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I

A General Framework for Pixel

Classification

The ideas presented here represent an attempt to define a natural

set of pixel categories which will be represented in a typical LANOSAT

scene and which we hope can be delineated with some success by the use

of available spatial/spectral clustering algorithms. The pixel categories

and their characteristics are:

P - The set of "pure" pixels; i.e., pixels from within fields.

these are characterized by a high degree of local spectral

homogeneity; that is, elements of P have adjacent pixels

which look spectrally alike.

T1- The set of "trash" pixels. These pixels do not have homogeneous

spatial neighborhoods and are relatively distant, spectrally, from

the set P.

B - The set of boundary pixels, pixels at the common boundaries of

adjacent fields. Elements of B have spatial neighbors in P

and no spatial neighbors in the set T1.

T2- All other pixels. These have no pure neighbors or else have

neighbors in the class TV thus the spatial information is

ambiguous. However, elements of T 2 are relatively near, spectrally, to

the pure pixels.

Obviously if these four categories can be identified, they require

different means of processing to extract estimates of the acreages of the

real classes. T 1 will not be processed at all, since there is neither

spatial nor spectral evidence that it consists of agriculture. The

processing of T2 , if it occurs, will rely almost wholly on spectral

measurements, since the spatial information is ambiguous for elements of T2.

B consists of pixels whose spectral response can be properly regarded as
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a mixture of pure pixel responses and a fairly detailed proposal for handling

B follows.

There is considerable doubt about whether a normal mixture model with

mixing proportions easily related to "real" class acreage proportions is

valid for LANOSAT agricultural data. It seems clearly inappropriate for

categories T 1 and 9 and possibly appropriate for T 2 and P. There are

objections to applying it to P. First, the reason for preferring the density

estimation approach to the clustering and counting approach, namely that the

proportion estimates are unbiased, may be invalid for P because the spectral

observations are far from independent. Second, the proportion estimates are

meaningless unless the component densities of the mixture are related to

real classes. This means the field structure of P must be respected by the

estimator. Meeting the first objection requires that the dependence between

nearby pixels be somehow modeled. The obvious (but probably not adequate)

solution to the second problem is to use the clusters generated in P by

a spatial/spectral clustering algorithm which preserves the integrity of

fields to initialize the parameters in a maximum likelihood algorithm for the

normal mixture distribution. For example, the algorithm AMOEBA, after

determining the best clustering of some test data, then assigns whole fields

to single clusters by a nearest cluster center classification of the field

means. It should be noted that in terms of the assumptions underlying AMOEBA,

It is senseless to graft the familiar maximum likelihood procedures UNMLE

and CLASSY to AMOEBA in exactly the naive way just suggested. Indeed, they

are based on the wrong likelihood function for the kind of partitioned

sample we are considering with P.

In processing B, the boundary pixels, we suggest that the following

procedure should be considered. We assume that the set P of pure pixels

has been classified, so that a class label i(r)E 11, ... ,ml is assigned
to Pach pixel rC P.
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Given a pixel r in the scene, let x(r) denote its vector of spectral

measurements. For r r B let

P(r) = (s C P I s is a neighbor of H.

and

C(r) n Ms) I s c P(r)).

Thus C(r) is the set of class labels of pure spatial neighbors of r.

Let C be a set of	 4 (or s 8) of the class labels (1, .... m). Define

0 	 (r c B 1 C(r) - C).

Thus 8c is the set of boundary pixels whose pure spatial neighbors have

exactly those classifications listed in C. For acreage estimation, we

	

r	 treat each set Bc separately and then combine the estimates to get an

acreage estimate for B. For simplicitly we suppose that C = (1,21.

The generality of the discussion will be obvious. If r r B  then r has

pure neighbors in classes I and 2 only. (Recall that r may have impure

neighbors, but node of them belong to the trash class T 1 ,) Let

P 1 (r) = (s t P(r) I i(s) = 11

	

f	 P2(r) = (s E P(r) I i(s) = 2)

and

P1(Bc) = U P1(r)
r( Bc

P2 (8c ) = U P2 (r)
r( Bc

A

spectral measurements of

nt of Bc.

of the area of pixel r

The spectral response

The followinq are our assumptions about the

elements of Bc . Let r be an arbitrary eleme

1) For each s , P(r), a fraction !t(s,r)

has the same reflectance properties as S.

from r can be written as
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W

x(r) = 1{ 1 ( r )x l ( r ) + lt1 (Ox2(r) + , (r).

where

S. P
i 
(r)

t^2 (1-) =	 1:	 {(s.r)
seP2(r)

x i (r) =	 1:	 t I -R) x (s)
s,P1(r)

(^(s.r
x (r) =	 }:	 B r	 x (s)

I	 ?	 s, P 2 (r)	 2

and , is an error to rni whose expectation is 0.

2) k1 
and x 	 are uncorrelated as are 0? and x2.

3) E( x
i 
(r)I r, B I	 FI x(s) I s	 P j W	 1 j = I.

If assumptions (1) - (3) are valid then

(*)	 E[x(r) I r	 B  l = F tt I (r) i r, B  C x(s) I s	 PI(Bc)1

+ EIB2 (r) I r , 8c 1ECx(s) I s	 P2(Bc)1

The numbers Er( i (r) I r . B 
c 
I are easily related to the acreages of classes

1 and 2 in Bc.

In practice, we intend to estimate U.-Ii (r) I r e 8 
C 
I j = 1.2 as least

squares solutiotis of (*). If any set + Bc produces an unacceptably large

residual error we take that as an indication that the set 8c defined by

the algorithm does not consist of boundary pixels. If many sets B 	 pro-

duce large residual errors, even after experimenting with the tolerances

implicit in the definitiois of P.B.T 1 . and T2 then we would tend to

believe that the boundary pixel model of assumptions (1) - (3) is wrong.
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1. Introduction

A possible objection to the use of UHMLE or CLASSY in conjunction with

AMOEBA is that both these algorithms ignore the association of pixels in

fields. Indeed AMOEBA is based on the explicit assumption that pixels in

the same field represent the same real class [1], while the assumptions

underlying the maximum likelihood algorithms imply that the classification

of a pixel is independent of the classification of other pixels. In this

report a statistical model based on normal mixtures is proposed which takes

into account the organization of LANDSAT agricultural data into fields

which are homogeneous as to crop type. Likelihood equa.ions for the

parameters of the model are derived which may be solved iteratively as in

UHMLE.

2. The Model

We assume that the data elements (pixel data vectors) are real n-vectors

each from one of the statistical populations R 1 . .... H  with n-variate
density functions p(xiIl t ), k - 1 9 .... m. We assume that the data is
organized into sets (fields) F I . ..., Fp . where F3 has N3 data elements
which have been previously ordered in some arbitrary fashion so that the

data elements in F^ form a 
nNj- 

dimensional vector denoted by XJ	
Xi1

XJ N3

Define random variables fo j ke{1. ...I m) J j - 1 9 ...I p; k= 1; .... N i ) by Rjk=R if
and only if Xjk is from RV We assume that all the observations from F  are

e
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from the same class, so that we may write eJk = e j for all J = 1,

..., p; k, R=1, ..., NJ . Finally, we assume that (xl , Y. ..., (Xp ,ep ) are

independent, that the e 3 's are idenk.,cally distributed, that

M
a t = Prob Cep = k] > 0 and that E a = 1. Under the stated assumptions,

ZZI	
P
ithe Joint density of xl , ..., x  is p(x l , ..., x p ) = J	 E at p (xi),

,j = 1 k=1
where px ( xj ) = p ( xjl , ..., xJNJ

Ie

J = R) is the joint density of the elements of

Fj given that Fj represents class H,.

Let N - N 1 +	 + N  and for each R let Mt denote the total number
of the N observations 

xjk 
which come from class H V The following

proposition shows that with reasonable restrictions on the field sized N^

the values of (MR : X = 1, ..., m) can be inferred from a knowledge of the

parameters at . Thus, acreage estimates of the classes can be derived

from estimates of the parameters a.,

Proposition 1: (a) E(MR ) = atN

M
(b) --F - aR in probability as p	 if and only if

l im --	 E
p-Ow	 N	 J=1

2

	

(c) if ):	 N.)/ 2
3=1

	

p	 N.

N2 = 0.

M
then N

R
	ait almost surely.

Proof: ( a) write Mt = E	 Ej XR (elk)
J = 1 k=1 —

p

_ JE1 N

i XR (ej)
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where Xt(r)	
0	 r R

Then E (Md _ E N3 E(XR(Aj)) = 	 N^ aR = Nat.
Jul	 Jul

(b) Since Al - a	 Mt - E 
MR	

is bounded, it converges to zero
N	

k	
N	 N
M

in probability iff var --^ -► 0 as p -► _► . Since the terms Nixx(Ai ) are

tv
independent,

var Mt_ —7E N2 var (xt(A^)) _ —^ E N2 at(1-at).
N	 N 3=1	 NT

The conclusion follows.

(c) The assertion follows immediately from Kolmogorov's version of the

strong law of large numbers f31.

3. Maximum Likelihood Estimation of the Parameters

In this section we suppose that the class conditional densities

p(x1IIt) of the data elements xjk are n-variate normal N(x:u t ,Et ) and that

{x
jk

: k=1 9 ..., N l } are class conditionally independent; i.e., that

i	 N3

f
P t (x j ) =kli l N(xjk ; ut , Et).

for J
u
l, ..., p. In this case the Joint density of xl , ..., xp,

r
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P 
m	 Ni

P(x i , ..., Xp ) = 11	

s 
aR 1I	 N(x^ k i uR , ER).

	

1 R 1	 k 1

is parametrized by {(a t , uR , Et )IR= 1, ..., m) where a  t 0, E aR = 1,

1Y Rn , and ER is a real n x n positive definite symmetric matrix. Whenever

a density is evaluated using estimates of its parameters, we denote it,

e.g., by p(x i , ..., xp ). By a maximum likelihood estimate (MLE) of the

parameters {(ax , uR , ER )) we mean an element {(01	 uR , tz )IR=1, ..., m)

of the parameter set which locally maximizes p(X1 , ..., Xp). By arguments

similar to those used in C27, the following necessary conditions for a MLE

are derived.

1) 1	 p	 pR,(—^.j.)—_ s 1
	 with equality

p	 =1	 p(X.)	
when a Q > 0

J

2) N	 p	 N P--^ P 1 i	 x	 p	 N p— Rj—t (xj )

	

=1	 p(xj )=i	 p(xi )

A	 P	 p (X)	 N^	 P	 14•p(X)
3) ER	 E - a	 E (X^k-uR)(x^V UR) T E

	

1	 p(X^)	 k 1	 1	 p(x^)

N
In equation (2) X	 1	 E3 X	 is the mean of the jth field observotions.

k=1	
^k

By multiplying (1) by at we obtain

A	 1	 P	 aRpR (X )

4) aR	
P	 J ! 1 	 p(x^)
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S.

which, together with (2) and (3) suggests an iterative procedure for

solution of the likelihood equations (2) - (4) analogous to that used

in UHMLE [2]. However, the likelihood equations can be considerably

simplified by observing that the sequence (TV S 1 ), ..., (X p̀ , Sp ), is a

sufficient statistic for the model, where S  is the sample scatter matrix

of the jth field:

N

Sj = Ej (Xjk - xj ) (Xjk - xj)T.
E

Equation (3) may be rewritten

5)	 F = P q^--^—
R	

j=1	 O(Xj)

	

p	 N ppt (X j )
S 

	

i 

F 
1	 p(Xj)

	

+ E — -R XIli	 (X -u	 ^ ()(X -li ) T	 E -- A —j--
Jul	 p(Xj)	

t	 R	
j=1	 p(Xj)

The sufficiency of (xj, 
Sj)) J

ul 
implies that

	P R (XJ )	 41(j, Si)

	

p(Xj )	 q(Xj. Sji

where q^ (xj , Sj ) is the estimated joint density of xj and Sj given that Fi
m

represents class L and q(Xj, 
Sit

 F
l 
a Qg e (xj , Sj ). The joint density

3
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49 (71 . Sj ) may be expressed as

	

yt t x j . S j ) = Nn txJ ; it .	 Et) V1n (S j ; Nil . Et)

where Nn (x
j

; ut. ^-- Et ) is the r-variate normal density of 
7
1 and

A

Wn (S^; NJ-1 . Id is the Wishart density of S j with Nj- 1 degrees of freedom [31.

Thus the likelihood equations may be written as

6)	 A	
1	

E	
Sat4t(X^. 

p J• 1	 4(Xi. Si)

X

= p _ 
iq,txj, Si)	

p Njgt(xi.Si)

')	
^'t	

j= 1 	 4(X	 ). S	

^	

im1	 4(X	 S )

A	 p	 4t(X	 s )
e.	 =1	

A (Xj. Sj)

Sj	

A

	

 P
	 S

	

3`1	 4(xj. S^)

jt
f

A

	

P	 N At ( Xi . S^ ) 	 A t)	 A T	 p	
NJ 

g t (X j . Si)

	

+ E	 A	 (X - ►}(X -ut)	
a	 A

	

J = 1	 4(i. SJ )	 =1	 q(x^. S^)

Equations (6) - (8) are to be used as the basis of the iteration procedure.

Indeed when each N i n 1 they reduce to the likelihood equations employed

in 11 M!.E .

4. Concluding Remarks.

1he questions of the existence of a consistent MU as p	 and the
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local convergence of the iterative procedure will be addressed in a future

report. We remark that the standard consistency results of Cramer, Chanda,

and Meld (see [21 for references) are not directly applicable since the

(x'j , Si ) are not identically distributed. Numerical results will also

be reported at a later date.
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Abstract

General theorems concerning the strong consistency of the MLE of ex-

ponential mixture parameters are proved. These theorems imply the strong

consistency of the MLE of normal mixture parameters when the data is or-

ganized into "fields" each of which is a random sample from one of the com-

ponent normal distributions

ISF



1. Introduction

In [ s] a statistical model for LANDSAT agricultural data based on normal
i

mixtures was introduced which admits a specific kind of dependence among the

observations, namely their association into fields each representing a single

agricultural class. Necessary conditions were derived for a maximum likeli-

hood estimate of the parameters of the model and a numerical procedure for

solution of the likelihood equations was suggested. The question of the

consistency of the maxinvim likelihood estimate is complicated by the fact

that it is no longer possible to reduce the sample to a set of independent

identically distributed variables. The purpose of this note is to establish

a general theorem on the existence of a consistent maximum likelihood estimate

when the observations are not identically distributed and to show its applica-

bility to the statisti A i ii,-)del described in detail below.

We assume that each pixel is identified by a pair (3,k) of positive

integers, where the first index J, 1 - 	 s p, identifies the field containing

the pixel and the second index k, 1 s k s NJ, distinguishes it from other

pixels in the same field. We suppose that the field structure is predetermined,

perhaps as part of a spatial clustering algorithm such as AMOEBA. Let

XJk E R  be the random vector of spectral measurements from pixel (J,k) and

let Oa k a (1," ',m) be an unobserved random variable indicating its class

ff
index. We assume that the class indices 0J1 , OJ29 " ', 

OJN	
from the Jth

P

field are all the same and denote their common value by 0 1 . We further

assume that, conditioned on 0^	 X, the measurements xil, .. ', XJN are

15r



independently distributed as N n( • , uR, E°t), the n-variate normal with

unknown mean tiR and unknown covariance E°t . Let xj = (xjl , " ', xjNj ) .

Our final assumptions are that (XV O1 ), " ', Up , Op ) are independent

and that {Oj ) are identically distributed with unknown a o - Prob[0=t] > 0 .

Under these assumptions, the joint density of all the observations is

N

(1) P(xl, ... 
x ) = n	 E a	 T1 Nn(xjk ; Pit EZ)
P	 j = 1 Jul	 k-1

where x  = (x ill ..', xjNj ) a RnMj . This joint density is parametrized by

m
{(at , tits Et){t=1,	 m) where at > 0 ; E at = 1; ut a Rn ; and Et is

R=1

a real nxn positive definite symmetric matrix. For convenience, we let

^ _ {at , tit s Et ){k = 1, " ', m) denote an arbitrary member of the parameter

space and ^ O the true value of the parameter. Thus the likelihood function

corresponding to the sample x l , " ', X  is

N

(2) L(V); X1, ... Xp )	 n	 E at	 1ij Nn (X jk ; ti t , Et)

j=1 t=1 t k=1

For x  = (X jig " ', xjNj ) E RnNj let

Nj

mj	mj (xj ) = N 
E 

xjk
j k=1

and

N

Sj = Sj (xj ) = kEl (xjk - mj )(xjk - mj)
T



t	 3
e
t

r

be the mean and scatter matrix respectively of the vectors x, 1 , " ', xjNj .

Nj 	 _ nN

(3) k=1 
Nn (x jk ; P R , Et ) 	 (2rt)	 q j (xi; u R , EL)

where

x	 _ N

(4) gj(xj; uR , E^) _ ^E t ^	 exp {- tr E- [S+

Ni (mj	 01 )(mj	 III, 
) T

Let

m

(5) gj(xi M = E atgj (xj ; ut , Ej ) .
R=1

By ignoring terms which are independent of the parameters we derive the log

likelihood function

(6) . _	 R(V^) = E log gj(xil*)
j=1

which leads to the following necessary conditions for a local maximum of the

likelihood function. Equations (7) - (9) are called the likelihood equations

for the present model.

(7)	
a	

_	 1	
E

atgj(Xj; ut o Et)

t	 p	
j= 1 q; (X; V► )



4

F

4

p	 N q (X	 ue, E Q )	 p	 Njgj(Xj, ue, EQ)
(8) ue	 1	 m	 F

	

j=1	 gj(XjI0) 	 j	 j = 1	 gj (Xjl4))

(9) E = F
	

^'_. ue' 
EQ)	 p NA (XJ' ue' Ed

	

S	 F.

	

j=1	 gj ( X ' I0)	 j=1	 qj(X;10)

p N_X^' p
i s
 
2.e)_ 

(mj -uk )(mj -ue) T 	 p 
NjIj UP  ue, E+Q)

E
j=1	 gj (Xi 10	 j=1	 gj(XjIO)

i
2. The General Theorem

	i	 Let 0 be an open subset of U2 and 	 let ^ o F 0 . Suppose T1 ,X2 ," ',

is a sequence of independent-random vectors with A-r having Nr-variate density

function Ng r (•l^,°) with respect to some fixed 0-finite measure a r on R r.

Suppose the densitites g r (•l 0) are defined for each 0 E 0 . Given a

positive integer p , define a maximum likelihood estimate of ^ o to be an

p

	

element 0 E 0 which locally maximizes L 	 E log gr (Xr lvp) . The equation

	

p	 r=1

D^L p (0) = 0 will be called the likelihood equation.ation, where the symbol DTP

denotes the Frechet derivative with respect to ^ .

A number of theorems dealing with the consistency of maximum likelihood

estimates, under the additional assumption that the Xr 's are identically

distributed, have been presented in the literature (see for instance Chanda

Cramer [ 1-1, and Wald C 81.) Extending any of these results to the case of

nonidentically distributed observations is primarily a matter of finding a

convenient set of conditions which insures that a law of large numbers can be

invoked at several points in the proofs. The following theorem is such an
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outgrowth of the proof of strong consistency contained in [ i ].

Theorem 1: Suppose there is a neighborhood n of *0 and a X  - null sets

11r 
in Or such that for all	 E s2; x j Nr , i,j,k = 1,"',2, r e	 (the

agr ( xIV^)	 a24r( x I^► )	 83109 4r (x l V+)
positive integers)	 ;and	 exist and

a*i	 a*i any j	 41 a,y
j
 *k

satisfy:

(i) agr(XIO)	 5 fir(x)

a*i

(ii) 32gr(X^V^)	 < fijr(x)

a^i a*j

(iii)
a3log gr(XI O	

ijkr
s f	 (x)

a0 i a^ j N
N

where fir and fijr are a r-integrable on R r and

(iv) E[fijkr(xr)2] = f f ijkr (x) 2gr(Al O )dar(x) s M

RNr

for all r e	 where M is a constant. Suppose also that

	

slog gr(Xrl^o)	
4

(v) E	 s M

a^i

and

1	 a2q U ^y°)	
2

(vi) E	 o 	 r r	 s M

gr (xr l^)	 a^yiaWj
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for all 1,j=1,	 ,2 and r E . Finally suppose that 3 E >0 such that

(vii)	 J r (Vp°) - E[V0log gr (Xr 1O°)VOlog g r (Xr EV^°) T1 > F Ivxv

for all r	 where the ordering is the usual one on vxv symmetric matrices.
Y

Then, it is almost surely true that, given a sufficiently small neighborhood

of ^°; for large p there is a unique solution of the likelihood equation

D*LpOP) = 0 in that neighborhood. Furthermore, that solution is a maximum
4

likelihood estimate.

Remark: In the proof we make repeated use of the following simple version

of the strong law of large n4mbers (see Chung [2 1): Let Z 1 , Z 2 , " ' be

uncorrelated random variables and suppose the sequence of variances {var(Z1)}i=1

n
is bounded. Then n F. (Z 1 - E(Z i ))	 0 a.s, as n	 .

i=1

Proof of the theorem: Let L	 = 1 EP D log q (X 1^)	 By assumption (i)
p	 P r=1 ^	 r r

E(s p W)) = 0 and by assumption (v) and the strong law, I p (^°) - 0 a.s. as

p m . Now consider the vxv matrix D^ p(^°) whose i Jth element is

1	
E	

a 2log gr (Xr ^^Y 	 _ 1	 p	 1	 32gr(Xr W)

p r= 1	 a, i aoi	 p r=1 gr(Xr 14)0)

1	 p	 alog g r (Xr I^0 )	 slog gr(Xr100)
- — E

p	 r=1

By assumption (ii) the expected value of the first term on the right is zero.



IL

I	 p
Hence, by assumptions (v) and (vi) D z (V ►°) +	 E J (e) - 0 a.s. as

P	 p r= l r
E

p	 It follows that with probability 1, for each n in 0 < n - < ---_
2

there is a p  E	 so ghat for p pa

D^;P (i,") < -2nI

Without loss of generality we can assume .0 is convex.

Thus, for ^ E u ,

1	 p	 32log gr(Xr M	 32109 ar(Xrloo)
E	 -

p r=1	 ayoj	 aoi aoj

1	 P	 v l	33le; gr (Xr 1 1PO + t(O - 00))
s	 E	 E	 dt

p	 r= i k=i	 k	 k fo l
	 any 1pjaV,k

1	 p v
s— E E I Wk - Ok I fijkr(Xr)

p	 r=1 k=1

With probability 1, for large p

1	 p	 1	 P
f i Jkr ( Xr ) ` 1 + --F E[f i ^ kr (Xr ) ! < 1 + 0 .

p	 r=1	 p r=1

by assumption (iv).

It follows that for any particular norms on R  and on the vxv symmetric

matrices there is a constant 9 such that with probability 1 there is a

Pl f	 such that for all p z pl , and 0 c n ,

7

^l
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IIyp(0) - y 0 (00 )11 5 N Il 0 - 41(111

Thus, there is a convex neighborhood u O of ^o such that

for all ^ t Qo , p ^ P  . It now follows as in C r, 	 J that for p	 p,

z  is one to one on i10 and that the image under t 	 of the sphere P,(00)

at 00 of small radius d contains the sphere S2 gp P (^O )) at L M ( ^ ':") of

radius nd . Since 0 is eventually in n na(e p (00 )), there is a unique

solution of i p (0) - 0 in Q,W). Since D^ p (0) is negative definite,

this solution is a maximum likelihood estimate. This concludes the proof.

Theorem 1 shows that by restricting attention to a fixed neighborhood

of 00 it is possible to speak unambiguously of the unique consistent

solution of the likelihood equations or, equivalently, of the unique

consistent MLE of ^ O	 This terminology will be adopted in the next theorem.

3. Aication to C_ponential Mixtures

In this section we apply Theorem 1 to a class of mixture models which

contains the normal mixture model of Section 1. Referring to the notation of

that section, we assume that conditioned on 0i = C, the random n-vectors
i

Xil9...,Xjy	 are independent with a common density of exponential type

J

(1)	 f(xl,,) = C(,- t ) exp <,tIF(x),i
with respect to a dominating o-finite measure a where the parameter tt

is an arbitrary member of an open subset U of a finite dimensional vector

.^a
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t

space V with inner product 	 We assume also that C i't one to one

and that the support of the measure induced on U by F and X cotc^ains

an open set. These conditions imply that the parameter Ta is identifiable

[ 1 1. and any parametrization of the form (1) satisfying them will be called

F	 a canonical , representation of the given family of distributions.

The Joint density, given 01 = t, of Xi _ (XJ1 I ... ,XJN ) is also of

exponential type; i.e., for xi 	 (xi1,....xJN^)

(2)	 pj(xjjtt)	 yj (Tt ) exp <i,lGj(xj)>

where

C(Tt )NJ

G^(xi ) = N^ F(xjk)
k=1

and the representation (2) is also canonical.

Some useful facts about exponential families are collected in the

following lemma. For proofs see Barndorff-Nielsen [1 1.

Lemma 1: Let (1) be a canonical representation of an exponential family.

For each T E U let K(T) _ - In C(T) = In Inexp <TIF(x)> dx(x). Thenl
(i) for each T E U, F(x) has moments of all orders with respect

to f(xIT);

(ii) K(T) has derivatives of all orders with respect to T, which

may be obtained by differentiating under the integral sign. In-

deed D  K(T) can be represented as a symmetric k•linear form

on V which is a polynomial in the first k moments of F. In

particular,,



(iii) DTK(T) - <ET ( F )I- > - In < F( x ) I - > f(xIT) dA(x)

and

(iv) D
2

?K(T) - ^ov T (F) - ! n<F - E T (F)I->2 f(x1r) dA(x) , which is

positive definite.

(v) K(T) is strictly convex on U.

(Expressions <oI- >k like that in (iv) are meant to denote k-linear forms;

e.g. <o I- >2 denotes the bilinear form b(n,v) - <ajn><oIv>.)

We are now ready to apply Theorem 1 to the mixture model

(3) q(xI ^) - plgj(x^I^)

where	 ='(nl,... "M-1'TII ... ,Tm)

X = (x l,... ,x p)

m

(4) qj (x^ lo) - R z l y,,P Ni I.,

M-1
= pj ( x

j
I Tm ) + RE 1a X rpj ( xi IT R ) - Pj(xjITm))

and pj (x j lT t ) has the canonical exponential representation given in (2).

Theorem 2: If the numbers {Ni) in the mixture model (3) are bounded, then

with probability 1 there is a unique consistent MLE of the parameter 00.

Proof: Using Lemma 1 and writing u
j

(T t ) = E T (Gi ) the nonzero derivatives
B

of g3 (xi 1y) up to order 2 are:

(5) Da
 a

t 
gj (Xi M - pi (xi lld - Pj ( xj I Tm )	 a	 1,...,m - 1
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(6) OTtgj(xjl*) = a,pj (xj It t ) <Gj (xj ) - uj (Tt )I • > • t = 1, ... ,m

(7) OTtDo, gj (Xi Igo)
	

p3(xjlTt) <Gj
	

ui (T t )I • >	 t • i t ...,m - 1

(8) OTmDatgj (xi IV+) _ -PJ( XjITM) 
<Gj

	 ui (tm)I•>	 t • 1.....m - 1

(9) 02tg3 (x
i Iv► )
	

xtpj(xJ lt t ) (<G3
	

Pi (t t )I• >2 - covT
 

It 
(G J))

Instead of verifying conditions (i) and (ii) of Theorem 1, it is easier

to recall that they were needed only in order to conclude that the integrals

of the first and second order derivatives of g j (xj l4,) are zero at ;p _ *0.

This is obvious form (5) - (9). Similarly, using Lemma 1 and the boundedness

of {Ni) the verification of conditions (iii) - (vi) presents no problem

more serious than tedium. It remains to verify condition (vii). We may

write . :r(0) in matrix form as

^r M = I1	 0	 E 
Ar	 Br	 I1	 0

0	 NrI2
	 8;
	 Cr	 0	 NrI2

where ' 1 and I 2 are, respectively. the identity operators on ff m-1

and Vm and

cpr(Xr IT,) - Pr (Xr ITm )]I*pr (Xr lt k ) - pr(Xrllm))

	

Ar	 _.:
gr(XrI0

6 = a
k
^ 

ITk)[pr(xrltt^pr(Xrl•rm

	

r	

)] 

Nr^i .;Gr _ u ( T )I •>
gr(Xr'0	

r k

t=1....,m-1

k= 1, ... ,m

M.

n .

jqs

11



a^

12

Cr 	Qj*kpr (Xr IT^t )Pr(Xr ITk I

^r Uri*)	
Mrl 

(Gr - Ur(Tk)) <G - N (T	 >r	 r R)^ •

We mark that if

•	

T	 a	
k''t'1 • • • • •^u.

	<T,^F>	
<T	 1.... ,T	 re di stinct then as functions of F , U.

if	

.....e CIF> .e<TiIF>	 <Tm IF),
F" "'e	 F are linearly independent;

Ai^,,,^am are scalars, A 	 i.e.•
1•...^A	 V and Ale  `T,IF>

+ 
e<T,IF>

<FIA1 > + ... + e <TmIF> 
	

+ •.. + Ame(TMIF>

<F^Am>	
0 for all F c U • then

r(Y+)

... .1	
am ' 0 and Al ' " ' ' Am ` 0, It is easily seen that

J 	fails to 
	 if

be positive definite then there is a nontrivial linearcombination of these fun
ctions which is zero almost surely with respectto the distr

ibution of F. It follows that J r
( O)each r,

	

	 r O) is positive' definiteCondition (vii) will be 
established once it is shownthe smallest eigenvalue of	

that
Jr(V+) is bounded away from zero as 

N  • '"Let a (A ) denote the smallest 
eigenvalue of aoperator A. Clearly, 	

Positive definite

°(Jr (^Y))	 o	 E	 Ar	 Or

Or
	 C

	

Observe that	 r

Pr(XrITt)

Pr Xr Tk	 a expf.4r
fK (Tq) _ K(Tk) 	 Tk ^.R

	

converges to	

G >1)
r rIt Xr is a Sample from f(xjt k ) • then the ex pression in square brackets
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K(Tt) - K(T k ) - <Ti - T
k 
JET k (F)> = K(T j ) - 

K(TO
 - K'(

TO - (Tt - Tk)

which is > 0 by the strict convexity of K. Hence,

Pr(xrI TO)
-► 0 as Nr-► m,

pr(XrITk}

Therefore,

E	
Pr( XrI TZ)pr(Xr1Tk)	

= E	 Pr(Xr1.1dgr(Xrl0- 	
Tk 

g r 
Cy

r IV)

converges to 0 if t t k and a	
if Z = k as Nr + ^. Thus,

k.

E^FAr 7	 — I	 + 6Yk-	 as N r	 .

am 	 c`k )

Given that Xr is from f(xJT k ), Nr"2 (Gr - ur (T k)) converges in distribution

to a normal random variable Z with mean zero and covariance cov T (F). Hence,
k

Pr (xrlTN)

q 
r 

( Xr M

converges in distribution to 0 if

N-1? (Gr - ur(Tk)}

R# k and ^ Z; of k= k.
k

Let A be any element of V and consider

N
FN r;2 <Gr - ur (T k )JA>7 4 = Nr2 C E <F(Xr ) - ET (F)JA>>4

j = 1	 k

After expanding and taking expectation with respect to T
V
 it will be

seen that the only nonvanishing terms are those of the form

FT 

k 
P F(Xrj ) - Er 

k 
(F)IA>2<F(Xrk ) - ET 

k 
(F)JA>23



	of which there are Nr * (N2) - 0(Nr). 	 Thus

E^ [ 0 <Gr - ur(tk)IA>l4
k

is bounded as Nr -* aD. It follows from a standard theorem on convergence

of moments [.3.p. 95 -1 that

r
E	 pr 

X r R ) 0 
(G - u( Tk))	 0 as N r

T	
► ^,

k gr(xr1,')	 r	 r

Thus E
1P

( Br ) i 0. Similar reasoning shows that

E
tP

( Cr ) - ( dkt covj. 
k 
(F))

as Nr + Co. Therefore o(J r,M) is bounded away from 0 and this concludes

the proof.

4. Conc l uding Remarks.

Clearly the assumption in Theorem 2 that {N r ) is bounded can be

weakened. In fact.Theorem 1 could be modified in such a way as to show that

the MLE of exponential mixture parameters is strongly consistent when

2
E Nr/r2 < co.

Redner r. 71 has shown that when each N r = 1. a certain numerical

procedure for obtaining the MLE of exponential mixture parameters is con-

vergent. The generalization to bounded {N r ) should not be difficult, and

will be addressed in a future report.

C=

t
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