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ABSTRACT
 

An existing one-dimensional model of the annual water balance
 
is reviewed. Slight improvements are made in the method of calculating
 
the bare soil component of evaporation, and in the way surface retention
 
is handled. A natural selection hypothesis, which specifies the equilib
rium vegetation density for a given, water limited, climate-soil system,
 
is verified through comparisons with observed data and is employed in
 
the annual water balance of watersheds in Clinton, Ma., and Santa Paula,
 
Ca., to estimate effective areal average soil properties. Comparison
 
of CDF's of annual basin yield derived using these soil properties with
 
observed CDF's provides excellent verification of the soil-selection
 
procedure. This method of parameterization of the land surface should
 
be useful with present global circulation models, enabling them to
 
account for both the non-linearity in the relationship between soil
 
moisture flux and soil moisture concentration, and the variability of
 
soil properties from place to place over the earth's surface.
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Chapter 1
 

INTRODUCTION
 

In order to increase the accuracy of global climate models,
 

a more sophisticated representation of the land surface boundary condi

tion is required than that which is presently employed (GARP, 1978). The
 

interaction, in particular the water flux, between the atmosphere and
 

the soil-vegetation system at this boundary is highly non-linear in
 

nature, and is not simply defined. Any attempt to satisfactorily
 

account for this non-linearity in a model must incorporate two effects
 

which are not included in current models:
 

1. 	variability of soil properties and soil moisture
 

dynamics from place to place over the earth's surface, and
 

2. 	non-linearity in the relationship between soil moisture
 

flux and soil moisture concentration.
 

In this work, it is intended to make use of a one-dimensional
 

water balance at the land-air interface in order to parameterize the
 

climate-soil-vegetation relationship in such a way as to reflect the
 

non-linearity and areal variability.
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Chapter 2
 

OBJECTIVES
 

The specific objectives of this work are twofold:
 

The first objective is verification of a vegetal equilibrium
 

hypothesis developed by Eagleson (1978f). This hypothesis proposes
 

that the natural vegetation density in a watershed will seek, through
 

natural selection, an optimal "climax" value at which available soil
 

moisture is a maximum. Comparison of a theoretical curve of evapo

transpiration versus canopy density based on this hypothesis with
 

observed data will provide the necessary check on the accuracy of the
 

hypothesis.
 

The second objective is establishment of an algorithm for
 

estimating effective areal soil properties from observations of
 

vegetation density by using the natural selection hypothesis in a
 

one-dimensional water balance model. By defining the level of evapo

transpiration from soil moisture through observations of the canopy
 

cover density, it may be possible, knowing the clinate, to determine
 

the soil properties that enable the soil-vegetation system to respond
 

at the indicated level. The estimated values of these parameters can
 

then be used in the water balance equation to evaluate desired compo

nents of the water flux. Verification of the desired algorithm will
 

be sought through comparison of computed and observed statistics
 

of annual yield.
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Chapter 3
 

REVIEW OF LITERATURE
 

Past efforts to model the coupling among physical processes 

of the atmosphere, soil, and vegetation across the land-surface inter

face have been largely of two types:
 

1. Numerical studies which employ detailed formulations
 

of the processes involved. Examples of such studies are those of
 

Philip (1957), Sasamori (1970), Deardorff (1977), and Philip and de Vries
 

(1957). Although these models simulate the system response to climatic
 

inputs very well, they usually do so in terms of a large number of
 

climate, soil, and vegetal parameters. Due to their complexity and
 

the detailed data requirements for their validation, these studies
 

have found little application in general circulation models.
 

2. Empirical studies which utilize validated interrelation

ships among the principle variables. Because of the ease of their
 

application, and negligible programming and data requirements, most
 

global climate models use this type of parameterization of the land

surface boundary with regards to actual evapotranspiration, average
 

soil moisture content, and runoff.
 

The primary GCM's today utilize the approach first introduced
 

by Manabe (1969) to parameterize the land surface boundary condition.
 

In this approach, the above mentioned parameters are handled in the
 

following way.
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A. Evapotranspiration
 

Actual evapotranspiration is related to potential evapo

transpiration linearly through the soil moisture and a single soil
 

parameter following the work of Budyko (1956). This parameterization
 

is
 

e T s/k, s < k 
- s1 k < (3.1) 

in which
 

eT = actual rate of evapotranspiration
 

.= potential rate of evapotranspiration
 

s = effective soil moisture concentration
 

k = empirical coefficient, 0 <k < 1 generally assumed
 

to be constant everywhere
 

As mentioned above, the only soil parameter appearing in this
 

model is the empirical coefficient, k. This representation grossly
 

distorts the sensitivity of eT to s and makes no allowance for the spatial
 

variance of this sensitivity due both to soil type and to the presence
 

of vegetation.
 

More recently, Lettau (1969) and Lettau and Baradas (1973),
 

in their "evaporation climatonomy" formulation, refine the water
 

balance evapotranspiration term through use of an energy balance. This
 

approach seeks theoretical solutions in the form of "response functions"
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(i.e. evapotranspiration cycles, temperature, etc.) as a physical con

sequence of a mathematically defined "forcing function" of the environ

mental system. However, parameterization is achieved without any
 

explicit consideration of the soil and vegetal properties which will
 

control the evaporation under all but the most humid conditions. The
 

only input parameters linked to the land surface are evaporivity, e*,
 

which is a non-dimensional measure of the capacity of land surfaces to
 

utilize solar energy for the evaporation of rainfall received in a
 

specified time interval, and t* which denotes a characteristic soil
 

moisture residence time. Values for these parameters are either
 

assumed on the basis of empirical data, or are estimated from a systematic
 

classification of watersheds according to morphology, soil structure and
 

permeability, vegetation cover, etc. The lumping of all these para

meters into a single term in no way fully represents the complex
 

interrelationships between the various processes involved in the
 

water balance.
 

Other studies concerning the evapotranspiration term are
 

those of Czarnowski (1964) and Ritchie (1972), and Ritchie and Burnett
 

(1971). Czarnowski assumes that total evapotranspiration is a sum of
 

plant transpiration, evaporation from surface retention, and evaporation
 

from soil, and that these values are functions of vegetation density,
 

and consequently of climatic factors. He treats the development of
 

plant cover as a function of the form
 

P
 
V 

M = l- e m (3.2) 
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where
 

P = precipitation, mm
 

V = sum of mean daily deficits of air humidity, mm Hg
 

Finally, he concludes that evapotranspiration can be expressed as
 

V = V - M 17M + (3.3) 

or
 

VL
Si M F1.17M + -4 (3.4)
Vm L VrMJ 

where the constants, 1.17 and .4 are determined by a least squares fit
 

to empirical data obtained primarily from cultivated agricultural
 

lands.
 

Ritchie (1972) and Ritchie and Burnett (1971) develop a set
 

of empirical functions relating leaf area index and fractional net
 

radiation at a soil surface for a row crop to plant evaporation
 

efficiency. These equations may be written
 

- .398Li 

RU e A (3.5)ns
 

.70Li. - .21 (3.6)
 

where
 

LA = leaf area index
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R net radiation reaching soil surface
 
ns
 

R = net radiation above plant canopy
 

Relating leaf area index to canopy density using Equation (3.5) and
 

the assumption that
 

R
 
R--1= - M (3.7) 

no
 

gives
 

eTin _) ] 1/2 

(3.8)
eT l_.39] 1 .21 

ep-.398
 

Again, the constants appearing in the above equations are determined
 

from the method of least squares.
 

While both of the above formulations are attempting to relate
 

evapotranspiration to more physically significant parameters, there is
 

little inclusion of the actual physics. Since a linear regression is
 

performed to obtain the above equations, there is a lack of generality
 

and understanding of the sensitivity to other parameters besides vege

tation
 

B. Soil Moisture
 

The change in the average soil moisture concentration is
 

determined from a water balance relation written
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as 
nh - = i - eT - Y - Y (3.9)

at T S G 

in which
 

h = thickness of surface layer
 

i = intensity of rainfall
 

YS = intensity of surface runoff
 

YG = intensity of percolation of water out of the surface
 

layer to groundwater
 

The product, nh, represents the maximum water content of
 

the surface layer and is assigned a value which is common for all
 

soil surfaces.
 

C. Runoff
 

Runoff, as written in Equation (3.9) consists of two different
 

components. Surface runoff is regulated by the infiltration of rainfall
 

and additions to soil moisture. Groundwater runoff is governed by the
 

state of soil moisture concentration. All global climate models use
 

highly simplified empirical formulae which lump these two dynamically
 

different runoff-generating processes into total yield relations of
 

the form
 

Y = Y(i,e , s) 
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These relations include one or more coefficients which may incorporate
 

spatial variability, but there is no physical basis for their selection
 

without natural yield measurements.
 

The models referred to in the preceding paragraphs include
 

those of Arkawa (1972, U.C.L.A.); Somerville et al. (1979, G.I.S.S.);
 

Gates and Schlesinger (1977, Rand-O.S.U.); Sellers (1973, Arizona);
 

and Corby et al. (1978, B.M.O.). In all of these models, there is
 

no use of the present high level of physical understanding of the
 

natural processes involved to develop a generalized, accurate repre

sentation of the land-surface interface.
 

Eagleson (1978a,b,c,d,e,f,g), has developed a generalized
 

water balance based upon simplified physics of the component processes.
 

The development is sufficiently rigorous to capture the essential
 

system dynamics yet simple enough to permit analytical solution.
 

The model produces valuable insights into the interactive role of
 

soil moisture in the determination of climate. Foremost in this
 

development is the accounting for the areal variability of soil pro

perties over the earth's surface and the reflection of the inherent
 

non-linearity in the relationships between soil moisture concentration
 

and the interfacial moisture fluxes. This model will be presented
 

and utilized in the following chapters to attain the objectives
 

stated in Chapter 2.
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Chapter 4
 

THEORETICAL BACKGROUND
 

4.1 The Water Balance
 

The major source of theoretical background used here is the
 

work of Eagleson (1978a,b,c,d,e,f,g). In these papers, a one

dimensional water balance based on soil moisture dynamics and
 

statistics of climatic data is derived. This water balance, expressed
 

in terms of annual expected values, may be represented as
 

E[EP I E[ET I + E[RS ] + E[RGA] (4.1) 

and
 

E[YA] = E[RSA] + E[RGA] (4.2) 

where
 

E[ ] = expected value of [ ]
 

P = annual precipitation
 

ET = annual evapotranspiration
 

R = annual surface runoff
 

RGA annual groundwater runoff
 

Y A annual yield
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An analytic expression is obtained for Equation (4.1) by deriving the
 

individual components through the use of derived probability distribu

tions and one-dimensional dynamic equations approximating the physics
 

of the separate soil moisture fluxes. These expressions are then
 

introduced into Equation (4.1) to produce the equation for the (soil
 

moisture) water balance
 

-mpA(l-e-G-2Ir(a + 1) ) = 

c -
E[EPAI J(E,M,kv,h ) - E[ErA] + m K(l) so Tw 

for
 

- G- 2 -E[ErA mPA < e ' (Y + 1) (4.3a) 

(The term to the left of the equal sign is infiltration, the first
 

term to the right, total evapotranspiration, the second is evaporation
 

from surface retention, and the last two terms are groundwater runoff
 

[the first is groundwater recharge and the last is groundwater loss]).
 

Otherwise,
 

C 

mpA E[EPA] J(E,M,kV,h ) + mTK(l)s° - T (4.3b) 

In the above, 

E = annual surface retention
rA 
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E average annual potential evapotranspiration
 

J = evapotranspiration efficiency
 

G = gravitational infiltration parameter
 

a = capillary infiltration parameter
 

E - evapotranspiration parameter
 

M = vegetation canopy density
 

kv plant transpiration coefficient
v 

m = mean length of rainy season
 

h surface retention capacity
 

so = average annual soil moisture
 

K(l) saturated hydraulic conductivity
 

T 1 year, seconds
 

w = apparent velocity of capillary rise
 

mpA = mean annual precipitation
 

c 
 pore disconnectedness index
 

It will be helpful and important to review the development of
 

the expressions for evapotranspiration and surface runoff, and to
 

present an alternative approach for the former, and a slightly different
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interpretation for the latter.
 

4.2 Evapotranspiration
 

The expected value of annual evapotranspiration is derived
 

(Eagleson, 1978d) by calculating bare soil evaporation and vegetal
 

transpiration for an interstorm period as functions of properties of
 

the storm sequence, the surface, the soil, and the average rate of
 

potential evapotranspiration, using observed distributions of the
 

random climatic variables, and averaging over the rainy season. The
 

bare soil evaporation and plant transpiration are determined by con

sidering the vertical flux of moisture in a soil column. In Figure
 

4.1, the modeled column of soil and the different moisture fluxes
 

are sketched. In this figure
 

f 	 = bare soil exfiltration rate
 
e 

M 	= vegetation canopy density
 

e 	 = vegetation transpiration rate
 

K(e ) = 	effective hydraulic conductivity at long-term average
 

soil moisture
 

It is assumed here that
 

1. 	Soil moisture throughout the surface boundary layer is
 

spatially uniform at the start of each interstorm period
 

at the long-term average value, s so;
 

2. 	The medium is semi-infinite;
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'ft 

fee) 

K (e,) 

Figure 4.1 

SCHErIATIC REPRESENTATION OF VEGETATED SOIL COLWJN
 
DURING AN INTERSTORIH PERIOD
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3. 	The vegetation is distributed uniformly, and its roots
 

extend uniformly into the entire volume of the soil in
 

the surface boundary layer. This implicitly assumes that
 

the plant species have adapted by natural selection to
 

a density and root structure which is in balance with
 

the available soil moisture;
 

4. The rate of moisture extraction by the roots is in
 

equilibrium with the transpiration rate by the leaves,
 

thus forming a uniformly distributed sink for soil
 

moisture of strength, Me .
 
v 

Following the work of Philip (1969), Eagleson writes the
 

total decrease in soil moisture during infiltration:
 

0
 

{(e 0 - 6)dz = zd= Fe(t) + [K(0 o ) + Mev] t (4.4) 
0 1 

where F (t) is the cumulative exfiltration in centimeters.
 

The integral on the left-hand side is evaluated in the manner
 

of Philip (1960). Assuming a vertical flow passage of constant
 

cross-section, the exfiltration rate is found to be
 

1
 

f 1 2 - 1[K(0l) - K(0)] - Me (4.5) 
ft(=-2 Set 2 45-

Note that this neglects the restriction, by vegetation canopy density,
 

of the bare soil area through which exfiltration occurs. Further
 

simplification and analysis result in the exfiltration capacity:
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1 
1 2 

fe t -'Me (4.6) 

where Se is the exfiltrationsorptivity.
 

A typical interstorm period, and the relationship between the
 

various rates of evaporation and time for bare soil is illustrated
 

in Figure 4.2. In this figure, W is the potential rate of bare
p 

soil evaporation, which is considered a constant. The times, t and
o 

te, are evaluated by assuming
 

E = f (4.7a) 
p e 

when
 

fe(Ve) = e(dpto) (4.7b) 

and that
 

f = 0 (4.8a)e 

when
 

t = t (4.8b) 

ee
 

respectively. Exfiltration capacity, and the times te and to, are
 

then used by Eagleson along with the relationships represented in
 

Figure 4.2 to determine total evapotranspiration, ET. To do this,
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INTERSTORM EVAPORATION FROM BARE SOIL 

Figure 4.2 
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tb 

INTEGRATION REGIONS FOR CALCULATION OF EXPECTED 

VALUE OF INTERSTORM EVAPOTRANSPIRATION 

Figure 4.3 
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ET from a unit land surface is proportioned according to
 

ET= (1-M)ES +ME (4.9)
 

in which
 

Es = bare soil evaporation from soil moisture plus eva

poration from soil surface retention 

Ev = evapotranspiration from vegetation plus evaporation 

from plant surface retention. 

It is not necessary to present the development of E[Es] here,
 

which is done by calculating the volume under the solid line in Figure
 

4.2, multiplying by the joint probability distribution of storm depth
 

and time between storms, and integrating over the regions shown in
 

Figure 4.3. What is important to note is the previously mentioned
 

approximation made in the development of the bare soil exfiltration
 

capacity. The expression obtained for E[E S ], bare soil evapotrans
3
 

piration for one interstorm period, from the above procedure is
 

[E = ykXhol f1+h0fePl yf[,Xho+5oh p -BE 
E[Es -.- (K) L Ah J)e 

+ l-Y[KAh] " [14Mk + (2)i/2 E-W/6p-e 
S(K)3
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-CE-Sho/t 
/ 2 + e ' p [k + (2C)1 E - w/tp]+v 

(2E)1/2 eSho/dp [y(3, CE) - y(3,BE)} 

3 -
1 h/e -]-+ [1 + ~hh ybc,Xho +1-6p (E19 ,(,Ch Y3B) 

-
+ e- CE [Mk v + (2C)1/2 E -w/ep] - e BE [Mk v + (2B)/ 2 E /] }i 

(4.10)
 

Here
 

2
 
1-M kv+(l-M)w/4 

B l-Nkv-wle + 2(1+Mkv-w /e)2 (4. 1) 

and
 

1
2 (Mfkv - w/e ) -2 (4.12) 

Also, 

= reciprocal of mean time between storms 

X = parameter of Gamma distribution of storm depth 

K = paramater of Gamma distribution of storm depth 

h = surface retention capacity 
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Upon studying Figure 4.1 and Equations (4.4) and (4.6) 

it can be seen that the term, f e' is defined as the exfiltration rate 

for bare soil, and Fe as the total volume of moisture exfiltrated from 

the soil column across the bare soil surface. The rate, fe is 

obtained by differentiating the volume, F , with respect to time. 

The result of the differentiation leaves f multiplied by the areae 

of bare soil. Thus, in the two-dimensional problem which includes
 

the presence of vegetation, f should be multiplied by the term, 1-M,
e 

to account for the fact that only a fraction of the land surface, the
 

bare soil fraction, is exfiltrating at this rate. Equation (4.6)
 

should be rewritten as
 

/ 2 
(1-M)f = 	 St - - Me (4.13)e 2Set v 

The new form for the expected value of bare soil evaporation, Es, may
 

then be evaluated in terms of this altered expression for exfiltration.
 

The new expression for E[Es.] is
 

3F IC
 
-W Y[K,Xho] -BE [ ho/e y[KXh +Bh /Ep 

E[Es] = -f () - e 1+ - h( oj r [() 0 	 r(m) 

r _ y/[K'Xho0] ~ -BE- ho/ep (2) 1/ 2 E _


F ( V-e [1+ E (23)2 w+Hk]
 

-e 	 t-) L p v ) E]
 

1/ p i3 _ -elk 3l -


1-M 	 1 
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F B e e]B 1 wheFMk (2B)I2E) 
+ + h(K) v 

J p 

v 


e- i rHL Mk - (2C)lIEfl 2E) pl CE) -y 421 BEI] 
-rin [i vL 9p 

(4.14) 

where
 

B = l/(l+Mk ) (4.15)
 

C + 1/2(lfk -W/p)-2 (4.16)

V p
 

is obtained in the same way as before; by multiplying the bare soil
ET 


term by (1-M), and the vegetation term by M. The result of this altera

tion on the expected value of annual basin evapotranspiration will be
 

presented in a later section. Although this approach may seem more
 

accurate than the original, its use will create other, and possibly
 

greater problems. Attempting to expand the problem into two dimensions
 

at this point will cause some inconsistencies concerning evaluation of
 

the Philip exfiltration equation. This equation is 

00 

I zdO= Alt1/2 + A2t + A3t3/ + ... (4.17) 
j1 

Since this was developed for a one-dimensional formulation, the
 

expressions obtained for the constants, Ai, on the right hand side will
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not necessarily apply to-the two-dimensional situation. This can be
 

seen by noting that in Equation (4.6), as M approaches the value of 1,
 

the right hand side does not go to zero, as it should for a fully
 

vegetated surface where there would be no bare soil exfiltration of
 

soil moisture. So, although there are certain misgivings about
 

Eagleson's original derivation, the alternate approach presented above
 

may involve more serious inaccuracies. However, for areas with a large
 

vegetal canopy density, where the effect of the vegetation on bare soil
 

exfiltration is large, this approach may come closer to reality than
 

the previous one.
 

4.3 	 Surface Runoff
 

To derive the probability of storm surface runoff, Eagleson
 

(1978) integrates the difference between rainfall intensity and the
 

Philip infiltration equation over the duration of a rainstorm. Infil

tration is assumed to occur uniformly over both bare soil and vegetated
 

portions of the surface. Illustrated in Figure 4.4 is a sequence of
 

surface states beginning from t = 0 at the start of the rainfall period.
 

In this figure
 

h = surface retention capacityo 

i = rainfall intensity 

f. = infiltration capacity1 

t = storm duration 
r 

A = gravitational infiltration rate as modified by capillary0
 

rise from 	the water table
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Initially, there is a withdrawal of rainfall to satisfy surface retention.
 

If t is greater than h /i, as shown, this surface retention reaches its
r 0
 

capacity, ho. If t < h /i, there would be no infiltration or runoff, 

and the surface retention would equal the storm depth, h. For the case 

illustrated in Figure 4.4, however, infiltration will begin at time 

t = h /i. From this time until t = h /i + to, when f. = i, infiltration 

will take place at the rainfall rate, i. After this time, the capacity
 

of the soil to infiltrate moisture is no longer larger than the rainfall
 

intensity, and the excess is represented by the shaded area of the
 

figure. Rainfall excess, Rs, is then generated until time t = tr . The

3
 

expected value of the rainfall excess is obtained in a manner similar to
 

that of the evapotranspiration.
 

A question may be raised relating to the handling of the
 

surface retention. In his development, Eagleson argues that the surface
 

retention must be subtracted from the rainfall excess, since it is
 

moisture that is not infiltrated into the soil. The expression he
 

obtained for the expected value of annual rainfall excess is then
 

e - - -E[RA = iA 2a F(a + l)c G] (4.18) 
SA A 

in which 

R = annual rainfall excesssA
 

The expected value of annual surface retention, ErA, is then
 

subtracted from this to get the annual surface runoff. This charges the
 

entire annual surface retention against those events producing rainfall
 

excess, however.
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CLAY CLAY-LOAM SILTY-LOAN SANDY-LOAM
 

- 9 
 - 9
 -I0  1.2x10 2.5xi0

k(1) 1.0xl0 -I0 2.8xi0
 

n .45 .35 .35 .25
 

c 12 10 6 4
 

Table 4.1
 

REPRESENTATIVE SOIL PROPERTIES
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A slightly different interpretation of this rainfall excess
 

results from a closer examination of Figure 4.4 and the shaded area
 

therein. It is known, and mentioned above, that surface retention
 

must be satisfied before any infiltration can occur. From this, it
 

seems necessary to subtract the surface retention from the beginning
 

of the rainfall period, as indicated in the figure, rather than from
 

the rainfall excess at the end. The volume represented by the shaded
 

area would then be equal to the surface runoff, and not surface runoff
 

plus surface retention. The resulting water balance equation then
 

becomes
 

mPA(l - e-G-2(a+)c-) = E[EPA] J(E,14kh ) + m K(l)Sc - Tw (4.19) 

This alternative procedure will increase the calculated value of sur

face runoff, and decrease the amount of moisture calculated as infiltra

tion. The effect of this difference on the CDF of annual yield will
 

be discussed in Chapter 6.
 

4.4 Vegetal Equilibrium Hypothesis
 

From examining the role of vegetation canopy density in the
 

average annual water balance, Eagleson (1978f) observed that for a given
 

set of climate and soil parameters and for a given kv , Equation (4.3)
 

defines s as a function of M. This relationship is illustrated in
o 

Figure 4.5 by using four sets of representative soil properties, listed
 

in Table 4.1, and the conditions P =m and k = 1, for the climates
 
A mP An k ,frteciae
 

of Clinton, Mass. and Santa Paula, Calif. It can be seen that there
 

exists a particular value of M = M for each climate-soil combination at
 
0
 

4O
 



Figure 4.5 
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which s is a maximum. This point of maximum s corresponds to
0 0 

maximum surface and groundwater runoff, which means, for fixed pre

cipitation, that there is minimum evapotranspiration from soil moisture.
 

Thus, at M = M , it is expected that the term representing evapo

transpiration from soil moisture
 

E[E rA (4.20)E[E pA]J(E,M,kv,h o ) 

will be a minimum for a given climate-soil combination. This minimiza

tion is seen in Figure 4.6 for the same information as that used in 

Figure 4.5. Note that in Santa Paula, the clay and clay loam soils 

cannot absorb enough water to produce canopy densities greater than 0.4 

and 0.8, respectively, as long as k = 1.v 

The numerical value of k is a matter of some controversy.
v 

Linacre, et al. (1970), report values of k for water plants which range
v 

from .6 to 2.5 depending upon species. Slatyer (1967, p. 53) states
 

that the value of k can be greater than one since total evapotranspirav 

tion from a plant community, per unit land area, may exceed that from a 

similar area of bare wet soil due to the larger actual evaporating 

surface area. Kramer (1969, p. 338) however, states that evaporation from 

a plant community never exceeds that from a similar area of wet soil. For 

the present, kv will not be allowed to exceed one. 

-From observations of the relationships presented above,
 

Eagleson (1978f) develops the vegetal equilibrium hypothesis mentioned
 

in Chapter 2. In the light of the above arguments, this hypothesis says
 

that natural vegetal systems of given species will develop a canopy density
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which produces minimum stress under local climatic conditions. A
 

necessary condition for minimum stress is that soil moisture take on
 

the largest possible value. Thus, by using this hypothesis, the given
 

climate, soil, and plant coefficient determine the equilibrium canopy
 

density, M = M , through the water balance equation, where the soil
 

moisture is maximum or, equivalently, where the soil moisture evapo

transpiration is a minimum. Figure 4.7 illustrates the relationship 

between the dimensionless evapotranspiration parameter, E, and the 

dimensionless evapotranspiration function, J(E, kv), for the equilibrium 

condition, M = X
O

. This plot is obtained by minimizing evapotranspiration 

=
from soil moisture for a given kv, (k 1 in this case), and E using
v 


Eagleson's constant soil column cross-section assumption. The expression
 

for E is
 

2 n K(l) P(l) e d+2 (4.21) 
-2 0 

wmeP 

in which 

= reciprocal of mean time between storms 

n = porosity 

*(l) = saturated soil matrix potential
 

m = soil pore size distribution index
 

d = soil diffusivity index
 

e = dimensionless desorption diffusivity
 

The other terms have been previously defined.
 

Also shown in Figure 4.7 is the M0 vs.E relationship for the
 

equilibrium condition, PA = mPA . As PA varies from mp A, E and thus,
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J(E, M , kV) will change accordingly, while to the first approximation,
 

M will remain constant at M
0
 

Eagleson (1978f) performs an asymptotic behavior analysis of
 

the evapotranspiration function to gain insight into the meaning of the
 

parameter, E. The evapotranspiration asymptotes shown in Figure 4.7
 

are thereby determined. The intersection of these two asymptotes occurs
 

at E = 2/r, which separates soil controlled from climate-controlled
 

evapotranspiration (Eagleson, 1978d). Thus, low values of E correspond
 

to relatively dry, warm climates, while larger values indicate humid
 

climates. As can be seen from Figure 4.7, low values of N0 occur for
 

low E values, and vegetation densities approaching 1 correspond to a
 

large E.
 

It can now be seen that observations of canopy cover will
 

provide a key to determining the effective properties of a soil for a
 

given climate. By using the vegetal equilibrium hypothesis in reverse,
 

observations of M 0 may be used in the water balance to obtain information
 

about the soil if the climatic variables are known.
 

Figure 4.8, which is a plot of J vs. Mo, can be obtained
 

directly from the information in Figure 4.7. Thus, from observations of
 

vegetation density, the evapotranspiration efficiency, J, can be deter

mined. To assure the generality of this relationship, the sensitivity of
 

J to its independent parameters is studied. From the expression obtained
 

by Eagleson (1978d), the primary parameters other than E and X are:
 

kV = plant coefficient 

Xh accounts for storms which do not fill retention capacity
 

Bh /e measures effect of surface retention on exfiltration
 

K = parameter of Gamma distribution of storm depth 
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The plots obtained by varying these parameters over their reported
 

ranges are presented in Figures 4.9, 4.10 and 4.11. Figure 4.9, which
 

holds K and k constant at .5 and 1, respectively, illustrates the
 v 

insensitivity of the evapotranspiration function to changes in Ah as
 

compared to ho/ip. By holding ho/e equal to .1 and kv equal to
 

1, K is varied in Figure 4.10. As can be seen, the function changes
 

infinitesimally with changes in K. In Figure 4.11, the two variables
 

K and Xh are held constant at median values, and Oh / p and kv are
 

allowed to vary. From this analysis, the evapotranspiration function
 

is shown to be most sensitive to the two parameters, Sh /e and k .
op
 

Also shown in Figure 4.11 as dashed lines are the curves obtained
 

using the alternate formulation of evapotranspiration, Equation (4.14),
 

developed in Section 4.2. In review, this expression was developed
 

by accounting for the effect of the vegetated fraction of the soil
 

column surface on the vertical flux of the exfiltrating soil moisture
 

in Equation (4.6). Expanding the Philip exfiltration equation, which
 

was developed for the one-dimensional case of a constant cross-section,
 

to two dimensions introduced an inconsistency with the results Philip
 

obtained as explained in Section 4.2. By multiplying the term f in
 

Equation (4.6) by (1-), and not adjusting the terms on the right hand
 

side of the expression, an infinite exfiltration capacity is obtained
 

for the case when N = 1. Although the term (1-M) appears in the
 

denominator of several components of the equation (4.14) for bare soil
 

storm exfiltration volume, an infinite result is not obtained since the
 

total volume of bare soil exfiltration, Es, is weighted by (1-M) in
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Equation (4.9). The net result of this modification is to raise the
 

total evapotranspiration for a given value of M since the rate has
 

been increased. This is seen in Figure 4.11 where the dashed lines
 

are plotted above the corresponding solid lines for the same vegata

tion density. The main problem with this approach, as mentioned
 

above, is that the terms on the right hand side of Equation (4.6)
 

do not identically go to zero as M approaches 1. If the necessary
 

corrections were known, the result would be a reduction in the bare
 

soil exfiltration capacity for each value of M. This would lower
 

the dashed lines of Figure 4.11. The actual function may therefore
 

lie somewhere between these two sets of curves. With this in mind,
 

these plots will be used in the following chapters to study the
 

validity of the vegetal equilibrium hypothesis, and to determine its
 

utility in estimating the effective average areal soil properties of
 

a natural watershed.
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Chapter 5
 

METHOD OF APPROACH
 

5.1 Vegetal Equilibrium Hypothesis
 

Verification of the vegetal equilibrium hypothesis presented
 

in Chapter 4 is the first objective of this work. This can be accomplished
 

through comparisons of actual data (from watersheds representing various
 

types of climates) with the hypothesized relationship illustrated in
 

Figure 4.11. In review, the hypothesis states that the vegetation
 

denisty seeks that value, M , which maximizes soil moisture. This value
 

maximizes water yield and thus, for a given climate and soil, minimizes
 

evapotranspiration from soil moisture. Minimum evapotranspiration
 

can be translated into a value of evaporation efficiency, J. (i.e. the
 

ratio of actual to potential evapotranspiration) leading to the
 

relationships previously presented in Figure 4.11.
 

The average annual water balance is presented by Eagleson
 

(1978a) as
 

E[PA]-E[ETA]=E[RsA+E[R A]=E[YA] (5.1)
 

which states that average annual precipitation minus average annual
 

evapotranspiration will equal the average annual basin yield which is
 

composed of surface runoff plus groundwater runoff. When analyzing
 

catchment data to calculate average annual actual evapotranspiration,
 

mean annual basin yield is subtracted from mean annual precipitation.
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Although relatively accurate annual precipitation data are readily
 

obtained from station records, yield information is only available
 

in the form of streamflow records. Therefore, it is necessary that
 

the total yield of the catchment studied appear as streamflow. This
 

means that the entire groundwater component of yield must be influent
 

to the stream channel upstream of the basin mouth. Under such condi

tions, most closely approached in humid climates, the total evapo

transpiration is equal to precipitation minus streamflow. This
 

restriction may lead to overestimating actual evapotranspiration if
 

there are losses of yield to ungaged groundwater, or underestimation
 

if there is contribution to streamflow of groundwater from adjacent
 

watersheds.
 

Potential evapotranspiration is estimated by using the
 

modified Penman equation (Penman, 1948). The form used here is the
 

combination form as presented by Eagleson (1977)
 

= i(l-A) - +
 
ei 2 (5.2)
 

Pe Le (1 +y/A)
 

in which
 

qi average rate of insolation
 

Mb = average rate of net outgoing long wave radiation 

H = average residual sensible heat flux
 

A = shortwave albedo of surface
 

Pe ' mass density of evaporating water
 

Le - latent heat of vaporization
 

y/A = atmospheric parameter, a function of atmospheric temperature
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The above parameters are calculated or estimated as follows: 

q,= q ); from Figure 5.1, where @ latitude 

A = A (surface structure); from Table 5.1 

1/(l + Y/A) = f(TA); from Figure 5.2, where TA = average 

annual temperature
 

L = 597 cal/gr
e 
3
 

= 1 gr/cm
pe 


- .45 x 10-10T]
q = (1 - .8N)[.245 

H = qb (.25 +1/(l - S)) 

The necessary climatic variables are available from U.S. 

Weather Bureau publications. They must be averaged over the rainy 

season which is assumed to be identical with the vegetation growing 

season. 

Equation (5.2) gives the average potential evapotranspiration
 

rate. The total potential volume is obtained by multiplying ep by the
 

season length as determined from monthly rainfall records.
 

With actual and potential evapotranspiration known, the only
 

remaining variables needed for comparison with the hypothesis are the
 

vegetation species (to obtain kv) and the canopy density. The canopy
 

density is estimated either from aerial photographs, from personal
 

observation, or from literature available for the catchment studied.
 

In this work, no photographs were available, and it was possible to
 

estimate only ranges of density from the information in the literature,
 

depending upon each author's method of measurement and interpretation.
 

As a result of this uncertainty regarding the type and canopy density of
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Table 5-1
 

Albedo of Natural Surfaces
 
(from Ref. [17])
 

Surface 


Water 


Black, dry soil 


Black, moist soil 


Gray, dry soil 


Gray, moist soil 


Blue, dry loam 


Blue, moist loam 


Desert loam 


Yellow sand 


White sand 


River sand 


Bright, fine sand 


Rock 


Densely urbanized 


areas 


Snow 


Sea ice 


Albedo, A 


0.03-0.40 


0.14 


0.08 


0.25-0.30 


0.10-0.12 


0.23 


0.16 


0.29-0.31 


0.35 


0.34-0.40 


0.43 


0.37 


0.12-0.15 


0.15-0.25
 

0.40-0.85
 

0.36-0.50
 

Surface Albedo, A 

Spring wheat 0.10-0.25 

Winter wheat 0.16-0.23 

Winter rye 0.18-0.23 

High, dense grass 0.18-0.20 

Green grass 0.26 

Grass dried in sun 0.19 

Tops of oak 0.18 

Tops of pine 0.14 

Tops of fir 0.10 

Cotton 0.20-0.22 

Rice field 0.12 

Lettuce 0.22 

Beets 0.18 

Potatoes 0.19 

Heather 0.10 
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the vegetation, the other variable which is a function of the surface
 

structure, albedo, is subject to error as well. Therefore, the
 

catchments studied will be plotted on Figure 4.11 in terms of the 

expected range of both J and X -

O 

5.2 Estimation of Effective Soil Properties
 

The second goal of this work is to use the hypothesized
 

relationship between vegetation canopy density and evapotranspiration
 

to estimate effective average areal properties of the soil.
 

Three types of parameters are considered: climate, soil
 

and vegetation. The climatic and vegetal properties are easily obtained
 

from observations; this leaves the four soil parameters, so, k(l), U,
 

and c to be determined from the derived relationships between climate,
 

soil and vegetation.
 

The range of values of the porosity, n, is known to be quite
 

small, from .25 to about .45, and does not have a large effect on solu

tions of the water ,balance equation. Assuming a value for n leaves the
 

soil moisture, intrinsic permeability, and pore disconnectedness index
 

as unknowns. To solve for these variables, three equations or relation

ships are needed which incorporate the vegetation and climate as well.
 

The first relationship is the water balance, Equation (4.3), which
 

expresses the soil moisture, so, as an implicit function of the climate,
 

vegetation and soil. The vegetal equilibrium hypothesis provides the
 

second relationship between the same three parameters. The third
 

expression used is a rather weakly correlated regression between the
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- -

intrinsic permeability of the soil, k(l), and its pore size distri

bution index, m, presented in Figure 5.3. This expression is
 

(Eagleson, Personal Communication)
 

k(l) = (11_)2.75 (5.3) 

where
 

m = 2/(c-3) (5.4)
 

The ,coefficient of determination of this regression is small
 

due to the extreme variability of these parameters in nature. The effect
 

of this regression equation on the derived CDF of annual yield will be
 

observed in Chapter 6.
 

In order to explain the procedure followed in the estimation
 

of soil properties, it is necessary to present mathematically the water
 

balance and the vegetal equilibrium hypothesis. The mean annual water
 

balance, Equation (4.3), is again
 

- e-C-2r(+l)aa) = E[EA] J(E,lk,ho) - E[ErA] +M K(l)s- T 

for
 

E[ErA]/lA < e G-2a r(a + l) a (5.5a) 

Otherwise,
 

E[E ] J(E, M, kv, h) + mTK )sC - Tw (5.5b) 
MA PA v 0 0 

If the interpretation of surface runoff developed in Section
 

4.3 is used, the above equation becomes
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m1'l( - e F( + 1)a - ') = BEE I J(E,N,k ,h ) + m K(l)so - 1%. 
(5.6) 

Although the components and symbols have been defined earlier,
 

their full expressions have not all been stated. In the above equations
 

G cK(l)[(1 + s )C/2 - w/K(l)] (5.7)
 

2o)2 1i/3 

nl2 K(1) T(l)(1 - s0)2 (d, so 
-- (5.8) 

L ~ 6 T 6 T 

BEEpAI m mtb [1 -M(l - )] e (5.9) 

K(1) = k(1) Tw/Pw (5.10) 

where
 

in which
 

a = reciprocal of mean storm intensity
 

n = reciprocal of mean storm depth
 

d = 2 + 1/m
 

6 = reciprocal of mean storm duration
 

m = mean number of storms
 
V 

mtb = mean time between storms 

y = specific weight of water
 

a = surface tension of water
w 

1w = viscosityof water 

4(m) = pore shape parameter = 100.66 + 0.55/ + 0.14/n 
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The vegetal equilibrium hypothesis states that
 

3E[EA] 
A_ = 0 at 11 = M (5.12)

3M 0
 

where, as mentioned before,
 

E[ETA = evapotranspiration from soil moisture; 

which is 

E[ETA = J(E, M, k , ho) A ]EE- E[E 3 (5.13) 

with 
e -hf/ r[K, Xh : 

+k iv =R e (-Inv 0 )
r AFr(K) 

}+ Bho/e)](Aho"
E 1 + h+h/e0~t-Ky [K, 

r(K) 

-BOh fer[K, Xk h 
0 '0+ kM L-e 

kh F(K) 

Therefore,
 

E[E TA 3 E[Ep A3J(E, , kv 1e)
A = J(E, M, kv, h) -_ + E[E 3C, 11 

3E[ErArA 

(5.15)
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For kv = 1, all M sensitivity comes from J(E, 11, kv, h ), which will then 

have a minimum at M , in which special case, according to Equations 

(5.11) and (5.12),
 

3J(E, M, k, h ) 

at M = (5.16)0= 0 M 

As discussed in Section 4.4, evapotrarspiration efficiency, J,
 

can be determined, for a given climate,- from observations of vegetation
 

density and species by using the vegetal equilibrium hypothesis, Eq.
 

(5.14). The actual procedure for doing this is to pick a value for the
 

evaporation parameter, E, and calculate J for different values of M until
 

evapotranspiration from soil moisture, Eq. (5.13), is minimized. If
 

the vegetation density obtained which minimizes E is not equal to the
 

observed value, E is incremented and a new M is found. For a fixed
 

climate, variations in E correspond to variations in the soil properties
 

k(l), c,-n, arid so.' Therefore, what is actually done is seeking the soil
 

which produces the observed vegetation canopy density for a specific
 

climate. Once this value of evapotranspiration is found, the value of
 

E is also known, which is a function only of the soil parameters for a
 

given climate.
 

With this information in mind, the following procedure is used
 

to estimate the average areal effective soil parameters for a given set
 

of climatic and vegetal parameters:
 

1. A value for n is assumed and k is set = 1 
v 
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2. 	The above procedure is followed to determine E
 

3. 	The lowest possible value for c, approximately 3.1, is
 

picked as an initial value
 

4. 	k(l) is calculated from Equation (5.3)
 

5. 	With these values for the three soil parameters, n, k(1),
 

and c, it can be seen from Eq. (4.21) that s remains as
o 

the only variable needed for determining E. With E known 

from step 2, s 0 is calculated 

6. 	Annual precipitation is calculated via Equations (5.5)
 

through (5.10)
 

7a. 	If the annual precipitation from Step 6 is not equal to the
 

actual mean rainfall, c is incremented upward from its
 

initially low value and Steps 4-6 are repeated.
 

7b. 	 Due to the approximation introduced by using Equation (5.3),
 

the precipitation, PA' calculated in Step 6 may never
 

exactly equal the actual mean value, InP, . for any value
 

of c. PA will approach mPA as c is increased, coming to
 

within PAA of equality at intermediate c before diverging
 

again for large c. For low values of c, the calculated
 

k(l) is large, representing a soil with high permeability
 

and well connected pores. With evapotranspiration
 

specified at the optimum (i.e., minimum) value, a large
 

precipitation is therefore calculated in order to produce
 

the inevitably large groundwater yield of the highly porous,
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soil. For large c and small k(l), the soil is extremely
 

impervious and the surface yield will be high. With
 

minimum evapotranspiration, a large value for precipitation
 

is again needed. Somewhere between these two extremes, a
 

set of suitable soil parameters is obtained which gives an
 

annual precipitation, PA' which is closest to the actual
 

mean, mp . This relationship is illustrated in Figure 5.4. 

Holding c constant at the value which gives the minimum
 

APA, k(l) is then deviated from regression equation (5.3)
 

until another minimum in calculated precipitation is
 

reached. If this value is above the mean precipitation,
 

c is decreased, if it is below the mean, c is increased.
 

Another search is done on k(l) until the minimum precipi

tation is found. This step is repeated until the minimum
 

calculated precipitation is equal to the mean
 

8. If the values obtained for k(1) and c are not consistent
 

with the assumed porosity, n is adjusted to a more appro

priate value corresponding to a more pervious or impervious
 

soil type depending on the values of k(l) and c. Steps 1
 

through 7 are repeated.
 

The soil parameters obtained from Steps 1-9 are used to
 

construct the CDF of annual yield in the same manner as Eagleson (1978g).
 

In this paper, the annual water balance is written as
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+YA = PA - E R A Rg A (5.17) 

In order to relate the annual water balance, (5.17), to the 

mean annual water balance, (5.1), Eagleson defines a climatic mean, mc, 

where PA = iPA and ETA = E[ETA], and expands (5.17) about this point in 

a multidimensional Taylor expansion [Hildebrand, 1959, p. 353]. By
 

taking expected values of this expansion term by term, neglecting higher
 

order terms, and assuming all variances, covariances, and curvatures
 

are small, the "first order approximation" of E[YA] is obtained:
 

E[YA]= PA ETA Rs A 
+ RgA (5.18) 

This allows the use of the mean annual water balance equation to
 

calculate annual values by letting the annual precipitation, and thus
 

the average annual soil moisture, vary. The CDF of annual yield can
 

then be calculated. Comparison of this CDF with that obtained from
 

observations of annual streamflow provides the test for the accuracy
 

of the estimated parameters, n, k(1) and c.
 

Chapter 6 will present the results of this procedure in the
 

form of annual CDF's of basin yield, in addition to verification of the
 

equilibrium vegetation density hypothesis.
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Chapter 6
 

PRESENTATION OF RESULTS
 

6.1 Verification of Vegetal Equilibrium Hypothesis
 

The results of the applied methods of analysis explained in
 

Chapter 5 are presented in this chapter. The vegetal equilibrium hypo

thesis is verified first in order to assure its validity for use in the
 

estimation of soil parameters.
 

Appendix A presents the individual catchments studied, the
 

data used, location of the catchment, the values obtained for potential
 

and actual evapotranspiration, vegetation density, and the estimated
 

value of J.
 

Figure 6.1 presents the agreement of these experimental data
 

with the hypothesized theoretical curves of Figure 4.11. As can be
 

seen, the dashed curves, which represent the derivation accounting for
 

the presence of vegetation at the surface of the soil column in the
 

exfiltration equation, provides a better fit for catchments with a
 

vegetal canopy density greater than 0.2. This may mean that the presence
 

of vegetation has a much greater effect on soil moisture exfiltration
 

than previously believed. Although the equation used has serious flaws,
 

they may be negligible compared to the possible importance of the
 

presence of vegetation.
 

Possible reasons for catchments W-4, W-5, and part of W-8
 

lying above the curve may be ungaged yield which escapes through
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groundwater aquifers, or flaws in the vegetal equilibrium hypothesis.
 

Until it can be determined if all these yields are present in the
 

observed streamflows, the vegetal equilibrium hypothesis would seem to
 

give a reasonably accurate relationship between vegetation density and
 

evapotranspiration.
 

Also shown on Figure 6.1 are the results obtained from the
 

empirical formulas developed by Czarnowski (1964) and Ritchie and
 

Barnett (1971). These functions exhibit the same type of relationship
 

between evaporation efficiency and vegetation density, but do not fit
 

the observed data quite so well as Equations (4.10) or (4.14). The fact
 

that the data for these studies are primarily from agricultural areas,
 

where cultivation and irrigation significantly violate the assumption
 

of natural watersheds, is a likely reason for the poor observed fit.
 

6.2 	 Estimation of Effective Average Areal Soil Properties
 

To determine the accuracy of the procedure described in Section
 

5.2, the 	two catchments studied here will be those studied by Eagleson
 

(1978f, g); Clinton, Ma. and Santa Paula, Ca. Table 6.1 presents the
 

list of necessary input variables (Eagleson, 1978g) and the computer
 

program employed is listed in Appendix B. Tables 6.2 and 6.4 list the
 

results obtained for the inputs given in Table 6.1. Listed probabilities
 

are calculated for given PA/mP using the Poisson model of Eagleson
 
AA
 

(1978b). In Clinton, the value of H is held constant for the entire
 

range of soil moistures, while in Santa Paula, the vegetation density
 

is allowed to vary with annual precipitation, as explained by Eagleson
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(1978g). These results are obtained using the form of surface runoff
 

developed in Section 4.3 and presented in Section 5.2, (Equation 5.6).
 

Figures 6.2 and 6.3 present the results in the form of CDF's of annual
 

yield.
 

Figure 6.2, which represents Santa Paula, also shows the CDF
 

obtained by Eagleson (1978g) for his silty-loam soil, which is listed in
 

Table 6.3. The soil properties estimated by the algorithm explained in
 

Section 5.2 indicated a slightly less permeable soil than the silty loam.
 

This soil gives an improved fit over the entire range of CDF values,
 

especially in the critical lower tail.
 

The results for Clinton are illustrated in Figure 6.3. The
 

soil properties obtained in this case indicate, again, a more impermeable
 

soil than the silty-loam employed by Eagleson. Although these values
 

for k(l) and c are quite different, the resulting CDF of annual yield is 

indistinguishable from that obtained for silty-loam. To facilitate the 

comparison between the two results, Table 6.5 lists the annual water 

balance components for Clinton, using the silty-loam soil properties. 

Since the estimated soil properties represent a tighter soil which reduces 

the mobility of moisture, the soil moisture values are higher than for 

the silty-loam. The other major differences between the two soils are 

the values for surface and groundwater runoff. The more permeable silty

loam yields a large groundwater component, and a surface runoff component 

which seems unrealistically low for all values of annual precipitation.
 

In the case of the estimated soil properties, the surface runoff is
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Clinton, Mass. Santa Paula, Ca.
 

.15 e cm/day .273
P 

3 	 m days 
 10.4
 

.32 mt days 1.43
 
r 

365 mI days 212
 

.5 K .25
 

.1 h cm .1
 
0 

0 w/ep 	 0 

8.4 TA 0C 	 13.8 

94 	 mPA cm 54
 

1 k 1
 

.8 M .4 
0 

Table 6.1
 

INPUT CLIMATE AND VEGETATION PARANETERS 
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EFFECTIVD AREAL AVERAGE SOIL PROPERTIES 

k(1)= 0.2815708E-09 n=O.35 c = 6.204 

so 
0.30 

E 
0.027 

Mo 
0.068 

Pa/mpa 
0.2108 

Ya/mpa 
0.0158 

RSA 
0.6264 

RGA 
0.225 

ETA 
10.533 

PROB 
0.0216 

0.32 0.038 0.082 0.2454 0.0202 0.7565 0.335 12.158 0.0314 
0.34 0.054 0.099 0.2833 0.0258 0.9071 0,488 13.901 0.0446 
0.36 0.074 0.117 0.3246 0.0329 1.0807 0,696 15.752 0.0619 
0.38 0.101 0.138 0.3694 0.0417 1.2798 0.974 17.694 0.0840 
0.40 0,134 0.160 0.14177 0.0527 1.5077 1.339 19.712 0.1114 
0.42 0.176 0.183 0.4697 0.0663 1.7679 1.812 21.786 0.1446 
0.44 0.228 0.209 0.5255 0.0830 2.0648 2.418 23.896 0.1839 
0.46 0,293 0.236 0.5854 0.1035 2.4036 3.186 26.021 0.2294 
0.48 0.372 0.264 0.6496 0.1285 2.7909 4.148 28,141 0.2809 
0.50 0.468 0.294 0.7187 0.1589 3.2345 5.344 30.233 0.3380 
0.52 0.582 0.324 0.7933 0.1956 3,7443 6.816 32,277 0.4001 
0.54 0.720 0.355 0.8741 0.2397 4.3323 8.614 34.253 0.4662 
0.56 0.882 0.387 0.9621 0.2927 5,0138 10.794 36.144 0,5352 
0.58 1.074 0.419 1.0585 0.3561 5.8080 13.420 37.934 0.6056 
0.60 1.298 0.451 1.1650 0.4315 6.7388 16.561 39.610 0.6753 
0.62 1.560 0.483 1,2833 0.5210 7,8362 20.297 41.163 0,7424 
0.64 1.864 0.514 1.4156 0.6269 9.1381 24.716 42.586 0.8046 
0.66 2.215 0.544 1,5645 0.7520 10.6921 29,914 43,874 0,8595 
0.68 2,618 0.574 1.7331 0.8992 12.5580 36.001 45.027 0.9054 
0.70 3.079 0.602 1.9250 1.0723 14.8116 43.094 46.046 0.9412 
0.72 3.606 0.629 2, 1446 1.2754 17.5485 51.324 46.936 0.9668 
0.74 4.204 0.655 2.3968 1.5134 20.8905 60.833 47.703 0.9833 

Table 6,2 

ANNUAL WATER BALANCE COMPONENTS, SANTA PAULA, CA, 
ESTIMATED SOIL PROPERTIES. EQUATION (5.6), o = .4 
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EFFECTIVE AREAL AVERAGE SOIL PROPERTIES 

k(1)= 0. 1200000E-08 n=0.35 c= 6.000 

. 

so 
0.26 
0.28 
0.30 
0.32 
0.34 
0.36 
0.38 
0.40 
0,42 
0.44 
0.46 
0.48 
0.50 
0.52 
0.54 
0.56 
0.58 
0.60 

E 
0.031 
0.047 
0.068 
0.097 
0.135 
0.185 
0.250 
0.331 
0.433 
0.559 
0.714 
0,902 
1.129 
1.401 
1.724 
2.106 
2,554 
3078 

Mo 
0.073 
0.091 
0.112 
0.135 
0.161 
0.188 
0.218 
0.250 
0.284 
0.318 
0.354 
0.391 
0.427 
0.464 
0.500 
0.535 
0.569 
0.602 

Pa/mpa 
0.2174 
0.2592 
0.3062 
0,3586 
0.4168 
0.4815 
0.5533 
0.6332 
0.7223 
0.8222 
0.9347 
1.0620 
1.2070 
1.3729 
1.5634 
1,7830 
2.0367 
2.3304 

Ya/mpa 
0.0106 
0.0162 
0.0242 
0.0353 
0.0504 
0.0705 
0.0970 
0.1315 
0.1756 
0.2316 
0.3018 
0.3889 
0.4962 
0.6273 
0*7061 
0.9773 
1.2059 
1.4777 

RSA 
0.0538 
0.0673 
0.0835 
0.1027 
0.1256 
0.1527 
0.1850 
0.2234 
0.2691 
0.3238 
0.3896 
0.4688 
0.5647 
0.6813 
0.8233 
0.9968 
1,2092 
1.4692 

RGA 
0.519 
0.809 
1.224 
1,803 
2.593 
3.654 
5,055 
6.876 
9.215 

12.182 
15.906 
20.533 
26.232 
33.191 
41.626 
51.777 
63.911 
78.327 

ETA 
11.165 
13.120 
15.225 
17,456 
19.789 
22.194 
24,639 
27.092 
29.521 
31.892 
34.177 
36.349 
38.383 
40.262 
41.973 
43.508 
44.864 
46.043 

PROB 
0.0233 
0.0360 
0.0539 
0.0784 
0.1109 
0.1526 
0.2046 
0.2675 
0.3410 
0.4240 
0.5142 
0.6080 
0.7004 
0.7859 
0.6592 
0.9162 
0.9559 
0.9799 

Table 6.3 

ANNUAL WATER BALANCE COMPONENTS, SANTA PAULA, CA. 
SILTY-LOAM SOIL PROPERTIES. EQUATION (5.6), M = .4 



199,99 99.9 99 90 80 

% 

70 60 

LESS 

50 

THAN 

5 2 0.il 0, 

YA 
MPA 

SANTA PAULA, CA. 

OBSERVED o 
USGS. STATION No. 111135 

10 

o " 
\0o 

0 

0'0 

EAGLESON (1978) 
FITTED BY VARYING 
SOIL PROPERTIES 

0 

SOIL PROPERTIES 
DETERMINED FROM 

OBSERVED 
0 VEGETATION 

DENSITY 

0 

I I f ' 

1,01 ,25 2 5 10 20 50 100 
RECURRENCE INTERVAL (years) 

Figure 6.2 

FREQUENCY OF ANNUAL BASIN YIELD, SANTA PAULA, CA. 

1000 



EFFECTIVE AREAL AVERAGE SOIL PROPERTIES 

=k(1)= 0. 1947604E-09 n=0.35 c 7.399 

so E mo Pa/mpa Ya/mpa ESA RGA ETA PROB
 
0,60 4.187 0.800 0.6801 0.1776 7.5385 9.153 47.241 0.0180
 
0.62 5.131 0.800 0.7225 0.2145 8.5004 11.666 47.752 0.0373
 
0.64 6.247 0.800 0.7725 0.2598 9.6665 14.755 48.195 0.0766
 
0.66 7.560 0.800 0.8317 0.3151 11.0936 18.528 48.562 0.1531 
0.68 9.097 0.800 0.9023 0.3826 12.8580 23.108 48.852 0.2873
 
0.70 10.888 0.800 0.9869 0.4649 15.0614 28.636 49.071 0.4866
 
0.72 12.966 0.800 1.0887 0.5650 17.8406 35.272 49.227 0.7155
 
0.74 15.367 0.800 1.2118 0.6870 21.3803 43.200 49.332 0.8959 
0.76 18 130 0.800 1.3612 0,8357 25.9318 52.623 49.398 0.9795
 

-4 
-4 

Table 6.4 

ANNUAL WATER BALANCE COMPONENTS, CLINTON, MA.
 
ESTIMATED SOIL PROPERTIES. EQUATION (5.6), M = .8
0 



EFFECTIVE AREAL AVERAGE SOIL PROPERTIES 

k (1)= 0. 1200000E-08 n=0. 35 c= 6.000 

so E mo Pa/mpa Ya/mpa RSA EGA 
0.44 5.540 0.800 0.7032 0.1933 0,2482 17.925 
0.46 7.074 0.800 0.7674 0.2521 0.2936 23.404 
0.48 8.940 0.800 0.8446 0.3251 0.3509 30.213 
0.50 11.190 0.800 0.9375 0.4151. 0.4239 38.598 
0.52 13.884 0.800 1.0493 0.5251 0.5174 48.839 
0.54 17.087 0.800 1,1837 0.6584 0.6376 61.250 
0.56 20,871 0.800 1.3448 0.8189 0.7930 76.185 

"-I
 
0o
 

Table 6.5 

ANNUAL WATER BALANCE COMPONENTS, CLINTON, MA.
 
SILTY-LOAM SOIL PROPERTIES. EQUATION (5.6), M = .8
0
 

ETA PROB 
47.932 0.0272
 
48.441 0.0716
 
48.827 0.1742
 
49.099 0.3673
 
49.274 0.6330
 
49.378 0.8653
 
49.432 0.9750
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greater and the groundwater runoff lower than for the silty-loam soil.
 

The identical CDF's of yield for the two soils can be explained in the
 

following manner:
 

In this development, the storage of moisture is not taken
 

into account, therefore, yield is equal to precipitation minus evapotrans

piration. In the Clinton system, evapotranspiration is controlled primar

ily by the climate (Eagleson, 1978d), and is relatively insensitive to
 

the soil properties except for extreme cases. Thus, for a given precipi

tation, evapotranspiration and hence yield, will be the same for different
 

types of soil. The only variations occur in the proportioning of yield
 

between surface and groundwater runoff. The permeable soil encourages
 

gravitational percolation and hence groundwater, while the impermeable
 

soil rejects precipitation as surface runoff.
 

In Santa Paula, where evapotranspiration is primarily soil
 

controlled, the yield is more sensitive to changes in the soil properties,
 

and thus there is a difference in the CDF's for the two different soils.
 

In Figure 6.4, the estimated soil properties are used to show
 

the effect on the yield CUF of the two methods of handling surface reten

tion in calculating surface runoff. As expected, the values obtained for
 

yield, using Eq. (5.5) are reduced from those calculated by Eq. (5.6) due
 

to the reduction of rainfall excess in favor of surface retention.
 

Although the difference between the two equations is not large, Equation
 

(5.6) still fits the observed data better in the lower tail.
 

Tables 6.6 and 6.7 list the CDF's obtained for Clinton and
 

Santa Paula, using Eq. (5.5). Again, in the case of Clinton, the CDF is
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EFFECTIVE AREAL AVERAGE SOIL PROPERTIES 

k(1)= 0.2964968E-09 n=0.35 c= 6.423 

so 
0.32 
0.34 

E 
0.031 
0.044 

m, 
0.074 
0.089 

Pa/mpa 
0.2208 
0.2556 

Ya/mpa 
0.0128 
0.0170 

RSA 
0.4166 
0M5129 

RGA 
0,275 
0.406 

ETA 
11.233 
12.885 

PROB 
0.0243 
0.0348 

co 

0.36 
0.38 
0.40 
0.42 
0.44 
0.46 
0.48 
0.50 
0.52 
0.54 
0.56 
0.58 
0,60 
0.62 
0.64 
0.66 
0.68 
0.70 
0.72 
0.74 

0.062 
0.084 
0.112 
0.149 
0.194 
0.250 
0,319 
0.402 
0.503 
04624 
0.768 
0.939 
1.139 
1.374 
1.647 
1.964 
2.329 
2.748 
3.228 
3.775 

0.106 
0.125 
0.146 
0.168 
0.193 
0.218 
0.246 
0.274 
0.304 
0.334 
0.366 
0.397 
0.429 
0.461 
0.492 
0.523 
0.553 
0.582 
0.610 
0.637 

0.2937 
0.3353 
0.3803 
0.4289 
0.4813 
0.5378 
0*5987 
0.6645 
0.7357 
0.8131 
0,8977 
0.9908 
1.0939 
1.2087 
1.3375 
1.4830 
1.6482 
1.8368 
2.0531 
2.3024 

0.0225 
0.0295 
0.0384 
0.0496 
0.0638 
0.0814 
0. 1033 
0.1302 
0.1632 
0.2034 
0.2521 
0.3109 
0.3816 
0.4662 
0,5670 
0.6869 
0.8291 
0,9971 
11953 
1.4288 

0.6267 
0.7608 
0.9181 
1.1018 
1.3161 
1.5658 
1.8567 
2.1960 
2.5923 
3.0565 
3.6023 
4.2466 
5.0109 
5.9222 
7.0147 
8.3314 
9.9270 

11.8709 
14.2509 
17.1789 

0.586 
0.830 
1.153 
1.578 
2.127 
2.830 
3.720 
4.835 
6,221 
7,927 

10.013 
12.5411 
15.595 
19.251 
23.605 
28.763 
34.842 
41.972 
50.297 
59.974 

14.649 
16.513 
18.463 
20.481 
22.548 
24.646 
26.754 
28,849 
30.913 
32.924 
34.863 
36.715 
38.463 
40.097 
41.606 
42.986 
44.231 
45.342 
46.322 
47.175 

0.0487 
0.0669 
0.0898 
0.1182 
0.1525 
0.1930 
0.2399 
0.2930 
0.3521 
0.4165 
0.4852 
0.5569 
0.6297 
0.7014 
0.7695 
0.8313 
0.8842 
0.9266 
0.9577 
0.9783 

Table 6.6 

ANNUAL WATER BALANCE COMPONENTS, SANTA PAULA, CA. 
ESTIMATED SOIL PROPERTIES. EQUATION (5.5), MO = .4 
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EFFECTIVE AREAL AVERAGE SOIL PROPERTIES 

k(1)= 0.19163981-09 n=0.35 c= 7.664
 

so E fMo Pa/mpa Ya/rnpa BSA EGA 
0.64 4.956 0.800 0.6876 0.1805 4.0637 12.900 

0.66 6.023 0.800 0,7389 0.2270 5.0093 16.331 
0.68 7.276 0.800 0.8001 0.2843 6,1903 20.530 
0.70 8.742 0.800 0.8736 0.3545 7.6819 25.637 

0,72 10.449 0.800 0.9620 0.4404 9.5866 31.815 

0,74 12.428 0,800 1.0690 0.5457 12.0451 39.249 

0.76 14.715 0.800 1.1990 0.6745 15.2515 48.150 

0.78 17. 345 0.800 1.3576 0.8322 19.4752 58.756 


co 

Table 6.7 

ANNUAL WATER BALANCE COMPONENTS, CLINTON, MA. 
ESTIMATED SOIL PROPERTIES. EQUATION (5.5), M = .8 o 

ETA PROB
 
47.669 0.0207
 
48.117 0.0479
 
48,493 0.1080
 
48.795 0.2275
 
49.026 0.4261
 
49.194 0.6756
 
49,309 0.8827
 
49.383 0,9786
 



identical to that obtained from Eq. (5.6). This can again be attributed
 

to the fact that Clinton is primarily climate controlled, and evapotrans

piration is held almost constant near the potential regardless of the
 

amount of water that is infiltrated or removed as surface runoff.
 

In order to study the sensitivity of the results presented
 

here to the vegetation density, values of M0 that bracket the observed
 

values are used in the soil property estimation program. Figure 6.5
 

illustrates the results obtained for Santa Paula, which are listed in
 

Table 6.8. Inputing an M of 0.2 generates a set of soil properties
 

that produces more yield and less evapotranspiration than the soil obtained
 

using an M of 0.4. By specifying such a low vegetation density, the
 
0
 

vegetal equilibrium hypothesis used in the water balance produces a low
 

value of evaporation efficiency, J (Figure 4.8). This corresponds to an
 

annual evapotranspiration considerably below the potential. By reducing
 

the evapotranspiration, the yield must be increased for a given precipi

tation, as can be seen by Eq. (5.1).
 

On the other hand, attempting to input an I0 which is greater
 

than 0.41 does not give a solution. That is, no soil can be found for
 

the Santa Paula climate which will produce a vegetation density much
 

larger than the observed value of .4. The climatic variables, ep, mPA,
 

and mtb , at Santa Paula prohibit the system from sustaining a larger
 

vegetation density, and thus a higher evaporation efficiency. If annual
 

precipitation is increased, or e decreased, the resulting increased
P
 

availability of moisture would allow a greater M .
 o 

The same type of results are seen in Figure 6.6 and Table 6.9
 

for Clinton. Even though the vegetation density is already large, and
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EFFECTIVE AREAL AVERAGE SOIL PROPERTIES 

k (1)= 0.9733559E-09 n=0o. 35 c= 9.696 

so E Mo Pa/mpa Ya/mpa RSA RGA 
0.48 0.019 0.056 0.2057 0. 0349 0.7780 1.105 
0.50 0.026 0.067 0.2401 0.0476 0.9311 1.642 

0.52 0.034 0.078 0.2809 0.0652 1.1181 2.401 

0.54 0,045 0.090 0.3298 0.0891 1.3481 3,462 

0.56 0.059 0.104 0.3889 0.1215 1.6328 4,926 

0.58 0.077 0.120 0.4607 0,1650 1.9877 6,923 
0.60 0,099 0.136 0*5485 0.2231 2.4329 9.617 

0.62 0.125 0.154 0.6564 0.3002 2.9938 13.216 

0.64 0,158 0.174 0.7899 0.4016 3.7033 17.980 
0,66 01199 0.195 0.9552 0.5340 4.6027 24.231 
0.68 0.247 0.217 1.1606 0.7057 5.7433 32.366 


00 0.70 0,306 0.241 1.4159 0.9270 7.1878 42,870 
Cr 0.72 0.376 0.266 1.7333 1.2101 9.0110 56.335 

0.74 0,460 0,292 2.1272 1.5699 11,2994 73.478 

Table 6.8
 

ANNUAL WATER BALANCE COMPONENTS, SANTA PAULA, CA. 
ESTIMATED SOIL PROPERTIES. EQUATION (5.6), mI

0 
= .2 

ETA PREB 
9.226 0.0204 
10.390 0.0298
 
11.649 0.0437
 
13,000 0,0643
 
14.441 0.0946
 
15.965 0.1386
 
17.567 0.2010
 
19.238 0.2864
 
20,968 0.3972
 
22.747 0.5300
 
24.563 0,6726
 
26.402 0.8047
 
28.249 0.9054
 
30,091 0.9652 
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EFFECTIVE AREAL AVERAGE SOIL 

k(1)= 0.7135189E-09 n=0.35 

so E Ho Pa/mpa 
0.62 1,700 0,600 0.7109 
0.64 2.132 0.600 0.8015 
0.66 2.655 0.600 0.9140 
0.68 3.284 0.600 1.0539 
0.70 4.037 0.600 1.2281 

PROPERTIES 

c= 9.247 

Ya/mpa 
0.2612 
0.3386 
0.4387 
0.5672 
0. 7313 

RSA 
6.8828 
8.1368 
9.7412 

11.8042 
14,4697 

EGA 
17.667 
23.695 
31.495 
41.508 
54.268 

ETA 
42.272 
43.507 
44.682 
45.758 
46.703 

PROfB 
0.0309 
0.1097 
0.3132 
0.6433 
0.9109 

co 
-J 

Table 6.9 

ANNUAL WATER BALANCE COMPONENTS, CLINTON, MA. 
ESTIMATED SOIL PROPERTIES. EQUATION (5.6), M = .60 



EFFECTIVE AREAL AVERAGE SOIL PROPERTIES 

k(1)= 0.7220880E-10 n=0.35 c= 5.449 

00
00 

so 
0.56 
0.58 
0.60 
0.62 
0.64 
0.66 
0.68 
0.70 
0.72 
0.74 
0.76 
0.78 
0.80 

E 
7.268 
8.731 

10,422 
12.370 
14.602 
17,148 
20.043 
23.320 
27.018 
31.176 
35.837 
41.046 
46.851, 

Mo 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 

Pa/mpa 
0.6513 
0.6741 
0.7000 
0.7295 
0.7633 
0.8023 
0.8474 
0.8998 
0.9609 
1.0325 
1,1167 
1.2164 
1.3355 

Ya/mpa 
0.1321 
0.1530 
0.1773 
0.2056 
0.2386 
0.2770 
0.3217 
0. 3738 
0.4348 
0,5062 
0.5904 
0.6901 
0.8092 

RSA 
6.1125 
6.7426 
7.4778 
8.3421 
9.3664 

10.5902 
12.0647 
13.8567 
16.0541 

.18.7745 
22.1777 
26.4643 
32.0064 

RGA 
6.309 
7,639 
9.189 

10.986 
13.061 
15.446 
18.174 
21,284 
24.816 
28,812 
33.318 
38.384 
44,062 

ETA 
48.805 
48.986 
49.131 
49.242 
49.324 
49.382 
49.420 
49.444 
49.458 
49.466 
49.470 
49.472 
49.472 

PROB 
0.0103 
0.0161 
0.0257 
0.0415 
0,0678 
0.1108 
0.1791 
0.2819 
0.4235 
0.5950 
0.7672 
0,9003 
0.9721 

Table 6.10 

ANNUAL WATER BALANCE COMPONENTS, CLINTON, MA. 
ESTIMATED SOIL PROPERTIES. EQUATION (5.6), M = .9 0 



evapotranspiration is near the potential, it is still impossible to find
 

a soil which allows an 0 much larger than the observed value of 0.8.
0 

Again, reduction of M0 produces a soil which generates a larger amount
o 

of annual yield for the same reasons mentioned for Santa Paula-


On the basis of these comparisons we see the soil properties
 

determined from the estimation algorithm describe the behavior of these
 

two systems very well through the water balance model. A brief summary,
 

and conclusions drawn from these results will be presented in Chapter 7.
 

Although the yield CDF's for Clinton derived from varying
 

soil properties are identical, the values obtained for the average annual
 

soil moisture vary significantly between the silty-loam soil and the
 

soil found from the algorithm. Since soil moisture is a state variable,
 

it is desirable to be able to verify the accuracy of its prediction.
 

One possible method for doing this would be to compare the CDF's of
 

surface runoff, rather than total yield. It has been noticed that the
 

surface runoff components of the annual water balance are much more sensi

tive to changes in soil properties than is the total yield. One problem
 

with this, however, is the lack of measurements of surface runoff, al

though streamflow in arid climates may actually be composed totally of
 

surface runoff.
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Chapter 7
 

SUNIARY AND CONCLUSIONS
 

A one-dimensional water balance model (Eagleson, 1978a,b,c,d,
 

e,f) is employed to parameterize the climate-soil-vegetation relationship
 

at the land-air interface. A vegetal equilibrium hypothesis proposed by
 

Eagleson (1978f) provides a second relationship between the climate, soil
 

and vegetation.
 

Improvements are made in the method of calculating the bare
 

soil component of evaporation, and in the way surface retention is
 

handled.
 

The vegetal equilibrium hypothesis is developed, and its use
 

in the water balance is explained. The sensitivity of this hypothesis
 

to various parameters of the evapotranspiration function is explored.
 

It is found that the two parameters to which the system is most sensitive
 

are ho/ep, which can be readily evaluated, and kv, whose value is uncer

tain. It is believed that k is usually equal to one, except in very
 

dry climates, where the plants transpire at a rate less than an equiva

lent area of bare wet soil. In this work, k is held at its nominal
v 

value, 1.
 

Reasonable verification of the vegetal equilibrium hypothesis
 

is obtained through comparisons of the theoretical relationship between
 

density of canopy cover and the evapotranspiration efficiency to data
 

obtained from observations in watersheds representing various types of
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climates.
 

An algorithm is derived which searches for the soil properties
 

that produce, in a given climate, the level of evapotranspiration deter

mined through observations of vegetation density. By using the vegetal
 

equilibrium hypothesis, the water balance, and a regression equation relat

ing the soil's intrinsic permeability and pore size distribution index,
 

a consistent set of soil properties is found which generates the implied
 

evapotranspiration and also satisfies the mean annual water balance.
 

This estimation of soil properties produces results, through
 

the water balance, in the form of CDF's-of annual basin yield, that
 

describe the observed behavior of the Clinton and Santa Paula systems
 

very well. In both Clinton and Santa Paula, the soils determined were
 

slightly less permeable than the silty-loam which Eagleson (1978g) used
 

as his best-fitting soil. These soils also produce a more realistic
 

(although unverified) surface runoff component than those used by 

Eagleson. 

A remaining important question is the sensitivity of the 

water balance model to the vegetation parameters, M and k . Inclusion° 


of this analysis was beyond the scope of this study, and it is left as
 

an important subject of future work.
 

From this summary, the following conclusions may be drawn:
 

1. 	The vegetal equilibrium hypothesis is sufficiently valid
 

to justify its use as a supplementary water balance rela

tionship between the soil, climate, and the vegetation.
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2. 	The algorithm for estimating the effective areal soil
 

properties works well, producing CDF's of annual yield
 

which fit the observed CDF's closely.
 

3. 	It is more accurate to subtract surface retention from
 

the volume of infiltrated precipitation at the beginning
 

of the rainfall period than from the rainfall excess.
 

4. 	Use of the vegetal equilibrium hypothesis and the soil
 

estimation algorithm should facilitate the incorporation
 

of the areal variability of soil properties and soil
 

moisture dynamics into global climate models.
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Chapter 8
 

RECOMMENDATIONS FOR FUTURE WORK
 

Questions remaining and subjects for future study are:
 

1. 	Evaluation of the Philip exfiltration equation for a
 

varying soil column cross-section.
 

2. 	Sensitivity of the water balance to vegetation through 

the parameters, M0
0 

and k
V 
. 

3. 	Development of a procedure for determining the accuracy
 

of predicted values of average annual soil moisture.
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Appendix A
 

DATA FOR CATCMENTS STUDIED IN VERIFICAITION OF
 

VEGETAL EQUILIBRIUM HYPOTHESIS
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W-1
 

Location: Albuquerque, New Mexico
 

Latitude: = 35-N
 

Rainfall: P = 4.37 in. ETA = 4.37 - .2
 

Streamflow: Q = .2 in. 	 = 4.17 in.
 

Season Length = 4 mos., July - Oct.
 

Cloud Cover: N = .37
 

Humidity: S = 39.97%
 

Temperature: T = 69.610F
 

Vegetation Density: M = .12 to .15
o 

Albedo: A = .25 to .3
 

ep = 15.47 in/season to 14.19 in/season
 

J = .27 to .294
 

Watershed Conditions: Rough broken rangeland. About 85% is bare. Sparse
 

vegetation consists of short grasses, shrubs, and a few small juniper
 

and pinion trees.
 

Comments: 	 The value for M is estimated directly from the percent bare
0 

ground, and taking into account the crown spread of the trees.
 

Source*: 	 Hydrologic Data for Experimental Watersheds in the United States,
 

1967. U.S.D.A.
 

* 	 Indicates reference from which vegetation density values are obtained, 

and in some cases, precipitation and streamflow data as well. All other 
data is obtained from U.S. Weather Bureau publications and U.S.G.S.
 
reports of surface water resources.
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W-2
 

Location: Cornfield Wash, New Mexico
 

Latitude: = 35°N
 

Rainfall: P = 6.29 in.
 

Streamflow: Q = function of M
 
0
 

Season Length = 4 mos., July - Oct.
 

Cloud Cover: N = .37
 

Humidity: S = 39.97%
 

Temperature: T = 69.61'F
 

Vegetation Density: 	 M .16 Q = 1.07 in. E = 5.22 in.
 

m .24 Q = .28 in. ET = 6.01 in.
 

Albedo: 	 A .25 to .30
 

ep = 15.47 in/season to 14.19 in/season
 

M = .16 J = .34 to .37
 

m = .24 J = .39 to .42

0
 

Watershed Conditions: The dominant vegetation is galleta grass. Remain

ing areas have a mixture of other grasses, Russian thistle, and big sage

brush in small upland drainages.
 

Comments: Runoff data was recorded as a function of percent bare soil in
 

the paper used as the source, therefore, the calculation of E gives two
 

values, one for each M and Q data pair. Vegetation density values were
 

recorded for each value of percent bare soil, and the two extreme values
 

were used here.
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W-2 (continued)
 

Source: 	 F. A. Branson and J. B. Owen, "Plant Cover, Runoff and Sediment
 

Yield Relationships on Mancos Shale in Western Colorado," W.R.R.,
 

6(3), 1979.
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W-3, W-4, 1W-5
 

Location: Tombstone, Ariz. 

latitude: = 320N 

Rainfall: PW-3 8.65 in ET = 8.01 in. 

Streamflow: QW3 .64 in. 

'W-4 8.65 in. ET = 8.44 in. 

.21 in.
QW-4 = 


PW-5= 8 .65 in. ET = 7.56 in.
 

QW-5 1.09 in. 

Season Length = 3 mos., July - Sept. 

Cloud Cover: N = .35 

Humidity: S 	= .4467
 

Temperature: T = 	82.170F
 

Vegetation Density: 	 M = 35 to .4 

M = .25 to .30°W4 

M = .2 to .25 

OW-5 

Albedo: A = 	 to
.24 .30 

ep = 13.45 in/season to 12.14 in/season 

JW-3 = .60 to .66 

to .70.63 


to .62
 

JW-4 = 


.56
JW-5 = 


Watershed Conditions: All watersheds have cover of desert shrubs
 

(whitehorn, creosote bush, tarbush) with an understory of grass (black
 

grama, tobosa grass, blue grama, sideoats grama, and curly mesquite grass).
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W-3: Entire area covered by shrubs with 38% crown spread. M z .35 to .40. 
0 

W-4: 78% of area covered by shrubs with crown spread of 30%. Remaining 

22% covered with grass with .2% basal area. M0 z .25 to .3. 

W-5: Shrub canopy approximately 20%. Remaining area covered by grass 

with .2% basal area. X
0 
= .2 to .25. 

Comments: The three watersheds are all sub-catchments of a larger catch

ment. Therefore, while vegetation densities and streamflow vary slightly,
 

the annual climatic properties are all the same.
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W-6
 

Location: Flagstaff, Arizona
 

Latitude = 350N
 

Rainfall: P = 12.38 in. ETA = 11.98 in. 

Streamflow: Q .4 in.
 

Season Length 7 mos., July - Jan.
 

Cloud Cover: N - .4
 

=
Humidity: S .52
 

Temperature: T = 47.13°F
 

Vegetation Density: N 0 = .3 to .35 

Albedo: A = .2 to .25
 

e = 20.63 in/season to 18.95 in/season
 

J = .58 to .63
 

Watershed Conditions: The terrain is undulating uplands dissected by many
 

small drainages. The vegetation is mainly upper pilion juniper woodland
 

with a sparse understory of grasses.
 

Source: Brown, H.W., "Characteristics of Recession Flows from Small Water

sheds in a Semiarid Region," W.R.R., 1(4), 1965.
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W-7
 

Location: Badger 	Wash, Colorado
 

Latitude: = 380N 

Rainfall: P = 4.69 in. 

Streamflow: Q = function of M0 

Season Length = 6 mos., August. - Jan. 

Cloud Cover: N = .5 

Humidity: S = .4817 

Temperature: T = 47.8 0F 

Vegetation Density: 	XO = .13, Q = .96 in., ETA = 3.73 in.
 

Me .26, Q .35 in., ETA 4.34 in.
 

Albedo: A = .25 to .30 

e = 16.04 in/season to 14.66 in/season 
p
 

M = .13: J = .23 to .25
 

M = .26: J = .27 to .30
 

Watershed Conditions: The catchment is in a semiarid area with pre

dominantly desert-type shrubs.
 

Comments: This data was obtained in the same way as that for W-2. Thus,
 

the values for J are presented in the same way.
 

This watershed is located in an area where there is considerable
 

snowfall. The model used in this work does not account for snowmelt in any
 

way, and only works with yield resulting from precipitation in the form of
 

rainfall. Therefore, if the yield measurement includes runoff from snow

melt, the value of precipitation used here is not large enough to account
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14-7 (continued)
 

for that much streamflow, and the resulting calculated value of actual
 

evapotranspiration is too small. It would not be surprising then if the
 

value plotted for J vs. M is below the hypothesized curve.
 
o 

Source: Branson, F. A. and J. B. Owen, "Plant Cover, Runoff, and Sediment
 

Yield Relationships on Mancos Shale in Western Colorado," W.R.R1, 6(3),
 

1979.
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W-8
 

Location: Santa Paula, California
 

Latitude: = 34.4 0N
 

Rainfall: P = 21.26 in. E = 14.41 in.
 

Streamflow: Q = 6.85 in.
 

Season Length: = 7 mos., Oct. - Apr.
 

Cloud Cover: N = .37
 

Humidity: S = .6897
 

Temperature: T = 53.06'F
 

Vegetation Density: M 0 .35 to .5
0 

Albedo: A .2 to .32
 

e = 21.23 in/season to 16.73 in/season
P
 

J . .68 to .86
 

Watershed Conditions: Fairly rugged terrain with wide variation of vege

tation type. Dominant species are desert-type shrubs which are common in
 

Southern California mountain ranges.
 

Source: 1) Eagleson, P. S., "Climate, Soil and Vegetation," Parts 1-7,
 

W.R.R., 14(5), Oct. 1978.
 

2) On-site observations.
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W-9, W-10
 

Location: Chickasha, Oklahoma
 

Latitude: = 350N
 

Rainfall: PW-9 = 23.52 in. ET = 22.40 in. 

Streamflow: QW-9 - 1.12 in. 

PW-10 = 23.52 in. ET = 19.75 in.
w-lOl
 

QW-10 = 3.77 in. 

Season Length: = 7 mos., Apr. - Oct.
 

Cloud Cover: N = .47
 

Humidity: S = 67%
 

Temperature: T = 70.610 F
 

Vegetation Density: M .45 to .57

OW-9
 

M1 .2 to .3
 
oW-10
 

Albedo: A .18 to .24
 

ap 28.80 in/season to 26.09 in/season
p 

W-9t J = .78 to .86 

W-10: J .69 to .76
 

Watershed Conditions: The vegetation of both catchments consists of native 

grasses (buffalo grass, blue grama, little bluestem). Values of Ni0 are 

interpreted from radiation shielding values obtained from average values of 

leaf area index and percent mulch cover. The equation used is (2)
 

R -. 4(LAi+2.5m)sM lI -- -- e i 
o R 

no
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where
 

* = net radiation reaching the soil surface
ns
 

* = net radiation above plant canopy
no
 

LAi= leaf area index
 

M = fraction of surface covered by Mulch
 

Comments: It is reported in the source paper that W-10 is constantly 

overgrazed, thus, it is likely that the value obtained for Mo is unnaturally 

small, and the plotted position of this catchment will be above the hypo

thesized curve.
 

Source: 1) Hydrologic Data for Experimental Agricultural Watersheds in the
 

U.S. 1976. U.S.D.A. 

2) J. T. Ritchie, E. D. Rhoades and C. W. Richardson, "Calculating 

Evaporation from Native Grassland Watersheds," Transactions of
 

the A.S.C.E., Aug. 1976.
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14-i
 

Location: Clinton, Massachusetts
 

Latitude: = 42.50 0N
 

Rainfall: P = 43.82 in. ET = 22.01 in.
 

Streamflow: Q = 21.81 in.
 

Season Length: = 12 mos.
 

Cloud Cover: N = .35
 

Humidity: S = .70
 

Temperature: T = 47.120F
 

Vegetation Density: 	 14 = .8 to .9
0 

Albedo: 	 A = .25 to .30
 

e= 24.25 in/season to 21.64 in/season
p 

J = .91 to 1.02 

Watershed Conditions: No specific conditions are available, only the range
 

of vegetation density.
 

Source: 1) Eagleson, 	P*. S.'"Climate, Soil and Vegetation," Parts 1-7,.
 

W.R.R., 14(5), Oct. 1975.
 

2) Visual observations of nearby watersheds.
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Appendix B 

FORTRAN PROGRAM FOR ESTIMATION OF SOIL PROPERTIES
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" THIS 	PROGRAM CALCULATES EFFECTIVE AREAL AVERAGE SOIL PROPERTIES. WHEN 
o THE SOIL PROPERTIES ARE VARIED USING A REGRESSION EQUATION, CALCULATED 
o PRECIPITATION, Pa, REACHES A MINIMUM AT A MEDIAN VALUE OF c. THE PARA

o METER, k(1), IS THEN DEVIATED FROM THE REGRESSION UNTIL ANOTHER MINI
o MUM Pa IS FOUND. DEPENDING ON WHETHER THIS VALUE FOR Pa IS ABOVE OR 
" BELOW THE KNOWN VALUE OF mpa, THE PARAMETER e, IS INCREMENTED UP OR 
o DOWN, AND k(l) IS SEARCHED AGAIN UNTIL ANOTHER MINIMUM IS REACHED. 
" THIS INCREMENTATION AND SEARCHING IS CONTINUED UNTIL THE MIMIMUN Pa 
" FOUND IS EQUAL TO mpa. 

integer change,ftm,cfbl,runs,number,mon,iter
 

real*8 mnu,pl
 

real mtb,mtr,mh,mpa
 
real mi,mo,m,n,nu,kl,k2
 

" DIMENSIONLESS INFILTRATION DIFFUSIVITY 
fii(d,so)=./(d*(1 .-so)**( .45-.0375*d)+5./3.)
 

" PORE SHAPE PARAMETER 
fi(em)=10. **(.66+.55/em+.14/em-*2.) 

print,'Input parameters in the correct units.'
 
print,'ep,om/day mtb,days mtr,days tau,days kappa,-.'
 
print,'hocm w/ep,- ta,degrees C.'
 
input,epr,mtb,mtr,tau,ak,ho,wep,ta
 

pistol=1
 
" IF pistol=1 , THE ARRAY OF FACTORIALS IN THE CDF SUBROUTINE HAS NOT 
" BEEN CALCULATED YET. ONCE pistol=2, THE FACTORIALS HAVE BEEN STORED 
o AND THE LINES WHICH DO THIS CALCULATION ARE THEN SKIPPED.
 

5 	 print,'Input mpa,cm kv,- Mo,- n,- .
 
input,mpa,akv,mo,n
 
print,'For annually varying Mo,type 1, for constant Motype 2'
 
input,mon
 
if(mon.eq.0)stop
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change=l 
" IF change=l, SOIL PROPERTIES ARE NOT YET DETERMINED. IF change=2, THE 
" SOIL PROPERTIES HAVE BEEN DETERMINED AND ONLY THOSE STEPS NEEDED FOR 
" DERIVING THE CDF OF THE WATER BALANCE COMPONENTS ARE USED. 

runs=1
 
o IF runs=l, THIS IS THE FIRST SET OF SOIL PROPERTIES USED, AND NO COM
a PARISON OF CALCULATED Pa IS POSSIBLE. IF runs=2, THE NEW VALUE OF Pa 
o IS COMPARED TO THE OLD VALUE TO SEE IF A MINIMUM HAS BEEN REACHED. 

ofbl=1
 
o IF cfbl=l, THIS IS THE FIRST DEVIATION OF k(1) FROM THE REGRESSION 
" AND NO COMPARISON OF Pa IS DONE. IF cfbl=2, THE Pa CALULATED WITH 
o THIS k(l) IS COMPARED TO THAT CALCULATED USING THE PREVIOUS k(1) TO 
" SEE IF THE SECOND MINIMUN HAS BEEN REACHED. 

ftm=1
 
o IF ftm=1, THE SECOND MIMIMUM HAS JUST BEEN FOUND, BUT IF THIS MINIMUM 
.a Pagmpa, o MUST BE CHANGED AND THE ENTIRE PROCESS MUST BE REPEATED. 
o THE 	 VALUE OF THE DIFFERENCE BETWEEN THE MINIMUM Pa AND mpa, awbal, IS 
o PRESERVED AND COMPARED TO THE NEXT ONE OBTAINED. THIS COMPARISON IS 
o SIGNALED WHEN ftm=2. WHEN awbal < .001, THE SOIL PROPERTIES HAVE BEEN 
o FOUND. 

o SET 	 INITIAL VALUES 
pl=O.O 
so=O.O 
des=.1
 
dics=.1
 

o COMPUTE WATER CONSTANTS 
e 	 sut=SURFACE TENSION
 

nu=VISCOSITY
 
a 	 gamsw=SPECIFIC WEIGHT 

112
 

c 



call WATCN(ta,sut,nu,gamsw) 

o COMPUTE CLIMATIC PARAMETERS 

10 
20 

30 

delta=1./mtr 
mh=mpa/(tau/(mtb+mtr)) 
mnu=tau/(mtb+mtr) 
mi=mh/mtr 
eta=1./mh 
alpha=1 ./mi
pi=3.14159 

beta=1./mtb 

epa=epr~taumtb/(mtb+mtr) 
al=ak/mh 
alh=al*ho 
bhe=beta*ho/epr 
if(ho.eq.O.O)goto 10 
ble=beta/(al*epr) 
goto 20 
ble=0.0 
alkh=alh*akv 
blke=ble/akv 
if(change.eq.1)goto 40 

print 
print 
print,' so E Mo Pa/mpa Ya/mpa RSA 

do 00 i=1,45 
so=so+.02 
e=eonst*so**d2 
fiid=fii(di,so) 
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40 
 if(change.eq.2)goto 45
 
goto 50
 

45 if(mon.eq.2)goto 60
 
goto 55
 

" TO SPEED UP THE SEARCH FOR THE VALUE OF e THAT MINIMIZES ETA AT THE 
" OBSERVED Mo, e AND m ARE GIVEN INITIAL VALUES DEPENDING ON THE VAL
" UE OF Mo. BY PICKING A VALUE FOR e, THE m THAT MINIMIZES ETA CAN BE 
o FOUND. IF THIS miMo, ANOTHER e IS PICKED UNTIL m=Mo. 

50 	 if(mo.ge..2)e=.3
 
if(mo.ge..3)e=.5
 
if(mo.ge..4)e=1.
 
if(mo.ge..6)e= 3.
 
if(mo.ge..7)e=6.
 
if(mo.ge..8)e=10.
 
if(mo.ge..9)e=20.
 

55 	 if(e.ge..01)bm=.l
 
if(e.ge..1)bm=.4
 
if(e.ge.1.)bm=.6
 
if(e.ge.10.)bm=.9
 
if(mo.lt..4)de=.O1
 
if(mo.ge..4)de=.1
 
number=1
 

60 iter=1
 
dm=.01
 

70 bmkv=bm*akv
 

o 	 COMPUTE EVAPOTRANSPIRATION PARAMETERS, B & C. 
b=((1.-bm)/(1.+bmkv)+(bmkv*bm)/(2.*(1.+bmkv)**2.)) 
if(bmkv.eq.O.O)goto 80 
c=1./(2.*(bmkv*bmkv))
 
goto 90 

80 c=l.elO 
90 be=b*e 
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ce=aminl(c*e,80.)
 

gamk=gamt(ak,alh)/gamma(ak)
 
gamkl=gamt(ak,alh+bhe)/gamma(ak)
 
gambe=gamtC I.5,be)
 
gamce=gamt(1 .5,ce)
 
gamkv=gamt(ak, alkh)/gamma(ak)
 
gamkvl=gamt(ak, (alkh+bhe))/gamma(ak)
 

a COMPUTE ANNUAL EVAPORATION FROM SURFACE RETENTION 
era=epr/beta(1 .- bm)(I.-exp(-bhe)*(1.-gamk)-(1 .+ble)**(-ak) 

& *gamkl) 
& +bmkv* (.-exp(-bhe)*(1.-gamkv)-(1.+ble)**(-ak )gamkvl))*mnu 

eram=era 

" COMPUTE INTERSTORM BARE SOIL EVAPORATION
 
esj=gamk-(1.+ble)**(-ak)*gamkl*exp(-be)+
 

& (1.-gamk)*(1.-exp(-be-bhe)*(1 .+bmkv+sqrt(2.*b)*e-wep)
 
& +exp(-ce-bhe)*(bmkv+sqrt(2.*c)*e)
 
& +sqrt(2.e)*exp(-bhe)*(gamce-gambe))
 
& +(1 .+ble)**-ak)*gamkl*(sqrt(2.*e)*(gamee-gambe)
 
& +exp(-ce)*(bmkv+sqrt(2.*c)*e)
 
& -exp(-be)*(bmkv+sqrt(2.*b)*e-wep))
 

o COMPUTE EVAPOTRANSPIRATION FUNCTION
 
hj=1 ./(1-bm+bmkv)*((1-bm)*esj+bmkv)
 
ETN=hj*(.-bm+bmkv)
 

if(change.eq.2)goto 95
 
goto 100
 

95 
 if(mon.eq.2)goto 160
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" THESE LINES FIND THE M THAT MINIMIZES ETA.
 
" IF iter=1, IT IS THE FIRST TIME THROUGH AND NO COMPARISON IS MADE
 

100 if(iter.eq.1)goto 120
 
if(abs(dm).lt..000001)goto 150
 
if(ETN.gt.ETMIN)goto 110
 
goto 120
 

110 	 bm=bm-1.5*dm
 
dm=-.5*dm
 
goto 130
 

120 	 ETM3N=ETN
 
bmin=bm
 
iter=2
 
bm=bm+dm
 

130 if(bm)140,70,70
 
140 bm=.1*(bm-dm)
 

q=q+1
 
if(q.lt.4)goto 70
 

" AT THIS POINT, NO Mo CAN BE FOUND THAT IS GREATER THAN O,AND NMI PAR
o AMETERS MUST BE INPUT.
 

goto 395
 

150 	 bm=bmin
 
ETN=ETMIN
 

160 	 if(change.eq.2)goto 230
 

" THESE LINES FIND THE E CORRESPONDING TO THE GIVEN Mo.
 
o IF number=l, IT IS THE FIRST TIME THROUGH AND NO COMPARISON IS MADE.
 

diff=mo-bm
 
if(abs(diff).lt..0001)goto 200
 
if(number.eq.1)goto 170
 
if(diff*diffold.le.O0.)goto 190
 
if(number.eq.2)goto 180
 

170 	 if(diff.1t.O.O)de=-l.*de
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number=2
 
180 	 diffold=diff
 

e=e+de
 
goto 60
 

190 	 de=-de*.5
 
diffold=diff
 
e=e+de
 
goto 60
 

200 	 continue
 

" AT THIS POINT, THE VALUE OF e HAS BEEN DETERMINED, AND SOIL PROPER
o TIES 	ARE NOW SEARCHED. 

cs=4.
 
210 	 m=2./(cs-3.)
 

fic=fi(m)
 
dE=2.+l./m
 
di=es-1./m-1.
 

d2=dE+2.
 
fied=fie(dE)
 

o REGRESSION EQUATION
 
kl=(m/512.7)* *2 .75
 

k2=kl
 
dkl=kl/10.
 

220 	 continue
 
bk1=kl*gamsw/nu
 
sil=sqrt(n/(k1*fic))*sut/gamsw
 
sigc=n*eta**2.hbk1*sil/(pi*m*delta)*72000.
 
eenst=2.*betaxn*bk1*si1*fied/(pi*m*epr**2.) *86400.
 

" SOIL MOISTURE IS CALCULATED.
 
so=(e/ecnst)**(1./d2)
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c 

o COMPUTE WATER BALANCE 

o 	 COMPUTE ANNUAL EVAPOTRANSPIRATION 
230 ETA=ETN*epa 

o 	 COMPUTE ANNUAL GROUNDWATER RUNOFF 
RGA=tau*bkl*so**cs*86400 

sigrf=(sigc*fiid*(1.-so) *2.)**.33333
 
g=alpha*bk1*86400*.5*(1.+so**cs)
 
blop=g+2.*sigrf
 
if(blop.gt.85.)blop=85.
 
blip=exp(-blop)*gamma(sigrf+1.)*sigrf**(-sigrf)

if(blip.gt..95)blip=.95
 

COMPUTE PRECIPITATIONYIELD,RUNOFF
 
Pa=(ETA+RGA)/(I.-blip)
 
RSA=blip*Pa
 
Ya=RSA+RGA
 
if(change.eq.2)goto 380
 
awbal=Pa-mpa
 

o NOTE-awbal IS THE DIFFERENCE BETWEEN CALCULATED Pa AND KNOWN mpa. THE 
" FOLLOWING LINES WILL PERFORM THE SEARCH FOR SOIL PROPERTIES THAT PRO
o 	DUCE Pa=mpa. 

if(cfbl.eq.2)goto 260 
if(ftm.eq.2)goto 280 
if(runs.eq.1)goto 250 

" THESE LINES PERFORM THE FIRST MINIMIZATION WHICH ADHERES TO THE RE
a GRESSION EQUATION.
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if(abs(dos).lt..O01)goto 260
 
if(awbal.gt.awbol)goto 240
 
goto 250
 

240 	 cs=cs-1.5*dcs
 
des=-.5*dcs
 
goto 210
 

250 	 awbol=awbal
 
cstos+dc=
 
runs=2
 
goto 210
 

o THESE LINES PERFORM THE SECOND MINIMIZATION WHICH HOLDS a CONSTANT 
a AND DEVIATES k(1) FROM THE REGRESSION. 

260 if(cfbl.eq.2)goto 270
 
if(abs(awbal).lt..001)goto 320
 
if(cfbl.eq.1)goto 280
 

270 if(abs(dkl).lt.k2/1000.)goto 320
 
if(awbal.gt.awbol)goto 290
 

280 awbol=awbal
 
kl=kl-dkl
 

o SINCE k(1) VARIES BY ORDERS OF MAGNITUDE, dkl MUST BE REDEFINED IF
 
o k(1) 	GETS TOO BIG OR SMALL.
 

if(kl.lt.k2/9)goto 300
 
if(kl.gt.k2*9)goto 310
 
ofbl=2
 
goto 220
 

290 	 klkl+1.5*dkl
 
dkl=-.5*dkl
 

goto 220
 
300 dkl=dkl/10.
 

k2=kl
 
goto 220
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c 

310 	 dkl=dk1*10
 
k2=kl
 
goto 220
 

" THESE LINES PERFOP4 THE SEARCH ON c WHICH LOCATES THE MINIMUN Pa FROM 
o THE ABOVE PROCEDURE WHICH EQUALS mpa. 

320 	 efbl=1
 
if(abs(awbal).lt..O1)goto 360
 
if(ftm.eq.1)goto 330
 
if(awbal*awbold.lt.O.O)goto 350
 
goto 340
 

330 	 if(awbal.gt.0.O)dics=-1.*dics
 
ftm=2
 

340 	 awbold=awbal
 
cs=cs+dios
 
goto 210
 

350 	 dics=-dics*.5
 
awbold=awbal
 
cs=os+dies
 
goto 210
 

360 print,'AVERAGE EFFECTIVE PARAMETERS'
 
print 370,e,so,kl,os
 

370 format('E=',f6.3,2x,'so=',f5.3,2x,'k(1)=',e16.7,2x,c',f6.3)
 
change=2
 
so=O.O
 
goto 30
 

380 	 y1=Ya/mpa
 
p1=Pa/mpa
 
if(pl.1t..2)goto 395
 

COMPUTE CDF OF PRECIPITATION
 
call PROBZ(mnu,pl,prob,ak)
 
if(prob.lt..009)goto 395
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if(prob.gt..99)goto 410
 
print 390,so,e,bm,pl,yl,RSA,RGA,ETA,prob
 

390 format(f4.2,3x,f6.3,3x,f5.3,3x,f7.4,3x,fy.4,3x,f7.4,3x,f7.3,3x
 
& ,f6.3,3x,f7.4)
 

395 continue
 
400 continue
 
410 goto 5
 

end
 

c THIS FUNCTION COMPUTES THE INCOMPLETE GAMMA FUNCTION.
 
function gamt(a,x)
 
if(x.eq.O)goto 40
 
if(x.gt.100)goto 50
 
sum=1./a
 
an=1.0 
old=sum
 

33 old=old*x/(a+an)
 
if(old/sum-l.e-6)20,10,10
 

10 	 an=an+1.
 
sum=sum+old
 
if(an-300.)33,33,12
 

12 	 continue
 
20 	 xxx=(a*alog(x)+alog(sum)-x)
 

if(xxx.lt.-80.)goto 40
 
gamt=(exp(xxx))
 
goto 60
 

40 gamt=O.0 
goto 60
 

50 gamt=gamma(a)
 
60 return
 

end
 

o This 	function computes the gamma function by a Stirling approx. 
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function gamma(y)
 
x=y+l.
 
pi=3.14159
 
stirl=1./(12.*x)
 
stir2=l.I(288.*x',*2.)
 
stir3=-139./(51840.*x**3.)
 
stir4=-571./(2488320.*x**4.)
 
stir=1+stirl+stir2+stir3+stir4
 
gamma=exp(-x)*x**(x-.5)*sqrt(2.*pi)*stir/y
 

end
 

0 *****H******************I* I*************** ********* *** * *** ***** ******* 

subroutine WATCN(ta,sut,nu,gamsw)
 

real nu,nut
 
dimension sutt(i1),nut(11),gamst(l1)
 
data sutt/75.6,74.9,74.2,73.5,72.0,72.1,71.4,70.7,70.0,
 

& 69.3,68.6/
 
data nut/17.93e-3,15.18e-3,13.09e-3,11.44e-3,10.08e-3,8.94e-3,
 

& 8.e-3,7.2e-3,6.53e-3,5.97e-3,5.94e-3/
 
data gamst/0.99987,0.9999999,0.99973,0.99913,0.99 823,0.99708
 

& ,0.99568,0.99406,0.99225,0-99025,0.98807/
 
if(ta.gt.50.)go to 10
 
ita=ifix(ta*.2)+1
 
frao=ta-float(ifix(ta))
 
ital=ita+l
 
sut=(sutt(ital)-sutt(ita))*0.2*frac+sutt(ita)
 
nu=(nut(ital)-nut(ita))*0.2*frac+nut(ita)
 
gamsw=((gamst(ita1)-gamst(ita))*.2*frac+gamst(ita))*9 80.
 
return
 

10 sut=sutt(ll)
 
nu=nut(11)
 
gamsw=gamst(11)
 
return
 
end
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o DIMENSIONLESS EXFILTRATION DIFFUSIVITY
 

function fie(d)
 
dimension y(6)
 
data y/0.18,0.11,0.077,0.056,.44,0.034/
 
if(d.gt.7.) goto 10
 
x=d-1.
 
if(x.lt.l.)X=l.
 
i=ifix(x)
 

frac=x-float(i)
 
yl=alog(y(i))
 
y2=alog(y(i+l))
 
fie=exp((y2-yl)*frac+yl)
 
return
 

10 fie=.034
 
return
 
end
 

subroutine PROfZ(mnu,pl,prob,ak)
 
c THIS PROGRAM COMPUTES THE CDF OF NORMALIZED PRECIPITATION. 

real*8 fac(500) 
real*8 x,a,dlog,gama,gamlid,eps 
real*8 m,k,w,t,z,zl,zu,inz
 
real*8 p1 mnu
 
real*8 xold,xsum,suml,sum2,tot,vtot,vold,vnew
 
integer v,vm,vmax
 

if(pistol.eq.2) goto 301
 
do 300 J=1,500
 
vtot=0.0d0
 
do 700 iv=1,j
 

700 vtot=vtot+dlog(dble(float(iv)))
 
fao(j)=vtot
 

300 continue
 
301 continue
 

eps=l.e-5
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pistol=2 
w=mnu 
t=1. 
k=ak 

o INITIALIZING VALUES 
a 

m=w~t 

vm=ifix(sngl(m)) 
vmax=ifix(sngl(3.*m)) 

3 x=m*k*z 
ii=0 

jj=1 
sum1=0.OdO 
sum2=0.OdO 

13 v=vm-ii 
if(v.eq.O)goto 500 

23 if(v.eq.vmax)goto 600 
e 
C 

a COMPUTE LOG INCOMPLETE GAMMA DISTRUBITION 
a=dble(float(v))*k 
xold=1.OdO/a 
xsum=1.OdO/a 
i=1 

100 xold=(xold/(a+i))*x 
xsum~xsum+xold 
if((xold/xsum).le.eps)goto 200 
i=i+1 
goto 100 

200 continue 
call mlgama(a,gamm,ier) 
gamlid=a*dlog(x)-x+dlog(xsum)-dble(gamm) 

o COMPUTE THE SUMMATION OF ALL V TERMS 
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vold=dble(float(v))*dlog(m)-fae(v)+gamlid-m
 
if(vold.le.-85.)vold=-85.
 
vnew=dexp(vold)
 
if(v.gt.vm)goto 800
 
sum1=suml +vnew
 
if((vnew/suml).le.eps)goto 500
 
ii=ii+1
 
goto 13
 

500 	 v=vM+jj
 
goto 23
 

800 	 sum2=sum2+vnew
 
if((vnew/sum2).le.eps)goto 600
 
jj=jj+1
 
goto 500
 

a
 
e COMPUTE CDF OF NORMALIZED PRECIPITATION 
a
 

600 	 if(m.gt.85.)m=85.
 
prob=suml+sum2+dexp(-m)
 
return
 
end
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