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I. Recent Progress Summary
 

The research sponsored by NASA Langley Research Center Grant NAG-I-7
 

is addressing the reduced order model (ROM) problem in distributed para­

meter systems (DPS) adaptive identification and control by focusing on
 

the development and evaluation of an adaptive controller applicable to
 

the active stabilization of a DPS, such as a large flexible spacecraft,
 

given a necessarily reduced-order expansion approximation model structure.
 

The adaptive control strategy chosen for investigation [1] was an outgrowth
 

of earlier NASA-sponsored efforts to combine the modal expansion endemic
 

to the large flexible spacecraft community [2] and self-tuning [3], which
 

is the most widely accepted lumped-parameter system (LPS) adaptive control
 

strategy. The annular momentum control device (AMCD) [4] [5] was used as
 

the test example.
 

The difficulty encountered in the initial work [6]-[8] supported by
 

NAG-I-7 was the deleterious effect of control and observation spillover.
 

Two interpretations of this problem, which is unavoidable in application of
 

existing LPS adaptive control schemes to DPS expansion descriptions, have
 

emerged. In [6] and [8] a discrete-time state model of a generic class
 

of DPS
 

VN(k+l) = 0N VN(k) + 0NR VR(k) + EN f(k) (1) 

VR(k+l) = 0 RN VN(k) + 0R VR(k) + ER f(k) (2) 

y(k) = CN VN(k) + CR VR(k) (3)
 

is formulated where the subscript N denotes the ROM quantities and R the 

residual model quantities. Assuming that the projection generating the 

ROM is done into the modal subspace yields 0 = 0RN = 0. This state­

space interpretation and attempts at its adaptive control resulted in the 
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following observations: (i) If there is no observation spillover, i.e. 

Ca = 0, and no model error, i.e. 0NR = 0, then an indirect adaptive control 

strategy, e.g. [9], can be globally stable [8]. (ii) Unless CR = 0 and 

0N= (I) is only a quasi autoregressive moving-average (AMA)and not a 

true ARMA model [6]. The alternate interpretation of the ROM effects
 

presented in [7] is based on consideration of two types of identifier
 

strategies. A DPS sufficiently accurately described by a very high
 

dimension modal expansion
 
N
 

d(O,t) = X W.(t) 0.(s), (4) 

j=01 

where the 0j are the spatial mode'shapes and Wj their amplitude time 

histories, can be approximated by either a subset of the N modes of (4) 

H 

dR(0,t) = X W.(t) 0.(s) (5)
j=O 


or by a selection of W. to minimize some measure of d-d with
 

M 
d(e,t) = X j(t) 0(s). (6) 

In neither (5) nor (6) must the M+1 modes used in the ROM be the first
 

M+ in the full N+l mode expansion. The observations made in [7] were:
 

(i) Since only d can be measured some signal processing is necessary to 

yield dR in order to solve (5) for the nonphysical Wj needed in the in­

dividual modal dynamics identifiers and controllers. (ii) The fitting of 

a to d by selection of the W. may not yield adequately accurate values ofJ 

the corresponding W. for stable modal identification and control. This

J
 

latter fact was emphatically demonstrated in [7] by simulated use of (6)
 

and resulting DPS instability. Observation spillover can be interpreted
 

as the source of difficulty in extracting dR from d or in having W.
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closely approximate W.J if d is fit to d. Unfortunately the apparent use­

fulness of proposed approaches to observation spillover reduction is
 

severely limited [6]-[8].
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II. Future Plans
 

Since observation spillover seems to defy complete removal, the question
 

in applying available LPS adaptive control techniques to a ROM of a DPS
 

appears to be their limits of tolerance to observation spillover. Un­

fortunately, the LPS adaptive control literature contains very little
 

generalizable insight into the reduced-order adaptive control problem. In
 

fact the nonadaptive LPS reduced-order control problem is currently an open
 

research question.
 

Therefore in order to pursue the original objective of DPS adaptive
 

controller development by judicious application of existing LPS adaptive
 

control schemes, the thrust of the future research under NASA Grant NAG-I-7
 

is being shifted to LPS reduced-order adaptive controller (ROAC) studies.
 

The insight gained on this subset of the DPS adaptive control problem will
 

hopefully prove transferable. Admittedly the ROM effects are slightly
 

different. In LPS ROAC the problem is the lower order of the dynamic model
 

selected; while in DPS ROAC the orders of the individual modal dynamics are
 

assumed accurate but the number of modes is insufficient. However the
 

source of difficulty in both can be viewed as spillover.
 

Consider a discrete-time LPS described by the transfer function
 

H(z) = Y(z) = b 2 (7)U(z) z-a I z-a 2 

In a state description similar to (l)-(3) E would correspond to CR and due
 

to the partial fraction expansion 0NR would equal 0 for the ROM
 

?(k) = f y(k-l) + F u(k-l). (8) 
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Assuming a stable control objective of
 

G(z) = = dR(z)R(z) z-e=> x(k) = cx(k-l) + dr(k-l) (9) 

the control effort
 

u(k-l) = f1r(k-1) + f2 y(k-1) (10)
 

with
 

fl d
 d (11)
 

b
 

f c-a (12)
 

would adequately control (7) if E ='0 and b and a had converged to b and
 

a1 respectively.
 

Four generic possibilities will be tested for tolerance to nonzero e
 

for this simplistic reduced-order model reference adaptive control (MRAC)
 

task: (i) equation error based indirect adaptive control (El), (ii) equation
 

error based direct adaptive control (ED), (iii) output error based indirect
 

adaptive control (01), and (iv) output error based direct adaptive control
 

(OD). The El approach uses equation error identification [10] of the
 

plant parameters in a self-tuning [3] solution of the stated MRAC problem.
 

The EO technique is based on an input matching [11] [12] solution to the
 

MRAC problem. The 01 approach uses HARF [13] as an output error plant
 

parameter identifier in conjunction with the separation (or "certainty
 

equivalent") assumption of self-tuning. The OD scheme is based on an
 

output error identification interpretation [14] of the MRAC problem with
 

a minor modification in the control law so the adaptive controller can
 

be put in the form of the error system in [15] and proven convergent.
 

Though these approaches are asymptotically equivalent for e = 0,
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variations are anticipated in this ROAC test. The complete algorithms for
 

each case are listed below:
 

Plant: y(k) = (a1+a2)y(k-) - (ala2)y(k-2)
 

+ (bI+b2E)u(k-l) - (b1a2+sb2a1 )u(k-2) (13)
 

El: y(k) = a(k) y(k-l) + b(k)u(k-l) (14)
 

a(k+l) = S(k) + py(k-l)[y(k)-(k)] (15)
 
l+y2(k-l)+pu2(k-i)
 

b(k+1) =6b(k) + pu(k-l)[y(k)-y(k)] (16)

lbjy2(k-l)+pu2(k-l)
 

(kc) d (17)
 
S(k+1)
 

f2 (k) = c-a(k+l) (18) 
b(k+l) 

u(k) = 	 fl(k) r(k) + f2 (k) y(k) (19) 

1r(k-l)[dr(k-l)+cy(k-l)-y(k)] 
ED:(sgnb) (maxJbj)[i+ji r 2 (k-1) +2()(k-))+] (20) 

2y(k-l) [dr(k-l)+cy(k-1)-y(k) J 
f2(k)= f2(k-) + 2 b (21) 

u(k) = 	 fl(k)r(k) + f2 (k) y(k) (22) 

01: 	 y(k) = a(k) z(k-l) + b(k) u(k-1) (23) 

a(k+l) = a(k)z+ - z(k-l))](k-l)[y(k)-y(k) + q(y(k-1) (24) 

1 + Vz (k-l) + pu (k-l) 

6(k+l) = S(k) + pu(k-l)[y(k)-9(k) + q(y(k-l) - z(k-l))] (25) 
1 + Pz (k-l) + pu (k-l) 

z(k) = 	a(k+l) z(k-1) + b (k+l) u(k-l) (26) 
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fl(k) = d 
f1 (k+1) (27) 

f2(k) = c-a(k+l) (28) 

b(k+l) 

u(k) = f1 (k) r(k) + f2 (k) y(k) 	 (29) 

OD: x(k) = c x(k-) + d r(k-1) 	 (30)
 

f1(k) = f1(k-l) + P1 r(k-l)[x(k) - y(k) + q(x(k-1) - y(k-l))] (31)
 

2(k) = f2 (k-l) + p2y(k-1)[x(k) - y(k) + q(x(k-1) - y(k-1))] (32) 

u(k) = f1 (k) r(k) +-f2y(k) 

+ [1 +' ir 2(k-l)+p 2y2(k-i)][x(k)-y(k)+q(x(k-l)-y(k-l))]
 

(33)
 

The sensitivity of each scheme to e will be compared via determination
 

2 max max 2
2	 2
of 	Z (x(k)-Y(k)) , k (x(k)-y(k)) , 1 u2 (k), and k u (k) for various
 
k k
 

a. 	and b.. Clearly the relative damping of the modeled and unmodeled
1 1 

portions of the plant should prove important. The most basic ROM
 
1
 

rule-of-thumb is the ability to neglect modes with settling times 10
 

or less of the dominant modes. However, earlier research [61-[81
 

indicates that the smallness of s will also be important.
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Abstract 


For many distributed parameter systems (DPS), such 
s highly mechanically flexible structures, it is essen-
tial to provide stable on-board/on-line adaptive con-
trol in the presence of poorly kiown system 	parameters. 
However, such a controller must be based on 	a reduced-
order of todel and spillover from the unmodeedthe BPS 
residuals can deteriorate the performace of the con-
trollerhe d, n some cases, defeat the whole purpose of 
the adaptive control. 

In this paper, we investgate direct and indirect 
adaptive controllers based on reduced-order models of a n
DPS and point out the mechanisms whereby spillover 

upset the ste~ility of adaptive controllers. We present 
some conditions under which the adaptive controllers re-

main stable in closed-loop with the actual DPS and point 
out Certain generic problems that must be overcome for 
successful operation of adaptive DPS control. 

1.0 Introduction 

A great abundance of adaptive control schemes 
ists for linear, lumped parameter, small scale systems 
(I],whose system parameters are poorly known, and the 

application of adaptive control is being seriously con-
sidered (and, in some cases, hotly debated) in a variety 
of areasj2]. The existing adaptive control methods can 
be divided into two (not unfriendly) camps: direct 
schemes, where the available control parameters are di-
rectlY adJusated (ada pted) to improve the overall system 
performance, e.g. [31-6), or indirect (self-tuning) 

schemes, where the plant p . crs are estimated by 
some reasonably fast system identification scheme and 
the control commands are generated from these parameter 
estimates as though they were the actual values, e.g. 

[7) [9]. The direct schemes are usually model reference 
adaptiv, i.e. the controlled system (plant-is forced 
to behave like a model system which has the desired per-
formance properties, such an transient response (pole 
locations), 

As G. Kreisselmeier succinctly put it; "adaptive 

control trades plant uncertainty for uncertainty in the
 
closed-loop uystem behavior"; thetstAblIty of a linear 
system which uses an adaptive controlle:' is often in 
question because the closed-loop System 7il be hihly 
nonlinear during adaption. Direct (or model reference) 
adaptive schemes hnve achieved n reat aount of success 

in producing globally stable closed-loop behavior under 
certain technical restrictions on the pinnt (6]. Global 
stability of certain indirect schemes using adaptive es­

fewer restric-timators has been shown in [8), [9] with 

tious on the plan.t replaced by the needl for addition -of ,

"sufficiently rich" external test sirnals to the control 


commands. Presently, all stable adaptive schemes are 

restricted to scaler (or at best, multi-inprut, single-

output) systern; the stability for gereral multiveriable 
system remains an important unsolved problem in adap-
tive control. Another fundamental restriction Is that 

the plant must be of known finite dimension, 	 and' this 
dimension must be small enough to meet computational 

oomstraints for the on-line use of the particular adap-
tive scheme. 

C. Ricnard Johnson, Jr.
 
Perartnent of Electrical 2rgineering 

Virginia Polytechnic Institute & State University
 
Blacksburg, Virginia 2,061
 

'^!o -bcnce of adaptive control sonemes is over­
Fheb-in. and an understanding of the interrelationships 
anid - trucural commonality of these methods is desper­
ately needed; see [6], [10]-Ci) for progress in that 
direction. 

This paper addresses the problems that appear when 
even the most well behaved (i.e. stable) adaptive 
scheme!, far lumped parameter systems (IPS) are applied 
to linear distributed parameter systems (DPS), i.e. sys­
terns-hose behavior must be modeled by partial differ­
ertial equations (PIE). It is natural to want to make 
mrximuuc 13cof the existing body of LPS adaptive con­
trol theor in the new context - BPS it a ellviliewgo ong of andaccording tois obvious
that ithing" 

known 1 ,k theoren: if it can go wrong, it will. We 
want L,-pnlnt out sore of the basic mechanisms through 
whiih things cn go wrong for adaptive control of DPS. 
Our viewpoint is shaped by experience with application 
of DrS control to large aerospace structures, e.g. [12]­
(14, alnd this paper is an expansion of some of the 
topics preseted in [15); however, what we have to say 
here is in the broader context of DPS where applications 
ix-	 as flutter suppression for
include such diverse topics 
aircrnft [16) and actively controlled c! engineering 
structures, e.g. tall buildings and long bridges, sub-
Ject to hign winds or earthquakes [lT1. 

'fT.},mo t fundarental. generic problem for adaptive 
D!1;control is that DPS are infinite dimensional and 
any imolementable adaptive scheme rust be based on a 
reduced-order model (ROM) of the original system. There­
fore, the adaptive controller order must always be
 
smaller than that of the plant no matter how much on­
line computational capability is avaalable to implement 
the contcolcr. _"ihaviolates the hypotheses of all the 
existing global stability results for direct or indirect 
adaptive control . In our estimation, this makes- adas­
ti,, Pls control the ultimate redncd~order proble 1a,­
until this problem is solved (or clrcumvented), the
 
benefitnof adaptive control will be denied to what may
 
be its most needy customer-DPS applications. Prelimi­

° 
nary attept at adaptive control for some specific DPS 
have teen rade in (18J-(2h). 

The class of DPS considered here may be described
 
by the " m 4 ""
 

'2.1)
 
t %tv Bf; v(0) v0
 

y Cv 

hr o
here, for each positive time t, the(possibly vector­
valued) .;yLemstate v(t) is in 11, n appropriate Hil­
bet Smce with inner product (.,') and corresponding 
norm 11-11, The u-erator A is a differential operator 
which is t-e-invariant, has domain D(A) dense im R, 
and generat.e a CO semigroup u(t) on H. The 	control
 

vector f is Ixlx. sensor vector 	 is ?xl andand the output 
rank B=t! ad rank C=P; this means that a finite number 
oi controL accuators(M) and sensors(?) are used. 
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The semigroup U(t) is dissipative !n the sense case-Murphy'c law, again. 
that 

U(t)I M% t t > 0 - (2.2) of The choice of subspace HN and type of projection is 
ooften a matter'of clever design and insight into the 

where M > 1 and. C > 0 (when C=O, we a.ure V=) specific P!'S. H1owever, there are some obvious candi­
-- an - 0dates, e.g. Galerkin approximation using ay appropriate 

This means that the energy in v(t), i.e. jIv(t)112, is spline basis [C7]. Another good candidate is the modal 
conserved or dissipated. it is knwn (s J,[26] that subsoace" 
if (2.2) does not hold with e > 0 tnen it cannot be 
made so even with ideal state feedback: H',= s3 

f = Cv (2.3) with
 

becamuse B has finite rank. Therefore, -wewill usually A5 = ,k (3.6) 
assume C > 0 because most physical system3 have some 
dissipative iechansirs in them; however, C muy be ex- where Ik are the orthonormal mode shapes (eigenfune­
tremely small (as it is in large aerospace structures). tions) of A corresponding to the igenvalues Ak. 

Equation (2.1) can represent a large class of OPS in­
cluding mechanically flexible structures such as air- Such mode shapes are available when the operator A is 
craft and spacecraft. normal and has compact resolvent; this is the case 

for mos=t mechanically flexible structures modeled by 

3.0 Reduced-Order ModelinR of LIPS (2.1). Note that, in many cases, the exact mode shapes
 
may exist but not be known. When the modal subspace is 

Even though (2.3) ms feedback control errorealtermsbmay bee the Ideal used, the projection isassumed orthogonal and the model
Even thugh (2.) andconare 
law, the full (infinite dimensional) state v error tems and ARN are -ero; however, the spilloveris rarely .iR 


available. Implementable controllers for most DPS must terms depend on the actuator-sensor locations and the
 
be based on on-board/on-line control computers which mode shapes and need not be zero. Other choices of sub­
process the P sensor outputs y and produce the M space and method of projection could be selected in an
 
control commands f. Hence, control design mu.t be attenpt to reduce the model error and spillover terms,
 
based on a reduced-order model (ROM4)of the LIPS in e.g. [28].
 
(2.1).
 

S.O Nenadantlve DP0 Contro1 
ROM's are produced by projecting the sfsoorm (2.1) 

onto some -appropriate finite dimensional s.:bmace N of When the parameters of the ROILare completely known, 

H; such projections often are orthofonal but they need' a linear controller can be designed: 
not be. Let V,=v and vR=QV where P s the projec- f f H H1 (4.) 

1+tion of }{onto and Q is the projection of If onto the 12 - 22j) 
residual substace (the complementary insubspace to F!rl 

contrler gains 1% 
) and, from (2.1), we obtain: RO parameters (A?, B, C) and the desired performance. 

VS N + NRVR + 3N f (3.1) Once the controller is designed, the effect of the re­
siduals must be ±'alyzed using (h.11 in closed-loop with 

the -where are obtained from the 

= A~vI+a (3.?) (3.1)-(3.3). Energy bounds have been produced in [29]
to predict the effect of spillover and model error on 

Y = C + CRR (3.3) the stability and performance of the reduced-order non­adaptive control (h.l) with the DPS (2.1). 

where A, 1=PAP, A,.=PAQ, BPB , etc. The te rsB f and Examples of controlled flexible structures have 

CRyR are called control and observation snhllover, re- been produced [13], (30] where the spill!ver terms
 
caused.instabilities in the residuals even though thesectively; the terms R and AIv, are called model ROM (3.4) in closed-loop with the controller (4.1) would 

error. The ROM is obtained from (3.1) and (3.3) with have been stable. 
end CR=O: Digitally implemented controllers would be based 

= A u + B1 f; v,(O) a P (3.) on discrete-time versions of the DPS (2.1). On. 
I version can be obtained by using the uniform time step 

y Cv At with a constant control command f(k) over the inter-

S v0 such 

- val (k-l)tt< t < kAt: 

The ROM state vN and the residual state vH form the (v(k+l) = ¢v(k) + H f(k)
 
R
full state v= vuN+v ;when the proJecetons are ortho- Ly(k) --C v(k)(42 

gonal,
 
2
III1 2 = 1N + II II (3.5) whele 0 U(At) and F.= otOU-)Bdi. Other er­

sions could be obtained for example with nonuniform time 
All controllers designed on the ROM(.1) must be steps. Wted the ROM procedure of See. 3.0 is used, the 

evaluated in closed-loop with the full syste(n discrete-.)e versions of (3.l)-(3.3) become 

(3.3), i.e. the effects of the residuals v? through v.,(k+l) = e%,vN(k) + $I{f vR(k) + HN fdk) (4.3) 
model error and spillover must be considered. in some 

= (k ) + +
cases these effects are sufficiertly nr,al that they vR(k :) 1,,,v, R VR(k) HH f(k) (4.4)
 

can be ignored and the DPS is contr lie! 'I!te cll
 
from a POM-based controller; most t.-es oh 's not the y(k) = C.,v.k) + CR vR(i)
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5,0 Adative Control of DPS 


The natural approach for adaptive control of DPS 
seems to be 

(a) choose a nice ROM;
 
(b) use your favorite lumped parameter auaptive 

control scheme; 
(c) design the adaptive controller as though the 

ROlN were the actual system to be controlled; 
(d) analyze the closed-loon behavior of the ada ­

tive controller with the actual DPS. 

step (d) is omitted. This can be disasterous as 
Often, 

shown by the flexible structure example in [31]. 


Even a globally stable adaptive scheme may prove 
to be unstable then used on the full DPS instead of the 
ROM; this happens because of the effect of spillover and 
model error. The indirect adaptive control scheme of 
[8 uses an adaptive observer and would be globally 
stable on the ROM under certain technical restrictions, 
However, if it were designed on the PON (3.h) but used 
on the- full DPS (2.1), it would not necessarily be sta-
ble; the mechanism whereby spillover enters the adaptive 
control scheme and spoils the stability proof is dis­

vlaYed in [15]. This is not a feilure of the method of 
8]; it is a failure to satisfy the hypothesis of the 
stability result of [8]-everr UPS will fail to satisfy 
this hIothesis unless the observation spillover a-ndthe 
rode! error term A, are both zero (see Theorem in [15J). 

The model error ter- is always zero when the exact mode 
shapes are used for the RON but the observation spill-
over need not be zero even then. Hence some reans of 

compensation, such as sn adaptive prefilter [I5 or an 
adaptive version of the orthogonal filter [32], might 

be used to try to eliminate observation spi!lcverrbut 
this has not been fully studied. 


ARM-Gettin' 


The stable direct adaptive control schemes depend 


on an Auto-Regressive Moving Average (AB.i) representa-
tiom of the plant in discrete-time: 

N N 
y(k+N) a Z ary(k+r-l)r E B f(k+r-l) (5.1) 

r-l r= r 

fer 	some N and appropriate matrices a B., " nat the 

ARMA says is that, after N time steps, the present out­
put is only related to the past N outputs and itiuts. 
Existence of an As;1, is directly related to the finite 
dimensionality of the plant (N;is usually that dime,-

sion) and is obtained using the Cayley-Ha.iltcn theorem 
for matrices. For DPS, only a "quasi-FRt" can exist. 
From the Appendix, we obtain the qui1-ARA for the IiPS 
(l.2) or (4.3)-(0.5): 


N N 
y(k+N) - Z ary(k+r-l) + Z r H f(k+r-l) (5.2) 


r1
 =1 r n 


+ Rk) 

where 

N 


R(k) = CR'R(k+) + Z An vR(k+r-l)
 

rl 

ar P 4 lfR, R 
r r 

and r is defined in the Appendix. Since fk)=O when 
r 

CB=O and Ar=O, we have the following result: 

Theorem: When the cbservation spillover (C-and the 
, 
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rodel error term (Ot ) are both zero, the ouasi- APFMA 
(5.2) is a trre ARTA for the DPS (h.2) and any stable 
adaptive seherhm based on this AR±4A will be globally sa­
ble 	when used in closed-loop with the actual DPS (4.2).
 

This result for direct schemes is analogous to the caefor 

indirect schemes in [15]. Both results require that 
observation spillover be eliminated somehow before it 
reaches the adaptive control logic. This is not easy 
to do in general! 

6.0 Gleneric Problems in Adantive of DPS Control 

The most crucial problem of adaptive control of
 

DPS 	is that the plant is infinite dimensional and, con­
sequently, the adaptive controller must be based on a
 
low-order model-of the DPS in order to be implemented
 
with an on-line/on-board computer. However, any con­
troller based on a reduced-order model (ROM) must oper­
ate 	in close-loop with the actual DPS; It interacts not
 

only with the ROM but also with the residual subsystem
 
through tue spillover and model error terms. This con­
tributes the following generiq difficulties for stable 
adaptive controllers:
 

(1) interaction of the residual subsystem with the 
adaptive controller may negate the stabilizing 
properties of the controller unless observa­
tion spillover can be completely removed be­
fore it reaches the adaptive control logic; 

(2) the nonlinear nature of the adaptation mecha­
nisms in these controllers substantially ag­
gravates the residual interaction problem 
(note elimination of control spillover alone 
does not guarantee stability as it does in the 
nonaid %ntivecase); 

(3) 	 o:,'p.i:.ation for spillover (and model error) 
.oflen zequires knowledge of the very plant pa­
rawn,,ers that are poorly known-a vicious circle; 

(4) 	 the adaptation mechanism may shift the closed­
loop frequencies around (i.e. the closed-loop
 
system is time-varying as well as nonlinear); 
this msay counteract any benefits from prefil­

terin to remove observation splllover.
 

In adcntion to the above, the following also tend
 
to spoil tne knrwn stability results for adaptive con­
trollers:
 

(11) 	 M'2.o'Lr, p:oblem3 are often non-mnimum 
pl(u.uiluc to noncollocated actuators and sen­
sors; this presents a stability problem for
 
11-"ect GCnees but not for indirect ones; 
"' 


(b) 111 cuntro must often be done with more than 
"I' nit-touLtr and sensor; conversion of multi­
variable systems to scalar systems via output 

feedback can be used to overcome the lack of 
a multivarinble adaptive control but it intro­
duceu some new problems (i.e. it may destabi­
lize the residuals) (15]; 

Cc) 	 indirect schemes need sufficient excitation 
from external test signals; however, these sig­
anas ray substantially excite the residual sub­
:'y't n.
 

Some robuat or adaptive way to counteract observ.­

tion must be found in order to make stable 
adaptive c- igtr,-l of P1S possible. Even then, observa­

tion splibfver will be present to some degree; conse­
quent}h , ;.Iobal stability may be too mrucn to ask of 
thens v,'iti- .I.,,'. DfevelopMent of spillcver bounds, 
along tim, :i -. of those for nonadaptive controllers, 

a be'm1l, 1gJme idea of the regions of steb­
lity fl, ",''..sfUi . ;eration of adaptive DS control; 
such leOe1 '.itIne in progress. 
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Annendix. Derivation of the O'nsi-AW'A ,.,t DrS 

+
In this appendi, we wii! derive th q1.-ci-APHA' "(X) CpVR(k+N) Z A v R(k+r-l)
 
r= r
(5.2) for the 	DPS (b 3 )-(b. 5 ). 

and 
From (4.3), define h(k) So that
 

6 = Fr
 
vN(k+l) = 4N Vi(k) + h(k) (A)r 	 r 

This Is tiw letlred quasi-AA .
 
Then, for anty non-negati"ve interi:-. I,,
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Abstract
 

A recently developed strategy for adaptive sampled-data control
 

of distributed parameter systems based on a plant modal expansion
 

description and modal simultaneous identification and regulation
 

algorithms is presented with frequent reference to the annular momentum
 

control device (AIMCD) test example. The requirement of observation
 

spillover reduction, which is especially crucial to the proposed
 

adaptive control strategy, is addressed.
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NOTATION 

a, b modal differential equation parameters 

A number of actuators 

C number of modes controlled 

d distributed parameter system deflection 

dR reduced order modal model deflection 

d approximate reduced order model deflection 

e identification error 

f actuator forces 

F modal forces 

M number of modes in approximate expansion 

N number of modes in accurate expansion 

s spatial variable 

S number of sensors 

t time 

T sample period 

W modal amplitudes 

a, S modal difference equation parameters 

y, 6 modal controller parameters 

F AMCD spin rate 

8 ring particle angle with respect to reference particle 

X desired discrete characteristic equation coefficients 

11, p adaptive identifier step-size weights 



actuator reference frame angles
 

partial differential equation expansion spatial eigenvectors
 

oscillatory modal amplitude time frequency
 

set of distributed system particles
 



Introduction
 

The control of large flexible spacecraft has become an active
 

research and development topic, as demonstrated by a recent survey
 

Adaptive control of distributed parameter systems (DPS) is also an 

2-5 
emerging research concern . Since large'flexible spacecraft are 

acknowledged to be described by partial differential equations with 

uncertain, i.e. a priori indeterminable, parameters, such structures, 

requiring increasingly stringent shape and attitude regulation, are 

6
prime candidates for application of DPS adaptive control strategies
 

The objective of the present work is to provide a real-time
 

simultaneous identification and control strategy applicable to DPS
 

in general and large flexible spacecraft in particular. The real­

time computation objective prompts the use of modal expansion descriptions
 

of DPS to permit some parallel computation. The constantly activated
 

adaptability of simultaneous identification and control is needed,
 

for example, for adequate control of poorly behaved DPS, such as
 

very lightly damped, large flexible spacecraft, during inadequately
 

predictable plant parameter changes due to operating condition variations.
 

4 
Toward this goal, this paper improves a previously proposed 

strategy
 

with further attention to a step-by-step adaptive controller development
 

procedure and its consequences. The original idea 4 was to combine
 

a truncated modal expansion description used in flexible spacecraft
 

control with a simultaneous identification and control (also termed
 

self-tuning7) adaption strategy to regulate the lumped parameter modal
 



amplitude descriptions. The procedure of the next section also
 

mentions the possibility of direct rather than indirect modal control
 

8 
parameter adaption, such as via model reference adaptive control
 

The outlined procedure also reacts further to the special problems
 

spillover9 creates for an adaptive implementation. This strategy
 

is followed in .the third section to develop an adaptive, regulator of
 

the linearized, cut-of-plane deflection of a spinning annular momentum
 

control device (AMCD), a candidate for large flexible spacecraft
 

4,10,11
1 I
control4 ' ' . Simulations of this application are presented in
 

the fourth section. This example is also used in the fifth section
 

to illustrate the difficult modal observation spillover reduction
 

problem. An enlarged framework for adaptive control of distributed
 

parameter systems, especially flexible spacecraft, is overviewed
 

in the conclusion. -Unfortunately, achievement of the grandiose
 

objective stated at the start of this paragraph is only (possibly)
 

,begun in this paper.
 

A Distributed Parameter System Adaptive Control Strategy
 

For DPS describable by
 

d(s, t) j WWt 0j(s), (i) 

j-0 

where d is a vector-valued function of spatial location s and time t,
 

e.g. displacement for flexible spacecraft, 4i'(s) an orthogonal expansion
 

basis of shape eigenfunctions, and W.(t) the amplitude of the jth
 

shape function at time t, an adaptive control strategy has been proposed
 

Under the assumption that the amplitudes obey uncoupled, linear, ordinary
 

differential equations of known order, but with unknown coefficients, e.g.
 

2
 

4 



nn Wjt) = [a. i Wj(t) + b. d.n- F (t)], (2) 
dt j i=l ii dtn j3 dOn 

4 
where F.(t) are the modal forces, then this strategy combines a

3
 

truncation of (1) with a modal self-tuning7 (or simultaneous identification
 

and contzol) adaptive control algorithm. The modal forces F, in (2)
3 

are given by 

F.(t) = f 4.(s) f(s, t) ds, (3) 

whereg is the set of all system particles and f(s, t) the applied
 

spatially distributed forces. The espoused approach can control the
 

distributed parameter systdm of (1) despite a lack of knowledge in
 

the a.. and b.. of (2), which can accomodate inaccurate a priori

31 32 

expansion modeling or variability in the a.. and b.. due to changes 

in the operating conditions. This approach, to be outlined below, 

relies on (i) the prespecification of the *. in (i) yielding uncoupled 

(2) and (ii) the reasonableness of (1) after truncation. The second
 

assumption will be extensively examined in the latter sections of the
 

paper.
 

4
 
The adaptive modal control stiategy can be divided into two stages:
 

one prior to system operation and the other on-line. The recommended
 

steps of pre-activation analysis are:
 

(i) Determine expansion basis *j in (1).
 

(ii) Select finite expansion upper limit to approximate (i).
 

(iii) Specify sensor locations and relate distributed measurements of
 

d(s, t) to the modal amplitudes W.(t) in (2) via reversal of (1).

3
 

(iv) Determine actuator distribution and formulate effect on modal 



forces F.(t) in (2) via (3). 

(v) Establish modal control objectives.
 

The recommended steps of real-time, adapting, sampled data control
 

formation are:
 

(vi) Apply previously calculated actuation forces and sense d(s, t)
 

in (1) at sample instant.
 

(vii) Process sensor data to estimate modal amplitudes W.(t) in (2).
 

(viii) Select the modes requiring control.
 

(ix) Process applied forces f(s, t) via (3) to determine achieved modal
 

forces F.(t).
 

(x) Improve the identification of the discretization of (2).
 

(xi) Design modal controllers on-line with current parameter estimates
 

to meet modal performance objectives.
 

(xii) Convert desired modal control to actual actuator commands.
 

(xiii) Repeat (vi)-(xii) at the next sample instant.
 

The simultaneous identification and control strategy of steps (x) and
 

(xi) could be 	replaced by a single step improving the controller parameters
 

12-14
-
by direct lumped parameter plant adaptive control . The espoused
 

indirect strategy is m6re intuitive and currently more flexible in
 

terms of control objectives though more restrictive in terms of the
 

1 6 
general need for plant parameter identifiability1 5 , as manifested
 

in adequate model complexity and sufficiently exciting input requirements.
 

As outlined the modal controllers rely only on past data to
 

determine the present control action. This alLows the considerable
 

(despite the possible parallel execution oF steps (x) and (xi))
 

4
 



computation to be done during the full sample period. The steps
 

(vi)-(xii) differ slightly from their earlier description4 due to
 

a fuller appreciation of the demands of steps (vii) and (ix),
 

especially (vii), which are discussed in later sections. Further,
 

detailed comments on each stage of this step-by-step procedure
 

are available44 . The next section illustrates this strategy by
 

application to adaptive regulation of the small, linearized,
 

out-of-plane deflection of a large, flexible ANCD.
 

AMCD Application 

Large momentum vectors resulting in the rotation of large space
 

structures can be created smoothly by a solar-powered (and therefore
 

effectively non-depletable), dual momentum vector configuration of
 

4,10,11

two counterrotating AMCDs magnetically attached to the space structure
 

The AMCD components of these attitude control devices will probably be
 

as large in diameter as possible for such structures and as small in
 

cross section as possible in order to maximize their momentum/mass
 

ratio. Therefore such AMCDs would behave like lariats with translation,
 

rotation, and deformation modes of disturbance from their nominal planar
 

spinning configuration.
 

The step-by-step procedure of the preceding section will be
 

followed in designing an adaptive modal controller of such an AMCD.
 

(i) The boundary conditions of ring closure permit the use of a
 

Fourier series to describe the linearized, out-of-spin-plane deformation
 

of the AMCD
 

5 



W, 

d(8, t) = j [W cj(t) cos(jQ) + Wsj(t) sin(jO)], (4) 

which is of the form of (1) with the angle 8, measured around the AMCD 

ring from a reference (0 - 0) particle to the location in question, 

as the single spatial variable s. This sinusoidal basis is also the 

17
 
eigenvector basis for this out-of-plane motion of a homogeneous ring
 

(ii) Assuming that the higher spatial frequency deformations will
 

exhibit lower amplitudes, (4) can be truncated with arbitrary accuracy
 

as
 

N 
d(6, t) = j [Wcj(t) cos(j8) + Wsj(t) sin(j8)]. (5) 

This limit N may permit accurate approximation of (4) but be an infeasible
 

limit in- terms of controller computations. If a further reduction is
 

necessary, '(5) and therefore (4) (and in effect (1)) will be roughly
 

approximated by either
 

d~f3 I [0,N4]3. of 
dR(0 .t) A M [W j(t) cos(j0) + Wsj(t) sin(j)], (6), 

M of [0;N]
 
where signifies a summation over the index j where j is any


i
 
M+I entries of the set {0, 1, 2, ..., N}, or
 

AM of [0,N] ^ I 
t) =, [W cj(t) cos(jO) + Wsj(t) sin(jO)], (7) 

where the Wk are not necessarily the corresponding Wk in (6) and (5) 

due to the selection of W to best fit d to d given 2M + 1 point 

measurements of d, e.g. as in the Galerkin approach 

6 



(iii) Assume S sensor measurements of ring particle deflections
 

d(Oi, t) at i = 1, 2, ..., S can be processed simultaneously. These 

measurements can be decomposed into modal amplitudes W. by multiple 

M of [0,N] M 
concatenation of (6) (or (7)) with replaced by X , i.e. 

j 	 j=0 
for the lower modes, as
 

dR(Olt) 1 cos( 1 ) ... cos(Me1) sin(61) ... sin(M61 W0(t )
 

dR(O2 ,t) 1 cos(6 2) ... cos(Me2) sin(e 2) ... sin(M 2) Wcl(t)
 

dR(s,t) 1 cos( S ) ... cos(M S) sin(O S ) ... sin(Mes) 	 WcM(t) (8) 

Wsl(t) 

Wsm(t)
 

With appropriate reindexing of the right side of (8) any M modal amplitudes
 

composing dR in (6) could be written in this matrix form. The 8. may
 

vary from sample to sample, especially if the sensor(s) is not spinning
 

with the AMCD. Note that (8) requires measurement of dR not d. Obtaining
 

dR from d requires observation spillover removal, as will be addressed
 

later.
 

(iv) Assume A actuators are located in a reference frame fixed with
 

respect to AMCD spin, e.g. the suggested magnetic "bearing" actuators
 

attached to the spacecraft. From (3) where Q = £0e[0, 2 )1 an
 

assumption of'point actuation located at a. converts the integrals to
 
I 

summations over the set of A actuators. Note that, due to an AMCD spin
 

7
 



rate of r radians/second relative to the actuator locations, the a.
1 

must be converted to the ring particle reference frame via
 

oi(t) = ai(t) - rt, (9) 

which assumes that the references 8 = 0 and a = 0 were aligned at
 

t 0. Similar to (8), for the C modes to be controlled
 

F0(t) 1 1 .,. 1 f(01,t) 

Fcl(t) cos(0) cos(02) ... cos(o A) f(e2,t) 

= . . .. (10) 

FeeC(t) cos(C 1 ) cos(C 2) ... cos(COA f(eAt)
 

Fsl(t) sin( 1) sin( 2) ... sin(O 
A )
 

FsC(t) sin(C0 1) sin(C6 2) ... sin(COA)
 

can be formed.
 

(v) Ring stabilization requires mode damping. Satisfactory modal
 

damping can be provided by modal pole placement.
 

(vi) If d(8, t) is provided by an effectively instantaneously scanning
 

sensor then any S ring particles can be observed. If the sensors are
 

incorporated with the actuators then (9) must be used since different
 

ring particles will be sensed at each sample instant. One other
 

possibility is more frequent sensor interrogation than actuator
 

reactivation, allowing additional signal processing'possibilities
 

before control seledtion.
 

8
 



(vii) Solution for the [W.] vector in (8) can be achieved by
 

pseudoinversion1 8 or by a DFT 1 9 if the 6. are equally spaced. Note
 

that if the 8. are equally spaced such that 6 = 21ri/S and S = 2M,
1 1 

then Me. = xi and the rightmost column of the S x (2M + 1) matrix
i 

in (8) equals zero. Therefore the column of sin(MO i ) entries should
 

be removed to retain invertibility. In such a case the Mth mode
 

sine component is unobservable.
 

(viii) If C < M, the current strategies are to control those C
 

modes either with the lowest spatial frequencies or with the greatest
 

modal amplitudes. The assumption leading to (5) will tend to equate
 

these two classes.
 

(ix) If A < 2C + 1 in (10) then due to the least squares solution
 

implemented in step (xii) of the last sample instant the desired F.
2
 

most likely will not have been achieved and (10) must be calculated
 

to determine the forces actually reaching each mode needed in the
 

next step.
 

(x) For a large, lightweight AMCD (2) will be second order and
 

essentially undamped
 

d 2 [Wj(t)] + W2 (r, Q)W W~t= (f1 () 

dt 2 
 N.2i
 
4 

where the M. denote the effective modal masses and the r and t arguments
 
2
 

of w are intended to evoke the slowly time-varying character of the modal
 

amplitude time frequency due to such operating conditions as spin rate
 

and temperature. Note that the magnitude of the oscillatory initial
 

condition response of (11) is inversely proportional to w.. The notation
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of (11) (and subsequently (12)-(20)) is intended to encompass both
 

Wcj and Wsj.. Note that both Wcj and Wsj. have the same w°, i.e.
 

to. = W . Assuming uniform sample intervals of T seconds and 

constant modal forces over the sample period, 

W.(k) = a,1 W.(k-l) + aj2 Wj(k-2) + aji FUk-1) + j2 Fj(k-2) (12) 

is an exact discretized predictor of the modal amplitude where 

aj, = 2 cos (WT), aj2 = -1 and jl = j2 = (i - cos W.T)/(Mj w.2). 

The-addition of damping in (11) will effect the definitions of a 

and S but not the form of (12). Note that constant actuator forces 

f over the sample interval will not generate constant modal forces 

due to AMCD rotation. This can be combatted by actuator force 

windowing. If the modal forces vary over the sample period, (12) 

becomes an approximation only as accurate as the degree of constancy 

of F.(t) over (k-2)T < t < (k-l)T and (k-l)T < t < kT. If the3
 

structure of (12) is used for an adaptive identifier or to structure
 

a direct adaptive controller then uncertainty in i.,Mj, and the
 

neglected damping coefficient can be accomodated. The anticipated
 

problem in AMCD control is uncertainty in w.. The second-order (12)
 
3
 

can be identified by either of two broad classes of recursive parameter
 

estimators termed20 prediction error and pseudo linear regression and
 
21 22
 

represented by equation error and output error identifiers,
 

respectively. An equation error formulated identifier for (12) of the
 

form
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:11 .3Jk
 
ajI(k) OCj 1 (k-1)
 

j2 (k aj2 (-1 + 2 1
 

1j (k-l)w. (k-2) 

1j2(k-)W3(k-3) 

pj.(k-l)F (k-2) 

Pj2 (k-l)Fj (k-3) (13)
 

where
 

2 
[ i ( k - l ) W ( k - i - l )e (k-1) W(k-1)W - l + .,(k-1)F (k-i-l)] (14) 

and
 

0 < P.(k) 5 p.j(k-l) < 2 and 0 < p.(k) _ppi(k-l) < 2 Vi, k, (15) 

requires exact measurements of sufficiently rich F. and W. for consistent
 

identification.
 

(xi) Feedback regulation structures of second order dynamic output
 

feedback 4 or equivalently (in the absence of unmeasurable inputs)
 

geconfigured state variable feedback achieved via 

F.(k) = y..(k)W.(k-l) + -y (k)W.(k-2) + 6l(k)Fj(k-l) + 62(k)F(k-2) (16) 

will cause the modal plant-controller characteristic equation to converge
 

4 z 3
to-z + Al + Aj 9 z2 + ,j3z + Aj4 if the controller parameters are chosen 
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via 

(k )  
 -jA.ji- aj.(k) (17) 

Yjl(k) = [j1(k)aj 2 (k) - Aj3 + (6j(k) aj 1 (k) - aj2(k) - Aj 2 ) 

(aj (k) - aj2(k)j (k)/j2(k)) + Xj jI (k)/j2(k)]/ 
.... 2ji j2jkj/. j2) 

[a ak)cjl(k) + $.2 (k) - a 2(k) (k)/ (k)] (18)
 

6j2(k) = cjl(k)6j(k) - Aj2 - a.j(k)y.j(k) - cj2 (k) (19) 

Yj2(k) = (6j2(k)aj2(k) - Xj4)/j2(k) (20) 

and a + a and a 6. Note that the strictly causal formation of a and 

8 in (13)-(14) used in (17-(20) to parameterize (16) permits the
 

assumed predictive control formation. Furthermore, the form of (16)
 

purposely avoids velocity measurements, which are expected to be
 

difficult to sense for large AZ4CDs.
 

(xii) Least-squares solution bf (10) for the f(',t) is required if 

A < 2C + 1. 

Simulations
 

Successful simulations of this AMCD example have been reported
 

S 4,11,23,24
 
elsewhere . Consider here an AMCD described by (5) with
 

N = 4 and the w. in (11) equal to 0, 2.62, 5.24, 7.85, and 10.47 for
J
 

j = 0, 1, 2, 3, 4 respectively. For au AMCD spin rate of r = 60
 

degrees/second, a sample period of T = 0.1 seconds, and the same
 

damped pole placement objective for each mode of A, = -1.684,
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=
A2 = 1.165, A3 = -0.402, and A4 0.0558, the strategy of the preceding
 

section was applied in the following cases: N = M = C = 4,
 

N = M = 4 > C = 2, and N = 4 > M = C = 2. Por each situation the
 

AMCD was given an initial deformation composed of unity modal amplitudes.
 

The adaptive controller was applied, with initial modal frequency
 

estimates {w9l, 4= {4, 8, 12, 161 converted to initial parameter
 

estimates in (12) via the discretization formulas, in an attempt to
 

stabilize the ring deflections to zero.
 

The AMCD simulation consisted of (10) with C replaced by N, which
 

converted the applied forces f to modal forces F which were assumed
 

constant over the sample interval, the use of the appropriate F in
 

(12) to update the N modal amplitudes W, and the formation of the
 

deflection d via (5) for all 8. The controller began with measurements
 

of d for use in (8), which were supplied by solution of (5) at the
 

appropriate sensor locations 6. The sensor locations were assumed
 

to be rotating with the AMCD. A special reflective mark on the AMCD
 

and a centrally located, scanning laser detection system can be
 

hypothesized as providing such ring particle deflections. The
 

measured d were used for the dR in (8) with M = 4 or 2 as required.
 

Solution of (8) provided the W used in (13) and (21). The improved
 

parameter estimates provided by (13) with all P = p = 1 were used in
 

(22)-(25) to parameterize (21). When M > C, only the F for the
 

modes of lower spatial frequency were calculated. The past F in (21)
 

were provided by the previous results of (21). Step (ix) could be bypassed
 

since A was always chosen equal to or greater than 2C + 1. Inversion solution
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of (10) provided the npplied forces f to the AMCD simulation.
 

Figure 1 with N = M = C = 4 illustrates the anticipated
 

effectiveness of the adaptive strategy in recovering from inaccurate
 

estimates of the m. and successfully stabilizing the initial AMCD

J 

deflection, eventually to zero displacement. The asterisks on the 

displacement curves mark the measurement points which are fixed 

in the ring particle reference frame. The arrowheads along the 

spatial coordinate 0 axis show inertially fixed actuator locations 

with the length of the arrowshaft proportional to the applied force 

according to the right-hand scale. The plots are drawn in the ring 

particle reference frame so the actuator locations appear to regress 

for the progressing ring. The success in figure 1 is not universal 

for N = M = C. With only the desired pole locations changed to 

values nearer the unit circle by A1 = -2.314, A2 = 2.429, A3 -1.176, 

= A4 0.2, the proposed adaptive regulator fails via an often neglected 

stall mechanism. For example, if the parameters in (13) when used 

in (17)-(20) lead to an unstable modal controller, W.I will become 

so large in the denominator in (13) that the parameter estimates 

are only insignificantly corrected. If this condition persists 

long enough, all claim of linearity can be abandoned in application, 

thereby negating claims of eventual identifier convergence. This 

stall mechanism, a characteristic of simultaneous identification 

and control not peculiar to just the proposed adaptive DPS control 

strategy, occurs in the cited example with the Wc4 (5 seconds) = 

4.8 x 104 and growing. This failure can be attributed to the 

smaller stability margin of higher modal frequency estimates for 
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low frequency, light damping objectives. Different initial parameter
 

estimates nearer the actual modal frequencies can avoid the stall of
 

this particular example. Also the sufficient excitation requirements
 

of simultaneous identification and control 7 are almost surely not
 

met in this regulation example, thereby encouraging an expectation
 

of failure. However, this pathological case does emphasize a need
 

for an understanding (currently nonexistent even in lumped parameter
 

system adaptive control) of closed-loop singularity migration during
 

simultaneous identification and control.
 

Figure 2 illustrates the boundedness of the AMCD deflection
 

achieved in adapting from inaccurate w. prespecification with

3 

N = M = 4 > C = 2. The visible higher spatial frequency remnants 

at t = 15 seconds are due'to the,choice to control only the lower 

spatial 'frequency components of d, which do decay to zero. Asymptotic 

regulation of the full deflection is not achieved despite convergent 

parameter identification in the satisfactorily complex model due 

to control spillover arising from use of a restricted complexity 

controller9 . For lumped-parameter systems this limited success 

25
of adaptive control when N = N > C has also been documented elsewhere
 

For A > 2C + 1, i.e. an oversufficient number of actuators for
 

solution of (10), pseudoinverse solution of (10) provides a minimum
 

control f energy solution, which can be expected to reduce the
 

deleterious control spillover. Figure 3 with A = 9 for C = 2
 

versus figure 2 where A = 5 for C = 2 clearly demonstrates this
 

effect.
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The possible failure of the proposed adaptive control strategy
 

when N > M is documented in figure 4 where N = 4 > M = C = 2. The
 

identifier of (13) is unsuccessful in converging on the actual a and
 

B values due to the use of d and not dR in (8). Since d is used
 

in (8) and a least squares solution is used to determine the W,
 

then actually (7) and not (6) is applicable. Figure 4, therefore,
 

shows the failure of attempting to use a modal control strategy when
 

approximately matching the full AMCD behavior with a reduced number
 

of modes. For this example, even if the a and 5 were successfully
 

identified, using the W.J and not the W.J in (16) leads to instability.
 

Clearly a mixture of full behavior estimation and reduced-order
 

control strategies, though commonly pursued in practice, is only
 

valid if the modes omitted from the model contribute negligibly to 

the total behavior. Due to the control spillover reaching the 

unmodelled modes, even in the event of no initial energy in these 

mdoes this negligibility can not be assumed. The difficulty adaptive 

control experiences due to N > I has also been noted in the lumped 

26
 
parameter system case . The next section considers a signal 

processing strategy to combat this possibly-ratal problem by
 

filtering the d of (5) to provide the dR of (6) to (8).
 

Observation Spillover Reduction
 

Inexact sampled W. are provided to the modal identifiers due
 

to two sources of error: (a) aliasing, both in time and spatial
 

frequency domains, due to discrete measurments of d(s, t) and
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(b) reduced-order modeling inaccuracy due to N > M. However,
 

based on the characteristic of flexible spacecraft that higher modal
 

frequencies, e.g. the higher frequency j for the AMCD in (4) as
 

j becomes large, have correspondingly higher modal amplitude time
 

frequencies, i.e. wi > w3 for i > j, a strategy for extracting dR
 

in (6) from measurements of d in (5) has been postulated2 4 . T1is
 

approach assumes (a) satisfactory time-based sampling to avoid
 

aliasing of modal frequencies up to wnN' i.e. T < - - , (b) a sensor
 

system capable of interrogating any ring particle at any sample
 

instant, (c) band-limiting knowledge of the M sought w., e.g. for 

the lowest M consecutive w1. specification of a frequency comfortably 

between wM and wM+11 and (d) frequency-limited spectra for the 

F. leading to separable W. spectra at desired cutoff points.
:3 :3
 

For a lowest M frequency approximation, implicit in (8), the
 

following strategy appears reasonable. Assuming equally-spaced
 

sensor measurements, in both space and time, and S = 2M, as in
 

point (vii) of the preceding section, a DFT could be used to solve
 

(8); however dR and not d must be available. If the same ring particle
 

can be measured for deflection at successive sample instants despite
 

AMCD rotation then the sequence td(8i, kT)) over k for a particular
 

i, which is proportional from (5) to a fixed weight sum of the W.(kT),
 

can be low-pass filtered (LPF) between wM and ul removing high
 

time, and therefore also spatial, frequency components leaving
 

{d (., kT)}. For each time t composition of (8) is now possible.
 

The necessary assumptions preceding this particular strategy
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description are quite restrictive. Due to the true form of (1) and
 

the possibly tremendous magnitude of N and therefore wN (a) is
 

mathematically impossible and only marginally practical. The limitation
 

of (b) is that the sensors can not be colocated with the non-rotating
 

actuators. Even if AMCD spin could be accomodated for DFT purposes
 

the same ring particle could not be sensed at sequential sample
 

instants disallowing the benefit of LPF. Conversely, always measuring
 

the same ring particles could, in certain cases, lengthen the lag
 

time before reaction of the control system to slowly propagating
 

localized disturbances. Assumption (c) may be reasonable for
 

discrete sinusoidal spectra but since (11) is forced by a nonlinearly
 

generated, nonstationary (during adaption) signal in violation of
 

(d), the region of non-overlap between wM and l becomes so small
 

(if not nonexistent) as to require highly refined a priori knowledge.
 

LPF phase distortion must also be assumed negligible. Clearly some
 

higher spatial frequencies will be rejected by the LPF, but due to
 

.dissatisfaction of the assumptions pointing to unsatisfactory spectrum
 

separation, dR will be inexactly obtained. These reservations are
 

even more severe for more complex filtering schemes, such as the
 

effective comb filtering suggested earlier 6 to be achieved via
 

phase locked loops.
 

One alternative satisfying the (c) and (d) requirements for
 

filtering dR from d is identification of the free AMCD response.
 

However, this approach does not meet the stated simultaneous
 

identification and control objective. Using a modified gain scheduling
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concept to provide a fixed robust control during identification
 

phases is closer to the simultaneous identification and control
 

objective (and may avoid the stall mechanism noted in the previous
 

section) but does spread the W. spectra again severely limiting
 

the benefits of the LPF. Another seemingly applicable concept is
 

28
 
that of adaptive orthogonal filtering This idea is incorporated
 

by appending to (8) and (13) additional uncontrolled "modes"
 

intended to absorb the spillover effects. These modes would
 

require time-varying dynamic descriptions meaning that the p and
 

p used in estimating their difference equation parameters would need
 

to be significantly larger than those used in estimating the time­

invariant modal difference equation parameters. The compensatory
 

ability of these additional model modes seems limited due to the
 

assumptions necessary in adaptive orthogonal filter development.
 

Therefore none of these suggestions appears wholly satisfactory.
 

The conclusion is that currently the observation spillover problem
 

remains unsolved yet requires resolution for broad applicability
 

of the proposed adaptive modal control scheme for DPS.
 

Conclusion
 

This paper begins with revision of a previously originated
 

4
 
strategy for adaptive modal control of DPS and concludes with the
 

confrontation of the spillover problem, which is extremely severe.
 

In support of the simulation evidence provided it has been proven
 

elsewhere5 that in the absence of observation spillover and with the
 

use of the eigenvector'expansion, adaptive.modal control of DPS
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is as viable as lumped parameter system indirect adaptive control.
 

It can also be shown6 why a stable simultaneous identification
 

and control scheme similar to that imbedded in the AMCD example
 

fails in the presence of observation spillover or nonorthogonal
 

expansion. With the necessity of a reduced order model (N > M)
 

the goal of globally stable adaptive DPS controller convergence
 

appears too stringent. Work is in progress to relate observation
 

spillover bounds to parameter identification bounds. Such efforts
 

are directed toward delineating the detrimental influence of observation
 

spillover and the possibility of allowable behavior despite its
 

presence rather than toward its removal.
 

Suggestions have also been forwarded2 9 to remedy the difficulty
 

of P.selection. For general spacecraft, the fundamental assumption
 

of eigenvector availability for (1) is overly optimistic. Slight
 

inhomogeneities in the AMCD can lead to significant coupling of
 

the Fourier expansion "modes"3 0 . Such coupling, if incorporated
 

in the system model, disallows the parallel computation objective
 

for the identifier and "modal" controller. The specter of the
 

necessity to recursively estimate both the basis functions and their
 

associated dynamics raises questions far beyond the current scope
 

of these efforts. However, these are issues that ultimately must
 

be addressed.
 

The development of an adaptive controller applicable to DPS
 

requires examination of both indirect and direct adaptive control
 

concepts in a necessarily reduced-order model format. Both approaches
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are susceptible to spillover degradation. A judicious mixture of
 

robust control, gain-scheduling, on-line versus off-line identification,
 

specific "optimal" objectives versus simpler damping requirements,
 

and local versus global convergence behavior will be required
 

in subsequent efforts. Further research, as in any emerging field,
 

will better identify the weaknesses and strengths'of proposed
 

approaches to adaptive control of DPS and uncover additional concerns
 

'requiring further original developments.
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Figure Caption List for C. R. Johnson, Jr. "On Adaptive Modal Control
 
of Large Flexible Spacecraft"
 

Figure 1: Adaptive RegulationiWithout Spillover
 

Figure 2: Adaptive Regulation With Control Spillover
 

Figure 3: Adaptive Regulation With Control Spillover
 

Figure 4: Attempted Adaptive Regulation With Control and Observation
 
Spillover
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On-line adaptive control is essential for Large Space Structures
 
(LSS) where the modal parameters are poorly known, due to modeling
 
error, or changing, due to variable configurations. It is especially
 
important that such-adaptive controllers produce stabilizing controls
 
during adaptation due to the small dampi.ng present in LSS. However,
 
any such controller must be based on a reduced-order model of the LSS.
 
The spillover from the unmodelled residuals, as well as the modeling .
 
error, can-deteriorate -the performance of the adaptive controller and,
 
if uncompensated, this spillover can defeat the whole purpose of the
 
adaptive control.
 

This paper investigates adaptive control -for LSS using direct and
 
fndirect schemes and points out the mechanisms whereby observation
 
spillover can upset the stability of the controller. The framework for
 
nonadaptive control of LSS is reviewed and many of the generic problems
 
of adaptive LSS control are pointed out within this framework. These
 
generic problems must be overcome for successful operation of adaptive
 
LSS control.
 

1.0 INTRODUCTION
 

This paper deals with the basic problems inherent in adaptive con­

trol of large space structures (LSS), such as satellites and spacecraft,
 

where the structural parameters are poorly known or slowly time- arying.
 

With the advent of the Space Shuttle Transportation System, it has
 

become possible to conceive very large spacecraft and satellites which
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could be carried into space and deployed, assembled, or manufactured
 

there. Such LSS would serve a variety of civilian and military needs
 

[1], [2], including electrical energy generation from the solar power
 

satellite - a structure nearly the size of Manhattan Island - to be
 

constructed in space and operated in earth geosynchronous orbit [3]. The
 

control technology needs for such LSS have been discussed in a variety
 

of articles, e.g., [4], [5], and the developing LSS control theory and
 

technology has been surveyed, for example, in [6]-[10].
 

The size of these structures, their low rigidity, and the -small
 

damping available in lightweight construction materials combine to make
 

LSS extremely mechanically flexible. In theory, LSS are distributed
 

parameter systems whose dimension is infinite; however, in practice,
 

their dynamics are usually modeled by large scale systems based on
 

approximate elastic mode data. Active control schemes for LSS are often
 

required to meet stringent requirements for- their shape, orientation,
 

alignment, and pointihg accuracy. Such active control is limited by the
 

capacity of theon-board control computer, the modeling inaccuracy in cur­

rent finite element computer codes for analyzi-ng structural dynamics, and
 

available control devices (actuators and sensors); therefore, the.con­

troller must be based on some reduced-order model (ROM) of the LSS.
 

Fundamental problems of LSS control include:
 

(1) selection of appropriate modes to control for desired system-per­

formance;
 

(2) development of ROM for analysis and controller design;
 

(3) computation of system model and control parameters;
 

(4) controller design with multiple distributed actuators and sensors;
 

(5) the number and location of sensors and'actuators for efficient
 

control;
 

(6) the effect of, and compensation for, residual'(unmodelled) modes
 

and modeling error on the, closed-loop system performance;
 

(7) adaptive,and self-tuning controllers for LSS with poorly known or
 

changing parameters and configurations. -

Item (7)is the basic topic of'this paper but it must be considered in 

the context of the other items with which it is completely intertwined. 

The need for adaptive control in LSS arises because of ignorance of'
 

the system and changina control regimes. The former occurs as
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(a)ignorance of the system structure and order, and (b)ignorance of the
 
.system parameters; the latter occurs because of changing configuration
 

of the LSS. Changes in-configuration may be due to construction in-space,
 

thermal distortion, or reorientation of subsystems, e.g., rotating solar
 

panels or sunshields; these changes usually produce slowly time-varying
 

parameters. Ignorance of the LSS system structure and order isdue to the
 
fundamental problem of modeling a distributed parameter system,. e.g.,
 

faulty physics, reduced-order models, and ignored nonlinearities; this
 

means that the order of the ROM is lower than that of the actual LSS.
 

Ignorance of the system parameters, while directly related to the system
 

structure, is due to the inherent modeling error present ineven the best
 

structural analysis computer codes and to the limitation of testing huge,
 

lightweight LSS on earth; this produces constant but poorly known system
 

parameters. There is a very clear need for an ada'ptive LSS control metho­

dology that-can begin.with the best available computed parameters and
 

self-tune its way toward the correct parameters while stablely controlling
 

the LSS and, ,possibly, adapting to variable configurations.
 

A great variety of adaptive control schemes exists for lumped param­

eter, small scale systems [11]; in particular, model reference adaptive'
 

methods have achieved a great amount of success in producing stable,
 

convergent adaptive controllers, and adaptive observers for systems whose
 

structure is known and whose parameters are constant but poorly known
 

or slowly time-varying, e.g., [12]-[25]. Adaptive schemes may be direct,
 

i.e., the availab'le control parameters are directly adjusted (adapted) to
 

improve the overall system performance, e.g., [25]-[26], or indirect, i.e.,
 

the system parameters are identified (based on the assumed system struc­

ture) and the control commands are generated from these parameter esti­

mates as though they were the actual values, e.g., [201, [24], [27].
 

The abundance of adaptive control methods is overwhelming and an
 

understanding of the interrelationships and structural commonality of these
 

methods isdesperately needed; see, e.g., [28], [29], for some beginnings
 

inthi's direction. Furthermorethe use of such methods on distributed
 

parameter or large scale systems, like LSS, is greatly limited by the ROM
 

problem - the. adaptive scheme must be based on a ROM of the actual. system
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and, hence, the order of the model is, and must remain, substantially
 

lower than the controlled system. In addition, it tAessential that the
 

LSS adaptive controller provide a stabilizing control in such highly
 

oscillatory systems as LSS.
 

This paper develops a framework for LSS adaptive control problems and
 

points out generic problems in the use of the most natural direct and
 

indirect adaptive approaches. In other forms, these problems will haunt
 

every use of adaptive control on LSS and must be solved before the valu­

able benefits of adaptive control can meet the needs of this new applica­

tion area. A few preliminary attempts at adaptive control for specific
 

distributed parameter systems or LSS have been made in [30]-[36]; also,
 

for the corresponding parameter identification problem for distributed
 

parameter systems, see [37].
 

2.0 NONADAPTIVE LSS CONTROL
 

Following [6), the LSS may be described by the partial differential
 

equation:
 

m(x) utt(x~t) + DO ut(x,t) + A0 u(x,t) = F(x,t) (2.1) 

where u(x,t) represents (possibly, a vector of generalized) displacements
 

of the structure 9 off its equilibrium position due to transient dis­

turbances and the applied force distribution F(x,t). The mass distribu­

tion m(x) is positive and bounded on Q. The internal restoring forces of
 

the structure are represented by A0 u where A0 is an appropriate differen­

tial operator with domain D(A0 ) defined in a Hilbert space H0 with
 

inner product (.,.)0 In most pre4t cases, A0 has discrete spectrum,
 

i-e.,
 

A0 @k = 2 (2.2) 

0 k k k
 

where mk are the mode frequencies of vibration and ok(X) are the mode
 

shapes. The-damping term DO ut is generated by an appropriate A0-bounded
 

differential operator and may represent gyroscopic damping as well as the
 

very small (u % critical) natural damping expected in the LSS.
 

The applied force distribution is given by
 

F(x,t) = Fc(x,t) + FD(x,t) (2.3)
 



where FD represents external disturbances and FC represents the control
 

forces due to M actuators:
 

M
 

Fc(xt) :B 0 f : Z bi(x) fi(t) (2.4)

i11 

where bi are the actuator influence functions (usually point devices) and
 

fi- are the control commands. Observations are produced by P sensors:
 
1l
 

y C0 u + CO ut (2.5)
 

where yj(t) = (cj,u)0 + (c.,ut)0 for 1 < j < P with cj being the position 

sensor influence functions and c. the velocity sensor ones (usually point 
devices). 

The state variable form of (2.1) and (2.3)-(2.5) is obtained by 

taking 

v(x,t) = fu(x,t), ut(xt)]
T 

in H = 0(A-) x H0 with energy norm:
 

IIv1l 2 = (mut, ut) + (A u, A! u) (2.6) 

This produces
 

t 0
= Av + Bf; v(O) 
 (2.7)
 

y= Cv
 

where we consider the disturbance-free case (FD R 0) and define B E [O Bo1
 

C [C0 Co] and A 2 . This distributed parameter system is 
[A 0 -D 

very oscillatory in the sense that the semigroup U(t) generated by A has
 

very little damping:
 

IIU(t)II <M 0 e- t for t > 0 (2.8) 

where e > 0 and small and M0 > 1. 

The desired performance of the actively controlled LSS greatly effects
 

the design of the controller. Many desirable properties of the active
 

structure can be obtained with constant feedback gains applied to the sys­

tem state v(x,t); such solutions arise for regulator problems and sta­

biltzation (pole placement) problems for LSS. However, the full (infinite
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dimensional) state v is never available from a distributed parameter sys­
tem; only the P sensor outputs y are available.
 

Implementable controllers for, LSS (and most distributed parameter
 

systems) must be based on finite dimensional on-board control computers
 
which process the sensor outputs y and produce control commands f; thus,
 
a reduced-order model (ROM) of the system (2.7) must be used for the
 

controller design. A ROM can be obtained by projecting the system (2.7)
 

in H onto an appropriate finite dimensional subspace HN; the projections
 

P (onto HN) and Q (onto the residual subspace) are usually, but not
 

always, orthogonal. Let vN = Pv and vR = Qv and, from (2.7), we obtain: 

"N AN VN + ANR VR + BN f (2.9)
 

R =ARN vN + AR vR + 8 R f (2.10)
 

y = CN vN + CR vR (2.11)
 

where AN = PAP, ANR = PAQ, BN = PB, etc. The terms BR f and CR vR are 
called control and observation spillover; the terms ANR vR are called 

model error. The ROM for this system is given by (2.9) and (2.11) with 

ANR = 0 and CR = 0: 

NN (2.12) 
Y Cr N; VN(0) = P%] 

The ROM state vN and the residual state vR form the true system state v
 

with total energy IIvii2 given by:
 
Sv 
 vVN + vR
 

H1vR1 INVR 11 2 (if projection is orthogonal)2 :1VN11 2 + 

All implementable controller designs based on any ROM must be evaluated
 
in closed-loop with the actual LSS (2.7),and it is in this evaluation that
 

the effects of model error and spillover due to the residuals become
 

apparent.
 

If the actua.l mode shapes k are known, the modal ROM is a sensible
 

choice:
 

HNH =fsp ¢ ' N
 

and the model error terms ANR and ARN become zero. Of course, any collec­

tion of modes could be used; usually, the most easily excited or critical
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ones will be chosen. However, inmany cases, the partial differential
 

operator A istoo complex to provide closed-form mode shapes. Instead
 

finite element approximations of the mode shapes are computed (e.g.,
 

via NASTRAN)sand these approximate mode shapes can be used to form the
 

ROM for controller design; note that some model error is present when
 
these approximations are used. Henceforth, we will assume the actual
 

mode shapes are available to simplify the discussion but much of our
 

analysis remains valid for approximate mode shapes and other types of
 

ROM.
 

Modern modal control (MMC) for LSS, as developed in [38], uses the
 
modal, (or approximate modal) ROM and develops a controller consisting
 

of a state estimator based on the ROM and a constant gain control law:
 

VN = AN vN + BN f + KN(Y-y) 

CN vN, VN(O) = 0 (2.13) 

and
 

f = GN VN (2.14)
 

This controller design requires the ROM (AN' BN' CN) to be controllable
 

and observable for the calculation of control and estimator gains GN,
 
KN. These conditions, inmodal terms, provide insight into the number
 

and location vf actuators and sensors. Frorm [38], (AN' BN,,CN) is con­

trollable and observable, when position sensors are used (CO = 0), if
 

and only if
 

(1) min(P,M) L max-mode frequency multiplicity in the ROM
 

(2) each sub-block of 8N and CN associated with a mode frequency toN of
 
multiplicity aN must have rank at least equal to aN.
 

Similar results hold for other types of sensors, e.g., velocity, acceler­

ation, or mixtures of types [38], [39]. These results are easy to in­
terpret in terms of the mode shapes, e.g., if no repeated frequencies
 

exist, then the above result says that a single actuator and sensor,
 
not necessarily collocated, will do the job as long as neither islocated
 

at any of the ROM mode shape zeros. Since LSS have many symmetries and
 
rigid body modes, it is not often that a LSS control problem will have a
 



controllable observable ROM with only one pair of devices; this has con­

sequences for the adaptive control problem to be discussed later. 

Let the estimator error ,eN VN - vN be defined and, from eqs. (2.9) 

-(2.11) and (2.13)-(2.14), obtain 

N = (AN + BN GN) vN + BN GN eN (2.15)
 

6N = (AN - KN CN) eN + KN CR VR (2.16) 

(2.17)
R =BR GN vN + BR GN e1N + AR vR 

This shows the effect of spillover on the closed-loop system: even 

though AN + BN GN' AN - NN CN' and AR are stable, the closed-loop system 

need not be stable. When either control or observation spillover is 

absent (BR = 0 or CR = 0), then stability is assured; otherwise, spill­

over causes pole-shifting and can induce instabilities [38], [40]. 

Bounds on the destabilizing effect of observation and control spillover 

were produced in [38]-and can be extended to the case where some model 

error and small nonlinearities are present [41]. Such bounds give an 

indication of how much spillover the closed-loop system can tolerate. 

A variety of methods have been suggested to reduce spillover [6].
 

One obvious way would be to prefilter the sensor outputs, with a bandpass
 

filter, to substantially reduce observation spillover. This alleviates
 

the worst pole-shifting probiem; bounds on system performance withcon­

trol spillover alone can be found in [42]. Note that the post-filter
 

of the controller outputs could do the same job by reducing control
 

spillover; this interchange of filter and controller is possible due to
 

linearity and time-invariance. The trade-off with this means of reducing
 

spillover is that the prefilter introduces phase distortion which can
 

have a destabilizing effect of its own. Therefor, a very high order
 

filter may be required to keep the phase distortion acceptable; phase­

locked-loop quadrature filters may be another solution [43]. Even in
 

nonadaptive LSS control, the spillover and model error problem is a funda­

mental one.
 

Finally, we should note in this section that digitally implemented
 

controls would be based on discrete-time versions of the distributed
 

parameter system (2.7). One such version is obtained by using a uniform
 

time step At:
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v(k + 1 Pv(k) + E f'k 

y(k) :Cv(k)
 

At 
where D E U(tt) and E = E0 B f U(T) dt B and the control command is 

0 
a constant f over the interval (k - 1) At < t < k At. Other versions of 

this could be obtained with nonuniform time steps. When the ROM procedure 

of projecting onto the subspace HN is used, we obtain the discrete-time 

versions of (2.9)-(2.11):' 

VN(k + 1) = PN VN(k) + 0NR vR(k) + EN fk (2.19) 

vR(k + 1) = 0RN vN(k) + 6 VR(k) + EN fk (2.20)
 

y(k) = CN VN(k) + CR vR(k) (2.21) 

When HN is the modal subspace, the above become:
 

vN(k + 1) = (DN vN(k) + EO BN fk (2.22)
 

vR(k + 1) = PR VR(k) + E0 BR fk (2.23) 

y(k) = CN vN(k) + CR vR(k) (2.24)
 

where (2.22) is the same as that obtained by directly discretizing the
 

ROM in (2.12); if the exact mode shapes are not available, these two
 

discretizations may yield different results. In addition, the sampling
 

process can alias residual modes and increase observation spillover and
 

the zero-order hold process can spread-out the control command signal
 

spectrum and, hence, increase control spillover by increasing the energy
 

in the residual mode spectrum; this has been observed and investigated
 

in [44]. Therefore, the time discretization is a very important factor
 

in the design of implementable LSS controllers.
 

3.0 TOWARD ADAPTIVE CONTROL OF LSS
 

In order to design MMC, or other controllers, for LSS as proposed in
 

the previous section, we must have knowledge of the ROM parameters (AN'
 

BN, CN). These parameters are obtained from modal data; they are the
 

mode frequencies for AN and the mode shapes at actuator and sensor loca­

tions for BN and CN, respectively. 'This data is required for three
 

reasons:
 

http:2.9)-(2.11
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(1) to determine controllability and observability of the ROM and,
 

hence, to help locate control devices effectively;
 

(2) to design control and estimator gains;
 

(3) to use in the state estimator's internal model.
 

However, we have noted in Sec. 1.0 the sources of error for this data;
 

consequently, a need arises for an adaptive version of the MMC of Sec.
 

2.0.
 

The most logical and reasonable procedure to obtain adaptive con­

trollers for a LSS seems to be the following:
 

Procedure for Adaptive LSS Control
 

(a) choose a "nice" reduced-order model (ROM); a modal ROM
 

would be the obvious choice;
 

(b) use your "favorite" lumped parameter adaptive control
 

scheme;
 

(c) design the adaptive controller as though the ROM were
 

the actual LSS to be controlled, i.e., ignore the un­

modeled residual part of the structure;
 

(d) use this adaptive controller in closed-loop with the
 

actual LSS and hope for the best.
 

There is nothing wrong with Tollowing this procedure as a best first guess 

- in a way, there is little else that one can do to produce an implement­

able adaptive LSS controller. 

In some cases, spillover is sufficiently small or enough other mathe­

matical structure is present in the system, e.g., a high level of damping
 

in the distributed parameter system [31] or low level of performance re­

quired from the controller (increased damping via direct velocity feedback)
 

[32], to allow the adaptive controller to operate. However, these situa­

tions are rare with LSS and one would not like to count on the "generosity
 

of nature" or the temporary suspension of Murphy's Law as part of the
 

above design procedure. Consequently, we would add the following items to
 

that procedure:
 

(e) analyze computer simulations of higher-order models of the
 

LSS in closed-loop with the adaptive controller based on
 

the lower-order ROM (e.g., simulate more modes than you
 

plan to control);
 



(f) 	investigate the specific mathematical mechanisms whereby
 

the residual (unmodeled) part of the LSS couples into a
 

given adaptive control scheme (e.g., find out where and how
 

spillover affects the adaptive controller);
 

(g) obtain mathematical results on the amount of spillover
 

and/or model error that can be tolerated in the closed­

loop system and still provide adequate adaptation and control;
 

(h) develop spillover and model error compensation schemes to
 

augment the adaptive controller when the residuals cannot
 

be tolerated (e.g., when the conditions of (g)are not sat­

isfied);
 

(i) 	recheck (g)with this compensation in the closed-loop system.
 

We believe that, within the basic framework of LSS control as de­

scribed in Sec. 2.0, this Augmented Procedure (a)-(i) will go a long way
 

toward revealing the problems of adaptive LSS control (and indeed-, most
 

other adaptive control situations where control must be based on a ROM)
 

and will help to focus needed attention on these crucial issues. For
 

example, although Step (e)would be done most lias.. some point in
 

the system development phase of any project a e-construction and
 

operation of a LSS, often it is done much too late and the design is
 
"set 	in concrete (or in this case, graphitE-epoxy)"; the other steps
 

(f)-(i) may not be done at all. Yet, ignoring the effects of the resid­

ual unmodeled LSS can produce some disasterous behavior in the adaptive
 

controller; this was pointed out quite clearly in the LSS example in [36].
 

When an adaptive scheme is applied to such a lightly damped, oscil­

latory system as a LSS, the stability of the closed-loop system during
 

adaptation is a necessity; therefore, we do not view convergence-and
 

(global) stability results as luxuries for adaptive LSS control and shall
 

only consider appropriate those lumped parameter adaptive schemes for
 

which such results are available. However, even a globally stable adaptive
 

scheme may prove to be unstable when it is used in closed-loop with the
 

actual LSS instead of the ROM on which it was based. This is not a failure
 

of the adaptive scheme; it is a failure to satisfy the mathematical hypoth­

esis of the stability result associated with the scheme.
 

ORIGINAL PGOE IS
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In the rest of this section, we shall study the use of two very 

general adaptive schemes which seem to illustrate the problems and poten­

tial of adaptive LSS control: the indirect schemes of E23]-[24], which 

use an adaptive observer and operate in contuous- time and the discrete­

time, direct or indirect, schemes which are based on an Autoregrjessive 

Moving Average (ARMA) g1&del of the controlled plant, e.g., [25]-[27]. 

These approaches represent a good cross-section of available lumped 

parameter adaptive control schemes which have been shown to possess the 

desired stability properties. We emphasize that the. point of this sec­

tion is not to criticize or slander these schemes; rather, we mean to 

point out where the hypotheses of their stability results are violated, 

and must be modified, when we attempt to use them on LSS. We feel that 

consideration of these approaches within the context of the Augmented 

Procedure for Adaptive LSS Control (a)-(i) will illustrate the generic 

difficulties in the application of existing, well-behaved, lumped param­

eter adaptive control schemes to LSS. 

3.1 Multivariable Systems Converted to Scalar Systems
 

The results of many stable adaptive schemes, e.g., [13]-[14], [23]-[24],
 

are limited to a single actuator and/or a single sensor; yet, we have seen
 

in Sec. 2.0 that most LSS co:.trol problems will involve multiple actuators
 

and sensors. One way to deal with this (although, admittedly it has its
 

drawbacks) is to convert the controllable observable LSS problem via out­

put feedback i.ntp one that is controllable and observable from a single
 

actuator and/or single sensor; this can be done with almost any output
 

feedback gains [45]-[47]. These gains would have to be based on the best
 

available calculated ROM data and the designer must hope that they wtll
 

continue to do their job during adaptation.
 

The output feedback modifies the original system (2.9)-(2.11) to be­

come:
 

N = (AN +8 N HN CN) vN + (ANR + BN HN CR) vR + bN f (3.1) 

= (ARN + BR HN CN) vN + (AR + BR HN CR) vR + bR f (3.2)
R .


y T +J (3.3) 
whN N R R
 

where MN is the output feedback gain matrix, b N' b R' c N' cR are vectors,
 

http:2.9)-(2.11
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and f,y have been renamed. Let A + B H C be AN, etc. and we have 
*AT N N N N N'ecanwehv 

that~new ROM (AN bN3 cN) is a controllable, observable single input, 

single output system and (3.1) and (3.2) become:
 

N = AN VN + ANR VR + bN f (3.4) 

VR ARN vN + AR vR + bR f (3.5) 

3.2 Indirect Adaptive Controller Design
 

We apply the design of the adaptive controller in [24] directly to
 

the ROM consisting of (.3.4) and (3.3) with the assumption, for now, that
 
- T
 
ANR = 0 and cR 0.
 

The control law is given by
 

f(t) = gN N(t) + (3.6)
 

where gN is a constant gain vector, fc is a "sufficiently rich" external
 

signal (more about this later), and vN is derived from the following­

adaptive observer (or state estimator):
 

vN = F vN + gy + hfi; vN(0) =v (3.7)
 

where F is an arbitrary, stable matrix and g, h are unknown parameter
 

vectors. The appropriate matching conditions are:
 

N N
 

voh* b (3.8) 

v0 .N(O) 

where g*, h* are constant.
 

Let p* [g*T h*T V (O)TIT and note that
 

= F p*; p*(O) = po (3.9) 

where F z diag [0 0 F] and, when g = g*, h = h*,.we have from (3.8) and 

(3.7): 
vN(t) = [M(t) IN] p*(t) (3.10) 

wherF(teIN-) ) IN f(T)] dT and we have used the fact 

where M(t) scaleL 
th-at h, 'f are scalars. 
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Now 	(3.7) can be rewritten as
 

1
vN(t) = [M(t) 1N p(t) (3.11) 

A(t) = F M(t) + [IN y(t) IN f(t)] (3.12) 

M(O) : 0 (3.13) 

where M(t) is as defined in (3.10) and we have yet to produce the adaptive
 

law to generate p(t). This adaptive law is given by the following:
 

P(t) = F p(t) - a(t) £R(t) p(t) + r(t)] 	 (3.14) 

where p(O) P0 is arbitrary and 
R(t) = -q R(t) -FT R(t) - R(t) F + [M(t) IN T cw c? [M(t) IN] 

(3.15)
 
R(O) = 0 

and 

T
(t) = -q r(t) - ?T r(t) - [M(t) IN] cm y(t) 

(3.16)
r(O) =0 

where a(t) is the adaptive gain and the constant q is chosen to exceed 

twice the absolute value of the real parts of the eigenvalues of F. The 

adaptive gain is chosen so that 

a(t) = y + 11(t)fl (3.17) 

where 

=-i (t) + (N/2) (Iy(t)I + If(t)I) (3.18) 

with X positive and F + FT < 2), I.N

3.3 Convergence Results: What Goes Wrong?
 

All of the above is exactly as stated in [24] where it is also shown
 

in Appendix I and II that
 

A~t) ->11MMt11 (3.19)
 

and, 	with f(t) sufficiently rich in frequencies, there is a tI such that 

R(t) > p IN > 0 for all t > tI (3.20) 
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In addition, it is shown in Appendix III that
 

R(t) p*(t) + r(t) = 0 (3.21)
 

This is very crucial to the stability results of [24] and it is here that
 

observation spillover (i.e., the fact that we are using a ROM) appears ­

(3.21) 	is not valid when cR ' 0; however,
 

R(t) p*(t) + r(t) = AR(t) (3.22)
 

where AR(t) 0 e-(q + FT) (t - )[M() IN]T cN CT VR(T) dx 
1 [M~t) CR VRt 

Let eN(t) ?N(t) - VN(t) and - tp(t) - p(t) - p*(t); then 

eN(t) = [M(t) IN] Ap(t) (3.23) 

and 

Ap(t) = [F - ct(t) R(t)] Ap(t) - a(t) AR(t) (3.24) 

Consider V(t) = Ap(t)T Ap(t) and we obtain: 

V(t) -y p V(t) - 2y AR(t) Ap(t) (3.25) 

where V(0) p0 Ap0 and Ap0 = p0 - p*" 

This follows [24] except for the additional term in (3.25); also 

note that 

IleN(t)II V(t) [I + 1(0) (3.26) 

Let AvN(t F vN(t) - vN(t) and AvR(t) vR(t) - v*(t) where va and v* 

represent the idea-l states of (3.4)-(3.5) when the parameters are 

exactly known: 

VN(AN + KN + AR 'N' (3.27) 

V* (NRN + bN v +ARv + bRfc (3.28) 

with v*(0) = vN(0) and v*(0) = vR(0). 

When the implementable adaptive control law (3.6) is used, we obtain: 

VN (AN + bN g A R R bN gN eN (3.29) 

RweRN + N gT) AR (3.30)tRn 	 eN 


O-we 	 have the following result: 
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THEOREM 3.1: Assume
 
(1) CR = 0 

T stable
 
(2) AN + bN gN
 

(3) AR stable
 

(4) ANR = 0 
(5) f (t) sufficiently rich (i.e., it has at least 3N/2
 

distinct frequencies)
 

Then there is a 6 > 0 such that for all IIAP 0I 2 < 6:
 

(a) eN(t) is bounded and (eventually) vanishes with an
 

arbitrary exponential rate
 

(b) lim AvN(t) = 0
 
t­

(c) lim AvR(t) = 0.
 
t-


Therefore, even though the closed-loop system with the adaptive
 

controller is highly nonlinear, it is stable while the adaptation
 

is taking place. In particular, (1), (3), and (4)are satisfied
 

if there is no observation spillover (CR = 0) and no model error
 

(ANR = 0) and some damping in-the residuals (i.e., AR is stable).
 

Proof: This result follows from the results of [24] because AR(t) = 0 in
 

(3.22) when c R 
T 

0. The stability of (3.29)-(3.30) is determined by 

AN + bN gN and AR when ANR = 0. Also, if CR = O, then ANR = ANR' AR = AR' 

and cR = 0 since it is a row vector of CR. 

Note that the stability of the system with adaptive control is
 

determined by that of (3.27)-(3.28) - the ideal case where the parameters
 

are known and the external sional fc is applied. This is natural, since
 

adaptation cannot takeplace without fc present; however, after adapta­

tion, we would most likely want to turn off fc" In addition, we could
 

choose the fc signal so as not to extite the residual frequencies whenever
 

sufficient spectral separation is present. Still, we would need to turn
 

on fc now and then, in order to "tune-up" the controller.
 

3.4 Spillover Compensation for the Indirect Adaptive Controller
 

The above result is merely a slight extension of the results of [24]
 

to a special case of the adaptive controller based on an ROM instead of
 

http:3.27)-(3.28
http:3.29)-(3.30
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the full system. However, i-t does suggest that some form of compensation
 

should be used to eliminate the observation spillover. Such compensation
 

must be essentially independent of the parameters of the ROM; most
 

methods of spillover reduction require-knowledge of the ROM (and some
 

residual) parameters.
 

One approach to spillover compensation already suggested in Sec. 2.0
 

is prefiltering the sensor outputs to remove or greatly reduce the term
 

CR vR(t). Such prefiltering can be achieved with low-pass or band-pass
 

filters when the ROM frequencies are known and separated from the residual
 

frequencies. However, the modal frequency data is part of the poorly
 

known parameter data.
 

In an attempt to resolve this predicament, we could try using phase­

locked loop (PLL) based filters with the center frequency of each loop
 

tuned to the best approximation available of the corresponding ROM,. The
 

PLL will adapt itself until'it tracks the actual mode frequency and,
 

after "lock-on," it will behave as a narrow band-pass1 linear filter which
 

tunes out the observation spillover from the other frequencies [43]. Of
 

course, sufficient spectral separation must be present, the calculated
 

values of the ROM modal frequencies must be suffitiently good, the dis­

tortion introduced by the filter must be sufficiently small, and the
 

adaptive controller rust not shift the poles around too much. Thus, the
 

PLL prefilter is'not a panacea! But, it might work to reduce spillover
 

and, if it does, it has the added advantage that its -output could also
 

reveal better estimates of the modal frequencies; this would take some
 

of the load off the adaptive observer. If the adaptation mechanism causes
 

too much pole shifting, the ROM-frequencies could be excited via fc and
 

identified iv open-lcop by the PLL filters before the adaptive controller
 

is turned on. Note that modal frequency data is usually better known,
 

via computer approxiration, than modal shape data; hence, this approach
 

might not be unreasonable. Another possible, but untried, approach to
 

spillover compensation might be an adaptive version of the orthogonal
 

filter. in [E48].
 

Note that some prefiltering(and postfiltering) always takes place 

due to the bandwidth limitations of the sensors (and actuators). Whether 
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A problem that arises with the use of the results in [24] and their
 

modification to LSS is that the constant feedback gains gT must be cal­

culated, inadvance, to stabilize AN + bN gN It would be better if
 

these gains were adapted along with the parameters in the observer. Of
 

course, after adaptation has taken place, they could be recalculated
 

from the "tuned-up" parameters, but, in some cases, the adaptation phase
 

is never over, e.g., slowly-varying parameters. Other-approaches could
 

be used for adaptive pole-placement, e.g., [20], [21], but these also
 

have their limitations,
 

3.5 ARMA-Gettin'
 

Many discrete-time adaptive control schemes depend on an Auto-

Regressive Moving Average (ARMA) representation of the plant in discrete­

time, e.g., [25]-[27]: 

N 	 N 

y(k + N) 	 f atr y(k + r - 1) + Z Sr f(k + r - 1) (3.31) 

r=1 r=1 

for-some N and appropriate matrices cr, Er* What the ARMA says is that,
 

after N time steps, the present output is only related to the past N out­

puts and inputs. Existence nf an ARMA is directly related to the finite
 

dimensionality of the plant (N is usually that dimension) and is obtained
 

using the Cayley-Hamilton theorem for matrices. For LSS, only a "quasi-


ARMA" can exist; these were considered in detail in [49]. From the
 

Appendix of [49], we obtain the quasi-ARMA for the LSS (2.18) or (2.19)­

(2.21):
 

N 	 N 

y(k + N) = ar y(k + r - 1) + rr EN f(k + r - 1) + R(k) (3.32)
rl 	 r N
 

r=1r=
 

where
 

N
 

R(k) = CR vR(k + N) + _ Ar VR(k + r - 1)
 

r=1
 

Ar =r rr'NR r
 - ' 
CR
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and rr is defined in the Appendix of [49]. Since R(k) = 0 when CR = 0
 

and Ar = 0, we have the following result:
 

THEOREM 3.2: When the observation spillover (CR) and the
 

model error term ((DNR) are both zero, the quasi-ARMA (3.32)
 

is a true ARMA for the LSS (2.18),and any stable adaptive
 

scheme based on this ARMA will be globally stable when used
 

in closed-loop with the actual LSS (2.18).
 

When the rather stringent hypothesis of Theo. 3.2 is not satisfied
 

(as it may not be in practice), any adaptive LSS control scheme based on
 

the quasi-ARMA (3.31) must ignore R(k) in order to be implementable. How­

ever, R(k) is the term where the residual effects - spillover and model
 

error - enter the scheme and can cause instability. Again, as in Sec.
 

3.4, prefiltering or other compensation might be tried in an attempt to
 

reduce or eliminate this term.
 

4.0 CONCLUSIONS
 

In an attempt to point out the crucial issues and generic problems
 

associated with adaptive control of large aerospace structures (LSS), we
 

have reviewed the framework for nonadaptive LSS control (Sec. 2.0) and,
 

within this framework, have proposed a general procedure, based on
 

reduced-order models (ROM) of the LSS, for obtaining and assessing the
 

problems of adaptive LSS controllers (3.0). In addition, we have taken
 

a closer look at the use of certain well-known, lumped parameter, stable
 

adaptive control schemes in this procedure. Taking these schemes as
 

representative of the basic ideas present in all lumped parameter adap­

tive control approaches, we have obtained corresponding LSS adaptive
 

controllers and found the following generic problems associated with
 

adaptive LSS control:
 

(1) LSS are distributed parameter or large scale systems;
 

therefore, the plant dimension is always larger than
 

the dimension of the adaptive controller, which must be
 

based on i ROM;
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(2) LSS control must often be done with more than one actua­

tor and sensor; conversion of multivariable to scalar
 

systems via output feedback introduces problems of its
 

own (e.g., stability of the residuals);
 

(3) LSS control problems are often non-minimum phase due to
 

noncoilocated actuators and sensors;
 
(4) Interaction of the residuals with the adaptive control­

ler may negate the stabilizing properties of the con­

troller due to observation spillover; this interaction
 

is much worse due to the nonlinear nature of adaptive
 

control;
 

(5) Methods of spillover compensation for LSS often require
 

knowl-edge of the ROM (and some residual) parameters ­

the very data that are poorly known;
 

(6) The adaptation mechanism may shift the closed-loop fre­

quencies around; this counteracts the benefits of any
 

prefiltering unless sufficient spectral separation is
 

maintained;
 

(7) Indirect adaptive controllers need sufficient excitation
 

from an external signal fc; however, this signal may
 

substantially excite the residuals.
 
(8) Discrete-time adaptive controllers can only be based
 

on quasi-ARMA rather than strict ARMA representations
 

of the LSS; this may negate the stability properties of
 

such a controller.
 

Stable adaptation is essential for such highly oscillatory systems
 

as LSS, yet our preliminary stability results, Theos. 3.1 and 3.2, both
 

require that observation spillover be somehow completely eliminated
 

before it reaches the adaptive control logic; certainly, this is not
 

an easy thing to do in general: Perhaps, global stability is too much
 
to ask for LSS adaptive control because observation spillover will
 

always be present to'some degree in LSS control. However, it seems rea­

sonable to hope for the development ofspillover bounds to give some
 
idea of regions of stability for the successful operation of LSS adaptive
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control. Some comparison should be made between stable adaptive ton­
trollers based on ROM and stable, robust control schemes, e.g., [50],.
 

[51].
 

Inclosing, we would like to say that it is not our intent t6 present
 

a gloomy picture for the application of adaptive control to LSS. In
 
fact, the need for adaptive control in LSS is already becoming quite
 

clear, and recognition of this need comes, for a change, at an appropri­

ate time -,before any LSS have been built and put into space. However,
 

the development of adaptive control for LSS will not take place overnight
 

and will not be done by one or two people. Consequently, what we have
 
tried to stress here for the interested researcher are some of the funda­

mental problems that arise and the basic steps which need to be taken
 
toward the goal of successful adaptive control of LSS. Inthe long run,
 

we have high hopes for the success of this endeavor and we expect that
 

adaptive control theory will profit by its association with large aero­

spAce, structures, as well.
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