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NUMERICAL INSTABILITY AND STABILIZATION OF THE KINEMATIC
 

DIFFERENTIAL EQUATION USING QUATERNIONS
 

W. Geiger
 
Institute B for Mechanics, University of Stuttgart
 

1. Introduction /T 118*
 

Because of the singularity of the Eulerian angles (frame barrier) 

other coordinates often must be used to describe the position of at 

rigid body or'gyroscope with a given rotating vector wo=,ow(), respectively. 
One possibility is using rotating quaternions. These satisfy the
 

linear differential equation (DGL)
 

od0] -w. -10 1)[0=~ 23] [q:o41 lW, 0 -W3-W,1 qr
oLo W Z-,0o13 q 

The jiare here the normalized coordinates of the rotating vectorjhi
 

in the rigid system. The present text is concerned with this
 

kinematic differential equation using quaternions (KQD).
 

'must
The four coordinates of fulfill the requirement
 

IN1o 92 _ - ,1q3-O (2). 

From KQD follows K 0, thus N = constant is a first integral of
 

KQD1) It is physically stabilized on the boundary.
 

2. Numerical Instability of the Normalized Integral
 

An unsymmetrical force-free gyroscope was employed as an
 

example. Its motion is represented exactly by the Eulerian
 

angles UVj3111. This concerns a periodic nutation-in tof the
 

* Numbers in the margin indicate pagination in the foreign text. 

S)The designation "integral" is also applied in the following for N.
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figure axis. The Renge-Kutta procedure of the fourth order with
 

constant step H was employed as integration procedure.
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Figure 1: Normalized Error N(t)
 

The normalized integral deviated in a nearly linear manner from
 

the desired value. The course (designated by KQD) is given as a
 

function of time, where the first 30 periods of Ljwere calculated
 

with 30 steps for each period. Because of the phyisical stability
 

of the normalized integral it is only a matter of a numerical in­

stability here. The procedural error must always have an effect
 

in one direction. As proof the quaternion ljA+I from the disrupted
 

Taylor series may be calculated after step (j+1-) under the assump­

tion (VI) that the rotating vector may be assumed to be constant
 

during an integration step with the result
 

2 1 4 HIlq,+111 (Hlflu)1q 1 , (H, Go( (,- 232it 

.o=w ),t =jI , 0,1, 2'.... 

where for all possible steps flj>O. Corresponding values apply for
 

procedures of the third and fifth order. The quaternion norm there­

by decreases with each integration step and asymtotically approaches
 

zero.
 

Remarks: 19
 
was achieved
 

a) A rather good approximation of precondition 
VI 


in the example employed. The value of rotating vector could
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even further be assumed as always constant (V2).
 

Then
 
- it=t onst.i -I +-i jL( _B,
 

and this function describes the actual course of the normal­

ized integral with a high degree of accuracy.
 
b) If as an especially simple example a permanent rotation is
 

calculated with ;,,=w,=o,,'=-, equations (3) and (4) describe
 
exactly the behavior of the normalized integral.
 

c) The proof resulting from (3) requires in addition to VI
 

only that the matrix Siof KQD is symmetrical and involu­
toric2), so that other differential equations with such 

coefficient matrices will exhibit identical characteristics.
 

WhentheBulerian angle is calculated from the quaternion
 

according to the usual formula
 

COSq q+ (5)1
 

then the normalized error effects a very large error in this angle,
 

for
 
. 
cosg 2 jqj 2 cos#*, hus 7 2 

. . ... _ . . . (6 ) . ... 


when iis the exact angle. This causes a numerical singularity in
 
the range of the frame barrier.
 

Independent of these results, suitable steps must be taken to
 
stabilize this integral numerically because of the numerical in­
stability of the normalized integral.
 

3. Stabilisation according to Baumgarte
 

Baumgarte [2 has proposed a gradient stabilisation procadure
 
for systems of usual differential equations of the first order. In
 
the case of the requirement for stabilisation designated here "on
 
average" the differential equation is altered with the aid of known
 

t = -laW ,R =unit matrix 
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first integrals in such a manner that the stabilized differential
 

equation leads to a differential equation for the error in integrals
 

with the result that these are reduced asymtotically on the average
 

when they have deviated from desired value zero through procedural
 

error. Applied to kinematic differential equation using quaternions,
 

the stabilized differential equation (KQDS) becomes
 

= (92- 4kNE) q M2) 

where k is a positive, otherwise arbitrarily selected stabilisa­

tion factor. The normalized integral would have to behave according
 

to
 

N -4N(1 + ) (8). 

Actually, however, the typical course shown in Fig. 1 with k = 0.5 
as an example occurs (designated by KQDS). During the first inte­

gration step a jump in the norm occurs. Thereafter the integral
 

stabiliyes on an erroneous value, the error is therefore not re­

duced asymptotically.
 

Examination of a Renge-Kunge step demonstrates that the series
 

(N.) of the normalized error fulfills the corresponding law of form­

ation
 

N i = Ni- (1 +N,)fl, fi, = ivl, N). (9() 

The exprdssion for filcan no longer be stated explicitly. It is a 

polynominal of the 80th order in N.. The coefficients are in each 

case polynominals in k with parameters H anl.iI. Here V1 is applied 

again. 

N 

II ­

10 01 I. Figure 2: Jump in Norm 
_I 

II o - ­
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Since the absolute member ofbY does not disappear, the Value
 
of N, already differs clearly from zero (Fig. 2), although R.4= 0.
 

Stabilisation would probably have no influence, as long as the
 

solution meets the requirement. Because erroneous aids, subsequently
 

used in the averaging, are, however, intentionally applied to the
 

integration procedure, a correct solution via stabilisation is made
 

incorrect.
 

The numerical examination of the convergental behavior of the
 

sequence (Ni.) suceeds, with the application of the additional assump­

tion V2 although this entails a great deal of work. It converges
 

toward a valueNcor demonstrates divergent behavior according to the
 
.
value of the stabilisation factor k ) The result is-pyesented in 

Fig. 2 (logarithmic scaling, step size ana-rotating vector as in 

Fig. 1). There are only two optimal stabilisation factors, in par- /T 120 

ticular the zero positions of order tomaintaii ' j7< JO-_ 
it is necessary to select the stabilisation iactor with a minimum 

of three decimal places exactly equal to one of the two optimal
 

stabilisation factors.
 

The criticism pertaining to the stabilisation procedure
4 )
 

described in 21 may be summarized as follows: a) the accuracy
 

depends to a great extent on the stabilisation factor; b) in some
 

cases stabilisation factors have to be determined very exactly.
 

The search for these definitely entails a great deal of work and
 

these are above all dependent on the problem. They undergo changes
 

with the differential equation supplied at the beginning, commencing
 

conditions, integration procedure and stepsize chosen; c) proof
 

assumptions are questionable from the standpoint of numerics. The
 

asymtotic differential equation applied for the proof of the error
 

in first integrals (here:(8)) describes the behavior of the inte­

grals only when the integration procedure functions with no error.
 

This differential equation, however, is only actually fulfilled
 

'NHJis a zero place of function §,only dependent on N.
 
4)Th& regulation designated here as "individual" stabilisation
 

leads to the same qualitative results..
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in the framework of the integration error. Since the commencing
 

condition also remains within this order, it can scarcely describe
 

the numerical behavior of first integrals.
 

4. Stabilisation through Normalisation
 

It has been shown that the difficulties resulting from the
 

numerical instability of the quaternion norm are av6ided completely,
 

When the quaternion is divided by its norm after each integration
 

step. A proof of this procedure will be published separately.
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