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AEROELASTIC EQUATIONS OF MOTION OF A DARRIEUS
VERTICAL~AXIS WIND-TURBINE BLADE
by
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Toledo, Ohio 43606

and

Raymond G. Kvaternik
NASA Langley Research Center
Hampton, Virginia 23665

ABSTRACT

The second-degree nonlinear aeroelastic equations of motion for
a slender, flexible, nonuniform, Darrieus vertical-axis wind-turbine
blade which is undergoing combined flatwise bending, edgewise bend-
ing, torsion, and extension are developed using Hamilton's principle.
The blade aerodynamic loading is obtained from strip theory based on
a quasi-steady approximation of two-dimensional incompressible un-
steady airfoil theory. The derivation of the equations has its
basis in the geometric nonlinear theory of elasticity and the result-
ing equations are consistent with the small deformation approximation
in which the elongations and shears (and hence strains) are negligible
compared to unity. These equations are suitable for studying vibra-
tions, both static and dynamic aeroelastic instabilities, and dynamic
response. Several possible methods of solution of the equations,
which have periodic coefficients, are discussed.

INTRODUCTION

Renewed interest in the wind as an alternative source of energy
has resulted in a number of studies of various wind-turbine concepts.
Presently, receiving considerable attention (see for example Refs. 1
and 2) is the vertical-axis wind turbine (VAWT), also known as the
Darrieus rotor (Ref. 3). The VAWT rotor (Fig. 1) embodies long,
slender, and flexible airfoil-shaped blades which are attached to a
vertical rotating shaft at both ends. The curved shape of each blade-
is approximately that of a troposkien, i.e., the shape taken by a
flexible cable of uniform density and cross section when it is spun
at a constant angular velocity.



The efficient design, construction, and operation of large VAWT
rotors require that the vibrating loads and stresses in the blades,
as well as in the combined rotor-tower system be reduced to the
lowest possible levels and that the system must be free from all
types of instabilities. Thus, aercelastic and structural dynamic
considerations have a direct bearing on the manufacture, life, and
operation of large VAWT systems. Although the basic dynamic phenomena
associated with VAWT rotors are basically similar to those of helicop-
ter rotors, proprotors, and horizontal-axis wind turbines, the struc-
tural configurations of VAWT systems are sufficiently different to
necessitate comprehensive and independent analytical and experimental
investigations of their aeroelastic stability and dynamic response
characteristics.

Vertical-axis rotor systems can exhibit a variety of mechanical
and aeroelastic instabilities such as resonance, ground resonance,
whirl flutter, blade classical bending-torsion flutter, blade coupled
bending-torsion~extension aeroelastic instabilities, blade stall
flutter, and blade static divergence. Ground resonance and whirl
flutter are associated with the entire VAWT system; the other insta-
bilities are primarily associated with the individual blades of the
system. A design requirement for VAWT systems is that each component
as well as the entire system be free from all instabilities.

Experimental results obtained with wind-tunnel models (Refs. 4
and 5) have indicated that the blade aeroelastic instabilities involv-
ing coupling between flatwise bending, edgewise bending, and torsion
are possible under certain conditions. To explain these instabili-
ties, an analytical investigation was conducted in Ref. 6 using an
approximate modal analysis. More recently, bending vibration equa-
tions of a rotating curved slender blade were derived and solved for
special cases by using asymptotic methods in Ref. 7. An aeroelastic
analysis of an existing 5m VAWT system with and without guying wires
for the tower was conducted in Ref. 8. The analyses indicate the
possibility of resonance, ground resonance, and aeroelastic~type
instabilities. In Ref. 9, an analytical investigation of the aero-
elastic stability of a different 5m VAWT system was performed using
a finite element model. These results also show the possibility of
several types of instabilities, depending on the system parameters.

Analyses based on finite element models are well-suited to
accommodate the structural complexities of actual VAWT systems which
may have blades with struts and towers with guying wires. However,
the fundamental understanding of the basic mechanisms of aeroelastic
instabilities and dynamic response phenomena and parametric studies
associated with VAWT systems are better served by a continuum model
which leads to a set of differential equations. A continuum model
for a single blade can be viewed as a building block from which a
continuum model for an entire VAWT system can be constructed.



The purpose of this report is to develop a set of second-degree
nonlinear aeroelastic equations of motion of a Darrieus wind-turbine
blade involving flatwise bending, edgewise bending, torsion, and ex-
tension. The nonlinear terms which will be retained in the present
derivation are of the type which have been found to be important in
aeroelastic stability of helicopter rotor blades.

The derivation of the nonlinear equations of motion herein fol-
lows the methodology of Refs. 10-12. The equations are derived using
the geometric nonlinear theory of elasticity (Ref. 13) in which the
elongations and shears (and hence strains) are negligible compared
to unity. The generalized aerodynamic forces are obtained from strip
theory based on a quasi-steady approximation of two-dimensional incom-
pressible, unsteady airfoil theory. The equations of motion which are
consistent with these approximations may be derived to any desired
degree by retaining terms in the dependent variables to the appropri-
ate degree throughout the development. The present development will
be directed to the derivation of the second-degree nonlinear equations
of motion in which one formally retains terms through second-degree in
the dependent variables. Rigorous adherence to this retention scheme
leads to an almost insurmountable amount of algebra. To circumvent
this problem to some extent, an ordering scheme which is consistent
with the assumption of a slender beam is imposed early in the develop-
ment of the dynamic and elastic portions of the present equations. No
ordering scheme is imposed in the development of the generalized aero-
dynamic forces herein because any ordering scheme which is imposed
would depend on the order assigned to the nondimensional free-stream
velocity and induced velocity both of which vary significantly in
practice. Thus, to accommodate such general operating conditions with
the present equations, the aerodynamic forces are left in general
second~degree form. The aerodynamic forces acting on a blade element
are functions of the blade azimuth angle and hence the final equations
will contain periodic terms. For completeness, the gravitational
forces are also included in the present development.

The equations developed herein are suitable for studying aero-
elastic instabilities, aeroelastic response, and vibration character-
istics of flexible, curved, and rotating blades. These equations
form a building block from which a continuum model of an entire
Darrieus-type VAWT system can be constructed. As these equations do
not have closed form solutions, several possible approximate methods
of solution are discussed.

SYMBOLS
a airfoil lift-curve-slope
ag, by, o quantities defined in Eq. (A5)

A cross—-sectional area of blade



Ap projected area of rotor in vertical plane

Au’ Ay, A, generalized aerodynamic forces per unit length
in EXBB’ 6533’ EéBB directions, respectively

A¢ generalized aerodynamic moment per unit length
about elastic axis

b number of blades
B boundary terms arising from strain energy,

kinetic energy, work done by gravitational
forces, and work done by aerodynamic forces,

réespectively
B; (i =1, 2, 3, 4) sectional constants
c blade chord
Cdo airfoil profile drag coefficient
c(k) Theodorsen's circulation function
D airfoil drag per unit length
e chordwise offset of mass centroid from elastic

axis (positive when in front of elastic axis)

chordwise offset of area centroid of cross

A

gsection from elastic axis (positive when in
front of elastic axis)

E Young's modulus

EXBZ, EYBZ’ EiBZ unit vectors along Xgys Ypy, Zpy axes

eXBB’ eYBB’ €733 unit vectors along XB3’ YBS’ ZB3 axes

EXB6’ EYB6’ EZB6 unit vectors along ZXgg, Ypgs Zpg axes

EXI, E&I, EZI unit vectors along XI’ YI’ ZI axes

eXR, eYR, eZR unit vectors along XR, YR, ZR axes

F aerodynamic force vector



components of aerodynamic force vector FA in
the directions of ey , ey _, ez _,
respectively B3 B3 ‘B3

components of aerodynamic force vector F, in
the directions of
respectively

9

e y € e
X6’ Ye' ZB6
gravitational acceleration vector

shear modulus

gravitational forces per unit length dn u, v, w
directions, respectively

generalized gravitational moment per unit length
about elastic axis

height of wind turbine

vertical velocity of two-dimensional section
normal to free-stream

. generalized inertia forces per unit length in
& 3 = directions, respectivel
Xg3® Yg3’ ®Zp3 ) resp Y

area moments of inertia about Y3 and X3
axes, respectively

generalized inertia moment per unit length
about elastic axis

torsional section constant
reduced frequency

polar radius of gyration of cross-sectional area
about elastic axis

notation used in writing the variation of the
kinetic energy

polar radius of gyration of cross-sectional mass
about elastic axis (kg = k%l + k%z)

mass radii of gyration about Y3 and X3 axes,
respectively

components of curvature of elastic axis before
deformation



k k

kXB6’

li, my, 0y,

(i =1, 2, 3)

t

T

u, v, W

U

Ugs Ups Up

YB6’ ZB6

components of curvature of elastic axis after
deformation

direction cosines, Eq. (Al)

aerodynamic lift per unit length

mass of the blade per unit length

aerodynamic moment about the deformed elastic
axis per unit length

arbitrary point on the elastic axis before
deformation; also origin of the blade-fixed
axis system before deformation

arbitrary point on the elastic axis after
deformation

position vectors of a point in the cross section
of the blade before and after deformation,
regpectively

position vectors of an arbitrary point on the
elastic axis before and after deformation,

respectively

running coordinates along the elastic axis
before and after deformation, respectively

notation used in writing the variation of strain
energy in a concise form

length of blade along undeformed elastic axis
generalized elastic forces

time

kinetic energy; blade tension; rotor thrust

deformations of elastic axis in Xg3s Yp3, and
Zp3 directions, respectively

resultant of Up and Up
radial, tangential, and berpendicular components

of the resultant velocity of a point on the
elastic axis



VY Y70

B3"B37B3

A2
Xp6 B6ZB6

X3, Y3, 23
X1¥121

Xp1Yp12p1
Xp2YR2Z82
Xp3Yp3Zp3

Xp6YB6%B6

XRYRZR

[T]

induced velocity, positive in the negative X;
direction

strain energy

free-stream velocity

wind velocity vector

relative velocity of a point on the elastic axis
expressed in Xp3Yp3Zg3 and XpgYpgZpe coordi-
nate systems, respectively

sum of Wy and Wg

work done by aerodynamic forces

work done by gravitational forces

coordinates of a point on the undeformed elastic
axis along X1— and ZI—axes, respectively

coordinates in X3YqZ4 coordinate system, the X3
and y3 axes are the minor and major principal
axes of the cross section

inertial axis system

blade axis system, parallel to XRYRZR coordinate
system

blade axis system obtained by rotating ZXp1YpjZpj
system about the negative Ypgj-axis by an angle

blade axis system obtained by rotating XBZYBZZBZ
system about the ZBZ—axis by an angle Yy

blade axis system in the deformed configuration
obtained by translating and rotating the XBBYB ZB3
system; the Zpgg—axis is tangent to the deformeg
elastic axis

blade axis system obtained by rotating the XjY¥iZp
system about the Zj—axis by an angle y(= Qt)

transformation matrix relating the angular orienta-
tion of the deformed and undeformed blade-fixed
coordinate systems



[?ij]

A, s Qs Q

By T, 9

Yx323’ szza’
§C)

Zpg

“x323’ fyszy’

0
e}

w
Xe6 B62B6

YZBZB

EZ323

Green's strain tensor

airfoil section angle of attack
quantities defined in Appendix A
Eulerian-type rotation angles

section total pitch angle (built-in twist plus
pitch angle due to control inputs)

engineering strain components

variation of ( )

virtual rotation about the ZBG—axis

small parameter of the order of the bending
slopes; alrfoil section pitch angle with
respect to free-stream velocity; also
extensional component of Green's strain
tensor along the elastic axis

strain components

angle between blade local tangent and vertical
axis, illustrated in Fig. 1

nondimensional free-stream velocity, V_/0R
nondimensional induced velocity, v;/QR

mass density of the blade; alsc mass density
of air

engineering stresses

angle of twisting deformation about the elastic
axis

blade azimuth angle
curvature vector of the undeformed elastic axis
curvature vector of the deformed elastic axis

rotational speed of rotor



()¢ circulatory aerodynamic term

( Iye noncirculatory aerodynamic term

) time derivative a—i ()

( )' denotes differentiation with respect to s

MATHEMATICAL MODEL AND ATTENDANT ORDERING SCHEME

The mathematical model chosen in the present development is a
continuum model. The presence of rotation introduces equilibrium
centrifugal stresses which require the use of a geometric nonlinear
theory of elasticity. There are several levels of approximation
which may be considered in this theory (Refs. 10 and 13). The level
of approximation used in the present development assumes that the
elongations and shears (and hence strains) are negligible compared
to unity.

The wind-turbine blade considered in the present development
consists of a slender, curved, nonuniform blade which can undergo
combined flatwise bending, edgewise bending, torsion, and extension
(axial deformation). The elastic axis, mass axis, and tension axis
are taken to be noncoincident. The elastic axis is assumed to be
coincident with the quarter-chord of the blade. The generalized
aerodynamic forces are obtained from strip theory based on a quasi-
steady approximation of two-dimensional, incompressible and unsteady
airfoil theory. Gravitational forces are included.

Blades presently being considered for VAWT applications have
neither pretwist (built-in twist) nor control inputs for changing
section pitch angle as do the blades for a horizontal-axis wind
turbine. However, for completeness, a variable section pitch angle
is included in deriving the second-degree expressions for the bending
curvatures and twist rate and for the strains.

An ordering scheme consistent with the assumption of a slender
beam is introduced here to provide a systematic procedure for dis-
carding higher-order terms while deriving the second-degree nonlinear
aeroelastic equations. A mathematical ordering scheme was introduced
in Ref. 11 for deriving the nonlinear equations for a slender heli-
copter rotor blade. Considerations similar to those in Ref. 11 have
been applied in the present report to establish an ordering scheme
which is consistent with the slender curved blades of a VAWT rotor.

In this scheme, a parameter € which is taken to be of the same corder
as the nondimensional variables u/S, v/S, w/S, and ¢ 1s introduced.
The order of the dependent variables and geometric quantities appearing
in the equations of motion of this report are as follows:
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u/sS = 0(e) x3/S = 0(e)

v/S = 0(e) y4/8 = 0(e)

w/S = 0(g) 2,/S = s/s = 0(1)

¢ = 0(e) 6,(s) = 0(1)

ay = 0(e) %o (s) = 0(1)

o = 0(e) ¥o(8) = 0(1)

a, = 0(e?) zo(8) = 0(1) (1)

By using the ordering assigned above, the order of the elastic
and inertial terms which are retained in the second-degree nonlinear
aeroelastic equations of motion of the curved blade considered herein
are given in Table 1. The rationale for this scheme was discussed in
Ref. 11. It should be noted that in the present development the ex-
tensional deformation (w/S) is O(e) instead of 0(e2) as in Ref. 11
because of the presence of the initial bending curvature.

Table 1 - Ordering scheme

Freedom Elastic forces Inertial forces
Extension 0(e3) 0(e3)
Bending O(e“) 0(52)
Torsion 0(e) 0(ed)

COORDINATE SYSTEMS AND MOTION VARIABLES

Several orthogonal coordinate systems will be employed in the
derivation of the equations of motion. Those which are common to
both the dynamic and aerodynamic aspects are described in this
section.

1. TInertial system (I-system) X7Y71Zy — The Zi-axis of this
system, as is shown in Fig. 1, coincides with the vertical axis of
the shaft. The Xr-axis is aligned with the free-stream velocity V.

2. Rotating system (R-system) XRYRZR — This system is obtained
by rotating the I-system about the Zt—-axis by an angle ¢ = Qt, as
is shown in Fig. 1. The shaft rotational speed is given by £ and
is assumed constant. The coordinate transformation between the I-
and R-systems is



11

% XII {cos b - sin ¥ 0 | eXR\
- ( = 331n !/ cos Y 0] ¢ Ty
‘ |
| & 0 0 1 e 2

3. Blade system 1 (Bl-system) XpiYgiZp] — This local blade-
fixed coordinate system, as shown in Fig. 1, is fixed to an arbitrary
point, P, on the elastic axis of the blade. This frame translates
along the blade elastic axis and it is parallel to R-system.

4. Blade system 2 (B2-system) XpoYpoZppz — This system is ob-
tained by rotating the Bl-system about the negative Ypj-axis by an
angle 64, as shown in Fig. 1. The Xpos YBZ’ and Zpy axes are
in the normal, binormal and tangential directions, respectively. The
rotation angle 6, can be obtained from the known geometry of the
curved undeformed elastic axis in the XjZj plane by the parametric
equation

ﬁ' xoexI + zaEzI (3)

and is

%

tan_l(— Xé/Z;) (4)

The coordinate transformation between the Bl- and B2-systems is

- - . S
J/ ——XBli cos B, 0 - sin 64 . EXBZ Z
_ ; j_
\ eYBlf % 0 1 0 eYBZ(
B _
{ ZBlJ _31n 6o 0 cos 6CL \eszj (5)

5. Blade principal axis system (B3-system) Xg3» Yp3s Zp3 — The
Xg3 and Yp3 axes are taken to be aligned with the minor and major
principal axes of the blade cross section, respectively. The prin-
cipal axes are obtained by rotating the normal and binormal axes by
an angle vy as indicated in Fig. 2. The angle vy is the total
section pitch angle, which is a combination of built-in twist (pre-
twist) and section pitch changes due to control inputs. The VAWT
configurations presently considered in the literature do not have any
section pitch angle, but it is included in developing the expressions
for the curvatures and strains in order to indicate how one would
include this effect in the analysis. The coordinate transformation
between the B2- and B3-systems is
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) . -
(Eszl | cos ¥ - sin v O%‘jE&BB

{ EYBZ ) =5 sin ¥y cos Y O’ } EYBB
| T2g, | |0 0 1| | 5, (6)

The curvature vector of the undeformed blade is

— ¥ — ¥ —
= - 0'ay  + 7
“Xg3Yp3%p3 0®¥py T ¥ €Zp3 7

This vector is also called the Darboux vector in the literature.
Substituting EYBZ into Eq. (7) from Eq. (6), the curvature vector
is given by

5 = k. % + s + k. ® 8
WRpa¥palpy = Kxpy®Xpy T Kyp3®p3 * Fapq®zp, (8)
where
kXBB = - 8; sin v
kyB3 = - e; cos Y
K=y (9)
zg3

6. Blade system 6 (B6-system) XpgYpgZpg — This system is shown
in Fig. 3 and is obtained by translating and rotating the Xp3Yp3Zyj
system. The Zpgg—-axis is tangent to the deformed elastic axis. The
blade cross section itself is assumed rigid. The deformations of the
elastic axis are denoted by u, v, w 1in the B3-system. The angular
orientation of the Bé6é-system with respect to the B3-system is given
by three Eulerian-type angles B, z, and 6, which are, in turn, ex-
pressed in terms of the elastic deformations (u, v, w) and their
derivatives (u', v', w'), and the twisting deformation (¢). The
final relation between the B3~ and B6-systems is developed in
Appendix A and is given by

h 2 2 1 R

- ! o °x — ‘
1 - - 5 - - ;

“Xps 2 2 ¢ ox T 0 | ®Xp3

t i

— e 2 42 \ \

eYB6 % -6 - agay 1 - %; - ?g boy, — Gy / eYBB/

!

e i % o a 1- l~(a + a7y e {

Zgg ! | °x y 2 | “Zp3 !

(10)
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where

1

Oy = U vsz3 + kaB3
¥

= + —

ay v usz3 WkXBB
"o uk,  + vk (11)

0. =w - u

z YB3 Xg3 ~

_HAMILTON'S PRINCIPLE

The governing equations of motion are derived using the extended
Hamilton's principle (Ref. 14).

&1
j/ﬁ (8T - 8V + W)dt = 0 (12)

to

where

In Eq. (12), T 1is the kinetic energy, V is the strain energy, and W
is the work done by gravitational and aerodynamic forces. For subse-
quent convenience, the variation of work is divided into two parts as
indicated in Eq. (13): the first part, éWg, is due to gravitational
forces; and the second part, 6Wp, is due to aerodynamic loading. In
the following sections, explicit expressions for T, V, and W in
terms of the dependent variables u, v, w, and ¢ and thelr deriva-
tives and the blade sectional properties will be developed.

Strain Energy

The expression for the strain energy of the blade in terms of
engineering strains and stresses is

s
/ﬂ Y

:

Vo

/ *
= b /

V=3 o @Z3Z3YZ3Z3 T 923x3Yz3x3 T OZ3Y3YZ3Y3)dx3dy3dz3
A

(14)

* , .
The coordinates s and z3 are used interchangeably.



14

where, assuming that the components of the engineering strains are
equal to the corresponding components of the Lagrangian strain and

using Hooke's law,

[

02323 EYz3z3 = EEZ3Z3

Ozyx3 T SYazgxy T 20€z3x,

Oz3y3 = Gyz3y3 = ZGEZBY3 (15)

Taking the first variation of V as given in Eq. (14), and
using Eq. (15), yields

/‘S :.,,.

SV = L/' EJ L,/ Y23235Y2323dX3dY3dZ3

/ /) b} .
+(/ Gi/l‘//(YZ3X36YZ3X3 + Y23y36y23y3)dx3dy3dz3 (16)

0 A

The expressions for the required strain components are developed
in Appendix B. For a slender curved blade with zero section pitch
angle these expressions are given by Eqs. (B15), (B16), and (B17).
Substituting these expressions into Eq. (16), taking the indicated
variations, and integrating over the cross section of the blade leads
to

/18

Vo= (s18u + spdu’ + s3du" + s46v’
9
+ 856V + s¢bw + s70w' + sgde t+ 596¢')dz3 17

where, consistent with the ordering scheme discussed earlier,
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1

- 6'2 { B3[ﬁ' —- Bgw' - 6dw + ¢v" + > 05(¢? + V'ZJ

.
- By (Blv" + 952¢%} + E6) (v + 95¢)ilx3x3e - B, (v" + ¢eé%

sg = (o' - 05V ) E(Ty 1y, + Iyxqaxgde ~ E(B3 + By) (V' + 665)]
+ GJ[}' +v'(u" - w'e) ~ olw - eéi}
42 ;" evz 2 i
T =Elae -1 8! (u" - 0w - 8lw') + > LA e'¢v”]
) ya¥3| © o o 2 o F{
I
X3X3 " ) " " Tt oY
+ 8L6 (80 + 2v") + Aepl~v" + ¢(u" - 8w - 8lw' - 61) ]
Ak2 h
+ =5 0" (o' - 2050}

(18)

The expression for the extensional strain ¢ on the elastic
axis for the case in which the section pitch angle is zero is given
by

e = w' + eéu +-% (u'2 + eézwz - 265u'w + v'z) (19)
Assuming that the cross section is symmetric about the Yps—axis, the
sectional properties appearing in Eq. (18) are defined as %ollows:
) (j’ AR
A = d(/ dx3dy3 K/ x3dx3dy3 =0
; N
/ ' M
Aey, = k//y3dX3dy3 ) {/ x3y3dxqdyq = 0
i )
I x. = ,/ /(yng3dy3 / + y3)dx3dy3 0
373 L L U’I

(cont’d)
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N
I = //x%dx3dy3
733 Uy
2 o ~
= 2 2
Ay / ECRRALICS
Uy
f1n
J . i 2 2
/W ; , - .
_ 2 2)
B, = L /y3<x3 + 3 dedy3
1 /‘p
B = x2y2dx dy
2 373773773

Integrating Eq.

)
3 _

(/\/ y3x3dx3dy3 =0

n
/’ X y3dx dy, = 0
L 373773773
/\ 2x dx.d =
Ji 73333

2

f \f X3y 3dx4dy;

g]
[ 3
4 L/[) y3dx3dy3

|
o

Bq

v}
[l

(20)

(17) by parts, the result can be put in the form

/s
i
8V = /’ (Syu + Sy6v + Sybw + Sy6¢)dz3 + By (21)
/0
where the generalized elastic forces Su’ Sy» Sw’ and S¢ are
= - 1 1"
Su - Sl 52 + 83
SV = - 54 + Sg
Sw = S¢ s%
Sy = sg = 59 (22)
and the boundary term is given by
S
By = !jsz - s3)6u + s36u’ + (sy4 - sé)&v + sgév' + 40w + 596¢§
0

(23)
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Kinetic Energy

The position vector of an arbitrary mass point of the blade is

r, = §'+ AR + x

ey + yge (24)

Using Egs. (5), (10), and (Al6) in Eq. (24), the expression for ry
with respect to the B3-system is

= L. vy T R
r, X36XB3 YBeYB3 Z3eZB3 (25)
whetre '
ol
Xq = x5 cos 8, + z4 5in 8, + u + X3(} —-%r —47%) - y3(¢ + axay)
2 2
) o
Y3=V+}731"—é~'——2z>+}(3¢
Z3 = = %5 sin 85 + 2z, cos Oy + w - x3(ay, + ¢ay) + y3(¢ax - ay)
(26)
The angular velocity of the B3-system can be written as
w=0e, =Qe, = Qe (27)
Z1 Zp Zp1
Substituting for EZ from Eqs. (5) and (6), yields
Bl
w = 0 sin 6. cos ye ~ sin 6. sin ve + cos 6. e ) (28)
4 0 XB3 o YBB o) ZB3

The section piltch angle vy 1is set to zero in the subsequent develop-
ment. For this special case Eq. (28) simplifies to

w = sin € _e. + Q cos 9_e. (29)
o XB3 0 ZB3

. The expression for the kinetic energy of the blade in terms of
ry and « is given by
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1 / drl dr

where

dry

Tl Ty +W x T (31)

o]

, s
A1 Nty /'w/np _ _
8T = i Iy . (drl

N . ,f/ dt de
Tt to gl A

The variation of T, integrated between t and tys is given by

Substituting Egs. (25) and (29) into Eq. (31) and the result into
Eq. (32), integrating by parts over time where necessary, and then
integrating over the cross section, the variation of T can be put
into the form

/n S

8T = U/ (kq6u + kodu' + k3bv + ku8v' + kgbw + kg dzg
0

(33)
where, consistent with the ordering scheme introduced earlier,
= i $) + 2mav o+ 2

ky = - m(u - ed) mdv cos O, + m2 cos Go(xo cos 6+ u - ed)

2 . , Y

- m° sin 60 cos 60(~x0 sin eo +w - ev')

' 2 2 2 2 .
k2 = - mv ex,{i” cos 60 + mkmlﬂ sin 8, cos 8, - mf edx, sin 0o
k3 = - mv + 2mQ sin 90(&-e§') ~ 2mf cos Go(ﬁ - ed) + mQZ(V + e)
k, = - ' - 8lw)q? 0+ w + 290 sin 6.) + ma’ i

4= me (u oW x, cos 6, me (w vQ sin 6.) ms? ex, sin 6

- mﬁzew sin2 eo + szeu sin BO cos 60

(cont'd)
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2 - .
m {leeg(u' - Géw)Qz cos? 8, + v'0] L—cu + 2evQ cos 0,

2

, 2 2 _ R . \
+ eR” cos eo(xo cos 6+ u) - el” sin 6, cos 6,(-x, sin 0, + w)l

- ed(u' - Bhw) - 2ed(h - 8L + eV' - ep(E' - 8lW)

. : . 2 2 ) ’
2Q sin eo(v - edp — ev'v') + Q7 sin 0o f~xo sin 80 + w

+ e¢(u' - 8jw) - ev{] - g? sin 6, cos 6, Exo cos 6, + u

I

- 2 . . 2 .
ev'(u' - 84w) — edl + 84 ’:kml(u' - 0ow) - 2szkml¢ sin 6

2 2

% sin®6) kil(u' - olw) - 92

, 2
sin 6, cos eo kmll

; » s 2 2 .
- $8) | - ew - 2Qev sln,eo + Q7 sin® 6, e(~x, sin 6, F w)

- QZ sin 8o cos B, e(x, cos 64 + uii}

- N 2, . _ 2 _ 2 2
meu mkm¢ 2mQev cos 60 m ex, cos 60 mld“eu cos“ 8
2 . 2 2 02 2

+ mii“ew cos 90 sin 60 + m.\kmz - km1}¢9 cos® 8,
_ 2(2_2 Vo _ 22\ .2

m? \kmz kml> v' sin 8, cos 0, m \kmz kml Q¢
- medlx (u'-06.w) sin 6 - ka2 QCu' - 6'w) sin O

TTo o o my R o

2 . . .

- me: ¢V + 2ZmeQdu cos 8, + medv - 2meQw¢d sin 60
- mew(u' - 8ow) - 2meNv sin eo(u' - 84w) - meQzu sin 6, cos Go(u’

- 8'w) + meR’w sin’ O,Cu" - 8lw) . (34)

™
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The sectional properties appearing in Eq. (34) are defined as follows:

A2 IR
L/,L//pdx3dy3 me (/C/py3dx3dy3

m = =
Y N

2 _ [] .2 2 // 2
mkml = U pxgdxady, mkm2 = 0 (/py3dx3dy3

2 2 2 ’
Do s

'

U(f px3y3dx3dys = 0 (35)

Integrating Eq. (33) by parts, the resulting expression can be put in
the form

S
6T = Ué? (I 8u + T,6v + I 8w + I 8¢)dz3 + By (36)
where

Iy =%k - ké

IV = k3 - ki

I, = kg

N
Iy = ke (37)

and the boundary term BT is given by

S
(38)

Bp = (kpbu + k46v)

Virtual Work of Gravity Forces

The virtual work due to gravity can be expressed in the form

S Nn ' » ’
Yo A
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where g 1is the gravitatiehal acceleration vector and is given by
Ll o8 (40)

The vector g can be expressed with respect to the B3-system by
substituting for @€y, from Egs. (5) and (6). For the special case
of zero section pitcﬁ angle considered in the present development,
the vector g in the B3-system simplifies to

g = -gley sin 6, + & cos 0} : 41)
& g(%ax © " iy ") '» ¢

Taking the variation of T, which is given in Egs. (25) and (26),
substituting the resultant expression tegether with Eq. (41) into
Eq. (39), integrating over the cross section, apnd integrating the
result by parts, Eq. (39) yields

8 ,
6WG - / (Gu(gu“ + Gy8v + Gyéw + AG¢~<5¢)'€123 + Bg (42)
0

where
]
G, = - mg sin 6, + (- mgev' sin 6, + mged cos 6p)
L §

G, = Lj mge(u' - 84w) sin 64 - mge cos GOJ
G_ = - mgev'eé sin 6, - mg cos O, + mgeeé¢ cos 6,
C, = mge sin 6, - mge cos B, (u’ = 8 w) (43)

and the boundary term BG 1s given by

i
J

B, = 1(mgev' sin 6, ~'mgep cos 0,) Su i;ﬁ@g@(ufg%f@éW)iginaﬁc

S

+ mge cos 6;}6;} (44)
440
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Virtual Work of Aerodynamic Forces

The virtual work of the aerodynamic forces can be written as

S

W = (F - 8T, + M_ 88 )dz (45)
. A 17 Vzgg zpg) 3

where 6?1 is the virtual displacement of the position vector of an
arbitrary point on the elastic axis, Fj 1s the aerodynamic force
vector, 5ezB6 is the virtual rotation about the ZB6—axis. Usually
the aerodynamic force vector Fp 1is calculated in the B-6 blade
axis system. Since the position vector ¥, given by Eq. (25) is
expressed with respect to the B3-system, the force vector FA is
transformed to the B3-system using the following relation

=[] {Fp} (46)

{Fp}
Xp6YR6ZB6

Xp3¥p3Zp3

The aerodynamic force in the Zgg .direction is Fzgpg and is a pro-
file drag force. Following usual practice, this force component is
assumed to be unimportant and is taken to be zero. Substituting

Eq. (A39) into Eq. (46) and discarding terms which will lead to terms
higher than second-degree in the final equations, one obtains

F = F - F
Xp3 Xp6 yB6¢
F = F + F
YB3 XB6¢ Y86
= v 1 - T
FZBB FxB6(u 0 4w) FyB6v (47)

Taking the variation of the position vector '?l (Eq. (25)) on the
elastic axis yields

8T, = Sue + Sve- + Swe. 48
1 Xp3 ®Yp3 ®Zp3 (48)

The virtual rotation 66236 is obtained from the expression for
kZBé given in Eq. (A40) by replacing 6§ by 665, ¢' by 8¢, and

1
(u' - 64w) by &(u' - 8iw), and making use of the fact 66, equals
zero, and is
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se, =8¢ + v'(Su' - 9'éw) (49)
B6 0

Substituting Eqs. (47-49) into Eq. (45), the virtual work expression
reduces to the form

S
SWy = J/1 (Auéu + A8V 4+ A Sw + A¢6¢)dz3 + By (50)
0

where the generalized aerodynamic forces are

]

A =F._ -F - v
u ™ Frpg ~ Fypgt 7 Glopge??)
A_=TF + F
v YB6  *B6
= - F (u' - 8lw) - F '- M, 6y’
A %86 ° IB6 Zgg ©
A =M i (51)
¢ Zpg
and the boundary term is
S
B, =M, v'Su (52)
A zB6 0
There remains the task of expressin F F and M in
P & Txgg’ ype’ “B6

terms of the dependent variables u, v, w, ¢ and the geometric angle
8, These expressions will be generated from two-dimensional, incom-
pressible, quasi-steady, strip theory in which only the velocity com-
ponents perpendicular to the span-wise axis (zpg-axis) of the deformed
blade are assumed to influence the aerodynamic ?oading. Account will
be taken of the pulsating free-stream velocity V(t) associated with
a rotating blade by employing Greenberg's extension of Theodorsen's
unsteady theory (Ref. 15) for determining the aerodynamic 1ift and
pitching moment acting on the blade. The resulting expressions are
specialized to the case of quasi-steady flow by setting Theodorsen's
circulation function to unity. Classical blade element momentum
theory is used to calculate the steady flow induced by the rotor.

In the present application of Greenberg's theory, the airfoil is
taken to be pivoted in pitch about the aerodynamic center at the
quarter chord and to be executing harmonic motions in pitch (e(t))
and plunge (h(t)) while immersed in a pulsating airstream V(t), as
shown in Fig. 4. The 1lift and moment acting on the elemental section
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of the blade may be expressed in terms of the circulatory and non-
circulatory components as

=
|

= Lo+ Iy
(53)
M= Mg+ M

Since the blade elastic axis is assumed to be coincident with the aero-
dynamic center at the quarter chord, the individual components of
Eq. (53) follow from Ref. (15) and can be written as

2 . .
1 c 2 [
= —— —— + + + =
LNC 5 pa . ( Ve Ve 4 %
L -1 pacV h + Ve + £ £
C 2 2
My = -1 ac (¥ 2 Q + h +-§9 e
NC 7 pac \4 E 8 €
1 2.
M. = - = pac [&£) 2Ve (54)
¢ 2 (4)

In the course of arriving at the circulatory terms in Eq. (54), the
quasi-steady approximation has been introduced by setting the reduced
frequency to zero, in consequence of which Theodorsen's circulation
function C(k) assumes the value of unity.

The lifts and moments given in Eq. (54) must now be expressed in
terms of Ug, Up, and Up, the radial, tangential, and perpendicular
velocity components relative to a point on the elastic axis of the
airfoil, Fig. 5. Now, the expression in parentheses for Lyc in
Eq. (54) is the downward acceleration relative to the air of the mid-
chord point of the airfoil, and the expression in parentheses for Lg
is the downward velocity relative to the air of the three-quarter-
chord point of the airfoil. Since Up 1is the relative velocity com-
ponent perpendicular to the quarter chord, the sectional 1ifts can
also be written as

1 ' c
Lc =75 pacU {:UP + 5 &:) (55)
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where V(t), appearing outside the parentheses of the expression for
Lc in Eq. (54), has been approximated by the resultant of only the
tangential and perpendicular velocity components and is given by

g = 2 2
V=g 4/UP + UT (56)

As indicated in Fig. 6, the noncirculatory 1lift acts normal to the
section chordline and the circulatory 1lift acts normal to the result-
ant velocity U. The profile drag force acts parallel to U and is
“given by

Cdo 2

= 1 0
D =5 pac 3 U

where Cdo is the (constant) profile drag coefficient.

(57)

The components of the aerodynamic force in the directions of the
XB6’ YB6’ and ZB6 axes are given by

F =L + L~ cos oo - D sin o
XB6 NC C
FYB6 = - LC sin o -~ D cos o
FZB6 = - Dy (neglected) (58)
where
sin a = UP/U
cos o = UT/U (593

Substituting Eqs. (55), (57), and (59) into Eq. (58), leads to

Y

: . . Cd g
SR sui-si s (sfr Yo
Fagg ~ 2 P3¢ TUpUp * 3 Ut -y Up F (4 e -3 Ulp |
- x 2 ¢ .. _ Cdo '
Fype ~2 °2° (U 2 Ut - g UV (60)

The noncirculatory and circulatory moments in Eq. (54) can be written
in terms of UT’ Up, U, and e and assume the form
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i
i
!
°
Y
6

g = - % vac (&) [y - ve 4 3 )
)2 2Ue (61)

from which the total pitching moment is given by

2
= - 1 c . r 3 ")
= = + 2
M MZ 6 2 pac (!) (Us UP CcE (62)

The necessary expressions for Up, Up and ¢ are developed in
Appendix C, and are given by Eqs. (Cl4) and (Cl1l9). Substituting
Egqs. (Cl4) and (C19) into Eqs. (60) and (62) and the resulting ex-—
pressions into Eq. (51), one obtains the necessary expressions for
generalized aerodynamic forces.

AEROELASTIC EQUATIONS

Expressions for 6T, 8V, and &W have been obtained in the pre-
vious sections. Substituting these expressions and their associated
boundary terms into Egq. (12), there results an expression of the form

A

ty S
< u/n [()su+ ()sv+ ()éw+ ()8p]dzg + B)dt = 0
Vo ’

to

(63)

For arbitrary admissible variations, Su, v, 8w, and &¢, the four
expressions in parentheses must vanish individually as must the
assembly of boundary terms denoted by B. The first condition will
yield the four governing nonlinear partial differential equations
for u, v, w, and ¢, and the second condition will give the associ-
ated boundary conditions at the ends of the blade. The governing
equations of motion and boundary conditions are summarized below.

u equation:

m(u - e&) - 2mQ cos GOQ - sz cos 84%, ~ mn2 0082 eo(u - ed)

2 o2 2
O . - 1 .
+ mN~ sin 60 cos Go(w ev') +§ mkmlﬂ sin 8, cos 90

-t
2, 2
- 0 - 4 L]
mell vV X, cOs 60 mefd X, sin 60¢ + mg sin 60 + (mg ev' sin eo

(cont'd)
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r . -
_ ! v 1 _ at {_ v
mge ¢ cos 6,) + T8) [Tu' - olw)] + ’ 6°tFIy3y36

— i e' "\
_ T 1 ; TR S BEPN TR * ) 12 2 "
2EB3 (v + ¢80)§ + EIy3y3 zu 8w 0w 5 (v' + ¢°) + ¢Vm‘

"

+ Tgey - E¢Ix3X3(v" + ¢63) + GIv' (' - 84v') } = A,

v equation:

!

mv mQZ(V + e) - 2mR sin QO(W - ev') + 2m cos eo(ﬁ - ed)

+ [@e& + 2mev sin 0o t mﬂzexo sin 64, - moZew sin? 65

1

+ mﬂzeu sin 6 cos 6, - meQz(u' - Géw)xo cos 85] + E@ge cos 0,

|
+ mge(u' - O.w) sin 66] - [Tv' + EIy3y366v'(u” - Bgw — 8w') "

1
+ GI(6" = BAv')(u" — w'e) ~ olw - 8)) ~ GJOLv'(u" - w'e) — olw)]

i

+ ﬂ EIy3y3¢(u” - Bgw - eéw') = Tey + 2EB36é(u" - eéw' - Ggw)

13}
]W__ 1" "o LI Ty | =
EIX3x3 [—v" + ¢(u ouw - 8w eo)J = A,

w equation:

m + meé(u' - 84w) + 2med(a' - 6fw) - mev' + med(d' - 04w)

2

. . . . 2 )
+ 2mQ sin 6,(v - edd - ev'v') - mQ sin R [}xo sin 60 + w

+ ep(u' - 85w) - evﬂ + mp?

. ¥ 1]
sin 60 cos 64 [#o cos 60 + u ev' (u

2 2 5 -~ . .
_at _ _ 1 r ' 2 _ tat | .
eow) e@] mkmleo(u eow)Q cos” A, mv 90 L_eu+—2er cos 60

(cont'd)



29

+ eszo cos B, + eQzu cos2 60 - e2w sin 90 cos 6;]

. . . 2
+ mo [—kil(u' - elw) + Zﬂkilqs sin 0, + 02 sin? 6} ky, (u' ~ 84w)

+ sz%l sin 8, cos 6;] + m8 ) [—eﬁ - 2QVe sin 8, - Qzexo sin 6,
2 .2 02 s ” 12 _ 1,1
+ Q@ sin 60 ew Q< sin 60 cos 60 eu | + Tweo Teou
(
_ e _ ot gty 4 "ot _ - Tt ot
EIY3Y360(U Bow — Bow') E1y3y386060 T EIy3y360(u B oW

1
- eéw'il + mg cos 6, + mge sin eov'eg - mgeby¢ cos b, = A,

¢ equation:

2 4

- . . 2
mk2¢ - meu + 2mev cos eo + meQt x, cos 60 + meQzu cos
m 0

- me°2w sin 6_cos 6 - m . 2 _ 2 : 92¢ c052 6. + mﬂz /kz
- o o} kaz kml) o \ oy

2 (.2 2 2
- kml>v' sin 6, cos 6  + m (kmz - kml>92¢ + meQ“x, sin Bou' - eéw)
+ 2mk%lQ sin eo(ﬁ' - eé&) + me92¢v - 2mef¢l cos 6, - me¢§
+ 2mefw¢ sin 6, + me&(u' - eéw) + 2meqv(u' - Géw) sin 6,

+ meQzu(u' - B4w) sin 6, cos 6y ~ men2w(u' - 8owW) sin? G

- Y]] 1 _ 1" 1 1" ' 1
eo(v + 80¢) {EIYBYBE EB3(V + ¢60%] + EIy3y3(v + eo¢){}

|
- egw - eéw')g + EB3(V” + eg¢)zeé + E(u" - Ggw - 6éw')[éeAe

- Ix3x3(v” + ¢65) - 68B3(u" - eéw' - egwi]‘— E8, {AeAe

(cont'd)
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912¢2 B4e' 2
' 1 0 [¢] 1
- B3[%é(u' - Bow — 85w') - 7~ Boev"| + 5 (6% + 2¢v'")
o 1" " 1ot i Bl [ 1 T !
* Iygug | -V + 0" - 0gw - egw') - 40} | + 0" (8" - 200v")
~ 2B3E6 (u" - olw - 6'w')? - Ep)? 1—33; (u" - 8lw' - 8w + ¢v"
s Lors2 4 )| S oBgelert + 02e)) + E6 (v 4 60 T, . e
7 B0l 2% o? 5 o o i X3%1q
_ n ] _ ‘ ' ‘_ 1,1 _ 1
B,(v" + 089 )\{ 4! - ogv)|E (Tygys * Tagg)e = B3 + B
- R
-
+ ¢eé) + GJ’¢' + v'(u" - w'eé - Sgw - 65)3 > - mge sin 6,
+ mge(u' - 6éw) cos 6 = A¢ (64)
where

™
It

1 2,102
w' + 8ut g (u' - 8w+ S V!

T — E (A - I e' "o e” - eV 1) + 8'2 QE_+ e' 4
- § € }’3}’31 O(U oV o¥ o 2 oqbV
e'¢ 1 1 ]
+ Ix3x3 _g_ (Gé¢ + 2v'") + AeA[}v + ¢ (u" - Géw - Géw' - 6;]
' .
+akd £ (o' - 280v') (65)
J

It should be noted that when Egq. (65) is substituted into Eq. (64)
some third-degree terms in u, v, w, and ¢ and their derivatives
result. Since only second-degree equations are of interest herein,
the third-degree terms should be discarded. Similarly, when Eqs. (Cl4)
and (Cl9) are substituted into Egs. (60) and (62) and the resulting
equations into Eq. (51) some terms higher than second-degree in u,
v, w, and ¢ and their derivatives result. These terms should also
be discarded in the final expressions for Ays Ay, Ay, and A¢.

The assembled collection of boundary terms denoted by B is
given by

B = By — By + Bg + By (66)
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and the requirement of the vanishing of the individual variational
components leads to the relations

. S
Esl - 83) = ky - (mgev' sin 6, — mge¢ cos B,) - MZB6vi]6u . =0
S
s, 8u' =0
35 g
g
{(84 - s8) ~ k4 - [%ge(u' - eéw) sin 8, + mge cos eé]} 6v’0 =0
! ) .
s Gv" = 0
> 0
S
576w' =0
0
S
S96¢| =0 (67
0

METHODS OF SOLUTION

The governing equations of motion are coupled, nonlinear, partial
differential equations with periodic coefficients in the dependent
variables u, v, w, and ¢. These equations have no closed-form solu-
tion and must be solved using approximate methods. Usual practice in
solving these equations is to, first, eliminate the spatial dependence.
This results in a set of coupled nonlinear ordinary differential equa-
tions with periodic coefficients. Various techniques can then be
employed to solve these equations to determine either aerocelastic
stability or response. Some of these techniques are briefly summari-
zed below. The reader interested in detailed considerations should
refer to the references cited.

The spatial dependence is usually eliminated by employing a
modal approach with either assumed or calculated mode shapes (Ref. 14).
An alternative procedure for eliminating the spatial dependence is by
use of an integrating matrix approach (Refs. 16-18).

The nonlinear ordinary differential equations with periodic coef-
ficients also have no closed-form solution and must be solved by
approximate methods. A common practice has been to numerically inte-
grate these equations in time to determine time histories of wu, v, w,
and ¢ from which aerocelastic stability and response of the system
can be determined. The assessment of stability can be facilitated if
fast Fourier transforms are performed on the time histories (Ref. 19).
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Blade moments and shears can also be calculated using the time his-
tories. Another method for solving the nonlinear ordinary differential
equations has been the classical perturbation method for determining
stability whereby the nonlinear equations are perturbed about a steady-
state equilibrium position. This leads to two sets of equations: a
set of nonlinear algebraic equations for the steady-state quantities
and a set of nonlinear ordinary differential equations with periodic
coefficients in the perturbation quantities. The nonlinear algebraic
equations are solved by standard iterative techniques. Usual practice
is to linearize the perturbation equations by discarding all the per-
turbation terms of second-degree or higher in the perturbation vari-
ables. These linearized equations are then solved using Floquet-
Liapunov theory (Refs. 20-22) from which aerocelastic stability and
response can be determined. Another method sometimes employed for
solving the linear perturbation equations is an approximate solution
based on time-averaged coefficients in conjunction with a so-called
multi~-blade coordinate transformation (Ref. 22). In this approach,
the linear perturbation equations are first transformed into a non-
rotating coordinate system by means of a multi-blade coordinate trans-
formation where some of the periodicity in the coefficients is trans-
formed into constant terms. A constant coefficient approximation is
then made by time averaging the remaining periodic coefficients in

the differential equations. Standard eigensolution techniques can
then be used to determine aeroelastic stability and response.

CONCLUDING REMARKS

The second-degree nonlinear aeroelastic equations of motion for
a slender, flexible, curved, and nonuniform Darrieus vertical-axis
wind-turbine blade undergoing combined flatwise bending, edgewise
bending, torsion, and extension have been derived using the extended
Hamilton's principle. The blade aerodynamic loading is obtained from
strip theory based on a quasi-steady approximation of two-dimensional,
incompressible, unsteady airfoil theory. The derivation of the equa-
tions has its basis in the geometric nonlinear theory of elasticity
and the resulting equations are consistent with the small deformation
approximation in which the elongations and shears (and hence strains)
are negligible compared to unity. A mathematical ordering scheme
which is consistent with the assumption of a slender beam was adopted
for the purpose of systematically discarding higher-order terms in the
elastic and dynamic forces in the final equations of motion. The
expressions for the generalized aerodynamic forces were left in gen-
eral second-degree form from which one can obtain the aerodynamic
loading to the order appropriate to any case of interest. The final
equations, which have periodic coefficients, are suitable for studying
vibrations, both linear and nonlinear aeroelastic stability and
response. As these equations do not have closed form solutions,
several approximate methods of solution have been discussed.
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APPENDIX A

DERIVATION OF EXPRESSIONS FOR COORDINATE
TRANSFORMATION MATRIX AND CURVATURES

The development of the second-degree nonlinear aercelastic equa-
tions of a rotating curved blade requires second-degree nonlinear
expressions for the rotational transformation matrix between the B3-
and B6-systems (Fig. 3) and for the components of curvature. Since
these expressions are independent of rotational speed, Q, only a non-
rotating blade is considered.

The elastic deformations translate and rotate the B3-system to
the B6—system. Let the rotational transformation matrix between these
two systems be Eﬁ] such that

- (v ) 9 I B
®Xgg ®Xp3 1 M1 1| | ®Xps
- = [T — = | = A
§ ®Ype [1] < ©Ypq {2 m2 2 { ®¥g3 (A1)
t
§
\ “Z3g \SZg3) L3 T3 M3 A8z,

Let the expression for the curvature vector of the deformed elastic
axis be

m =k, e + e + k., e A2
“Xpe¥peZB6 | “XmeEae | VBeSTme | “ZmeZng (42)

The next step is to find the expressions for the components of
the curvature vector in terms of the direction cosines 231, mj,
ny, ... n3, and the components of initial curvature. From Eq. (Al),
one can write

e = fqe + mae
Z 3 XB3 3€y

+ nae (A3)
B6 3%z

B3 3

Differentiating Eq. (A3) with respect to s leads to

=2 = ajey + bleYB

+ c,e (A4)
B6 B3 1 ZB

3 3

where
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a; = L} - mqk + nqk

1 3 3 Zp1 3 Y53
by = m} + 23k, . - ngk

15103 3%zp4 ng Xp g
c, =ni+n - %

17 P Mty T fakygy

Invoking the small strain assumption, one can write

The iddentity

B6
leads to

3 =k, B -k, ®
®Zge  YB6 XB6  *B6 'B6

Substituting Eq. (Al) into Eq. (A4), one can also write
form

-1

ZB6

©
1

= (alll + blml + clnl)EXB6

+

From Eqs. (A8) and (A9), the expressions for k and

XB6

k = - (ajly + bymyp + cqng)

XB6

k
YB6

ajfy + bymy + cqng

The identities

e |

YB6

(&5)

(A6)

(A7)

(A8)

in the

(A9)
are
(A10)

(All)
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) = - k e + k e
X3¢ YB6 %B6  2B6 'B6

]
2 = W X
Xge X6 B6ZR6

k =e! ‘e (A12)
zgg  XBg  IB6

and the substitution of Eq. (Al) into Eq. (Al2) lead to

' .
k =& + m& + n e © {29y + myE + n,e
Zg6 (18X33 1%g3 " M ZB3> ( 2%Kg3 © M2%g3 T T2 233)

(A13)

Expanding Eq. (Al3), using Eq. (8), and making use of the fact that
each element of the orthogonal matrix Ef] is equal to its cofactor,
Eq. (Al13) simplifies to

k = g +m + n,k +¢.4!' + m.m! + n.n! (A1)
ZR6 3kXB3 3kyB3 3%zp4 271 271 T2l

Thus far, the expressions for the components of curvature have been
developed in terms of the direction cosines and the components of the
initial curvature of the undeformed elastic axls. The next task is
to express the direction cosines in terms of u, v, w, and ¢. To
this end, the direction cosines are first expressed in terms of the
Eulerian-type angles, B, 7, and 6 which are defined as follows:

1. A positive rotation B about the Ypg3-axis resulting in
S YAS VXS VR
2. A positive rotation ¢ about the negative XBé—axis result-

3. A positive rotation 6 about the Zpg-axis resulting in
%36 B6%B6"

The explicit form of the transformation matrix Eﬂ] in terms of the
Eulerian-type angles is
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cos 6 cos B sin 6 cos -cos 6 sin B
~gin 6 sin ¢ sin B -sin 6 sin ¢ cos B
[T] =1 -sin 6 cos 8 cos 6 cos ¢ | sin 6 sin B
-cos 06 sin ¢ sin B ~cos 6 sin ¢ cos B
_Cos ¢ éin B sin ¢ cos ; cos B .

(A15)

The quantities B, r, and 9 are to be expressed in terms of
the variables u, v, W, ¢, and the components of the initial curva-
ture of the elastic axis. To this end, let R and Ry be the
position vectors of the points P and P' in Fig. 3, and AR be
the displacement of P. Then,

Ry =R + AR = R + ue, + vey + we. (A16)
1 ¥p3 Yp3 Zg3

Differentiating the expression for AR in Eq. (Al6) with respect to
s leads to N

.ic‘_gAsR; " ey, toyer, o, (A17)
where
B T W T KVt by W
oy = vi+k, u- kXB3w
o, = w' - kyB3u + ka3V (A18)

Differentiating Eq. (Al6) with respect to s and substituting
Eq. (Al7) into the resulting expression, the expression for aRl/as
is

Ry R

3s ~ as T aiEXBB + ayEYBB + aéEZBB

(A19)
Now, from calculus

R _ (A20)



37

Substitution of Eq. (A20) into Eq. (Al9) gives

== = +oa e, + (1+a,e A21
Ns o e aerB3 ( az)eZB3 ( )

The relation between the extensional component of the Green's
strain tensor on the elastic axis and Eﬁllas is given by

_ _]; ail BE]_ ‘)
? T2 <Bs " s T (A22)

Substituting Eq. (A21) into Eq. (A22), the expression for e reduces
to

e = a, +,% (a% + a% + a%) (A23)

The relation between ds and dsl can be written as
ds; = (1 + 20)1/24s (a24)

Differentiating Eq. (Al6) with respect to s1, and substituting
Eq. (A24) into the resultant expression, one can write

5;; = eZB6 = (1 + 2¢) (1 + az)eZB3 + axeXB3 + aerB3

(A25)

Invoking the assumption that the elongations and shears (and hence
strains) are negligible compared to unity leads to

= g_e + o e + (1 + a.)e (A26)
x-X v YB3 z ZBB

e
Z B3

B6

From Egqs. (Al), (Al5), and (A26), one can write

L9 = cos ¢ sin B = ay
mq = sin ¢ = Oy
ng = cos g cos B =1+ a, (A27)



38

The orthogonality condition between %3, m3, and nj

2 2 2
23 + mg + ng = 1 (A28)

is satisfied before invoking the small strain assumption. This con-
dition must also be satisfied under the small strain assumption.
However, Eq. (A26) which assumes small strains leads to an interesting
result. From Eqs. (A23) and (A27), one can write for small strains

ng =1+o0, =1+c¢ —'% (a% + a% + a%) = 1 —-% (ai + a§ + ai)

(A29)

An alternative expression for nj; in terms of ay and ay follows
from Egs. (A27) and (A28) and is

: 1

n3 = [; - (ui + aéX] /2 = ] -‘% (ai + ag) (A30)
Thus, Egs. (A29) and (A30) show that there are two slightly different
expressions for n3. These two expressions must be equal. Therefore,
one should impose an additional assumption that the quantity ag is
negligible compared to u% and o2 and/or unity when the small strain
assumption 1s invoked. This assumption is made in the present develop-
ment. Accordingly,

o1 _1(2. 2
nj 1 (ux + ay) (A31)

From Eqs. (A27) and (A31), the expressions for the trigonometric func-
tions involving B8 and ¥ are

Ox OL}Z{
sin B =““‘“‘§—— ¥ Oy cos B = 1 - B3
1- /2
y
(Xy
sin ¢ = oy cos ¢ = 1 e (A32)

The retention of the terms a%/Z and a2/2 1in Egs. (A31) and (A32)

is consistent with the fact that some of the rotations must be regarded
as substantially exceeding the strain components for a slender rotating
beam. This implies that the right hand side of Eq. (A23) represents a
small difference of large terms. This is discussed in Ref. 13,

page 203. The implications of discarding these terms while deriving
the nonlinear aeroelastic equations of a helicopter rotor blade were
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discussed in Ref. 11. The third Eulerian angle 6 is associated with
torsion of the blade and, hence, is given by

8 = ¢ (A33)

The expressions for the transformation matrix Eﬁ] and for the
components of curvature are given in terms of the direction cosines
in Eqs. (A10), (All), and (Al4), and those for direction cosines in
terms of the Eulerian angles are given in Eqs. (Al) and (Al5). The
Eulerian angles are expressed in terms of the quantities oy, Oys Oz
and ¢ in Egqs. (A32) and (A33), and the expressions for ay, Oy and
a, are given in terms of wu, v, w, ka3, kYB3’ and kZB3 in Eg. (Al18).
Combining Egs. (Al), (Al5), (A32), and (A33), the second-degree expres-
sion for the transformation matrix is

[ ¢2 OL}Z( . B
1l - 7{'—-?; 0 ~0x ~ oy
¢2 uz
=| - ¢ - - A -
Dﬂ ¢ 0y 1 =5 doy = oy
2 2
) o

(A34)

Combining Eqs. (A5), (Al0), (All), (Al4), and (A34), the second-degree
expressions for the components of curvature are

2
o
k =k - o k ol -k, X-ok, 4+ ¢al - gk + ¢
*B6 ¥p3 X'Zp3 Y X3 2 X3 2 x ¥ 2p3 kYB3
(A35)
k 59),
= k -k, o, +ta, -k + ¢a. + k da
Yse Y3 %83 Y X Y3 2 y o Tzgg ¥
¢ x5y kXBBaxuy (A36)
(o2 + o2)
ol + o
k + + - x ¥/ '
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For the case of zero section pitch angle, Eq.
k = - 8]
YB3
= = (
kXB3 283
and Eqs. (A34) and (A35)-(A37) simplify to
f ¢2 (u' - 6éw)~2
I 1- 5 - 5 ¢
!
2 12
Pl o | = _ v o_ ! ¥ _%c _ v
E:J = | ® (u Bowlv 1 5 5
(u' - 8iw) v'
kg = = V' T 00’ - 05w - 403
1 1 ¥ ! eé '2
kyB6=—90+ (u —eow) +—2“(V
k = - 05v' + 4" + v ' (u' - Géw)'

286

(9) leads

(A38)

- (u' - 8gw) — ¢v'

p(ut - eéw) A

l-%Bu‘—e&ﬂ2+v€]

(A39)

+ ¢2) + d)vll

(ALD)
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APPENDIX B

DERIVATION OF STRAIN-DISPLACEMENT RELATIONS

This Appendix will develop the second-degree nonlinear expres-
sions for the strains. To this end, let - ¥, and r; be the position
vectors before and after deformation of an arbitrary mass point in the
cross section of the blade. These vectors can be written as

=.§ + x.g + g
0. 3 Xp3 y3 Yp4

r] = Ry + Xqeg  + Vae (B1)
17 017 %380 T V3%,

where the effect of warping of the blade is neglected.

- The differential of the vector, ;g, is given by

4R dexps dey g,
= -] 4k { _ _
o = ds ¥ ¥3 g5 T3 gs U8 Ty dxg toey dvy (B3
The derivatives of the unit vectors can be written as
ds Xg3¥p3Zp3 B3
dEY
B3 _ — ‘=
ds  “Xpa¥psZps © ©Yp3 (85)

Substituting Eq. (8) into Egs. (B4) and (B5), and the resulting equa-
tions into Eq. (B3), yield

dry = (dx3 - y3k ds)eXB3 + (dy3 + XBkZBBdS)eYB3

ZB3

+ (1 - x ky + y3k )dsez (B6)

3 B3

B3 *B3

The same procedure leads to the following expression for d?l
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dry = (dxg - vk, dsp)ey + (dyg + XBsz6dsl)eYB6

+ (1 - %k, + Yok )ds‘é , (B7)
3%ype T3 ¥/ 1 Zyg

The Lagrangian strain tensor [%ij] is defined as follows:
dx3
dry + dry - dr, - drg = 2[dx3 dy3 dz3|[eg4] / dys (B8)
Ldz3

Combining Eqs. (A24), (A34), (B6), (B7) and (B8) and collecting terms,
the expressions for the three strain components of interest become

£ =e - x,(k. -k +y.lk. -k
Z323 3\ Ype yBB) 23( %pg xB3)
2 < 2 2)
X3 b4 xs +
P2 (k2 -2 ) + 23 (k% - K2 ) + %37 73) <k2 - k2 )
2 \ Vgg YB3 2 B6 B3 2 236 233
- X,¥ {k k -k k )
33\ 786 *s6 B3 YB3 (B9)
y
. - .23 -
fz3x3 2 | Fzpg kZBQ (B10)
x ’
3 ! (B11)

Substituting Egqs. (A23), (A35), (A36), and (A37) into Egs. (B9), (B10),
and (B1ll), the second-degree expressions for the strain components
reduce to

2
- (202438 ,2 2. : C_ 82
€2429 = % + 5 <ax +oay )+ 7;~LkXB3¢ 2kyB3L2B3uy + 2kyB30LX kyB3¢

+ 2k o+ - +
y33¢ay 2kYB3szS¢ax ZkXBBkYB3¢ 21{"1331{213:305"1'>

‘.

- 2k Cle L2 y2 g2 - 't k2
xp3?0x | T 5 V3 [ KypgtT T Zhypakapstx T 2Kypaty T Kigad

2
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+ 2k, k. - 2¢ak k- 2k, k. ¢a, + 2k_ ol -2k, ¢o’
Xp3 Yp3 *"Yp3 Zp3 Xp3 23 Y Xg3' ¥ Y3 ¥

k.
YB3 (.2 2
- + a! - (+)+ '+ - ¢k
X3J kZB3ay Oy > oy ¢ ¢ay szB¢ax ¢

%33

~ kg i B3 X
) 2
- k x k ' 9
boykzpy T O YB%] 373 ’ Xg3 23 ¥ Xp3 X Xp3' V3 2
kg o + ke K - K2 8- ak ; i K
B3 B3 “B3 %33 B3 Zp3 3 B3
- ky oy + ¢a - k QE k. oo’ - ¢a 2 o
B3%y T Kxp3 Kxg3kyas 5+ YB3 % Kypateps YB3
- 2 2
+ ¢k, ol -k, k ¢2,+—(-}-{—3:—}7—§—)-[¢'2+2k k, o
YB3 X XB3 YB3 B 2 X3 %p3 ¥
+ 2k, o.¢' + 2 k. a, + 2k, o ¢' + 2k ! (B12)
X3 X kyBB Zg3 ¥ vp3’y? YBB¢J
2 2 -
y i + {
3‘ (0!. o ) ' v
= - =21k + -k AR S LA +
fz3%4 2 | %p3’x kYB«uY Zp3 2 ¢ %ytx
(B13)
— "}{—3 gvk + (G}Z{ + GZZ) + % + i
fa3yy T 2 [ Mxpax T Myps®y T Fagy T 2 o
(B14)

It should be pointed out that in arriving at the expressions given in

(B12) to (Bl4) several terms have been discarded based either on
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considerations related to the small strain assumption or on consider-
ations related to the approximations which can be made because of the
assumed slenderness of the blade.

For the case of zero section pitch angle, the expressions for
the initial curvature components are given by Eq. (A38). Substi-
tuting Eqs. (Al8) and (A38) into Egs. (B12)-(Bl4), the expressions
for the strains are ~

€2424 =w' + 08Ju +% (u"2 + e(',zwz - 28fu'w + v'2)
2
p's .
+ —22 [—- 26) (" - ow ~ 0lw') - 01%% - 2eé¢v”§
2 _ : _
3 5]
+ 5 (eé?‘q;z + Zeécpv") - X4 Lu" - egw - e(')w' +7° (v'2 + q;z) +¢v"‘;
+ ysi— v+ s (u" - bow - Séw') - ¢68] - x3y3‘6év"
“ 1 (Zei)
- 26'¢(u” - 8"y — elWV) + 6'2¢ ) +_3_i (¢' _ 261¢|v7)
) ) ) o 2 o
(B15)
y
€z3x3 = - 7; [5' + v (u" - wie' - aow) - eév{] (B16)
X
©2qy5 = —23 [6" + v'(u" - w'o) - 8lw) - eév'—,\ (B17)
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APPENDIX C

DERIVATION OF THE VELOCITY COMPONENTS OF A BLADE ELEMENT

The resultant velocities of a point on the elastic axis of the
blade in the deformed and the undeformed coordinate systems are related
according to

v - ]V (c1)
Y
X_B6 B6ZB6 XB3YB32B3

where, from Fig. 5,

V. = - Upey =~ Upev + Upe (C2)
X6 86286 PRpg ~ Tl ROZg,

and [I] is given in Appendix A. The total relative velocity (aero-
dynamic + dynamic) of a point on the elastic axis is given by

Xpa¥paZna  ['8 7
B3 B3“B3 dt |Xp4¥p4753

(C3)

Neglecting wind shear and gusts in the wind, the aerodynamic velocity,
Va, consists of two parts: (1) the free-stream velocity V.; and

(2) the induced velocity v;. As shown in Fig. 1, both V, and -vj
are parallel to the Xy-axis. Thus,

(Va) = (V, - v))E (c4)

X1Y121 X1

Defining two nondimensional parameters

n=Vv_/eR (C5)

and

Vi/QR (C6)

=
Il

Eq. (C4) reduces to

(V,) = QR(u - ug)e (c7)
a XIYIZI 1 XI
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Substituting for ey. in the above equation from Egs. (2), (5), and
(), Eq. (C7) reduces to

(Va) = (n - )R (}cos 6, cos ¢ cos Y~ sin v sin Ve
X Z XB3
B3 B3 B3 -

- (cos & cos ¢ sin v + sin ¢ cos Y)E& - sin 6 _ cos Ve (Cc8)
o B3 (o} ZB3

For zero section pitch angle, Eq. (C8) simplifies to

(Va)x Y_.Z

! — -
= _ i - ai
= (u ui)QRicos 60 cos yYe sin ¥ ey
B3"B3“B3 :

X3 B3

- sin 6 _ cos wg (C9)
° Zp3_

For zero section pitch angle, the position vector of a point on
the quarter-chord point from Eq. (25) is

ry = (x, cos 6. + z, sin 0, + we + ve,
x3=y 30 ° ° e ° Xg3 | Yp3
+ (- X, sin 6, + z, cos O, + w)EZ (C10)
B3
The angular velocity of the B3~system from Eq. (29) is
= _ 0 e — . _
w Q sin eoeXB3  cos eOeZB3 (C11)

The dynamic velocity of a point on the quarter-chord point, from Egs.
(C10) and (Cl1l), is

dry

it = (0 - vQ cos 65) +-[Q + (xo sin 8, - z, cos O, - w)Q sin 90

e
X33

+ (x, cos 8, + z, sin 6, + u)Q cos 6% + (&.+ vl sin H,4)e
) o o ) QJeYB3 07754

(C12)
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Substituting Eqs. (C9) and (C12) into Eq. (C3) yields

v =‘r(u - u,;) QR cos 6 cos ¢ - (ﬁ - vQ cos 8,) e
Xga¥paZpy b Wy o °~]

Xp3
+ |- (g ~ ui)QR sin ¢ - v - (xO cos 6  + z,sin 90

+ u)Q cos 6, - (xo sin 6, — z, cos 60 - w)Q sin e;]eYBB

- L(u - py) sin 6, cos ¥ + (w + vQ) sin GAJE

(C13)
Zp3

Substituting Eqs. (A39) and (C13) into Eq. (Cl) and using Eq. (C2),
the second-degree expressions for Up and Up 1in terms of u, v,
w, and ¢ and their time derivatives, are

QE. (u' - eéw)2
Up = - (n - ui)QR cos 60 cos Pl 1 - R
+ (0 - v cos 8,) + ¢(u - ug) OR sin b + v + x ¢ - woR sin 8
+ ¢uQ cos 6, - L(u' - Géw) + ¢vf](u - U3)OR sin 6 cos ¥
- (u' - Oéw)(& + v sin 6,)

Up = [§ + v'(u' - Géwi](u -~ U4)OR cos O, cos ¥ - o(u - vQ cos 85)

/

/ 2 42 . 2 2
+ (1 - —-K——> (b= u)dRsin p +v+ 1 - - v ) x Q

2 2 2 2 o

- i _ — !
wl sin eo + ufl cos 60 + (u ui)QR sin 60 cos U [ v
+ ¢(u' - 04w | - v' (v + vA) sin 8, (C14)

The quantity ¢ appearing in Eqs. (60) and (62) is the angular
velocity of the blade section about the local negative Zpg—axis and,
consistent with the present notation, can be written as —éZB6. The
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expression for éZB6 can be regarded as composed of two parts: the
first part arising from the angular velocity of the shaft in space;

the second part arising from the angular velocity associated with the
elastic deformations. The first part is due to £ and can be obtained
for zero section pitch angle from the relation

(e, /anxeo\

<;;y36$=m< o

26 @ cos 8_ (C15)
Substituting Eq. (A39) into Eq. (C1l5), the first part of ézB6 is
/s ‘ (u' - e'w)2 12
€ =(u' - 08'w)Q sin 6 _ + |1 - ° - ¥ 71Q cos 9
ZB6 ° ° L 2 2 °
Q
(C16)

The second part is due to elastic deformation and is obtained by re-
placing ¢' by ¢, (u' - 85w)’ by 2 (u'-—eéw), and 6, by 8, (in
the first term only) in the expression for kzpg given in Eq. (A40).
Since 0, is zero, the second part simplifies to

‘e
1

£z = ¢+ v' (L' - 8w (c17)

B6)deformation

Combining Eqs. (Cl6) and (Cl1l7), the total sectional pitching velocity
of the airfoil is

. 2 PR
CL i . (u' = 84w) v'e!
€ G - 8236) = - {(u' - eéw)Q sin 6, + |1 - 5 - JQ cos B,

+ 6+ v - eav})} (C19)

Thus far, the expressions for Up, Up and ¢ have been developed
in terms of the quantities wu, v, w, ¢, and their derivatives, the free-
stream velocity V_, the rotational speed Q, the geometric properties
of the blade, and the induced velocity vi{. Now, an explicit expression
for the induced velocity will be developed.
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The induced velocity vy is determined from momentum theory in
which the induced velocity at the rotor is one half its value in the
wake. With this assumption, the thrust of the VAWT is

T = 2pAP(V°° - vi)vy (C20)
where Ap is the projected area of the rotor in the vertical plane.
Another expression for the thrust will be developed in terms of the

elemental forces acting on a blade section.

Using Egs. (2), (5), (47), and (60), the elemental force acting
on a blade section in the XI directions 1is

FXI = <FXB6 - FyB6¢> cos Y cos B, - <FXB6¢ + FYB6) sin ¢

+ 1 F u' - 68'w) + F, v'l| sin 6. cos c21
[ XB6( o ) o ] o v (€c21)

The expression for the average thrust can be written as

' H/2 2
T = %f / Fx dzodY (C22)
-H/2 0

Equating Eqs. (C20) and (C22), one obtains an integral equation for

vy which can be solved by an iterative procedure for a given V..
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Figure 1. - Vertical-axis wind turbine and coordinate systems.
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Figure 2 - Coordinate systems of blade cross section,
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Figure 3. - Elastic axis of blade before and after defosmation
and coordinate systems.

elt)

vit)

hit)

Figure 4, - Cross section of blade in general unsteady motion.



Figure 5. - Relative velocity comperients at blade cross. section.
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Figure 6. - Blade section inflow geometry and aerodynamic force components.
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