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NUMERICAL INSTABILITY AWD STABILIZATION OF THE KINEMATIC
DIFFERENTIAL EQUATION USING QUATERNIONS

W. Geiger
Institute B for Mechanics, University of Stuttgart

1. Introduction /T 118%

Becaugse of the singularity of the Bulerian angles (frame barrier)
other coordinates often must be used to describe the position of as
rigid body orgyroscopemujh a given rotating vector o = w() respectively.
One p0581b111ty is using rotating gquaternions, These satisfy the
linear differential equation (DGL)

, /() G —wy —w, —uy %
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The~£§are here the normalized coordinates of the rotating vector(;
in the rigid system. The present text is concerned with this
kinematic differential equation using gquaternions (XQD).

The four coordinates of T¢! must fulfill the requirement

e e (2).

'N _“quz"'l'—fi'o““‘ﬂh'l‘flz"l‘%"l'—o {

From KQD follows N = 0, thus ¥ = comnstant is a first integral of

KQD1). It is physically stabilized on the boundary.

2. Numerical Instability of the Normalized Integral

An unsymmetrical force-free gyroscope was employed as an
example., Its motion is represented exactly by the Eulerian
angles{®. &, ¢{ll.. This concerns a periodic nutation*ini?}of the

* Numbers in the margin indicate pagination in the foreign text.

1)The designation “integral" is also applied in the following for N.



figure axis. The Renge-Kutta procedure of the fourth order with

constant step H was employed as integration procedure.
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Figure 1: Normalized Error N(t)

The normalized integral deviated in a mnearly linear manner from

the desired value, The course (designated by EQD) is given as a
function of time, where the first 30 periods of @iwere calculated
with 30 steps for each period., Because of the physical stability
of the normalized integral it is only a matbter of a mumerical in-
stability here., The procedural error must always have an effect

in one direction, As proof the quaternion.ﬁﬁif from the disrupted
Taylor series may be calculated after step (j+1.) under the assump-
tion (V1) that the rotating vector may be assumed to be constant
during an integration step with the result

-
———e—ee T e -

*

;fmﬂm=agmww¢¢$@=£$%%L_WMW)
LRk (3).

!,_wf='w(g'q)i =4I, §=0,1,2,.. ;
where for all possible steps‘ﬁjgjf Corresponding values apply for
procedures of the third and fifth order. The gquaternion norm there-
by décreases with each integration step and asymtotically approaches
Zero,

Remarks: ’[T 119

a) A rather good approximation of precondition V1 was achieved

in the examplefgﬁﬁloyed. The value of rotating vector could




even further be assumed as always constant (V2).
Then

heonsti=t e o gy, (4)
and this function describes the actual course of the normal-
ized integral with a high degree of accuracy.

b) If as an especially simple example a permanent rotation is
calculated with:m=w=0,wm'=1x ' equations (3) and (4) describe
exactly the behavior of the nérmalized integral.

¢) The proof resulting from (3) requires in addition to V1
only that the matrix‘é}of KQD is symmetrical and involu-
toricg), 80 that other differential equations with such

coefficient matrices will exhibit identical characteristics.

When the Eulerian angle'? is calculated from the guaternion
according to the usual formula

e e e T e
1coaﬂ=‘@_q§_q§+q§ ‘ (5)9

—e e o

then the normalized error effects a very large error in this angle,
for

| cos = [lqiftcos 0%, $hus PadF——2
e — - ___'_*: = o ] . ta;_rl_’l?:h (6)

whenﬁﬁgis'the exact angle, This causes a numerical singularity in

the range of the frame barrier.
Indefendent of these results, suitable steps must be taken to
stabllize this integral numerically because of the numerical in-

stability of the normalized integral.

3. Stabilisation according to Baumgarte

Baumgarte (2] has proposed a gradient stabilisation procedure
for systems of usual differential equations of the first order. In
the case of the requirement for stabilisation designated here "on
average" the differential equation is altered with the aid of known

Y

VB = el B B ynit matrix




first integrals in such a manner that the stabilized differential

equation leads to a differential equation for the error in integrals

with the result that these are reduced asymtoitically on the average

when they have deviated from desired value zero through procedural

error,

Applied to kinematic differential equation using quaternions,

the stabilized differential equation (XQDS) becomes

§ =1 (2— 4kNE)q

(1),

where k is a positive, otherwise arbitrarily selected stabilisa-

tion factor.
to

[l
4

o

LA = k(1 + N)

The normalized integral would have to behave according

(8).

Actually, however, the typical course shown in Fig., 1 with k = 0.5

as an example occurs (designated by EKQDS).
gration step a jump in the norm cccurs.

During the first intve-
Thereafter the integral

stabiliyes on an erroneous value, the error is therefore not re-

duced asymptotically.

Examination of a Renge-Kunge step demonstrates that the series

(Nj) of the normaligzed error fulfills the corresponding law of form-

ation

| Njga= Ny~ (L+ V) 6y,

Bs = B, k! 7oy, NiT_‘_

(9).

The expréssion for/ﬁﬁcan no longer be stated explicitly. It is a

polynominal of the 80th order in Nj‘

The coefficients are in each

cage polynominals in k with parametérs H an&&ﬁﬁt Here V1 is applied

again.
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Figure 2: Jump in Norm
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Since the absolute member of&&fdoes not disappeaf, the value
of N; already differs clearly from zero (Fig. 2), although N, = 0.
Stabilisation would probably have no influence, as long as the
solution meets the requirement. Because erroneous aids, subsequently
used in the averaging, are, however, intentionally applied to the
integration procedure, a correct solution via stabilisation is made
lancorrect,

The numerical examination of the convergental behavior of the
Seguence (Nj) suceeds, with the application of the additional assump-
tion V2 although this entails a great deal of work. It converges
toward a valueor demonstrates divergent behavior according to the
value of the stabilisation factor kB). The result is -presented in
Fig. 2 (logarithmic.scaling, step size and rotating vector as in
Fig. 1). There are only two optimal stabilisation facters, in par- [T 120

ticular the zero positions of 4w, In order o 1116:L:|‘.rrba,:i.m:'fl:igf___o:;l<J‘0_.35T
it is necessary to select the stabilisation factor with a minimum
of three decimal places exactly equal to one of the two optimal

g8tabllisation factors.

4)

described in [2] may be summarized as follows: a) the accuracy
depends to a2 great extent on the stabilisation factor; b) in some
cases stabilisation factors have bo be determined very exactly.

The criticism pertaining to the stabilisation procedure

The search for these definitely entails a great deal of work and
these are above all dependent on the problem, They undergo changes
with the differentdal equation supplied at the beginning, commencing
conditions, integration procedure and stepsize chosen; ¢) proof
assumpbions are questionable from the standpoint of numerics. The
asymtotic differential equation applied for the preof of the error
in first integrals (here:(8)) describes the behavior of the inte-
grals only when the integration procedure functions with no error.
This differential equation, however, is only actually fulfilled

3)§Egis a zero place of functionls! only dependent on N,

Thé regulation designated here as "individual' stabilisation
leads to the same gualitative results,.



in the framework of the integration error. Since the commencing
condition also remains within this order, it can scarcely describe
the numerical behavior of first integrals,

4. Stabilisation through Normalisation

It has been shown that the difficulties resulting from the
numerical instability of the quaternion norm are avoided completely,
When the guaternion is divided by its norm after each integration
step. A proof of this procedure will be published separately.
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