NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

STUDY OF ADVANCED ELECTRIC PROPULSION SYSTEM CONCEPT USING A FLYWHEEL FOR ELECTRIC VEHICLES

 Unclas47232

Francis C. Younger
Heinz Lackner
William M. Brobeck \& Associates

December 1979

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center
Under Contract DEN 3-78

for

U.S. DEPARTMENT OF ENERGY Conservation and Solar Applications Office of Transportation Programs

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, atakes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or noncess disclosed, or represents that its use would not ange privately owned rights.

STUDY OF ADVANCED ELECTRIC PROPULSION SYSTEM CONCEPT USING A FLYYWHEEL FOR ELECTRIC VEHICLES

Francis C. Younger Heinz Lackner William M. Brobeck \& Associates
Berkeley, California 94710

December 1979
Prepared for National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Under Contract DEN 3-78

for

U.S. DEPARTMENT OF ENERGY
Conservation and Solar Applications
Office of Transportation Programs
Washington, D.C. 20545
Under Interagency Agreement EC-77-A-31-1011

PREFACE

The Electric and lybrid Vehicle Research, Development, and Demonstration Act of 1976 (Public Law 94-413) authorized a Federal program of research and development designed to promote electric and hybrid vehicle technologies. The Energy Research and Development Administration, now the Department of Energy (DOE), which was given the responsibility for implementing the Act, established the Electric and Hybrid Vehicle Research, Development, and Demonstration Project within the Division of Transportation Energy Conservation to manage the activities required by Public Law 94-413.

The National Aeronautics and Space Administration under an Interagency Agreement (Number EC-77-A-31-1044) was requested by ERDA (DOE) to undertake research and development of propulsion systems for electric and hybrid vehicles. The Lewis Research Center was made the responsible NASA Center for this project. The study presented in this report is an early part of the Lewis Research Center program for propulsion system research and deveiopment for electric vehicles.

The research described in this report was conducted under Contract DEN3-78 with the National Aeronautics and Space Administration (NASA) and sponsored by the Department of Energy through an agreement with NASA.

"Page missing from available version"

CONTENTS

Page
PREFACE iii

1. ABSTRACT 1
2. INTRODUCTION 3
3. OBJECTIVE 5
4. TASK DESCRIPTIONS 7
5. REQUIREMENTS 9
6. PRELIMINARY ANALYSIS 13
6.1 Methodology 13
6.2 General Concepts 14
6.3 Characteristics of Traction Motors 19
6.4 Characteristics of Controllers 30
6.5 Characteristics of CVTs 33
6.6 Characteristics of Flywheels 35
6.7 Characteristics of Driveline 40
6.8 Ferformance Comparisons 40
6.9 Other Factors 42
6.10 Recommended Candidates for Task II 51
7. DESIGN TRADE-OFF STUDIES 53
7.1 Design Parameters Studied 53
7.2 Control Modes 69
7.3 Energy Management 69
7.4 Performance Comparisons 79
7.5 Cost Comparison 79
7.6 Candidates Recommended for Conceptual Design 79
Page
8. CONCEPTUAL DESIGN 83
8.1 System Voltage and Semiconductor Types 83
8.2 Description of Concept A6 85
8.2.1 Current Waveforms and Marmonic Losses 85
8.2.2 Control Circuits 94
8.2.2.1 Slip Controller 94
8.2.2.2 Traction Motor Three-Phase Generator 99
8.2.2.3 Gear Shift Controller 99
8.2.2.4 Rotor, Vehicle, and Flywheel Tachometer 99
8.2.2.5 Flywheel Mode Control 100
8.2.2.6 Flywheel Controller 100
8.2.2.7 Flywheel Three-Phase Generator 100
8.2.2.8 Flywheel Motor/Generator Position Sensor 100
8.2.2.9 Power Supply 101
8.2.2.10 Drive Electronics 101
8.3 Description of Concept D2 101
8.4 Flywheel, Size and Energy Rating 108
8.5 CVT Types 110
8.6 Vehicle Performance 110
8.7 Propulsion System Cost Comparison 114
9. DISCUSSION OF RESULTS 117
10. CONCLUSIONS 121
11. RECOMMENDATIONS 123
12. REFERENCES 125
APPENDICES 129
Appendix A - Advanced Electric Vehicle Propulsion System, Design Concept A6 131
Appendix B - Advanced Electitic Vehicle Propulsion System, Design Concept: D2: 155
Appendix C - Models for Propulsion System Components 175
Appendix D - Guidelines and Back-up Information for Cost Calculations 191
Appendix E - Computer Flow Chart and Program 203

"Page missing from available version"

LIST OF FIGURES

Figure No. Title Page
1 SAE Electric Vehicle Driving Cycles SAE J227a 12
2 General Concept "A" 15
3 General Concept "B" 16
4 General Concept "C" 17
5 General Concept "D" 18
6 Torque-Speed Characteristics of Electric Motors 21
7 Chopper Circuit for DC Motors 22
8 Performance Characteristics of DC Motor 249
Equivalent Circuit of Induction Motor 26
Circle Diagram for Induction Motor 27
Torque vs. Speed at Various Power Factors 28
Performance Characteristics of AC Motor 29
Simplified Chopper Circuit for DC Motor with Regeneration Capability 31
Electronically Commutated DC Motor 32
Inverter for 3-Phase Induction Motor 34
Velocity Loss Due to Creep 36
Effect of Normal Load on Spinning Torque \& Creep Slope 37
Flywheel Stored Energy vs. Flywheel Speed 39
Candidate A6, AC Motor Drive 54
Candidate A8, Electronically Commutated DC Motor Drive 55
Candidate D2, DC Drive Motor and CVT 56
Candidate D4, AC Drive Motor and CVT 57
Candidate B5, Two AC Motors/Direct Drive 58
Driveline Efficiency vs. Range 62
Battery Weight vs. Range with Lead Acid Batteries 67
Concept A8. Flywheel/Battery Current-Acceleration Dependent 74
Concept A8. Battery Leveling 75
Concept A8. Preset Maximum Positive \& Negative Current Limit 76
Design Concept A6 87
Voltage Waveform From Inverter 89

LIST OF FIGURES (Continued)

Figure No. Title Page
31 Equivalent Circuit of Induction Motor 90
32 Simplified Inverter Circuit 95
33 A6 Contro? Circuit Diagram 97
34 Concept D2 103
35 Power Flow - Candidate D2 104
36 Timing for Semiconductor Switches for Nine-Phase Motor 106
37 Electronic Commutation Switches for Nine-Phase Motor. 107
38 Electronically Commutated Motor Switches 109
39 Flywheel Stored Energy vs. Flywheel Speed 111
40 Flywheel/Generator Unit 112

LIST OF TABLES

Table No. Title Page
1 Task Descriptions 8
2 Advanced Electric Vehicle Performance Requirements and Cost Goals 10
3 Electric Vehicle Characteristics 11
4 Battery Characteristics 11
5-8 Characteristics of Candidate Propulsion Systems 41,43-45
9 Performance of Candidate Propulsion Systems 46
10 Advantages and Disadvantages of Power Systems 48
11 Technology Advances Required 49
12 Loss Coefficients Used in Driveline 60
13 Concept A6. Transaxle Losses 61
14 Summary Table of Peak Motor Power Requirements 63
15 AC Induction Motor Analysis for Various Slips and Power Factors 64
16 SAE J227a Schedule D Cycle Range Obtained for Motors Listed in Table 15 65
17 Battery Weight vs. Range 66
18 Battery Weight vs. Range 68
19 Control Modes 70
20 Range vs. Various Transmission Ratios 71
21 Shift Point Evaluation 72
22-23 Energy Management Scheme Evaluation 77,78
24 Candidate Weight/Performance Comparison 80
25 Candidates - Propulsion System Cost Comparison 81
26 General Vehicle Specification - Design Concept A6 86
27 Harmonic Amplitudes of Pulsed Wave 91
28 Leg Voltage and Current Associated with Harmonics of Pulsed Wave at Maximum Torque 92
29
Losses Per Leg Associated with Harmonics of Pulsed Wave at Maximum Torque 93
30 General Vehicle Description Design Concept D2 102
31 Candidate Weight/Performance Comparison 113
32 Propulsion Systems - Cost Comparison 115

1. ABSTRACT

A study for evaluation of advanced electric propuision system concepts with flywheels for electric vehicles predicts that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywhee? energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs amo to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach tu a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

2. INTRODUCTION

This study is intended to identify and evaluate advanced propulsion system concepts for on-the-road electric vehicies. Electric vehicles are of interest because their use will reduce petroleum consumption and pollution. Today about one half of the petroleum consumed in the United States is used for transportation. The introduction of electric vehicles could significantly shift the transportation energy base to other sources such as coal, nuclear, and solar.

Most electric passenger cars built in recent years have been conversions of conventional automobiles using available dc motors with various control schemes.

The availability of vehicles, motors and control devices rather than opt imum energy efficiency and performance often dictated the nature of the propulsion system design. With the evolution of a new generation of electric vehicles for passenger use, specially-design components will presumably be used. If a new generation of electric vehicles is to be mass produced for a potentially large market, the components for these vehicles should be tailored to meet the specific requirements of an automotive market. The criteria for weight and efficiency would not necessarily be those for the industrial motor and controller nor for aircraft motors, but would aim to meet the vehicular needs of light weight, low cost and high efficiency.

The study was to select from several proposed concepts, two concepts that have a range of 100 miles over the J227a D cycle (ref. 1) and also meet performance standards set by NASA using battery characteristics given by NASA. Conceptual designs of these two concepts were then to be prepared.

3. OBJECTIVE

The objective of the study is to identify attractive concepts for advanced propulsion systems that offer considerable performance inprovement over existing propulsion systems with little or no potential cost penalty.

4. TASK DESCRIPTIONS

The program effort was organized into four main tasks as shown in Table 1. In the first task, Preliminary Analysis, a variety of candidate propulsion systems were evaluated using the performance requirements for a four passenger vehicle assuming the use of an improved state-of-the-art (ISOA) lead-acid battery. It was also assumed that advanced components wouid be available for an engineering model by 1983. Components assumed available in this time frame include high-speed light-weight traction motors designed specifically for electric vehicles, advanced semiconductor controllers for these motors, high-specific-energy flywheels, and lightweight continuously-variable-transmissions (CVT). Task 1 also includes an assessment of the technology advancements required to yield the components and system integrations for the advanced propulsion systems.

In the second task, Design Trade-Off Studies, the most attractive candidates are subjected to a more detailed analysis to determine optimum sizes and ratings of system components, optimum operating points and operating modes to achieve the required performance considering energy consumption, battery life and life cycle cost.

In the third task, Conceptual Design, layout drawings for the two most attractive concepts are to be prepared showing the location of all components within possible vehicle configurations. Consideration is to be given to cost, effective component operation, maintainability, reliability, and passenger safety and comfort. Performance and life cycle costs of therse conceptual designs are to be estimated.

In the fourth major task, Development Plan, the required effort for development of the conceptual designs will be assessed. This task is to identify all major developmental efforts for each new technology requirement. The plan is to cover the effort required up to and including fabrication and laboratory testing of an engineering model of the advanced propulsion system. Work on this task was submitted as a preliminary draft.

Table 1. Task Descriptions

Task No.
1

2

3

4

Description

Preliminary Analysis
Evaluate general concepts and recommend

\quad five for Task 2 Design Trade-Off Studies \quad| Optimize and evaluate specific concepts |
| :--- |
| Conceptual Design |
| \quadPrepare conceptual designs of two con-
 cepts |

Development Plan
Identify major activity areas and estimate required effort

5. REQUIREMENTS

Advanced concepts for evaluation are envisioned as propulsion systems which can be developed in about five years using advanced technologies that are projected to produce components with lower weight and higher efficiency than current state-of-the-art components. These systems are expected to include flywheel energy storage devices not presently available to boost the peak power to give improved performance of electric vehicles.

The purpose of the study is the conceptual design of two advanced electric propulsion systems with the objective of meeting the cost and performance requirements listed in Table 2, when the propulsion system is installed in an electric vehicle with characteristics as listed in Table 3 using a battery with characteristics as listed in Table 4.

The requirements are taken to apply at the test weight of the vehicle at an ambient temperature of $27^{\circ} \mathrm{C}$ and for a new traction battery. The test weight is taken as the curb weight of the vehicle plus 300 pounds (136 kg).

In addition to the requirements given in Table 1, effort to minimize the effect on performance and operation due to battery degradation and operating temperature extremes of $-29^{\circ} \mathrm{C}$ to $+52^{\circ} \mathrm{C}$. The propulsion system is to be designed to optimize the battery available energy and battery life.

The driving cycles for evaluating electric vehicles are those specified by SAE J227a which lists four different test schedules. The characteristics of these schedules are summarized in Figure 1. Different schedules are used for different types of vehicles. The schedule "D" is the one to be used for evaluating advanced electric vehicles. The range for an electric vehicle operating repeatedly over the SAE J227a cycles is determined by the point where the vehicle can no longer satisfy the acceleration at the start of the cycle.
Table 2. Advanced Electric VehiclePerformance Requirements and Cost Goals
Min. Range, SAE J227a Schedule D, km (mi) 161 (100)
Min. Range at constant $72 \mathrm{~km} / \mathrm{h}(45 \mathrm{mi} / \mathrm{h}), \mathrm{km}(\mathrm{mi})$ 209 (130)
Max. acceleration time $0-89 \mathrm{~km} / \mathrm{h}(0-55 \mathrm{mi} / \mathrm{h})$, seconds 15
Max. merging time, $40-89 \mathrm{~km} / \mathrm{h}(25-55 \mathrm{mi} / \mathrm{h})$, seconds 10
Min. passing speed, km/h (mi/h) 105 (65)
Sustained speed on an uphill 4% grade, $\mathrm{km} / \mathrm{h}(\mathrm{mi} / \mathrm{h}$) 89 (55)
Ramp speed. Min. attainable from a stop on an uphill 6% grade in 305 m (1000 ft), km / h (mi / h) 65 (40)
Maximum wall plug energy for SAE J227a, Schedule D $559 \mathrm{~kJ} / \mathrm{km}$ ($250 \mathrm{~W}-\mathrm{H} / \mathrm{mi}$)
Minimum life $161,000 \mathrm{~km}(100,000 / \mathrm{mi})$
Maximum life cycle cost (propulsion system plus $\$.05 / \mathrm{km}(\$.08 / \mathrm{mi})$ battery only)

Table 3. Electric Vehicle CharacteristicsBase weight, kg (lbs)326 (718)
Maximum payload, kg (1bs) 272 (600)
Test load, kg (lbs) 136 (300)
Weight propagation factor 1.299
Tire radius, mm (in)2.92 .1 (11.5)
Aero drag coefficient times Area, $C_{d} A, m^{2}\left(f t^{2}\right)$ 56 (6)
Air density, $\left(\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)$ $\left(\frac{\sec ^{2} 1 \mathrm{lbs}}{\mathrm{ft}^{4}}\right)$
$1.26\left(2.38 \times 10^{-3}\right)$
Rolling resistance coefficients
$C_{0} \quad$ Non-dimensional 8×10^{-3}
$c_{1} \quad \frac{\mathrm{sec}}{\mathrm{m}}\left(\frac{\mathrm{sec}}{\mathrm{ft}}\right)$$3.599 \times 10^{-5}\left(1.097 \times 10^{-5}\right)$$c_{2} \frac{\mathrm{sec}^{2}}{\mathrm{~m}^{2}}\left(\frac{\mathrm{sec}^{2}}{\mathrm{ft}^{2}}\right)$$1.036 \times 10^{-6}\left(9.63 \times 10^{-8}\right)$
Rotational inertia factor non-dimensional 1.04
Table 4. Battery Characteristics

	Lead Acid		Nickel-Zinc
Specific energy $\mathrm{wh} / \mathrm{kg}$	40	80	
Specific power w / kg	100		
Cycle life (80% discharge)	800	500	
Cost $\$ / \mathrm{kWh}$	50	75	
Efficiency \%	60	70	

6. PRELIMINARY ANALYSIS

The characteristics and performance of 28 candidate propulsion systems were analyzed. These candidates covered a variety of component types and arrangements and included ac and dc traction motors with and without multi-speed transmissions. All candidates included a flywheel storage system to provide load levelling for the battery and to give a power boost for acceleration and an energy sink for use in regenerative braking. Single and dual axle drives were considered.

A computer program which calculates the energy consumption of electric vehicles in any driving cycle was used to help evaluate the candidate systems. Preliminary studies of component types were made to establish the characteristics and data which were input to the computer program. Special subroutines were prepared to generate performance characteristics of various components. CVTs and electrical controllers were modeled on the basis of known losses. Motor types were modeled using equivalent circuit concepts and theoretical relationships for known losses.

6.1 Methodology

The method for analysis of propulsion system candidates was iterative in nature using a computer simulation of the specific driving cycles. Specifications of components were set initially at values believed to be adequate to satisfy performance requirements. These were then used as input for the computer with the various driving cycles set to simulate all the required performance goals. Component sizes and ratings were altered as required to satisfy all the power requirements. Battery weight was varied to meet the range requirements. Resulting vehicle weights, energy consumption and range were used as figures of merit for assessing the relative attractiveness of each of the candidates. In addition to the computer analysis, preliminary evaluations of technology risks and other factors were made. The most attractive concepts without excessive risks were identified for further study in design trade-off studies.

The computer program, Appendix E, calculates all of the energy losses for the driving cycle on a second-by-second basis. The subroutines for the various motor types permits a direct calculation of copper and iron losses, bearing friction and windage. The motor subroutine for ac induction motors uses the equivalent circuit for induction motor and calculates the air gap magnetic flux required to produce the necessary counter emf. The dc motor subroutine calculates the required field coil excitation current and magnetic flux using a typical reluctance circuit and the magnetic saturation characteristics of a laminated iron used in motor construction.

Losses in the motor controller were separately calculated at each time step to find the efficiency of these units.

Axle and transmission losses due to gear friction, bearing friction and windage were also calculated at each time step rather than using a fixed efficiency for these units. The losses for multi-speed transmissions varied with the gear ratio.

Run-down losses for the flywheel were included in the calculation. The in-and-out efficiency of the flywheel storage system with its controller losses were also included.

6.2 General Concepts

The propulsion system for an electric vehicle can be very simple. An electric motor can be mechanically coupled to the drive wheels and the battery can be electrically connected to the motor by a simple control circuit. The electric motor draws current from the battery to provide propulsion power to drive the vehicle. Some means of controlling the power to the drive wheels is necessary to control the vehicle speed. A variety of different types of motors and their control is possible. Varying degrees of complication evolve around the control schemes for different types of motors and driveline components. High efficiency, light weight and easy handling are obviously desirable. Separately excited dc motors can be controlled by field weakening over a large speed range. The use of a transmission extends the vehicle speed range without a corresponding increase in motor speed range. Some vehicles also use chopper control of armature current to extend the range of motor controlability.

For the envisioned automotive market the nature of the design would be such as to favor those designs more susceptible to mass production and low maintenance. Mechanically commutated dc motors would appear to be less attractive than squirrel cage induction motors or electronically commutated dc motors. However, the controller for such motors could have complications, weights and costs that would more than offset any savings due to the simpler motor construction. The trade-off between cost and efficiency would not merely be judged in terms of the cost of energy saved but would rather consider the increase in range and increase in battery life.

Various general concepts using a variety of motor types and drive configurations have been proposed for preliminary analysis. All of these use a flywheel for a power booster to provide a power boost for acceleration and to maintain acceptable performance even on a nearly discharged battery or under adverse temperature conditions. The arrangement of the driveline components are shown in Figures 2, 3, 4, and 5.

These four general configurations represent different driveline power flow paths using different elements.

In general Concept A a single traction motor drives the vehicle with or without a transmission. Electrical energy for the traction motor comes from two sources, the battery and the flywheel storage system. The nature of the energy converters depends upon the type of traction motor used. The motor types considered for this general concept are three-phase ac induction motors and electronically commutated dc motors. The flywheel energy buffer consists of a flywheel coupled to a generator which converts the flywheel kinetic energy to electrical energy. To recharge the flywheel, the generator must run as a motor, thus, suitable motor types for coupling to the flywheel are those which can function both as a generator and as a motor over a wide speed range. Electronically commutated dc motors with field control appear to be most suitable for this purpose. The high speed of the flywheel drive motor requires a brushless design to minimize friction and run-down losses. Two types are considered for the preliminary analysis; one with permanent magnets for the field and the other with wound field coils. Permanent magnet motors are somewhat simpler than wound field machines and require no excitation current; however, the absence of controllable field coils limits the means of voltage control. The inability to weaken the field prevents the desirable reduction of eddy current and hysteresis losses during cruising and coasting periods where flywheel power is not required.

General Concept B differs from General Concept A primarily in having two traction motors. It seemed possible that two smaller electric motors could give better efficiency than a single larger motor because one could be turned off to eliminate some of the losses which lead to reduced efficiency at light loads. Two motors would be used for acceleration and braking and a single motor used during cruise and other light load conditions. As with General Concept A this general concept covers variations having different motor types, with and without multi-speed transmissions.

General Concept C employs two traction motors as does General Concept B, but uses two drive axles on the grounds that better recovery of energy via regenerative braking may be possible with this arrangement. This general concept also covers a range of motor types, with and without multispeed transmissions.

General Concept D is similar to General Concept A in having a single traction motor, but instead of using an electrical conversion of flywheel kinetic energy a mechanical conversion utilizing a continuously variable transmission (CVT) is used. Torque output of the flywheel is directly related to the rate of change of the flywheel's angular momentum which can be controlled by the rate of change of the CVT speed ratio. For this concept to be practical requires a light-weight CVT with high efficiency. It is believed that such a device can be developed.

6.3 Characteristics of Traction Motors

The evaluation of the performance of any motor in a propulsion system is made in terms of its torque/speed characteristics and its losses.

Many different types of motors can be considered as possible traction motors for advanced electric propulsion systems. For such an application the motor should have high efficiency and be light weight and inexpensive. It should be easily controlled when used with batteries as the main source of energy.

Over the years, there has been a steady growth in the improvement of the design of electric motors to take advantage of technological advancements in high temperature insulation, precision bearings, improved lubricants and precision reduction gearing. The invention of commutating poles and improved brush materials has permitted the design of dc motors to neariy keep pace with other technological advancements; however, at the present time commutation problems limit the output of dc machines. The brushes and commutator bars can be an economic obstacle to development of a mass produced electric vehicle using dc motors. Electronic commutation of dc motors could be economical and could provide a breakthrough for higher speed and higher power-to-weight ratio.

Because of its ease of control the conventional shunt motor with field weakening is a popular choice for electric vehicles. It can be controlled over a fairly wide speed range using a chopper-t.ype field current regulator to control the magnetic field. Weakening the field reduces the counter emf at a given speed to permit a greater armature current. The motor operates in essentially two regions as shown in Figure 6. At high speed (above the base speed), full voltage is applied to the armature windings, and power is controlled by regulating the field current. This is the field weakening region. At speeds below the base speed, the motor is incapable of generating adequate counter emf to permit operation with full voltage across the armature. In this region, armature current control is required. Armature current can be regulated by a semiconductor chopper switch which controls the on-off ratio. Figure 7 shows a simplified chopper circuit for control of armature current.(ref. 2) For field current control, the power levels are lower and a transistorized chopper would be used in the first analysis.

The torque/speed characteristics of the separately excited dc motor are calculated in the computer program using the basic relationships for the force on a conductor in a magnetic field and the voltage induced in a conductor moving through a magnetic field. Thus, the torque is directly proportional to the product of the armature current and the air gap flux. The air gap flux is that required to produce a counter emf equal to the applied voltage less the IR drop across the armature. This counter emf is directly proportional to the product of the motor speed and air gap flux.

A relationship is built into the program to calculate the air gap flux as a function of the field current using a typical reluctance circuit for a dc motor and a typical magnetic saturation curve for electrical grade iron. At motor speeds less than the base speed the field current is held at its maximum value which is set to give a magnetic flux high enough to slightly saturate the iron between the coil slots. At speeds above the base speed the field current is reduced and the flux falls along the curve calculated for the air gap, leakage flux and the magnetic properties of the iron.

Figure 6. Torque-Speed Characteristics of Electric Motors

39甘170^ ONV ヨחD४O1

Q2 = commutating SCR
'D1 = freewheeling diode
Q1 = main power switch
$C=$ capacitor (is charged by external circuit not shown)

Figure 7. Chopper Circuit for DC Motors

The motor speed is determined from the vehicle speed and driveline gear ratios and tire size. Then the flux required for the counter emf is found as a first approximation ignoring the (IR) voltage drop across the armature. Then the required armature current to produce the desired motor torque with the set value of air gap flux is found. Using this armature current, an IR voltage drop is calculated to find a new counter emf and air gap flux. An iteration procedure converges very rapidly to the correst current and flux.

The identifiable losses used in the analysis are the following:
$I^{2} R$ loss for the field
$I_{2}^{2} \mathrm{R}$ loss for the armature
Windage losses
Bearing friction
Eddy current losses
Hysteresis losses

These losses are set initially at percentages of the total losses at a design point and the appropriate values of resistances, drag coefficients, other loss coefficients are calculated from this point to permit subsequent calculation of losses at all other operating points. Using the specific rating of the motor at its design point, power and efficiencies over a wide range of operating points have been calculated. Figure 8 shows characteristics of a dc motor calculated by the program listed in Appendix E. Motor efficiency and current are shown as functions of motor output power with speed as a parameter. At speeds over 2200 rpm , field weakening is used to control power output.

The usual alternative to the dc traction motor is the three-phase ac induction motor. Using the squirrel cage construction, this is a rugged motor capable of mass production with relatively low cost, light weight and high efficiency. Operation of an ac motor from a dc energy source such as a battery requires a dc to ac inverter which can be an expensive item. Achieving regeneration with an induction motor can be difficult with a dc to ac conversion system as it must be a two-way converter (i.e. a rectifier as well as an inverter) and it must maintain the ac current to sustain the air gap magnetic flux.

In terms of the air gap magnetic flux the induction motor and separately excited dc motor are quite similar and thus the torque/speed characteristics are much alike. At speeds below the base speed both motors operate with maximum magnetic flux and above the base speed the flux is steadily reduced. In the case of the dc motor above its base speed, the field current regulator achieved the function. For the induction motor, the inductance of the magnetizing circuit is such that varying the voltage to the motor in proportion to the frequency when operating below the base speed achieves the desired maximum flu:. Keeping the voltage constant with respect to frequency when operating above the base speed achieves the steady reduction in flux.

Because the two motor types are magnetically quite similar, the torque capacity and weights are potentially the same. The efficiencies are also potentially the same. The main differences are power factor, torque angle, controllability and operating ease as a generator.

The torque/speed characteristics of the three-phase induction motor are calculated in the computer program using the equivalent circuit (ref. 3) shown in Figure 9. The circuit is for one leg of a three phase motor. The value E_{1} is the voltage across one leg and is equal to the line-to-line voltage for a delta connection or to $\frac{1}{\sqrt{3}}$ times the line to line voltage for a wye connection.
The value R_{T} is the resistance of the stator windings. The value R_{2} is the rotor resistance referred to the stator and R_{3} is an equivalent resistance associated with core losses. The values for the inductances and resistances are calculated for hypothetical motor using the desired motor characteristics at a design point. At this design point, the motor rated power, speed, slip, efficiency and power factor are used in conjunction with a hypothetical distribution of identifiable losses to permit the calculation of the circle diagram (ref. 3) of Figure 10 and all the circuit constants for the equivalent circuit.

The value of the resistance R_{1} is set to give the $I^{2} R$ losses of the stator at rated power. The value for R_{2} is set for the $I 2 R$ losses of the rotor and the value for R3 to give the total eddy current and hysteresis losses.

The inductances X_{1} and X_{2} are the leakage reactances and combined with the magnetizing (transformer) reactance X_{3} to satisfy the specified power factor. An arbitrary power factor may be specified; however, excessively high power factor (say over 88 percent) will give leakage reactances which are unrealistically low. With reasonable air gap dimension leakage reactances less than four percent of x_{3} will be unlikely.

A very low value of R_{2} will result in a motor with low slip and good efficiency; however, very $10 w$ values of R_{2} yield motor designs with excessive starting current. For an industrial motor operated at a fixed frequency, good starting is very important. For an automotive motor operated from a variable frequency inverter, good starting torque is much less important and the higher efficiency of a low slip motor is very desirable.

The torque of an induction motor is dependent upon slip and voltage and can be found from the values of the equivalent circuit elements as follows:

$$
T=\frac{K E_{1}{ }^{2} R_{2}}{s\left[\left(R_{1}+\frac{R_{2}}{S}\right)^{2}+\left(x_{1}+x_{2}\right)^{2}\right]}
$$

where K is a constant if saturation of the core is neglected.
A plot of torque as a function of slip is shown in Figure 11.
A special subroutine was written to calculate the characteristics of three-phase induction motors based on design parameters at rated power and speed. The design parameters included slip at rated power, power factor, efficiency and the distribution of losses. The characteristics of a typical motor calculated by this subroutine is shown in Figure 12.
部
wiv

$\mathrm{V} /$ phase
$\mathrm{A} /$ phase
$\mathrm{A} /$ hase
$\AA /$ phase
$\Omega /$ phase
$\Omega /$ phase
$\Omega /$ hase
$\Omega /$ phase
$\Omega /$ phase
$\Omega /$ phase
Figure 9. Equivalent Circuit of Induction Motor

Data for this plot was generated by computer program listed in Appendix E. Slip $=4.0 \%$

Generator

Figure 11. Torque vs. Speed at Various Power Factors

Figure 12. Performance Characteristics of AC Motor

6.4 Characteristics of Controllers

The most appropriace controller for a given motor type depends not only upon the motor type but also upon the operating conditions for the motor. For an advanced propulsion system it seems obvious that regenerative braking is necessary. When the motor is operated below its base speed, it will not be able to generate a counter emf greater than the battery voltage. Effective regeneration will require some means of voltage boostirig unless the motor speed can be kept above its base speed either by using a motor with a low base speed or by continuously shifting gears to keep the motor speed high. The continual shifting of gears is awkward and is an undesirable way to achieve regeneration. Reducing the base speed of the motor may result in an unnecessarily large and heavy motor.

Voltage boosting can be accomplished with a dc motor by use of a suitable chopper controlled voltage booster in the armature circuit. Figure 13 shows such a chopper controlled booster. Armature current flowing when chopper switch Q2 is closed builds up a flux in the inductance of the armature circuit. The decay of this flux when $Q 2$ is turned off forces the current to flow to the battery through the diode D2. The inductance of the circuit must be high enough to sustain the current through D2 and to prevent excessive current trirough Q2. The amount of inductance required depends upon the chopper frequency. The higher the frequency the smaller the inductance. The chopper switch Q2 can be a SCR for a chopper frequency of 400 Hertz or less. Frequencies over 1 kHz will require transistor switches.

For an electronically commutated dc motor, an electronic switching circuit is required. This circuit must switch the polarity of the armature coils in phase with the rotor and at a frequency dependent upon the rotor speed times the number of poles. The number of armature circuits to be switched can be selected to give smooth motor torque and low current ripple. Three armature circuits would require a switching circuit similar to a three-phase inverter except that the turn-on and turn-off times are tied to the rotor shaft position. Increasing the armature circuits to more than three would increase the number of semiconductor switches required while at the same time decreasing the current carried per switch. The choice of how many circuits would depend upon the current ratings and costs of transistor switches.

A simplified commutation circuit for an electronically commutated motor with seven armature circuits is shown in Figure 14. In this circuit, the switching elements are shown as SCRs. If high chopping frequencies for current control and voltage boosting are superimposed upon the switching for commutation, the SCRs would probably have to be replaced by transistors.

For a three-phase induction motor, a dc to three-phase ac inverter is required. The output frequency must vary as the motor speeds up or slows down in order to maintain a desired amount of slip. The power factor of the load can vary substantially so the inverter must be capable of driving a highly inductive load.

Figure 13. $\begin{gathered}\text { Braking Mode } \\ \text { Wimplified Chopper Circuit for de Motor }\end{gathered}$

Figure 14. Electronically Commutated DC Motor
Seven Coils Per Pole Pair - 14 Thyristors and 14 Diodes

Above the base speed of the motor, the inverter output voltage is limited by battery voltage. At speeds less than the base speed, the voltage should increase linearly with frequency to insure maximum air gap flux. A chopper switch for the armature current used with a voltage feedback loop can provide voltage control.

Voltage boost for regeneration can be achieved with difficulty in a similar way to that used with a dc motor providing that the current required for air gap flux can be maintained and the frequency for a desired negative slip can also be maintained.

The control circuits for the electronically commutated dc motor and the three-phase induction motor shown in Figure 15 are very similar in terms of the number and types of semiconductor elements used. The main difference is the manner of maintaining rotor current and its effect on air gap flux and motor control. For the electronically commutated dc motor, rotor current is directly controlled to assure air gap flux. A separate field excitation control unit is used to maintain and control the rotor current. Slip rings may be used or a brushless inductor design may be used. For the induction motor the rotor current is produced by transformer action due to the ac current in the stator inducing an ac voltage in the rotor. The induced rotor voltage goes to zero for zero slip or for zero current in the stator. The condition of zero voltage at zero current for the induction motor is similar to the condition encountered in a series wound dc motor. For the series motor to maintain stability as a generator, it is common to use a diverting chopper circuit to control the field current independent of the current returned to the battery. A similar mode of separating the current for field magnetization from that returned to the battery is required when operating the induction motor as a generator. One way of viewing the control of the induction motor is to consider the out-of-phase current component as the magnetizing (or field current) and the in-phase component as the power producing current. Then essentially the controller by use of slip control and current control endeavors to control both the in-phase and out-of-phase current. The total current in the semiconductor elements for a given power is thus somewhat higher for an induction motor than for an electronically commutated motor as it must handle both the in-phase and the out-of-phase current.

The computer modeling for the controller characterizes the losses in terms of three parameters. There is a fixed loss. A loss associated with a fixed voltage drop across the semiconductors and there is a loss proportional to the square of the current. The loss factors for these parameters are adjusted for the type of controller to be consistent with the rating of the semiconductor elements and normalized in terms of input current.

6.5 Characteristics of CVTs

The use of a CVT to extract energy from a flywheel in a smooth controlled manner requires a smooth and continuous variation in the speed ratio of the CVT. A variety of CVT types can provide such continuous changes in speed ratio, but additional constraints on the CVT for use in an advanced

Figure 15. Inverter for 3-phase Induction Motor
propulsion system arelight weight and high efficiency. (refs. 4,5) Hydraulic type CVTs appear to have poor efficiencies at light load although they can have very acceptable efficiencies at high loads. Conventional belt type units appear to have inadequate power capacity, poor life and excessive losses (ref. 6). New (refs. $7,8,9$) traction type devices seem to hold promise; however, much development work will be required to perfect a unit for use with a high speed flywheel. If the unit were developed for the high speed and low torque at the flywheel shaft it could be fairly small.

For the preliminary analysis it was assumed that a light-weight high-speed traction-type device could be developed. If such a unit were developed it would have to have good efficiency in order to also have good durability. Traction devices with poor efficiency have excessive wear. Good efficiency and good life go hand-in-hand.

It was assumed that the losses for a traction type CVT could be expressed in terms of slippage, windage drag and spin torque. The slippage results in a loss of speed so that the output speed is slightly less than the theoretical or ideal output speed. The difference in speed is expressed as a percent creep and is believed to be a function of transmitted torque as shown in Figure 16.

The actual torque transmitted will be less than the ideal torque because of losses due to the nature of the traction geometry. The ideal geometry for the traction contact will be pure rolling (ignoring the slip mentioned above); however, the actual contact zone in a traction device is an area that is enlarged by elastic deformation of the material in contact. Within this zone there may be a variation from pure rolling which may be termed spinning, and thus the loss is called spin torque. An example of high spin torque is a front tire with excessive toe-in. A good design is one which minimizes spin torque. Figure 17 shows the relationship of torque loss due to spin torque.

The windage drag used in the analysis is essentially a viscous drag torque. This torque loss is a linear function of speed.

The values of spin torque, creep and viscous drag were chosen to give a CVT efficiency similar to values measured by others. (ref. 10)

6.6 Characteristics of Flywheels

The flywheel for use in an energy storage unit should be light weight, have low losses, low volume and minimum adverse effects upon vehicle performance. Recent development in high-specific energy flywheels (ref. 11) using high-strength fiber-composite material indicate that such materials have good promise, and moreover indicate that suitable flywheels can be developed in the desired time frame. (ref. 12)

For a given amount of available energy a high-specific strength fiber-composite flywheel will be lighter weight and less expensive than high-strength steel flywheels, (refs. 13,14)

INPUT TORQUE

Figure 16. Velocity Loss Due to Creep
әdols dәəu〕

Figure 17. Effect of Normal Load on Spinning Torque and Creep Slope (ref. 10)

The specific energy is proportional to the strength-to-weight ratio of the material. Thus, high-strength and low-weight materials can yield high-specific strength. The relationship for kinetic energy-to-weight ratio is as follows:

$$
\frac{K E}{W T}=K \frac{\sigma}{\rho}
$$

```
where KE = Kinetic Energy
    WT = Weight
    K = Constant; depends upon shape
    \sigma = Stress
    \rho = Density
```

Less obvious but very important is the fact that the fiber-composite flywheel has much less angular momentum and is thus safer and has less gyroscopic moment than a steel flywheel.*

The stored energy in a flywheel is given as follows:

$$
K E=\frac{1}{2} I \omega^{2}
$$

where I = Moment of inertia
$\omega=$ Angular velocity
And the momentum is given as follows:

$$
M=I \omega
$$

Thus in terms of maximum rated energy the maximum momentum* may be expressed as:

$$
M=\frac{2(K E)_{\text {rated }}}{\omega}
$$

The total amount of energy required for the flywheel depends upon the driving conditions to be satisfied. If the vehicle is to be driven over the SAE J227a Schedule D exclusively and always over a level course, a minimum amount of energy could be approximated by examining the maximum kinetic energy of the vehicle. However, any practical vehicle must be able to drive a multitude of courses and operate on upgrades and downgrades.

A way of analyzing the energy storage requirement is to consider the vehicle operating at a point where it has a set value of flywheel energy which permits the vehicle to either accelerate or decelerate. The vehicle should be able to either go up a grade with some acceleration capability or to go down a grade with some regenerative braking capacity. Figure 18 shows an example of a set point for the flywheel and shows the energy capacity

[^0]Max. Speed $=30,000 \mathrm{rpm}$
$\mathrm{ET}=$ Max. Stored Energy $=6.84 \mathrm{MJ}$ (1900 Wh)
$\mathrm{EA}=$ Max. Available Energy $=6.08 \mathrm{MJ}(1689 \mathrm{~Wh})$

Figure 18. Flywheel Stored Energy. vs. Flywheel Speed
for braking and for acceleration. The total available energy is approximately six times the minimum energy required for the SAE J227a Schedule D.

For the preliminary analysis, a uniform rate energy loss due to aerodynamic drag and bearing friction was assumed.

6.7 Characteristics of the Drivetrain Components

The drivetrain components of concern are the final drive gears (axie) and the multi-speed transmission. It was assumed that each of these units could be characterized by their gear ratios and by certain types of energy loss coefficients. Three types of energy losses were used for each unit. These losses were expressed as torque losses which were then calculated as energy losses by multiplying by rotational speed. The three torque losses were as follows:
a. Constant torque (example: bearing preload)
b. Loss proportional to applied torque (example: gear friction)
c. Loss proportional to speed (viscous drag)

The values of the coefficients for these losses were adjusted to give a reasonable loss at rated power. (ref. 6)

6.8 Performance Comparisons

The candidate propulsion systems are all compared on the basis of the same base weight and payload. Aerodynamic drag and tire rolling resistance coefficients are the same for each vehicle. The basic loss coefficients for the motors and controllers are also the same for the same type of device. The differences in configurations and motor types do lead to difference in the propulsion system weight and effective efficiencies. Differences in gear ratios are also required. The costs of different candidates will increase as weight and complications increase. The likelihood of successful development is different for the various candidates.

Table 5 lists some of the basic characteristics of the candidate propulsion systems. Candidates Al through A8 have a single drive axle and a single traction motor. Candidates $B 1$ through $B 8$ have single drive axle and two traction motors. Candidates Cl through C 8 have two drive axles and two traction motors. Candidates D1 through DA have a single drive axle and a single traction motor.

Two types of flywheel drive motors are represented. The PM types have permanent magnets for field flux and the WF types have separately excited wound fields. The WF types use field control and the field can be shut off to reduce standby losses associated with eddy currents and hysteresis. Two traction motor types are represented in the candidates. The ACl and AC2 types are three-phase induction motors specially designed for use in electric vehicles. The DC1 and DC2 types are separately-excited electronicallycommutated dc motors specially designed for electric vehicles. The dc motors have a lower base speed than the ac motors so the axle gear ratios are different as shown in Table 5.

The traction motors and motor controller characteristics are summarized in Table 6. All motors and controllers were rated for a 240 volt dc system. The rated power is in watts. The specific weight is normalized to a base speed of 3600 rpm .

All motors were initially selected to give a total rated power of 40 kW . The main difference in the motors for the various candidates are the base speeds and resultant torque. The slower speed motors would have higher torque and greater weight. The motors for cardidates without transmissions require greater torque to achieve acceptable performance.

The flywheel generator controller, battery, flywheel, and CVT characteristics and transmission factors are summarized in Tables 7 and 8. The three main characteristics for the preliminary analysis of the CVT for D1 through D4 are the loss factors. The spin torque is taken as four percent of rated torque and the creep is set at three percent at maximum torque. The viscous drag is set at two percent of rated torque at maximum speed. With these values the efficiency at rated torque and speed is about 91 percent.

The calculated performance of the candidates is summarized in Table 9. The test weight of the various candidates ranges from a low of 4097 pounds for D4 to a high of 4559 for C4, All candidates have adequate power to satisfy all the driving requirements. All would meet the range requirement of 100 miles if some small adjustmentwere made in battery weights. The range in the repeated SAE J227a Schedule D using 1600 pounds of batteries varied from a low of 91.8 miles to a high of 120.3 miles. Part of the difference in range is due to differences in energy consumed per mile and part is due to greater available energy from the battery as a consequence of load leveling the battery to permit greater energy extraction. The energy per mile* varied from a low of $.55 \mathrm{MJ} / \mathrm{km}$ ($248 \mathrm{~Wh} / \mathrm{mile}$) to a high of . $68 \mathrm{MJ} / \mathrm{km}$ ($304 \mathrm{~Wh} / \mathrm{mile}$). The range for a steady $72 \mathrm{~km} / \mathrm{h}$ (45 mph) cruise varies from a low of 191 km (118.7 miles) to a high of 250.5 km (155.7 miles). Changing gear ratios and shift points can improve the range at $72 \mathrm{~km} / \mathrm{h}$ (45 mph) but may have an adverse effect upon the performance and upon the range in a variable speed driving cycle.

6.9 Other Factors

This section is prepared to comply with clauses (2) and (3) of the contract requirements which read as follows:
"The contractor's recommendation shall include supporting
information that provides: (1) a summary of the physical and operating characteristics of the candidate systems (2) an appraisal of the advantages of one versus the other and (3) a summary of component and system technology advancements required."

[^1]

	g GENERATOR OR CVT FACTOFS (CONTINLED)											TRANSMISSION FACTORS								
$\begin{array}{\|c\|} \hline \operatorname{COOE} \\ \mathrm{NO} . \\ \hline \end{array}$	$\begin{aligned} & \text { RATED SPEC. } \\ & \text { AMPS WEIGHT } \\ & \hline \end{aligned}$		$\begin{array}{ll} \text { FULLLD } & I^{2} R \\ E F F \text {. } & \% \\ \hline \end{array}$		$\text { HYST } \frac{10}{\%}$		$\begin{aligned} & \text { FFid } \\ & \% \end{aligned}$		Ffice	COST PCWER FACT. FACT.		$\begin{gathered} \text { RATTO } \\ \text { HGEAR } \\ 1.0 \end{gathered}$	$\begin{gathered} \text { RATIO } \\ \text { 2nd. GR. } \\ 1.0 \end{gathered}$	$\begin{gathered} \text { RATIO } \\ \text { LGEAR } \\ \hline 1.0 \end{gathered}$	${ }_{00}$ LOSS COEF W2 WEIGHT COSTI					
A!	196	. 0075	85	40	8.	8.	5.	39	666.6	6					10E-09	$1.0 \mathrm{E}-12$	\|1.0E-10		1.05	15
A2	196	1	1	1	1	1	1	1	1	1		1.0	1.74	3.87	. 1667	Z3.3E-07	.0EE5 7	65	275	
A 3	196	1	1	1	1	1	1	1		1		LIKE	AI							
A4	196	. 0075	85	40	8.	8.	5.	39		6		LIKE	A2							
A5	205	. 0055°	87	45	5.	5.	5.	40		5.5		LIKE	A1							
A6	205	1	1	1	1	1	1	A		1		LIKE	A 2							
A 7	205	1	1	1	1	1	1	1		1		LIKE	AI							
A8	205	. 0055	87	45	5.	5.	5.	40		5.5		LIKE	A2							
BL	196	. 0075	85	40	8.	8.	8.	39		6		1.0	1.0	1.0	1.0E-09	1.0E-12	10e-10]	50	150	
82	196	1	1	1	1	I	I	1		1		1.0	1.74	3.85	. 1657	33ミE-07	\|0655?	115	400	
83	196	1	1	1	1	1	1	Y		Y		LIKE	B1							
B4	196	. 0075	85	40	8.	8.	8.	39		6		LIKE	B2							
B5	205	. 0055	87	45	5.	5.	5.	40		5.5		LIKE	BI							
86	205	A	1	1	I	A	1	1		1		LIKE	B2							
B7	205	1	1	1	1	1	1	1		1		LIKE	B1							
88	205	. 0055	87	45	5.	5.	5.	40		5.5		LIKE	B2							
C)	196	. 0075	85	40	8.	8.	8.	39		6		1.0	1.0	1.0	IIOE-09	1OE-12	\|10E-10		1.05	15
C 2	196	1	1	1	1	1	1	1		1		1.0	1.74	386	. 1667	33.3E-07	.06657	100	325	
C3	195	1	1	1	1	1	1	1		V		LIKE	C2							
C4	196	. 0075	85	40	8.	8.	8.	39		6		LIKE	Cl							
C5	205	. 0055	87	45	5.	5.	5.	40		5.5		LIKE	$C 1$							
C6	205	1	1	1	1	1	1	1		1		LIKE	c2							
C7	205	1	1	1	1	1	1	I	1	1		LIKE	Cl							
C 8	205	. 0055	87	45	5.	5.	5.	40	666.6	5.5		LIKE	C 2							
DI					4.	3.	2.					LIKE	A1							
D2					4.	3.	2.					LIKE	A 2							
D3					4.	3.	2.					LIKE	A 1							
04					4.	3.	2.					LIKE	A 2							

(1) Spin forque as \% of rated torque (2) Creep \% at max torque (3) Viscous torque as of rated forqua at max sẹed

$\begin{aligned} & \text { CASE } \\ & \text { NO. } \end{aligned}$	GEN	MOTOR	TRans	$\begin{aligned} & \text { NO.CF } \\ & \text { MOTOAS } \end{aligned}$	$\begin{aligned} & \mathrm{NO} \mathrm{OF} \\ & \mathrm{AXES} \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { WT: ibs. } \end{aligned}$	$\begin{aligned} & A C C E L \\ & 0-55 \end{aligned}$	TIMES $25-55$	$\left\lvert\, \begin{aligned} & \text { Minnuer } \\ & \hline \text { PESint } \end{aligned}\right.$	$\begin{aligned} & M \text { SPEED } \\ & \text { ST. } 4 \% 5 \\ & \hline \end{aligned}$	$\begin{gathered} \text { M.P. } \\ \text { EGA } \\ \hline \end{gathered}$	ZATTERY WT. L9	$\begin{aligned} & \text { SAE } \\ & \text { PBAR } \end{aligned}$		$\begin{aligned} & \text { cin } D \text { PE } \\ & \text { WH/MI } \end{aligned}$	$\begin{aligned} & \text { FFCFM } \\ & \text { EFABGE } \end{aligned}$	$\begin{aligned} & \text { STEADY } \\ & \hline \text { EAR } \\ & \hline \end{aligned}$	$\begin{aligned} & 45 M P! \\ & E \quad Z A R: \\ & \hline \end{aligned}$	$\begin{aligned} & H P E R F \\ & H H M K E \end{aligned}$	$\begin{aligned} & \text { ORM } \\ & \text { RAMGE } \end{aligned}$	
A 1	PM	$A C$	NOTME	1	1	4335	LT 15	LT 10	65	55	40	1600	8.08	17.51	299	93.8	6.78	18.71	241	122.3	
A2	PM	AC	YES	1	1	4123	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge	7.62	17.83	296	96.2	6.02	18.95	214	141.5	
A3	PM	D C	NONE	1	1	4568				71			8.17	17.45	304	91.8	5.94	18.30	247	118.7	
A 4	\|PM		DC	YES	1	1	4174		i					7.62	17.82	301	94.7	6.11	18.89	217	159.2
A5	\|WF	AC	NCNE	1	1	4307							8.01	17.5\%	289	97.1	6.76	18.43	240	122.7	
A6	WF	$A C$	YES	1	1	4095							7.52	17.89	287	99.8	6.01	18.96	214	142.0	
A7	WF	DC	NCNE	1	1	4350							8.10	17.50	295	94.9	6.93	18.31	246	118.9	
A8	\|WF	DC	YES	1	1	4155							7.54	17.88	292	98.1	6.10	18.90	217	1395	
B1	PM	$A C$	NONE	2	1	4517															
B2	$\|\mathrm{P} 4\|$	AC	YES	2	1	4236															
B3	PM	DC	NCNE	2	1	4551							7.59	17.85	285	1002	6.08	18.31	216	140.1	
84	PM	DC	YES	2	1	4285							7.34	18.02	287	100.5	5.57	19.27	198	155.7	
B 5	Wif	AC	NOAE	2	1	4487															
B6	WF	AC	YES	2	1	420^{-1}															
B7	WF	DC	NONE	2	1	45321							7.50	17.91	275	104.1	6.07	18.92	216	140.3	
B8	WF	DC	YES	2	1	42531							7.24	18.09	277	104.3	5.55	19.28	198	155.1	
Cl	PM	$A C$	NONE	2	2	4524															
C2	PM	AC	YES	2	2	4257															
C3	PM	DC	YES	2	2	43*0							7.38	17.99	289	99.6	5.60	19.25	199	154.8	
C4	\|PM	DC	NONE	2	2	4559							7.60	17.84	285	100.1	6.08	18.91	216	139.9	
C5	WF	AC	NONE	2	2	4456															
C6	\|WF	$A C$	YES	2	2	4260															
C 7	WF	DC	NGRE	2	2	4541							7.51	17.90	276	103.9	6.07	18.92	216	140.2	
C8	WF	DC	YES	2	2	4322							7.28	18.05	280	103.7	5.59	19.26	199	155.1	
D 1	CVT	DC	NONE	1	1	4378					1		7.08	18.20	273	1068	683	1838	243	121.0	
D2	CVT	DC	YES	1	1	4198		$1\}$		1			6.60	18.54	253	117.1	6.06	18.92	216	1404	
03	CVT	AC	NONE	1	1	4338		\checkmark	V	\checkmark	V	V	6.96	1828	265	110.4	6.67	18.49	237	1247	
D4	CVT	A C	YES	1	1	4097	LT 15	LT 10	65	55	40	1600	6.49	18.61	248	120.3	5.96	18.99	212	143.4	

Clause (2) above is understood to be a qualitative comparison of the 28 alternates studied under Clause (1). In order to make a consistent comparison, values of "goodness" were assigned to the "qualitities" considered significant. These goodness values were multiplied by a weighing factor assigned according to the importance placed on the particular quality to the overall goodness of the power system. Then for each alternate the products were added together to give a number that indicated the overall desirability of the alternate. Finally the desirabilities were divided into low, medium and high and presented in Table 10.

The comparison was based on subjective appraisals of gocydness and importance. The numbers were not used as the basis of comparison but only to keep track of the comparison process. For example, if the alternates had the same or nearly the same desirability the reasons why they came out that way were reexamined and the numbers changed if necessary to agree with the overall appraisal.

The summary of the technology advances required for the various alternates requested by Clause (3) of the contract is provided by the following discussion. These advances are discussed under the headings of the components or parts of the system to which they apply. The comparison of the alternates with respect to the extent of such advances required is summarized in Table 11.

With the possible exception of the CVT, none of the alternates require breaktinroughs on the scale typified by high temperature storage batteries for example. The type of advances required are reduction in size, weight, cost, and increase in durability.

Generators and Notors
The properties of the electrical machines depend basically on physical laws and the properties of iron, copper, and magnetic and insulating materials. The improvements in these machines that can be expected are in their design for higher speeds and higher short time overload capacities. Higher speeds will reduce weight but increase eddy current and hysteresis losses. Reduction of losses can be accomplished by the use of higier grade iron, thinner laminations, and finer subdivision of the conductors. (Refs. 15,16) All of these approaches are understood. The extent of their application is set by manufacturing cost which can be greatley reduced by production engineering effort.

Improved insulating materials together with design for forced cooling by either air or liquid coolants can greatly increase overload capacity as required to obtain the short-time performance expected of passenger cars.
Table 10

		(1) MEsmicis		\% ${ }^{\text {a }}$		Table 11. TECLINGLOGY ACVANCES REQUIFED					c..v.t.	OUEEALL	
CASE	GEN	MOTOR	TRANS	Mo.0F		Cemerator	MOTOR	\|TFASEMISSION		Comenter	CONTROL		
A 1	PM	AC	No	1	1.	θ	Q	Q	\cdots	\bigcirc		\bigcirc	
A 2	PM	AC	YES	1	1	8	Q	θ	θ	0		0	
A^{3}	PM	DC	NO	1		Q	θ	\bigcirc	θ	-		\bigcirc	
A_{4}	PM	DC	YES	1	1	Q	θ	Q	θ	Q		-	
A5	wF	AC	No		1	$\stackrel{3}{ }$	Q	©	-	-		0	
As	WF	AC	YES	1	,	Q	Q	Q	θ	θ		-	
A 7	wF	DC	No	1	1	Q	Q	Q	\bigcirc	Q		-	
A 8	WF	DC	YES	1	1	-	Q	(3)	θ	Q		\bigcirc	
B1	PM	AC	No	2	1	Q	Q	Q	θ	0		0	
B2	P. M	AC	YES	2	1	Q	Q	*	\bigcirc	0			
83	PM	DC	No	2	1	θ	Q	Q	θ	\bigcirc			
84	PM	DC	YES	2	1	$\stackrel{\otimes}{*}$	\bigcirc	\bigcirc	θ	-			
85	WF	A	No	2	-	-	Q	Q	Q	\bigcirc			
B6	wF	AC	YES	2	I	\bigcirc	Q	Q	Q	θ		θ	
87	WF	DC	No	2	1	θ	\bigcirc	Q	\bigcirc	Q		Q	
B8	WF	DC	YES	2	1	θ	θ	Q	θ	Q		\bigcirc	
Cl^{1}	PM	$A C$	NO	2	2	Q	0	Q	Q	O		0	
C_{2}	PM	${ }^{\text {a }}$	YES	2	2	\bigcirc	Q	\%	Q	0		0	
c	PM	DC	No	2	2	θ	θ	Q	\bigcirc	0		0	
C_{4}	PM	oc	YES	2	2	C	\bigcirc	Q	\bigcirc	0		0	
C5	WF	AC	No	2	2	θ	-	\%	θ	θ		0	
c6	WF	AC	YES	2	2	-	Q	\otimes	-	-		θ	
C7	WF	DC	No		2	\bigcirc	\bigcirc	\%	-	©		*	
C8	WFI	DC	YES	2	2	Q	θ	\$	Q	\bigcirc		\bigcirc	
01	CVT	DC	NO	I	1		θ	Q	0	-	O	0	
02	cvi	DC	YES	1	,		\bigcirc	Q	-	-	0	0	
D3	cvi	AC	No	1	1		Q	\otimes	0	Q	0	\bigcirc	
04	cvi	AC	YES	1	1		Q	-	\bigcirc	\bigcirc	0	0	

Controls

Electrical and many non-electrical systems today take advantage of the breakthrough in control technology of the microcomputer. The microcomputer is well suited to process and generate the various signals needed for the control of an electric vehicle. There also may be simpler approaches to the problem like specialized LSI chips. In any case, the only advances required are those already available for application to the electric car.

Step Transmissions

No basic advances appear to be necessary to multi-1..io transmissions. These devices have been perfected for internal combustion-engined cars to the point where they are as small and light as necessary for electric automobile applications.

Reduction of losses through better bearings, reduction or elimination of oil churning loss, reduction of control power and clutch or brake drag should take place through redesign of the present relative lossy transmissions and drive systems for electric vehicle application.

Continuously Variable Transmissions
These devices have never been successfully applied to automobiles on any significant scale. They may very well require an advance in traction coefficient or contact fatigue strength beyond the values currently being obtained. Transmissions designed following ball bearing practice are large, heavy, and expensive. Whether or not they are too large, heavy, and expensive is not definite but it is possible that their characteristics put them outside the range of practicality for vehicle application unless a significant technological advance can be made.

Power Converters

Most of the alternates employ semiconductor power converters between dc and ac devices. The technology of these converters is so new that significant improvements would not be surprising. The power handling devices, thyristors, or transistors now available have the capability required although increase in the frequency capability of thyristors and the current capability of transistors is very desirable. The advances which are necessary and can be expected are in simplifying and packaging their auxiliary equipment, such as the firing and protective circuitry, and in reducing the filtering required. One advance, the development of high-power transistors, appears to have already occurred. Of course, prices must be reduced drastically but this can be expected to result from production for a large competitive market.

Other Problems

The foregoing discussion considered the elements which differed between the alternates and is summarized in Table 11. In addition there are advances necessary or desirable in the elements used in all alternates.

The flywheel is probably the most important component from the standpoint of development required. Vehicle flywheels (ref. 5), while extremely promising, are in an early state of development. Only a few vehicles are in operation today with flywheels in their power systems and in many of these the flywheel energy-to-weight ratio is too low for passenger road vehicles. Laboratory demonstrations (refs. 14,17), however, have shown energy-toweight ratios considerably better than lead-acid batteries. The application of these wheels as power boosters for road vehicles has only barely begun. (ref. 11)

Specifically, durability and accident hazard must be determined for a flywheel design having the characteristics postulated for the power systems studied.

Advances are necessary and will certainly occur in the "packaging" and interconnection of automotive electrical equipment. The present style is set by industrial lift trucks and similar equipment where weight is less important and space restraints less demanding than in a passenger car. Even in the latest electric vehicles, electric equipment connecting parts and equipment layout is more typical of industrial than of passenger vehicle practice.

6.10 Reconmended Candidates for Task II

The candidates recommended for further examination in the design tradeoff studies were candidates D4, D2, A6, A8 and B5. The two candidates, D4 and D2, represented the best two candidates in terms of range, but have some obvious developmental problems in that no suitable CVT is currently available.

Candidates A6 and A8 are the most attractive of the non-CVT candidates. Their ranges are just slightly less than those for the best multi-motored candidates, but their relative simplicity and lighter weight will probably make them more cost effective than any of the multi-motored candidates. The most attractive of the multi-motored candidates is 85 and it is kept for further examination to determine if the expected difference in cost effectiveness is born out when the candidates are optimized.

Recommended Candidutes for Task II Studies

A6 AC Induction Motor With Flywheel/Generator
A8 DC Brushless Motor With Flywheel/Generator
B5 Two AC Motors Without Transmission, With Flywheel/Generator
D2 DC Brushless Motor with Flywheel/CVT
D4
AC Induction Motor With Flywheel/CVT

PREGEDING Fin: ry AMK NOT FLLMED

7. DESIGN TRADE-OFF STUDIES

The characteristics and design of the five recommended candidates were examined in more detail during the design trade-off studies. In the preliminary analysis, all candidates had the same total weight of batteries and same total installed power. However, during the trade-off studies, the design and performance factors for each candidate are examined to achieve a more optimum design and various differences in weight and power requirement emerge. As the details of the design become more specific, the estimates of life-cycle cost become more meaningful.

The candidates $\mathrm{A} 6, \mathrm{~A} 8, \mathrm{D} 2, \mathrm{D} 4$ and B 5 are shown in more detail in Figures 19, 20, 21, 22, and 23.

7.1 Design Parameters Studied

Factors affecting driveline efficiency were examined to find ways to reduce losses and to determine the improvement in range which could result from these improvements.

Refinements in the estimates of motor weights were made by examining the motor designs in more detail. Calculations were made for magnetic flux in the air gap to confirm that the required overload torque could be achieved. Some modification of the computer subroutines were made to reflect the overload capacity of induction motors at breakaway torque. Variation in various design parameters for the induction motor was examined to determine the potential gain in range which can be achieved by improving the power factor of the motor or by reducing the slip.

Variations in gear ratios and shift points were examined to determine if the optimum operating points had been selected.

Different schemes for energy management via the use of the flywheel were also examined. Battery leveling and peak power shaving was also considered.

The battery weights were adjusted to give very nearly the same range for each candidate.

The losses in the transmission and final drive axle are each characterized by three coefficients (Table 12). The first coefficient used in the analysis represents the no-load drag torque at low speed. The value of the torque is affected by the bearing design and bearing preload. Taper roller bearings with high preload will give higher no-load torque than ball bearings or spherical bearings of modest preload. By careful design this friction can be lowered.

The second coefficient is for the viscous drag torque. The amount of torque associated with this coefficient is proportional to speed. The value of the coefficient is dependent upon the geometry of the transmission or axle and upon the viscosity of the lubricant. This too can be reduced by good design and careful selection of the lubricant.

The third coefficient is for the gear and bearing friction associated with the torque loading. The value of the frictional torque is dependent in part on the geometry of the gear train and the unit loading on the bearings. The value of torque is also dependent upon the properties of the lubricant.

Reductions of these coefficients were arbitrarily made to determine the potential improvement. The values examined are shown in Table 12. The effects on driveline efficiency and power loss are shown in Table 13. The improvements in range are shown in Figure 24.

The power required for the different driving conditions vary somewhat for the different candidates because of slight differences in their weights and efficiencies. Table 14 summarizes the peak power required for various driving conditions for the five candidates. The greatest power requirements are for the acceleration from zero to 55 mph in fifteen seconds and for braking in the deceleration portion of the SAE J227a Schedule D cycle. For both of these periods, the duration of the power pulse is short enough that the short-term overload capacity of the motor could provide the power, even though the continuous power rating is much lower. The power available for the acceleration on the six percent ramp can be higher than the continuous power rating of the motor because the duration of this six percent ramp acceleration is less than 30 seconds. The power required for the steady $89 \mathrm{~km} / \mathrm{h}$ (55 mph) on a four percent grade is used to set the continuous power rating for the motor. Using this power as the continuous power rating, the overload factor for the six percent ramp acceleration is about 40 percent for the three non-CVT candidates and the overload factor for the zero to $89 \mathrm{~km} / \mathrm{h}$ (55 mph) acceleration is about 100 percent.

The required short-term overload capacity of 100 percent is normal for electric motors. Air gap flux calculations and peak current allowances show that the motor designs considered for these propulsion systems have about 150 percent short-term overload capacity. The subroutine for representing the ac motors were modified to assure that the maximum torque exceeds 200 percent of rated torque.

Variations in design parameters for the induction motor will give different amounts of overload capacity. A range of different values of rated slip and power factors were examined for motors having the same rated power, speed and efficiency. The characteristics of these different designs are shown in Table 15. For constant efficiency at the design point, a low slip motor has low rotor resistance (R2) and higher stator resistance (RI). Permitting the slip to rise by use of higher rotor resistance, requires that the stator resistance be lowered to keep the efficiency up. The starting torque increases as the rotor resistance increases and permits higher slip at the breakaway torque, however, the maximum power does not increase. The drop in speed due to increased slip is not offset by increase

Table 12. Loss Coefficients Used in Driveline

FOR POINT \#	I	II	III	IV
AXLE:				
A_{0}	. 6779	. 4519	. 2260	. 1692
A_{1}	$.135 \times 10^{-3}$. 09×10^{-3}	. 045×10^{-3}	. 3383×10^{-4}
A_{2}	. 02712	. 01808	. 00904	$.89 \times 10^{-2}$
TRANSMISSION:				
T_{0}	. 2260	. 1507	. 0753	. 05637
T_{1}	$.451 \times 10^{-5}$	$.3 \times 10^{-5}$. 15×10^{-5}	$.1128 \times 10^{-5}$
T2	. 09039	. 0602	. 0301	. 0301

| $A_{0}-T_{0}=$ NO LOAD TORQUE AT LOW SPEED | Nm |
| :--- | :--- | :--- |
| $A_{1}-T_{1}=$ V́ISCOUS TORQUE COEFFICIENT | $\mathrm{Nm} / \mathrm{rpm}$ |
| $A_{2}-T_{2}=$ GEAR \& BEARING FRICTION | Non-dimensional |

Table 13. Transaxle Losses

$\begin{aligned} \text { Figure 24. } & \text { DRIVELINE EFFICIENCY VS. RANGE } \\ & \text { - SAE J227a SCHEDULE D. Cruise portion } 72 \mathrm{~km} / \mathrm{h} \text { (} 45 \mathrm{mph} \text {) } \\ & \text { - VALUE IN() AFTER CONCEPT NUMBER IS ROAD POWER IN WATTS }\end{aligned}$ $\odot^{\text {III }}$

*Power supplied or absorbed through the CVT-Flywheel link

 Motor Ratings:
Rated Power
Base Speed
Maximum Speed
Efficiency
Rated Voltage

Table 15. AC Induction Motor Analysis for Various Slips and Power Factors

in torque as shown in this table. This loss in power is somewhat deceptive as the power values are for a constant frequency input to the motor which allows the motor to slow down as the slip increases as it would for a normaily operated ac motor. However, for the electric vehicle the frequency is increased as slip increases so that the motor does not actually slow down. The main value of the table is the display of resistances and reactances associated with different values of slip and power factor. The table shows clearly that the ratio of leakage to magnetizing reactance must be low to achieve a high power factor and shows that very low rotor resistance is required to achieve a low value of slip.

The different values of slip and power factor were examined for motors of the same efficiency at the design point power and speed; however, they will have different efficiency at powers and speeds other than that at the design point. Consequently, the range and energy consumption per mile can be different as shown in Table 16 for Schedule D cycle. The motor with lower slip does not give better range because the reduction in I $I^{2} R$ losses in the rotor is more than offset by an increase in $I^{2} R$ losses of the stator. Increasing the power factor increases the range and decreases the energy consumption. Unfortunately it will be very difficult to achieve a power factor much higher than 88 percent.

Table 16. SAE J227a Schedule Cycle Range Obtained for Motors Listed in Table 15

Slip	Power Factor	km	Range	Energy	
				Consu	ion
	\%		(Miles)	Wh/mi	MJ/km
1	84	168.98	(105.00)	222.68	. 498
2	84	170.04	(105.66)	221.60	. 495
3	84	171.05	(106.29)	220.59	. 493
4	84	172.01	(106.88)	219.65	. 491
4	80	169.25	(105.17)	222.50	. 498
4	88	174.66	(108.53)	216.94	. 485

Increasing the battery weight increases the vehicle range by increasing the on-board energy storage, but does so at the expense of greater vehicle weight. The vehicle weight increases by more than the increase in battery weight because the vehicle structural weight must be increased to carry the additional battery weight. This increase in vehicle weight causes an increase in energy consumption. The additional battery and structural weight will also cause an increase in initial cost of the propulsion system. The effects of battery weight on vehicle weight and range is shown in Table 17. The desired range is 161 km (100 miles) so the battery weight should be adjusted to give this range. Figure 25 shows the range as a function of lead-acid battery weight and Table 18 summarizes the vehicle weights and energy consumption with the battery weights adjusted to give a range of 161 km (100 miles).
Table 17. Battery Weight vs. Range

Concept	Battery kg	Weight (1b)		Acid (mi)	Nick km	$\begin{aligned} & 1-Z i n c \\ & \quad(\mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Test } \\ \mathrm{kg} \\ \hline \end{gathered}$	leight (1b)
A6	635	$\begin{array}{r} (1400) \\ (1322) \\ (550) \end{array}$	169.17	(105.12)	375.63	(233.41)	1739	(3835)
	600		162.35	(100.88)	365.13	(226.88)	1693	(3733)
	249		54.08	(33.61)	175.35	(108.96)	1238	(2730)
A8	635	$\begin{array}{r} (1400) \\ (1370) \\ (550) \end{array}$	164.04	(101.93)	366.75	(227.89)	1767	(3895)
	621		160.53	(99.75)	360.65	(224.10)	1749	(3856)
	249		48.90	(30.39)	163.89	(101.84)	1266	(2791)
B5	635	$\begin{array}{r} (1400) \\ (1490) \\ (550) \end{array}$	151.07	(93.87)	345.52	(214.70)	1911	(4213)
	675		161.24	(100.19)	363.14	(225.65)	1964	(4330)
	249		41.86	(26.01)	149.66	(93.00)	1410	(3109)

D2	635	(1400)	181.13	(112.55)	389.66	(242.13)	1786	(3937)
	567	(1250)	160.67	(99.84)	353.64	(219.74)	1698	(3743)
249	(550)	56.02	(34.81)	165.	(102.53)	1285	(2833)	

$\begin{array}{rrrrrrrrr}\text { D4 } & 635 & (1400) & 193.86 & (120.46) & 412.61 & (256.39) & 1740 & (3837) \\ & 531 & (1170) & 160.70 & (99.86) & 354.2 & (220.15) & 1605 & (3538) \\ & 249 & (550) & 61.41 & (38.16) & 176.40 & (109.61) & 1240 & (2733)\end{array}$

Figure 25. Battery Weight vs. Range with Lead Acid Batteries

ENERGY PER MILE	
MJ／km	$($ Wh／Mile $)$
.482	(215.97)
.514	(230.11)
.559	(249.97)
.487	(217.87)
.466	(208.39)
.426	(190.66)
.454	(203.17)
.493	(220.71)
.458	(204.96)
.430	(192.32)

（ 19.601 ）	0t－9 91	（ $\varepsilon \varepsilon \angle Z)$	0ヵ2L	（ $¢ \varepsilon t$ ）	L61	（0¢s）	$6 \triangleright 2$	to
（EG｀${ }^{\circ} \mathrm{LOL}$ ）	－991	（ャ¢8乙）	982	（c9b）	L12	（09s）	6 b 2	20
（10｀． 6 ）	28＊6t	（601E）	01tL	（8t9）	t62	（0GG）	6 七	98
t8＊ 101 ）	$68^{\circ} \mathrm{E} 91$	（ $16 \angle 2$ ）	992L	（てか力）	002	（0GG）	$6 ヵ 2$	88
（96＊801）	GE＊GLl	（LELZ）	6 6てL	（00t）	181	（0sc）	672	96
sə！								
（001）	191	（9LヵE）	LLSI	（G\＆t）	L61	（8GLL）	GZG	to
（001）	191	（ $\angle 198$ ）	Lt9	（99b）	LIL	（0LZL）	675	20
（001）	191	（ $ع$ Llt）	998L	（8t9）	七62	（0¢tL）	679	98
（00L）	191	（ $90 \angle E$ ）	1891	（2tt）	002	（01EL）	t6S	$8 \forall$
（001）	191	（6\＆¢¢）	9091	（00t）	181	（6\＆zL）	299	$9 \forall$
（səl！w）		（ qL ）	67	（qI）		（ qL ）	$6 \times$	
Э9Nb		$\begin{array}{r} 1 H 9 I \\ 1 S \exists 1 \exists 7 \end{array}$	IH \exists 』	$\begin{gathered} \text { LH } \\ \text { WI } \\ \text { NOIS } \end{gathered}$	$\begin{aligned} & I \exists M \\ & \text { SAS } \end{aligned}$ indoyd	$\underset{\kappa \wedge \partial \lambda}{1 H E}$		1dJ3NOJ
a әLnpayว 								

7.2 Control Modes

The controls for power flow are summarized in Table 19. The ac motor frequency is controlled in a manner to give a desired amount of slip. The controller thus needs a motor speed signal so that motor-rotational frequency can be compared to the controller output frequency. The voltage is increased linearly with frequency until the maximum voltage allowed by the battery occurs. The maximum voltage should be reached as the motor reaches its base speed.

In addition to controlling moter power and flywheel power, the motor speed is set within prescribed limits by shifting the gears in the multispeed transmission. A range of gear ratios were examined as were a range of shift points to assure that the shift points selected match the motor efficiency curve. The differences in range resulting from differences in gear ratios are shown in Table 20. The variation in range is trivial indicating that the selected ratio is very close to an optimum value. The change in shift procedure shown in Table 21 produced a range improvement by making the up-shift point to top gear dependent upon torque requirement. For a full power acceleration, the up-shift point is delayed. This change permits the zero to 55 mph full-power acceleration to stay in second gear while allowing the 45 mph cruise portion of the Schedule D to be in top gear. An extra four to five percent range appears possible by such up-shifts.

7.3 Energy Management

The use of a high-power flywheel energy storage device can provide a substantial increase in range and performance for an electric vehicle if the energy to and from the flywheel is properly managed. Good management (ref. 18) of available energy can have a beneficial effect on battery life and can increase the amount of energy that can be extracted from the battery. There are several reasons why more energy can be extracted. One reason is that the total energy output capacity of the battery is greater if the battery power is low. Batteries can be designed for higher power or for greater energy but not always for both high power and high energy simultaneously. The use of a flywheel in a way that reduces the battery power level increases the extractable energy. (ref. 19) The battery power level can be reduced by leveling the battery current drain or by eliminating some of its peak power periods.

Another reason why more energy can be extracted is that a criteria for judging the discharge of a battery is the inability of the vehicle to meet minimum acceleration requirements. The flywheel car provide the extra boost of power for acceleration even though the battery is nearly discharged and not capable by itself to provide the needed power. This extra boost in power can compensate in part for battery degradation with aging or adverse temperature conditions.

The effective use of the flywheel is obtained when it is used to reduce peak current drain from the battery and to provide additional power for acceleration. Channeling all of the battery energy through the flywheel would
CANDIDATE
\because 毋 毋
N
d

Table 20. Range vs. Various Transmission Ratios for SAE J227a Schedule D Concept A6

High	Transmission Ratios Sec.	Low Gear	Range (Miles)
1	1.58	4.04	96.369
1	1.64	3.96	96.877
1	1.70	3.90	96.969
1	1.74	3.86	97.080
1	1.80	3.80	97.170
1	1.86	3.74	97.083

Table 21. Shift Point Evaluation

not be an efficient way to utilize it unless it has very high in-and-out efficiency. The flywheel can add a parasitic load to the propulsion system in terms of its energy losses as well as adding an extra weight burden to the vehicle. Through proper utilization and sizing the advantages of power boosting and effective battery current reduction, the flywheel add benefits which more than offset its parasitic load. To be effective the it must be sized and used to minimize its energy losses and to maximize its use in recovery of braking energy, in reduction of effective battery power and in boosting vehicle performance.

Clearly, the vehicle usage has an impact upon the abjlity of the flywheel to be effectively used. A vehicle used mostly at steady cruise conditions has little opportunity to use the flywheel for acceleration or braking, However, a vehicle used in service involving a great deal of stop and go driving would use the buffer most often.*

To minimize the energy loss associated with the in-and-out efficiency of the flywheel the exchange of energy should be made under the most favorable conditions, i.e., those conditions where the best efficiency occurs if a choice is possible. Clearly, the need to meet acceleration and braking needs presents little choice. For both acceleration and deceleration a division of power from the battery and flywheel is possible. For recharging the flywheel from the battery, some choice of rate of recharge and timing of the recharge is possible.

Several schemes have been examined for the distribution of power for acceleration and deceleration. One scheme is to use the flywheel to supply power in proportion to the acceleration rate and absorb power in proportion to the deceleration rate. Another is to prejudge the power level over some driving cycle and set the battery power to satisfy the average needs and force the flywheel to deliver the time dependent deficiency or accept the excess. This is easy to accomplish in theory but is hard to do in practice. Still, another scheme is to set positive and negative limits on the battery current and have the flywheel provide the current in excess of the positive limit or accept negative current beyond the negative limit. A variety of flywheel recharge schemes are possible, but a recharge at the rate for the greatest efficiency is desired. A measure of the flywheel state of discharge is require' for use by the recharge controller.

Figures 26, 27, and 28 illustrate the power and current in the Schedule D driving cycle for these three energy distribution schemes for candidate A8. Tables 22 and 23 show the range and energy consumption for candidates A8, D2, A6 and D4.

For the SAГ J227a driving mode, setting battery current limits gives the greatest range and least energy consumption. For different driving modes, like acceleration from zero to 55 mph or the Federal Urban Driving

[^2](MX) Y 3 MOd

(MX) YヨMOd

(MX) YJMOd

Figure 28. Concept A8. Preset Maximum Positive \& Negative Current Limit
Table 22. Energy Management Scheme Evaluation
Concept D2. Brushless Separately Excited dc Motor with CVT Flywheel Buffer
Concept A8. Brushless Separately Excited dc Motor with Flywheel Buffer
$$
\text { (106.53) } 1.171
$$
$$
(z \varepsilon \cdot z \varsigma z) \cdot t 9 s
$$

Driving condition--SAE J227a Schedule D
 Energy is battery, not wall plug energy

∞

152.6 (94.84)
504. $\quad(225.27)$ 22650

SCHEME

163. (101.28) D2

$$
22417
$$

$$
\begin{aligned}
& \text { 127. }(78.95) \\
& \text { 616. }(275.53) \\
& 22362
\end{aligned}
$$

* Flywheel speeds indicate that recharge schemes function satisfactorily.

525. (234.96)

$$
22358
$$

$$
165.2 \text { (102.67) }
$$

493. (220.53)

$$
22555
$$ $\overline{\text { IdIJNOT }}$

22562

$$
\left(8 L^{\circ} 0 \angle Z\right) \quad 909
$$

Range $\mathrm{km} /(\mathrm{mi})$
$\mathrm{kJ} / \mathrm{km}$（Wh／mi）
Flywheel RPM
at End of Cycle＊
160.1 （99．48）
473 （211．52）
22646

$$
22338
$$ 22338

$$
119.12 \text { (74.02) }
$$

d

$$
\begin{aligned}
& \begin{array}{l}
\text { Concept A6. AC Induction Motor with Flywheel Buffer } \\
\text { Concept D4. AC Induction Motor with CVT Flywheel Buffer }
\end{array} \\
& \text { Energy is battery, not wall plug energy } \\
& \text { Driving Cycle: SAE J227a Schedule D } \\
& \text { BATTERY LEVELING } \\
& 176.85 \text { (109.89) } \\
& \text { 510. (227.88) } \\
& 22417 \\
& \text { Id } \overline{3} \mathrm{NO} 03 \\
& \text { INJONJdヨa NOII甘yヨ7ヨコJV } \\
& \text { (} 60^{\circ} \mathrm{SOL} \text {) LL•69L } \\
& \text { 496. (221.91) } \\
& 22359
\end{aligned}
$$

$$
\begin{aligned}
& \%
\end{aligned}
$$

Cycle (FUDC), varying the flywheel generator and battery current according to acceleration, gave the best overall results and this scheme was used in all further work of this study.

7.4 Performance Comparisons

After the candidate systems were optimized for best gear ratios, shift points, motor overlcad capabilities and energy management schemes, the battery weights were adjusted to give a uniform range in the Schedule D. cycle. All of the candidates meet the driving performance requirements. The weights and energy consumptions are summarized in Table 24 . The two motor concept B5 has the greatest battery weight as well as the greatest total weight and energy consumption.

The CVT candidates require less battery weight and use less energy in the D cycle than do the A6 and A8 candidates. However, the CVT candidates have lower range for steady 45 mph driving.

The energy consumption per mile shown in the table is the battery energy rather than wall plug energy. Dividing by the battery and charger efficiencies brings the wall plug energy consumption to a value in excess of the goal of $559 \mathrm{~kJ} / \mathrm{km}$ ($250 \mathrm{~Wh} / \mathrm{mile}$).

For a charger efficiency of 85 percent and the given lead-acid battery efficiency of 60 percent, the wall plug energy consumption of the best candidate D 4 increases from $.466 \mathrm{MJ} / \mathrm{km}(208.3 \mathrm{~Wh} / \mathrm{mi})$ to $.914 \mathrm{MJ} / \mathrm{km}(408 \mathrm{~Wh} / \mathrm{mi})$.

7.5 Cost Comparison

The life cycle cost for the five candidates are summarized in Table 25. (Cost was generated following cost estimating guidelines listed in Appendix D.) The B5 candidate is the least attractive although all five candidates meet the goal of a life cycle cost less than $\$.05 / \mathrm{km}$ ($\$.08 / \mathrm{mile}$). The other four candidates are very close in cost. The energy costs of the CVT candidates are less than those for A6 and A8, however, the higher maintenance cost more than offset the energy savings. Lower acquisition costs are projected for the CVT candidates which compensate for the slightly higher operating cost compared to A6 and A8.

7.6 Candidates Recommended for Conceptual Design

All candidates in Table 24 appear to be capable of meeting range, performance and cost objectives. The candidates using CVT concepts D2 and D4 did not meet the constant $72.4 \mathrm{~km} / \mathrm{h}$ (45 mph) range requirement of 209 km (130 miles) but this can be solved by adding approximately 20 kg ($45 \mathrm{1bs}$) of lead-acid batteries. However, none appear to meet the wall plug energy consumption goal of $250 \mathrm{~Wh} / \mathrm{mile}$ unless very efficient batteries and recharge units are used. All have some developmental risk which must be more fully studied.

$$
\begin{gathered}
\text { mparison } \\
\text { D2 } \\
1641(3553) \\
549(1175) \\
57(125) \\
24(54) \\
20(45) \\
27(59) \\
23(50) \\
63(139) \\
214(472) \\
161(100) \\
204(126.7)
\end{gathered}
$$ GENERATOR WEIGHT

CVT WEIGYT
PROPULSION SYSTEM ＂D＂CYCLE
STEADY 45 MPH
RANGE $\mathrm{km}(\mathrm{mi})$
＂D＂CYCLE
STEADY 45 MPH WEIGHT $\mathrm{kg}(\mathrm{Tb})$
WEIGHT $\mathrm{kg}(\mathrm{lb})$
VEHICLE TEST WEIGHT

MOTOR WEIGHT

LHפIヨM Уヨา70צINOJ

LH9IヨM NOISSIWSNYY

 AXLE WEIGHT

LHSIZM WGLSAS NOIS7ndOyd
 －
Table 24.

$$
\begin{aligned}
& \text { PROPULSION SYSTEM WEIGHT } 176(388) \\
& \text { BATTERY ENERGY PER MILE } \mathrm{MJ} / \mathrm{km}(\mathrm{~Wh} / \mathrm{mi})
\end{aligned}
$$

> | 응 |
| :--- |
| $\stackrel{-}{-}$ | $\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{\Xi} \\ & \stackrel{0}{N} \\ & \stackrel{N}{N}\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
0 \\
\stackrel{0}{0} \\
\stackrel{N}{n} \\
\underset{N}{n}
\end{array}
\end{aligned}
$$

Table 25. Candidates - Propulsion System Cost Comparison

Candidates	$\begin{aligned} & \text { A6 } \\ & \text { AC } \end{aligned}$	$\begin{aligned} & \text { A8 } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { B5 } \\ & \text { AC } \end{aligned}$	$\begin{aligned} & \mathrm{D} 2 \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { D4 } \\ & \text { AC } \end{aligned}$
Acquisition Cost	3460	3491	4207	3307	3287
Annualized Acquisition Cost	346	349.1	420.7	339.7	328.7
Discounted Annual Cost 0 2\% Discount Rate					
Electricity	129.3	132.9	149.1	127.1	125.7
Repair \& Maintenance	100.3	100.3	86.2	116.1	116.1
Battery Replacement	99.8	101.8	115.2	94.6	93.3
Power Train Salvage	-3.8	-3.8	-4.7	-3.6	-3.6
Battery Salvage	-25.3	-25.8	-29.2	-24.1	-23.7
Discounted Annual Operating Cost	300.3	305.4	316.6	310.1	307.8
Present Value of Cycle Cost/year	646.3	654.5	737.3	640.8	636.5
Present Value of Life Cycle Cost/mi	. 065	. 065	. 074	. 064	. 064

All figures are in 1976 dollars.

In selecting candidates for conceptual designs, it seems appropriate that systems with minimized development risks should be preferred. Since the performance differences and life cycle cost difference among A6, A8, D2 and D4 are not great, other factors such as the balancing of developmental risks and the keeping of options open lead to the recommended candidates, A6 and D2.

The flywheel/generator of A6 provides a special source and sink for the reactive KVA of the three-phase ac induction motor and may simplify the development of the dc to ac inverter controller capable of regeneration over a wide-speed range.

The D2 candidate with its dc motor and its stable field excitation removes an element of developmental risk which partly offsets the higher risk associate with the development of a suitable CVT.

Recommended Candidates for Task III Studies

A6 AC Induction Motor With Flywheel/Generator Unit
D2 Electronically Commutated DC Motor With Flywheel/CVT Unit

8. CONCEPTUAL DESIGN

In the design trade-off studies two advanced propulsion candidates were selected for conceptual design. Layout drawings of components were prepared. Design details for the inverter and control circuit were examined to confirm the ratings of semiconductor components. Sizes and types of CVTs were examined for their suitability.

Safety factors and component layout constraints force several modifications of the configurations and sizes of components emerging from the design trade-off studies. Most significant of these changes are the selection of a battery voltage of 96 volts, the use of transistorized choppers and inverters, and the reduction in the size and energy storage of the flywheel from 6.84 MJ (1900 Wh) to 2.44 MJ (678 Wh.)

Appendix I and II list the specifications of the two conceptual designs.

8.1 System Voltage and Semiconductor Types

During the preliminary analysis and design trade-off studies a system voltage of 240 volts dc was considered with SCRs being used for switching in the inverters and choppers. This voltage is higher than commonly used in electric vehicles, but seemed reasonable for an advanced concept which would require a high battery weight to achieve the desired range of 161 km . The higher voltage would allow a lower current for a given power, and this lower current would give lower losses in the semiconductor switches. The lower current would also allow smaller wiring for motor connections. Switching with SCRs is compatible with the higher voltage and was believed to be more efficient and less expensive than switching with transistors. (refs. 20,21) However, as the designs evolved the practical limitations of SCRs became apparent. (ref. 22).

The postulated advantages of high voltage had to be compared with the known disadvantages. Numerous battery manufacturers were contacted regarding the practicality of higher voltages, and all were discouraging (ref. 23).

An increase in battery voltage would require an increase in the number of cells. As presently manufactured the cell sizes would not be decreased enough to provide an efficient utilization of space and weight. A $50-\mathrm{amp}$ hour cell uses the same mechanical accommodation as a 75 -amp hour cell. A large number of small cells would require more maintenance than a small number of large cells. (ref. 24) The reliability of the small cells may also be less than that for the large cells. It is believed that the attempt to increase lift truck voltages from 36 volts to 72 volts was unacceptable because there was a higher cost for servicing the additional cells.

Higher voltages increase the danger of fire and electrocution. There is a danger of leakage current on the outside of the cells and across the trays. Good housekeeping and cleanliness can reduce the danger but at an increase in maintenance cost. It is common practice in car systems to group the cells in separate trays and to avoid having more than 24 volts between adjacent batteries. In spite of these practices sudden fires are still a problem.

High voltage dc is much more hazardous than high voltage ac. (refs. 25,26) A dc voltage will sustain an arc at a level where an ac voltage will not. The danger of electrocution from dc is much greater than from ac because a person cannot let loose from the dc source. Of course, protection from the hazards are possible as high voltage dc is used for light rail and trolley bus transportation systems. However, the special means for protection will add to the cost and may not always be effective. (ref. 27) The use of lower voltage will not completely soive the safety problems, but will make the solutions easier and less expensive.

The potential gain due to use of higher voltage is an improvement in controller efficiency and a reduction in controller cost by lowering the current rating of the semiconductor switches. However, analysis of a nominal 100 volt dc system shows that reasonably high efficiency at an acceptable cost is obtainable.

Trading off potential safety hazards, maintenance cost and efficiency gains, it appeared that a nominal 100 volt dc system should be designed. Considering six-volt batteries at 75 pounds each, a system with 1200 pounds of batteries has 16 such batteries and a total of 96 volts. The conceptual designs were based on 96 Vdc .

Examination of inverter and chopper circuits and frequency requirements for the high speed motors, made it apparent that device shut-off times would be a very serious problem with SCRs Pulse width modulation and high frequency chopping would simply not be possible with SCRs

Of course, low frequency systems compatible with SCRs could be considered but the size and weights of components for a low frequency system are unattractive. A chopping or modulating frequency of about four kHz appear to be desirable. Much lower frequencies would require large reactors to keep the ripple current low. (ref. 28) Much higher frequencies would require special magnetic materials to minimize eddy current losses. The limitalions of power diode turn-off times will prevent use of very high frequencies.

Transistorized choppers and inverters are used for the conceptual - sign rather than SCRs The projected controller efficiency of 96 itrcent should be attainable in the near future.

In mass production power transistors would be matched closely to the tlaction motor voltage and amperage, providing highest efficiency at redured cost. It also should be possible to integrate traction motor and the power section of the controller in one unit just as it is done in today's car alternator reducing the cost and size even further.

8.2 Description of Concept A6

This propulsion system uses a three-phase ac induction motor for propulsion power. The drive is through a three-speed transmission and final drive gear combined in a transaxle. The arrangement is for a front-wheel drive which allows effective regenerative braking for most normal braking situations. Conventional four-wheel hydraulic brakes are used when more rapid braking is required.

The electrical power supplied to the drive motor comes from the battery and from a flywheel/generator energy unit with the division of power from these two sources controlled in such a way as to limit the current to and from the battery. The electrical energy from these two sources is delivered at 96 volts dc to a three-phase inverter which gives a threephase ac output of the desired voltage and frequency to drive the induction motor or to provide braking by forcing the induction motor to operate as a generator to return energy to the flywheel or battery.

The principal characteristics of this design are summarized in Table 26. More complete specifications and drawings are given in Appendix A. The layout of the components are shown in Figure 29.

More complete details of the vehicle configuration and components are shown in the following drawings (located in Appendix A):

DRAWING NUMBER
1310051
1310052
131D053
131D054
1310055
131D057
131F056

DRAWING
Flywheel
Homopolar Inductor Generator Flywheel--Dc Generator Stator-Rotor Ac Traction Motor Motor-Transaxle Assembly General Arrangement
Schematic--Concept A6 (included as Figure 33)

8.2.1 Current Waveforms and Harmonic Losses

Because of its high cost and complexity the dc to ac controller for the ac induction motor of the A6 concept has been of major concern. The controller consists primarily of a dc to ac inverter with a variable frequency and voltage output. The output frequency is controlled to give a desired amount of slip for the induction motor. The desired positive slip is proportional to the driver-controlled position of the accelerator pedal and desired negative slip is determined by the driver via the position of the brake pedal. For a constant air gap flux, the torque of the induction motor is approximately proportional to the slip. The output voltage of the motor controller is maintained approximately proportional to the frequency in order to produce the desired air gap flux in the motor. The output waveform of the inverter and the means of controlling frequency and voltage have been studied.

Table 26. General Propulsion System Specification Design Concept A6

Figure 29. Design Concept A6

The output voltage waveform will not be a pure sinusoidal wave but will be more nearly a rectangular pulse wave as shown in Figure 30. This wave will contain harmonics which presumably could cause undesirable energy losses and torque fluctuations. To determine the effects of harmonic content on energy losses, the rectangular pulse was resolved into its Fourier series components which were then used as input voltage for the motor's equivalent circuit.

In the three-phase motor, the harmonics which are multiples of three will produce no current, so these may be ignored. Those odd harmonics which have a harmonic number that is one less than a multiple of three will produce a negative slip due to a reverse rotation of magnetic field and those with a harmonic number one greater than a multiple of three will give positive slip and forward rotation of magnetic field. To solve for the current and losses in the equivalent circuit of Figure 31, the values of slip and reactances which are frequency dependent must also be solved. For the higher harmonics, the reactances increase substantially and cause a significant reduction in the current components.

Table 27 shows the harmonic amplitudes for unity height rectangular pulses of various pulse widths. The magnitude of the fundamental increases as the pulse width increases. The amplitude of the third, ninth and other harmonics of multiples of three are shown although they produce no current in the three-phase cjrcuit. The fifth harmonic can be set to zero by use of a pulse of 72^{δ} or 144°, however, a pulse width greater than 120° is difficult to accommodate in a three-phase circuit.

For a delta-connected, three-phase motor with a 240 volt* rectangular pulse, the leg voltages for the fundamental and various harmonics are shown in Table 28 for pulses of various widths. The motor current components associated with the voltage harmonics have been computed using the equivalent circuit for a wide range of load conditions. The value of the fundamental current component varies with loading condition, but the current components associated with the harmonic are practically independent of load because the effective impedance of the motor at the high frequencies of the harmonics is nearly independent of motor torque, is highly reactive, and increases almost linearly with frequency. The current values are shown in the table for the maximum load condition. The table shows that the current components drop off very rapidly as the harmonic number increases.

The power losses associated with the various harmonics are shown in Table 29. The losses for the fundamental are quite large because the motor is at its maximum torque. These losses will decrease as the motor power decreases because the efficiency increases at lighter load.

The losses associated with the harmonics remain independent of load. The summation of all the losses due to harmonics are very small for all pulse widths.

[^3]
玉

$\begin{array}{rrr}S & =\text { Slip } & \\ E_{1} & =\text { Phase voltage } & \mathrm{V} / \text { phase } \\ I_{1} & =\text { Stator current } & \mathrm{A} / \text { phase } \\ I_{2}=\text { Rotor current } & \mathrm{A} / \text { phase } \\ I_{M}=I_{4}+I_{3}=\text { Exciting current } & \mathrm{A} / \text { phase } \\ R_{1}=\text { Stator resistance } & \Omega / \text { phase } \\ R_{2}=\text { Rotor resistance } & \Omega / \text { /phase } \\ R_{3}=\text { Iron loss equivalent resistance } \Omega / \text { phase } \\ X_{1}=\text { Stator leakage reactance } & \Omega / \text { phase } \\ X_{2}=\text { Rotor leakage reactance } & \Omega / \text { phase } \\ X_{3}=\text { Magnetizing reactance } & \Omega / \text { phase } \\ & \\ & \\ \text { Figure 31. Equivalent Circuit of Induction Motor }\end{array}$
Table 27. Harmonic Amplitudes of Pulsed Wave

Harmonic No.

$$
\text { Amplitude for Various Pulse Widths, } \alpha
$$

Losses Per Leg Associated With Harmonics of Pulsed Wave at Maximum Torque

Power and Losses in Watts per Leg
Losses at Pulse Width
90°
20809

Table 29.

[^4]The values of the current components in Table 29 are used in conjunction with the power factors of Table 28 and the signs of the Fourier coefficients in Table 27 to generate a resultant current waveform. This waveform is obtained by simply adding up the harmonic components. By superimposing the current waveform upon the on/off diagram for the semiconductors in the simplified inverter circuit of Figure 32 the current has been resolved into paths through the diodes and switching units (shown as NPN transistors) and a suitable summation of these currents gave the current to or from the battery.

The average and RMS value of current through the diodes and transistors was found by integrating the waveforms for each unit. The average current from the battery agrees with that calculated on the simple basis of electrical power to the motor. The average current through the diodes agrees closely with that calculated simply on the basis of the reactance KVA of the motor being handled by the diodes and the average current in the transistors on the basis of the resultant kVA of the motor. Improving the power factor of the motor reduces the average current in the semiconductors.

The waveforms for the current from the battery showed a very large ripple at six times the electrical frequency of the motor. This ripple could have a very undesirable effect upon the battery. A large commutating capacitor will be necessary to protect the battery from the high frequency ac current components and to protect the transistors from high voltage spikes.

8.2.2 Control Circuits

The control circuit diagram is shown in Figure 33 with more detail on Drawing 131F056.

8.2.2.1 Slip Controller

The motor slip is calculated, with the use of a standard divider and a difference amplifier, from the following equation:

$$
s=\frac{n_{s}-n}{n_{s}}
$$

The synchronous frequency (n_{s}) is proportional to the control voltage of a Voltage to Frequency Converter (V.C.0.) The rotor frequency (n) is determined by the rotor tachometer. The slip is controlled with feedback techniques around an operational amplifier. The slip figure is fed back to the inverting junction while the output controls the V.C.O. Since the output frequency of the V.C.O. is the synchronous frequency, any signal on the noninverting input of the op amp represents a slip command. The slip will therefore be regulated to a level proportional to this signal.

PRECEDING T:-A: ren NOT FILMED

| WOLDOUC HRAME

 ORIGINAL PAGE IS POOR

ORIGINAL PAGE IS POOR
Figure 33. A6 Control Circuit Diagram

The applied motor voltage varies linearly with frequency to the point of magnetic saturation. This is accomplished through the use of Pulse Width Modulation (P.W.M.). The Pulse Width is directly proportional to the synchronous frequency voltage until it reaches the saturation point.

8.2.2.2 Traction Motor Three-Phase Generator

The three-phase generator develops the control signals for the six power transistors that drive the traction motor. The signal sequence is periodic and its frequency is equal to the V.C.O. output frequency. The P.W.M. signal is imposed on one hifle of the transistors to provide voltage control. A unique feature is that the system also monitors the line voltage to ensure that any twc coman devices will not turn on simultaneously. This allows the conduction angle of the generator to approach a maximum of 120°.

8.2.2.3 Gear Shift Controller

The gear shift controller performs two functions. It determines when to shift and into which gear. It also controls the shifting sequence. The shifting sequence is a function of a six-position counter. The normal mode is position zero at which the slip controller maintains command. A shift command increments the counter to position one which sets the slip to zero, and then increments the counter to position two. Position two maintains the slip at zero, provides a 400 msec pulse to disengage the gears, and then increments the counter to position three. Position three commands the slip controller to synchronize the drive gear with the selected gear. After synchronizing, the counter is incremented to position four. Position four provides a 400 msec pulse to engage the selected gear and then increment the counter to position five. Position five resets the counter to position zero and relinquishes command to the Slip Controller.

The incident' of shifting and the intended gear are determined by the output level of a function between velocity and torque. As the difference between the signal representing rotor velocity and a signal derived from the slip cross two set points a shift pulse is generated. The output level relative to the two shift points can be decoded to determine the gear involved. A shifting sequence along with changing gears must also offset the siip to maintain an even torque at the wheels. The slip scale factor is also modified to match each gear. This allows the mechanical range of the accelerator to remain constant independent of the gear involved.

8.2.2.4 Rotor, Vehicle, and Flywheel Tachometer

Voltages proportional to the speed of the rotor, vehicle, and flywheel are developed using three integrated circuit tachometers.

8.2.2.5 Flywheel Mode Control

Current shunts are used to determine direction and magnitude of current to the flywheel and traction motor/generators. The signals proportional to the currents are then decoded to determine the mode of operation of the flywhee 1 motor/generator. Three modes of operation exist. The first case is when the current to or from the traction motor/generator is between two specific points. In this mode the battery will supply the majority of the current while the flywheel is speed-regulated to maintain a nominal velocity. The second case is when current into the traction motor exceeds the upper set point. In this mode the flywheel motor/generator acts as a generator and the excess current to the traction motor comes from the flywheel. The final case is when current from the traction motor exceeds the lower limit. In this mode the flywheel motor/generator acts as a motor and accepts all excess current from the traction generator.

8.2.2.6 Flywheel Controller

The flywheel motor/generator is controlled through Puise Width Regulation of the field. An integrated circuit P.W.M. is used at four kHz to drive the field chopping transistor. The modulator input can be a signal proportional to the current of either the traction or flywheel motor/generator, or it could be the flywheel tachometer output. Independent of the mode of operation, the field is reduced to produce motor action and increased to produce generator action.

8.2.2.7 Flywheel Three-Phase Generator

The three-phase generator develops the applied armature voltage required to operate the flywheel motor/generator as a motor. As with the Traction Motor Three-Phase Generator, the developed signal is a periodic three-phase square wave. The frequency of this signal is directly proportional to the rotor speed. The input clock is developed from a position wheel that is attached to the rotor. The generator also monitors line voltage to ensure that two common devices do not turn on simultaneously.

The ratio of power from the battery and from the flywheel is controlled by the voltage of the generator. Raising the generator voltage slightly above the battery voltage forces more current from the flywheel and less from the battery. Lowering the voltage during regeneration diverts more current to the flywheel and less to the battery.

8.2.2.8 Flywheel Motor/Generator Position Sensor

The position sensor is formed from a number of optical sensors that sense slots in the position wheel. As the slot passes by the sensor, a digital pulse is generated. The pulses are then combined to form the clock for the flywheel three-phase generator. The output of one of the sensors also serves to input the flywheel tachometer.

8.2.2.9 Power Supply

The plus and minus 15 volts are derived from two integrated circuit pulse width regulators. The chopping frequency is ten kHz .

8.2.2.10 Drive Electronics

The drive electronics consists of NPN Darlington transistors and diodes for the flywheel and generation modes. The transistors that are referenced to ground are driven directly through current amplifiers while the transistors that are referenced to the positive bus are driven from optical-isolators through current amplifiers. The optical-isolators are referenced to a voltage that is 15 volts below the positive bus. This voltage is developed through an integrated-circuit chopping regulator.

8.3 Description of Concept D2

Table 30 summarizes the characteristics of conceptual design D?. Appendix B lists the specifications in more detail.

The conceptual design of components and their layout within the vehicle configuration are shown in the following drawings (included in Appendix B):

Drawing Number
1310081
1310082
1310084
1310085
131 0086

Title

Flywheel with Magnetic Coupling 3-speed Transaxle DC Traction Motor CVT General Arrangement

This propulsion system shown in Figure 34 uses an electronically commutated dc motor with a separately excited field for propulsion during cruise and other light loads and uses power augmentation from a flywheel via a CVT for acceleration, braking and other high power requirements. The general flow of power is shown in Figure 35. The power from the fiywheel is shown flowing through a magnetic coupling which acts to limit the torque and to permit de-coupling to reduce run-down losses. The power out of the magnetic coupling flows through a CVT to the drive motor with the CVT used to provide a speed match and to control the flywheel torque.

The CVT controls the power flow to and from the flywhee1. The power from the flywheel can flow directly through the motor shaft to the transaxle to drive the vehicle. The power from the fiywheel normally augments the electrical power produced by the motor due to current flow from the battery; however, the energy from the flywheel can be returned to the battery when the drive motor is in the generating mode. During regenerative braking, power flows from the drive wheels back into the flywheel via the CVT; however, part of the power can flow back into the battery.

Table 30. GENERAL PROPULSION SYSTEM DESCRIPTION
DESIGN CONCEPT D2

Curb weight
Battery weight
Propulsion system weight without battery

1474 kg (3250 lbs)
544 kg (1199 1bs)
205 kg (452 lbs)
Traction Motor
Electronically commutated brushless dc Rated power
26 kW
Base speed
Maximum speed
5400 rpm
Efficiency
Voltage
Weight
7800 rpm
90.4\%
96 Vdc
43 kg (95 lbs)
Fiber-Composite Flywheel
Total stored energy
Maximum speed
Total weight
2.44 MJ (678 Wh)
46300 rpm
10. kg (35.3 1bs)
CVT
Planetary cone type
Maximum power
34 kW
Maximum/minimum speed input
Full load efficiency
Weight
Magnetic Coupling
Maximum power
Base speed
Weight
Transaxle - 3-Speed
Weight
$50 \mathrm{~kg}(109 \mathrm{lbs})$
Controller
9-phase chopper
Rated power 29 kW
Weight
16 kg (34.8 lbs)
Battery - Lead-Acid
Specific energy
Specific power
Efficiency
$40 \mathrm{~Wh} / \mathrm{kg}$ ($18 \mathrm{~Wh} / \mathrm{lb}$)
$100 \mathrm{~W} / \mathrm{kg}(45 \mathrm{~W} / \mathrm{lb})$ 60\%
Propulsion System Performance
Range for steady 45 mph cruise
Range for SAE J227a Schedule D
Acceleration 0 to 55 mph
223.7 km (139 mi)
160.9 km (100 mi)
15 sec

Figure 35. Power Flow - Candidate D2

The main power flow is to and from the drive wheels for propulsion and braking. This power flow is shared by the battery and flywheel with the battery normally supplying steady cruise power and the flywheel providing extra power for acceleration and braking. A secondary power path is for the flow of power between the flywheel and battery. This secondary path is primarily used for energy management to prevent the flywheel from over charging un a long downgrade or from rünning down from a succession of accelerations.

The power flow to and from the flywheel is controlled by the CVT, by changing the speed ratio to force the flywheel to slow down and give up part of its kinetic energy or to speed up to accept energy. The flow of power from the motor is controlled either by field current control or armature current control depending upon the speed of the motor. Above the base speed of the motor, field current is used to provice variable counter emf of the motor. Eelow the base speed, armature current control is used to provide variable torque for the motor.

The total power to the drive wheels is essentially the sum or the power from the drive motor and from the flywhee 1 so the power flow from both units must be coordinated to give the total power flow to satisfy the driver input request. The driver input is mainly from the accelerator pedal or brake pedal and from each what the driver requests is essentially a positive or negative torque. For the flywheel to provide a specific torque output requires a specific rate of change of flywheel speed. This can be forced by a specific rate of change of CVT ratio. To maintain a continuous torque requires a continuous change in ratio. The actuator that forces this change in ratio is controlled in response to a torque signal generated from the measured slip in the magnetic coupling.

The motor torque is essentially proportional to the product of the armature current and the field flux. At speeds below the base speed, the field flux is constant so control of armature current provides control of motor torque. Above the base speed, the field is weakened to give lower counter emf to cause an increase in armature current. Torque control in this region can be obtained by control of field current if the armature and field current product is monitored.

The armature current flows through an electronic commutation unit which also provides chopper control of armature current below the motor. base speed. This unit uses a motor shafc position sensor to control the tiaing for the turn-on and turn-off of the semiconductor switches.

The motor armature has nine separate coil circuits each of which i. switched electronically. The timing for the circuits switching is down in electrical degrees in Figure 36. The duration of each pulse is about 120° electrical and the phase 7 ag is 40°. At any one time, three current paths are active. A possible circuit is shown in Figure 37. During the time that transistors 1, 2 and 3 are on, transistors 5, 6, 7 and 8 are on with 8 turning on as five turns off.

Figure 36. Timing for Semiconductor Switches for Nine-Phase Motor

The circuit shows 18 NPN transistors which would be parallel to 18 diodes (not shown) which could carry the current back to the battery in the generating mode of operation and which would act as freewheel diodes during chopper operation.

A simplified circuit showing the operation of the commutation unit during drive and generation modes is shown in Figure 38 . This simplificu' circuit shows coils 1 and 5 with the other seven coils left off for clarity. Positive current for coil 1 flows through Q1 or Dla and negative current through Qla or D7. Below the base speed, motor power is controlled by chopping the armature current. As shown, Qi and Q5 act as choppers with D1a and D5a acting as freewheel diodes. When Q1 is chopping the current for coil 1 the current path back to the battery is through either Q5a, Q4a, Q6a or Q7a depending upon the shaft position and when Q5 is chopping the return is via Q2a, Q1a, Q9a or Q8a.

During the generator mode of operation when the speed is less than the base speed, there is inadequate voltage for recharging the battery, and the commutation unit must also act as a chopper controlled voltage booster. Current to recharge the battery flows through D1 and D5. During the portion of the motor cycle when Dl provides the recharge path, Qla acts as a booster chopper. While $D 5$ provides the recharge path, Q5a acts as a booster chopper.

A variety of signals are needed for con ${ }^{*}$ ol of the commutation unit. The motor shaft position determines the timing for gross switching of the semiconductors. The motor speed and positive or negative power requirements determine the chopper on-off ratios.

The number of semiconductor switches required for the electronically commutated motor circuit is 18 or nine times that requires for a conventional chopper used with a mechanically commutated motor; however, three sets of switches simultanecusly carry current so that the current ratings of the semiconductors are lower by about one third than those for a conventional chopper.

8.4 Flywheel Size and Energy Rating

The flywheel examined during the preliminary analysis and design trade-off studies had a total kinetic energy of 6.84 MJ (1900 Wh) to continually provide a 2.52 MJ (700 Wh) energy reserve for braking or acceleration. For a 1642 kg (3620 pound) vehicle test weight, the charge in kinetic energy corresponds to the vehicle's potential energy change due to an elevation change of 152 m (500 feet). This is not an unusual elevation change in a hilly area, but could represent an unusual energy change for level terrain. For the vehicle operated mostly on level terrain, an excessively large flywheel is an undesired burden. Consequently, it was decided that the maximum energy change could be set to that required for the Federal Urban Driving Cycle (FUDC). Examining the A6 concept over the "D" cycle and FUDC showed a maximum energy swing of . 412 MJ (114.34 Wh) for the "D" cycle and .749 MJ (208 Wh) for the FUDC. An energy swing of .9 MJ (250 Wh) was selected as a new design criteria for the energy buffer.

Drive Mode

Generator mode below base speed

Figure 38. Electronically Commutated Motor Switches
Transistors Provides Chopping for Drive and Generator Modes and For Commutation

Figure 39 shows the energy swing on either side of the operating point and shows that the total kinetic energy at the maximum flywheel speed is 2.44 MJ (678 Wh). This results in a smaller flywheel than initially considered based on the hilly terrain of the San Francisco Bay Area. The smaller flywheel spins at higher speed and allows the generator used with the flywheel to be smaller and of lighter weight. The smaller flywheel is easier to accommodate in the available vehicle space and has a lower gyroscopic moment.

The flywheel/generator unit is shown in Figure 40. The combined weight is 35.6 kg (78.6 pounds) for the stored energy of 2.44 MJ (678 Wh) and power level of 48.5 kW .

8.5 CVT Types

Several types of CVTs were examined. It seemed desirable to have the input shaft for the CVT operated at flywheel speed. No CVTs are available which can accept a $46,000 \mathrm{rpm}$ input. A new design of a traction-type CVT seems possible and desirable. The high speed of the input shaft would allow low torque. The high speed/low torque combination seems like an ideal combination for a traction-type device. The Nasvytis type speed (ref. 7) reducer appears to work well in the high speed/low torque region. The alternative appears to be the development of a high-speed CVT or the use of a first-stage speed reducer such as the Nasvytis type device to bring the speed and torque to a value that can be accommodated by CVT designed for the more conventional speed domains.

In any case, it appears necessary to provide a means of decoupling the flywheel from the CVT and for providing a limit to the torque transmitted to prevent damage to the CVT if excessive overloads were to occur. An electro-magnetic coupling using the limited slip induction design rather than a synchronous design is simpler to control and can satisfy the requirements for limiting the maximum torque through control of field excitation current'. The design can also provide a hermetic vacuum barrier for the flywheel housing.

If the high-speed type CVT is to be developed, it would have to have high efficiency and be light weight to be acceptable. Several types of designs were considered. A planetary ball and cone design appeared to hāve inadequate torque and was rejected. Multiple-tapered cones with adequate crown to reduce "spin torque" and viscous drag appear to hold some promise.

Layout drawings using hypothetical CVTs of the high-speed and conventional speed types were prepared. It appears that adequate space is available for either type if they can be developed to give acceptable efficiency and life.

8.6 Vehicle Performance

The vehicle weights, range and energy consumption are summarized in Table 31.

Figure 39. Flywheel Stored Energy vs. Flywheel Speed

Figure 40. Flywheel/Generator Unit

Table 31. Candidate Weight/Performance Comparison

Candidates

Weights, kg (1bs)	A6		D2	
cle Curb Weight	1460	(3218)	1474	(3250)
Battery Weight	556	(1226)	544	(1199)
Axie	27	(59)	27	(59)
Transmission	23	(50)	23	(50)
Motor	41	(90)	43	(95)
Controller	52	(115)	16	(35)
Flywheel	16	(35)	16	(35)
Generator	19	(43)		--
CVT		--	81	(178)
Propulsion System Weight	178	(392)	205	(452)
Energy Per Mile, MJ/km (Wh/mi)				
"D" Cycle				
From Battery From Wall plug	. 772	$\left(\begin{array}{l}212 \\ (353)\end{array}\right.$.469 .783	$\binom{210}{350}$
Steady 45 mph	. 37	(165)	. 365	(163)
Range, km (mile)				
"D" Cycle	161	(100)	161	(100)
Steady 45 mph	228	(142)	224	(139)

From the table it can be seen that the vehicle curb weights and the battery weights are within one percent of each other. The weights of the propulsion systems on the other hand show a fifteen percent or 60 pound difference in weight. This difference is mainly due to the greater weight of the CVT, 80.5 kg (177.5 lbs) versus 38.2 kg (84.3 ibs) weight of the generator/controller combination. Because of the better (anticipated) efficiency of the CVT, the energy consumption over the SAE J227a Scheduie D driving cycle is less for Concept D2 than for A6, and only 544 kg (1199 lbs) of batteries are needed partly offsetting the higher propulsion system weight.

Both concepts meet all range and acceleration goals but both concepts failed to meet the Wh/mile wall plug energy consumption goal with lead-acid batteries. To meet the $250 \mathrm{~Wh} /$ mile wall plug energy consumption goal with lead-acid batteries, range has to be sacrificed or the efficiencies of the propulsion system components pushed close to 100 percent.

With nickel-zinc batteries, it is possible to meet both range and energy consumption goals. However, the higher life cycle cost of a nickel-zinc battery system more than offset the gain in energy consumption.

8.7 Propulsion System Cost Comparison

The life cycle cost of the conceptual designs are summarized in Table 32.

Guidelines for life cycle cost calculations were provided by NASA Lewis Research Center and appear in Appendix D. In addition to the life cycle cost guildelines, the following specific information regarding battery cost and lifewere provided by N.ASA Lewis and are listed in Table 4.

The number of miles attainable per 80 percent discharge is 80 miles with battery weight adjusted to give a range of 100 miles per full discharge. For the specific number of 80 -percent discharges (Table 4), this results in a 6.4 year life for lead-acid and a four year life for nickel-zinc batteries.

Today's prices (1979) were converted into 1976 dollars by using an average eight percent inflation rate.

On critical high technology units where no mass production cost factors are available, cost was estimated based on Task III Conceptual Designs and drawings. The critical units are:

Flywheel
Homopolar Inductor
Continuously Variable Transmission (CVT)
Electronic Controllers
On items where existing technology can be applied current prices or unit prices were used. These current prices were then subsequently reduced to 1976 dollars.

More detailed information on operating/life cycle cost appears in Tables D1 to D9 in Appendix D.

Table 32. Propulsion Systems - Cost Comparison

	A6	D2
Battery Acquisition Cost	1301	1273
Propulsion System Acquisition Cost (with battery)	3175	3123
Annualized Acquisition Cost	317.5	312.3
Discounted Annual Cost @ 2% Discounted Rate		
\quad Electricity	126.6	125.4
\quad Repair \& Maintenance	61.5	102.8
\quad Battery Replacement	99.8	97.7
\quad Power Train	-3.7	-3.6
\quad Battery Salvage	-26.6	-26.0
Discounted Annual Operating Cost	257.6	296.
Present Value of Life Cycle Cost/yr	575.0	608.0
Present Value of Life Cycle Cost/	$.036(.058)$	$.038(.061)$

9. DISCUSSION OF RESULTS

The preliminary analysis of 28 candidate propulsion systems and the subsequent design analysis of the five most promising concepts show clearly that a relatively large amount of on-board energy storage such as batteries is required to provide the desired range and that a power booster element such as a flywheel is desirable to provide peak performance especially as the batteries near their discharge point. The analysis also shows the desirability of efficient regenerative braking capable of handling brief periods of very high power. The effects of returning braking energy directly to the battery at high power levels is not known with ertainty. (Ref. 18) It is possible that brief high power "shocks" could have a weneficial effect on battery life and output, (Ref. 29) but it is likely that a greater efficiency of energy recovery can be achieved by returning the braking energy to a power booster such as a flywheel. (Ref. 30, 31)

There are two significant reasons for favoring the return of braking energy to a flywheel rather than to the battery. One is that the chargedischarge efficiency of the battery is estimated to be as low as sixty percent for lead-acid and seventy percent for $\mathrm{Ni}-\mathrm{Zn}$. The other is that it is much more efficient to deliver braking energy directly to the flywheel than indirectly to it by way of the battery as additional power conversion steps are required.

The study also shows that high-speed, light-weight motors are beneficial even though they will require multi-speed transmissions to provide the increased torque required at the drive wheels at low vehicle speed. The multi-speed transmission appears to provide an efficient and cost-effective means of producing.high torque at the drive wheels. The alternative is to use a direct drive with a larger and more expensive propulsion motor. The alternative is technically less attractive in terms of cost, weight and efficiency, but may be more attractive in the market place. The absence of shift points and possible "jerk" could be an important selling point, but a difficult one to evaluate.

The trade-offs between dc drive motors and ac drive niotors were studied. The main drawback of present dc motors is their mechanical commutation. The brushes have friction and wear problems as well as a voltage drop. At high speed, commutation problems such as sparking at the brushes and flashover limit the output of a given size armature. A brushless dc motor could eliminate these problems of the commutator, but, replace it with the problems of an electronic commutation circuit and makes this type dc motor similar in cost and complexity to the ac motor for vehicle propulsion. Both dc and ac type motors have similar weights, efficiencies and cost.

The electronically-commutated dc motor is essentially a synchronous motor with an inverter triggered by a shaft position sensor, which locks the inverter frequency and phase to the motor speed and shaft position. By forcing the frequency and phase to follow the motor rather than vice-versa, the synchronous motor then possesses all the characteristics of a separatelyexcited dc motor. The fact that the field current for this type dc motor can $b \in$ separately controlled provides it with a significant advantage over the induction motor especially for its operation as a generator during regeneration.

The electronically-commutated dc motor always maintains a good phase relationship between the applied voltage waveform and the generated counter emf; whereas, the induction motor will sometimes operate at a very poor power factor with substantial mismatch of the applied voltage waveform and the generated counter emf. Consequently, over much of the operating range the peak-to-average current ratio for the semiconductor devices for the inverter for the induction motor will be higher than those for the electronically-commutated dc motor. In the final analysis the suitability of the electronic conversion and control units will be the deciding factor. The added cost of the features required to insure regeneration with an induction motor could wipe out any cost savings due to the squirrel cage rotor.

Initially, it was thought that the current controllers and inverters should use SCRs rather than transistors for switching. For a given power rating an SCR controller costs less thian one using transistors; however, the turn-off times for SCRs are too long to permit the desired switching rates. (Ref. 28) Chopper frequencies of about four kHz appear to be ideal. Much lower freouencies will require excessively large reactors to filter out undesirable current ripple. Much higher frequencies would require reactors with special core materials to prevent excessive eddy current losses. Such reactors would be bulky or costly. Presently available transistors should be considered for the design initially, but as more efficient types such as field effect devices (Ref. 32) become available these should be substituted. Better and cheaper transistors are vitally important to the development of electric vehicles.

Initially, it was thought that systems using higher voltage would be more attractive than those using lower voltage, because the former would have lower current for a given power. However, other factors such as safety, battery reliability and maintenance indicate very high voltages are not necessarily desirable. A higher voltage would require a larger number of small cells with a corresponding increase in maintenance. Higher dc voltages increase the danger of electrical arcs and increase the shock hazards. The risks of arc and electrocution go up rapidly as the voltage is increased above 100 volts dc. It is true that the use of higher voltages would reduce the required current rating of the semiconductors and thus reduce their cost; however, the cost savings would not compensate for the increased safety hazards and decrease in battery reliability. Moreover, the power losses in semiconductors operating in a 96 volt dc system can be acceptably low.

Several items are crucial to the design concepts. These are the following:

1. High-speed flywheel subsystems
2. High-speed homopolar inductor/generator and inverter/controller system
3. High-speed, light-weight, three-phase induction motor and inverter/controller
4. High-speed, light-weight, electronically-commutated, separatelyexcited dc motor including electronics.
5. High-speed CVT suitable for use with a flywheel energy input and suitable ratio-controller unit

Of these, the item of greatest developmental risk appears to be the CVT. The flywheel development may at first appear to be equally risky; however, the risk involves only how much energy can be stored for a given weight. That a flywheel can store energy and that adequate power can be generated is not in doubt. The questions are how much power, energy, weight and cost. In contrast, the questions for the CVT is whether it can be done with any reasonable life, weight or cost. Will a continuously variable traction device operating at high speed have adequate torque and efficiency? Will the churning losses and slippage be excessive? Without tests and experimentation these questions can not be answered.

If they were developed, their service and maintenance costs are expected to be higher than those for the electrical conversion system. The extra cost of service and maintenance could offset any potential gain for the CVT-based propulsion systems; however, the projected overall efficiency for the propulsion systems using the CVTs are higher than those with the flywheel/generator systems. Considering the potential advantages, it is too early to positively conclude that the service and maintenance costs would completely offset the energy savings. It should be recognized that such a development program may not succeed in providing a unit at an acceptable cost.

Some work is presently underway on subsystems using various flywheel designs and much lower energy levels. The work should be expanded to cover a wider range of energy and flywheel designs.

A variety of types of power boosters to provide peak power performance are possible. It appears that a flywheel-type booster is the most attractive type. Using a fiber-composite flywheel, such a unit can have very high specific power and specific energy without an excessive gyroscopic moment. When used with a generator for converting its kinetic energy to electrical energy, high conversion erficiencies can be obtained and the power flow to and from the flywheel can be easily controlled. The developmental risks for such a system are not excessive.

The optimum stored energy in the flywheel is dependent upon terrain as well as the velocity profile of the driving cycles. A vehicle operated on hilly terrain could benefit from a larger flywheel energy storage than one
operated on level terrain. On level roads, the ability to absorb or release about 250 Wh of kinetic energy will suffice for most anticipated driving conditions without danger of flywheel rundown or overspeed. This requires a total energy swing of 500 Wh .

Flywheels used in cars should be safe, inexpensive and have high specific energy (MJ/kg (W-hr/lb)). Several flywheel designs like shaped steel disk and multi-ring fiber composite have been investigated. As can be seen from published reports (ref. 19) the flywheel specific energy of fiber composites is 1.6-4 times higher than for shaped steel disk designs. In order to store the same amount of energy in a shaped steel disk, the shaped steel disk flywheel would weigh more than twice as much as a fiber composite flywheel. The greatest penalty lies in the heavier containment structure (approximately five times) needed for steel flywheels to give adequate protection.

The maximum wall plug energy for SAE J227a Schedule D (.559(250) MJ/km (Wh/mi)) requirement, with a given battery efficiency of sixty percent (lead-acid) and an assumed charger efficiency of 85 percent is . 285 (127.5) $\mathrm{MJ} / \mathrm{km}$ (Wh/mi) with vehicle/battery characteristics as listed in Tables 2 and 3. For a propulsion system efficiency as high as 86 percent, the wall plug energy consumption was computed 65 percent higher than the target of $.559(250) \mathrm{MJ} / \mathrm{km}(\mathrm{Wh} / \mathrm{mi})$. With lead-acid batteries, it would be very difficult to fulfill this requirement. With nickel-zinc batteries, being lighter and more efficient, the wall plug energy requirement can be met.

10. CONCLUSIONS

The preliminary analysis, design trade-off study and conceptual design lead to several general conclusions about the nature of an advanced propulsion system designed for a range of 100 miles of repeated SAE J227a Schedule "D" cycles.

1. There is no identifiable single "best" design to achieve the desired range anc performance objectives, but rather a multitude of designs are possible.
2. If ISOA lead/acid batteries with a specific energy of $40 \mathrm{~Wh} / \mathrm{kg}$ are used, a total battery weight of approximately 1200 pounds will be required, However, if nickel/zinc ($\mathrm{Ni} / \mathrm{Zn}$) batteries with a specific energy of $80 \mathrm{~Wh} / \mathrm{kg}$ were used only 490 pounds would be required. Unfortunately the nickel/zinc batteries have shorter life and are much more expensive than the lead/acid batterics.
3. The cost of the initial supply of batteries would be about 22 percent higher for $\mathrm{Ni} / \mathrm{Zn}$ and their replacement costs over the life of the vehicle are nearly double that for lead/acid.
4. The addition of a multi-speed transmission is worthwhile because in today's technology a suitable transmission would be light weight and reasonably inexpensive compared to the weight and cost increase associated with the increase in motor size required for direct drive.
5. Two general types of traction motors appear attractive for an advanced propulsion system in terms of their efficiency, specific power and potential for mass production. These are the multi-phase induction motors with squirrel cage rotors and the multi-phase synchronous motors of various designs, including the claw-power or Lundel design, the homopolar inductor design and the more conventional designs using either cylindrical or salient pole rotors with slip rings and brushes.
6. High-efficiency controllers capable of regenerative operation will be required. The waveforms needed for efficient inverter/rectifier operation will require pulse-width modulation with switching speeds in excess of that practical now with SCRs. High-power transistors with low losses such as the field effect devices now being developed appear to be necessary.
7. The study of candidates using CVTs to mechanically convert flywheel kinetic energy into vehicle propulsion, indicate that such units are potentially practical although they are probably heavier than the electrical conversion system. Much development work is required before suitable CVTs can be made available for this purpose.

The program has identified and examined a variety of attractive concepts for advanced propulsion systems which appear capable of significant performance improvements with little or no cost penalty, but do have some developmental risks. The field has been narrowed down to the most attractive concepts which we recommend for further design and developmental efforts.

1. The least developmental risk with high benefits is the A6 concept. It is recommended that a functional model of the propulsion system be designed, built and tested to verify the projected characteristics.
2. A detailed design for the concept A6 flywheel/generator subsystem and its electronics should bo pursued in conjunction with developments in fiber-composite flywhee!s, bearings and vacuum vessels.
3. Tests and experimentation should be undertaken in an effort to develop a suitable CVT, and to confirm its probable cost and maintenance requirements.
4. The development of high-power transistors to operate in the vicinity of 100 volts dc should be encouraged.
5. Concurrent with the design of the functional model of the A6 propulsion system, there should be ongoing work on the development of an electronically-commutated, separately-excited dc motor suitable for vehicular propulsion. This effort should concentrate on a high-speed motor of 26 kW continuous power to operate with a 95 volt dc input.

12. REFERENCES

1. 1979 SAE Handbook, Part 2, Section 27.07.
2. Straughn, A. and Dewan, S. B., "Power Semiconductor Circuits," John Wiley \& Sons, 1975.
3. Robertson and Black, "Electric Circuits and Machines," D. Van Nostrand Company, Second Edition, 1957.
4. Clerk, R. C., "An Ultra-Wide-Range High-Efficiency Hydraulic Pump/ Motor Power Transmission," (1977 Flywheel Technology Symposium Proceedings, October, 1977, cosponsored by DOE, NTIS \# CONF-77 1053, UC-94b,96.)
5. Frank, A. A., et al, "Flywheel-CVT Systems for Automotive and Transit Propulsion Systems." (1977 Flywheel Technology Symposium Proceedings, October, 1977, cosponsored by DOE, NTIS \# CONF-77 1053, UCO94b,96).
6. "State of the Art Assessment of Electric and Hybrid Vehicles," Differentials, Transmissions, pp 157-164, January, 1978, DOE Ref. HCP/ M1011-01.
7. Loewenthal, S. H., Anderson, and Nasvytis, A. L., "Performance of a Nasvytis Multiroller Traction Drive," NASA Technical Paper 1378, AVRADCOM Technical Report 78-37.
8. "Van Doorne Stee1 Belt Transmission," Machine Design, June, 1976.
9. Hughson, D., et al, "Continuously Variable Vehicle Transmission," Dec., 1977, Final Technical Report, COO-2674-16, U. S. DOE Contract No. E4-76-C. 02-2674.
10. Hewko, L. 0., Rounds, F. G., Jr., and Scot, R. L., "Tractive Capacity and Efficiency of Rolling Contacts." Rolling Contact Phenomena, J. B. Bidwell, ed., Elsevier Publ. Co., 1962, pp. 157-185.
11. Raynard, Arthur E., "Advanced Flywheel Energy Storage Unit for a HighPower Energy Source For Vehicular Use," Proceedings of the 1978 Mechanical and Magnetic Energy Storage Contractors Review Meeting, DOE No. COMF-78 1046.
12. Rabenhorst, David W., "Composite Flywheel Development Program: Final Report," APL/JHV SDO-4616A, April, NSF Grant No. AER 75-20607.
13. Younger, F. C., et al, "Conceptual Design of a Flywheel Energy Storage System," Sandia Report No. Sand 79-7088.
14. Togwood, D. A., "An Advanced Vehicular Flywheel System for the ERDA Electric Powered Passenger Vehicle," 1977 Flywheel Technology Symposium Proceedings.
15. Lightband, D. A. and Bicknell, D.A., "The Direct Current Traction Motor," London Business Books, Limited, 1970.
16. "Electrical Steel Saves Fnergy," Machine Design, September, 1977.
17. Satchwel1, D. L., "High Energy Density Flywheel," Proceeding of the 1978 Mechanical and Magnetic Energy Storage Contractors Review Meeting.
18. Lawrence Livermore Laboratory, "The Pattery Flywheel Hybrid Electric Power System for Near-Term Applications," Volume 1, System Description, April 15, 1976.
19. Behrin, E., et al, "Energy Storage Systems for Automotive Propulsion," 1978 Study, UCRL-52553, Volumes 1 and 2, December, 1978.
20. Agarwal, P. D., "The GM High-Performance Induction Motor Drive System," IEEE Transactions on Power Apparatus and Systems, February, 1969.
21. Gosden, D., "An Experimental Electric Car Using an Induction Motor Drive," Electrical Engineering Transactions, the Institution of Engineers, Australia, 1976.
22. Pollack, J.J., "Advanced Pulse Width Modulated Inverter Techniques," IEEE Transactions on Industry Application, April, 1972.
23. Private Communications with Battery Manufacturers Representatives:

Mr. Hopewell, Eagle Picher	Mr. D. Sangria, Trojan
Mr. Hartmann, Gould	Mr. J. Heiser, H.P.S.
Mr. C. Steeber, Varta	Mr. T. Galisano, Chloride
Dr. Seiger, Yardney	

24. Salomon, K., "Peripheric Equipment for Reducing Maintenance of Electric Vehicle Lead-Acid Batteries," Fourth International Symposium on Automotive Propulsion Systems, Volume IV, Session 8 to 10.
25. Daiziel, Charles F., "Electric Shock Hazard," IF.EE Spectrum, February, 1972.
26. Day, J. O., et al, "A Projection of the Effects of Electric Vehicles on Highway Accident Statistics," SAE Paper 780158, SAE Congress and Exposition, Detroit, Michigan.
27. Kleronomous, C. C., and Chitwell, E. C., "Determining Dynamic Impedance in a Grounding Conductor," 1979, IEE Industrial and Commercial Power Systems Conference Record.
28. Brusaglino, G., "Fiat Electric City Car Protype," Fourth International Symposium on Automotive Propulsion Systems, Volume IV, Section 8 and 10.
29. Vinal, W. G., "Storage Ratteries," p 337; John Wiley \& Sons, Inc., Fourth Edition, 1955.
30. Davis, D. D., et al, "Determination of the Effectiveness and Feasibility of Regenerative Breaking Systems on Electric and Other Automobiles," Volume 2, Design Study and Analysis, 0stober, 1977, p 86, UCRL-52306.
31. Kasama, Rygji, et al, "The Efficiency Improvement of Electric Vehicles by Regenerative Braking," SAE Paper 780291, 1978, SAE Congress and Exposition, Detroit, Michigan.
32. Slater, N., "Power Semiconductors," EET Special Report, pp 39-51, August, 1979.
33. "Electric and Hybrid Vehicle Performance and Design Goal Determination Study, Final Report," General Research Corporation, August, 1977.
34. Frank, H. A. and Phillips, A. M., "Evaluation of Battery Models for Prediction of Electric Vehicle Range," JPL Publication 77-29, August, 1977.

APPENDICES

APPENDIX A - ADVANCED ELECTRIC VEHICLE PROPULSION SYSTEM, DESIGN CONCEPT: A6 APPENDIX B - ADVANCED ELECTRIC VEHICLE PROPULSION SYSTEM, DESIGN CONCEPT: D2 APPENDIX C - MODELS FOR PROPULSION SYSTEM COMPONENTS APPENDIX D - GUIDELINES AND BACK-UP INFORMATION FOR COST CALCULATIONS APPENDIX E - COMPUTER FLOW CHART AND PROGRAM

APPENDIX A

ADVANCED ELECTRIC VEHICLE PROPULSION SYSTEM

DESIGN CONCEPT: A6

GENERAL DESCRIPTION:
Flywheel buffered electric propulsion system using an ac induction motor as a traction motor and a flywheel coupled to an electrical generator to provide a power boost to augment the battery power for acceleration and regenerative braking.

General Propulsion System Specification
 Design Concept A6

Curb weight	1400 kg (3218 lbs)
Battery weight	556 kg (1226 lbs)
Propulsion system weight less battery	178 kg (392 lbs)
Traction Motor	
3 -phase ac induction	
Rated power	26 kW
Base speed	7200 rpm
Efficiency	91\%
Power factor	. 84
Weight Rated Voltage	$41 \mathrm{~kg}(90 \mathrm{lbs})$
Fiber Composite Flywheel	
Total stored energy	2.44 MJ(678 Wh)
Maximum speed	46300 rpm (
Total weight	16 kg (35.3 lbs)
Flywheel Motor/Generator	
Brushless DC	
Peak power	45. kW
Base speed Maximum speed	46300 rpm
Efficiency	87\%
Weight	20 kg (43.3 1bs)
Transaxle 3-speed	
Weight	49 kg (109 1bs)
Controllers - variable voltage and frequency	
Rated power	63.5 kVA
Weight	52 kg (114 1bs)
Battery/Lead-Acid	
Specific energy	$40 \mathrm{~Wh} / \mathrm{kg}$ ($18 \mathrm{~Wh} / 1 \mathrm{~b}$)
Specific power	$100 \mathrm{~W} / \mathrm{kg}$ ($45 \mathrm{~W} / 1 \mathrm{~b}$)
Efficiency	60\%
Propulsion System Performance	
Range for steady 45 mph cruise	225 km (140 miles)
Range for SAE J227a Schedule D	161 km (100 miles)
Acceleration - 10 to 55 mph	.15 sec

Curb weight

Battery weight
Propulsion system weight less battery

26 kW
Base speed
7200 rpm
Efficiency
84
Weight
Rated Voltage
75 kg (90 lbs)
Fiber Composite Flywheel
Total stored energy
$2.44 \mathrm{MJ}(678 \mathrm{~Wh})$
Maximum speed $16 \mathrm{~kg}(35.3 \mathrm{lbs})$

Flywheel Motor/Generator
Brushless DC
Peak power
Base speed
Maximum speed
23158 rpm
Efficiency
Weight
87\%
20 kg (43.3 1bs)
Transaxie 3-speed
Weight
63.5 kVA

青ed power 52 kg (114 1bs)

Battery/Lead-Acid

Propulsion System Performance
Range for steady 45 mph cruise $\quad 225 \mathrm{~km}$ (140 miles)
Range for SAE J227a Schedule D
.15 sec

```
TYPE: 4-pole, 3-phase induction motor cooled by thermostaticallycontrolled blower*, squirrel cage, \(f=300 \mathrm{~Hz} @ 9000 \mathrm{rpm}\)
```


Rating

Power

$$
\text { Continuous } 26000 \text { watts }
$$

Peak (30 seconds) 50000 watts
Torque
Continuous
Peak
Base speed
Maximum speed
41.2 Nm ($30.42 \mathrm{pb}-\mathrm{ft}$)

Line voltage
Line current
Continuous
96.2 Nm ($70.99 \mathrm{lb}-\mathrm{ft}$)

7200

Peak (5 sec)
9000

Peak (30 sec) $)$
74.85 ac

263 A

Power factor (nominal) 84%
Efficiency (nominal)
91\%
Slip
2\%
Number of rotor slots 28
Number of stator slots 36
Dimensions mm
mm in
Housing, O.D. 25410
Housing, I.D. 220
8.68

Stator laminations, I.D. $159 \quad 6.25$
Stator slot depth 23
Stator slot width 6
Stator core stack length 89

- $\quad 25$

Air gap diameter 158
Shaft diameter 47
Shaft length 292
Rotor slot width
3
Rotor slot depth
6
Bearing O.D. 89
3.5
6.25
1.88
11.5
.125
. 25
3.5
*Weight, power and cost of blower are included in motor, controller weights, losses and cost.

TRACTION MOTOR SPECIFICATION - Con't

Weights kg
1 bs
Stator iron 12.9 28.5
Stator copper 7.9 17.5
Rotor iron 8.6 19.Rotor copper1.63.5
Shaft
2.3
Bearings
Aluminum housing
5.
4
Aluminum end bells
.
3.1
1.
$3.4 \quad 7.5$
Miscellaneous hardware
$-\frac{.4}{40.6}$
Total Unit Weight
1.6
5.
Rotor copper
2.3
.4
3.1
7
Miscellaneous hardware
Total Unit Weight
$-\frac{.4}{40.6}$
1
90 .
Winding description
Stator: Two layer, short pitch winding at $7 / 9$, two coil sides/slot
Rotor : Copper squirrel cage
Losses at rated power
Ohmic 1717 watts
Hysteresis
Eddy current
Bearing friction
Windage
128 watts
257 watts
231 watts
231 watts
Total
2564 watts

BATTERY TO MOTOR CONTROLLER
 DESIGN CONCEPT A6

TYPE: Variable voltage, variable frequency, 3-phase pulse-width modulated inverter

Ratings

IVA rating, 30 seconds
kVA rating, continuous
Voltage
Input
Output
Output current, 50 seconds
Output current, continuous
Output frequency
Pulse width modulation frequency
Power Loss
(d 60 kVA
2300 W

Efficiency
© 60 kVA
96%

Cooling Method
*Forced air cooling

Weight

Control Method

Positive slip requirement specified by driver via accelerator pedal position.

Negative slip requirement specified by driver via brake pedal position.
Voltage controlled as linear function of frequency via control of on/uff ratio of pulse width modulator.
*Power of blower (100 watts max) is included in motor and controller losses.

FLYWHEEL

DESIGN CONCEPT A6

TYPE: Bi-annulate rim fiber-composite
Maximum speed 46316 rpm
Maximum stored energy2.44 MJ (679 Wh)
Available energy for a $3: 1$ speed range 2.17 MJ (603 Wh)
Specific energy
64.3 Wh/kg (29.18 Wh/1b)
Flywheel dimensionsInner ring, S-2 glass/epoxy
I.D. 2539.99
O.D. 303 11.93
Outer ring, Kevlar 49/epoxy
I.D. 303 11.93
0.D. 362 14.25
Height 99 3.88
Hub - aluminum with kevlar reinforcement
Kev1ar 0.D. 140
I.D. 127 1275.754.79
Aluminum hub I.D. 111 4.39
Weights$\mathrm{kg} \quad \mathrm{bs}$
Rings 8.4 18.52
Spokes471.03
Hub1.603.53
Balancing weightsTotal$\frac{.09}{10.56}$$\begin{array}{r}.19 \\ \hline 23.27\end{array}$
Housing 5.44 12.00
Total 16.0035.27
Vacuum
Bearings Ball bearings
Seals - hermetically sealed

FLYWHEEL MOTOR-GENERATOR

DESIGN CONCEPT A6

TYPE: Brushless, dc, homopolar inductor design. Number of poles $=4$

Rating

 Power Continuous 23 kW Peak 45 kW Torque
 Continuous
 8.08 Nm (7.00 1b-ft)
 Peak
 Base Speed
 Maximum Speed
 18.50 NM (\(13.69 \mathrm{lb-ft}\))
 23158 rpm
 Efficiency
 46316 rpm
 fficiency 87\%
 Voltage
 Current
 Continuous 276
 96 Vdc
 Peak 560
 Number of Phases of Armature Winding 3
Frequency1544
Dimensions, mm in
Rotor, O.D.
Rotor, flux return path diameter
Armature Stack Length
Armature Slot Depth
Armature Slot Width
Armature, 0.D.
Field Coil O.D.
Field Coil I.D.
Overall Length
$94.9 \quad 3.74$
$57.1 \quad 2.25$
$65 . \quad 2.56$
20.3
. 8
5.1 . 2
$157.2 \quad 6.19$
$94.7 \quad 3.73$
$57.1 \quad 2.25$
$139.9 \quad 5.51$
Weights,
Rotor
Armature Iron
$\mathrm{kg} \quad \mathrm{lbs}$
$2.9 \quad 6.3$
Armature Copper
$4.8 \quad 10.6$
Field Pole Iron
Field Coil Copper
Bearings
Miscellaneous
$3.8 \quad 8.5$
$5.5 \quad 12.2$
2. 4.4
.3 . 6
$.3 \quad \underline{-}$
Total Unit Weight
19.6
43.2

Flywheel Generator Page Two
Winding description
Armature - lap winding and equalizing connections
Field - Concentric wound
Losses at 23000 watt output 2990 watts
Ohmic 2489 watts
Hysteresis 167 watts Eddy current 167 watts Bearing friction 167 watts

Power needed to circulate oil is included in the Ohmic losses.

TYPE: Variable voltage, 3-phase electronic commutation with chopper field circuit and armature control

Ratings

kVA rating, 30 seconds 48.5 kVA
Input voltage, maximum 96 Vdc
Output voltage 75 Vac
Output current, 30 seconds 621 A
Output frequency 1544 Hz
Power Loss
At full load (48.5 kW) 1986 wattsEfficiency at (48.5 kW)96%
Cooling
Air cooled - forced air cooling provided by thermostatically controlled blower.
Weight $22.6 \mathrm{~kg}(50 \mathrm{lbs})$
Control Method
Shaft position sensor for phase and frequency control.Field Current control of counter emf.
Power of blower (100 watt max.) is included in motor and controller losses.

TRANSAXLE

DESIGN CONCEPT A6

TYPE: 3 -speed with electronically controlled gear changing mechanism

Fhail drive gear

Ratio

Bearing type Maximum torque input Maximum torque output Weight

Axle
Axle weight

Transmission
Gear ratios
Bearing type
Maximum torque input
Maximum Torque output Maximum speed input Weight

Gear shift mechanism
Electronically controlled Weight

Transaxle Drive Line Efficiency
@ 6614 W input
92.77 \%
© 22520 W input
@ 57112 W input
95.35 \%
96.74 \%

Weight of Complete Transaxle

BATTERIES

TYPE: Lead-acid (nickel-zinc)
Battery characteristics
Specific energy Specific power Cycle life (80% discharge) Cost
Efficiency
$40(80) \mathrm{Wh} / \mathrm{kg}$
$100(150) \mathrm{W} / \mathrm{kg}$ 800 (500)
50 (75) \$/kWh 60 (70) \%
Total installed battery weight (lead-acid) 556 kg (1226 1bs)

PRECEDING $2: / 9$: IN AK NOT FILMED

I FOLDOUT FRAME

2 majuit frame

$2_{\text {foldout frame }}$

PREdEDING PLGE ELANK NOT FILMED

/ Foldout frame
SLOT DETAILS
+
+

preceding page blank not filmed

EAR RATIOS; $15 T: 3.8571$ END: 1.7200 3RD:10000
DIFFEFENTIAL: 7.E500
\angle EEARINSS OIL LJBRICATE 2
AXIMUM MOTOR SPEEC=900ORFM
M. MOTOR SPEC'S:
$26 \mathrm{KW}, 7200 \mathrm{RPM}, 4 / \mathrm{Nm}$.

AUTIMATIC SHIFT OONTROL UNIT

8

APPENDIX B

ADVANCED ELECTRIC VEHICLE PROPULSION SYSTEM

DESIGN CONCEPT: D2
GENERAL DESCRIPTION:
Propulsion system using an advanced design dc motor with electronic commutation which functions as chopper for voltage cont: 1 and voltage boost for regenerative braking. Extra power for accele tion and braking is provided by a flywheel using a continuously variable transmission.

DESIGN CONCEPT D2
Curb weight1474 kg (3250 lbs)Battery weightPropulsion system weight without battery544 kg (1199 lbs)205 kg (452 lbs)
Traction MotorElectronically commutated brushless dcRated power26 kW
Base speed 5400 rpm
Maximum speed7800 rpmEfficiencyVoltageWeight
90.4\%96 Vdc$43 \mathrm{~kg}(95 \mathrm{lbs})$
Fiber-Composite Flywheel
Total stored energyMaximum speedTotal weight
$2.44 \mathrm{MJ}(678 \mathrm{~Wh})$46300 rpm$16 \mathrm{~kg}(35.3 \mathrm{lbs})$
CVT
Planetary cone type
Maximum power 34 kW
Maximum/minimum speed inputFull load efficiency
Weight
46300/15400 rpm94\%71 kg (157 1bs)
Magnetic CouplingMaximum power36 kW
Base speed 23200 rpm
Weight$9 \mathrm{~kg}(20 \mathrm{lbs})$
Transaxle - 3-SpeedWeight50 kg (109 1bs)
Controller
9-phase chopper
Rated power 29 kW
Weight 16 kg (34.8 lbs)
Battery - Lead-Acid
Specific energy $40 \mathrm{~Wh} / \mathrm{kg}$ ($18 \mathrm{~Wh} / \mathrm{lb}$)
Specific power$100 \mathrm{~W} / \mathrm{kg}$ ($45 \mathrm{~W} / 1 \mathrm{~b}$)Efficiency60\%
Propulsion System Performance
Range for steady 45 mph cruiseRange for SAE J227a Schedule D$223.7 \mathrm{~km}(139 \mathrm{mi})$
$160.9 \mathrm{~km}(100 \mathrm{mi})$
15 sec
Acceleration 0 to 55 mph

DESIGN CONCEPT D2

TYPE: Electronically commutated brushless dc, four pole design with field excitation provided through slip rings.

Rating

Power continuous
Base speed Maximum speed Efficiency Voltage Current

26,000 Watts 5,400 rpm
7,800 rpm
90.4\%

96 Vdc
300 Adc
Number of phases of armature
9

Dimensions mm in
$\begin{array}{lll}\text { Armature stack length } & 85.7 & 3.375\end{array}$
slot depth 22.9
slot width
6.4 . 25

Rotor diameter $\quad 138.7 \quad 5.46$
$\begin{array}{lll}\text { Rotor length } & 85.7 & 3.375\end{array}$
$\begin{array}{ll}\text { Air gap diameter } \quad 138.9 & 5.469\end{array}$
Housing I.D.
$220.7 \quad 8.69$
Housing 0.D.
246.1
292.1

Housing length
Bearing 0.D.
Drive shaft O.D,

Weights
$\mathrm{kg} \quad \mathrm{lbs}$
Armature iron
Armature copper
Field copper
Rotor iron
Shaft
Housing
End bells
Miscellaneous
Total unit weight
$10.66 \quad 23.5$
10.4323.
4.9911.
$8.39 \quad 18.5$
$2.49 \quad 5.5$
2.726.
$2.49 \quad 5.5$
$1.04 \quad 2.3$
$43.21 \quad 95.3$
Traction Motor
Page Two
Resistance
Armature winding $.1098 \Omega$
Field winding 204.1323Ω
Winding description
Armature Lap winding - 36 Slots
Field Wound rotor, supplied by slip rings
Losses at continuous power (26,000 W)
Total 2761
Ohmic 1849
Hysteresis 138
Eddy current 221
Bearing friction 359
Windage 193
Cooling
Air cooling provided by thermostatically controlled blower Cost, weight and power of blower is included in motor/controller cost, weight and losses.

CONTROLLER FOR ELECTRONICALLY COMMUTATED DC MOTOR
 DESIGN CONCEPT D2

TYPE: Variable voltage, 9-phase electronic commutation with chopper field and armature control.

Ratings

kVA rating, continuous
29 kW
Input voltage 96 V Output voltage Output current, maximum continuous 96 V 350 Adc
Power Loss
At full oad 1180 W
Efficiency at full load 96.1\%
Cooling
*Forced air cooling
Field Control
Maximum current 1.34 Adc
Maximum voltage96. VdcWeight$15.79 \mathrm{~kg}(34.8 \mathrm{lbs})$
Control Method
Shaft position sensor for commutation Armature current chopper below base speed Field current chopper above base speed
*Cost, weight and power of blower is included in motor/controller cost, weight and losses.

FLYWHEEL

DESIGN CONCEPT D2

TYPE: Bi-annulate rim fiber-composite

Maximum speed
Maximum stored energy
Available energy for a $3: 1$ speed range
Specific energy
Flywheel dimensions
Inner ring, S-2 glass/epoxy I.D. 253.7
9.99 0.D. $303 . \quad 11.93$

Outer ring, Kevlar 49/epoxy
I.D.
O.D.
303.
362.
11.93
98.6

Height
Hub - aluminum with kevlar reinforcement
Kevlar O.D.
I.D.

Aluminum hub I.D.
Weights
Rings
Spokes
Hub
Balancing weights
Tota 1
Housing
Total
Vacuum

Seals - hermetically sealed

CONTINUOUSLY VARIABLE TRANSMISSION (CVT)
 DESIGN CONCEPT D2

TYPE: Planetary cone type with magnetic coupling for peak torque limiting and declutching capability.

Rating

Maximum power	$34,000 \mathrm{~W}$
Maximum/minimum speed input	$46,316-15,439 \mathrm{rpm}$
Maximum/minimum speed output	$7,800-1,158 \mathrm{rpm}$
Full 1 oad efficiency © (33,302 W)	94%
Ratio	$12: 1$

Torque

(0 to 55 mph in 15 seconds)
Maximum input @ $21,007 \mathrm{rpm} \quad 16.12 \mathrm{Nm}$
Maximum output @ 4,333 rpm
73.39 Nm

Loss coefficients
Viscous drag
2%
Spin torque
4%
Creep
3%

Bearing types Ball bearing

Weight including magnetic coupling $\quad 80.5 \mathrm{~kg}(177.5 \mathrm{lbs})$

TRANSAXLE
DESIGN CONCEPT D2

TYPE: 3-speed with electronically controlled gear changing mechanism
Differential
Ratio
Bearing typeMaximum torque inputMaximum torque outputWeight
Axle
Axle Weight
Transmission

Transmission
Gear ratios

Gear ratiosBearing typeSynchromesh typeMaximum torque inputMaximum torque outputMaximum speed inputWeight
Gear shift mechanism

Gear shift mechanism
Weight $2.2 \mathrm{~kg}(5 \mathrm{lbs})$
Weight of Complete Transaxle 49.4 kg (109 1bs)

$4.4 \mathrm{~kg}(109 \mathrm{lbs})$ Bearing type Synchromesh type Maximum torque output Weight
$1,1.74,3.86$
Ball bearing
119 Nm ($88 \mathrm{lb}-\mathrm{ft}$)
460 Nm (340 1b-ft) 9000 rpm $20.4 \mathrm{~kg}(45 \mathrm{lbs})$

Weight

BATTERIES

DESIGN CONCEPT D2

TYPE: Lead-acid (nickel-zinc)
Battery characteristics
Specific energy Specific power
40 (80) Wh/kg Cycle life (80% discharge) Cost
Efficiency 100 (150) W/kg

Cost

Efficiency

 50 (75) \$/kWh

 60 (70)
 Total installed battery weight (lead-acid)
544 kg (1199 1bs)

DUUNOUT FRAME
preceding racle plank not filmed

INPUT SHAFT
(EROM MOTOR)

| HOLDOUT ERAME

(

PRECEDING PAGL BLANK NOT EILMED

THFUST EAM PLATE

HYDRAULIC VANE ROTOR-7

CHAIN DRIVE

ALUMINUM HOUSING
/ moldout frame

APPENDIX C
 MODELS FOR PROPUI.SION SYSTEM COMPONENTS

A brief description of the models for the battery, transaxle, motor and controller follows. A typical page of computer printout showing that portion of the computation of the power and losses at each time step is given in Table C1.
Table C1-A

advanced ev propulsion system concept ag single motor dor．axle h／trans．wf aci the prcpulsion system current is from the battery and a flywheel buffer．三 $\begin{aligned} & \text { VEHILLE TEST WEIGHT }=357.80 \text { PCUNC } \\ & \text { EATIERY HEIGHTT }=1139.00 \\ & \text { AXLE RAT IO POUNOS }\end{aligned}$ $\begin{aligned} & \text { TRANS．HIGH GEAR }= 1.0700 \\ & \text { RATIO SEC．GEAR }=1.7400\end{aligned}$
MOTOR RATEO POWER $=-\begin{aligned} & 3.8 .860 \\ & 360000\end{aligned}$
CANOICATE NO． 3 POLYPHASE INOUCTION MOTOR－ 3 PH．
THIS SCERCUTINE CATEO MARE． $2 \theta^{2}$ 1979．FCY
ゅ

8

$-\begin{aligned} & \text { OE } \\ & 207.418\end{aligned}$
∞

23
57.605 x_{1}
$.260201=-61$
61.1144
21 ${ }_{21}^{21} \quad 94.872 \quad 217.496$ circuit censt
 $9856 \cdot 45$
01
MCTOR CHARAGIERISTICSS
CANO IDATE NO． 3 THESE PHASE INOUCTIC
TOR CHARACIERISTICS．
CALD IDARE NO． 3 THEE PHASE INOUCTICN MCTOR

定㫫要

恄

 y 3 MOC
yO 10 m

 －い

$$
\begin{aligned}
& \text { Table Cl-D }
\end{aligned}
$$

Battery Model

For a vehicle in normal operation the power level fluctuates from the high values for acceleration to much lower values for steady driving. With the fluctuating power of stop and go driving the range of an electric vehicle will be substantially less than for constant speed driving on a level road. Part of this difference is due to the fact that the available energy from the battery when operated at high power is less than that available at low power. (Ref. 19)

The available energy from a battery is dependent upon the manner and rate of discharge. A steady discharge at low power extracts more energy than a steady discharge at high power. Figure Cl shows the variation in available energy from an ISOA lead-acid battery for various steady power levels, with energy and power normalized to the values per pound of battery. For a variable rate of discharge the total available energy may be estimated by a variety of ways with differing degrees of accuracy. (Ref. 33, 34)

One scheme used an accumulation of increments of fractional discharge in which a period of high power provides a disproportionately greater percent of discharge than a period of low power. The extent of the disproportionality is calculated from the curve in Figure Cl. Some other schemes use models that attempt to relate to the physical characteristics of the battery using a few well-chosen parameters. Still other schemes involve using the average power over the driving cycle to compute the available energy. A root mean square (RMS) average and a simple arithmetic average have been used.

In an earlier study on the benefits of regenerative braking, (Ref. 30) it was found that the difference in available energy using the different methods of calculation was small and that the available data on tattery performance with fluctuating power levels did not provide a strong support for any one calculational method. The method using RMS averaging appears to give the lowest range and, therefore, was considered to give an appropriately conservative value of power to use in range calculations.

The battery energy vs. power curve of Figure Cl was represented by a mathmatical equation which was incorporated into the subroutine used to calculate specific energy as a function of specific power. Two such equations were used; one for ISOA lead-acid and one for $\mathrm{Ni} / \mathrm{Zn}$.

Figure C1. Ragone Chart for ISOA Lead-Acid Battery

For the ISOA lead-acid the relationship is as follows:

$$
* \bar{E}=23.543-.81 \times \overline{\mathrm{P}}+.784 \times 10_{*}^{-2} \overline{\mathrm{P}} 2
$$

Where

$$
\begin{aligned}
& \bar{E}=\text { specific energy } W h / 1 \mathrm{~b} \\
& \bar{P}=\text { specific power } \mathrm{W} / 1 \mathrm{~b}
\end{aligned}
$$

The relationship for $\mathrm{Ni} / \mathrm{Zn}$ is as follows: (for positive values of $\overline{\mathrm{P}}$)

$$
* * \bar{E}=20.4+\sqrt{\frac{64.3-\bar{P}}{.1544}}
$$

Unless \bar{P} is greater than 64.3, in which case \bar{E} is set to 21.8 .

Trans/axle Model

The subroutines for the propulsion system include the calculation of energy losses in the transmission and axle gearing and the calculation of the speed and torque multiplication associated with the various gear ratios. Loss coefficients and gear ratios are input to the program from data cards. The tire rolling radius is also an input value. From the vehicle velocity and tire radius the axle speed is calculated.

$$
R P M_{A}=V \times \frac{60 \times 12}{2 \pi R}
$$

The pinion gear speed is then calculater from the axle speed by multiplying by the axle ratio.

$$
\text { RPM }_{\text {Pinion }}=\text { Ratio } \times R P M_{A x l e}
$$

And the motor speed is calculated from the final drive pinion by multiplying by the appropriate transmission ratio, which is selected to satisfy the shift point criteria which in turn is based on the vehicle speed and power requirement.

$$
R P M=R_{\text {PPinion }} \times \text { Transmission Ratio }
$$

[^5]The final drive pinion power is found by adding to the drive axle power an increment of power due to an increment of pinion torque found from the following:

$$
\Delta T=a_{0}+a_{1} R P M_{\text {Pinion }}+a_{2} T_{\text {Pinion }}
$$

Where a_{0}, a_{1} and a_{2} are loss coefficients from data cards.
The increment of power ΔP is found from:

$$
\Delta P=\Delta T \times R P M_{\text {Pinion }} \times 2 \pi
$$

The losses in the transmission are added to the final drive pinion power to obtain the motor power. The increment of frictional torque for the transmission is found from the following:

$$
T_{T}=\frac{1}{2}\left(1+\frac{R P M}{P \cdot P M_{P}}\right) \times\left(B_{0}+B_{1} \times R P M+B_{2} \times \text { Torque }\right)
$$

Where B_{0}, B_{1} and B_{2} are read from input cards.
Torque is the motor torque for a frictionless transmission
RPM is the motor speed
RPM Pinion is the final drive pinion speed.
The increment of power loss associated with the increment of torque is added to cbtain the motor power.

Motor Models

Two motor models were used to represent the two types of motors. The dc motor is modeled in terms of the known torque/current and speed/voltage relationships for a separately excited dc motor. The three-phase induction motor is modeled in terms of its equivalent circuit. The calculated losses for each motor type included the following:

Windage
Bearing Friction
Eddy current
Hysteresis
Copper I^{2} R

Model for DC Motor

For the dc motor the torque and generated voltage are dependent upon the air-gap flux in addition to the armature current and rotor speed. The air-gap flux at the design point is assumed to be high enough to just start to saturate the iron and that flux would be a function of field current as shown in Figure C2. The curve can be represented by the following equation:

$$
\text { *Flux }=5.7 \tanh (.18226 * x)+.1033 * x+.5
$$

Where x is a non-dimensional ampere turns of the field coils and Flux is the non-dimensionai air-gap flux. At the design point $x=6$ and Flux $=5.67$. The flux can be raised or lowered by changing the field current; but since saturation effects limit the amount of flux that can be obtained, the field current is limited to values below some reasonable overload current.

The required flux and armature current of the motor is found from the required generated counter emf and motor torque by iteration. First the flux is found from the relationship that the counter emf is proportional to the product of the speed and flux and that the required counter emf is the terminal voltage minus the IR drop of the armature. Thus

$$
\text { Flux }=K_{1}(E-I R) / r p m
$$

Where k_{1} is a proportionality constant dependent upon the motor design
$E=$ terminal voltage
I = armature current (trial value used)
$R=$ armature resistance
RPM = rotor speed
Then the armature current is found using the relationship that rotor torque is proportional to product of flux and current. Thus

$$
I=K_{2} * \text { Torque } / \text { Flux }
$$

The range through which the flux may change is limited by the magnetic properties of the iron and the limiting current of the field coils. At low speeds where excessive flux would be required to produce the counter emf, the method of avoiding excessive field current is to reduce the effective motor terminal voltage by using the armature current controller.

The eddy current losses are calculated from the air-gap flux and motor speed using the following relationship: (Ref. 3)

$$
\Delta P_{e c}=K_{3}(R P M * F l u x)^{2}
$$

[^6]

Figure C2. Air-Gap Flux vs. Field Current

The hysteresis losses are alsocalculated from air-gap flux and speed. The relationship is the following (Ref. 3):

$$
\Delta P_{\text {Hyst }}=K_{4} \operatorname{RPM}(\text { Flux })^{1.6}
$$

The bearing losses are taken as increasing linearly with speed and the windage losses as quadratic with speed.

The copper $I^{2} R$ losses are simply the sum of the field $I^{2} R$ loss and the armature $I^{2} R$. Field currents and armature currents are both calculated to satisfy the flux and torque relationships.

Three-Phase Induction Motor

The model for the induction motor is based on the equivalent circuit shown in Figure C3 for a single leg. One third of the power is developed in each leg of a three-phase motor. The motor is assumed to be delta connected so that full-1ine voltage is applied to each leg. The circuit constants $R_{1}, R_{2}, R_{3}, X_{1}, X_{2}$ and X_{3} are calculated in the subroutine from the input charaicteristics of the motor. The input characteristics are the efficiency, power factor and percent slip at rated power and speed and distribution of losses. At speeds less than the base speed the terminal voltage is reduced to be a linear function of input frequency and at speeds above base speed this voltage is set at a constant value.

The currents in the various elements in the equivalent circuit are calculated by first assuming a value of E_{7} from which preliminary values of I_{2}, I_{3} and I_{4} are calculated as follows:

$$
\begin{aligned}
& I_{2}=E_{2} / Z_{2} \\
& I_{3}=E_{2} / Z_{3} \\
& I_{4}=E_{2} / Z_{4}
\end{aligned}
$$

Where

$$
\begin{aligned}
& Z_{2}=\frac{R_{2}}{s}+j x_{2} \\
& z_{3}=j x_{3} \\
& Z_{4}=R_{3}
\end{aligned}
$$

Summing these preliminary values of current gives the I_{1} vector

$$
\overrightarrow{\mathrm{I}}_{1}=\overrightarrow{\mathrm{I}}_{2}+\overrightarrow{\mathrm{I}}_{3}+\overrightarrow{\mathrm{I}}_{4}
$$

Using this value of I_{1} and the assumed value of E_{2} a new value of the E_{1} vector is calculated by vector addition.

V/phase
A/phase
A/phase
A/phase
$\Omega /$ phase
Figure C3. Equivalent Circuit of Induction Motor

$$
E_{1 N}=E_{2}+I_{1} Z_{1}
$$

Where

$$
Z_{1}=R_{1}+j X_{1}
$$

This value of $E_{1 N}$ will differ slightly from E_{1} due to the error in assumed value of E_{2}. The value of E_{2} and the current vectors are readjusted by the ratio of the correct value of ${ }^{2} E_{1}$ to the calculated value $E_{1 N}$. A reiteration confirms that the correct value of E_{2} and the current ${ }^{\text {Nectors }}$ are obtained.

The windage, bearing friction, hysteresis and eddy current losses are calculated for the induction motor in the same way as they are for the dc motor. The air-gap flux is calculated as that required to produce the necessary counter emf at the operating speed using the following relationship

$$
\text { Flux }=K_{1} E_{2} / R P M_{s}
$$

Where K_{1} is a proportionality constant

```
\(E_{2}=\) counter emf
```

RPM $_{S}=$ synchronous speed
The counter emf E_{2} and the currents in each of the elements of the equivalent circuit are found by iteration by starting from a guessed at value of slip. The starting value is based on a linearization of the slip torque curve using

$$
\text { Slipx }=\text { S1ip * Tor/Torrt }
$$

Where
Slipx = trial slip
Slip = rated slip
Tor $=$ motor torque
Torrt $=$ rated motor torque
The trial slip is substituted into the equations for the circuit and the values of current vectors are solved after the reactances are adjusted for the input frequency. The power output of the motor with the trial slip is compared with the desired power and the slip is readjusted to raise or lower the power output as required.

The iteration process converges rapidly to the required slip and torque if the torque is less than the breakaway torque of the motor. The breakaway torque and slip are also calculated; and if the repaired torque exceeds this maximum torque, this factor is printed out.

Controller Model

The subroutines for the various types of motors calculate the controller losses as a function of the idealized battery current using three input parameters used as loss coefficients to characterize the controller. The power loss is in the following form:

$$
\Delta P=C_{0}+C_{1} I+C_{2} I^{2}
$$

Where C_{0}, C_{1} and C_{2} are input values
$I=$ idealized battery current.
The idealized battery current is simply the average current required to satisfy the power and losses of the motor using a lossless controller. The loss coefficients C_{0}, C_{1} and C_{2} are separately calculated from the nature of the controller and its efements.

At the rated power condition with a certain input current, there will be RMS currents through diodes, and SCRs or transistors. For a specific distribution of current there will be an identifiable distribution of losses. The losses in the diodes and SCRs are principally due to their forward voltage drop and this value influences the coefficient C_{G} in proportion to the diode current fraction. The rate of change in the voltage drop influences C_{2}. An additional loss for the diodes and SCRS is due to their reverse leakage current times their reverse voltage. The losses in transistors are due mainly to the collector-emitter satiration voltage, the base-emitter saturation voltage and to the collector-emitter leakage current.

Using catalog values of voltage and leakage currents for probable diodes and transistor types and numbers of units in series and parallel estimates of the loss coefficients were made. These result in overall efficiencies of the controller from about 93 to 96 percent with the higher efficiencies at higher loads.

The model does not take into account the different modes of operation of the controllers. When the motors are above their base speeds the effective voltage at their terminals are the maximum value. When the motors are below their base speeds the effective voltage is reduced by use of a current chopper. The switching losses of the chopper will increase as the effective voltage is decreased. A more sophisticated model would account for the variations in switching losses, perhaps by readjusting the loss coefficients as a function of the effective voltage.

In addition to the switching losses in the semiconductor switches, there will be differences in the distribution of current in the circuit elements and changes in the current waveforms as the chopping frequencies and on-off ratios change. The waveforms and distribution of current in the transactions and diodes were calculated for several load conditions for the induction motor operated above the base speed. The current (RMS) through the free-wheel diodes is approximately equal to the out-of-phase component of current and the current through the transistors is approximately equal
to the vector sum of the in-phase and out-of-phase current. These values were used for estimating the loss coefficients.

For a more sophisticated model, the current distribution and waveforms during chopper operation should be calculated, and used for estimating losses.

APPENDIX D
GUIDELINES AND BACK-UP INFORMATION FOR COST CALCULATIONS

Guidelines for Life Cycle Cost Calculations

* Costs shall be calculated only for the propulsion system plus the battery, therefore other vehicle costs, insurance, taxes, etc. are not included.
* Use 1976 dollars
* Acquisition cost is the sum of the OEM cost (manufacturing cost plus corporate level costs such as general and administrative, required return on investments of facilities and tooling, cost of sales,...) of components plus the cost of assembling the components plus the dealer markup (assume 17\%).
* Annual production is 100,000 units
* Operating cost is the sum of maintenance costs plus repair costs plus electricity cost plus battery replacement costs.
* Electricity cost is 4 cents/kWh from the wall plug.
* Vehicle lifetime is 10 years and 100,000 miles.
* A constant non-inflating dollar should be assumed. No inflation factor is included in the discount rate since it is assumed that personal disposable income tracks inflation. A 2% discount rate for personal cars shall be used as it represents only time preference (opportunity cost).
* Cost of finance is not included in this procedure since it is assumed that the discounted present value of the sequence of total payments would approximately equal the original purchase price.
* All expenses are assumed to be costed at the end of each year. Year "Zero" is reserved for those costs which must be incurred before the vehicle is operated.
* Assume chassis (propulsion system) salvage value is 2% of the purchase price, depleted battery salvage value is 10% of the purchase price, and used battery salvage is 50% of the purchase price pro-rated over the remaining life of the battery.
* In determining battery life assume the vehicle is driven 10,000 miles per year. For convenience in calculation assume the mileage is accumulated through successive SAE J227a Schedule D driving cycles from $400-10$ mile trips per year, $150-30 \mathrm{mile}$ trips, and $30-50 \mathrm{mile}$ trips, charging after each trip. The battery cycle life shall be determined based on these trip profiles, field environmental effects, and the degradation due to the actual conditions imposed on the battery by the propulsion system and vehicle.
* The calculation of life cycle. cost shall follow the format shown on Worksheets 1 and 2 using the following instructions.

1) The purchase price is entered on the appropriate line of the life cycle cost worksheet as a year "Zero" cost.
2) Operating costs: electricity, maintenance and repair, and battery replacement costs are copied from the operating cost worksheet to the same position on the life cycle cost worksheet.
3) Discount factor $-1 /(1+i)^{t}$ is computed for each year (where $t=$ year 0 to 10 and \mathbf{i} equals the discount rate).
4) For each year, the discount factor times the cost gives the present value of the cost for that year. These are sunmed to provide the discounted present value of the life cycle cost.
5) The value computed in step 4 is divided by the total miles driven to provide the life cycle cost per mile and is expressed in cents per mile.

Table DI
Operating/Life Cycle Cost Analysis of AEVA Propulsion System

```
Concept: A6 - AC Induction Motor with Flywheel Buffer
Battery Weight: 1226 lbs lead-acid
Energy used over
"D" Cycle
212 Wh/mile
Battery Characteristics: As listed in Table 4
Vehicle Life: io years
Distance driven annually: 16100 km (10000 mi)
Energy cost from wall
plug: . }04 $/kW
Salvage Value
    Chassis 2% of purchase
    Battery 10% of purchase if depleted
    50% of purchase prorated over remaining
    battery life
Battery Cost = ($/kWh x Battery Weight x Specific Energy/2204)
    \leq$1112
Energy Cost = Energy Consumed/mile x Miles x Price/kWh/Battery Efficiency
    = $141/yr
```


Table D2

Propulsion System Acquisition Cost Analysis Concept A6 with Lead-Acid Batteries

	Unit Price	Unit	Weight (1bs)	cost (\$)
Axle	2.	\$/1b	59	118
Drive Motor	2.1	\$/1b	90	189
*Controllers:				
Battery to Motor	7.38	\$/kVA	65	464
Generator to Motor	7.38	k/kVA	50	354
Flywheel	6.	\$/1b	35	210
Motor/Generator	2.5	\$/1b	43	107
Transmission	2.	\$/1b	50	100
Subtotal:			392	1542
Assembly and Test:				
Two manhours at \$30 per hour				60
Batteries			1226	1112
Total:			1631	2714
$\begin{aligned} \text { Acquisition Cost } & =\text { Total }+17 \% \text { Dealer Markup } \\ & =\$ 3175 \end{aligned}$				

*Controllers are rated at 63 and 48 kVA each.

Worksheet 1
Operating Cost Worksheet
Concept A6 with Lead-Acid Batteries

	1	2	3	4	5	6	7	8	9	10
Mile Dependent Costs										
Maintenance Electric	. 10	. 10	. 35	. 10	. 10	. 35	. 10	. 10	. 35	. 10
Mechanical	. 10	. 10	. 30	. 10	. 10	. 30	. 10	. 10	. 30	. 10
س Energy Buffer	. 10	. 10	. 10	. 10	. 10	. 10	. 10	. 10	. 10	. 10
$\sum_{\text {A TOTAL }}$. 30	. 30	. 75	. 30	. 30	. 75	. 30	. 30	. 75	. 30
				1.				1.		
					. 5					
				1.	. 5			1.		
$\begin{aligned} & \text { Electricity } \\ & \text { E TOTAL } \end{aligned}$	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41
F TOTALS A + de	1.71	1.71	2.16	2.71	2.21	2.16	1.71	2.71	2.16	1.71
G Mileage Each Year	10000									10000
H TOTAL DOLLARS ($F / 100$) $\times \mathrm{G}$	171	171	216	271	221	216	171	271	216	171
Battery Replacement						1112				
YEAR TOTALS $\$$	171	171	216	271	221	1328	171	271	216	171

$$
\text { Total Operating Cost }=\$ 3207
$$

Operating Cost Per Mile $=\underline{3.207}$ cents/mile
Table 04

10 Present Value of Life Cycle Cost (Sum of 9) $=\$ 5759$
11 Present Value of Life Cycle Per Mile Driven (10/Total Miles) $=5.76$ cents/mile

Tasie D5
 Operating/Life Cycle Cost Analysis of AEVA Propulsion System

Concept:	D2 - Brushless dc Motor with CVi Flywheel Buffer
Battery Weight:	1199 lbs lead-acid
Energy used over "D" Cycle:	$210.45 \mathrm{~Wh} / \mathrm{mi}$
Battery Characteristics:	As listed in Table 4
Vehicle Life:	10 years
Miles driven annually:	$16,100 \mathrm{~km}(10,000 \mathrm{mi})$
Energy cost from wall plug:	. 04 \$/kWh
Salvage Value	
Chassis: Battery:	2% of purchase 10\% of purchase if depleted 50% of purchase prorated over remaining battery life
$\begin{aligned} \text { Battery Cost } & =(\$ / \mathrm{kWh} \times \text { Battery Weight } \times \text { Specific Energy/2204) } \\ & =\$ 1088\end{aligned}$	
```F.nergy Cost = Energy Consumed/mile x Miles x Price/kWh/Battery Efficiency```	

## Table 06

## Propulsion System Acquisition Cost Analysis Concept D2 with Lead-Acid Batteries



Table D7
Worksheet 1 Operating Cost Worksheet

YEAR

	1	2.	3	4	5	6	7	8	9	10
Mile Dependent Costs										
Maintenance   Mechanical	. 62	. 82	. 87	. 82	. 62	1.07	. 62	. 82	. 87	. 82
Energy Buffer	. 10	. 10	. 10	. 10	. 10	. 10	. 10	. 10	. 10	. 10
A TOTAL	. 72	. 92	. 97	. 98	. 72	1.17	. 72	. 92	. 97	. 92
Repair   Electric   Differential   Hydraulic Pump   D TOTAL				. 5				. 5		
					. 6					. 6
			. 1			. 1			. 1	
			. 1	. 5	. 6	. 1	-	. 5	. 1	. 6
Electricity   E TOTAL	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
F TOTALS A $+D+E$   G MILAGE EACH YEAR   $\therefore$ TOTAL DOLLARS   $(F / 100) \times G$	2.12	2.32	2.47	2.82	2.72	2.67	2.12	2.82	2.47	2.38
	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	212	232	247	282	272	267	212	282	247	238
Battery Replacement						1088				
YEAR TOTALS	212	232	$24 \%$	282	272	1355	212	282	247	238

Total Operating cost $=\$ 3207$

Operating Cost Per Mile $=3.207$ (cents/mile)
Table D8

	YEAR										
	"0"	1	2	3	4	5	6	7	8	9	10
1 Purchase Price	3123										
2 Electricity		140	140	140	140	140	140	140	140	140	140
3 Repair and Maintenance		72	92	107	142	132	127	172	142	107	152
3 Battery Replacement							1088				
5 Chassis Salvage (Minus)											-41
6 Battery Salvage (Minus)							-109				-181
$\begin{aligned} & 7 \text { TOTAL } \\ &(1-6) \\ & \hline \end{aligned}$	3123	212	232	247	282	272	1106	212	282	247	70
8 Discount Factor	1.0	. 98	. 962	. 942	. 924	906	. 888	. 87	. 853	. 837	. 82
9 Present Value (7 $\times 8$ )	3123	208	223	2.33	261	246	982	184	241	207	57

[^7]Life Cycle Cost Norksheet

OPERATING/L.IFE CYCLE COST ANALYSIS
OF AEVA PROPULSIONS SYSTEM WITH NICKEL-ZINC BATTERIES
Concept/A6--Ac induction motor with flywheel buffer.


APPENDIX E
COMPUTER FLOW CHART AND PROGRAM


ALVA，， $70310.0104735,1$ O人A．R
$6 I \mathrm{D}=\mathrm{ACPSCR}$
＊USER日2
MNT $4, L=0$ ．
LOU， $\mathrm{C}=2 \mathrm{D}$ ）心．
Exit．
DJYp，0．
GFi．WPA．
PECGRA4 AEVN（INPIT，GUTPUT，TAPE4＝INPUT，TAPE16＝OUTPUT，TAPE5，IAPE6）

IPPMAX，PD，EPMAX，SUABFF，CUMFC，SJMFFR，VA，VN，VT
2，SUMZE，SUMFEP，SWME N，PI CA，POB，PFY，PR，HPD，FQ，EHD，OELFC ，PBAR CLMYJV／R／IX2，IX2，ITS，ZSAYSE，SUMD，VC，TOTE，XMPG
－CMALN／C／WISAS，WPAY，WTESI，WPRDP，WAX，WMOT，WTCBY，NTCGM，NB，NV，WF， INGL V，WTXM，W＇SRCS，HCURB，TE STIN，WPS，ROTI，WCBM，WCGM



 43SPIL，USP）GOLD，GFVT，UCU，GBAR，EFFCG，GRI2，GHYSTI，GEDI，GBRI，GWVDI

CRIMNN／E1 COSTIM，COSTAX，GJSTB，COSTF，CISTCB，CJSTCG，©OSTG，COSTXM
 JI4E $\sqrt{5}$ IV $\quad 1 \times 1(16), 1 \times 2(16), I \times 3(16)$ ，V1（1390），BAMP（1390） oLmFMS LRM PiLA（4） WhITr．$(16,810)$
890 FCFVIT（＊： $1 \neq 73 H$ P2J6イ4M 4COIFIED TO USE AEPS BUFFERING ROUTINE．COP Ir MADE $3 / 28170$ fry． 122 H SHIFT PGINTS REAJ IV． 1
© 10 GINTIVUE
C READ TITLE
KFAD（4，1））IX1
10 FORMAT（16A5）
NKITE（18，114）［X1
114 F（RMAT（1．11，1X，1645）
₹EAC $(4,11)$ WBAS，WPAY，WTEST，WPROP，CDA，RHOA，ROTI
NHITE（2S，205）nSAS，wPAY，WTEST，WPHOP，CDA，RHOA，ROTI READI＇，11）RADIUS，C． $\mathrm{C}, \mathrm{CI}, \mathrm{C} 2, \mathrm{VLG}, \mathrm{VSG}, \mathrm{VHG}$

READ（4，111）RATIL，WAX，TAXL，CISTAX，AO，A1，A2
WRITF（IS，？O9）RATIO，WAX，TAXL，COSTAX，AO，A1，A2
2FAD（4，11）RPR，SPEEDI，SPLEUA，OLDAD，RVT，CURDM，WBAR，EFFDM
WKITE（15，211）RPR，SPFEDI，SPEEDA，OLJAD，RVT，SUR）M，WBAR，EFFDM
RFALIG，11）$K I 2, H Y S T I, F O L, B F I, W N D I, F R E Q, C O S T D M, T J T E$
IF（TOTE．LE．D．）TOTE $=.80$
whITE（16，213）R12，HYSTI，EDI，BFI，WNOL，FREQ，COSTOM，TOTE
FFAD（4，11）PCBM，VCBMIN，VCBMOT，CBMCJR，CBMFRQ，NCBM
W2ITE（16．215）PCB4，VE34IV，VCBMDT，CBMCUR，CBMFRQ，WCBM
RE：A $(4,11)$ CFMO，CEBM1，CEFM2，CJSTCB
WFI TE（16，217）CBMO，CBML，CBM2，COSTCB
RLAD（ $4,1,1$.$) PCGM，VCGYIN，VE SMOT，CGMCUR，CGMFRQ，WCGM$
WRITE（16，？？ 9 ）PCGM，VCGUIV，VCGMOT，CGMCUR，EGMFRQ，WCGY
RTAD（4，11）CGMO，CGM1，CGM2，COSTCG
WKITE（16，221）CG40， $6 \mathrm{GM} 1, \mathrm{CSM} 2, \operatorname{COSTCG}$
READ（4，LL）BV，EBARM，PBARY，NB，COSTB9 EFFB
WFITE（16，223）BV，EBARM，PBARM，WB，COSTB，EFFB
READ（4，l1）FSE，WF，XF SM，RUND，COSTF
WRITE（1S，225）FSE，WF，XFSM，RUND，COSTF
READ 4,111 3RPR，3SPDI，3SPD2，GOLD，GRVT，GCUR，GBAR，EFFOG
NRITE（15，227）GRPR，GSPD1，3SP）2，GOLS，GRVT，GCUR，GBAR，EFFOG
READI＇ 111 ）GRI2，GHYSTI，GEDI，GBRI，GWNDI，GFREQ，CJSTG
W2 ITE（16，229）GRI2，34YSTI，GEDI，GBRI，GWNDI，GFREQ，COSTG
 WRITE (15,231) TXMR1, TXMRZ, TXMR3, TXAO, TXAL,TXAZ WTXM, TXCOST
11 FORMAT (af 1.). 3)

205 FORMATI/24H VEHICL.C CHAKACTEEISTICS $/$
 2ATION F.. IX, I2HAI! DRAG COA, $3 X, 11 H A I R$ DENSITY, $1 X, 14 H R O T$ I INER•FACT. 3/7515.5!
ZU7 FIRVAT(/ 411 TIRFRACTJRS/5X,IIHRADIUS INC-1, $12 x, 27 H R O L I N G$ RESIST. 2CUEFFITIEMIS, $3 x_{1}$ ?1USHIFT POIVTS FI/SFE $11615,3,3 \equiv 15.5,3 F 15,21$ 209 EOKYAT(/I44 AXLF FACTIRS /7X,5HRATID,9X, 5 HWEIGHT, 8X, 11HTORQUE CA $1 P, 16 X, 4 H C J S T, 2 X, 12 H L O S S$ EJFF:AO,13X, 2HA1, $13 X, 2 H A D / 1 G 15.5$, $23615.3,3513.5)$
$21!+791171 / 211$ JKIVE VOTSUK FACTORS /5X,11HKATED PONER,4X,9HMIN SPEE
 2 TE, C, IGBEMT, $1 \times, 15 H S$ PFCIFIC WEIGHT, $2 X, 10 H E F F I C I E N C Y$ 38615.51
 IYSTEREJIS,3X,L?HEOTY CJRKENT, 1X, 14HBEARINU FRICT, 4X, 7KWIVDAGE, $6 X$, 39HFREJJEVEY,11X,4+GOST, 6X.12HPOWER FACTOR/ 8G15.5 1
215 FIRYAT (/5JHCJVTRJLLER F\{JM BATTERY TJ HOTJR GHARACTERISTICS / $14 \times, 11$ HKATES POWER, $2 K, 13 H$ IGDUT VULTAGF, $1 X, 14$ HOUTPUT VOLTAGE, $2 X, 13 H R$

$\therefore 17$ FLRMAT $12 x, 14 H L G S S$ CREFF. AO, $13 X, 2 H A 1,13 X, 2 H A 2,12 \times 4 H 5 O S T 1$ 13515.15,1015.?
219 FIRMAT $1 / 50 H E I N T S T L L E B$ FROM GENERATOR TO MDTOR CHARACTERISTICS/ $14 \times$, I.IIRATES DONER, $2 \mathrm{X}, 13 \mathrm{HIYPUT}$ VILTAGE, $1 \mathrm{X}, 14 \mathrm{HOUTPUT}$ VOLTAGE, $2 X, 13 H R$


13 1.15.5,1015.2)
223 FORMAT $/ 2411$ BATTERY CHAFACTERISTICS


E2b FOWMAT (/2GH FI. YUHEEL. CHAOACTERISTICS /
12X, ! 1HSPEC.EVE\{GY, IX, 1411FIYWEEL WETSHT,4X,9-1MAX SPEED,1X,18HRUNDOW

$2 \overline{27}$ EGRMAT (/19H GFNEFATKR FMCTMRS/

 $3 x_{1} 10 H E F F 1=1 F N=Y / 8515.51$
227 FGRMAT (2GHLOSS , ISTRIBUTIUV FACTORS/3X,13HOHMIC HEATING,5X,IOHH IYSTFK:SIS, $3 x, 12 H E M D Y$ CURFENT, $2 X, 14 H B E A R I N G$ FFICT., $4 X$, THWINDAGE, 6X

221 FURUAT ( $23 H$ TSAVSMISSION:HAKACTERISTICS

 33615 . $5.315 .5,2715 \cdot 21$
WMOT = WEAR*RPR/SPEEDI*3EJO.
WTCBM $=112 B M * P C B M$
WTCGY $=$ NCGM*PCGA
WGEN $=3$ BARKGRPR/GSPDI*36JO.
$3 S E=E 3 A R M$
CALL VEHNT
6OO CLNTINJF
W2ITE (16,114) IXI WKITE (16,253) NV,NLROS, NCURB
233 = DRIMAT(/1GH VEHICLE WIIGITS 10 H TEST WT IOH GROSS WT
110 H GUR3 WT./ $11 \mathrm{X}, 3 \mathrm{~F} 16.21$
$X M P G=3$ -
$D T=1$ 。
VFLAS $=0$
$\mathrm{SJMO}=\mathrm{J}$.


FTBCJK．GT．BCTATBCपA $=$ BCUR
IEIBCUR．LT．BCMLI HCMI＝ACUK
IFIBC．JR．GT．0．1 SBI $=5 B I+3=U R * J T / 3600$ ．
IF：$B C J R \cdot L T \cdot J, I S B O=S B O+G C J R * D T / 3600$ ．
$N T=1 T T+1$
$59 \quad V T=V V$

## 60 CONTINUE

W2．ITE 16,126 ） $1 \times 1,1 \times 2,1 \times 3$
126 FURMAT（IH1，1X，1615／1X，1645／1X，16A51
WRITE（1E， $12 J$ ）PRMAX，PBIAX
WRITE（16，122）SEIN，SEDIJT
NKITEIE，1241 SBI，SEO
WRITEILS，1301 BCMA，GCMI
W2 ITE（16，132）SJM）
Iこう FCRMAT（IX，22h MAX DRIVE PJWER＝，G1．4．5，6H WATTS／
IIX．2？1 MAX BPAKING POWLE $=$ G14．5．6H WATTS
122 FDRMATI：A，22H JRIVING FNFRGY IN $=$ ，G14．5，1IH WATT－HOURSI
I1X，2？BRAKING EVERGY $=, \quad$ G14．5，11H WATT－TJURS I
$124=$ CFMAT（IX，22H DISCHARGF ENERCY $=, G 14.5,10 H$ AYP－HOURS $/$
11X，22II ZEZHARGE ENERSY＝，G14．5，10H AMP－4OURS 1
İJ FC RIAT IIX，CDH MAX CURFEVT JUT $=\quad .614 .5,5 \mathrm{HAMPS} /$
$11 \times, 22-$ MAX CURESNTI $1 \mathrm{~N}=, 614.5,5 \mathrm{H}$ AYPS $=$

IF（NFIAG．EQ．O）GO 12 710
WFITE IIE，250）万T
250 FLRYAT $1 / 119$ H P2JJULSIJV SYSIEM CURRENT AT END OF EACH TIME STEP I $2, F 8,4,44$ SEC）
NRITE $(16,118)(\mathrm{PSAlI}, 1=1, \mathrm{NTS})$
11）CGNT［YJE
WFITE（16，128）OT
2EG FORYATH／54H BATTERY CURZENT AT ENS OF EACH TIME STEP．DELTA T＝ W2 ITE（ 10,118 （ $\operatorname{BAMP(1),I=1,NTS)}$
，IRITE（16，260）
$2 \in 0$ FGRMAT／／／S＇ 4 H FLYHECL BUFFFR CURRENT AT END JF EACH TIME STEP．DE
IITA TIMF $=, 78.4,4+$ SEST
NKITE（16， 218 ）（PAAP（1），I＝1，NTS）
I18 FCRMAT（1X，10FII．4）
E SUY EVERSY AVO CALCULATE RANGE

RANGND $=.3 * 5 U M D+(w E * 13) /.(1 B V *(S B 1))$
3ANGL $=$ 2ANGE $/ .8$ RANGNO＝RANGNTI\％ 8
－Líai level battery over time of current drain．
TIME $=0$ ．
TIME？$=0$ ．
TIME3 $=0$ ．
$24 S 1=0$.
RMS2 $=0$ ．
DC $154 \mathrm{J1}=1,4$
$3 \operatorname{Ln}(J 1)=0$.
154 CINTINJE
$x=R V / W B$
$E=0$ 。
iO $150 \mathrm{I}=1$ ，NTS
TIME $3=$ TIME $3+$ DT
$\operatorname{IF}(A B S(B A 1 P(1)) . G T .5) T I M E=.T I M E+D T$
IF（BAMP（I）．GT．5．）TIME2＝TIME $2+$ DT
$2451=2451+($ SAMP（1）＊＊2）
IF（BA1P（I）．GT．0．1 2US2 $=2$ QS2 + BAMP（I）＊＊2
$P R=X * B A M P(I)$

```
 PWO = PR
 IF(PNO.LT.O.1 RNO= = 0.
 PKX = 咋
 CALL 3.12(PRX,13.,5)
 E= -.!26*F
 BLG(1) = HLN(1) + PR/E
 BLw(?) = 3La(2) + PiNJ/E
 CALL TAK(PRX,40.2E)
 3LW(T)}=3L{(2)+DR/E
 3L:54)=36N(4)+1421E
 15J E!NNT INJ:
 10 150 11=1,4
 BLN(N!)=3LN(J1)**)T/3600.
 135 CONT |NE
```



```
 ORIGINAT, PMENIS POOR
 RMS! = S\PT(RMSI/TIME)
 KYS? = SMET(R1S2/TIMEZ2)
 I. = 1
 RITF(10,126) 1X, 1X2,1\times3
 NkITE:\6,1(0,3)
 IEBEORMAT/1XYSSILRAS AVFACINGEOR PBAE, /8X,SHPBAR, 8X,4HEBAR ,
 170 SJVTIVIJE
 PEAK=RV:*K1S1/NS
 IF(L.EN.2) DBAK = -530.*BV*(SBI+SBOI/WR/TIME
 IFPL.EW.3) PBAR = =600.\hbarBVF(SBI+SBOI/WR/TLMEZ
 CALL BA!(DGAK,Iミ.,L?AK)
 C ERAK = 1.12S*ESAS
 WRITE(16,-12) PRAR.EGAK
 RANGEL=R/RGE*NBAR/13.
 EALL BAR(PSAR,40.,FBAK)
 IV2ITE(16,:12) PBER,EBAR
 RANGLV = KAIGE*EBAR/13.
 ExX=8VE(5B1 + 5n0)/5.1M0
 ,121T1.(10,164)
 134 FCRMAIGOH vITH&EGENEFATIGN,
 Wa|TE(16,160) FA`URL,FANSFN,EXX
 200 FGRYST133H RAVGE HITH_LFAD-ACID BATIERY = , 514.5,6H MILES /
 IB5H RANGE NITH VIC<EL-ZIVC BATIEKY =,G14.5, GH MILES
 2294 ENEKSY RONSJMEDPEFSMILE = ,614.5.10H W-H/MILE
 HBAK = BV*N\!2/w!%
```



```
 IF(I.,FR.? P) PAAR = 3COO.*(9V*SBI/WB/TIMC3)
 CALL HAK(JHAR,:2.,EOAZ)
 EBAR = 1.126*EBAR
 WZITE(16,112) PGAR,FBAK
 RANGEL = RAVGWJ *EBAR/13.
 CA1.L BAP(PQAR,4)., EBAR)
 W2ITE(16,II2) PFAR,EBAR
 RANGEV = RAVGW% *EGAR/13.
 NFITE(15,1KE)
 166 FJRMATI22- WITHOUT REGENERATION,
 Exx=13v*j41/5 14)
 WKITE(16,1GO) RANGEL,RANGEN, EXX
 L = L+1
 IFIL.GT.3) GOTII 172
 WRITF(15,159)
 IF(L.EQ.31 wRITE(1.6,138)
 L33 rCRMAT| 38H AVERAGING OVER TIME OF FULL CYCLE,
 30 TO 170
 172 EJVTIVUE
 16% FORMAI (//32H ARITHMETIC AVERAGING FOR PBAR /8X,4HPBAR,8X, 4.4EBAR)
 WRI TE(16,162)
 162 FURMAT///52H STE' 3Y STEP CALEULATIDN OF BATTERY FRACTION USED.)
```

    WFITF:(:2,1:4)
    R4NIIL=S(14)4.8/3LH(1)
    HANज゙ひV = 3)A!**3/3LW(3)
    BANGFL = 1MCFL/&
    AVGFV = SNMEN/.6
    Fx* = Jv*(SRI +5S))/5U12
    W`lTE(15,!G\) RANSFL, RANGFN, EXX
    W\ITE! Le,N&G!
    FAVSER=5JMJ#.3/:\LN(2)
    ```

```

    ₹AVGEL = {AMGEL/.&
    RANGE!W = "ANGEN/.3
    & XX = rV%'sH1/SUMO
    MR17E(IC,IGO) RANSEL,RAV'SENOEXX
    NEAU(4,11)X
    IFINO;T.U.1GGOTOG00
    {E゙ん.) (&..L) X
    1F (x.jl.).) 6'LT(!.01)
    TALL FXIT
    &V
    SJF:jJ\\VE GAR(PBAR,BSE,EBAR)
    : THISIS + MISROUTINE FCR FCY B/1/77.
    \alpha = 1:35(ग,:A%)
    1F(BSt.EU-j2-1 GijTj !)
    ```

```

    #MR=1.E-10
    (a) TU 5.)
    Z ET2.ASF E 13. USF LEAS-ICID SATTERY VALUES.
        10 t:AK = 2=.5%3-.41#X + .784E-02*X##2
        OTH:O
    ```

```

    20.15(x.01064.3) x=04.
    [AK = 2 J.4 +514\ (154.3-x)/.1544)
    If(PMA1,LT.0) LSAP=4U.307
        z) H!TJ<J
        LND
    SUAR'S.TIVE VEH&T
    C THIS SUSRCJTINE CGICJLATES VEHICLE WEIGHTS
ZTMMG/C/ WGAS,:SAR,WTEST,wPRUP,WAX,WMOT,WTCBM,WTCGM,WB,NV,NF,

```

```

            C(MAT,/D/ CDA, NHJA,RAOIUS,CJ,CI,CZ,RATID,TAXL,AO,AI,AZ,RPR,SPEEDI
    I,SPEE?N,OLGAD,RVT,CJFIM,NBAK, EFFDM,RI2,HYSTI,EOI,BFI,WNDI,FREQ,
    ```


```

    4OSPD1, SPG)?,GOLD,GFVT,GCUN,GRAF,FFFOG,GRI2,GHYSTI,GEDI,GBRI,GWVDI
    S,##RE, TXYR1,TXY<2,TX#23,TXAO,TXA1,TXA2,TXBAR,TXMTQ
    CON:T/E/ COSTDM,LISTLX,C.TSTB,COSTF,COSTCB,COSTCG,COSTG,COSTXM
    AFF=1, XX + NMOT + WTCDM + WTCGM + WB + WF + NGEN + WTXM
        NGALS = NRSPH(WPS + NSSS + WPAY)
        WCURF =NGP'IS - NPAY
        TEST:= WCURR + WTFST
        NV = TESTW
        RETUFIN
        EVD
        SUBRJTTIVE AEPS(ECUR,I)
    C THIS POUTINE GIVE CURRENT OJT OF FLYNHEEL BUFFER AVD SUBRZACTS IF FROM BATTER
    こJマREVT.JURIV'G JOWN TIME BATTEFY RECHARGES FLYNHEEL.BRAKING ALSO CHARGES
    C FLYNHEE-
                CCMMUV/A/ A,AF,BSE,BV,CD, DT,FC(20,150),FSE,JFLAG,MHP,P,
            1H3MAX,P);QPHAX, SJMFFFR,SUMFC,SUMFFR,VA, VN, VT
            ?,SUMAE,SJMFEP,SJ4FEN,P[CF,P|3,PFY,PB,HPD,FQ,EHD,DELFC ,PBAR
            ZOMMON /G/IX1,IX2,NTS,RANGE,SUMD,VC,TOTE,XMPG
    ```
CJYMJV TCT WBAS,WAY, WTEST,WPRDP,WAX,WMOT,WTCBM,WTCGM,WB,WV,WF, 1WGIN, NTXU,NGKOS, HCUKR, TESTW\&WPS,ROTI,WCBM,WEGM
CGMMMN /T/ CDA, RHOA, RADIUS, CO,C1,C2, RATIO,TAXL, AO, A1, A2,RPR,SPEEDI
 2PCEM, \(\mathrm{CBMIN,VCBMCIT}, \mathrm{CBMC'JF} \mathrm{CBYFRQ}, \mathrm{CBMO}, \mathrm{CBM1}, \mathrm{こBY2}, \mathrm{PCGM}, \mathrm{VCGMIN}, \mathrm{V:GMOT}\)

 5, GFRE 2, TXAR1, TXMR2, TXUR3, TXAO, TXA1, TXA 2 , TX 3 AR, TXMT2
-JMMON /F/ SOSTA 1, CUSTAX, COSTB, COSTF, COSTCB, COSTCG, COSTG, COSTXM

D!ME JSION \(1 \times 1(15), 1 \times 2(16), 1 \times 3(16), V 1(1390)\), BAMP(1390)
IF(NFLAS.VE.0) 33 TO 100
\(\forall N P=0\)
WP.ITE \(26,50+1\)
(\(\times 3(1)=5 \mathrm{H} \quad \mathrm{T} 1 \mathrm{E}\)
\(1 \mathrm{~K} 3(2)=5 \mathrm{HP} 2.3 \mathrm{PJ}\)
\(1 \times 3(3)=5 \mathrm{HLS}\) SION
1 \(\times 3(4)=5+\quad 5 Y S T\)
(x \(=(5)=5 \mathrm{HE} 4 \mathrm{CJ}\)
\(1 \times 3(6)=5\) HRRE NT
\(1 \times 3(7)=5-15 \mathrm{~F}\)

I \(\times 3(9)=5 \mathrm{HAE}\) SA

\(1 \times 3(101=5+\) TTFRY
I \(\times 2(11)=5 \mathrm{H}\) AND
\(1 \times 3(12)=E H A F L Y\)
\(1 \times 3(13)=5+\) HAEEL
\(1 \times 3(14)=5 \mathrm{H}\) BUFE
\(\left[\times 3(1 b)=5+1 \mathrm{C}_{0}\right.\)
NKITE (15,500)
WKIT! (1A.501)
NEI TE (10,502)
WRITE(16.503)
5)) FORUAT (\(5+1 H\) THIS RUUTIVE GIVES CJRRENT OF THE ELYWHEEL BUFFER AND)
\(501=\) IRUATI \(54 H\) SUPTRACTS IT FRCM CURRENT DJRING DONN TIME I
502 FLIKUIT1 5OH BATTEZY RECHAZGES FLYNHEEL. BKAKINS ALSO CHARGES
503 FOKMAT \(\mathrm{J}^{\prime}+\mathrm{H}\) FLYWHEFL.
502 FORMAI \(2+H\) FLYMHEEL.
504 FCRMATI 544 REPS SUBRUUTINE VERSION 2
RECMAX \(=\) GRPR*.1
NFLAG=1
? \(1=3.14159265\)
C INITIALIZE VARIABLE FOR FIRST TIME IV ROUTINE
C SET FLYGHEEL MOMENT OF INIRTIt IN MKS UNITS. F+CTJR . 66 IS TO
C EJMPENSATE FJR FLYWHELL HIJUSING WEIGHT.
FIV=2.*NF*SE/(XFSW* \(*\). \(*\) P1/60.) \(* * 2 * 3600 * .66\)

\(F E^{2}=1 F \approx=5 \equiv * 3600\).
KIFS \(=.7453 * \times F S M * 2 . * P 1 / 60\) 。
\(\mathrm{XFS}=\mathrm{XIF} \mathrm{S}\)
\(X F S M A X=X F S\)
XFSMIN=XFS
\(F F=0\) 5: FIN 1 (XFS**2)
100 EJNTIVIJE
IFi(A.LE.J.) 60 TO 120

62 TV 130
123: \(\mathrm{PBJF}=3\).
IF (PI). LT. O.) PBUF \(=P 0\)
120 CONTIVUE
\(R P M=X F S * 5 J . / 2 . / P I\)
IF (MJ) (NNP, 361.NE.01 GO TO 170
WRITE (16,260) FE,RPM
1c(0) NNP=NMñt!
(ALL, H) (BC.JH)PSAM11 \(=\) ECNO

\(11(1 . v i \cdot 0.133\) iJ 170

\(3=1\).
If (VA.ER. \()_{0}\)) i \(=3\).

\(170 \times F=1 ?\) *FF/FIN1**. 5
II. (XF S. ST. XFSY(XI) XF SMAX \(=X F\) S
IF (XFFS.-T.XFSUIV)XISUIN=XFS

IF (1. J.VTS) WRITE (16, 2GOIFE,RPM

IF(I.

FAMP(I)=HSA(1)-BCJR
? 4 TUSV
143 BJFF \(=\overline{B C J}\)
30 TL: 13
1.90 W?ITE(1t.: 50\()\) FIM, XIFS, XFS
CfLL LXII
EVJ

1, \(M A X, P\), \(2 P M A X\), SUARFK, SUMF, SUMFFR, VA, VN, VT
Q,SU13:SJAFEP, GJMFEN,PICI, PDE,PFY, PB, HPD,FQ, EHD, DELFE, PBAR

2C,MMEy \(1: /\) WUAS,WDYY,WTEST, WPROP, WAX,WMOT,WTCBM, WTCGM,WB,WV,WF,
? WGEM, mi ', AGRS, ACJFB.TESTW, NPS, ROTI, WCBM, WCGM
GUM11: \(1 /\) CUA, RIGA, RADIUS, CO, C1, C2, RATIO,TAXL, AO, A1, A2, RPR, SPEEDI
, SPEIM, I-A, UVT, CURDM, \(3 A R, E F F D, R I 2, H Y S T I, E D I, B F I\),WNDI,FREQ,

T, GYRI I, TX MRI, TXMR2, TXMR2, TXAD, TXA1, TXA2, TXBAR, TXMT2

1)IMENSION IK1(16), \(1 \times 2(16), 1 \times 3(16)\), V1(1390), BAMP(1390)
6 THIS 2JJTIVE CAICULATES THE CURRENT AND POWER FOR AN INOUCTION MOTORSET [VIIAL VALUES JF EIREUIT AVD : AOTOK CJNSTANTS
DIMENSIUN GRAl't
2E1L 10,11,12,1シ,14
REAL 10X, IOY, IOX., IOYI
REAL I2X,12Y,14Y,11Y, IIX, [3X
FLUF \((x)=(5.7 *(\operatorname{TANH}(.18226 * X))+.1032 * X+.5)\)
AX1 \((X, Y)=(S Z R T(X * 4 . * .10 \equiv 3 * 6.1 Y)+38.44)-6.2) * Y / 1.2396\)
AX2(X,Y) \(=\) SSQRT \(\left.\left(\left(X * t_{i} * 5.35337 / Y\right)+.25\right)-.5\right) * Y / 13.7062\)
\(A X \equiv(X, Y, Z)=\left(X / 36,0 O_{n}\right) *((Y / Z) * * 1.6)\)
\(\overline{A X} 4(X, Y, Z)=((X * Y) / 12600 . * Z)) * * 2\)
IF(VA.LQ.U.) GU TU 1000
```

    IFTSJ1!-VE.0.) 6j7.740
    NNP = U
    w<17!(16,1341 Ix 
    NhITE(10,120) [x3
    ```

```

    134 FCPMAT (1H2,IX,1OA5!
    W2ITE(1L,140)TESTh,WR,KATTO,TXMR1,TXMRR,TXMR3,PPK
    1'0 FOFYAT//IX, 2HVLHINLE TEST WEISHT = FB.2,7H POUNS
    1/1X,?3M&ATTEFY WEJCHIT=,F8.2,7H PDUNDS
    2/1X,32HA KLE PATIO =,F8.4
    3/1X,Z:HTRAVS. IIGH GFAR = EF8.4
    4/IX,234 1.1TIO SEC. BEAR = . FB.4
    5/1x,O-1 LCW GEAK = +48.4
    6/2x, ZjHM!TLK RATEJ POWER = FFB.1)
    - PuT hFl IE RUUTLINE HERF flik candidates
    v217%12,126)
    1:S FIHAMAR[2X,5!H CANDIDATE VJ. 3 POLYPHASE INDUCTION MOTOR - 3 PH.
    1/E1:A THIS SUBR[UTINE UATEO MAR. 28, 1979. FCY
    x = %.
    ACCJ. = 3.
    SNC(3)= 60./(2.*3.14159*RAMUS/12.1
    GRA(2)=GHA(E)*TXYR2
    3PA(1) = ЗFA(3)* TXMK?
    GFA(5)=G84(3)* rx421
    GKA(')}=13
    FLX =.44643F-02
    FL.JX= FLX#FL.JF(X)
    FLX| = FLUX
        SET SHIFT POINT
    C SHIFT PIIMTS {EAD IV AS JATA.
    CL VLS = 10.
    CC VSG =35.
    C PER LFU GUEAEVTS EVD LJSSFS FJK THREE PHASE INDUCTION MOTOR
        \DeltaCVT=AV*(.5*3.5)%:.3333
        SLIP=CJSTOM
        SPFF:Li = SPERTI / (I. - SLIP)
        TORRT = 2PK P SPFEDI
        XLOSS = RPQ*(`3n.fEFFJM - 1.1
        CULOM=(RPR+XI.0.0SS)/RVT
        AZX = JURJM
        FQ = ACX
        AMAX=0LGAD*F(: 100./(3.)**.5
        Nv2J=XLJSS*LNNOL/1.00.
        HYSI=XIOSS *HYST I/100.
        EPI= XLOSSTIDI/100.
        3F1}=\mp@subsup{X}{-}{\prime-JSS*2F1/100.
        WNDX = (X1.05S*NNDI/100.)/((SPEEEDI/3600.)**2)
        3FX= (XLOSS*BFI/1 00.1/1SPEEDT/3600.1
        HYSX = (X_JSS*HYSTI/100.)/AX3(SPEEDO,FLUX,FLXD)
        EDX = (xLCSS*EDI/100.1/AX'+(SPEEGOB,FLUX,FLXD)
        PF = TJTE
        SV = (1.- PF**2)**.5
        IL = RPR / (E1*(EFFOY/100.) *3F*3.)
        SVII = 11*SN
    C PER LFG JSSES
        XLGSS = RPR* (12.0.1EFFDM - 1.1/13.
        432T = (HYSTI + E)I) & XLOSS/ (100.*F1)
        BDRT = (2I2 / 100.)*XLOSS / E1
        DERT = ((RPR / 3.) + ((ANDL + BFI) / 100.)*XLJSS) / E1
        OH4}=1.-(SLIP/(1. - SLIP))*OERT/BDRT
        IF(P|Y.LE.O.) GJ TJ 690
    ```

```

    ODRT = FOL2T - BCOT
    CS[? = RIRT + DFRT
    SNL2 = CS12* (2.5-12.5**2-1.1**.5)
    SNIO = SVII - SVI2
    R1 = SCRT * F1/ 11%*2
    K 3 = F1/ABET
    ```

```

    PHI = .0'+
    P+2 =.04
    NPITE(16,98:)
    12=(SN12**2+CS12**2)%*.5
    \2S = E1: (CONT + EERT)/ 12**2
    XB=E1/(SVIO*(1.+3H1))
    x! = P11 * x3
    X2=0+2: <3
    v = )
    PF: =PF
    CSIO= \3KT
    VI1= 11#PF
    X11 = 11%SM
    Y10= -S10
    x13 = 5M1j
    10=(510**2+5N10**2)**.5
    12 = (2S12**2+SNI 2**2)**.5
    <3=[1/5NIO
    XI = :+1: <3
    x< = 12 * * x 
    SAA=SN12 /12
    -SA}=CS12/1
    610 ここNTIVUE
    xz
    RE=t2**2/(AB2T*E1)
    14 = F2/R3
    13=(10**2-14**2)**.5
    x3 = F2/13
    SNB}=\frac{x}{CSB}=\frac{1(1(R2S**2+x2**2)**.5)}{(SNB*2)**.5
    SNC=SVA*CSB - SVE F =SA
    CSG = CSA * CSF + SNA *SNE
    EZE1=((三1-E2 * SGO)**2+(E2*SNG)**2)**.5
    X]= E2E1**2-(11*2 1)**2
    IF(XI.OT.O.) XI = (X1%*.5)/111
    IF(X1.LT-0.) X1=.5*ABS(X1)
    y=v}+
    IF(N.jT.?J)GGTO 522
    IF(A.SS(X2-X1).0T01.E-06) SO TO 610
    G3 TJ 620
    CR1 =CRMAT/125H CIKCLE DIAGRAM VECTGRS. 1
    1 8X,2HI1,12X,3HI0,13X,2HI2,13X,2HE2,13X,3HAB ,11X,3HBC ,
    211x,3:1CD, 112, 3HDE,
    650 WR1TE(15,92)) SLIP
    920 FJRYATI1.5+SLIP EXCESSIVE ,G15.5 1
    CALL EXIT
    622 WRI TE (16,986) N
    986 FJ24AT (IX,I5)
    S2J CONTINJE.
    IC = (YIO**2 + XIO**2)**.5
    PF = DFI
    R2 = R2S*SLIP
    ABRT = YLO
    ```

```

    SG=T:IYTEIN
    CSA=CSH*CSL+SVE*SNJ
    PFL= CSA
    FA= =1-1 1cIN
    12 = 12 * FAC
    13=13x:FAC
    IL = 14Y *FAL
    [! =12* FAC
    F? = F? * FAC
    10=(13**2+14%*こ)*** 5
    KPA = 3PFEDL;(1.-SLIPX)
    PUQFR=12**2*FF2*(1:-SLIPX)* 3./SLIPX-nNOX*(RPY/3600.1)**2-BFX*RPY/
    j3600.
    TOR = PMA/R//TwiRIPI*RPM/60.1
    EFF= POUER / 130FF1*PFI*IIT
    If(PJWLZO-T, O.) ETE = 1./EFF
    ,WHITF(1E,984 ) SLIPX,RP4,TJK,PJWER,H1,11,PFI,EFF
    E2=13**3
    660 :JVTIviJE
    125 FCRMAT (11x,1645)
    132 [GKMAT (//1X,SUHACGUM. VEHICLE GEAR RUAD MOTOR MOTOK MOTOR YJTJR
        L,G2H 3N2 YITIK EDJY HYST WINOLSF FRICT CNTK. BATTERY BATT MO
        2,13HTiNK OVERL ACCJM/
        Z1X,6DHIIST SPEEO PCUER POWER SPEED AC AC FAC I*I
        'GOHMR GJRK JSS LJSS LOSS LOSS POWER CURR EFFIC EF
        S.1IHFLC ENERGY/G
        7,GOHTS WATTS WATTS WATTS WATTS WATTS WATTS. AMPS PERCT PER
        8,91FT WF+2S I
    4) Cont[vje
        N=1
        IF(VA.ST-VHS) SOTll 10
        IF(VA.GT.VS:O) 65 15 20
        NG=1
        1) 
        301030
    20 80 =2
    C JPSHIFT IF ACCEEERATINN IS EGJAL TO ZEMO, OR SMALL.
    30 こJNTINUE
    C SET RPMAM, DRIVFLINEMECHMMICA_ LJSSES
        NX=Nj
    ```

```

        PA = P0
    ```

```

        AXPK = (11TJN*R3种2.*3.14159/60.1*1.356
        PDI = PA + AXPK
        RPMX = RPM
        RP\=VA*GRA(VG)
        TMPR=TXAO) +(RPM*TXN1)+(AGS(PDI)*60./11.356*2.*3.14159*2PM)*TXA2)
        TMPR = TMPR:(1.+RPM/KPMX):&5
        TMPR=(TMP2**P訳2.*2.14159/60.)*1.356
        PDI=PDI+TMPK-XMPG
        POIM = Pal
    ```

```

        BFXM=POX
        PJX=?)X + (WPOX*((RPM/3000.)**2))
        NYDXY = PDX - BFXY
        PDI= PII PDOX
        HVB=(3V- =BMI )*(0.5***5)
    ```

```

    G7 T\ \/7
    5E y y x = ?
    Ec, SITX= STIPX/FAT?
    OGETVTIMSF
    IF( 1AS(RAT2 - -.).LT.1.E-UK) G3 TJ 640
    I=(ASS(%AT2-HATK) &T.1.F-JB)GUTO642
    &ATX=ZAT?
    IF(H.UT-25) IOTO <42
    I=(AIS(SLTFX).LT.I.E-OG) GO TO 644
    37 T36?0
    64%12=3.
        11=10
    64% こちソTlVUE
        PMMK= =*贾AI2*PPL-NNDXM-BF-KM
    VIIIE(IG,9D1,DDI, PMMX
    301 F-KK\AT(1x,45H********** EX=ESSIVE POWER REQUIRED
    I3^,二厶HRF\JIRED MOTUR POWIR = F12.2, 2IH AVAI.A3LE PJWER = ,
    2F12.?)
    040 C'JNTIYJF
        F2 = 13*x3*xHP1
        PFX=PIL
        P\GammaZ= 1FI
        FLUX = {? *SPEF) (3)FLXD/(RPA*FX)
        XLUX = 4SS(FLUX)
        HYST = HYSX*AX 3(RDA,XLUX,FLX))
        EDDY= E TX*AX'4(RPA,XLUX,FLXD)
    ```


```

            IF(ADSTQC.J&).UT.ANAX) BCJF= BCJF&AMAX/ABS(BCUR)
        500 こうVTINJE
        [f(%CJK.JT.1.).dv).(PD.LT.1.0)) BCUR = 0.
        X12I=((114*2)*R1+(I2%*2)*R2)*3.
        AこUR=?.**5%II
        It (NOJK.LE.AllAX) G.] T] 53n
        WRITF(15.03011CUR,AMAX
        Ar.Ui< = \MAx
        x12%={12R-3.*(11**2-(AMAX/2.) )*21
        530 ECNTIMUL
        P3}=T[T+XI2R+EDDY + HYST + WNOXM + BFXM
        PBA =PB
    SET PGivi'' LOSS FOK CONTROLLER
    PLX=JJVLTIJV DSS,'BASE=34SE JUNLTIDN LOSS,PSWT =SWITCHING LOSS
        PDX=C.SM丁 +ABS(EOMI*ACJR)+((CFM2*ACUR**2)/9)
        P?ASE=(.8+.0?*(ACUK/90))*ACUR/5
        PSWT=1CJF*ふV%1-5/1000. 
        PQX=(口BX+PBASE+PSNT)*11.17.
        Pi}=PB+PB
        HCUR= DK/BV
        PEMAX = - 2*OLOAU*RFR / EFFJM
        IF(ABS(P}).3T.PBMAX)PB=PB%PBMAX / ABS(PB)
        IF(APS(BCUR).GT.A\AX) 32UR = BCUR*AMAX/ABS(BCUR)
        PBA湆=PB/hB
        IF(PR.EQ.O.1 DR = 1.E-08
        IF(PD).E2.).) ?! = 1.E-08
        IE(ACJR. ST. AMAX) WRITE(16, 330) ACUR, AMAX
    ```

```

        13X,23HREQJIREO CJRRENT =,F11.3,2IH AVAIL. CURRENT = ?
        2F11.3)
            SJYJ = SUMJ+VA*)T/5280.
        IF(P!)IM.EW.O.) PDIM = 1.E-08
        IF(PJA.EQ.O.) PRA = 1.F-08
    ```


```

    L'(P),LTOO) XOTE: = 10U. KPB/PD
    ```

```

    ALC, \iv =ACCUN + PR*DT/3GO).
    |f(%1])(NVP,36) &NL:U) 50, TH 24%
    N\mp@code{IIE(:6,134) IX1}
    wFIT:(16,126) 1\times3 Mrem
    *\IT(10.126) Ix 
    WPI|F(16,14J)TESTN,NB,RATIT,TXMR1,TXMR2,TXMR3,RPR
    WP1TL (12,13?)
    243 5JVTIIUE
        Wh]rem, (15,1.38)
        1. XI2R,EDDY,HYST,
    ```

```

    L3E=(G,ATIIX,1FG.4,1F7.3,I2,ZF7.0,2F7.1,F7.4,1X, 6F6.0,1F8.0,1F7,1
        1 , 2F6.2, 1F 7.21
    g) NTTURd
    1OCO \CUR=J.
        KPY=0.
        ACJN =).
        POIM=9.
        B\veeX=0.
        x12H=0.
        LDOY = 0.
        HYST=0.
        12=0
        NyDxy=3.
        BFXM}=0.
        (ソ)
            SURPOJTINF AEPS(BCJF,I)
    ` THIS SUHZGUTIVE PALCULATES THE PGWER FRGM THE FLYWHEEL VIA A CVT
    r. TL PRJVIDE A(CELFROTINI AN) BRAKIVG. RFCIARGE JF THE FLYWHEEL OECURS
    #. W+EN THF ACCELERATLON EQUALS 7.FRG.
            二EपVJV /A/ A,AF,BSE,BV,CD, )T,FC(20,150),FSE,JFLAG,MHP,P,
            I PPMAD, PD,R,PMAX,SJMEFR,SUMFC,SUMFFR,VA,VN,VT
            2,SUNTE,SUMFEP,SUMFEN,PICN,PDE,PFY,PD,HPD,FR,EHD,DELFC ,PBAR
            SMAJV/3/1XI,IX2,YTS,EARGE,SUPL,VE,TOTE,XMPS
            C.GMTIM/G/ NHAS,WPAY,NTEST,WPROP,WAX,WMOT,WTCBM,WTKGM,WB,WV,WF,
            INJEN,WTXM, WJRCSS,WCURE,TESTW,WPS, NOTI,WCBM,WCGM
            CJMMJy /j/ EDA, 2HJA,ZADI|S,CO,E1,CZ,RATIG,TAXL,AO,A1,A2,RPR,SPEEDI
        I,SPEESA,LILGAD,KVT,GURUU,FBAR,EFFLU,RI2,HYSTI,EDI,BFI,WNDI,FREQ,
        2PCB:A, VCBMIN,VCSMCT,CBMC JF,CBMFRQ,CBMO,CBMI,CBM2,PCGM,VCGMIN,VCGMOT
        3, GGY=JR,CSYFRX, CGMO,CGM1,=3M2,FBARM,PBARM,EFFB,XFSM,RUND,GRPR,
        +'GSPII,GSPU2,GOLD,GKVT,GCIJR,GBAR,FFFGG,GRI2,GHYSTI,GEDI,GBRI,GWNDI
        5,OFFEQ,TXMR1,TXMK2,TXME3,TXAO,TXAI,TXA2,TXBAR,TXMTQ
            CEMMCN FE/ COSTDY,CJSTAX, ZJSTS,CGSTF,COSTCB,COSTCG,COSTG,COSTXM
            COM4:1V/F/ PSA(13#J),MF_AG,IX3,FAMP(1390),VLG,VSG,V+3
        TMFNSIJV IX1(16),[X2(16),1\times3(15),V1(1390), BAMP(1390)
        IF(S.JMD.\E.0)GJTO }20
        NFLAS = 1
        W'1TE (16,210)
        NFITE(16,202)
    202 FORMATI /1'5H SUBRLUUTINF VERSION OF JAN. 9, 1979. FCY I
    210 FJKMATIIX,5IHTHIS PROPULSION SYSTEN USES A FLYWHEEL AND CVT FJR
        15!HACCE-ERATIJV AVD BZAKINS, FLYWHEEL QECHARGE OCEURS WHEN A=O. i
    C INITIAIIZE VARIABLE TIIE FIRST TIME IN THIS SJBROUTIVE.
        PI = 3.141.59265
        XKC=2.*3 I/ 60.
        RECMAX = GRPR*.JT
    ```
```

    VNP=0
    SPEFO= XFSM*XRC
    TORLIAT = SKPR/(XFSMAXRC)
    WRITE(10,270) TORZAT,OHYSTI,GEDI,GHKI
    27.) F[J:AAT (/1X,15HRATFD TJRDJF= ,G15.5/1X,15HSDIV TJRJUE = ,G15.
    ```

```

    C. SET FIYNAEEL IOMENT IJF NVEKII+IN MKS UNITS. F+CTJR.66 IS TO
    ```

```

    FIV=2.*N1*FSE/(\alphaFS*2.*PI/\epsilon0.1**2*3600*.66
    FFR = WF*FSE*30J0.
    -7U 三OMLLLER FL YWHFEL
    ajFFAR = .7U*WV*{TTI*746.1650.132.2
    XIFS}=\frac{.7+E= *IFSH*XRC}{XIT
    FE=S** & N N * XFS**2)
    GFAX = (BADI:JS/12.)*FATIO/XPC
    CxR2=SSPOI / SPFEJA
    [K3(1) = 511 THIS
    IXE(2)= 24 PRUG
    1\times3(3)=54N,A,4U
    1\times2(4)=SHSESA
    1\times3(5)= 5.4 S.0.5
    IX2(6)=540.JTIV
    IXZ(7)=5,4ETC
    1\times3(3)=5HMDOFL
    1\times3(7) = 5.4 THE
    IN3(1))=EHCVT 1
    1\times3(11)}=5H\textrm{LJ}T\textrm{TK
    1\times3(12)=5H5TE2
    1\times3(13)=5H PतNE
    1\times3(1+)=51R (% 
    IXZ(2,j)= 5HA FLY
    1\times3(10)=5|WHEEL
    100 EJVTIVUT.
    If(A.LE.U.)G] T- 120
    G0 TJ 130
    IF(PO.LTUS.1 PBUF = PD
    100 cJVTIVIE:
    CxK=GR\Deltax * TXY\2
    IF(VA.LT.30.) CXR = GRAX*IXMR3
    IF(V:O#T.70.) EXR = SRAX + TXMRRI
    XPSS = VA %CXR
    XPKS = XFSS & XEC * CXR2
    {AT1 = XP\S/XFS
    RECH= J.
    IF(VA.EQ.O.) GU TO 170
    If (A.NE.O.) SO TO 170
    RECH = .2*(`IFS**2-XFS**2)*FIV/2.10T*1.5
    IF(ABS(RECH).GT.RCCMAX) RECH = F.ECH*FECMAX/ABS(RECH)
    170 EJVTIVJE
    PBLLF=P[SJF-RFCH
    CVTIT = PBUF/ KFS
    TREFF = CVTEFIXFS,RATI,CVTIT,TORRAT,GHYSTI,GEOI,GBRI,SPEED)
    IFIPBJF.GT.0.1 PFLY = PBJFF/ TREFF
    IF(PR:NF.LF.O.) PFLY = PBUF * TREFF
    XMPG=PBUF
    RFM = XFS/XRC
    IF(MJ)(VNP,36).NE.0) GO TO 190
    NRITE(10, 260) FE,RPM
    ```


IMT,TTH IELT CJKFENT -TSHSPFED RPM -15H ARM. RESTST
\(2,151=1 E L\) OESIST, 15H FLUX FACTOR n. \(V T=; W\)
\(K C\) Cl \(=F G\)
\(2 F C=F I R\)
RESA \(=2 F 5\)BASS = SPEEDIRLPW: LCBTITY OF THE\(2 E S F=R E S F L\)
\(\mathrm{RX}=\mathrm{x}\)

W2 ITT(16,989)

1154 TYSTERESIS, \(11 H\) WINIOAGE 19H FLJX CJVSTAVT

HYS \(=\) XL'SSS *ir'st \(1 / 100\).

\(3 F 1=x-155 \times 13 F 1 / 1000\).
WIRIIE (15,984)BF1, EDI, HYSL, NND1,FLX
\(984=\) CRMAT(1X.8F15.6)
WKITE (16,:26) 1X?
125 FGRYAT \(\left(12 \times 16 A_{5}\right)\)
QFITE (1t,13:3)
I22 FUNMAT \(/ / 1 \times 150 H A C C U M\). VEHIELE JEAK KCAD MOTOR MOTOR MOTOR1.5 PHASMTR YCTOF EDOY HYST WINDAGE FQICT CVTRO BATTERY BAIT MU3.18-TTJR OVFAL ACCUM/
 \(31 \times\), GOHOIST SPEED POWER PUWEK SPEED VOLTAGE CURR I I I
 4 - GOHFR CORR LOSS L.JSS LESS LCSS PJWER CURR EFFI: EF

 C, \(1, \mathrm{HT}\) WS WATTS WATTS WATTS WATTS WATTS WATTS AMPS PERCT PER
 3, \(\exists \mathrm{HCT}\) W*H2S 1
 40 CONTINUE
 \(V=1\)
 IF(VA.GT. VHG) (G) 11110
 IF(VA.JT. VSO) GO [i] 20
 V 行=?
 GJ T) 3
 \(10 \mathrm{NF}=3\)
 63 TO 30
 \(23 \quad N G=2\)
 : UPSHIFT IF ACCELERATIUN IS EGJAL TD ZEKO.
 IF(A.FT.U.) VG \(=3\)
 3) COHTINJE
 - SET RPA AMD DEIVE LINE MECHCNICAL LDSS ES
 \(\mathrm{NX}=\mathrm{y} 3\)
 \(R P: M=V A * G R A(3) / 1 \times M R ?\)
 \(\mathrm{PA}=\mathrm{Pn}\)
 \(P A O R=A U+(R P M * A])+(\triangle A S(P D)) * 60.0 /(1.25\) 2. \(2 . * 3.14159 * R P M) * A 2)\)
 \(A \times P R=(D T O R * R P M * 2 . * 3.14159 / 60.1 * 1.356\)
 \(P O I=P A+A X P S\)
 \(R P M X=R P M\)
 \(R P, A=V A * G R A(N G)\)
 TYP \(=\) TXA \(0+(R P M * T X A 1)+(A B S(P D I) * 60.1(1.356 * 2 . * 3.14159 \# R P M) * T X A ̊ 2)\)
 TYPK = TYPR*(1. + 1 PY/RPMX) \(\# .5\)
 TMPR = (TMPR*RPM*2.*3.14159/60.1*1.356
 PDI=OJI +TMPR-XMP3
 POIM \(=\) PDI
 PDX=BFX*RPM/3500.
 \(3 F X M=P O X\)
 \(F D X=P D K+(N N D X *(K P 4 / 3600) * * 21\).
 \(W N D X M=P I D X-B F X M\)
```

        קT= %i+20x
        AVX=3v-5Bu
    I= 1 RPMOLT. SPIENUT BVX = 1.1*BVX*RPM/SPEEDI
    ```

```

    1F (RP 1.LT.SPFPOI) PMMX = 2.1*RPM/SPEEOI*RPR
    IE(PUI.JT.PMMX) WRITE(1G.901)'PDI,PMMX
    C FIND ELEGTKICA. YOTJH GURREMT ANJ IRON LOSSES
    IF(POI.LIOJ.1 (0)T) 2OJ
    TरIAL VALN IJ= FTILS CKRENT AND ITERATION FOR ARMATJRE CURRENT
    27) F-Jx=ABS(AMVX-((2ES+B2ES)*P)L/EVX))/RP4
    N=1
    2eOFGZ=FCUQ(FLUX,FIK,FLX)
    IF(FC.<.CT.FCRZ) FGR = 1.001*FORZ
    _. IF(FCR.OT. CR2) FLUX=FLX*(FLUF(E.*FCK/FIR))
    XLUJX = 1HS(FLUX)
    HIYST = HYSSX*{X {({P仵,XLUX,FLX)\
    FO!\Y = FOX *AX+(RPM,XL.JX,FLXD)
    ODX=PDI + HYST + EDOY
    N=N+1
    IF(N.3T.3)1 50 T0.245
    IFTFLDX.ST.0.1 XU.JK = PDO/(RPMEFLUXI
    IF(XC.JK.(GI.AMAX) XCIR= 1.0IWAYAX
    3VA = {爫-(RES+EMES)*(XCUF:)
    IF(BVA--E.0.) BVI = (.9**v1)*3vx
    KFL.JX = 'SA/RP1
    ER=FLUX-XFLUX
    IF(A35(ER).LE. 1.E-OG) SL T0 240
    FLUX = XFLJX
    30 10 260
    245 CONTIV1E
    IF(POI.GT.I(0.*PM4X) GJ TI 500
    [T(V.GT.32)CALI, FXIT
    240 CJVTIJJ
    IF(FGR.LT.frBX) j)TD 280
    vx=vx-1
    IF(NX.LE.O) GJ TJ 290
    RPM = VA*GRA(NX)
    BVX=3V-2SM1.
    IFT\{PM.-T.SPEEOIT SVX=1.I*SVX*RPM/SPEEDI
    WKITE(15,329) AX
    920 FTRMATI?O- SHTFT JOWN TO NG = , I`)
    G] 1J 270
    290BVX= 3VX*.7j
    V = 1
    IFTBVX.LT.00! (% TO 200
    30 T0 270
    280 EONTTNJF
        IF(AHS (XCJR).GT. IMAX) XCUR = XCUR*AMAX/ABSIXCUR)
        AEUR = XCUR
        IF(ABS(FCR).GT.FCRX)FCR=FFRXX
        BCJR = XC.JK + FCR
        x=Bvx/3v
        XI2k = (X:UN**2)*2ES+(FCR+9V)
        IF((X.LT. .25).AND.1PDX.LT.0.1) BCJR =0.
        30 Tij 500
    C. FIND VALUES FOR REGEVERATIOV
    ZJJ CONTINJE
    FLUX = FLX* (FLUF(1.6*t.))
    RPप4 = VA*GRA(1)
    CEMFM= HPMMM*FLUX
    XV = 3V/2.
    IF(CEYFM..E.XV)G2T T] 292
    ```
```

            X: = (\ABS(POI)]CFMFM)/1.J4
            XV = XV+ ((RES S BRES)*XC) +CBM1
            IFICF4FM.LE.XV) GO TJ 292
            35 I.J270
    292 n2[T:(16,904) VA,P隹
REWQNTMOTMTY OT THE
REROMCOSTTHY OR THQ
734 FURIAT (4BH INANENJATE CUUUTER EMF TU' PROVIDE REGENERATIVE ,
122H!RAKINJ AT VELECITY = ,F7.3, 12H FT/SEC AND ,F15.2,6H NATTSI
32J: = 0.
53) C(MTTVJF
IE(IIC.JR.ST. O.).AND.(PO.LT. 1.O:) BCUR = 0.
IF(RZ30.E.O.) PCUZ=-B%UZ
PR = PDLA + XI2R + EDDY + HYST + NVOXM + BFXM
DPA=PB
C SFT FONEK LISS FIK COVTROLLER
C. P!'X=JJNTTION LGSS, PBASF=BASE JUVCTION LDSS,PSWT=SWITCHING LDSS
PRX=C3MO+ABS(CBMI*BCUR)+((CBM2*BCUR**2)/4)
Pf'ASE=(.3+.02*(FSCUR/40))*3:UR/5
PSGT=BCJK*BV*1,G/1J30.
PR = 3a+2BX
BCUR = PB/FIS
PPAN = PB / WhS
IF(1:S.-E.). JHQZ = -PABQ2
If(P3.EQ.J.) Pi3 =1.E-D)
IF(P1).EN.O.) P(I =1.E-08
IF(ACNK.GT. AMAX) WMITE(:C,901)
S'MO=5130+VA*DT/5?8J.
It(P)IM.EQ.0.1 PiMM=1.F-08
If(P39.EN.J.1 P7. = 1.E-08
XMEPE = 1JJ.*口.IINPBA
XNEFE = 100. FPJ/3 3
If (PD.LT.0.1 XTIEFF = 200.*PB/PD
IF(P)1H0LT.U.1 XMEFF=100.*PFBA/PDIM
AC5UH = AここUM + P3*OT/3000.
1F(4ח1)(NNP, 36).NE.0) GJ TJ 248
WR[TE(16,134) IXI
WKITE(16,1?6) I X2
WRITEG1S,140 YTESTW, AB,RAT1J,TXMR1,TXMRR2,TXMR 3, RPR
W51T: (16,132)
248 CJVTINUE.
N!!P = N!!P + I
WRITF (10,138) SUMO,VA,NX,PLT,PDIM,RPM, BVX,ACUR,XI2R, EDDY,HYST,
INVDXV, BFXY,PHX,F,3,BCUR,XMEFF,XOEFF,ACCUM
138 FOR,AT(1X,1F6.4,1F3.3,13,1X,3F8.0,1X,2FC, 1, 3X,6F6.0,1F8.0,1F7.1
FQ = ACX
960 RE TIJRN
1000 3FJN=0.
AC UF: =0.
PJIM = 0.
BvX = J.
XI 2F = 0.
EDDY = 0.
HYST = O.
WNDXM = 0.
BFXY = 0.
G0 T0 500
900 W2I TE,16,901) PI, PMMX,RPM
901 FERMAT11X,25HEXCESSIVE POWER REQUIRED, 16H PDI AND PMMM = ,4E15.
15)
A =.98* A

```

\(V_{A}=(v T+V N) / 2\).
\(J F L_{G}=1+J F-A 3\)
\(66 \frac{1021}{14}\)
FJIVE TIJV = CUR (FLUX,FIR, FLX)

\(\therefore\) THIS Y JNETLLN UIVFS THE FIFLD CURRENT REQUIRED FOH
\(\wedge\) givev r-ax
FLXX(K) \(=5.7 * T N 1 H 1.1322 t * X)+.1033 * X+.5\)
AX1(X,Y) \(=(X-.5) * Y /(15.7 * .13226+.1033) * 6.1\)
Axz \(\left(x_{2} y\right)=(x-0.2) * y / 1.1 .033 * 6.1\)
\(\Gamma L=F L U X / F L X\)
\(1+(15-1 . T \cdot 6.9) \quad 39 T 0100\)
\(F(J K=\Lambda \times 2(F L, F R)\)
6071010
\(100 \mathrm{~F}: \mathrm{CR}=1 \times 1(\mathrm{FL}, \mathrm{F} 1 \mathrm{Q})\)
\(120 \mathrm{FX}=+C J 2 * 6.1 F 12\)
1. 0 . FLT \(=\) FLXX(FX) \(E 2=E L-=1 T\)

\(-F X=E X+1(E F * F X /(F L T-3))\).
3) \(\mathrm{T}, 7140\)
\(120 F X=F X+1(E R * X /(F L T-.5) 1)\)
140 IFIABSERA.LT.I.E-JST GO TU 150

\(150+C W B=F x * F I R / 6\).
EETURV
EVD
AOVANCED IV PROPJLSIUN SYSIEY CINCEPT AG SINGLE YOIJR/DR.AXLE W/TRANS. WF ACI
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 718.67 & 6:00.00 & 300. & 1.299 & \(t .0\) & . 30233 & 1.04 & \\
\hline \(\pm 1.5\) & -003 & \(\therefore .0970 E-05\) & 9.630E-08 & 19. & 31. & 76. & \\
\hline 7.2565 & 53. & 250. & 1. 515 & . 1248 & . 2495 E-0 & 4.0066 & \\
\hline \(25.005+03\) & 7200. & 91009. & 375. & 96. & 194. & . 0050 & 96. \\
\hline 67. & 5. & 1 J & 9. & 9. & 240. & . 02 & . 84 \\
\hline & \(\underline{2}+3\). & 233. & 388. & 240. & . 001024 & & \\
\hline 10. & . 24 & . 0058 & 210. & & & & \\
\hline \(40.005+03\) & 241. & 2j8. & 388. & 240. & . 001031 & & \\
\hline 123. & 3.75 & . 305 & 250 & & & & \\
\hline 96. & 15. & 20. & 900. & 2.5 & 55. & & \\
\hline 29.18 & 25.26 & 40316. & 4. & 500. & & & \\
\hline OO.OOF + J3 & 23158. & 45916. & 200. & 241. & 196. & . 0062 & 93. \\
\hline 45. & 5. & 5. & \(\overline{3}\). & 40. & 666.6 & 5.5 & \\
\hline
\end{tabular}

AOVAINCFD EV PREP. SYST. CDNCEPT D2 ONF MOTOF/BIJFFER W/CVT JVE AXLE DRIVE DE1
 122.
\begin{tabular}{lllllllllll}
3.54 & 7.08 & 10.52 & 14.16 & 17.70 & 21.24 & 24.78 & 28.32 & 31.86 & 35.4 \\
\hline
\end{tabular}

'For sale by the National Technical Information Service, Springfield, Virginia 22161```

[^0]: *The angular momentum and gyroscopic moment of a fiber composite-flywheel is about 25% of that for a steel flywheel of the same energy.

[^1]: *This is energy from the battery. To obtain wall plug energy, the recharger efficiency and battery efficiency must be considered.

[^2]: *For example, the range improvement via use of a flywheel would be greater for the SAE J227A Schedule C than for the Schedule D because there are more stops and starts per mile for the Schedule C.

[^3]: *The 240 volt was convenient to use initially. The system voltage was subsequently reduced to 96 volt but this does not change any of the basic conclusions as all quantities scale directly with power and kVA held constant. the motor losses are independent of design voltage.

[^4]: Homonic Loss \sum_{5}^{31}

[^5]: *Numerical fit of curve provided by NASA Lewis.
 **Numerical fit of curve (ref. 19, p. 200).

[^6]: * Numerical fit of curve from Ref. 15, p. 123.

[^7]: 5.965 cents/mile

 10 Present Value of Life Cycle Cost (Sum of 9) $=\$ 5965$

