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1.0 SUMMARY

In this document, a method is developed for using the integrals of systems of
nonlinear, ordinary, differential equations in a numerical integration pro-
cess to (1) control the local errors in these.integrals and (2) reduce the
global errors of the solution. The method is general and can be applied to
either seals or vector integrals. A number of example problems , with
accompanying numerical results, are used to verify the analysis and support the
conjecture of global error reduction.

2.0 INTRODUCTION

Whittaker (ref. 1) defines the integral of a system of differential equations as
a function of the state and time when the total time derivative is zero and the
state variables are any functions of time. In solving nonlinear differential
equations by a numerical integration process, these integrals will be used along
with their associated numerical errors to (1) control the local errors in these
integrals and (2) reduce the global error of the solution.

Integrals of systems of differential equations are constraints on the solution
and, as such, can be used to reduce the number of degrees of freedom in the prob-
lem. Topologically, as more integrals of a system are introduced into the prob-
lem, the solution is constrained to lie on a larger manifold of the solution
space with a resulting reduction in the global errors. The limiting case is, of
course, an analytic solution to the differential equations where the solution is
known at any time and the integral and global error are zero.

The direct approach (analytical substitution) to using integrals of systems of
differential equations to reduce the number of degrees of freedom in a prob-
lem and to reduce the errors introduces other types of difficulties (such as sin-
gularities and switching logic in the remaining unsolved equations). Invariably,
the overhead of calculating the right-hand side (RHS) of the remaining differen-
tial equations increases significantly; thus, any overall advan qge of such an ap-
proach is nullified.

In a direct analytical approach, Szebehely (ref. 2) linearized certain nonlinear
differential equations by utilizing the integrals of the system and by intro-
ducing a new independent variable. This was an effort to formalize the results
of Steifel and Scheifele (ref. 3), Burdet (ref. 4), Szebehely (ref. 5), and
Sperling (ref. 6) who attempted to linearize, and in some cases stabilize, cer-
tain nonlinear differential equations by transformations of the dependent and in-
dependent variables of the problem.

A direct numerical approach was made by Nacozy (ref. 7). The numerical errors
in the integrals of the system were used to rectify the solution at each integra-
tion step in an attempt to stabilize the solution and reduce the errors. For
some integrals, a linear expansion was necessary to compute the correction
vector. using a fourth-order predictor-corrector integration routine with a vari-
able stepsize, global error reduction of two or three orders of magnitude was
ob to ined .
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An optimization technique is the moat general, indirect approach to controlling
the error in a system described by nonlinear differential equations. A perfor-
mance function is defined as a function of the error in the integrals, and the
differential equations of the system are adjoined to this performance function
by Lagrange multipliers. Through the use of variational calculus or some other
similar technique, differential equations for the multipliers and optimality and
boundary conditions can be developed. However, this is not an advisable proce-
dure for controlling the errors for the following reasons: (1) the number of de-
grees of freedom in the problem typically increases twofold, (2) an iteration
procedure is introduced to satisfy the developed boundary conditions, and (3)
the overhead in the solution of the problem increases significantly. However,
the error in the integral would be minimized and wound be indirectly used to re-
duce the global error of the solution.

A functional, indirect approach to introducing integrals of systems in the solu-
tion of differential equations was advanced by Baumgarte. In a number of
studies (refs. 8 through 10) he used the integrals of the system to stabilize
certain nonlinear differential equations and reduce the errors. The procedure
was based on the principle of adjoining a form of the constraint (the coeffi-
cient of the second derivative) by a Lagrange multiplier to the original see-
ond-order system of differential equations. The technique was applied to sev-
eral problems and the results were encouraging. The error in the integral
(almost always the energy) or constraint was substantially reduced by using this
control process. However, several characteristics of these studies were
disappointing: (1) global error results of the solution were almost always
absent although some analytic solutions were available, (2) the technique re-
quired a particular formulation for the problem, (3) the parameters that were
introduced were not mathematically defined, and (4) a lack of generality existed
when applying the approach to any system of equations and constraints.

This document does not pretend to advance the best technique for using and
controlling the errors in the integrals of a system of differential equations.
It does propose a general technique for incorporating the integrals of a system
of nonlinear differential equations and their associated errors in a process
that will control the integral errors and reduce the global error of the solu-
tion. The process requires no increase in the number of degrees of freedom in
the solution. The technique has two disadvantages: (1) it requires some
premathematical analysis to formulate the control vector, and (2) it generates
some additional overhead and complexity in the solution.

3.0 STATEMENT OF PROBLEM

This study examines the numerical solution of a first-order, nonlinear system
of ordinary differential equations of the form

X _ F(X,t)	 X(0) = Xo at t = 0
	

(1)
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J(X,t) = K
	

(2)

where X and F are n-vectors and J and K are m-vectors; m < n and K
is a constant defined by the initial conditions. The system of equation (1)
is assumed not to be analytically integrable in terms of known functions
and, hence, must be solved by a numerical integration process. Specifically,
this method presents a numerical solution to equation (1) with the additional
criteria that the solution lies "arbitrarily close" to the (m + 1)-dimensional
manifold described in equation (2).

One obvious solution to this problem is r,o use equation (2) to eliminate m of
the X's and thus reduce the problem to integrating only the remaining (n-m)-
first-order differential equations. However, past experiences and the examina-
tion of a particular system of differential equations and their associated inte-

13ra is indicate that this is not an advisable procedure. There is information
about the solution embedded in equation (2), and it should not be used only as
a check on the numerical integration of equation (1), but it should be used
either directly or indirectly in the solution to reduce the errors and possibly
the number of degrees of freedom in the problem. For 'example, if a problem-free
procedure could be devised for introducing the m integrals of motion into a
system of n differential equations, and the m integrals were introduced into
the solution one at a time, the number of degrees c: freedom in the solution
would be reduced by one each time, requiring the solution to lie on a manifold
with a dimension increasing by one. If there were actually n integrals of mo-
tion, then as m approaches n, the solution would be constrained to a larger
subspace of the problem, and would also have global errors that tend to zero-
vanish when m equals n.

Because the direct approach to using the integrals of motion in the solution of
a system of differential equations introduces other mathematical difficulties,
an indirect approach shall be proposed to solve equation (1) while attempting to
satisfy the constraints expressed by the integrals of the motion.

4.0 SOLUTION WITH ERRORS

If equation (1) is solved by a numerical integration process, the solution will
"

	

	 certainly contain errors. Consider these errors as due to the inability of the
numerical integration process to correctly evaluate the right-hand side (RHS) of
the differential equations. Defining the numerical errors in the RHS from the
integration process as 6F, the differential equation (eq. (1)) can be expressed
as

R = F(X,t) + dF	 (3)

where at the initial time (t = 0), SF(0) = 0 . The vector F(X,t) in equation
(3) is the exact representation of the RHS of the differential equations. Now
consider the term SF as a perturbation to the original system of equation (1).
The integrals of motion (eq. (2)) are not conserved (K is not equal to a



79FM47

l-

constant) and the differential equations for their rate of change can be
expressed as

i = G(X, 6F 9 t)	 (4)

where G is a vector function of the indicated arguments. The numerical
error in the integral of motion is defined as

e =K - Ko	 , Ko_K(0)	 (5)

The differential equation for the time rate of change of the error is simply

e = K	 (6)

However, 6F is not known (except at the initial time) since the exact solution
of the RHS in equation (1), F(X,t) is not known. Hence, it appears that this
development is an interesting but insignificant exercise.

5.0 SOLUTION WITH CONTROL

In this section, a solution philosophy used in optimal control. theory (ref. 11)
will be adopted. In controlling a system, it is fundamental to have a process
that is (1) observable and (2) controllable. The first criterion is cer-
tainly fullfilled, for it is noted in the numerical integration process that the
value of the integral is not constant but grows in some manner characteristic to
the particular numerical integrator, stepsize, etc. The second criterion, how-
ever, is not fullfilled.

The process is not controllable because the error vector 6F is an unknown
output of the numerical integration process and not an input.

A control vector a ( an n-vector) is added to the RHS of equation ( 1) (the
exact equation) in an attempt to control the numerical error 6F of the integra-
tion process.

k = F(X,t) + X
	

(7)

The justification for the addition of the vector X to the original equation
(eq. (1)) is: if m integrals of the motion or constraints exist to a system
of n equations, then the solution to this system of equations is constrained
to lie on a m-dimensional manifold of the solution space and there are only
n-m independent degrees of freedom in the problem. The introduction of

u

__ -	 .^
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a oontro 1 vector i is an attempt to numerically reduce the n-order dependent
system of equations to a (n-m)-order independent system of equations.

The introduction of the control vector A to the RHS of the exact equation (eq.
(1)) implies that the numerically integrated equation (eq. (3)) has a similar
term added to its RHS.. Of course, it is understood that with the addition of
the control vector X, the term 6F appearing in equation (3) will have a dif-,
ferent meaning since the error vector will certainly be disturbed by the intro-
duction of this control vector. The introduction of the control vector X is
an attempt to introduce a term to cancel all or part of the error vector $ F such
that when the numerical integration process is applied to equation (7), the
error (defined in eq, (5)) will be arbitrarily close to zero. Thus, if

6F + X = 0	 (8)

and equations (5) and (6) are used to obtain a "stable" solution for the
control vector X, the numerical integration process will produce a value
of the state X, which nulls the error. Also, since the number of degrees
of freedom in the system of equations to be integrated have been numerically
reduced, it is con3ectured that the global error of the solution will also be
reduced. A solution for the n-vector A from the system of m-constraint
equations must now be obtained.

Since the error rate and the error are now controllable, a stable differential
equation for the desired functional relationship between these two errors
is introduced as

e = -YE
	

(9)

where Y is a positive function (defined in the appendix). Now, any error
arising, in the integral of motion due to a dissatisfaction of. equation (5)
will be critically damped by the control vector A obtained from equation
(9). Using equations (4), (5), (6), and (8) in equation (9) gives

C(X,-X ,t) = Y (K(X,t) - Ko)	 (10)

Since the vector A must span-the-space defined by the state vector X, a
solution for A is assumed to be

A	 AX	 (11)

5

f
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where A is an undefined matrix of appropriate dimensions. Using equation (11)
in equation (10) yields

G(X, -AX,t) = -Y (K(X,t) - K O )	 (12)

The problem of controlling the integral errors is reduced to determining a solu-
tion of an algebraic equation. Any solution for the undefined matrix A that
satisfies equation (12) will produce a control vector (from eq. (11)) that,
when used in the numerical integration process, will control the errors in
the integrals of motion. The difficulty in determining a matrix
A that satisfies equation (12) is, of course, problem dependent. In two of the
example problems (linear oscillator and two-body problem) with a scalar integral
of motion (energy), the matrix A was obtained by inspection. In a third exam-
ple (two-body problem with an angular momentum integral), some manipulation was
required to obtain a matrix A that satisfied equation (12). In a final exam-
ple, a solution is developed to the two-body problem when both the energy and
the angular momentum integral errors are present.

6.0 ONE-DIMENSIONA! HARMONIC OSCILLATOR

The first-order linear, differential equations describing the one-dimensional
harmonic oscillator state are

X1 = X2

%2 = -X 1
	

(13)

Since an analytic solution to this problem exists, there are two integrals of mo-
tion. For this exercise, however, it is assumed that equation (13) cannot be
solved analytically and that only one integral of motion (energy) exists and is
defined as

J(X)	 1/2 XTX = k

where the s uperscrs,pt T refers to the transpose.

The numerical error in the integral is defined as

e = 1/2 XTX - ko	 , ko = k(0)	 (14)

6



79FM47

Adding the control vector X to equation (13), the ao^,-tpo lied. equation to
be integrated is

i j = X2 + X1

X2 = -Xj + X2	 (15)

Developing the total time derivative of the integral of motion, using equa-
tion ( 15) yields

G(X,X) = XTX	 (16)

A stable differential equation for the functional relationship between
the error and error rates is defined as

-Y (17)

where Y is a positive scalar function. From equations ( 14), (16), and (17),
the control vector X is required to satisfy the following equation.

XT(X + 1 X)	 Y ko	 (18)
2

If Y were a constant, equation ( 18) would represent a new integral of motion;
however, one that is functionally dependent on the e.-ontrol vector,

A solution is assumed for the control of the form

X + X Yko aX	 (19)

where a in an undefined coefficient. Using equation ( 19) in equation (18),
a necessary condition is

a XTX = 1

7
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One value of the coefficient satisfying the equation is

a=1
2k

which results in a control vector (from eq. (19)) of

_Y E X

2 k

As expected, the control vector for the energy integral error is in the form
of a feedback control law directly proportional to the error. It should
tie noted that the vector X is never singular unless the energy constant
is zero (trivial case).

6.1 COMPARATIVE RESULTS

Equation (15) was integrated with a fixed step, fourth order, Runge-Kutta
integrator using the control vector defined by equation (?J). Since the period
of the uncontrolled solution is equal to 27r, solutions were obtained for a con-
stant integration stepsize defined as

h = 2n IN

where N is the number of steps in the integration process. The function Y
was determined from a solution of the equation E(t + h) = 0 at each integration
step (see appendix). For this linear problem, the function Y for each value
of N was found to be a constant.

Mt

(20)

.I

error in the energy grew
remained essentially
less (depending on the
Thus, the method described
:gral of motion appears

In the solution, it was noted that the uncontrolled
in a linear manner with time. The controlled error
constant at a value five to ten orders of 'magnitude
value of N and t) than the uncontrolled error.
in the ,analysis of controlling the error in the inti
to be valid for the linear problem.

Because the analytic solution to equation (13) is known, the global error of the
numerically integrated solution can also be computed. The global error at a
given time is defined as
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where the superscripts I and A on the vector X refer to the integrated and
analytic values, respectively. The global error of the controlled solution
was found to be always less than that of the uncontrolled solution. This indi-
cater that the correct information from the error in the integral of motion
was entering the solution via the control vector X. However, although the
integral errors were reduced substantially by the control, the global error
showed only an infinitesimal. reduction. This agrees with the results reported
by Nacozy (ref. 7) for the harmonic oscillator problem.

Conclusion; For this linear and stable problem, controlling the error in the in .
-tegral of motion has only a negligible effect on the global error of the solu-

tion.

7.0 TWO-BODY PROBLEM WITH ENERGY INTEGRAL

The first-order, nonlinear differ4iti al equations describing the two-body prob-
lem are

R = V	 (22a)

V = -u R3	 (22b)
r

where R and V are the position and velocity vectors ('respectively), P is
the gravitational constant and r = IRI. There are three integrals of motion to
this system of equations (not all independent): two vector integrals - Laplace
and angular momentum, and one scalar integral - energy. This example is
concerned only with the energy integral that is formally obtained by scalar

multiplying equation (22a) by V, and equation (22b) by R, then taking the
difference and noting the exact differential. This integral can be expressed
as

J(R,V) = 1/2 VTV - u/r = k
	

(23)

where k is a constant of the motion defined by the initial conditions. If
equation (22) is solved with a numerical integrator, the solution will contain
errors. This numerical error in the energy integral is defined as

C = k - ko	 , ko = k(0)	 (24)

and the differential equation for its time rate of change is defined as

9
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E - k

Now a control vector

)►T = (XRT , ipT)

is added to the HHS of equation (22) in an attempt to control the numerical
error in the integral of motion. For convenience of notation, a state
vector is defined as

ST o ! RT , yT

0

and an associated matrix is defined as

r3T 0

A=	 u

0	 1/2 I

where 0 and I are appropriate null and identity matrices, respectively.
Using these identities, the numerical error and error rate can be expressed as

C = STAS ko

e = -XTS	 (25)

The stable differential equation (eq. (17)) is now used for the functional
relationship between the error in the integral of motion and its time rate
of change. Using equation (25) in equation (17) yields

ST(a - Y AS) = -Yko	 (26)

I

Since the vector X must span the space defined by the state vector S,
an assumed solution for X is

X - Y AS -Yko A S 	 (27)

10
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where A is an undefined matrix. Using equation (27) in equation (26),
a :necessary condition is

I.	 8TA8 = 1	 (28)

Comparing equations (28) and (24), it is noted that one solution for the undefined
matrix A is

i t

A
r
=

which results in a control vector (from eq. (27)) of

= Y k AS	 (29)

Thus, the control vector for the energy integral of the two-body problem can be
cant in the same form as that of the control vector for the harmonic oscillator
problem. It is only singular for the special ease when the energy constant is
zero (parabolic orbit).

7.1 NUMERICAL RESULTS

Equation (22) with the added control vector defined by equation (29) was in-
tegrated with the same processor as the previous example. However, the constant
stepsixe was determined as

h _ p

N

where F is the period of the orbit defined by the initial conditions.

'Figure 1 illustrates a comparison of controlled and uncontrolled solutions for
a two-body problem. The solutions were obtained using a fourth-order, Runge-
Kutta integrator with a constant stepsize of N. The abscissa label of NONBIT

refers to the number of orbits the equations were integrated, while the ordinate
is the logarithm to the base 10 of either the absolute value of ttie position
error, or velocity error. (These two errors were approximately equal for this
problem.) Hence, the ordinate is a measure of the number of signifieant digits

11	 ,
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of information remaining in the solution at a given time (a measure of the
global error of the solution). The solid curves in figure 1 refer to solutions
obtained with the addition of the control vector A, while the dashed curves
refer to no control.

In figure 1(a), the initial conditions were specified by a circular orbit that
is an orbit with an eccentricity, e = 0 and semimajor axis a = 1. For N = 20,
the uncontrolled solution has lost all information content at NORBIT equals 200
whereas the controlled solution still retains approximately two digits of ac-
curacy. For N = 40, the controlled solution has approximately two aditional
digits of accuracy at NORBIT equals 40. For a given N, the two solutions are
diverging; that is, the uncontrolled solutions have a steeper slope or are
approaching zero more rapidly than the controlled solutions.

In figure 1(b) and 1(c), similar results are obtained for initial orbits with
eccentricities of e = 0.1 and e = 0.2, respectively . For N = 20, the
uncontrolled solution for e = 0.1 and e = 0.2 has zero-significant digits of
accuracy at NORBIT = 15 and 9, respectively.

When overlaying figures 1(a) and 1(b), it is noted that the controlled solution
s	 shows almost no loss in accuracy for this change in eccentricity, whereas the

uncontrolled solution shows significant losses. Similar (but not as
significant) results are obtained when overlaying figures 1(b) and 1(c).

The. errors in the integral of motion (energy) in figures 1(a) through 1(c)
behave similar to that of the harmonic oscillator problem. The uncontrolled in-
tegral error grows almost linearly with time; the slope is determined by the ini-
tial conditions and the number of steps N. The controlled integral error re-
mains nearly constant in value, with a number of orders in magnitude less than
the uncontrolled solution. The actual number of orders in magnitude depends on
the initial conditions, integration stepsize, and integration time.

In figure 2, the Y function is plotted versus time for one orbit for the
three sets of initial conditions defined by e = 0.0, 0.1, and 0.2. For e = 0.0,
which is similar to the previous linear problem, the Y function is nearly
constant. The Y functions for e 0 0 are periodic in nature. For e = 0.2,
there is a portion of the solution where Y < 0. Since there are no constraints
imposed on either the sign or the magnitude of the function Y, a negative
value is certainly possible (although disconcerting) when viewed from a solution
to equation (9).

In the next two example problems (concerned in part with controlling the error in
the angular momentum vector), only the control vector and an outline of the
solution are developed.

8.0 TWO-BODY PROBLEM WITH ANGULAR MOMENTUM INTEGRAL

The differential equations to be integrated are the same as in the previous exam-
ple; however, the angular momentum integral shall now be considered, and
it is expressed as

i

12



79FM47

1

J(R,V) = R x V = K
	

(30)

where the vector K is a constant of the motion defined by the initial con-
ditions. Similar to the previous example, the numerical error vector
in this integral is defined as

e=K - Ko	 , Ko=K(0)	 (31)

and after introducing a control vector AT 	
T	 T

= (AR , AV) into the RHS of equation
(22), the time rate of ohange of the error may be determined es

e=RxAV - VxAR	 (32)

A stable vector differential equation for the functional relationship between
the vector error and its rate is defined as

E= - Ye	 (33)

where Y is again a positive function. The control vector A must now span a
space defined by the vectors R, V, and K or

aR aV ag [R]
A =	 V	 (34)

[OR OR OK	 K

where the a's and O's are undetermined scalars. But from equation (32),
any component of the vector AR parallel to the vector V and, similarly,
any component of the vector AV parallel to the vector R will have no

effect on the error rate vector L

Hence, the vectors AR and AV have the simpler form

AR = aR R + aK K

AV $V V + OK K	 (35)

Using equation (35) in equation (32), the error rate vector is

e = (aR + ^ V ) K + ( S K R - aK V) x K	 (36)

13
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The first and second terms on the right-hand side of this equation are• the rates
of change of the angular momentum error vector along and perpendicular to the
vector K, respectively. 'raking the inner product of the vectors K, U R x K
and W - V x K (respectively) with equation (36) and using equation (33)
yields the necessary conditions on the coefficients a and S:

((%R + SV) = Yq

OK UTU - aK UTW = Y UTe	 (37)

SK UTW - aK. WTW = Y WTE

where

ET K

j	 q =

KT K

The first equation implies that aR and SV are homog^rnous in the term q
One solution for these coefficients is

aR Y c q , O V = Y ( 1 - c)q 	 (38

where the coefficient c is to be determined. The latter two equations (37)
can be solved for aK and SK as

aK o [(eTW)(UTU) - (CTU)(UTW)]	
(39)

S K = 0 [(ETW) ( UTW) - (ETU)(WTW)l

where the determinant, A, is

A = (UTU)(WTW)	 (UTW)2

It should be noted that the determinant is only zero for rectilinear motion.

The control vector for the vector angular momentum error is

_	 3
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M.

XR = OR R + OK K
(40)

aV=OVV+OKK

where a and S are defined by equations (38) and (39) and Y is determined from
the condition je(t + h) = 0 (see appendix).

The coefficient a in the angular momentum error control vector is a scaling pa-
rameter between the components of error along and normal to the vector K
(eq. (36)). Since the physics of the problem dictates that the error normal to
the vector K will be extremely small, the actual value of the coefficient c
used in the solution will have a minimal effect on the global error. One
difficulty should be mentioned. Since the angular momentum error is formed
by a vector product rather than as in the energy error (a scalar product) a con-
siderable amount of algebraic manipulation will be required to obtain the
function Y.

i

9.0 TWO-BODY PROBLEM WITH ANGULAR MOMENTUM AND ENERGY INTEGRALS

In this section the scalar energy integral is added to the vector angular momen-
tum integral, and a control vector a for both of these errors is determined.
From equations (28) and (37), the necessary conditions on the coefficients a
and, S are

MR + 
RV VTV Ykek

(41)
aR+0V = -YKq

where OK and SK are given by equation (39) and the subscripts k, K refer
to variables associated with the energy and angular momentum integrals, respec-
tively. Solving equation (41) for the coefficients aR and RV yields

OR = -(Yk C  + Y  q ITV)/(2k + U/r)

e 0 0	 (42a)

RV = (Yk C  + Y  q P/r)/(2k + u/r)

However, this solution is singular when the eccentricity of the orbit
e = 0. A solution valid for e = 0 is

15
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Yk Ek
otR o 

e = 0	 (42b)

Oy = 
Yk Ek

2k

..___with__the.-addJ_tionaI condition..

Yk ek = Y K q	 (43)
2k

Thus, for orbits with e = 0, the function Y K is not directly determined by
the integrator but by the function Y k and the integral errors. But, the co-
efficients given by equation (42b) will produce the energy error control vector
given by equation (29). Then if the coefficients aK and RK are .small and
if a --0, the control vector that was used to reduce the energy integral error
will also reduce the angular momentum integral error. The conclusion has been
numerically verified.

For the problem illustrated in figure 1(a) with N = 20, the energy integral
control vector reduced the angrll.ar momentum integral errors by approximately
five orders of magnitude. However, when the eccentricity a was equal to 0.1,
the energy integral control vector only reduced the angular momentum integral
errors by approximately one order of magnitude.

10.0 RECOMMENDATIONS

This method for using the integrals of systems of nonlinear differential equa-
tion and their associated numerical errors should be applied to (1) a variable
step integrator, preferably the Runge-Kutta 4/5, (2) other problems where inte-
grals or other type of constraints are satisfied through rectification at each
integration step, and (3) an unstable system of nonlinear differential
equations.

16
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APPENDIX

CALCULATION OF THE FUNCTION Y

For a fourth-order, fixed-step Runge-Kutta integrator, the state vector is
vdated at a time t + h by the expression

X(t + h) = Xo + 6 (F 1 + 2(F2 + F3 ) + F4 )	 , Xo=X(t)	 (Al)

where h is the integration step and the functions FJ are
de fined as

F 1 = F(Xo , to)

F2 
F(Xo +

2 F1 ' to +2/

F3 F \X° + 2 F20 to + 2)

F4 F(Xo + hF3 , to + h)

For the controlled r3olution, the right-hand sides of the differential equations
may be separated into two parts; the vector F and the vector n adjoined by
the unknown function Y

x = F(X,t) + Y n(X,t)

where Y n = X. For simplicity of notation, the argugv^at t is excluded
from the vectors F and n. Then the vector F 1 may be expressed as

a	 '

F 1 = F(Xo) + yn (Xo) = Fo + y no	 (A2)

, and the vector F2 may be expressed as

F2=F ( Xo + 2 (Fo + Yno) ) +Yn (Xo+2(Fo+Yno))

But the vector X represents a small perturbation to the vector F, and hence the
vector F2 may be approximated as

A-1
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F2 = F 1 + Y (n1 + 6 1 )	 + ...
	

(A3)

where

F 1 = F(Xj )	 ► n1 = n (X 1 )	 r X1 = Xo + 2 Fo

and

61 = h
2

Similarly, the

F3=F2

F4 = F3

where

C

aF +

ax

vectors

• Y(n2

• Y (n3

Y ,(no + do)	 do 2 0

ax)

l

 X1

F3 and F4 may be expressed as

+ a?)

+ 63)

(A4)

X2=Xo +2 F1

X3 = Xo + h F2

Thus, the coefficient of 
6 

in equation (Al) may be expressed as

F 1 + 2(F2 + F3 ) + F4	 %7 + Y(7t + )
	

(A5)

where

F

3 = Fo + 2(F 1 + F2 ) + F3

= no + 2(n1 + n2) + n3

= 6 0 + 2(6 1 + 6 2) 4- 63

For clarity, the analysis is restricted to a particular problem - the harmonic
oscillator. Extensions to other problems are straightforward. The desire

A-2
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is to determine the function Y, which will result at a time t + h in an
integral error of zero.

0 = e(t + h) = 1/2 X(t + h) T X(t + h) - ko	 (A6)

Using equations (Al) and (A5) in equation (A6) yields

Xo + 6 [3 . Y(7X+',j?)] 1 2 = 2ko	 (A7)

This is a polynominal in the function Y; however, if the small term

an is ignored, equation (A7) may be expressed as the quadratic equation
dX

aY2+bY+c=0

where

b 
t (X + t'7) T

c =

(h)21	
+

 X + 63'1 2 - 2ko

There are two solutions for the function Y; however, it may be readily verified
that the plus sign of the radical is correct.

NASA -JSC
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