NASA Technical Memorandum 80196

COMPUTER PROGRAMS FOR ESTIMATING CIVIL AIRCRAFT ECONOMICS

FEB 201880
KANGLE. RESEAFRCH CENTER

SUMMARY

Computer programs were developed to calculate airline direct operating cost, indirect operating cost, and return on investment. These programs provide a means for determining commercial aircraft life-cycle cost and economic performance. The program codes can be easily incorporated into existing aircraft design programs. A representative wide-body subsonic jet aircraft was evaluated to illustrate use of the programs.

INTRODUCTION

Those engaged in developing advanced aircraft must evaluate technology candidates for possible incorporation into the aircraft. This is usually done by attempting to understand such trades as: range versus payload; aerodynamic, propulsion, and structural interactions (impact on weight and fuel burned); and noise reduction versus performance change. Also critical, however, to any decision on whether or not to incorporate a suggested beneficial technological advance, is knowledge of the cost of developing the new technology and how it will affect the aircraft's economic performance over its lifetime. The technical tradeoffs made in preliminary aircraft analysis are usually accomplished by complex computer programs which contain individual segments representing the various aeronautical disciplines but lack a means of evaluating the aircraft's economics. Airframe manufacturers and others have developed computer programs to perform these calculations; however, these programs are not available in the open literature. In an effort to fill this need, two computer programs were developed. These programs, while not totally representative of the actual costs which an airline would incur, are sufficient to establish the overall impact which a proposed advanced technology might have on operating cost. This report describes a program that calculates Direct Operating Cost (DOC) (and its sensitivity to a number of parameters), and also a program which calculates Return on Investment (ROI). The ROI program is based on the Direct Operating Cost (DOC) and Indirect Operating Cost (IOC) of the airplane, and also on the discounted cash flow concept. Knowledge of the direct operating cost and its sensitivity to various parameters is sufficient for many advanced aircraft evaluations (ref. 1). An airline's return on investment, however, is the final and most important measure of the efficiency of a commercial aircraft.

Computer codes are compatible with the CDC 6600 computer system. The DOC model is based on the standard Air Transportation Association model (ref. 2) using 1976 cost coefficients (obtained from the Boeing Commercial Airplane Company). The indirect operating cost model is based on a model obtained from
the Lockheed-Calfornia Company (ref. 3) using 1976 cost data. Sample calculations are provided to illustrate use of the program.

DESCRIPTION OF COMPUTER PROGRAMS

Direct Operating Cost Program
The DOC program determines costs related to the operation of a subsonic aircraft in making a specific flight. Direct Operating Cost is made up of the following elements: flight operations (which includes crew, fuel, and insurance costs), maintenance (which includes labor costs for the airframe and engine, material costs for the airframe and engine, and maintenance overhead), and depreciation cost.

Appendix A-1 presents the symbol definitions for both the input requirements and the output of the program. Table I shows the equation form used for each cost element and Table II illustrates the parameters that affect these costs. Values for cost coefficients C_{1}, C_{2}, C_{3} and C_{7} are given in the program listing presented in Appendix A-2. The cost coefficient subscript number refers to the order in which the coefficient first appears in the computer program.

Four options are included in the DOC program: crew size may be either twoman or three-man; engine type may be either high bypass ratio or low bypass ratio; the airplane may be either new or used; and either a domestic or international flight may be specified (see Appendix A-2).

The fuel cost includes all gas and oil burned in making the flight plus an allowance for nonrevenue producing flights. Depreciation is based on the straight-line method and is determined by prorating the price paid for the aircraft (plus an allowance for airframe and engine spares) over a baseline lifetime of 14 years. A printout of a sample run is shown in Appendix A-3. Calculations are initially made based on the aircraft's direct operating cost per mile. The printout also provides direct operating costs given in terms of DOC per block hour, DOC per flight hour, DOC per seat statute mile, and DOC per passenger statute mile.

The program also calculates the effect of specific percentage increases in each cost element on the DOC. For example, initially the DOC is found for a base fuel price. The DOC is then determined for a 100 (2F), 200 (3F), and 300 (4F) percent increase over the base fuel price. Other cost sensitivities calculated are increases of $25,50,75$, and 100 percent in maintenance (MA), crew (CR), and airplane investment costs (AP), as well as the effect of various depreciation periods (DP) from 10 to 15 years.

Return on Investment Program

The Return on Investment program calculates the ratio of airline profit to airline investment generated by the operation of the aircraft during its entire life cycle. Appendix B-1 gives the input and output definitions, Appendix B-2 presents the program listings, and Appendix B-3 shows a sample case printout.

In addition to the direct operating cost (calculated in the same manner as already discussed), the program calculates indirect operating cost and uses a discounted cash flow method to determine the ROI.

The indirect operating cost section of the Return on Investment program determines costs indirectly attributable to the aircraft's operation. IOC is found by summing the following costs (see Table III): systems, local, aircraft control, cabin attendant, food, passenger handling, cargo handling, other passenger service, freight commissions and advertising, and general and administrative. Labor, property, equipment, and station maintenance cost (from ground facilities) is included in the systems cost. Local cost includes landing fees and servicing. Aircraft control cost includes all aircraft handling charges. Cabin attendant cost refers to the stewardesses. In the code, one stewardess is assigned for each 40 seats. The cost of food covers all food and refreshments served without charge to passengers. Passenger handling cost is actually the cost of handling the passenger's baggage. Cargo handling cost results from handling mail, freight, and express cargo. Other passenger service cost encompasses all activities related to passenger comfort, safety, and convenience. Freight commissions and advertising cost is the expense associated with creating a public preference for an individual air carrier, stimulating air travel, and providing timetables. The general and administrative cost represents cost of an overall corporate nature. Individual parameters which affect each IOC cost element are shown in Table IV. The IOC cost model assumes that some individual costs are dependent on the airplane's direct operating cost. In the program printout illustrated in Appendix $B-3, I O C$ is presented as follows: IOC per block hour, IOC per flight hour, IOC per seat mile, IOC per passenger mile, and IOC per aircraft statute mile.

Table V illustrates the form of the equations used to calculate ROI and Table VI presents the parameters which affect its calculation. The following parameters are calculated and listed in the program printout (Appendix B-3): operating cost, revenue, cost of depreciation, profit before tax and interest, book value of aircraft, interest, income tax, profit after tax and interest, present value factor, and discounted cash flow.

Each of these parameters is determined for each year of the aircraft's life. Monies brought in by passenger fares and cargo transportation are calculated using 1976 yields and are included in the revenue data. Direct and indirect operating costs are summed and included under operating costs. Growth in revenue and operating costs can be accounted for by specifying the inflation rate expected in future years (see ROI input section, Appendix B-1).

Cost of depreciation is discussed in the direct operating cost section. Book value is the value of the aircraft during a specific year of the aircraft's life after subtracting the accumulated depreciation expense from the original airplane price. The program assumes that the investment in the aircraft is made with borrowed funds. Interest cost is based on a 10 -percent interest rate; however, any desired interest rate can be input. The balance of the aircraft loan is amortized by specifying that a sum of money equal to the yearly depreciation expense is used to repay money borrowed to purchase the aircraft. This means that the amount of borrowed money outstanding at any point in time is also equal to the book value of the aircraft. Income remaining after taxes are paid
is referred to as "profit after tax and interest" and this parameter varies for each year of the aircraft's life. Present value calculations are made by taking the profit after tax and interest and discounting this profit at an assumed rate in order to balance the remaining life cycle income (cash flow in) against the original cash investment (cash flow out). Cash inflow is determined for each year of the aircraft's life, and an interative calculation procedure is employed using progressively larger numbers to find the actual discount rate that will balance the discounted cash flow in against the original cash investment. The discount rate that causes all cash flows to balance is the airline's return on investment and is also known as the "internal rate of return."

The present value factor used in the discount cash flow method must always have a value between zero and one. Therefore, if the sum of the profit after taxes and interest is less than the original cash investment, the cash flows cannot be balanced and an ROI (which could be negative) cannot be calculated. In order to allow for the calculation of negative ROI values, the program calculates a constant that is added to each year's profit after taxes and interest. Application of this constant assures a positive value for the difference between the original cash investment and the adjusted profit after taxes and interest. A negative sign is then applied to the ROI.

To limit the calculations to practical values of ROI, the program calculates it within a range of ± 100 percent. Should the absolute value of ROI exceed or equal 100 percent, the user is so advised in the printout.

A summary illustration of the many factors which affect a conmercial airplane's ROI is given in Table VI.

SAMPLE CALCULATION

A subsonic wide-body commercial jet transport aircraft flying with a $55-$ percent passenger load factor over a distance of 8336 kilometers (5180 st.mi.) is used to illustrate the information which can be obtained from these economic computer programs. Input values for the sample case are given in Tables VII and VIII. A zero inflation rate is specified for both revenue and operating cost. Freight and cargo loads are considered to be essentially negligible.

Figure 1 presents the effect of increases in crew, maintenance, aircraft cost, and fuel cost on the baseline DOC. Increases in fuel cost have the greatest effect on DOC while increases in aircraft cost have about the same effect as does an increase in maintenance cost. An increase in crew cost has the smallest effect. All calculations in figure 1 (and figs. 3-6) assume the aircraft is depreciated over a 14 -year period.

Figure 2 shows the effect of various depreciation time periods (10 to 15 years) on DOC.

Figure 3 illustrates the relative levels of $D O C, I O C$, interest, income tax, and profit for each year of the aircraft's life. Due to the assumption of zero inflation rate, DOC and IOC are constant over the aircraft's life.

Figure 4 shows the relative importance of each cost element in the DOC and the IOC over the aircraft's 14 -year life cycle. In this sample case, the freight commission, airplane control, and cargo handling costs are taken as negligible. The figure also includes a summary of where the airline's revenue dollar will be used over its lifetime.

Figure 5 presents the cash flow generated by the aircraft in each year of its life (discounted to its present value) for various load factors. For load factors near the breakeven point (such as 50 percent), little variation in discounted cash flow occurs. The most profitable case, of course, is for a 100 percent load factor, for which a very high positive discounted cash flow occurs early in the aircraft's life. In later years, when positive cash flow levels are less important, the discounted cash flow tends to approach zero. A large loss occurs when the aircraft is operated with a 30 -percent load factor.

The variation of return on investment with load factor is presented in figure 6. Changes in the slope of the curve result from the fact that income tax is paid only in those years in which a profit is made. For load factors above about 50-percent, a positive ROI results. In such instances, income taxes are paid and a profit is realized in each year of the aircraft's life. Below a load factor of about 30 percent, a loss is encountered each year, no income tax is ever paid, and the discounted cash flow ROI is always negative. Between load factors of about 50 percent and 30 percent, a profit may occur in some years of the aircraft's life but it will not be sufficient to return the investment made in the aircraft.

CONCLUDING REMARKS

Computer programs which calculate airline direct operating cost, indirect operating cost, and return on investment were developed to provide a computer model for determining commercial aircraft life-cycle cost and economic performance. These codes can be easily incorporated into existing aircraft design programs. A representative wide-body subsonic jet aircraft was evaluated to illustrate use of the programs.

National Aeronautics \& Space Administration
Langley Research Center
Hampton, Virginia 23665
November 9, 1979

REFERENCES

1. Maddalon, D. V.; and Wagner, R. D.: Energy and Economic Tradeoffs for Advanced Technology Subsonic Aircraft. NASA TM X 72833, April 1976.
2. Standard Method of Estimating Comparative Direct Operating Costs of Turbine Powered Transport Airplanes. Air Transport Association of America, December 1967.
3. Indirect Operating Cost. Lockheed-California Company Report LW 70-500R, May 1970. Also see revisions to 1969 Lockheed-California Company, Indirect Operating Expense Method Report COA 2061, July 1974.
table i.- direct operating cost equations
(Dollars Per Airplane Statute Mile)

Note: Constants given in program listing (Appendix A-2)
table il.- PARAMETERS ImpACTing Elements of direct operating cost

- PARAMETER	DOC COST ELEMENTS						
	Crew	Fuel	Insurance	Maintenance			Depreciation
				Labor	Material	Burden	
Takeoff gross weight	X						
Airframe weight				X	X	X	
VeJocity	X		X	X	X	X	X
Fuel burned		X					
Number of engines		X					X
Block distance		X		X	X	X	
Price of fuel		x					
Price of oil		X					
Block time		X		X	X	X	
Flight time				X	X	χ	
Airframe cost			X		X		X
Engine cost							X
Depreciation length							X
Utilization			X				X
Maintenance labor rate			X		X		
Insurance rate			X				
Spare airframe parts							X
Spare engine parts							X

An "X" in the Cost Element Column indicates the parameters that affect the cost element.
TABLE III.- INDIRECT OPERATING COST EQUATIONS

TABLE IV.- PARAMETERS AFFECTING ELEMENTS OF INDIRECT OPERATING COST

PARAMETER	IOC COST ELEMENTS								
	Systems	Local	Aircraft Control	Cabin Attendant	Food	Handling	Other	Freight Commissions and Advertising	General and Administrative
Takeoff gross weight	X	X							X
Depreciation cost									X
Number of cabin attendants				X					X
Number of total seats Tourist					X	X	X		X
First class					X		X		X
Block distance	X					X	X	X	X
Weight of cargo						X		X	
Labor on airframe and engine	X								X
Block time	X			X	X				X
Passenger load factor					X	X	X		X
Number of trips		X	X						X
Direct operating cost									X
Indirect operating cost									X

An " X " in the Cost Element Column indicates the parameters that affect the cost element.
TABLE VI.- PARAMETERS AFFECTING RETURN ON INVESTMENT

PARAMETER	ROI FACTORS							
	Annual Operating Cost	Annual Revenue	Profit before tax and interest	Book Value	Interest	Tax	Profit after tax and interest	Return on Inves tment
Direct and Indirect operating $\cos t$	X		χ			X	X	X
Aircraft investment	X		X	X	X	X	X	X
Depreciation	X		X	X	X	X	X	X
Velocity	X		X			X	X	X
Block distance	X	χ	X			X	X	X
Block time	X	X	χ			X	X	X
Utilization	X	X	X			X	X	X
Number of tourist seats	X	X	X			X	X	X
Number of first class seats	X	X	X			X	X	X
Passenger load factor	X	X	X			X	X	X
Weight of cargo	X	X	X			X	X	X
Years aircraft in service	$X \quad$:		X	X	X	X	X	X
Interest rate				-	X	X	X	X
Tax rate	.					X	X	χ
Yield from tourist class		X	X		.	X	X	X
Yield from first class		X	X			X	X	X
Yield from cargo		X	X		.	X	X	X

An "X" in the ROI Factor Column indicates the parameters that affect the ROI factor.

TABLE VII.- DIRECT OPERATING COST SAMPLE CALCULATION

Input	Program Code		Value
Block distance, km (st. mi.)	REQRNGS	8,336	$(5,180)$
Maximum takeoff gross weight, kg (1 bm)	WGROSS	352,063	$(776,165)$
Airframe weight, kg (lbm)	BEWMENG	158,664	$(349,794)$
Block fuel, kg (1 lmm	FUELBL	112,588	$(248,215)$
Block time, hours	TBLOCK	9.77	
Cruise speed, km/hour (st. mi./hour)	SPEEDE	1,043	(563)
Number of seats	NS	385	
Total thrust, N (lbf)	VCJ	800,680	$(180,000)$
Number of engines	ENGNO	4	
Time in ground maneuver, hours	TGNDMAN	0.25	
Passenger load factor, percent	LOADF	55	
Cost of gas, \$/liter (\$/gallon)	CSTGASB	0.1	(0.37)
Cost of oil, \$/7iter (\$/galion)	CSTOILB	4.0	(15.0)
$0 i 1$ burn rate, $\mathrm{kg} / \mathrm{hours}$ (1b/hour)	OILBR	0.061	(0.135)
Labor rate, \$/manhour	LABRATE	9	
Depreciation period, years	DEPYR	14	
Insurance rate, percent	INSR	1	
Spares, percent of airplane purchase price			
engines airframe	SPARENG SPAREAF	30 6	
Purchase price of airframe, \$	CSTAF	27,500,000	
Purchase price of one engine, \$	CSTIENG	1,760,000	
Revenue inflation rate	GREV	0	
Total operating cost inflation rate	GCSTOP	0	

() Metric

TABLE VII. (Continued)

	Input	Program Code
Crew size, men	BC	Value
Airplane condition	BN	3
Engine type	BE	New
Route structure	B	Hi Bypass
() Metric		International

TABLE VIII.- RETURN ON INVESTMENT SAMPLE CALCULATION

Input	Program Code	Value
First class seats (15% of total seats)	SEATSIC	58
Tourist class seats (85% of total seats)	SEATSTC	327
Weight of freight, kg (1bm)	WFREIGT	. 045 (0.1)
Weight of cargo, kg (1bm)	WCARGO	. 045 (0.1)
Cabin attendants (one per 40 seats)	NCABATT	10
Yield from first class passengers, $\phi /$ pass. km ($\$ /$ pass. st. mile)	YLDIC	5.7 (9.1)
Yield from tourist passengers, ф/pass. km (ф/pass. st. mile)	YLDTC	4.3 (7.0)
Yield from cargo, $\phi /$ ton km ($\phi /$ ton st. mile)	YLDCARG	16.8 (27.0)
Tax rate, percent	TAXR	48.0
Interest rate, percent	INTR	10
() metric		

Figure 1.- Effect of cost increases on direct operating cost.

Figure 2.- Effect of variable depreciation period on direct operating cost.

Figure 3.- Cash flow versus aircraft year of life,

Figure 5.- Discounted cash flow variation with time for various passenger load factors.

Figure 6.- Return on Investment as a function of passenger load factor.

B input for route type (1 for domestic flight; 2 for international flight)

BC input for crew costs (2 for two-man crew; 3 for three-man crew)
$\mathrm{BE} \quad$ input for engine costs (2 for low bypass engine; 5 for high bypass engine)

BEWMENG basic empty structural weight minus engine weight
BN input for airplane costs (1 for used airplane; 10 for new airplane)

CSTAF cost of airframe = cost of airplane less engines, $\$$
CSTGASB cost of gas at base price, \$/gallon
CSTOILB cost of oil at base price, \$/galion
CST1ENG cost of one engine, \$
DEPYR number of years to depreciate aircraft
ENGNO number of engines
FUELBL block fue1, pounds
INSR insurance rate, percent
LABRATE labor rate, \$/hour
LOADF passenger load factor, percent
NS number of seats
OILBR oil burn rate, pounds/hour/engine
REQRNḠS block distance, miles
SPAREAF spare airframes, percent of aircraft purchase price
SPARENG spare engines, percent of aircraft purchase price

SPEEDE \quad true cruise airspeed, miles/hour
TBLOCK block time, hours
TGNDMAN time for ground maneuver, hours

VCJ
WGROSS

AP
CR
CSTAP
CSTCREW
CSTDEP
CSTENG
CSTFLYO
CSTFUEL
CSTINS
CSTLABF
CSTLENG
CSTMAF
CSTMAIN
CSTMAOH
CSTMENG
DOCAP
DOCBL
DOCFH
DOCR
DOCS
maximum certified takeoff thrust, pounds maximum takeoff gross weight, pounds

Output

airplane price sensitivity
crew cost sensitivity
cost of airplane, $\$$
cost of crew, \$/airplane mile
cost of depreciation, \$/airplane mile
cost of engines, \$
cost of flying operations, \$/airplane mile
cost of fuel, \$/airplane mile
cost of insurance, \$/airplane mile
cost of labor for airframe maintenance, $\$ /$ mile
cost of labor for engine maintenance, \$/mile
cost of material for airframe maintenance, $\$ / \mathrm{mile}$
total cost of maintenance, \$/mile
cost of maintenance burden, $\$ /$ mile
cost of material for engine maintenance, $\$ /$ mile
direct operating cost of airplane, \$/mile
direct operating cost, $\$ /$ block hour
direct operating cost, \$/flight hour
direct operating cost, cents/revenue passenger mile
direct operating cost, cents/seat mile

DP
F
LABAFFC
LABAFFH
LABENFC
LABENFH
MA
MATAFFC
MATAFFH
MATENFC
MATENFH
SPEEDBL
TRCRUISE
TFLIGHT
UTIL
depreciation period sensitivity, years
fuel cost sensitivity
labor for airframe maintenance, man-hours/flight cycle
labor for airframe maintenance, man-hours/flight hour labor for engine maintenance, man-hours/flight cycle labor for engine maintenance, man-hours/flight hour maintenance cost sensitivity material cost for airframe maintenance, \$/flight cycle material cost for airframe maintenance, $\$ / f l i g h t ~ h o u r ~$ material cost for engine maintenance, $\$ /$ flight cycle material cost for engine maintenance, \$/flight hour block speed, miles/hour
time in cruise, hours
flight time, hours
annual utilization time, hours/year
page 1
90/01/30. 13.49.?8

PROGRAM RANG
74/74 APPENDIX A-2. - DOC SENSITIVITY LISTING

REAL LABENFC, MATENFH, MATENFC, INSR,NS
DATA ROUTE (I)/10H1-DOM. /POUTE(?)
C
C----------------------INPUTS
READ IN BLOCK DISTANCE (STATUTE MILES), MAXIMUM TAKEOFF GROSS WEIGHT 7113 READ $(5,7017)$ REQRNGS, WGROSS, FUELBL.TBLOCK
IF (EOF $(5)) 7111.711$ 2

C CRUISE SPEED (STATUTE MILES/HR)
SPEEDE=563.
C NUMBER OF SEATS
CS \quad TOS.
C TOTAL THRUST (POUNDS)
C TOTAL THRUST (POUNDS)
VCJ $=180000$.
C NUMBER OF ENGINES
C NUMBER OF ENGINES
C TIME IN $=4$ GROUND MAN
C TIME IN GROUND MANUEVEQ (HOURS)
TGNDMAN =. 25 F
PASSENGER LOAD FACTOR (PERCENT) C PRICE OF GAS AND OIL ($\$ / G A L L O N$)
CSTGASB $=.37 .00$
C PRICE DF LABOR FOR MAINTENANCE ($\$ /$ HOUR/MAN)

INSURANCE RATE (PERCENT)
INSR $=1.0$
ฝ

C--.---DOMESTIC FLIGHT $\beta=1$, INTERNATIONAL FLIGHT $\beta=2$
$8 \mathrm{C}=3$
$B N=1$
$B E=2$
$B E=5$

$$
8 \varepsilon=5
$$

$$
74 / 74 \quad O P T=1
$$

$B=1$
$B=2$$\quad$ MAN CREW YC=3, 2 MAN CNEN $B C=2$
$B=1$
$B=2$$\quad$ MAN CREW YC=3, 2 MAN CNEN $B C=2$
$B=1$
$B=2$
$B C=2$$\quad$ MAN CREW $H C=3$, 2 MAN CHEN $S C=2$
C--NEW AIKPLANE $B N=10$, USED AIRPLANE BN=1
C.-.-- BE=-HI BYPASS ENGINE BE=S , LO BYDASS ENGINE RE=?

$$
\begin{aligned}
& \text { SPARFNG }=\text { SPARENG } / 100 . \\
& \text { SPAREAF }=\text { SPAREAF } / 100 .
\end{aligned}
$$

$\stackrel{\circ}{\sim}$
m

PROGRAM RANG

SYMGOLIC KEFERENCE MAP $(R=2)$
REFERENCES

1976 ata doc calculations, sursonic jet, 3 man or \geq Man cren, statute miles SPEEDRL $=530.19$ TRLOCK $=9.770$ FUELEL $=.2482 E+06$ UTIL $=4275.08$ $V C J=.1800 E+06 \quad$ WGROSS $=.7762 E+06$
AIRPLANE DOC(S PER HOUR) DOCBL $=.3425 E+04$ DOCFH $=.3515 E+04$
COST OF FLT OPS, MAINT,AND DEPRECIATION ($\$$ PER MILE) CSTFLYO = COST OF MAINTENANCE (\$ PER MILE) CSTLABF= • $1235 E+00$ CSTMAF $=$ COSt of flt. operations (\$ per mile
cost of airplane, alrframe, engine ($\$$)
SPEEDE $=563.00$
MATAFH $\quad .5025 E+02$
MATAFFC $=15341 E+02$
CSTOLB $=15.000$
LOADF $=55.00$

3.426
3.243
3.206
3.433

DOCR
5.602
may
 3.024

$\varepsilon 0+3906$ I $^{\circ}$. $=03 N 3 \perp \forall \mathrm{~W}$
LABRATE $=9.00$ $80+305 L^{\circ}=7 \forall 150$
miscellaneous parameters
LABENFH= $\quad 1389 \mathrm{E}+02$
LAENFC=
ENGNO
OILER $=\quad .135$

CSTINS $=.1524 E+00$
CSTENG $=.7040 \mathrm{E}+07$
20+30915-

APPENDIX B-1* - RETURN ON INVESTMENT PROGRAM
 Indirect Operating Cost Section

Input

DEPART	number of departures
IR	inflation rate, percent
K_{1}	system cost coefficient
K_{2}	local cost coefficient
K_{3}	airplane control cost coefficient
K_{4}	cabin attendant cost coefficient
K_{5}	paod and beverage cost coefficient
K_{6}	cargo-handling cost coefficient
K_{7}	other passenger service cost coefficient
K $_{8}$	freight commission cost coefficient
K_{9}	number of cabin attendants
K_{0}	number of first-class seats
NCABATT	number of tourist-class seats
SEATSIC	weight of cargo, pounds
SEATSTC	weight of freight, pounds
WCARGO	airplane control cost, \$/trip attendant cost, \$/trip
WFREIGHT	CABATT

*A1so see Appendix A-1.

CARHAN	cargo-handling cost, \$/trip
FGTCOM	freight commission cost, \$/trip
FOOD	food and beverage cost, \$/trip
GENADM	general and administrative cost, \$/trip
IOC	indirect operating cost, \$/trip
IOCAP	indirect operating cost of airplane, \$/mile
IOCBL	indirect operating cost, \$/block hour
IOCFH	indirect operating cost, \$/flight hour
IOCR	indirect operating cost, \$/passenger mile
IOCS	indirect operating cost, \$/seat mile
LOCAL	local costs, \$/trip
OTHSER	other passenger service cost, \$/trip
PAXHAN	passenger-handling cost, \$/trip
SYSTEM	system expense, \$/trip
TOC	total operating cost (direct and indirect), \$/trip
	Return on Investment Section
	Input
DCFROI	internal rate of return on investment, percent
DCSHFLO	discounted cash flow, dollars
INTR	interest rate, percent
TAXR	tax rate, percent
YLDCARG	yield from cargo, cents/ton-mile
YLDTC	yield from tourist seats, cents/passenger mile
YLDIC	yield from first class passengers, cents/passenger

Output

BOOK	original purchase price minus accumulated depreciation, \$
CSTOP	cost of operating, \$/year
CSTOPMD	cost of operating minus depreciation, \$/year
INTREST	interest, \$/year
NET	net dollar inflow and outlfow over the life of aircraft
PROATAI	profit after taxes and interest, \$/year
PROBTAI	profit before taxes and interest, \$/year
REV	revenue, \$/year
TAX	tax, \$/year

$$
\begin{aligned}
& \text { C READ IN ELOCK DISTANCE (STATUTE MILES), MAXIMUM TAKEOFF GROSS WEIGHT } \\
& \begin{array}{l}
\text { C (POUNDS), BLOCK FUEL (POUNDS) ANO GLOCK TIME (HOURS) } \\
7113 \text { READ } 5,7017 \text {)REQRNGS, WGROSS,FUELBL, TYLOCK }
\end{array} \\
& \text { C CRUISE SPEED (STATUTE MILES/HR) }
\end{aligned}
$$

 SPARENG=SPARENG/I OO.
SPAREAF $=$ SPAREAF $/ 100$.

$\operatorname{CoUNT}=1$
$Z 1=0$.
COUNT
$Z_{1}=0$.
$23=24=$
25
$23=24=Z$
$23=Z 4=Z 5=Z 6=1.0$
KFUELST $=0$
7500 KFUELST $=$ KFUELST +1
n

PAGE

80/01/29. 15.35.55
FTN $4.7+485$

$$
74 / 74 \quad O P T=1
$$

9NGU watgoud

an

0
-
-

$\stackrel{n}{0}$
$\stackrel{O}{-}$
115
$\underset{\sim}{\text { 욱 }}$
$\stackrel{i n}{\sim}$

\[
$$
\begin{aligned}
& \text { STDPS }=\text { CSTDE } \\
& C S T A P B=C S T A P \\
& \text { OCAPIF }=\text { DOCAP }
\end{aligned}
$$

\] | NE. |
| :--- |
| DEP | DOCBL=DOCAP*SPEEDBL IF (KFUELST.NE.1) GO TO 7050 CSTAPB=CDOCA

$$
\begin{aligned}
& \text { CSTAPBS =CSTAPB+ SPAREAF* (CSTAPB-ENGNO*CSTIENB) +SPARENG*ENGNO* }
\end{aligned}
$$

$\stackrel{\sim}{2}$	

$$
\begin{aligned}
& \text { ISEAT=NS\#. } 15+. \\
& \text { SEATSIC=ISEAT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SEATS1C=ISEAT } \\
& \text { SEATSTC=NS-SEAT }
\end{aligned}
$$

C WFIGHT OF CARGO (POUNDS)

C NUMBER OF CABIN ATTENDANT
C NUMBER OF DEPARTURES
C INFLATION RATE (PERCEN
C INFLATION UPDATE FOR 1976 COSTS (PERCENT)
IF (B,EQ.2) GO TO 5051
C DOMESTIC COEFFICIENTS
$K I=.52$
$K_{2}=1.86$
$k 3=29 \cdot 33$
$k 5=.96$
$k_{6}=6.56$
0
8
8
8
8
$\times 1$
$k 9=.0082$
$k 0=.048$
05090100
CONTINUE
ERNATIONAL
$k=.56$
$k 2=4.64$
$k 3=67.72$
$k=67.72$
$k 4=37.0$
$k 5=.63$
$k 6=15.84$
$\stackrel{\sim}{n}$
옹
$\stackrel{n}{n}$
$\stackrel{i}{\circ}$
$\stackrel{n}{N}$
\circ
\sim
\sim
$\underset{\sim}{\infty}$
\circ
중

$$
\mathrm{IOCFH}=\mathrm{IOC} / \mathrm{TFL} \mathrm{IGHT}
$$

 TOTAL OPERATING COST ($£ / S T A T U T E$ MILE)

TOCAP =IOCAP + DOCAPIF $P=I O C A P / T O C A P * 100$ DOCP $=00 C A P I F / T O C A P * 100$.
WRITE $(6,6000)$ IR

WRITE $(6,6000)$ IR WRITE $(6,5012)$ IOCFH WRITE (6,6013)IOCR DIRECT OPERATING COST, PERCENTAGE OF TOTAL OPERATING COST
-
0
0
$\underset{\Psi}{\Psi}$

$$
\begin{aligned}
& \text { WRITE }(6,6023) \text { PAXHAN } \\
& \text { WRITE }(6,6024) \text { CARHAN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRITE }(6,6022) \text { FOOD } \\
& \text { WRITE }(6,6023) \text { PAXHAN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRITE }(6,6024) \text { CARHAN } \\
& \text { WRIITE }(5,6025) \text { OTHSER }
\end{aligned}
$$

$$
3,3 x \text {. }
$$

$$
\begin{aligned}
& \sum_{2}^{\Sigma} \\
& 00 \\
& 5 \\
& 5 \\
& 0 \\
& 4 \\
& 0
\end{aligned}
$$

18
18
15

$$
\begin{aligned}
& \text { WGROSS, NS, REQRNGS, WCARGO,TBLOCK, TFLIGHT } \\
& \text { CSTLABF, CSTLENG, CSTDEPB, DOCAPIF,LOADF }
\end{aligned}
$$

ATSLC,SEATSTC,NCABATT, DEPART, WFREIGT aCp

$$
\begin{aligned}
& \text { P KHEED IOC METHOD*, ///, } 4 \mathrm{X} \text {, } \\
& \text { K PERCFNT INFLATTON*. }
\end{aligned}
$$

$$
74 / 74 \quad O P T=1
$$

program rang

C------------------RETURN ON INVESTMENT CALCULATIONS
C-MIELD FROM FIRST CLASS PASSENGERS (CENTS/PASSENGER STATUTE MILE) C YIELO FROM TOURIST SEATS (CENTS/PASSENGEA STATUTE MILE) C YIELD FROM CARGO (CENTS/TON STATUTE MILE) YLDCARG $=2$. (BNT)
AX RATE (PERCENT)
C INTEREST RATE (PERCENT)
c INTR=10.

TAXR $=$ TAXR/100.
INTR $=$ INTR/100.
STEP=. 1
DCFROI $=0$.
$I=0 E P Y R$

C STER 1 . - year of aircrafts life under consideration
$\stackrel{0}{7}$

$$
415
$$

0
\sim
\rightarrow

APPENDIX B-3. - ROI SAMPLE CASE
1976 ATA DOC CALCULATIONS, SUBSONIC JET, 3 MAN OR 2 YAN CREW,
$\begin{array}{rlrl}\text { SPEEDBL }=530.19 & \text { TGLOCK }=9.770 \quad \text { FUELEL }=.2482 E+06 \\ V C J & =.1800 E \rightarrow 06 \quad \text { WGROSS }=.7762 E+06 & \end{array}$
REURNGS $=5380$.
AIRPLANE DOC ($\$$ PER HOUR) DOCBL $=.3425 E+04 \quad$ DOCFH $=.3515 E+04$
COST OF FLT OPS, MAINT,AND DEPRECIATION ($\$$ PER MILE)
COST OF MAINTENANCE ($\$$ PER MILE) CSTLABF $=.1235 E+00$ CSTMAF=

$=.1760 E+07$

LOCKHEED IOC METHOD

> OCBL $=\quad 26522 E+04$
> 1975 UPDATE- 0.0 PERCENT INFLATION
1G76 BREAKDOWN (\$/THIP)
$11328 E+04$
$36016 E+04$

RETURN ON INVESTMENT CALCULATIONS

[^0]
[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

