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I. Recent Progress Summary

The research sponsored by NASA Langley Research Center Grant NAG-I-7
is addressing the reduced order model (ROM) problem in distributed para;
meter systems (DPS) adaptive identification and control by focusing on
the development and evaluation of an adaptive controller applicable to
the active stabilization of a DPS, such as a large flexible spacecraft,
given a necessarily reduced-order expansion approximation model structure.
The adaptive control strategy chosen for investigation [1] was an outgrowth
of earlier NASA-sponsored efforts to combine the modal expansion endemic
to the large flexible spacecraft community {2] and self-tuning [3], which
is the most widely accepted lumped-parameter system (LPS) adaptive control
strategy. The annular momentum control device (AMCD) [4] [5] was used as
the test example.

The difficulty encountered in the initial work [6]}-[8] supported by
NAG-I-7 was the deleterious effect of control and observation spillover.
Two interpretations of this problem, which is unavoidable iﬁ application of
existing LPS adaptive control schemes to DPS expansion descriptions, have

emerged. In [6] and {8} a discrete-time state model of a generic class

of DPS
V(eH) = B V() + G, Vp(k) + By £(10) (1)
Vp(ktl) = Bo . V(k) + @, Vp(k) + Ep £(k) (2)
y(k) = Gy Vi (k) + Cp Vp(k) (3)

is formulated where the subscript N denotes the ROM quantities and R the
residual model quantities. Assuming that the projection generating the
ROM is done into the modal subspace yields gNR = ﬁRN = 0. This state-

space interpretation and attempts at its adaptive control resulted in the



following observations: (i) If there is no observation spillover, i.e.

CR = 0, and no model error, i.e. @ = 0, then an indirect adaptive coantrol

NR
strategy, e.g. [9], can be globally stable {8]. (ii} Unless CR = 0 and
@ - =0 (1) is only a quasi autoregressive moving-average (ARMA) and not a

NR

true ARMA model [6)}. The alternate interpretation of the ROM effects
presented in [7] is based on consideration of two types of identifier
strategies. A DPS sufficiently accurately described by a very high

dimension modal expansion

N
d(e,t) = ) W.(t) 6.(s), (4)

where the ﬂj are the spatial mode ‘shapes and Wj their amplitude time
histories, can be approximated by either a subset of the N mcdes of (4)
M ]
dp(8,t) = .Z W, () @j(s) (5)
j=0
or by a selection of ﬁj to minimize some measure of d-d with

3(8,::) = Z

J Wj(t) mj(s). (6}

0
In neither (5) nor (6) must the M+l modes used in the ROM be the first
M+l in the full N+l mode expansion. The observations made in [7] were:
(1) Since only d can be measured some signal processing is necessary Lo
yield dR in order to solve (5) for the nonphysical W& needed in the in-
dividual modal dynamics identifiers and controllers. (ii? The fitting of
d to d by selection of the ﬁj may not yield adequately accurate values of
Ehe corresponding Wj for stable modal identification and control. This
latter fact was emphatically demonstrated in [7] by simulated use of (6)

and resulting DPS ilnstability. Observation spillover can be interpreted

as the source of difficulty in extracting dR from d or in having ﬁj



closely approximate Wj if d is fit to d. Unfortunately the apparent use-
fulness of proposed approaches to observation spillover reduction is

severely limited [6]-[8].



I1. TFuture Plaans

Since observation spillover seems to defy complete removal, the question
in applying available LIPS adaptive control techniques to a ROM of a DPS
appears to be their limits of tolerance to observation spillover. Un-
fortunately, the LPS adaptive control lLiterature contains very little
generalizable insight into the reduced-order adaptive control problem. In
fact the nonadaptive LPS reduced-order control problem is currently an open
regearch question.

Therefore in order to pursue the original objective of DPS adaptive
controller development by judicious application of existing LIPS adaptive
control schemes, the thrust of the future research under NASA Grant NAG-I-7
is being shifted to LPS reduced~order adaptive controller (ROAC) studies.
The insight gained on this subset of the DPS adaptive control problem wﬁll
hopefully prove transferable. Admittedlﬁ the ROM effects are slightly
different. In LPS RCAC the problem is the lower order of the dynamic model
selected; while in DPS ROAC the orders of the individual modal dynamics are
.assumed accurate but the number of modes is insufficient. However the
source of difficulty in both can be viewed as spillover.

Consider a discrete-time LPS described b& the transfer function

Y(z) bl eb

2
H(z) = U(z) z-a

1 2y

(7N

In a state description similar to (1)-(3) e would correspond to CR and due

to the partial fraction expansion QNR would equal Q for the ROM

P(k) = & y(k-1) + b u(k-1). (8)



Assuming a stable control objective of

a(z) = %3 - z_:i? => x(k) = cx(k~1) + dr(k-1) (9)

the control effort

u{k-1) = £ir(k-1) + f2 y (k-1) (10)
with
d
L
£, = ca (12)
2§

would adequately control (7) if € = 0 and b and a2 had converged to bl and

ay respectively.

E0ur generic possihbilities will be tested for tolerance to nonzero e
for this simplistic reduced-order model reference adaptive contrel (MRAC)
task: (i) equation error based indirect adaptive control (EI), (ii) equation
error based direct adaptive control (ED), (iii) output error based indirect
adaptive control (0I), and (iv) output error based direct adaptive control
(OD). The EI approach uses equation error identification [10} of the
plant parameters in a self-tuning [3] solution of the stated MRAC problem.
The EO techmique is based on an input matching [11] [12] solution to the
MRAC problem. The OI approach uses HARF [13] as an output error plant
parameter identifier in conjunction with the separation (or "certainty
equivalent”) assumption of self-tuning. The OD scheme is based on an
output error identification Interpretation [14] of the MRAC problem with
a minor modification in the control law so the adaptive centroller can

be put in the form of the error system in [15] and proven convergent.

Though these approaches are asymptotically equivalent for e = 0,



variations are anticipated in this ROAC test. The complete algorithms for
each case are listed below:

Plant: y(k) = (al+a2)y(k—l) - (alaz)y(k-2)

+ (bl-i-bze:)u(k—-l) (b a +Eb a )u(k—-Z) {(13)
EIL: (k) = a(k) y(k-1) + bk)u(k-1) (14)
(D) = g + WD [YI-509] (15)
l+py2(k—l)+pu (k-1)
ﬁ(k—l-l) = B(k) + pu(k-1) [Y(k)“}’(k)] (16)
Ly ? (k-1)+pu’ (le-1)
B = d (17)
b (k+D)
By = &R0 (18)
b(k+1)
um) = £, 1(k) + £,00 (0 | (19)
R R Hit (k-1) [dr(k-1)+cy (k-1)-y(k)]
ED: () = B (D) + . (20)

(sgnb) (max|b]) [+, v (k-1 +u Y (i-1) ]

. ] My (e=1) [dr (k=1)+ey (k-1) -y (k) ]
£,(k) = £,(k-1) + 5 5 (2D
(sgnb) (max|b|) [THuyr” (k=1)+u,y° (1-1)]

u(k) = £ (k) + £,k) y) (22)
OL: (k) = a(k) z(k-1) + b(k) u(k-1) (23)
A(ktl) = ak) + Hzlk-L) [y(k)—y(k) +alye-l) = 2(k=1)] o,y
1+ pzz(k—l) + pu (k—-l)
B(k'}'l) = b(k) + pu(k-1) [Y(k)"Y(k) + Q(Y(k“l) - z(k-1))] (25)
1+ uzz(k—l) + pu (k—l)
2(k) = a(k+l) z(k-1) + b (k+1) u(k-1) (26)



d

£ =7 (27)
b (k+1)
B (1 = A% (28)
b (k+1)
u(k) = fl(k) r(k) + Ez(k> y (k) (29)
0D: x(k) = ¢ x(k-1) + d r(k-1) (30)
fl(k) = fl(k—l) + ulr(k-l)[X(k) - y(k) + g(x(k-1) - y{k-1)}] (31)
B0 = By (k=1) + uyy(=1) [x(K) = y(B) + q(x(k-1) = y(k=1))] (32)

u) = B0 700 +-Fy0)

(14 P (e Duyy” (1) T =y (R)+q Ge(k=1) -y (k1)) ]
{33}

The sensitivity of each scheme to £ will be compared via determination
5 Max 9 9 max o,
of § (x(k)-y(k))°, k (x(k)}-y(k))“, ¥ u"(k), and k u“(k) for various
k k

a, and bi. Clearly the relative damping of the modeled and unmodeled
portions of the plant should prove important. The most basic ROM

1
rule-of-thumb is the ability to neglect modes with settling times 10

or less of the dominant modes., However, earlier research [6]-[8]

indicates that the smallness of e will also be important.
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ADAFTIVE CONTROL OF DISTRI

by

Mark &. Dalas
Electrical & Systems Engineering Department
Rensselezer Polytechnic Institute
Troy, New York 12181

Abstract

For many distributed parameter systems (DFS), such
as highly mechanically flexidble structures, it is essen-
tial to provide stable on~board/en-line adaptive con-
trol 1o the presence of poerly Xuowil System paRrameters.
However, such a controller nust be based on & reduced-
order model of the DPS and spillover (rom the unmodeled
ragiduals cen deterlorate the porformance of the con-
troller and, in some cases, defeat the whole purpose of
the adaptive contrel.

In this paper, we investigate direct and indirect
adaptive controllers based on reduced-order models of &
P8 and pernt sut the rmechanisms whereby spillover ean
upset thea stabll:iy of adaptive controliers. We present
gome conditions under which the adaptive.controllers re-
main stable in clesed-loop with the actupl DPS and point
out certain generic problems that must be overcome for
successful operaticon of adaptive DPFS control.

1.0 Introduction

A great sbundance of adaptive control schemes ex-~
ist,s for lineer, lumped parameter, small scale systems
[1], whose system parereters are poorly known, and the
epplication of adeptive control is being seriously con-
sidered {end, in some cases, hotly debaced) in a variety
of aress‘[EJ. The exxsting adaptive control methods can
be divided into two (not unfriendly) camps: direct
gchemes, where the avpilable control parameters are di-
reetly adjussed {adapted) to improve the overall system
perforsance, e.g. [3]-[6], or indirect {self-tuning)
schemes, where the plent parameters are estimated by
some reasonably fast system identification scheme and
the control commands ere generated from these parameter
estimates as thougt they were the actuasl values, e.g.
[7] [9]. The direct schemes ars usunlly nodel refcrence
adaptive, {.e. the controlled system (plant) is forced
%0 behave like a model system which has the desired per-
formance properties, such s translent response {pole
locations).

As €, Kreisselmeier succinecly put ii: "adeptive
control trades plant uncertainty for uncertalnty in the
closed=loon uystem behavior”; the stebility of a linear
system which uses an adaptive controller s often in
guestion because the closed-loop system <111 be hilghly
nonlinear during adaption. Direct (or medel referencel
adaptive schemes have achieved n great amount of success
in producing globally steble closed-loopr behavior under
certain technicel restrictions on the plant [6]. Global
stability of certain indirect schemes using adaptive es-
timators has been shown in [8], [9] vith rever restric-

tions on the plant replaced by the nesd for addition .of |

"sufficiently rich" external test signals to the control
commandg. Presently, sll stable ndaptive schemes ore
restricted to scaler {or at best, multi-input, single-
output} systerns; the stabllity for gereral multiveriable
systems remeins an lmportant unsolved problem in adap-
tive contrel. Another fundamental restriction is that
the plant must be of known finite dimension, and’ this
dimenaion must be smell enough to meet computationsl
constraints for the on-line use of the particular adap-
tive sclieme.

TRITL

WAB-12:15

bBu.LA

C. Rienard Jchnson, Jr.
Departnent of Electrical EZngineering
Virginia Polytechnic Institute & State University
Blacksburg, Varginie 2L061

Thag abimyvignee of pdaptive copntrol scnemeg is over-
wheiring and an undersiending of the interrsletionships
and - truciural cormonelity of these methods is desper~
ately needed; see [6], [10]-[11] for progress in that
direction.

- This peper pddresses the problems thet appear wvhen -
esven thr most wvell behaved (i.e. stable) adeptive
schemes ror lumped parsmeter systems (IPS) are applied
to linear distributed parameter systems (DPS), i.e. sys-
terms whose behavior must be medeled by partial differ~
ertial equacions (PDE}. Tt is natural to want to make
maximws Juse of the existing body of LPS adeptive con—
trol theory in the new context of DPS and it ig obvieus
that “someihing” will go vrong - sceording to 2 well

known {1k theorem: if it can go wrong, it will. We
want to point out some of the besic mechanisms through
whicvh titlngs cnn go wrong for adoptive control of DFS.

Qur viewpoint 15 shaped by experience with zpplication
of DPFS contrel to large serogspece strucgiures, €.g. [12]—
[i4], and this paper is an expansion of some of the

" topics preserted in [lS]; however, whet we have to say
here is In the broader context of DPS where applications
inciule such diverse toples as flutter suppressicen for
atreraft [16] and nctively controllied cival engineering
structures, e.g. tall buildings and long bridges, sub-
Ject to hign winds or earthgquakes {17].

The mesi fundamental, generic problem for adeptive
DI control :s thut DPPS are infinite dimensional and
any imnlementasble adaptive scheme nust be based on a
reduced-order medel {ROM) of the original system. There~
fore, the edaptive contreller order must alweys be
smaller than that of the plant no matter how much on-
Iine computational capability is available to implement
the controller. Tkis vielateg the hypotheses of all the
exiating giobal gtabillty results for direct or indirect
adnptive contrel. In our estimation, this makes- adap-
give AL control the ultimate reduced-order probled and,
until this problem iz solved (or circumvented), the
benelits of ndaptive control will be denied to vhat may
be ita most needy customer-DPS applicaiions. Prelimi-
nary ntlerpta at adaptive control for some specific DPS
have bteen rade in [18]-[2h].

.0 DPS Descrintion

———

“he elass of DPS considered here pay be described
by the Pfulindie,-:

v

t
¥ =

Av o+ B v(0) = v {z.1)

0

Y

where, for each positive time &, the(possibly vector-
valued) system stace v{t) is in H, an sppropriaste Hil-
bert space witn fnner product (+,') and corresponding
norm []+[|. The wperator A is a differentiel operator
which is tire-inveriant, has domain D{A)} éense in H,

and generates a Gy senlgroup U{t) on H. The control

vactor { i3 Ixl and the sensor ouiput vector 1Is Px1 and
rank B=!! and rank ¢=P; this means thet a finite numbery

of controi actuetors{¥) and sensors{P) are used.
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The semigroup U{t) is dissipative :n the sense
that

€ >0

{a.2)

”U(t)” i MOE

where MO > 1 and, €20 ({vhen €30, we nssure HG=1).

This means that the enevgy in v{3), f.e. 5lv(t)‘|2, is
conaerved or dlasipated, Tt Is koown [25], [355 that
if (2.2) does not hold with € > 0 tnen it cunuot be
made so even with idesl state feedback:

t = Gy {2.3)
because B hes finite rank. Therefore, we will usuelly
aasume £ > 0 beceuse most physical systems have some
dissipative mechansirs in them; however, € mey be ax~
tremely small {as it is in lerge aerospece structures).
Eguation {2.1) can represent a large class of DPS in-
cluding zechanically flexible siructures such as alr-
craft and spacecraft,

3.0 Reduced-Order Modeling of DPS

Even though {(2.3) may be the ideal feerlback control
lew, the full {infinite dimensional) state v is rarely
available. Implementable controllers for mest DPS nust
be based on on~board/on-line control computers which
process the P sepsor outputs ¥y and produce the M
control commands f. Hence, control dezsign mu.t be
?ase? on a reduced-order model (ROM) of the UPS in

2.1).

RCX¥'s are produced by projecting the syssenm {(2.1)
onto some -eppropriste finite dimensionzl subupace Hq of

H; such projections often are orthogonal but they need
not be. Let VN=PV and vR=Q\; vhere P 1is the projec-

tion of ¥ onto Hu and € ia the projection of I ento the

residual subspace (the suvbspace conmplementary to HN in
H) and, from (2.1}, we obtaln:
iﬁ = Agvy ¥ Agovp + B f (3.1)
::R = AV b Agvp 4 B € (3.2}
¥ o= Cyvy ¥ Cpvg (3.3}
where A3=PAP, AﬁuﬂPAQ, BN=PB, ete. The term? ER f and

CRVR are called control and observeticn sopillover, re-
walwy: o 1 1
gpectively; the terms AHRvR and ARHVH are celled model

error. The BOM is optaired from (3.1) and (3.3) with
ANR=0 and CR=0:

y . )

Vg ® Ay + By £ v {0) = P v, (3.%)

Ty .
The ROM state v, and the residual stete v, form the

" R
full state v= Vytve 3 when the projections are ortho-

gonal,
2 2 2
9112 = vgll? = [l )] (3.5)
. All controllers designed on the ROM (3.4) must be
evaluated in closed-loop with the full syste=n {3.1)-
(3.3}, i.e. the effects of the residuals vp through

zodel error and splllover must be considered. In some
cases these effects ere sufficiertly umall that they
can be ignored and the DPS 1s centr: Lled apiite well
from & POM<based coniroller; most times th.s'is ot the

1014

case-Murphy's low, again!

The cholce of subspace H, and type of projlection is

N
often a parter of clever design and ins:ight inte the
speelific DIG.  However, there ave some obvious candi-
dates, e.5. Gelerkin spproximation using any appropriate
spline bas:s [27]. Another good candfdate is the modal
subagace -

By = 5p {8, s oyl
with ’

Ag = Ao (3.8)
whers @k nre the orthonormal mode shapes {eigenfunc-
tions) of A corresponding to the eigenvalues lk.

Such mode shapes are avallable when the operator A is
normel and has compect resolvent; this is the case

for most mechoanically flexible structures modeled by
{2.1). Wots that, in many ¢ases, the exact mods shapes
may exist but not be 4nown. When the modal subspace is
used, the projection isassumed orthogonal and the model
errar terns AHR and AER are zero; however, the spillover
terms depend cn the actuator-sensor locations and the
code shapes and need not be zero. Other cholices of sub-
spece and methed of projection could be selected in an
attem tsﬁo reduce the medel error and spillover terms,
e.g. L28).

4.0 Honadavtive DPS Control

When the parameters of the ROM are completely knowm,
a linesar controller cnn be desizned:

ce H oy +H 2
FHE, v HH, 2 e U V-1 (k.1)
1 : -~
’ z = Haly + Hyp
where the contr3iler gains Hij are cbtained from the

BOM paramsters (AW, ):] CN) and the desired performance.

nr
Onece the contvroiler 1s deasligned, the effect of the re-
siduanls must be aralyzed using (U4.1] in closed-loop with
{3.1}-{3.3}. Znergy bounds have been produced ir [29]
to predict the effect of splllcver and model error on
the stability and performance of the reduced-ordesr non-
edaptive econtrol {L.1} with the DPS (2.1).

Exemples of controlled flexible structures have
been produced [13], [30] where the spillovar terms
caused.instabilities in the residumls even though the
ROM (3.4} {n closed-loop with the controller (L4.1) would
have been siable.

Digital implerented controllers would be based
on diserete-vime versions of the DPS {(2.1), Ons such
version can be obtained by using the uwniform time step
At with o constant control command f(k)} over the inter-
val {k=1)At< t < xAt:

v(k+1) = ¢v(k) + H £(k)
{4.2)
y(k) = ¢ »(k}

where ¢ = U{at) and E = fgt u{t) B dr, Other ver~

siocns could be obtained for example with nonuniform time
steps. whetd the ROM procedure of Sec. 3.0 is used, the
discrete-time versions of {3.1}-{3.3) became

valkel) = 2, wo{k) + & vplk) + H, £(k) {(h.3)
velkel) = do v (k) + ¢ volx) ¢ Hy (k) (b.4)
¥k} = o fk) + € volk) (4.5}



5.0 Adaptive Control of DPS

The natural approech for adeptive control of DPS
seens to be

(2} choose & nice ROM;

(b} use your Tavorite lLumped parmmeter edeptive
control scheme;

(e) design the adaptive controller as though the

RO} were the actual system to be ccnirolled;
enelyze the c¢losed-lcop behavaor of the adap-
tive controller with the actuai DPS. '

{a)

Often, step {d) ig omitted. This can be disasterous as
shown by the flexible struckture example in [3:].

Even a globally stable adaptive scheme may prove
to be unstable when used cn the full DPFS insteed of the
ROMs; this happens beceuse of the effect of spillever and
modal error. The indirect adeptive control scheme of
[8] uses an adaptive observer mnd would be globally
stable on the ROM undey certain techpienl restrictions.
Howaver, if it vere designed on the FOM (3.h) but used
on the- full DPS (2.1), it would not necessarily be sta-
ble; the mechanism whereby spillover enters the adaptive
control scheme and spoils the stability proof is dis-

layed in [15]. This is net s failure of the methed of
8]; it is & failure to satisiy the hypothesis of the
stability result of [8]-everv BPS wiil fm:l to satistv
this hypothesis unless the observation soirilover and the
rodel error term Ayp Bre both zerc (see Theorem in L15]).

The model error term is always zero when the exact mode
shapes are used for the RON but the observation spill-
over need tot be zero even then, Hence some reans of
coxpensetion, such as en adaptive prefilter [15] or an
adaptive version of the orthogenal filter [32], might
te wed to try to eliminate observation spilicver,but
this has not been fully studied.

ARMA-Gettin'

The stable direct adaptive control schenes depend
on an Auto—Regressive Moving Avernge (ARMA) representa-
ticn of the plant in discrete-time:

N N
y{e#f) = L ay{ker-1)+r L 8_ flk+r-2) (5.1}

ral =l

for some N and aprroprigte matrices e, 8 . “nat the

ARMA soays is thet, after ¥ time steps, the present out-
put I5 only relsted to the past N outputs ansd inputs.
Exiastence of an ARIA is directly related to the finite
dimensionality of the plant (¥ is usually that dimen-
sion) and is obtained using the Ceyley-Hamilicn thecrem
for matrices. For DPS, only & "quasi-ARIA" can exast.
From the Appendix, we obtaern the quasi1-ARMA Por the IPS
(k.2) or (L.3)}-{4.5):
o] K
y{k#l) = T ay(k+r-1} + I [ H_ rk+r-1}
=1 T = F B

(5.2}

+ Rix)

vherse
N
R{x} = Corplh+) + £ A vo(k+r-1)
=l

A, =T, typ- 0 gy
and I'r iz defined in the Appendix. Since i{k)=0 when
CR=0 and Ar=0, wve have the following resule:

(¢ } and the

Thecren: When the cbservation spillover S
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model error term {%,. ) ars both zero, the quesi- AFMA
He

{5.2) is a true ARMA for the DPS (4.2} and sny stabie
adaptive scheme based on this ARMA will be glopally sta-
ble when used in closed-loop with the actuel DPS (%.2).

This result for @irect schemes is analogcus to ¥he cne Jor
indirect schemes in [15]. Both results require that
chservation sprllover be eliminated somshow before it
reaches the adaptive control logie. This is not easy

to do in genernl!

6.0 Generie Problems in Adaotive of DPS Control

The most erucial problem of adaptive control of

DPS ig that the plent is infinite dimensicpel ond, ¢on~
sequently, the adaptive controller must be based on &
low-grder model-of the DPS in order to be implemented
with an on-lins/on~board computer. However, any con=-
troller based en a reduced-order model (ROM) must opare
ate in close-loop with the actual DPS; it interacts net
only with the ROM but slse with the resicduel subsystem
through tne spillover and model error erms. This con-
tributes the following generig difficuliies for stable
edaptive conirollers:

{1} interaction of the residual subsystem with the
adaptive controller mey negate the stabilizing
properties of the controller unlegs observa-
tiun spillover can be completely removed be-
fore it reaches ths adaptive control logie;
the nonlinesr nature of the sdaptation mecha-
nisms ipn these controllers substentially ag-
gravates the residual interaction problem
{note elimnetion of control spiliover alone
does not guarsntee stability as it does in the
nonad ipe1ve case) s

compensatior for splliover {and model error)
aften requires knowledge of the very plant pa—
rameters Shat ere poorly knowm-a vicious circles
the wdaptrtion mechenism may shift the closed-
leop requencies arcund {(i.e. the closed-loop
systen 15 time-varying as well as nonlinear};
this mnay countersct any benefits from prefil-
ter:ng to remove observetion spillover.

(2}

(3

(L)

In adertion to the obove, the following alse tend
to spoil the knewn stability results for adaptive con-
troliers:

{a) PP (operal problems are often non-minimun
phase due to nencollocsted actuators and sen-
sors; this presents a stabllity preoblem for
wirect sonemes bub not for Iindirect ones;

PP control must often be done with more then
one avtunlor and pensor; conversion of multi-
variable systems to scalar systems via output
feadback can be used to overcome the lack of

a multivarisble adaptive control dbut it intro-
duces some new problems ({.e. it may destabi-
1ize the residuals) {15];

i1ndirect schemes need sufficient exeitation
from externel test signals; however, these sig-
unls may substantially excite the residual sub-
sysien.

{b)

(<)

Sone robust or ndaptive way to counteract observa-
tion wpiliover must be found in order to meke stable
adapti¥e  pirnl of DF3 possible. Even then, obderva-
tion spillover will te present to some degree; conse-
quentl; , givhal stability may be too mucn to ask of
these vents foors. Developrent of splllever bounds,
glong the li=es of those for nonadaptive controllers,

may le able ¢ gilre same idea of the regions of stabi-
lity for  weras ™l speration of adeptive DP3 control;
such Jdesel et 1r pes in progress.

ORIGINAL PAGE IS
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Apvendix. Derivation of the Ouasi-ABUA [ea o DPG

In this appendix, we will derive the quusi-ARMA
(5.2} for the DPS {(k.3}-(L,S).

Frem (4.3}, deflne hik) se thnt

wkrl) = &y v () + nix) {a.1}
Then, for apy non-negative interme- I,
L L L-r
VH(}:"'L) = ¢" \rH(k) +E ¢_,{' h{k+r=1} (h.2)
r=1

Hote that the summation in (A.2) must be zere vhen L=0.

‘From the Cayley-Hamilton Theurem,

r=1
r ¢H

; N
rb" = ¥ {A.3)
r=}
Take L= 1n (A.2) and use (A.3) to obtwin
+f
v (k#h) = I (a (85 1w (k))+ &
N r=1 rH H|

H-r

g lher-1}]

{a.1)
From (A.2} with Le=r~l, obtain

_1 r=l 4 )
o vylk) = vﬂtm_n-ng o hleesan) (als)
Use (A.5) in (A.k]) -and obtalin

H
Vﬁ(k+H) = E

a v {k+r-1) + Q(k)
r=1 ra

(A.6)
vhere

N -

&fx) = ¢g—1 hik)+ I {¢§" h(k¢r-1)-o F

=2 ' .

h{i+g-1)1 :

N-1 W=z
{¢N -(a2+ Gy Oyt ety O

1} nix)

N-2 H-3vy .
+ -(a3+ Gy O e toy ¢ﬁ 1} nix+1)

+

{#y - ) h(ie2) + nlic+i-1)

Therefore, define rr by
i .
E T hlker-1)

=1

Ax) = (A.7)

-1

and use this in (A.8) to abtain
i
VN(k+N} =r§1 {arvn(k+r—l)+fr h{k+r=-1)}

{4.8)

Usz {A.8) in (k.5) to obtain
H

Flk+i) = r£1 a, fy(k+r-l)—cnvn(k+r—l)]
o

* I Toh (kdr=l) + Covy (ko)
r=1 ° :

(4.9)

Rearranging terms in (A.9) and using the definition of
h(k} in (A.1)}, obtain
3 N
y(kti) = & a y{k+r-l) 4 £
r=1 T r=l

r ¥y T(x+va1) + R{R)
¢ {A.10)
vhere

1016

i
R{x) = c?va(kvﬁ) + rzl Arvgtk*r-l)

and

= LY -
Be = Ty fap - %G

This {3 the lesired quasi-ARMA.
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Abstract

A recently developed strategy for adaptive sampled—-data contyol
of distributed parameter systems based on a plant modal expansion
description and modal simultaneous ldentificationm and regulation
algorithms is presented with fréquent reference to the annular momentum
control device (AMCD) test example. The requirement of observation
spillover reduction, which is especially crucial to the proposed

adaptive control strategy, is addressed.

Submitted to J. of Guidance and Control, June 1979. Revised October
1979. An earlier version of this paper was presented as Paper No. 1779
at the ATZAA Guidance and Control Conference, Boulder, CO, August 1979,

%
Assistant Professor, Electrical Engineering, Member ATLAA.
Subject Index Topic: Spacecraft Dynamics and Contrel.

.To appear in J. of Guidance and Control, vel. 3, no. 4, July/August 1980.




NOTATION

a, b modal differential equation parameters

A number of actuators

c number of modes controlled

d distributed parameter system deflection
dR reduced order modal model deflecticn

3 ] approximate reduced order model deflection
e identification error

£ actuator forces

F modal forces

M number of modes in approximate expansion

N number of modes in accurate expansion

s spatial variable

S number of sensors

t time

T sample period

W médal amplirudes

a, B modal difference equation parameters

Y, & nodal controller parameters

r AMCD spin rate

B ring particle angle with respect to reference particle
A desired discrete characteristic equation coefficients

B, p adaptive identifier step-size weights



actuator reference frame angles
partial differential equation expansion spatial eigenvectors
oscillatory modal amplitude time frequency

set of distributed system particles



Introduction

The control of large flexibie spacecraft has become an active
research and development topic, as demonstrated by'é recent surveyl.
Adaptive control of distributed parameter systems (DPS) is also an
emerging research concernz“s. Since large flexible spacecraft are
acknowledged to be described by partial differential equations with
uncertain, i.e. a priori indeterminable, parameters, such structures,
requiring increasingly stringent shape and attitude regulation, are
prime candidates for application of DPS adaptive control strategiesﬁ.

The objective of the present work is to provide a real-time
gimultaneous identification and control strategy applicable to DPS
in general and large flexible spacecraft in particular. The real-
time computation objective prompts the use of modal expansion descripticns
of DPS to permit some pargllel computation. The constantly activated
adaptability of simultaneous identification and control is needed,
for example, for adequate control of poorly behaved DPS, such as
véry lightly damped, large flexible spacecraft, during inadequately
predictable plant parameter changes due to operating condition wvariaticms.
Toward this goal, this paper improves a previously proposed strategy4

L]
with further attention to a step-by-step adaptive controller development
procedure and its consequences. The origiﬂal idea4 was to combine
a truncated modal expansion description used in flexible spacecraft
controll with a simultaneous identification and control (also termed

self~tuning7) adaption strategy to regulate the lumped parameter modal



amplitude descriptions. The procedure of the next section also
mentions the possibility of direct rather than indirect modal control
parameter a&aptionﬂ such as via model reference adaptive controls.

The outlined procedure also reacts further to the speclal problems
sPillover9 creates fog an adaptive implementation. This strategy

is followed in the third section to develop an adaptive. regulator of
the linearized, out-of-plane deflection of a spinning annular momentum
control device (AMCD), a candidate for large flexible spacecraft

4,10,11

control Simulations of this application are presented in

the fourth section. This example is also used in the fifth section
to illustrate the difficuit modal observation spillover reduction
problem. An enlarged framework for adaptive control of distributed
parameter systems, especially flexible spacecraft, is overviewed

in the conclusion. - Unfortunately, achievement of the grandiose

objective stated at the start of this paragraph is only (possibly)

~begun in thils paper.

A Distributed Parameter System Adaptive Control Strategy

For DPS describable by

d(s, t) = ] W.(£) ¢.(s), (1)
j=0 h|
wﬁere d is a vector-valued function of spatial location s and time ¢,
e.g. displacement for flexible spacecraft, ¢j(5) an orthogonal expansion
basis of shape eigenfunctions, and W,(t) the amplitude of the jth
shape functiom at time t, an adaptive control strategy has been proposedé.

Under the assumption that the amplitudes obey uncoupled, linear, ordinary

differential equations of known otvder, but with unknown coefficients, e.g.



n n—-i n-1i

d L a
—W. () = a., - W.(t) + b, - F.(t)], 2
ac™ 3( ) izl : P J1 g 0t 3( : . @

where F&(t) are the modal forces, then this strategy4 combines a

truncation of (1) with a modal self—tuning7 (or simultaneous identification
and control) adaptive ceontrol algorithm. The modal forces Fj in {(2)

are given by

FAt) = [ ¢.(s) £(s, t) ds, (3)
d sef J

where R is the set of all system particles and f£(s, t) the applied
spatially distributed forces. The espoused approach can control the
distributed parameter systém of (1) despite a lack of knowledge in

the aji and bji of (2), which can accomodate inaccurate a.pr;ori
expansion modeling or variability in thg aji and bji due to changes

in the operating conditions. This approach, to be outlined below,
relies on (i) the prespecification of rhe ¢j in (1) vielding uncoupled
{2) and (ii) the reasonableness of (1) after truncation. The second
assumption will be extensively examined in the latter sections of the
paper,

The adaptive modal contrel stiategya can be divided into two stages:
one prior to system operation and the other on-line. The recomnended
steps of pre-activation analysis are:

(i) Determine expansion basis ¢j in'(l).

(ii) Select finite expansion upper limit to approximate (1).

(iii) Specify sensor locations and relate distributed measurements of
d{(s, t) to the modal amplitudes Wj(t) in (2) via reversal of (1).

(iv) Determine actuator distribution and {ormulate effect on modal



forces Fj(t) in (2) via (3).

(v) Establish modal control objectives.

The recommended steps of real-time, adapting, sampled data control
formation are:

{(vi} Apply previously calculated actuation forces and sense d(s, t)

in {1} at sample instant.

{vii) Process sensor datz to estimate modal amplitudes Wj(t) in (2)..
{viii) Select the modes requiring control.

(ix) Process applied forces f(s, t) via (3) to determine achieved modal
forces Fj(t).

(x) TImprove the identification of the discretization of (2).

(xi) Design modal controllers on-line with current parameter estimates
to meet modal performance objectives.

{xii) Convert desired modal control to actual actuator commands.

{xiii) Repeat (vi)-{(xii) at the next sample instant.

The simultaneous identification and control strategy of steps (x} and
(xi) could be replaced by a siﬂgle step improving the controller parameters
by direct lumped parameter plant adaptive controllz_lA. The espoused
indirect strategy is more intuitive and currently more flexible in

terms of control objectives though more restrictive in terms of the

15,16 as manifested

general need for plant parameter identifiability
in adequate model complexity and sufficiently exciting input requirements.
As outlined the modal controllers rely only on past data to

determine the present control action. This allows the considerable

(despite the possible parallel execution of steps (x) and (xi))

4



computation to be done during the full sample period. The steps
{vi)-(xii) differ slightly from their earlier description4 due to
a fuller appreciation of the demands of steps (vii) and {ix),
especially (vii), which are discussed in later sections. Further,
detailed comments on each stage of this step~by-step procedure
are available4. The next section illustrates this strategy by
application to adaptive raegulation of the small, linearized,

out-of-plane deflection of a large, flexible AMCD.

AMCD Application

Large momentum vectors resulting in the rotation of large space
structures can be created smoothly by a solar-powered (and therefore
effectively non~depletable), dual‘momentum vector configuration of
two counterrotating AMCDs magnetically attached to the space structureé’lo’ll.
The AMCD components of these attitude control devices will probably be
as large in diameter as possible for such structures and as small in
cross section as possible in order to maximize their momentum/mass
ratic. Therefore such AMCDs would behave like lariats with translation,
rotation, and deformation modes of disturbance from their nominal planar
spinning configuration.

The step-by—-step procedure of the preceding section will be
féllowed in designing an adaptive modal controller of such an AMCD.

(1) The boundary conditions of ring closure permit the use of a

Fourier series to describe the linearized, out-of-spin-plane deformation

of the AMCD



=

dae, t) = jzo [Wcj(t) cos(j8) + Wsj(t) sin(j®) 1, (4)
which is of the form of (1) with the angle 6, measured around the AMCD
ring from a reference (8 = 0) particle to the location in question,
as the single spatial variable s. This sinusoidal basie is also the
eigenvector basis for this out-of-plane motion qf a homogeneous ring17.
(ii) Assuming that the higher spatial frequency deformatioms will
exhibit lower amplitudes, (4) can be truncated with arbitrary accuracy
as

N

d(e, t) = jzo (W () cos(38) +W_ (£) sin(38)]. (5)
This limit N may permit accurate approximation of (4) but be an infeasible
limit in-terms of controller computations. 1If a furthér reduction is
necessary, (5) and therefore (4) (and in effect (1)} will be roughly

approximated by either

M of [0,N]

M=

. | + { i
dp(8, .1 ) [Wcj(t) cos(j9) Wsj(t) sin(j8) 1], (6)
J
M of [0,N]
where E signifies a summation over the index j where j is any

3
M+l entries of the set {0, 1, 2, ..., N}, or

. A M of [O,N] . -
d(g, t) = ) [W .(t) ecos(j0) + W _.(t) sin(j8)], (7
F (k| k|

where the Wk k

due to the selection of W to best fit d to d given 2M + 1 point

are not necessarily the corresponding W in (6} and (3)

. . 1
measurements of d, e.g. as in the Galerkin approach .



(iii) Assume § sensor measurements of ring particle deflections
d(ei, t) at 1 =1, 2, ..., S can be processed simultaneously. These

measurements can be decomposed into modal amplitudes Wj by multiple

M of [0,N] M
concatrenation of (6) (or (7)) with ) replaced by ) , i.e.
i §=0
for the lower modes, as
dR(Sl,t) 1 cos(el) e cos(M@l) 51n(61) - sin(MBl) Wo(t)
dR(ez,t) - 1 cos(ez) . cos(Mez) Sin(@z) P Sin(Mez) Wcl(t)
dR(BS,t) 1 cos(ﬁs) .. cos(MBS) sin(es) .es sin(MﬂS) WCM(t) . (8
Wsl(t)
WSM(t)

With appropriate reindexing of the right side of (8) any M modal amplitudes

composing d_, in (6} could be written in this matrix form. The Gi may

R
vary from sample to sample, especially il the sensor(s) is not spinning
ﬁith the AMCD. Note that (8) requires measurement of dR not d. Obtaining
dR from d requires observation spillover removal, as will be addressed
later.

{iv) Assume A actuators are located in a reference frame fixed with
respect to AMCD spin, e.g. the suggestedl] magnetic "bearing’ actuators
attached to the spacecraft. From (3) where Q = {0[6 e [0, 21)}} an

assumption of* point actuation located at gy converts the integrals to

summations over the set of A actuators. Note that, due to an AMCD spin



rate of T radians/second relative to the actuator locations, the o

must be converted to the ring particle reference frame via

.

ei(t) = oi(t) - Tt, (2)

which assumes that the references 6 = 0 and g = 0 were aligned at

t = 0. Similar to (8), for the C modes to be comntrolled

- — _ - ~
Fo(t) 1 1 . 1 f(Bl,t)
Fcl(t) cos(ﬁl) cos(ez) cos(GA) .f(ez,t)
: = : : : : (10)
Fcc(t) cos(Cﬁl) cos(Cﬁz) - cos(CSA) f(GA,p)
F 1 (t) sin(8,)  sin(8,) ... sin(8,) ° i -
FSC(E) sin(Cel) sin(Cez) - sin(CﬁA)

can be forﬁéd.

(v) Ring stabilization requires mode damping. Satisfactory modal
damping can be provided by modal pole placement,

(vi) 1If d{(8, t) is provided by an effectively instantaneously scanning
sensor then any S ring particles can be observed. If the sensors are
incorporated with the actuators then (9) must be used since different
ring particles will be sensed at each sample instant. One other
possibility is more frequent sensor interrogation than actuator

reactivation, allowing additional signal processing‘possibilities

before control selection.



{vii) Sqlution for the {Wj] vector in (8) can be achieved by
pseudoinversionl8 or by a DFTI9 if the Gi are equally spaced. Note
that if the Gi are equally spaced such that Bi = 21i/S and § = 2M,
then Mei = ﬂi_and the rightmost column of the 8§ % (2M 4 1) matrix
in (8) equals zero. Therefore the column of sin(MGi) entries should
be removed to retain invertibility. In such a case the Mth mode
sine component is unobservable.

(viii) TIf C < M, the current strategles are to control those C
modes either with the lowest spatial frequencies or with the greatest
modal amplitudes. The assumption leading to (5) will tend to equate
these two classes.

(ix) TIf A < 2C+ 1 in (10) then due to the least squares solution
implemented in step (xii) of the last sample instant the desired Fj
most likely will not have been achieved and (10) must be calculated
to determine the forces actually reaching each mode needed in the
next step.

(x) For a large, lightweight AMCD (2) will be second order and

essentially undamped

2
d 2 .
g W] +e, (T, oW

dt

- (=
39 = G Ty, (11)

where the Mj denote the effective modal masses4 and the T and t arguments
of w are intended to evoke the slowly time-varying character of the modal
amplitude time frequency due to such operating conditions as spin rate
and temperature. HNote that the mapnitude of the osecillatory initial

condition response of (11) is inversely proportiomal to wj. The potatioen



of (11) (and subsequently (12)-(20)) is intended to encompass both
W ., and W .. HNote that both W . and W_, have the same w,, i.e.

el 5] c] N N
wcj = wsj' Assuming uniform sample intervals of T seconds and

constant wmodal forces over the sample period,

W.(k) = Wo(k-1) +a,, W, (k-2) + 8., F. (k-1 i F, (k-2
) = ey WD) oy W(k2) + By F(eD) + 8, FL(e2)  (12)

3
is an exact discretized predictor of the modal amplitude where

= 2 cos (ij), 6., = -1 and B B

- - _ 2
52 i1 (1 -~ cos ij)/(Mjwj .

%51 32
The.addition of damping in (11) will effect the definitions of «

and B but not the form of (12). Note that constant actuator forces

f over the sample interval will not generate constant modal forces

due to AMCD rotation. This can be combatted by actuater force
windowing. If the modal forces vary over the sample period, (12)
becomes an approximation only as accurate as the degree of coustancy

of Fj(t) over (k-2)T < t < (k-1)T and (k-1)T < £ < kKT. If the
structure of (12) is used for an adaptive identifier or to structure

a direct adaptive controller then uncertainty in mj, Mj, and the
neglected damping coefficient can be accomodated. The anticipated
problem in AMCD control is uncertainty in mj. The second-order (12)
can be identified by either of two broad classes of recursive parameter
estimators termed20 prediction error and pseudo linear regression and
represented by equation error2l and output error22 identifiers,

respectively. An equation error formulated identifier for (12) of the

form

10



ajl(k) o l(k—l)
~ e_(k—l)
sz(k) - Ajz(k—l) +
Byq (k) 8.1 (k=1) 1+ ) In, (k—l)w (k-i-1)+p (k—l)F (k-i-1)]
J ﬁJl i=1
L_ﬁjz(k) szck—l)—J
u.l(k—l)W.(k—Z)
(k—l)w (k~-3)
"2 )
P l(k—l)Fj(k—Z)
where '
2 ~~ ~
ej(k—l) = Wj(k~1) - izl[aji(k—l)wj(knl—l) + sji(k—l)Fj(k~1—l)] (14)
and
"0 < (@ <u (k&)< 2 and 0 <p ;1 () <p (k4)<:2 Vi, k, (15)

requires exact measurements of suffiéiently rich Fj and Wj for counsistent
identification.

(xi) Feedback regulation structures of second order dynamic output
feedback4 or equivalently (in the absence ¢f unmeasurable inputs)

nreconfigured state variable feedback achieved via
Fj(k) y (k)w (k~1) + y 2(k)w (k-2) + 5 (k)F (k=1) + a (k)F (k-2) (16)

will cause the modal plant-controller characteristic equation to converge

t0_z4 + A, 23 4 A, 22 + A, 2+ A,, if the controller parameters are chosen
jl j2 i3 i4

11



via

~

By00) = =hyy -y () a7
§jl(k) = [%jl(k)(;jZ(k) - Aj3 + (Sjl(k)&jl(k) - ;jz(k) - AjZ)

(o (0) = @y (98 (K) /B, () + i\jaéjl(k)/éjz(k)]/

[8y7 (e, (8) + B,y (0 ~ @) (083 (W/B,,(0)] (18)
83200 = ) (08,1 (K) = Agy = By (Y, (0) = 2, (0 (19)
Y520 = (8,,(0a, (0 = A )/B,, (0 (20)

~ A

and @ +~ o and B +~ B. WNote that the strictly causal formation of & and
é in (13)-(14) used in (17)-(20) to parameterize (16) permits the
assumed predictive control formation. Furthermore, the form of (16)
purposély avoids velocity measurements; which are expected to be
difficult to semnse for large AMCDs.

{xii) Lleast-squares solukion pf (10) for the £(-,r) is required if

A< 204+ 1,
Simulations

Successful simulations of this AMCD example have been reported

elsewhere4’ll’23’24. Consider here an AMCD described by (5) with
N = 4 and the mj in (11} equal to 0, 2.62, 5.24, 7.85, and 10.47 for
j=20,1, 2, 3, 4 respectively. For an AMCD spin rate of T = 60

degrees/second, a sample period of T = 0.1 seconds, and the same

damped pole placement objective for each mode of Al = -1.,684,

12



= 1.165, 13 = =0.402, and A

section was applied in the following cases: N =M = C = 4,

Az 5 0.0538, the strategy of the preceding
N=M=4>C=2,and N=£&>M= =2 For cach situation the

AMCD was given an initial deformation composed of unity modal amplitudes.
The adaptive controller was applied, with initial modal frequency

estimates {mj}j= = {4, 8, 12, 16} converted to initial parameter

,...,4
estimates in (12) via the discretization formulas, in an attempt to
stabilize the ring deflections to zero.

The AMCD simulation consisted of (10) with C replaced by N, which
converted the applied forces f to modal forces F which were assumed
constant over the sample interval, the ;se of the appropriate F in
(12) to update the N modal amplitudes W, and the formation of the
deflection d via (5) for all 8. The controller began with measurements
of d for use in (8), which Were_supplied by solution of (5) at the
appropriate sensor locations 8. The sensor locations were assumed
to be rotating wirh the AMCD. A special reflective mark on the AMCD
and a centrally located, scanning laser detection system can be
hypothesized as providing such ring particle deflections. The
measured d were used for the dR in (8) with M = 4 or 2 as required.
Solution of (8) provided the W used in (13) and (21). The improved
parameter estimates provided by (13) with all v = p = 1 were used in
(22)~-(25) to parameterize (21). When M > C, only the f for the
modes of lower spatial frequency were calculated. The past F in (21)

were provided by the previous results of {21). Step (ix) could be bypassed

since A was always chosen equal to or greater than2C+1. Inversion solution

13



of (1.0) provided the dpplied forces f to the AMCD simulation.

Figure 1 with ¥ = M = C = 4 illustrates the anticipated
effectiveness of the adaptive strategy in recovering from inaccurate
estimates of the mj and successfully stabilizing the initial AMCD
deflection, eventually to zero displasement. The asterisks on the
displacement curves mark the measurement points which are fixed
in the ring particle reference frame. The arrowheads along the
spatial coordinate 6 axis show inertially fixed actuator locations
with the length of the arrowshaft proportiomal to the applied force
according to the right-hand scale. The plots are drawn in the ring
particle reference frame so the actuator locations appear to Iegress
for the progressing ring. The success in figure 1 is not universal
for N =M = C. With only the desired pole locations changed to

values nearer the unit circle by A, = -~2.314, A, = 2.429, A

) = -1.176,

1 3

14 = (0.2, the proposed adaptive regulator fails via an often neglected
stall mechanism. For example, if the parameters in (13) when used
in (17)-(20) lead to an unstable modal controller, Wj will become
s0 larée in the denominator in (13) that the parameter estimates
are only insignificantly corrected. If this condition persists
long encugh, 211 claim of linearity can be abandoned in application,
thereby negating claims of eventual identifier‘convergence. This
stall mechanism, a characteristic of simultaneous identification
and control not peculiar to just the proposed adaptive DPS control
strategy, occurs in the cited example with the wcé (5 seconds) =
4,8 x 104 and prowing. This failure can be attributed to the

smaller stability margin of higher modal frequency estimates for

14



low frequency, light damping cbjectives. Different initial parameter
estimates nearer the actual modal frequencies can aveoid the stall of
this particular example. Also the sufficient excitation requirements
of simultaneocus identification and control7 are almost surely mnot

met in this regulation example, thereby encouraging an expectation

of failure., However, this pathological case does emphasize a need
fﬁr an understanding (currently nonexistent even in lumped parameter
system adaptive control) of closed-loop singularity migration during
simultaneous identificatiom and control.

Figure 2 illustrates the boundedness of the AMCD deflection
achieved in adapting from inaccurate mj prespecification with
N=M=4 > C= 2. The visible higher spatial frequency remnants
at t = 15 seconds are due ‘to the, choice to control only the lower
spatial'frequency compounents of d, which do decay to zero. Asymptotic
regulation of the full deflection is not achieved despite convergent
parameter identification in the satisfacrorily complex model due
to contrel spillover arising from use of a restricted complexity
controllerg. For lumped—parameter systems this limited success
of adaptive control when N = ¥ > C has also been documented elsewhereZ5.
For A > 2C + 1, i.e. an oversufficient number of actuaters for
solution of (10), pseudoinverse solution of (10) provides a minimum
control f energy solution, which can be expected to reduce the
deleterious control spillover. Figure 3 with A = 9 for € = 2
versus figure 2 where A = 5 for C = 2 clearly demonstrates this

effect.
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The possible failure of the propesed adaptive control strategy
when N > M is documented in figure 4 where W= 4 > M = C = 2. The
identifier of (13) is unsuccessful in converging on the actual ¢ and
B values due to the use ¢f d and not dR in (8). Since d is used
in (8) and a least squares solution is used to determine the W,
then actually (7) and not (6) is applicable. Figure 4, therefore,
shows the failure of attempting to use a modal control strategy when
approximately matching the full AMCD behavior with a reduced number
of modes. TFor this example, even if the o« and B were successfully
identified, uging the %j and not the Wj in (16) leads to instability.
Clearly a mixture of full behavior estimation and reduced-order
control strategies, though commonly pursued in practice, is ounly
valid if the modes omittéd from the model contribute negligibly to
the total behavior. Due to the control spillover reaching the
unmodelled modes, even in the event of no initial energy in these
mdoes this negligibility can not be assumed. The difficulty adaptive
control experiences due to N > M has also been noted in the lumped
parameter system case26. The next section considers a signal
processing strategy to combat this possibly-[atal problem by

filtering the d of (5) to provide the dR of {(8) to (8).

Observation Spillover Reduction

Inexact sampled Wj are provided to the modal identifiers due
to two sources of error: (a) aliasing, both in time and spatial

frequency domains, due to discrete measurments of d(s, t) and
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{(b) reduced-order modeling inaccuracy due to ¥ > M. However,
based on the characteristic of flexible spacecraft that higher modal
frequencies, e.g. the higher frequency ¢j for the AMCD in {4) as
i becomes large, have correspondingly higher modal amplitude time
frequenc%es, i.e. w, > mj for 1 > j, a strategy for extracting dR
in (6) from measurements of d in (5) has been postulatedza. This
approach assumes (a) satisfactory time-—based sampling to avoid

T

aliasing of modal frequencies up to Wy i.e. T < —, (b) a sensor

system capable of interrogating any ring particle at any sample
instant, (c) band-limiting knowledge of }he M sought W, @8 for
the lowest M comsecutive W, specification of a frequency comfortably
between Uy and Wppy > and (d) frequency-limited spectra for the

Fj leading to separable Wj spectra at desired cutoff points.

For a lowest M frequency approximation, implicit in (8), the
following strategy appears reasonable. Assuming equally-gpaced
sensor measurements, in both space and time, and S = 2M, as in
point (vii) of the preceding section, a DFT could be used to solve
(8); however dR and not d must be available. If the same ring particle
can be measured for deflection at successive sample instants despite
AMCD rotation then the sequence {d(Bi, kT)} over k for a particﬁlar
i, which is proportional from (3) to a fixed weight sum of the Wj(kT),
can be low-pass filtered (LPF) between mM and mM+l removing high
time, and therefore also spatial, frequency components leaving

{dR(Bi, kT)}. TFor each time t composition of (8) is now possible.

The necessary assumptions preceding this particular strategy

17



description are quite restrictive, Due ko the true form of (1) and

.

the possibly tremendous magnitude of N and therefore w,_ (a) is

[
mathematically impossible and only marginally practical. The limitation
of (b) is that the sensors can not be colocated with the non-rotating
actuators. BEven if AMCD spin could be accomodated for DFT purposes
the same ring particle could not be sensed at sequential sample
instants disallowing the benefit of LPF. Conversely, always measuring
the same ring particles could, in certain cases, lengthen the lag
time before reaction of the control system to slowly propagating
localized disturbances. Assumption (¢) may be reasonable for
discrete sinusoidal spectra but since (11) is forced by a nonlinearly
generated, nonstationary (during adaption) signal in violatiomn of
(d), the region of non-overlap between Wy and Wrirg becomes so small
(if not nonexiéfent) as to require highly refined a priori knowledge.
LPF phase distortion must also be assumed negligible. Clearly some
higher spatial frequencies will be rejected by the LPF, but due to
.dissatisfaction of the assumptions pointing to unsatisfactory spectrum
separation, dR will be inexactly obtained. These reservations are
even more severe‘for more complex filtering schemes, such as the
effective comb filtering suggested earlie,r6 to be achieved via
phase locked loops.

One alternative6 satisfying the (e¢) and (d) requirements for
filtering dR from d is identification of the free AMCD response.

However, this approach does not meet the stated simultaneous

identification and control objective. Using a modified gain scheduling
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concept27 to provide a fixed robust control during identification
phases is closer to the simultaneous identification and control
objective (and may avoid the stall mechanism noted in the previous
section) but does spread the Wj spectra again severely limiting

the benefits of the LPF. Ancther seemingly applicable concept is
that of adaptive orthogonal filteringzs. This idea is incorporated
by appending to (8) and (13) additional uncontrolled '"modas"
intended to absorb the spillover effects. "These modes would
require time-~varying dynamic descriptions meaning that the p and

p used in estimating their difference equarion parameterg would need
to be significantly Jarger than those used in estimating the time-
invariant modal difference equation parameters. The compensatory
gbility of these additional model modes seems limited due to the
assumptions necessary in adaptive orthogonal filter development.
Therefore none of these suggestions appears wholly satisfactory.
The conclugion is that currently the observation spillover problem
remains uasolved yet requires resolution for broad applicability

of the proposed adaptive modal control scheme for DPS.
Conclusion

This paper begins with revision of a previously originated
strategy4 for adaptive modal control of DPS and concludes with the
confrontation of the spillover problem, which is extremely severe.
In support of the simulation evidence provided it has been proven
elsewhere5 that in the absence of observation spillover and with the

use of the eigenvector ‘expansion, adaptive.modal control of DPS
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i8 as viable as lumped parameter system indirect adaptive control.
It can also be showu6 why a stable simultaneous identification
and control scheme similar to that imbedded in the AMCD example
fails in the presence of observation spillover or nonorthogonal
expansion. With the necessity of a reduced order model (N > M)
the goal of globally stable adaptive DPS controller convergence
appears too stringent. Work is in progress to relate observation
spillover bounds to parameter identification bounds. Such efforts
aredirected toward delineating the detrimental iﬁfluence of observation
spillover and the possibility of allowable behavior despite its
presence rather than toward its removal.

Suggestions have also been forwarded29 to remedy the difficulty
of ¢j selection. For general spacecraft, the fundamental assumption
of eigenvector availability for (1) is overly optimistic. Slight
inhomogeneities in the AMCD can lead to significant coupling of
the Fourier expansion "modes"BO. Such'coupling, if incorporated
in the system model, disallows the parallel computation objective
for the identifier and "modal" controller. The specter of the
necessity to recursively estimate both the basis functions and their
associated dynamics raises questions far beyond the current scope
of these efforts. However, these are issues that ultimately must
be addressed.

The development of an adaptive controller applicable to DPES
requires examination of both indirect and direct adaptive control

concepts in a necessarily reduced-order model format. Both approaches
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are susceptible to spillover degradation. A judicious mixture of
robust control, gain-scheduling, on—line versus off-line identification,

specific '

'optimal® objectives versus simpler damping requirements,
an& local versus global convergence behavior will be required
in subsequent efforts. Further research, as in any emerging field,
will better identify the weaknesses and strengths of proposed

approaches to adaptive control of DPS and uncover additional concerns

‘requiring further original developments.
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Figure Caption List for C. R. Johmnson, Jr. "On Adaptive Modal Control
of Large Flexible Spacecraft”

Figure 1: Adaptive Regulation Without Spillover
Figure 2: Adaptive Regulation With Control Spillover
Figure 3: Adaptive Regulation With Control Spillover

Figure 4: Attempted Adaptive Regulation With Control and Observation
Spillover
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On-Tine adaptive control is essential for Large Space Structures
(LSS) where the modal parameters are poorly known, due to modeling
error, or changing, due to variable configurations. It is especially
important that such -adaptive controllers produce stabilizing controls
during adaptation due to the small damping present in LSS. However,
any such controller must be based on a reduced-order model of the LSS.
The spillover from the unmodelled residuals, as well as the modeling
error, can-deteriorate the performance of the adaptive controller and,
if uncompensated, this spillover can deveat the whole purpuse of the
adaptive control,

This paper investigates adaptive control -for LSS using direct and
indirect schemes and points out the mechanisms whereby abservation
spillover can upset the stability of the controller. The framework for
nonadaptive control of LSS is reviewed and many of the generic problems
of adaptive LSS control are pointed out within this framework. These
generic problems must be overcome for successful operation of adaptive
LSS control.

1.0 INTRODUCTION

This paper deals with the basic problems inherent in adaptive con-
trol of large space structures (LSS), such as satellites and spacecraft,
where the structural parameters are poorly known or slowly time-varying.

With the advent of the Space Shuttle Transportation System, it has
become possible to conceive very large spacecraft and satellites which

suppeit by LASA  Giant Moo NAG - I-7
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could be carried #nto space and deployed, assembled, or manufactured
there. Such LSS would serve a variety of civitian and military needs
[13, [2], including electrical energy generation from the solar power
satellite - a structure nearly the size of Manhattan Island - to be
consiructed in space and operated in earth geosynchronous orbit {3]. The
control technology needs for such LSS have been discussed in a variety
of articles, e.g., [4], [5], and the developing LSS control theory and
technology has been surveyed, for example, in [6]-{10].

The size of these structures, their low rigidity, and the smail
damping available in Tightweight construction materials combine to make
LSS extremely mechanically flexible. In theory, LSS are distributed
parameter systems whose dimensjon is infinite; however, in priactice,
their dynamics are usually modeled by large scale systems based on
approximate elastic mode data. Active control schemes for LSS are often
required to meet stringent requirements for- their shape, orientation,
alignment, and pointing accuracy. Such active control is Timited by the
capacity of the:on-board control computer, the modeling inaccuracy in cur-
rent finite element computer codes for analyzing structural dynamics, and
available control devices (actuators and sensors); therefore, the.con-
troller must be based on some reduced-order model (ROM) of the LSS.

Fundamental problems of LSS control include:

{1} selection of appropriate modes to control for desired system per-
formance;
2} development of ROM for analysis and controller design;
(3) computation of system model and control parameters;
4) controller design with muitiple distributed actuators and sensors;
5) the number and location of senso%s and ‘actuators for eff{cient
control;
(6) the effect of, and compengation for, residual (unmodelled) modes
and modeling error on the closed-loop system performance;
(7) adaptive and self-tuning controllers for LSS with poorly known or
changing parameters and configurations.
Item (7) is the basic topic of this paper but it must be considered in
the cbnfext of the other items with which it is completely intertwined.
The need for adaptive control in LSS arises because of ignorance of

the system and changing control regimes. The former occurs as




(a) ignorance of the system structure and order, and (b) ignorance of the
"system parameters; the Tatter occurs because of changing configuration
of the LSS. <Changes in .configuration may be due to construction in-space,

thermal distortion, or reorientation of subsystems, e.g., rotating solar
panels or sunshields; these changes usually produce slowly time-varying
parameters. Ignorance of the LSS system structure and order is .due to the

fundamental problem of modeling a distributed parameter system,. e.g.,
faulty physics, reduced-order models, and ignored nonlinearities; this
‘means that the order of fhe ROM is lower than that of the actual LSS.
Ignorance of the system parameters, while directly related to the system

structure, is due to the inherent modeling error present in even the best
structural anaiysis computer codes and to the Timitation of testing huge,
1ightweight LSS on earth; this produces constant but poorly known system
parameters. There is a very clear need for an adaptive LSS control metho-
dology that can begin with the best available computed parameters and
self-tune its way toward the correct parameters while stablely controlling
the LSS and, possibly, adapting to variable configurations.

A great variety of adaptive control schemes exists for lumped param-

eter, small scale systems [11]; in particular, model reference adaptive

methods have achieved a great amount of success in producing stable,
convergent adaptive controliers, and adaptive observers for systems whose
structure is known and whose parameters are constant bui poorly known

or slowly time-varying, e.g., [127-[25]. Adzptive schemes may be direct,
j.e., the available control parameters are directly adjusted (adapted) to
improve the overall system performance, e.g., [25}-[261, or indirect, i.e.,
the system parameters are identified (based on the assumed system struc-
ture} and the control commands are generated from these parameter esti-
mates as though they were the actual values, e.g., [201, [24], [27].

The abundance of adaptive control methods is overwhelming and an
understanding of the interrelationships and structural commonality of these
methods is desperately needed; see, e.g., [28], [29], for some beginnings
in this directiogn. furthermore,'the use of such methods on distributed
parameter or large scale systems, like LSS, is greatly Timited by the ROM
problem - the.adaptive scheme must be based on a ROM of the actual.system



and, hence, the order of the model is, and must remain, substantially
5 PeWA 3

lower than the controlled system. 1In addition, it ®Wnessential that the

LSS adaptive controller provide a stabilizing control in such highly

osciilatory systems as LSS.

This paper develops a framework for LSS adaptive control problems and
points out generic problems in the use of the most natural direct and
indirect adaptive approaches. In other forms, these problems will haunt

every use of adaptive control on LSS and must be solved before the valu-

able benefits of adaptive control can meet the needs of this new applica-

tion area. A few preliminary attempts at adaptive control for specific
distributed parameter systems or LSS have been made in [30]-[36]; also,
for the corresponding parameter identification problem for distributed

parameter systems, see [37].
2.0 HNONADAPTIVE LSS CONTROL

Following [GJ, the LSS may be described by the partial differential
equation:

m(x) utt(x,t) + DO ut(x,t) + AO u{x,t) = F{x,t) (2.1)

where u(x,t) represents {possibly, a vector of genéraiized) displacemebts
of the structure @ off its equilibrium position due to transient dis-
turbances and the applied force distribution F(x,t). The mass distribu-
tion m(x) is positive and bounded on Q. The internal restoring forces of
the structure are represented by AO u where AO is an appropriate differen~
tial operator with dormain D(AO) defined in a Hilbert space H0 with

inner product (.,.)0. In most preduwst cases, AO has discrete spectrum,

i.e.,

_ 2
AD ) = @y ¢k (2.2)

where @, are the mode freguencies of vibration and @k(x) are the mode

shapes. The damping term D is generated by an appropriate Ao-bcunded

u
0"t
differential operator and may represent gyroscopic damping as well as the
very small (vh% critical) natural damping expected in the LSS.

The applied force distribution is given by

Flxot) = Flx,t) + Fla,t) | (2.3)



where FD represents external disturbances and F. represents the control

C
forces due to M actuators:

M
Folxit) = B, f = 2[ b, (%) f,(t) (2.4)
i=1

where bi are the actuator influence functions {usually point devices) and
fi-are the control commands. Observations are produced by P sensors:

g Ug (2.5)

1
where yj(t) = (cj,u)0 + (Cj’ut)o for 1 < j < P with ¢y being the position

y = CO u+C

sensor influence functions and c; the velocity sensor ones {usually point
devices). '
) The state variable form of (2.1) and (2.3)-{2.5) is obtained by
taking

v(xt) = [u(x,t), v (x,1)]1"

1
in H= D(AS) x Hy with energy norm:

2 1 L
Ivil® = (mug, up) + (A2 u, AZ u) (2.6)
This produces
v, = Av + Bf; v{0} = v
t 0 (2.7)
y =Cv
where we consider the disturbance-free case (FD = 0) and define 8 = [0 BOjT,
' 0 |
€= [CO CU] and A = This distributed parameter system is
-A -D
0 0

very oscillatory in the sense that the semigroup U{t) generated by A has
very 1ittle damping:

JUGe) ] <My e % for t 2 0 (2.8)

where € > 0 and small and My > 1. ‘

The desired performance of the actively controlled LSS greatly effects
the design of the controller. Many desTrabTe,prOperties of the active
structure can be obtained with constant feedback gains applied to the sys-

tem state v(x,t}; such solutions arise for regulator problems and sta-

bilization (pole placement) problems for LSS. However, the full (infinite



dimensional) state v is never available from a distributed parameter sys-
tem; only the P sensor outputs y are available.
Implementable controllers for LSS (and most distributed parameter

systems) must be based on finite dimensional on-board control computers
which process the sensor outputs y and produce control commands f; thus,
a reduced-order model (ROM) of the system (2.7) must be used for the

controller design. A ROM can be obtained by projectiné the system (2.7)
in H onto an appropriate finite dimensional subspace HN; the projections
P (onto HN) and Q (onto the residual subspace) are usually, but not

always, orthogonal. Let vy = Pv and vp = Qv and, from (2.7), we obtain:

Iy S AV AR YR T By f (2.9)
Ip = Aoy Vy * A vp ¥ B (2.10)
y = CN Y + CR Va (2.11)

where AN = PAP, ANR = PAQ, BN = PB, etc. The terms BR
calied control and observation spillover; the terms ANR vp are called
model error. The ROM for this system is given by (2.9) and (2.11) with

A =0andCR=0:

%ﬁN=ANVN+BNf

f and CR VR are

NR

{2.12)

y CN Vi VN(O) = Pu

0

The ROM state vy and the residual state v, form the true system states v

R

with total energy ||vl|2 given by:
v o=y

vl 2

A1l implementable controller designs based on any ROM must be esvaluated
in closed-l1oop with the actual LSS (2.7)Iand it is in this evaluation that

n T YR

”VNiIZ + HVRH2 (if projection is orthogonal)

the effects of model error and spillover due to the residuals become
apparent.
If the actual mode shapes ¢k are known, the modal ROM is a sensible

choice:
Hy ={sp &5 ... oy

and the model error terms ANR and A, become zero. Of course, any collec-

RN
tion of modes could be used; usually, the most easily excited or critical



ones will be chosen. However, in many cases, the partial differential
operator A is too complex to provide closed-form mode shapes. Instead
finite element approximations of the mode shapes are computed (e.g.,
via NASTRAN)Iand these approximate mode shapes can be used to form the
ROM for controller design; note that some model error is present when
these approximations are used. Henceforth, we will assume the actual

mode shapes are available to simplify the discussion but much of our

analysis remains valid for approximate mode shapes and other types of
ROM.

Modern modal control (MMC) for LSS, as developed in [38], uses the
modal (or approximate modal) ROM and develops a controller consisting

of a state estimator based on the ROM and a constant gain control law:

Y T Ay vyt By T Ky(y-y)
(2.13)

and
(2.14)

This controller desigp requires the ROM (AN, BN’ CN) to be controllable
and observable for the calculation of control and estimator gains GN’
KN' These conditions, in modal terms, provide insight into the number
and location of acluators and sensors. From [38], (AN, BN’,CN) is con-
trollable and observable, when position sensors are used (CO = 0}, if

and only if

(1) min{P,M) > max:mode frequency multipiicity in the ROM
(2) each sub-block of BN and CN associated with a mode fregquency Wy of

multiplicity Ay must have rank at least equal to Gty -

Similar results hold for other types of sensors, e.g., velocity, acceler-
ation, or mixtures of types [38], [39]. These results are easy to in-
terpret in terms of the mode shapes, e.g., if no repeated frequencies
exist, then the above result says that a single actuator and sensor,

not necessarily collocated, will do the job as lTong as neither is located
at ény of the ROM mode shape zeros. Since LSS have many symhétries and
rigid body modes, it is not often that a LSS control problem will have a



controllable observable ROM with only one pair of devices; ‘this has con-
sequences for the adaptive control problem to be discussed later.
Let the estimator error e, = GN - Vy be defined and, from egs. (2.9)

-{2.11) and {2.13)-(2.14), obtain .
vys (AN + BN GN) vy * BN GN ey {2.15)
éN = (AN - KN CN) ey + KN CR Vo {2.18)
VR = BR GN vy t BR GN ey + AR Ve (2.17)

This shows the effect of spillover on the closed-Toop system: even

though AN + BN GN’ AN - KN CN,-and AR are stable, the closed-loop system
need not be stable. When either control or observation spillover is
absent (BR =0 or CR = 0), then stability is assured; otherwise, spill-

over causes pole-shifting and can induce instabilities [38], [40].
Bounds on the destabilizing effect of observation and control spillover

were produced in [38]-and can be extended to the case where some mode]
error and small nonlinearities are present [41]. Such bounds give an
indication of how much spillover the ¢losad-loop system can tolerate.

A variety of methods have been suggested to reduce spiliover [6].
One obvious way would be to prefilter the sensor ocutputs, with a bandpass
filter, to substantially reduce observation spillover. This alleviates
tne worst pole-shifting probiem; bounds on system performance with con-
trol spillover alone can be found in [42]. Note that the post-filter
of the controller outputs could do the same job by reducing control
spillover; this interchange of filter and contro11ér is possible due to
Tinearity and time-invariance. The trade-off with this means of reducing
spillover is that the prefilter introduces phase distortion which can
have a destabilizing effect of its own. Therefore, a very high order
filter may be required to keep the phase distortion acceptable; phase-
locked-loop quadrature filters may be another solution [43]. Even in

nonadaptive LSS control, the spillover and model error problem is a funda-

mental one.

Finally, we should note in this section that digitally implemented
controls would be based on discrete-time versions of the distributed
ﬁarameter syétem (2.7). One such version is obtained by using a uniform
time step At:
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v(k + 1)
y(k)

ov(k) + E fk
(2.18)

Cv(k)

At
where & = U(At) and E = E, B =.Jf U{t) dt B and the control command is
0

a constant fk over the interval (k - 1) At < t < k At. Other versions of
this could be obtained with nonuniform time steps. When the ROM procedure
of projecting onto the subspace HN is used, we obtain the discrete-time
versions of (2.9)-(2.11}:

VN(K + 1) = @N vN(k) + QNR VR(k) + EN fk (2.19)
VR(k +1) = 2eN VN(k) + QR vR(k) + EN fk (2.20)
y(k) = CN VN(k) + Lo vR(k) (2.21)

When HN is the modal subspace, the above become:
VN(k + 1) = =N VN(k) + E0 By i (2.22)
vR(k + 1) = oy vR(k) * By By Ty (2.23)
y{k) = CN VN(k) + Cp VR(k) (2.24)

where (2.22) is the same as that obtained by directly discretizing the
ROM in (2.12); if the exact mode shapes are not available, these two
discretizations may yield different results. In addition, the sampling
process can alias residual modes and increase observation spillover and
the zero-order hold process can spread-out the control command signal
spectrum and, hence, increase control spillover by increasing the energy

in the resijdual mode speétrum; this has been observed and investigated

in [44]. Therefore, the time discretization is a very important factor
in the design of implementabie LSS controllers.,

3.0 TO#ARD ADAPTIVE CONTROL OF LSS

In order to design MMC, or other controllers, for LSS as proposed in
the previous section, we must have_knowledge of the ROM parameters (AN,
BN’ CN). These parameters are obtained from modal data; they are the
mode Trequencies for AN and the mode shapes at actuator and sensor Toca-
tions for BN and CN’ respectively. This data is required for three

reasons:
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(1} to determine controilability and observability of the ROM and,
hence, to help locate control devices effectively;

(2) to design control and estimator gains;

{3) to use in the state estimator’s internal model.

However, we have noted in Sec. 1.0 the sources of error for this data;
consequently, a need arises for an adaptive version of the MMC of Sec.
2.0.

The most logical and reasonable procedure fo obtain adaptive con-
troilers for a LSS seems to be the following:

Procedure for Adap%ive LSS Control

(a) choose a "nice" reduced-order model (ROM); a modal ROM
would be the obvious choice;

. (b) wuse your "favorite" lumped parameter adaptive control
scheme; '

(c) design the adaptive controller as though the ROM were
the actual LSS to be controlled, i.e., ignore the un-
modeled residual part of the structure;

{(d) wuse this adaptive controller in closed-Toop with the
actual LSS and hope for the best,

There is nofhing wrong with tollowing this procedure as a best firsi guess
- in & way, there is 1ittle else that one can do to produce an implement-
able adaptive LSS controlier.

In some cases, spillover is sufficiently small or enough other mathe-
matical structure is present in the system, e.g., a high level of damping
in the distributed parameter system [31] or low Tevel of performance re-
quired from the controller (increased damping via direct velocity feedback)
[327, to allow the adaptive controller to operate. However, these situa-
tions are rare with LSS and one would not like to count on the "generosity
of nature" or the temporary suspension of Murphy's Law as part of the
above design procedure. Consequently, we would add the following items to

that procedure:

(e) analyze computer simulations of higher-order models of the
LSS in closed-loop with the adaptive controller based on
the lower-order ROM (e.g., simulate more modes than you

plan to control);
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(f) dnvestigate the specific mathemafica] mechanisms whereby
the residual (unmodeled) part of the LSS couples into a
given adaptive control scheme {e.g., find out where and how
spillover affects the adaptive controller);
(g) obtain mathematical results on the amount of spillover
and/or model error tﬁat can be tolerated in the closed-
loop system and still provide adequate adaptation and control;
(h) develop spillover and model error compensation schemes to
augment the adaptive controller when the residuals cannot
be tolerated {(e.g., when the conditions of (g) are not sat-
isfied); '
(i} recheck (g) with this compensation in the closed-loop system.
We believe that, within the basic framework of LSS control as de-
scribed in Sec. 2.0, this Augmented Procedure {a)-(i) will go a long way

toward revealing the problems of adaptive LSS control (and indeed, most
other adaptive control situations where control must be based on a ROM)
and will help to focus needed attention on these crucial issues. For
example, although Step (e) would be done most_1i.: v.af some point in
the system development phase of any project aruction and
operation of a LSS, often it is done much too late and the design is
"set in concrete {or in this case, graphite-epuxy)™; the other steps
(f)}-(i) may not be done at all. Yet, ignoring the effects of the resid-
ual unmodeled LSS can produce some disasterous behavior in the adaptive
controlier; this was pointed out quite clearly in the LSS example 1in [35].
When an adaptive scheme is applied to such a lightly damped, oscil-

latory system as a LSS, the stability of the closed-lgop system during

adaptation is a necessity; therefore, we do not view convergence.and

{global) stability results as luxuries for zdaptive LSS control and shall
only consider appropriate those lumped parameter adaptive schemes for
which such results are available. However, even a globally stable adaptive

scheme may prove to be unstable when‘it is used in closed-loop with the
actual LSS instead of the ROM on which it was based. This is not a failure

of the adaptive scheme; it is a failure to satisfy the mathematical hypoth-
esis of the stability result associated with the scheme.
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In the rest of this section, we shall study the use of iwo very
general adaptive schemes which seem to illustraie the problems and poten~
tial of adaptive LSS control: the indirect schemes of [23]-[24], which

use an adaptive observer and operate in continuous time, and the discrete-

time, direct or indirect, schemes which are based on an Autoregressive
Moving Average {ARMA) ﬁ@@e] of the controlled plant, e.g., [25]-[27].
These approaches represent a good cross-section of available lumped

parameter adaptive control schemes which have been shown to possess the
desired stability properties. We emphasize that the point of this sec-
tion is not to criticize or slander these schemes; rather, we mean to
point out where the hypotheses of their stability results are violated,
and must be modified, when we attempt to use them on LSS. We feel that
consideration of these approaches within the context of the Augmented
Procedure for Adaptive LSS Conirol (a)-(i) will illustrate the generic
difficulties in the application of existing, weli-behaved, lumped param-
eter adaptive control schemes to LSS.

3.1 Multivariable Systems Converted to Scalar Systems

The results of many stable adaptive schemes, e.g., [13]-[14], [23]-[24],
are limited to a single actuator and/or a single sensor; yet, we have seen
in Sec. 2.0 that most LSS co:.trol problems will invoive multiple actuators
and sensors. One way to deal with this (although, admittedly it has its
drawbacks) is to convert the controllable observable LSS problem via out-
put feedback into one that is controllable and observable from a single
actuator and/or single sensor; this can be done with almost any output
feedback gains [45]-[47]. These gains woulid have to be based on the best
available calculated ROM data and the designer must hope that they will
continue to do their job during adaptation.

The output feedback modifies the original system (2.9}-(2.11) to be-

come:

U = Ay F By Hy O vy + (Ayp + By Hy Cp) vp * by F (3.1)

v = (Agy + By Hy Cp) vy + (A + Bp Hy Cpd vp + bp F (3.2)
T T

y = cy vy + Ce Vg ~(3.3)

where HN is the output feedback gain matrix, bN, bR’ Cy» Cp are vectors,
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and f,y have been renameé Let AN + BN HN Ch he AN‘ etc. and we have
Tha —

thata.new ROM (AN, bN’ cN) is a controllable, observable single input,

single output system and {3.1) and (3.2) become:

WN =

|

N vy * + b, f (3.4)

f (3.5}

3.2 Indirect Adaptive Controller Design

We apply the design of the adaptive controller in [24] directly to
the ROM consisting of (3.4) and (3.3) with the assumpticn, for now, that

— - T...
ANR = 0 and CR = (.
The control law is given by
- N N .
f(t) = Iy vN(t) - fc(L) (3.6)

where Iy is a constant gain vector, fc is a "sufficiently rich" external
signal (more about this later), and GN is derived from the following -
adaptive observer (or stazte estimator):

A ~ :.A =-‘\
vy = F vy tay ¥ hf; VN(G) Vo (3.7)
where F is an arbitrary, stable matrix and g, h are unknown parameter
vectors. The appropriate matching conditions are:
F+G*c;=KN - £257)
* = )
h* = by (3.8)
Vg = yN(D)

where g*, h* are constant.
Let pB = [Q*T hl VN(O)T]T and note that

p* = F p*3 p*(0) = p, (3.9)
where F = diag [0 0 F] and, when g = g*, h = h*, we have from (3.8) and
(3.7):

vy(t) = DH(E) 1,7 p*(t) (3.10)

where M(t) jt F(t - ) y(T) Iy f{tr)] dv and we have used the fact

that h, T are scalars;



Mow (3.7) can be rewritten as

v(t) = D) I3 p(t) (3.11)
(t) = Fu(t) + £1, y(t) I, f(t)] (3.12)
M(0) = 0 (3.13)

where M(t) is as defined in (3.10),an¢ we have yet to produce the adapti
law to gererate p(t). This adaptive law is given by the following:

3(t) = F p(t) - aft) TR(t) p(t) *+ r(t)] (3.18)

where p(0) = Pg is arbitrary and

R(t) = -q R(t) = FT R(t) - R(t) F + [M(z) 1,3 ¢ cf [H(t) T,]
(3.15)
R{0} = 0
and
FE) = -q r(t) - FT r(t) - DH(t) 1,07 ¢y v(t)
? ' (3.16)
r(0) =0

where a(t) is the adaptive gain and the constant g is chosen to exceed
twice the absolute value of the real parts of the eigenvalues of F. The
adaptive gain is chosen so that

v+ [ fe(t)] (3.17)

alt)
where

Sou(t) + (2)F (ly(t)] + [F(E)]) (3.18)

with A positive and F + Fl <2 Iy

n

n{t)

3.3 Convergence Results: lhat Goes Wrong?

A1l of the above is éxactiy as stated in [24] where it is also shown
in Appendix I and II that

u(e) 2 [n(e) (3.19)
and, with f(t) sufficiently rich in frequencies, there is a t such that

R(t) > p Iy>0forall t>t (3.20)

1

14

ve



in addition, it is shown in Appendix III that

R(E) p*(t) + r(t) = 0 (3.21)

15

This is very crucial to the stapility results of [24] and it is here that

observation spillover (i.e., the fact that we .are using a ROM) appears -
(3.21) is not valid when e # 0; however,

R(E) pe(t) + r(t) = ap(t) | (3.22)
£ =T
where AR(t) = _f e'(q f Yy (t-1) M(t) IN]T Cy cg VR(T) dt

0

Let eN(t) = CN(t) - vN(t) and EEB .Ap(t) = p(t) - p*{t); then

ey(t) = [M(t) I ap(t) (3.23)
and
BR(t) = [F - aft) R(E)] ap(t) - alt) ag(t) (3.24)
_Consider V(t) = Ap(t)T Ap(t) and we obtain:
Vit) < -y p V(t) - 2y ag(t) Ap(2) (3.25)
T

where V(0) = Apy 4pg and Apy = py - pa.
This follows [24] except for the additional term in {3.25); also
note that

ey (0112 < v(E) [T + w(D)] (3.26)

Let Avm(t} = VN(t) - vﬁ(t) and AVR(t) = vR(t) - va(t) where v and Vg

represent the ideal states of (3.4)-(3.5) when the parameters are
exactly known:

A T -
o= By + by gy) vy * Fyo VA + by f (3.27)

vE = (A, + b gl) vk + K vk + b f (3.28)
R RN "o I YN T AR YR T PR e .

with vﬁ(o) = VN(U) and VE(O) = vR(U).

When the implementable adaptive control taw (3.6) is used, we obtain:

- T - T

vy = (AN f by gN) bvy ¥ ANR Avp * by Gy ey (3.29)
- T - T

vy = (ARN * by gN) Avp * Rp Avp + by 9y gy (3.30)

QPB;e have the following result:
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THEQREM 3.1: Assume

(1) Cp = 0
= T
(2) fﬂ + bN 9y stable
(3) AR stable
(4) ANR =0

(5) f_(t) sufficiently rich {i.e., it has at least 3N/2
distinct freaguencies)
Then there is a § > 0 such that for a1l |[apy]|® < 6:
(a) eN(t) is bounded and (eventually) vanfshes with an
arbitrary exponential rate
(b)Y 1im AVN(t) =0

T

{¢) Tim AVR(t) = Q.

o0
Therefore, even though the closed-loop system with the adaptive
controller is highly nonlinear, it is stable while the adaptation
js taking place. In particular, (1), (3), and (4) are satisvied
if.there is no observation spillover (CR = 0} and no model error

(A,» = 0) and some damping in -the residuals (i.e., AR is stable).

NR
Progf: This result follows from the results of [24] because AR(t) =0 in
(3.22) when ¢} = 0. The stability of (3.29)-(3.30) is determined by
T+ T N s n = 1 = n = o=
Ay * bN Iy and AR when ANR = 0. Also, it CR 0, then ANR ANR’ AR AR’

and Cp = 0 since it is a row vector of CR' #

Note that the stability of the system with adaptive control is
determined by that of (3.27)-(3.28) ~ the ideal case where the parameters
are known and the external signal fc is applied. This is natural, since

adaptation gannot take ‘place without fc present; however, after adapta-
tion, we would most 1ikely want to turn off fc. In addition, we could
choose the fc signal so as not to extite the residual frequencies whenever
sufficient spectral separation is present. Still, we would need to turn
on fc now and then, in order to "tune-up" the controller.

3.4 Spillover Compensation for the Ind{rect Adaptive Controiler

The above result is merely a slight extension of the results of [24]
to a special case of the adaptive controllar based on an ROM instead of


http:3.27)-(3.28
http:3.29)-(3.30
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the full system. However, it does suggest that some form of compensation
should be used to eliminate the chservation spillover. Such compensation
must be essentially independent of the parameters of the ROM;"hg;f'
methods of spillover reduction require knowledge of the ROM {(and some
residual) parameters.

One approach to spillover compensation already suggested in Sec. 2.0
is brefi]tering the sensor outputs to remove or greatly reduce the term
Cﬁ vR(t). Such prefiltering can be achieved with low-pass or band-pass
filters when the ROM frequencies are known and separated from the residual
frequencies. Howaver, the modal frequenéy data is part of the poorly
known parameter data.

In an attempt to resolve this predicament, we could try using phase-
locked loop (PLL) based filters with the center frequency of sach logp
tuned to the best approximation available of the corresponding ROM 2 The
PLL will adapt itself until it tracks the actual mode frequency and,
after "lock-on," it will behave as a narrow band-pzss, linear Tilter which
tunes out the observetion spillover from the other frequencies [43]. OfF
course, sufficient spectral separation must be present, the ca1£u1atéd
values of the ROM mocal frequencies must be sufficiently good, the dis-
tortion introduced by the filter must be sufficiently smail, and the
adaptive coniroller rust not shift the poles around too much. Thus, the
PLL prefilter is not a panacea! But, i% might work to reduce spillover
and, if it does, it has the added advantage that its -output could also
reveal better estimates of the modal frequencies; this would take some
of the load off the zdaptive observer. If the adaptation mechanism causes
too much pole shifting, the ROM frequencies could be excited via fC and
identified in open-lcop by the PLL filters before the adaptive coniroller
is turned oﬁ.- Note that modal frequency data is usually better known,
via computer approxiration, than modal shape data; hence, this approach
ﬁight not be unreasorable. Another possible, but untried, approach to
spillover compensation might be an adaptive version of the orthogonal
filter. in [48].

Note that some prefiltering (and postfiltering)} always takes place
due to the bandwidth Timitations of the sensors (and actuators).  Mhether
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A problem that arises with the use of the results in [24] and their

§ must be cai-

culated, in advance, to stabilize AN + b gN It would be better if

modification to LSS is that the constant feedback gains g

these gains were adapted along with the parameters in the observer. Of
course, afier adaptation has taken place, they could be recalculated
from the "tuned-up" parameters, but, in some cases, the adaptation phase
is never over, e.9., slowly-varying parameters. Other approaches could
be used for adaptive pole-placement, é.g., {207, [21], but these also
have their limitations.

3.5 ARMA-Gettin’

Many discrete-time adaptive conirol schemes depend on an Auto-
Regressive Moving Average (ARMA} representation of the plant in discrete-
time, e.g., [25]-[27]:

N N
yk+8) = 2 a ylk+r-1)+ F g flk+r - 1) (3.31) -
r=1 r=1

for- some N and appropriate matrices ¢ Br' What the ARMA says is that,
after N time steps, the present output is only related to the past N out-
puts and inputs. Existence of an ARMA is directly related to the finite
dimensionality of the plant (N is usually that dimension) and is obtained
using the Cayley-Hamilton theorem for matrices. For LSS, only a "quasi-
ARMA" can exist; these were considered in detail in [49]. From the
Appendix of [49], we obtain the quasi-ARMA for the LSS (2.18) or (2.19)-
(2.21):

N N
yk +1) = Zoa y(k+r - 1)+ TT Ey Flk+r - 1) £ RK) (3.32)
r=1 + r=l
where
N
R(K) = Cp volk + H) + A B vplk +7 - 1)
r=1
& =T 900 -0

r r "NR r "R
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and Tr is defined in the Appendix of [49]. Since R(k} = 0 when CR = 0

and Ar = 0, we have the following result:
THEOREM 3.2: When the observation spillover (CR) and the
model error term (@NR) are both zero, the quasi-ARMA (3.32)
is a true ARMA for the LSS (2.18),and any stable adaptive
scheme based on this ARMA will be globaily stable when used
in closed-loop with the actual LSS (2.18).

When the rather stringent hypothesis of Theo. 3.2 is not satisfied
{as it may not be in practice), any adabtive LSS control scheme based on
the quasi-ARMA (3.31) must ignore R(k) in order to be implementable. How-
ever, R(k) is the ferm where the residual effects - spillover and model
error - enter the scheme and can cause instability. Again, as in Sec.
3.4, prefiltering or other compensation might be tried in an attempti to
reduce or eliminate this term.

4.0 CONCLUSIONS

In an attempt to point out the crucial issues and generic problems
associated with adaptive control of large aerospace structures (LSS}, we
have reviewed the framework for nonadaptive LSS control (Sec. 2.0) and,
within this framework, have proposed a general procedure, based on
reduced-order models {ROM) of the {.$S, for obtaining and assessing the
problems of adaptive LSS controllers (3.0). In addition, we have taken
a closer look at the use of certain well-known, lumped parameter, stable
adaptive control schemes in this procedure. Taking these schemes as
representative of the basic ideas present in all lumped parameter adap-
tive control approaches, we have obtained corresponding LSS adaptive

controllers and found the following generic problems associated with

adaptive LSS control:

(1) LSS are distributed parameter or large scale systems;
therefore, the plant dimension is always larger than
the dimension of the adaptive controller, which must be
based on a ROM;
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(2) LSS control must often be done with more than one actua-
tor and sensor; conversion of multivariable to scalar
systems via output feedback introduces problems of its
own {e.g., stability of the residuals);

{3) LSS control problems are often-non-minimum phase due to
noncollocated actuators and sensors;

(4) Interaction of the residuals with the adaptive control-
Ter may negate the stabilizing properties of the con-
troller due to observation spillover; this interaction
is much worse due to the nonlinear nature of adaptive
control;

(5} Methods of spillover compensation for LSS often require
knowiedge of the ROM (and some residual) parameters -
the very data that are poqr1y known;

(6) The adaptation mechanism may shift the closed-loop fre-
quencies around; this counteracts the benefits of any
prefiltering unless sufficient spectral separation is
maintained;

(7) Indirect adaptive controllers need sufficient excitation
from an external signal fc; however, this signal may
substantially excite the residuals.

(8) Discrete-time adaptive controllers can only be based
on quasi-ARMA rather than strict ARMA representations
of the LSS; this may negate the stability properties of

such a controlier.

Stable adaptation is essential for such highly oscillatory systems
as LSS, yet our preliminary stability resulis, Theos. 3.1 and 3.2; both
require that observation spillover be somehow completely eliminated
before it reaches the adaptive control logic; certainly, this is not
an easy thing to do in general! Perhaps, global stability is too much
to ask for LSS adaptive control because observation spilliover will
always be present to some degree in LSS control. However, it seems rea-
sonable to hope for the development of spillover bounds to give some
idea of regions of étabi]ity for the successful opeéation of LSS adaptive
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control. Some comparison should be made between stable adaptive ¢on-
trollers based on ROM and stable, robust control schemes, e.g., [50]..

[51].

In closing, we would Tike to say that it is not our'intggt to p}esent_

a gloomy picture for ?he app1ic;§qu_pf_qqaptiye control to LSS. In

fact, the need for adapfive éontro1 in LSS s already becoming quite
clear, and recognition of this need comes, for a change, at an appropri-
ate time - .before any LSS have been built and put into space. However,
the development of adaptive control for LSS will not take place overnight
anq will not be done by one or two people, Consequently, what we have
tried to stress here for the interested researcher are some of the funda-
mental problems that arise and the basic steps which nead to be taken
toward the goai'of successful adaptive control of LSS. In the long run,
we have high hopes for the success of this endeavor and.ﬁe expect that
adaptive control theory will profit by its association with large aero-
spAce- structures, as well.
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