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1.0 SUMMARY

In this document, a method is developed for using the integrals of systems of
nonlinear, ordinary, differential equations in a numerical integration pro-
cess to (1) control the local errors in these integrals and (2) reduce the
global errors of the solution. The method is general and can be applied to
either scalar or vector integrals. A number of example problems , with
accompanying numerical results, are used to verify the analysis and support the
conjecture of global error reduction.

2.0 INTRODUCTION

Whittaker (ref. 1) dcfines the integral of a system of differential equations as
a function of the state and time when the total time derivative is zero and the
state variables are any functions of time. In solving nonlinear differential
equations by a numerical integration process, these integrals will be used along
with their associated numerical errors to (1) control the local errors in these
integrals and (2) reduce the global error of the solution.

Integrals of systems of differential equations are constraints on the solution
and, as such, can be used to reduce the number of degrees of freedom in the prob-
lem. Topologically, as more integrals of a system are introduced into the prob-
lem, the solution is constrained to lie on a larger manifold of the solution
space with a resulting reduction in the global errors. The limiting case is, of
course, an analytic solution to the differential equations where the solution is
known at any time and the integral and global error are zero.

The direct approach (analytical substitution) to using integrals of systems of
differential equations to reduce the number of degrees of freedom in a prob-

lem and to reduce the errors introduces cther types of difficulties (such as sin-
gularities and switching logic in the remaining unsolved equations). Invariably,
the overhead of calculating the right-hand side (RHS) of the remaining differen-

tial equations increases significantly; thus, any overall advan age of such an ap-

proach is nullified.

In a direct analytical approach, Szebehely (ref. 2) linearized certain ncnlinear
differential equations by utilizing the integrals of the system and by intro-
ducing a new independent variable. This was an effort to formalize the results
of Steifel and Scheifele (ref. 3), Burdet (ref. U), Szebehely (ref. 5), and
Sperling (ref. 6) who attempted to linearize, and in some cases stabilize, cer-
tain nonlinear differential equations by transformations of the dependent and in-
dependent variables of the problem.

A direct numerical approach was made by Nacozy (ref. 7). The numerical errors
in the integrals of the system were used to rectify the solution at each integra-
tion step in an attempt to stabilize the solution and reduce the errors. For
some integrals, a linear expansion was necessary to compute the correction

vector. Using a fourth-order predictor-corrector integration routine with a vari-

able stepsize, global error reduction of two or three orders of magnitude was
obtained.
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An optimization technique is the most general, indirect approach to controlling
the error in a system described by nonlinear differential equations. A perfor-
mance function is defined as a function of the error in the integrals, and the
differential equations of the system are adjoined to this performance function
by Lagrange multipliers. Through the use of variational calculus or some other
similar technique, differential equations for the multipliers and optimality and
boundary conditions can be developed. However, this is not an advisable proce-
dure for controlling the errors for the following reasons: (1) the number of de-
grees of freedom in the problem typically increases twofold, (2) an iteration
procedure is introduced to satisfy the developed boundary conditions, and (3)
the overhead in the solution of the problem increases significantly. However,
the error in the integral would be minimized and would be indirectly used to re-
duce the global error of the solution.

A functional, indirect approach to introducing integrals of systems in the solu-
tion of differential equations was advanced by Baumgarte. In a number of
studies (refs. 8 through 10) he used the integrals of the system to stabilize
certain ronlinear differential equations and reduce the errors. The procedure
was based on the principle of adjoining a form of the constraint (the coeffi-
cient of the second derivative) by a Lagrange multiplier to the original sec-
ond~order system of differential equations. The technique was applied to sev-
eral problems and the results were encouraging. The error in the integral
(almost always the energy) or constraint was substantially reduced by using this
control process. However, several characteristics of these studies were
disappointing: (1) global error results of the solution were almost always
absent although some analytic solutions were available, (2) the technique re-
quired a particular formulation for the problem, (3) the parameters that were
introduced were not mathematically defined, and (4) a lack of generality existed
when applying the approach to any system of equations and constraints.

This document does not pretend to advance the best technique for using and
controlling the errors in the integrals of a system of differential equations.
It does propose a general technique for incorporating the integrals of a system
of nonlinear differential equations and their associated errors in a process
that will control the integral errors and reduce the global error of the solu=-
tion. The process requires no increase in the number of degrees of freedom in
the solution. The technique has two disadvantages: (1) it requires some
premathematical analysis to formulate the control vector, and (2) it generates
some additional overhead and complexity in the solution.

3.0 STATEMENT OF PROBLEM

This study examines the numerical solution of a first-order, nonlinear system
of ordinary differential equations of the form

X = F(X,t) X(0) =X, 8% t =0 (1)

which possess integrals of motion of the form

Ris
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J(x’t) = K (2)

i S i e

where X and F are n-vectors and J and K are m-vectors; m<n and K
is a constant defined by the initial conditions. The system of equation (1)
is assumed not to be analytically integrable in terms of known functions

and, hence, must be solved by a numerical integration process. Specifically,
this method presents a numerical solution to equation (1) with the additional
criteria that the solution lies "arbitrarily close" to the (m + 1)-dimensional
manifold deseribed in equation (2).

X,

One obvious solution to this problem is %o use squation (2) to eliminate m of

the X's and thus reduce the problem to integrating only the remaining (n-m)-

first-order differential equations. However, past experiences and the examina- ;
tion of a particular system of differential equations and their assoclated inte- )
jgrals indicate that this is not an advisable procedure., There is information E
about the solution embedded in equation (2), and it should not be used only as 1
a check on the numerical integration of equation (1), but it should be used

either directly or indirectly in the solution to reduce the errors and possibly

the number of degrees of freedom in the problem. For example, if a problem-free

procedure could be devised for introducing the m integrals of motion into a ;
system of n differential equations, and the m integrals were introduced into

the solution one at a time, the number of degrees cf freedom in the solution

would be reduced by one each time, requiring the solution to lie on a manifold

with a dimension increasing by one. If there were actually n integrals of mo=-

tion, then as m approaches u, the solution would be constrained to a larger

subspace of the problem, and would also have global errors that tend to zero-

vanish when m equals n.

Because the direct approach to using the integrals of motion in the solution of
a system of differential equations introduces other mathematical difficulties,
an indirect approach shall be proposed to solve equation (1) while attempting to
satisfy the constraints expressed by the integrals of the motion.

4.0 SOLUTION WITH ERRORS

B TE | T

If equation (1) is solved by a numerical integration process, the solution will
certainly contain errors. Consider these errors as due to the inability of the
numerical integration process to correctly evaluate the right-hand side (RHS) of
the differential equations. Defining the numerical errors in the RHS from the
integration process as 6F, the differential equation (eq. (1)) can be expressed
as

e e e we

X = F(X,t) + 6F (3)

where at the initial time (t = 0), 6F(0) = O . The vector F(X,t) in equation
(3) is the exact representation of the RHS of the differential equations. Now
consider the term OF as a perturbation to the sriginal system of equation (1).
The integrals of motion (eq. (2)) are not conserved (K is not equal to a
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constant) and the differential equations for their rate of change can be
expressed as

K = G(X, &F, t) (%)

where G is a vector function of the indicated arguments. The numerical
error in the integral of motion is defined as

€ =K -Kpy y Ko = K(0) | (5)
The differential equation for the time rate of change of the error is simply
€ =K (6)

However, §F is not known (except at the initial time) since the exact solution
of the RHS in equation (1), F(X,t) is not known. Hence, it appears that this
development is an interesting but insignificant exercise.

5.0 SOLUTION WITH CONTROL

In this section, a solution philosophy used in optimal control theory (ref. 11)
will be adopted. 1In controlling a system, it is fundawental to have a process
that is (1) observable and (2) controllable. The first criterion is cer-

tainly fullfilled, for it is noted in the numerical integration process that the
value of the integral is not constant but grows in some manner characteristic to
the particular numerical integrator, stepsize, etc. The second criterion, how-
ever, is not fullfilled.

The process is not controllable because the error vector &F is an unknown
output of the numerical integration process and not an input.

A control vector A (an n-vector) is added to the RHS of zquation (1) (the‘
exact equation) in an attempt to control the numerical error §F of the integra-
tion process. »

X = F(X,t) +A (1)

The justification for the addition of the vector ) to the original equation
(eq. (1)) dis: if m integrals of the motion or constraints exist to a system
of n equations, then the solution to this system of equations is constrained
to lie on a m-dimensional manifold of the solution space and there are only
n-m independent degrees of freedom in the problem. The introduction of
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@ control vector )\ is an attempt to numerically reduce the n-order d~pendent
systeam of equations to a (n-m)-order independent system cof equations.

The introduction of the control vector A to the RHS of the exact equation (eq.
(1)) implies that the numerically integrated equation (eq. (3)) has a similar
term added to its RHS. Of course, it is understood that with the addition of
the control vector A, the term &F appearing in equation (3) will have a dif-
ferent meaning since the error vector will certainly be disturbed by the intro-
duction of this control vector. The introduction of the control vector \ is
an attempt to introduce a term to cancel all or part of the error vector &F such
that when the numerical integration process is applied to equation (7), the

- error (defined in eq. (5)) will be arbitrarily close to zero. Thus, if

8F+)X =0 (8)

and equations (5) and (6) are used to obtain a "stable" solution for the
eontrol vector A, the numerical integration process will produce a value

of the gstate X, which nulls the error. Also, since the number of degrees
of freedom in the system of equations to be integrated have been numerically
reduced, it is conjectured that the global error of the solution will also be
reduced. A solution for the n-vector A from the system of m-constraint
equations must now be obtained.

prrE7) L7 RN U

1 [ Since the error rate and the error are now controllable, a stable differential
i equation for the desired functional relationship between these two errors
is introduced as

é = -Ye (9)

where Y 1is a positive function (defined in the appendix). Now, any error
arising in the integral of motion due to a dissatisfaction of equation (5)
will be critically damped by the control vector A obtained from equation
(9). Using equations (4), (5), (6), and (8) in equation (9) gives

G(X,=A,t) = =Y (K(X,t) - Kg) (10)

\i Since the vector A must span-the-space defined by the state vector X, a
A solution for A is assumed to be
X
, AN A = AX (1)
N,
AN
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i \
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where A is an undefined matrix of appropriate dimensions. Using equation (11)
in equation (10) yields

G(X, -AX,t) = =7 (K(X,t) - Kp) (12)

The problem of controlling the integral errors is reduced to determining a solu-
tion of an algebraic equation. Any solution for the undefined matrix A that
satisfies equation (12) will produce a control vector (from eq. (11)) that,
when used in the numerical integration process, will control the errors in

the integrals of motion. The diffliculty in determining a matrix

A that satisfies equation (12) is, of course, problem dependent. In two of the
example problems (linear oscillator and two-body problem) with a scalar integral
of motion (energy), the matrix A was obtained by inspection. In a third exam-
ple (two-body problem with an angular momentum integral), some manipulation was
required to obtain a matrix A that satisfied equation (12). In a final exam-
ple, a solution is developed to the two-body problem when both the energy and
the angular momentum integral errors are present.

6.0 ONE-DIMENSIONA' HARMONIC OSCILLATOR

The first-order linear, differential equations describing the one-dimensional
harmonic oscillator state are

)'(1 = Xo

X2 = =Xj (13)

Since an analytic solution to this problem exists, there are two integrals of mo-
tion. For this exercise, however, it is assumed that equation (13) cannot be

solved analytically and that only one integral of motion (energy) exists and is
defined as

J(X) = 172 XxTx = k

where the superscript T pefers to the transpose.

'The numerical error in the integral is defined as

e = 1/2 XIx - kg , ko = k(0) (14)

PV AT o
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Adding the control vector )\ to equation (13), the coxtidlled equation to
be integrated is

>
-
"

x2+k1

>
n
"

Developing the total time derivative of the integral of motion, using equa-
tion (15) yields

k = G(X,\) = XTA (16)

b stable differential equation for the functional relationship between
the error and error rates is defined as

€=Ye (17

where Y is a positive scalar function. From equations (14), (16), and (17),
the control vector A 1is required to satisfy the following equation.

XTOh + g X) =Yk (18)

If Y were a constant, equation {18) would represent a new integral of motion;
however, one that is functionally dependent on the «ontrol vector,

A solution is assumed for the control of the;gorm

A+gx=Y%ax (19)

.where & in an undefined coefficient. Using equation (19) in equation (18),

a necessary condition is

a XTx = 1

¥
!
%
i
b
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One value of the coefficient satisfying the equation is
@ = =
2k
which results in a control vector (from eq. (19)) of
A 2l EX (20)
2 k

As expected, the control vector for the energy integral error is in the form
of a feedback control law directly proportional to the error. It should

he noted that the vector A is never singular unless the energy constant

is zero (trivial case).

6.1 COMPARATIVE RESULTS

Equation (15) was integrated with a fixed step, fourth order, Runge-Kutta
integrator using the control vector defined by equation (29). Since the period
of the uncontrolled solution is equal to 2w, solutions were obtained for a con-
stant integration stepsize defined as

= 2n/N

where N is the number of steps in the integration process. The function Y

was determined from a solution of the equation e(t + h) = O at each integration
step (see appendix). For this linear problem, the function Y for each value
of N was found to be a constant.

In the solution, it was noted that the uncontrolled error in the energy grew
in a linear manner with time. The controlled error remained essentially
constant at a value five to ten orders of magnitude less (depending on the
value of N and t) than the uncontrolled error. Thus, the method described
in the analysis of controlling the error in the integral of motion appears

to be valid for the linear problem.

Because the analytic solution to equation (13) is known, the global errcr of the

numerically integrated solution can also be computed. The global error at a
given time is defined as

Ax = |xI - xA| (21)

b

s
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where the superscripts I and A on the vectoi X refer to the integrated and
analytic values, respectively. The global error of the controlled solution

was found to be always less than that of the uncontrolled solution. This indi-
cates that the correct information from the error in the integral of motion

was entering the solution via the control vector A. However, although the
integral errors were reduced substantially by the control, the global error
showed only an infinitesimal reduction. This agrees with the results reported
by Nacozy (ref. 7) for the harmonic oscillator problem.

Conclusion: For this linear and stable problem, controlling the error in the in-

tegral of motion has only a negligible effect on the global error of the solu-
tion. ’

7.0 TWO-BODY PROBLEM WITH ENERGY INTEGRAL

The first-order, nonlinear differe:utial equations describing the two-body prob-
lem are

R=V (22a)

V=g B (22b)

where R and V are the position and velocity vectors (respectively), i is
the gravitational constant and r = |R|. There are three integrals of motion to
this system of equations (not all independent): two vector integrals - Laplace
and angular momentum, and one scalar integral - energy. This exaumple is
concerned only with the energy integral that is formally obtaines by scalar

multiplying equation (22a) by V, and equation (22b) by ﬁ, then taking the

difference and noting the exact differential. This integral can be expressed
as

J(R,V) = 1/2 VIV w u/r = k. N (23)

where k is a constant of the motion defined by the initial conditions. If
equation (22) is solved with a numerical integrator, the solution will contain

errors. This numerical error in the energy integral is defined as

€ = k - kg y ko = k(0) (24)

and the differential equation for its time rate of change is defined as
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Now a control vector
AT = g%, AyD)

is added to the RHS of equation (22) in an attempt to control the numerical
error in the integral of motion. For convenience of notation, a state
vector is defined as

and an assoclated matrix is defined as

- EEE 0
A= H
0 172 1

where O and I are appropriate null and identity matrices, respectively.
Using these identities, the numerical error and error rate can be expressed as

m
]

= STAs - k,

= -ATS | : (25)

m
]

The stable differential equation (eq. (17)) is now used for the functional
relationship between the error in the integral of motion and its time rate
of change. Using equation (25) in equation (17) yields

sT(x - Y 4s) = -Yk, (26)

Since the vector A must span the space defined by the state vector S,
an assumed solution for A is

A=Y AS = Yko A S (21)

10
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where A is an undefined matrix. Using equation (27) in equation (26),
a necessary condition is

sTAs = 1 (28)

Comparing equations (28) and (24), it is noted that one solution for the undefined
matrix A is

=
"
six

which results in a control veator (from eq. (27)) of

>
"

-

xim
o

(29)

Thus, the control vector for the energy integral of the two-body problem can be
cast in the same form as that of the control vector for the harmonic oscillator
prcblem. It is only singular for the special ocase when the energy constant is
zero (parabolic orbit). :

7.1 NUMERICAL RESULTS

Equation (22) with the added control vector defined by equation (29) was in-
tegrated with the same processor as the previous example. However, the constant
stepsize waa determined as

=
1
Zi'v

where P 1s the period of the orbit defined by the initial conditions.

"Figure 1 illustrates a comparison of controlled and uncontrolled solutions for
a two-body problem. The solutions were obtained using a fourth-order, Runge-
Kutta integrator with a constant stepsize of N. The abscissa label of NORBIT
refers to the number of orbits the equations were integrated, while the ordinate
is the logarithm to the base 10 of either the absolute value of the poaition
error or velocity error. (These two errors were approximately equal for this
problem.) Hence, the ordinate is a measure of the number of sipnifivant digits

11
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of information remaining in the solution at a given time (a measure of the
global error of the solution). The solid curves in figure 1 refer to solutions
obtained with the addition of the control vector A, while the dashed curves
refer to no control.

In figure 1(a), the initial conditions were specified by a circular orbit that
is an orbit with an eoccentricity, e = 0 and semimajor axis a = 1. For N = 20,
the uncontrolled solution has lost all information content at NORBIT equals 20,
whereas the controlled solution still retains approximately two digits of ac-
curacy. For N = 40, the controlled solution has approximately two aditional
digits of acocuracy at NORBIT equals 40. For a given N, the two solutions are
diverging; that is, the uncontrolled solutions have a steeper slope or are
approaching zero more rapidly than the controlled solutions.

In figure 1(b) and 1(e¢), similar results are obtained for initial orbits with
eccentricities of e = 0.1 and e = 0.2, respectively . For N = 20, the
uncontrolled solution for e = 0.1 and e = 0.2 has zero-significant digits of
accuracy at NORBIT = 15 and 9, respectively.

When overlaying figures 1(a) and 1(b), it is noted that the controlled solution
shows almost no loss in accuracy for this change in eccentricity, whereas the
uncontrolled solution shows significant losses. Similar (but not as
significant) results are obtained when overlaying figures 1(b) and 1(c).

The. errors in the integral of motion (energy) in figurss 1(a) through 1(e)

behave similar to that of the harmonic oscillator problem. The uncontrolled in-
tegral error grows almost linearly with time; the slope is determined by the ini-
tial conditions and the number of steps N. The controlled integral error re-
mains nearly constant in value, with a number of orders in magnitude less than
the uncontrolled solution. The actual number of orders in magnitude depends on
the initial conditions, integration stepsize, and integration time.

In figure 2, the Y function is plotted versus time for one orbit for the

three sets of initial conditions defined by e = 0.0, 0.1, and 0.2, For e = 0.0,
which is similar to the previous linear problem, the Y function is nearly
constant. The Y functions for e # 0 are periodic in nature. For e = 0.2,
there is a portion of the solution where Y < 0. Since there are no constraints
imposed on either the sign or the magnitude of the function Y, a negative

value is certainly possible (although disconcerting) when viewed from a solution
to equation (9).

In the next two example problems (concerned in part with controlling the error in
the angular momentum vector), only the control vector and an outline of the

.Solution are developed.

8.0 TWO-BODY PROBLEM WITH ANGULAR MOMENTUM INTEGRAL

The differential equations to be integrated are the same as in the previous exam-~
ple; however, the angular momentum integral shall now be considered, and
it is expressed as

12




TIFMAT

J(RV) =Rx V=K (30)

where the vector K 1is a constant of the motion defined by the initial con-

-ditions., Similar to the previous example, the numerical error vector

in this integral is defined as
£ =K - Ky y Ko = K(O) (31)

T T
and after introducing a control vector AT = (AR » Ay) into the RHS of equation
(22), the time rate of change of the error may be determined as

€=RxAy -V xAR (32)

A stable vector differential equation for the functional relationship between
the vector error and its rate is defined as

€E=-Yye€ (33)

where Y is again a positive function. The control vector )\ must now span a
space defined by the vectors R, V, and K or

aR ay og [R]
A= v (34)
[BR BR BK] K ‘

where the a's and f's are undetermined scalars. But from equation (32),
any component of the vector AR parallel to the vector V and, similarly,
any component of the vector Ay parallel to the vector R will have no
effect on the error rate vector e.

Hence, the vectors AR and Ay have the simpler form

AR aR R + ax K

By V + Bk K (35)

Ay

Using equation (35) in equation (32), the error rate vector is

€= (ag+By) K+ (BgR-ag V) xK (36)

13
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The first and second terms on the right-hand side of this equation are. the rates
of change of the angular momentum error vector along and perpendicular to the
vector K, respectively. Taking the inner product of the vectors K, U= R x K
.and W = V x K (respectively) with equation (36) and using equation (33)

yields the necessary conditions on the coefficients a and @:

o

(agp + By) = =Yq .
Bk UTU - ag UTw = -y uTe (37)
Bk UTW - ag WIW = =¥ wTe
where
el K
KT K

The first equation implies that agp and By are homogenous in the term q.
One solution for these coefficients is

G,Rz-ch, Bv=-Y(1-c)q ) (38

where the coefficient ¢ 1is to be determined. The latter two equations (37)
can be solved for ag and Bk as

= Y [T (T - (eTu)(uTiy]
A : (39)
} e @) - (eTu)(WTw))

where the determinant, A, is
A = (WTo)(wTw) - (uTw)2

It should be noted that the determinant is only zero for rectilinear motion.

The control vector for the vector angular momentum error is

1L}
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{ A g
R=agR R+ag K |

' R (40) o

8y V+BkK

Ay

where o and B are defined by equations (38) and (39) and Y is determined from
the condition |e(t + h| = 0 (see appendix).

The coefficient ¢ in the angular momentum error control vector is a scaling pa- !
rameter between the components of error along and normal to the vector K t
(eq. (36)). Since the physics of the problem dictates that the error normal to
the vector K will be extremely small, the actual value of the coefficient ¢ 3
used in the solution will have a minimal effect on the global error. One 3
difficulty should be mentioned. Since the angular momentum error is formed

by a vector product rather than as in the energy error (a scalar product) a con-

siderable amount of algebraic manipulation will be required to cbtain the .
function Y. , } :

9.0 TWO-BODY PROBLEM WITH ANGULAR MOMENTUM AND ENERGY INTEGRALS

In this section the scalar energy integral is added to the vector angular ﬁomen-
tum integral, and a control vector A for both of these errors is determined.

From equations (28) and (37), the necessary conditions on the coefficients a
and . B are

i o A -4 1 e 3

v e

E;B + By vly = Ykek _ J é
(41) |
QR + Bv = -YK q

where ag and Bk are given by equation (39) and the subscripts k, K refer
to variables associated with the energy and angular momentum integrals, respec-
tively. Solving equation (U41) for the coefficients ap and By yields

- T
QR (Yk € * YK q Viv)/(2k + u/r)
i e#£0 (42a)

By

M \
(Yk €, + YK q H/r)/(2k + u/r)

However, this solution is singular when the eccentricity of the orbit
e = 0. A solution valid for e = 0 is

e e

15
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-Yk €k
a = ———
R k
e=z0 (42b)
Yk €k
By =
v 2k
e o eeenWith the additional condition.. ...
Yk €k Y
= (43
2k ka )

Thus, for orbits with e = 0, the function Yg is not directly determined by
the integrator but by the function Yk and the integral errors. But, the co-
efficients given by equation (42b) will produce the energy error control vector
given by equation (29). Then if the coefficients ag and Bk are small and
if e ~ 0, the control vector that was used to reduce the energy integral error
will also reduce the angular momentum integral error. The conclusion has been
numerically verified.

For the problem illustrated in figure 1(a) with N = 20, the energy integral i
control vector reduced the angilar momentum integral errors by approximately . }
five orders of magnitude. However, when the eccentricity e was equal to 0.1,

the energy integral control vector only reduced the angular momentum integral

errors by approximately one order of magnitude. ’

10.0 RECOMMENDATIONS

This method for using the integrals of systems of nonlinear differential equa-

tion and their associated numerical errors should be applied to (1) a variable

step integrator, preferably the Runge-Kutta 4/5, (2) other problems where inte-

grals or other type of constraints are satisfied through rectification at each

integration step, and (3) an unstable system of nonlinear differential .
equations.

16
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APPENDIX
CALCULATION OF THE FUNCTION Y

~ For a fourth-order, fixed-step Runge-Kutta integrator, the state vector is
updated at a time t + h by the expression

X(t + h) = Xo + ‘6-‘ (F' + 2(F2 + F3) + FY) , Xo=X(t) (A1)
. where h is the integration step and the functions FJ are }
defined as ;

Do Fl = p(xo, to)

h h ?
F2=F(X + 2 F t+-) |
T2 PO |
h h ;
F3 = F(? +=-F2, ¢, + -) ;
°© T2 "2 g
' :
( + Flb 2 p(Xy + nF3, tg + h) ‘

For the controlled s3olution, the right-hand sides of the differential equations
may be separated into two parts; the vector F and the vector pn adjoined by
the unknown function Y :

X = F(X,£) + Y n(X,t)

where "y n = \. For simplicity of notation, the argusszat t is excluded

' from the vectors F and n. Then the vector F! may be expressed as :
F1 s F(XQ) + ‘Yn(xo) = Fo + Y No (A2)
e ~and the vector F2 may be expressed as i
‘ 2 _ h h
F 'F(xo"'é'(Fo*Yno)) +yYn (xo*'E(Fo*Yf\o))
But the vector A  represents a small pertimbation to the vector F, and hence the

(' T vector F? may be approximated as i
i
A-1 1




2
Where
F
and
81
Similarly,
F3
)
where
X> =
X3 =

Thus, the coefficient of

N g M e ST T e S R g R TR 5 T — Saraiiisd koot e

F1 +7Y (n1 + 61) + .en

F(X1) » N1 = n(Xq) » X1 = Xo + = Fo

b (A ygy| (o i) o
2 \aX 3%/ X

the vectors F3 and FY may be expressed as

Fo + Y(n2 + 82)

F3 +Y(n3 + 63)

i
>
(o]
+
1
T3
—

i
>
Q
+
=
'z
n

[=2% }= 3

ﬂ+éw2+ﬁ)+ﬂ=\?+ﬂn+/)

where

F
n
-~

Fo + 2(F1 + Fg) + F3

no + 2(n1 + n2) +n3
8o + 2(81 + 82) + 83

TIFMUT

in equation (A1) may be expressed as

(A3)

(A4)

(A5)

For clarity, the analysis is restricted to a particular problem - the harmonic

oscillator.

Extensions to other problems are straightforward.

A-2

The desire

ol sl it
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) is to determine the function Y, which will result at a time t +h in an
integral error of zero.

G=e(t+h) =1/2X(t+hnT Xt +h) =k (A6)
Using equations (A1) and (A5) in equation (A6) yields

| Xo + 2 [~ Y(22+.)] |2 = 2, (A7)

This is a polynominal in the function Y; however, if the small term

33 is ignored, equation (A7) may be expressed as the quadratic equation
)

aY4+bY+ec=0

where

i

b g (X + 2¢7>lT (+,4)

o]
"

| X+ 2‘;'|2 - 2k

There are two solutions for the function 7Y; however, it may be readily verified
that the plus sign of the radical is correct.

NASA-JSC
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