflect the
proton temperature. If the proton temperature differs from the electron
temperature in the corona then this condition would persist through the
transition region. In a steady state, however, the latter condition
would necessitate a source or sink of energy for one or the other

species in the corona. We suggest that this would represent an interesting
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line for future research since observations show 1ine widths which are
much larger than the thermal widths expected from electron temperatures
derived from ionization equilibrium calculations.

In Section 3, we computed velocity space orbits for test electrons
mov%ng through a layer composed of field particles with MaxwelTlian
distribution functions characterized by a temperature which varies
through the layer. In addition, we computed the final speeds for these
test electrons after fhey leave a layer whose depth is defined by a
temperature scale height. The results were obtained from the Langevin
equation which includes the effects of a dynamical friction force and an
externally applied field. For the case of zero electric field, the
velocity space orbits are straight lines (given by u = constant) Teading
into the origin in velocity space. In computing the final energies for
the test electrons, we found that an electron's energy does not change
substantially over a temperature scale length for energies greater than
a critical energy and that fhis result applies over a broad range of
p-values up to a critical value which is a function of the particle's
energy. When an external electric field was included in our calculations,
we found its effect was essentially to accelerate fest electrons into
the collisionless regime. If the electric field points along the tempera-
ture Qradient, then the asymmetry produced by the temperature gradient
is enhanced i.e., the numser of high energy eleétrons moving down the
temperature gradient is increased. The opposite applies if the electric
field points down the temperature gradient. Furtﬁermore, as shown by
Dreicer (1960),_‘the electric field introduces a critical surface in
velocity space. If a particle's energy is less than the energy along
this surface, then the dynamical friction dominates the particle's
motion. If it is greater, then the particle's motion is dominated by

the. electric field.
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_The main conclusion of Section 3 was that, for a plasma with a
temperature gradient, velocity space can be broken up into a thermal
part, and a collisionless part populated by high eﬁergy electrons which
stream through a temperature scale length without ailtering their energies
substantially. The net result is that the elect}on distribution functions
are characterized by high energy tails. In Section 4 we estimated
the magnitude of these tails, for conditions appropriate to the transition
region, and found that they were strongly over-populated relative to a
Maxwelitian. -

In Section 5, we used the results of Section 4 to recompute various
moments of the electron distribution functions. We found that the tail
had a nég]igible effect on the total Tocal density of electrons, the
electron temperature, or on the critical self-consistent electric fig]d_
needed to maintain zero net current. On the other hand, the effect of
the high energy taij is to enhance the electron heat flux over that com-
puted from collision-dominated theory by a maximum of 30% in the temperature

5.2 _ 105-4 ¢,

range from 10 We also found, however, that these results
are sensitive to the location of the high energy tail in velocity space
and that detailed calculations, which would involve solving the Boltzmann-
Fokker-Planck eguation numerically, are necessary in order to determine
the exact magnitude of these effects. Nevertheless, we feel that the
minimum critical energies represent a good approximation for the locations
of the tails and that the results obtained with these critical energies
are reasonable approximations for the enhancement in heat flux.

The enhancement in the heat flux, thch vwe computed for Dupree's
model will not have a serious effect on the energy budget of the corona

and the transition region. However, it is important to realize that the

computed enhancement is sensitive to the location of the critical energy.
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Indeed, the increase in heat flux relative to that computed from collision-
dominated theory may be significant for regions which have Tower densities
and/or larger temperature gradients (i.e., lTower critical energies) than
obtained from Dupree’s model. A similar analysis for coronal holes and

active regions, for example, may yield interesting results.’
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Table II

The Dynamical Friction Force for Electrons °

ORIGINAL PAGE 5
POOR QUALITY

u FD/eEc

0.0 0.00

. 1.0 {-4) 5.90
1.0 (-2) 5.36 (2)
2.0 (-2) 7.83 (2)
2.3 (-2) 7.84 (2)
3.6 (-2) 7.37 (2)
1.0 (-1) 1.00 (2)
2.0 (-1) 2.53 (1)
3.0 {(-1) 1.15 (1)
5.0 (-1) 4,65
1.0 1.86
1.4 1.26
1.8 8.70 (-1)
2.0 7.27 (-1)
2.5° 4.80 (-1)
3.0 3.33 (-1)
4.0 1.88 {-1)
5.0 1.20 (-1)
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Table III

*
Moments of the Electron Distribution Functions

log T n-n T- TO' G ~ 9 E - Eo E

nO TQ qO EO .E—C-
8.7  7.56(-11) 4.4(-9)  -1.00{=5) ~ 2.03(-6) 1.31(-4)
4.8 1.88(-6)  7.2(-5).  -5.11(-3} -1.52(-3) °7.89(-4)
5.0 4.09(-4) 1.2(-2) 1.21(-1)  1.20{-2) 4.82(-3)
5.2  1.94(-3)  5.1(-2) 2.83(-1)  3.50(-3) 1.12(-2)
5.4  1.31(-3)  3.6(~-2)  2.92(-1)  1.38(-2) 8.87(-3)
5.6  7.37(-4)  2.1(-2) 1.69(-1)  1.44{~2) 6.52(-3)
5.8  4.09(-4) 1.2(-2)  8.59(-2)  5.98(-4) 5.02(-3)
6.0 2.05(-4)  6.2(-3)  4.73(-2) -2.29(-3) 3.66(-3)
6.2 1.13(-4)  3.5(-3) 1.89(-2)  3.32(-3) 2.87(-3)

*

The subscript (o) refers to moments computed from collision
Those without the subscript are computed

with the effect of the tail included. '

dominated theory.

P R
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Table IV

Comparison of Electron Heat Flux Calcu]ations*

tog T uzc2 qé - q,

%
4.7 ‘66 0
4.8 27 ~7.70(-7)
5.0 11 -3.45(-2)
5.2 7.0 . =1.80(-1)
5.4 8.2 -1.02(-1)
5.6 9.5 ~7.04(-2)
5.8 1 -3.51(-2)
6.0 13 ~1.41(-2)
6.2 14 -5.45(-3).

is the heat flux computed with the effect of the of the tail
1ﬁc1uded while A is the collision dominated value.
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Figure 12

FIGURE CAPTIONS
Ratio of electron mean free path to temperature scale length
for thermal electrons in the Solar Transition Region.
Critical energies at which the first order electron distribu{fon
function equals the Maxwellian.
Critical energies at which the first order proton distribution
function equals the Maxwellian.
Critical energies for 90° deflection and thermalization of
electrons.
Critical energies for a 90° deflection and theramalization of
protons,
Critical energies for a 90° deflection and thermalization of
Si IV.
Final velocities for test electrons injected into a given
layer in the transition region for two initial energies.
11 Final velocities for test electrons injected into a
given layer in the transition region with an electric field.

Ratio of the electron ﬁigh energy tail to a Maxwellian.
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APPENDIX I

DERIVATION OF THE WORK DONE ON A FAST ELECTRON OVER
A TEMPERATURE SCALE LENGTH

The dynamical friction force which appears in the Langevin equation
includes the effect of deflections in slowing a beam of partié1es; The
deflections, however, do not remove energy from the beam but simﬁﬁy
redirect some of that energy into the perpendicular direction. For our
purposes, we are interested in computing the amount of energy lost by a
fast electron to the field particles during Coulomb encounters over a
temperature scale length. More precisely, given a test electron's
initial energy, we wish to compute its final energy after it travels a
temperature scale Tength.

The change in energy experienced by a test particle during a single

encounter can be written as,
+ A -
2v v//) (I-1

where perpendicular and paraliel here are taken relative to the initial

direction of motion. Averaging (I-1) over a1l impact parameters and

field particle velocities, assuming a Maxwellian distribution function

for the field particles, we obtain a general expression for the avérage

rate of energy exchange with the field particles {See Spitzer 1962),
<AE> 3/2 % Effff

. 1
kT - 22y £ 7 (¢ B
N2

- (1 + 8791 (B ) (1-2)
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In the absence of any external forces, the rate of energy loss for a
fast electron moving through an electron-proton gas is obtained from
equation (I-2) and is given by,
2
u-/ 3
d g ZnEIE g

at - u ~ (1-3)

where we have assumed that N = np. The time, t, in the above equation
is taken a1on§ a particle trajectory and is related to the z-coordinate

in our layer by,

dz _

qr = W (1-4)
We can now make a change of variables where the temperature along a
particle's trajectory replaces the time in equation (I-3). Assuming

that the field particle densities and the temperature gradient are

constant, we have,

r . 2 -1
d(u29)2 _ 4neI'ea0 _-_l__ __(_j_I_\ (1—5)
dg u T dz
°)
m

= 1/ -
where 8 = T0 and a8, = BT
The solution to {I-5) is simply,

(e, - o) (1-6)

2
Aoyt oo Meredy 1 dT
f 0 u
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where Ue is the final speed normalized to the thermal speed at

T0 and u, is the initial particle speeds. Given that,

1
4nerea02 (%;- %%) = Zﬁc, equation (I-6) reduces to the desired

result - equation (14).



