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SUMMARY 

The development of engineering requirements for man-in-the 
loop simulation is a complex task involving numerous trade-offs 
between simulation fidelity and costs, accuracy and speed, etc. 
The design of the simulation model has become increasingly 
important and difficult as digital computers play a more cen- 
tral role in the simulations. For real-time digital simulation 
with a pilot in the loop the design problem involves specifica- 
tion of conversion equipment (A-D and D-A) as well as of the 
discrete model of the system dynamics. 

The objective of the work reported here was to develop a 
closed loop analytic model, incorporating a model for the human 
pilot, (namely, the optimal control model) that would allow 
certain simulation design tradeoffs to be evaluated quantita- 
tively and to apply this model to analyze a realistic flight 
control problem. The effort concentrated on the dynamic, 
closed loop aspects of the simulation. Problems associated 
with perceptual issues in cue generation are not considered. 
However, the limitations imposed by the dynamics of visual cue 
generation equipment are considered. 

The human pilot in closed loop control will operate on 
essentially continuous outputs to generate continuous control 
inputs. Thus, even when digital computers are used in an 
aircraft simulation, it is meaningful to consider a continuous 
transfer function approximation to the open loop simulation 
dynamics. Such an approximation is developed in this study. 
It consists of a rational transfer function multiplied by a 

xi 
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transportation lag. The rational transfer function approxi- 
mates the amplitude distortions introduced by discrete integra- 
tion of the flight dynamics. The delay accounts for all the 
phase lags introduced by the simulator components. These phase 
lags are the major source of degraded performance and increased 
workload in closed loop tasks. However, the amplitude distor- 
tions can be significant for open-loop responses. 

The approximate model is then incorporated in the standard 
optimal control model for the human operator. The resulting 
continuous closed-loop model is used to analyze both overall 
simulation effects and the effects of individual elements. 
The results show that, as compared to an ideal continuous simu- 
lation, the discrete simulation can result in significant per- 

formance and/or workload penalties. The magnitude of the 
effects depends strongly on sample period as expected. 

In addition to the continuous model, a hybrid model is 
developed to investigate situations that could not be treated 
adequately with the continuous model. The hybrid model is 
used to investigate the effects of improper pilot adaptation 
to the simulator configuration and to explore the interactions 
between closed loop performance and the design parameters in 
the dealiasing filter and data reconstructor. 

A preliminary validation of the continuous model is per- 
formed by comparing model results with data obtained in an 
independent experiment. The model pro&s capable of predicting 
the effects of computational delays in generating visual cues, 
once model parameters are chosen to match basic conditions. 

xii 



1 . INTRODUCTION 

The development of engineering requirements for man-in-the- 
loop digital simulation is a complex task involving numerous 
trade-offs between simulation fidelity and costs, accuracy and 
speed, etc. The principal issues confronting the developer of 
a simulation involve the design of the cue (motion and visual) 
environment so as to meet simulation objectives and the design 
of the digital simulation model to fulfill the real-time require- 
ments with adequate accuracy. 

In specifying the cue environment the designer must establish 
the need for particular cues as well as the requisite fidelity of 
presentation. The choices made here are highly important because 
the validity and utility of the simulation results can be criti- 
cally dependent upon them and because the decisions involve major 
costs in the simulation. (Cue generation equipment is generally 
very expensive to buy and maintain and, even when available, its 
inclusion will involve additional cost because of the added simu- 
lation complexity.) Unfortunately, the decisions are quite diffi- 
cult to arrive at rationally, inasmuch as the choices depend on 
complex psychological as well as engineering factors: The require- 
ments will be governed by the purpose of the simulation: training 
simulators have different needs than research simulators. They 
will also be problem dependent (e.g., the need for motion cues 
in the analysis of aircraft control in a gusty environment will 
depend on the gust response of the aircraft). Finally, the capa- 
bilities of the human controller both help and compound the prob- 
lem. The human pilot may be able to compensate for simulator 

shortcomings and maintain system performance at the expense of 



workload (assuming the real cues are helpful, an assumption that 
is not always valid). In such a situation, the pilot could give 

a degraded evaluation of the system that would be unwarranted. 

The design of the simulation model has become increasingly 
important and difficult as digital computers play a more central 
role in the simulations. For real-time digital simulation with 

a pilot in the loop the design problem involves specification of 
conversion equipment (A-D and D-A) as well as of the discrete 
model of the system dynamics. The design of an adequate discrete 

simulation is also related closely to the cue generation problem 
inasmuch as the errors and, in particular, the delays introduced 
by the simulation will be present in the information cues utilized 
by the pilot. The significance of this problem has been amply 

demonstrated, most recently in the ASUPT experience [l]. Of 

course, human pilots can compensate for model shortcomings as 
well as for those of cue generation, again with possible effects 

on the subjective evaluation of the simulation. 

"Rules of thumb", open loop response measurements and sub- 

jective feedback from pilots are all helpful in developing the 
engineering requirements for simulators. However, for simula- 

tions in which the operator's principal task is flight control, 
it would be most useful to have analytic models that would allow 
one to explore the inevitable tradeoffs quantitatively in a closed 
loop control context. There has been considerable research into 

the problems of developing digital models that simulate ade- 
quately continuous control systems. Models have been proposed 
based on standard numerical methods for integration of dynamical 
equations of motion, the use of operational methods (particularly 

z-transforms) and the use of specialized integration schemes 12-41. 

The thrust of this research has been to develop techniques that 
will allow the digital simulation to respond in the same fashion 
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as the continuous system being simulated without requiring inor- 
dinate computation times (as might ordinarily be dictated by 
the relatively high bandwidths of many control systems). These 
studies have considered both open- and closed-loop systems, but 
they have ignored the problems associated with a human closing 
the loop. Insofar as the human controller differs from those 
considered previously (in adaptivity, noise injection properties 
and in an ability and propensity to trade performance and work- 
load), prior analytic work on digital simulations of control 
systems is inadequate for defining requirements for piloted 
simulations. 

The objective of the work reported here was to develop a 
closed loop analytic model, incorporating a model for the human 
pilot, that would allow certain simulation design tradeoffs to 
be evaluated quantitatively and to apply this model to analyze 
a realistic flight control problem. The effort concentrated on 
the dynamic, closed loop aspects of the simulation. Problems 
associated with perceptual issues in cue generation were not 
considered. However, the limitations imposed by the dynamics 
of cue generation equipment and the effects of adding or omitting 
information are amenable to treatment by the resulting model. 

The optimal control model of the human operator [5-71 is 
central to the closed loop analysis techniques to be employed. 
This model has been validated and applied extensively and has a 
structure that is well-suited to analysis of the simulation prob- 
lems of interest. The model can be used to generate predictions 
of attentional workload as well as of closed-loop performance. 

This is significant because, as noted earlier, pilots may com- 
pensate for simulation shortcomings but with a workload penalty; 
such simulation-induced operator tradoffs need to be exp,lored. 



Two approaches to the development of a closed-loop model have 
been employed in this study. First, a continuous approximation 

to the open-loop dynamics of the digital simulation was developed. 
This approximation can be used with the existing implementation 
of the optimal control model to explore performance/workload 
penalties associated with the simulation. Although it was believed 

that such an approach would be satisfactory for most applications, 
a second, more exact, approach to model development was also con.- 

sidered to assure that the approximations of the continuous model 
were valid. In particular, a simulation version of the optimal 

control model was used to control an exact representation of the 
discrete simulation dynamics; in this model, those portions of 
the closed loop simulation that correspond to continuous elements 

1 (including the human) operate at a significantly higher sample 

I rate than those corresponding to discrete elements (which operate 
i at simulation sample rates). We have called this latter model 

the hybrid model for obvious reasons. 

I In the remainder of the report we develop and apply the two 
models. In Chapter 2, the elements of the discrete simulation are 
described and the continuous model approximation for the closed- 
loop simulation is developed. The hybrid model is described in 

,Chapter 3. Results of applying the closed-loop models to a poten- 

tial simulation of an F8 target tracking problem are presented in 
Chapter 4 along with a preliminary validation of the model. 
Chapter 5 contains concluding remarks. 

4 
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2. CONTINUOUS CLOSED-LOOP MODEL OF SIMULATION 

:’ ;o Figure 1 is a generalized block diagram of a digital closed- 

loop, piloted simulation. The analysis of the implications of 
various options and tradeoffs on closed-loop performance and 
workload is the problem of interest here. Below, we discuss in 
general terms the elements of the loop and then develop a con- 
tinuous model for the simulation that can be used in conjunction 
with the optimal control model for the pilot. 

2.1 Simulation Description 

2.1.1 Analog to Digital Conversion 

The human controller is assumed to generate a continuous 
control input (or vector of inputs). This continuous or analog 
signal must be converted into a discrete variable for utilization 
in the digital simulation of the vehicle dynamics. This process, 
usually referred to as sampling, produces 
lation. Some errors arise because actual 

(e.g., sampler jitter, aperture errors). 
samplers, errors that are inherent in the 
itself are most important. 

errors in the simu- 
samplers are non-ideal 
For well-designed 
sampling operation 

The well-known sampling theorem states that the sampling 
frequency must be at least twice the highest frequency component 
of the analog signal being sampled. In applying the theorem, 
the highest frequency occurring in the signal (and not the high- 
est frequency of interest) determines the required sampling 
frequency. For reasonable accuracy of the reconstructed signal 

5 
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a much larger sampling frequency is frequently used CL81 
suggests a value of at least ten times the highest frequency 
component). Nevertheless, to prevent aliasing of unwanted high 
frequency signals (e.g., from noise in the analog portions of 
the system or from wide-band remnant injected by the human con- 
troller), the input to the sampler is normally low-pass filtered. 
The design of this filter is part of the simulation design. A 
common choice for the ADC pre-filter is a Butterworth filter 
which has the desirable property of a flat amplitude response 
out to the filter cut-off frequency wc. This cut-off frequency 
(and the filter-order) are design parameters. One would like 
to select wc to minimize aliasing problems while passing the 
frequencies of interest. However, the filter introduces phase 
shift and the lower the value of wc the greater the phase lag 
of the frequencies of interest. This unwanted lag adds to the 
computation time lags in the digital simulation and could exa- 
cerbate an already serious problem. 

2.1.2 Discrete System Modeling .-- 

For the problems of interest, differential equations of 
motion will have to be "integrated" using discrete methods; i.e., 
by replacing the differential equations by appropriate difference 
equations. Methods for accomplishing this in general and for the 
special case of modeling continuous control systems have been 



the subject of extensive research. Principally, the approaches 
have involved numerical methods, operational methods (particu- 
larly z-transforms) and, to a lesser extent, sampled-data control 
theory. Whatever the approach, the major concerns are accuracy, 
stability, speed and programming ease. Generally speaking, two 
types of errors are introduced by one step of the integration 
process, namely round-off and truncation errors. Truncation error 
is a function of the integration method used, whereas round-off 
error is a function of the word length of the computer. The 
manner in which these errors propagate is determined by the sta- 
bility of the numerical method, the computer program and the 
problem itself. 

While in non-real time applications computation time is a 
practical consideration, in the problems of interest here it is 
a design specification. The necessity for matching the simula- 
tion time-base to that of the human controller limits the com- 
plexity of the numerical integration schemes that can be employed. 
On the other hand, given the feedback nature of the system and 
the sampling frequencies that must be used because of the human, 
numerical accuracy errors are usually of secondary importance. 

Of primary importance for closed-loop control problems 
are the phase-shift (or delay) and amplitude distortion intro- 
duced by the integration process. Many integrators have been 
analyzed to determine their phase and amplitude characteristics 
(see e.g., [2]) and methods for compensating such integrators, 

both continuously and discretely, have also been studied (e.g., 

[31) - Many of the methods have considered matching the total 
digital simulation loop to that of the continuous control system. 
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Thus, the integration scheme is considered in conjunction with 
the data reconstruction process and other system elements. The 
overall digital simulation system is "compensated" so as to 
achieve some desired goal such as matching the static gain and 
closed-loop eigenvalues of the continuous system [J]. 

Here, we will be primarily interested in the overall dis- 
tortions introduced by discrete integration of aircraft dynamic 
equations of motion and in developing continuous models reflect- 
ing those distortions. This will be discussed in detail in 
Section 2.2. 

2.1.3 Digital to Analog Conversion (Data Reconstruction) -- --c~-~ _ - ----. --- 

The discrete simulation model produces outputs at discrete 
times which must be converted to continuous inputs for process- 
ing by the human operator. This involves some sort of data 
reconstruction process. Based on sampling theory, an ideal low 
pass filter is needed to recover the wanted information while 
eliminating the undesirable high frequency outputs that are a 
result of the sampling. Such filters cannot be achieved prac- 
tically, and data reconstruction is accomplished by some form 
of "data-holding". The choice of the data reconstructor is open 
to the designer, with the tradeoffs involving complexity, accu- 
racy and speed. In general, the higher the order of the data 
reconstruction process the sharper the amplitude characteristic 

cuts off. However, distortion of high frequencies in the band 
of interest and increased phase lag also usually result from 
increased order reconstruction. In our subsequent analysis, we 
will limit consideration to zero-order and first-order holds 
for data reconstruction. 

9 



2.1.4 Cue Generation (Display Dynamics and Control Loading) 

The cue generation simulation is simplified considerably 
in Figure 1, in keeping with the limits of this program. In 

particular, we show only a servo system that might be associated 
with generating visual cues. The basic idea is to attempt to 
consider the effects of dynamics in generating visual cues 
without getting deeply involved in problems related to the 
perception of these or other cues. Thus, the model accounts 
for the information available and the dynamics involved in 
presenting that information.* 

A block modeling control loading is also included in Figure 
1. The analysis of control loading will be limited to examining 
the effects of digital generation of the loading forces on 
closed-loop performance. The subtleties associated with percep- 
tion of force feedback or of subjective evaluations of control 
loading will not be explored. These problems are, of course, of 
major importance in deciding on the requisite cue simulation but 
they are left to future study. 

2.1.5 Optimal Control Model for Pilot 

The optimal control model (OCM) of the human operator is 

illustrated in Figure 2. The model has been documented exten- 

sively [e.g., 5-73. Here some of the features of the model that 
are particularly relevant to subsequent discussions are reviewed 
briefly. Figure 2 illustrates the structure of the OCM. 

* One may also treat motion cues in a similar manner [9]. However, 
'to limit the scope of this effort we have concentrated on fixed- 
base simulation, leaving the inclusion of motion to later study. 

10 



DISTURBANCES ii(t) 

I 
'1 , 

x(t) 
- DISPLAY . 

y it,= c_ !! 0) 

A . 

---------L---------------------I 

4 ~ 

PREDICTOR +- KALMAN ‘Yp(t) TIME 
ESTIMATOR - OELAY 

+ t 

i 
I 
I 
I 
I 
I 

_ I 

L --------------------- ---a--- ----J 

HUMAN OPERATOR MODEL 

Figure 2.- Structure of the Optimal Control Model. 



The OCM as originally conceived and developed presupposes 
that the system dynamics, corresponding to the element to be 
controlled, may be expressed in state variable format 

(1) 

y(t) = $x_(t) + EC _uw 

where ,x is the n-dimensional state-vector, y is an m-dimensional 
vector of displayed outputs, ,u is the r-dimensional control input 
vector and F is a vector of disturbance and/or command inputs. 
The system matrices (AC,BC,CC,-C D ,I&) are generally assumed to be 
time-invariant, although this restriction has been relaxed in 
recent investigations [lO,ll]. The above system dynamics 

include the linearized dynamics of the aircraft (or other con- 
trolled element) and any dynamics associated with measurement, 
control and display systems. The subscript c on the system 
matrices is included to emphasize that the dynamics are assumed 
to represent a continuous system. 

For purposes of discussion it is convenient to consider the 
model for the pilot as being comprised of the following: (i) an 
"equivalent" perceptual model that translates displayed variables 
into noisy, delayed perceived variables denoted by yp(t)*; 

* A threshold is also considered part of the perceptual process, 
but may actually be used to model the effects of non-idealized 
displays. The threshold is treated by statistical linearization 
techniques. 

12 
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(ii) an information processing model that attempts to estimate 
the system state from the perceived data. The information pro- 
cessor consists of an optimal (Kalman) estimator and predictor and 
it generates the minimum-variance estimate h(t) of x(t); (iii) a 
set of "optimal gains", L*, chosen to minimize a quadratic cost 
functional that expresses task requirements; and (iv) an equiva- 
lent Nmotor" or output model that accounts for "bandwidth" limi- 
tations (frequently associated with neuromotor dynamics) of the 
human and an inability to generate noise-free control inputs. 

The time-delay, observation- and motor-noises and the 
neuromotor-lag matrix are included to account for inherent limi- 
tations on human processing and perceptual-motor activity. 
Methods for choosing values for these quantities have been 
determined by matching experimental data and these values have 
been found to be generally independent of task parameters 151. 

The time delay or transport lag is intended to model delays 
associated with the human. All displayed variables are assumed 
to be delayed by the same amount, viz. T seconds. Delays intro- 
duced by the simulation can be added to the human's delay without 
any problem, so long as all outputs are delayed by the same 
amount. If such is not the case, then all outputs can be delayed 

by ~1 where T is now the sum of the minimal delay introduced by 
the simulation and the operator's delay, and additional delays 
for the outputs requiring them can be modeled via inclusion of 
Pad6 approximations in the output path. 

The observation and motor noises model human controller 
remnant [12] and involve injection of wide-band noise into the 
system. This noise is "filteredIt by the other processes in the 

13 



pilot model and by the system dynamics. It should be emphasized 
that the injected remnant is a legitimate (if unwanted) part of 
the pilot's input to the system and, therefore, significant amounts 
of remnant power should not be filtered out in the de-aliasing 
process of a valid simulation. 

The neuro-motor lag matrix limits the bandwidth of the model 
response. Typically, for wide-band control tasks, involving a 
single control variable, a bandwidth limitation of about lo-12 
rad/sec gives a good match to experimental results (i.e., a neuro- 
motor time constant of TN Z .08 - .lO). For many aircraft control 
tasks there is no significant gain (i.e., reduction in error) to 
be obtained by operating at this bandwidth, and there can be some 
penalty in unnecessary control activity. For such tasks larger 
time constants (lower bandwidths) have been observed. In these 
cases, if the neuro-motor time constant is arbitrarily set at 
the human's limit (say TN =: .l) good predictions of tracking or 
regulation performance are usually obtained; but the control 
activity and pilot bandwidth tend to be overestimated. 

It may be useful to have more accurate estimates of pilot 
bandwidth for making decisions concerning approximations to the 
discrete simulations. Therefore, TN was chosen in this study 
on the basis of a model analysis of the tradeoff between error 
and control-rate scores. The procedure is illustrated by Figure 
3, which is a curve showing the tradeoff between error and 
control-rate for the F-8 longitudinal short-period dynamics, 
and the target tracking input to be analyzed later in this report. 
Shown on the curve is the rate-limit for the F-8 actuator; TN 
must be chosen so that this limit is not reached or violated a 

14 
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significant portion of the time (so the linearized analysis is 

valid). A value for TN of approximately . 15 (an operator band- 

width of about 1 Hz) was chosen on the basis of this curve. This 

value gives an rms control rate that is less than the maximum. 
The error score exceeds that obtained with TN = .l by less than 
lO%, while the control rate is less than half of that obtained 
with the wider bandwidth. 

The optimal estimator, predictor and gain matrix represent 

the set of "adjustments" or "adaptations" by which the human 
attempts to optimize his behavior. The general expressions for 

these model elements depend on the system and task and are 

determined by solving an appropriate optimization problem ac- 
cording to well-defined rules. Of special interest here is 

that, in the basic continuous OCM, the estimator and predictor 

contain "internal models" of the system to be controlled and 
the control gains are computed based on knowledge of system dy- 
namics. The assumption is that the operator learns these dynamics 
during training.* 

The question arises as to the appropriate internal model 
when the human controls a discrete simulation of a nominally 
continuous system. It would appear that if the operator is 

trained on the simulation, then the appropriate model corresponds 

to the simulation model.** This will be the assumption employed 

with the continuous model. 

- 
* This is generally more convenient than assuming that the 

external model differs from the true model and also leads to 
good performance prediction [13] 

** If the simulation model is poor, a control strategy that is 
inappropriate for the actual system could be learned with 
negative results in, say, transfer of training. This issue 
can be addressed with the hybrid model described later. 
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Finally, it should be mentioned that the solution to the 
aforementioned optimization problem yields predictions of the 
complete closed-loop performance statistics of the system. Pre- 

dictions of pilot describing functions and control and error 
spectra are also available. All statistical computations are 
performed using covariance propagation methods, thus avoiding 
costly Monte Carlo simulations. This is not the case for the 
hybrid model described later in Chapter 3. 

L- 
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2.2 Open-Loop Simulator Dynamics 

As noted above, the application of the standard OCM to 
closed loop analysis requires a continuous state representation 
of the complete controlled element. This state-variable des- 
cription can be arrived at from basic derivations of dynamical 
equations, or it can be developed to "match" or approximate 
the input/output characteristics of the controlled element. 
We shall develop a continuous model for the simulation utiliz- 
ing each approach to some extent. In particular, approximate 
transfer functions for the simulation will be developed first. 
Inasmuch as there is not a unique state representation corres- 
ponding to the transfer function, we will choose the form that 
corresponds to that which would be derived based on aircraft 
dynamical equations of motion. This procedure, we believe, 
provides the most insight into the changes in open-loop charac- 
teristics introduced by the discrete simulation of continuous 
aircraft dynamics. 

2.2.1 System Function From Stick Input to Displayed Output 

Figure 4 is an elaborated diagram of the simulator portion 
of Figure l*. Note that the output of the visual servo, y(t), 
is a continuous signal as is the input, u(t), to the A-D de- 
aliasing pre-filter.** We begin by deriving the system function 
that relates these two continuous quantities. 

* Control loading is neglected in this analysis, but will be 
considered in the hybrid model. 

** For simplicity, we considersingle-input, single-output systems. 
The results obtained here can be generalized to more complex 
situations. 
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For analysis purposes we use the notation implied in 
Figure 4. Variables or functions with argument s represent 
Laplace transforms and those with argument z correspond to 
z-transforms. The starred quantities correspond to Laplace 

transforms of impulse sampled signals or of functions of z and 
are defined, e.g., by [2] 

ul*(s) L u,(z) = 
ST 

$ 7 ul(s+jnQ) 
z=e n=-cc 

or 

D*(s) = D(z) ST z=e 

where 

Q=% = sampling frequency. 

(2) 

(3) 

(4) 

From Figure 4, we obtain 

Y(S) = F2(s)yl*(s) = F2(s)D *(s)ul*(s) 
(5) 

Y(S) = F2(s)D*(s) {$ '-Fl(s+jnn)u(s+jnn)) 
n m 

Equation (5) gives the exact transfer relation between u(s) and 

y(s) - However, it is not a useful expression from the standpoint 
of closed-loop modeling because of the infinite summation. 
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The system function, G(s), for a linear system (such as 
the simulation system under analysis) may be obtained by com- 
puting the steady-state response of the system to an input of 
the form est. That is, 

G(s) = $+ 
u(t) = e st 

It is shown in Appendix A that the system function from u(s) to 
y(s) (in steady-state) is given by* 

Y ss (t) A 
u(t) st = G(s;t) 

u(t) = e 

s+jna)D*(s+jnQ)ejnfit > Fl(s) 

and, since D*(s) is periodic in s with period jQ, 

G(s;t) = + : F2( s+ jnR) e jnRt D*(s)F@ 
1 

(6) 
n=--co 

We note that, as a result of the sampling, the system function 
between continuous output and continuous input is periodic in 
time with a period equal to the sampling period. 

If the output y(t) is considered only at sampling instants, 
which amounts to introducing a "fictitious" sampler at the output 
as is done for instance in [21 or [14], then a time-independent 
transfer function is obtained, viz. 

G(s;t) sample = G(s) = F2 *(s)D*(s)Fl(s) (7) 
times 

We shall consider G(s) defined in (7) to be the "exact" transfer 
function for the simulation. Note that F2*(s) = (VH~)*(S). 

* The notation G(s;t) is used to emphasize the time varying 
nature of the system function. 
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2.2.2 Approximations for the Open-Loop Transfer Function 

Equation (7) is intractable for use with the continuous OCM. 
Therefore, it will be necessary to approximate (,7) for closed- 
loop analysis. A straightforward approximation is to ignore all 
but the n=O term in the expression for F2* which results in 

G(s) " 
F2(s)D*(s)Fl(s) 

(8) 
T 

In utilizing (8) it will be necessary to approximate D*(s); the 
procedure for doing this will be discussed in a subsequent 

section*. 

The approximation of Equation (8) will be good provided 
that the de-aliasing filter Fl(s) is effective and that only 

the " low" - frequency range is of interest. Note, too, that 
this approximation can also be obtained by neglecting all but 
the first order terms in the exponentials in ul*(s) = u,(z) ,,,sT; 
this is clearly valid for "small" T. 

An alternative method of approximating G(s) is suggested 

by [21. This method is based on introducing a fictitious sampler 
and hold following the continuous input (u(t) in Figure 4) and 
another fictitious sampler at the output. Then the Bode response 
between the envelopes of the sampled output and input is given by 

$j$- = F2* (s)D*(s) (FIFh)*(s) A G*(s) (9) 

* Suffice to say, for now, that D*(s) will be approximated by 
a rational transfer function multiplied by a pure delay so 
as to yield a good match to the Bode response for D*(s) in 
the frequency range of interest. 
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- 

where Fh(s) is the hold used to reconstruct the sampled u. Since 
the hold has been introduced to facilitate the analysis, the 
transfer function from u(s) to the envelope of y*(s) is then 
approximated by 

G*(S) ,” G* (s)e’h’ 
G(s) = Fh(s) 

(10) 

where rh is the delay introduced by the hold. 

The last, and simplest, approximation we will consider is 
dictated by the response characteristics of the de-aliasing 
filters and data reconstruction elements that are of interest 
here. In particular, the transfer functions for the de-aliasing 
filter and servo are, respectively, 

Fl(s) = 
“C3 

S3+2Wcs*+2wc~s + w 3- C 

V(s) = 
wn2 

sz+2sw,s+w * n 

The hold transfer function is either 

pe-ST 
Ho(s) = s 

or 
Hl(s)='T(l+Ts) 

(11) 

(12) 

(14) 

For the simulation studies to be analyzed subsequently 
sample periods,T, of l/32, l/16, l/10 will be considered. 
Therefore, if the cutoff of the de-aliasing filter is chosen 
on the basis of the sampling theorem, wc > 5Hz. The visual 
servo dynamics to be used are those of the visual system of the 
NASA LRC Differential Maneuvering Simulator (DMS) [15]. For 
that system, wn = 25 rad/sec and 5 = .707. 
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With the parameter values as just specified, each of the 
transfer functions of (11) - (14) may be approximated reason- 
ably well by a pure transport lag in the frequency region of 

interest for manual control (tilj< -10 rad/sec). That is, 

Fl(s) = e-'rFs 

V(s) ," e-'VS 
(15) 

Ho(s) :: e-ToS 

Hi(s) :: e 
21s 

where 

'F :: 5 2T = 
C -rr 

T 
V 

Z (r;w,)-' = .057 set 

T 
0 

= T/2 

-rl =T 

Substitution of (15) into (8) yields 

Fl (s ID* b)F2 s) = Fl(s)D*(s)V(s) H(s) 

E D*(S) exp -(TF + TV + ~i)s 

where i = o or 1 for the zero-order or first-order hold, 
respectively. 

(16) 

(17) 

The three approximations (8), (9) and (17) are compared 
with the exact expression of (7) in Figure 5, for T = l/10 
and Hi(s) = Ho(s). The D* in these figures corresponds to 
Euler integration of the F8 short period dynamics. In the 
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region w < 10 rad/sec all three approximations appear to be 
adequate. Equation (17) will, therefore, be used to model the 
effects of the A-D; hold and servo dynamics, inasmuch as this 
expression is both simple and cost-effective to employ in the 
continuous model. The cost-effectiveness arises from the fact 
that with Equation (17) no more states are required to model 
the open loop simulator dynamics than are needed for the con- 
tinuous problem being simulated; all that is changed is the 
time delay associated with the human operator. Although the 
results are not shown here, it was verified that including the 
exact transfers for the de-aliasing filter and visual servos in 
the closed loop analysis produces results that are virtually 
the same as those obtained with the time delay approximation. 

2 .3 Effects of Discrete Integration 

In the previous section the transfer function D*(s) was 
left unspecified as was the manner in which it was to be approxi- 
mated for continuous closed-loop analysis with the OCM. In 
general, D*(s) will be a "distorted" version of the continuous 
system dynamics that are to be simulated. Some general features 

of the distortions introduced by various integration schemes are 
analyzed and presented in Appendix B. Here, we present results 

pertinent to the F-8 dynamics that are to be analyzed later. 
Specifically, after a brief discussion of the basic effects of 
discrete simulation, we show how two integration schemes that 
are of particular interest for real-time simulation, Euler and 
Adams-Bashforth (A-B), effect the open-loop ~-8 dynamics. We 
then develop suitable approximations for D*(s) to be used in the 
closed-loop analysis. 
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2.3.1 Basic Considerations 

Consider the continuous vehicle-dynamics as described in 
the state-variable form of Equation (1). For constant system 

matrices, the transfer matrix between system outputs and control 

inputs is given by 

y(s) = $(s) $s) 
‘c(s) = Ec(Sp&crl EC + DC 

(18) 

When Equations (1) are "integrated" digitally, they lead 
to a discrete approximation with the following transfer matrix 
[see Appendix Bl 

_D* (s) = Ccd[Zpfid] -1 
Ed + Ed1 ST z=e 

where the matrices in (19) depend on the particular integration 

scheme and sample period as well as on the corresponding contin- 
uous system matrices. Several points concerning Equation (19) 

are noteworthy. First, the elements of the discrete transfer 

matrix, Q*(s), cannot, in general, be expressed as the ratio 

of two polynomials in s of finite degree. Second, the Bode 

responses corresponding to (19) will differ from the continuous 
responses in both amplitude and phase; and, further, the responses 

for the discrete system are periodic in w with period equal to 
2lT 
-T' Third, the poles and zeros of Equation (19) are infinite 
in number and are given by, for example, 

Pi = of + j(Wi + 2nk); k = 0, fl, +2,... (20) 
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Moreover, the principal values for the poles and zeros, i.e., 
those with k = 0, are not, in general, equal to the correspond- 
ing poles and zeros of the continuous system. Finally, simple 
integration schemes, such as Euler, will have the same number of 
principal poles as the continuous system, whereas multi-step 

integration schemes, like A-B, will introduce principal roots 

that are spurious. 

2.3.2 Effects on Open-Loop F-8 Dynamics -.-_ - 

The longitudinal and lateral dynamics for the F8 aircraft 
that are to be the subject of the closed loop analysis are given 
in state variable format in Appendix C. The dynamics correspond 
to a single flight condition, but involve both CAS-ON [161 and 
CAS-OFF modes. In addition, a simplified set of lateral dynamics 
corresponding to perfect coordination is included. 

Characteristic Modes 

The effect of integration scheme and sample period on the 
characteristic modes of the F8 are shown in Tables 1 and 2. 
Table 1 is of prime interest here in that it shows how the basic 
modes are "perturbed" by the discrete simulation: Table 2 lists 
the Wspurious" modes of lowest frequency introduced by A-B 
integration. 

It can be seen from Table 1, that Euler integration has the 
greater effect on the location of the characteristic modes. In 
terms of the basic, unaugmented dynamics its main effect is .a 
reduction in the magnitude of the real parts of the character- 
istic roots. Thus, the damping ratios for the longitudinal 
short-period mode and for the lateral dutch roll mode are reduced. 
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Table 1. Effect of Integration Scheme on Vehicle Modes 

Integration 
Scheme 

Sample Period 

Longitudinal 
CAS-off: 

Short Period .291; 2.28 
(Csp; '%p) 

CAS-On : 

Short Period -64; 2.78 
(Csp; %p) 
CAS Mode .91; 7.42 
(b*; Wnc*) -cc* .79 

Lateral 
CAS-off: 

Dutch Roll I .128: 2.64 
15d; %) 
RollSubsidenc .42 
tTR) 
Spiral 40. 
tTR) 

CAS-on 
Dutch Roll .621; 2.84 

(<d; @hd) 
RollSubsidencej .22g 
('IR) 
Spiral 76.9 
('R) 
CAS Mode ! . 20 , 
(TM) 

Coordinated i 

RollSubsidence -388 
tTR) I 
Spiral 109.4 
('ls) ( 

l- 
l/32 l/16 l/10 

ADAMS-BASHFORTH 
I l/16 I l/32 ' l/10 

257; 2.30 ,222; 2.32 .18; 2.33 291; 2.28 .294; 2.30 300; 2.33 

616; 2.86 ,586; 2.94 

C85; 8.31 .840; 9.45 

.78 .76 

544; 3.03 65; 2.79 

73; 11.0 918; 7.30 

.74 .79 

145; 2.65 304; 2.65 128; 2.65 

. 65 2.79 

. 939; 6.92 

. 79 

-30; 2.67 

67 2.81 

,965; 6.14 
.80 

087; 2.65 131: 2.72 

.40 .387 .43 

40. 40. 

. 37 . 42 

40. 40. 

.42 

40. 40. 

592: 2.91 

.! 

. 

.t 

’ . 516; 3.08 624; 2.84 532; 2.85 

t 

. 

. 

. 

. 649; 2.87 

. 214 

76.9 

56: 2.99 

.196 .175 .231 .238 .251 

76.9 76.9 69.0 63.3 78.7 

.184 .167 .144 .202 ,209 .224 

.373 

109.4 

.356 .336 .389 .392 

109.2 109.2 113.6 113.6 

.400 

111.7 

EULER 

* This result is suspicious and may reflect numerical error. 



For the lowest sampling rate, T = .l set, the reduction in 
damping is quite significant. The effect on the natural fre- 
quencies of these modes is minor, with frequency increasing with 
decreasing T. The reduction in damping will result in a simu- 
lated aircraft with short period and dutch-roll handling charac- 
teristics that are poorer than those of the "true" aircraft. 
On the other hand, the reduction in magnitude of the real parts 
of the characteristic roots leads to an improved roll response. 
In particular, the time constant of the roll subsidence mode is 
reduced by Euler integration, thus yielding quicker roll response. 
For T = .l, the time constant is reduced.from .388s to .336s, 
i.e., by almost 15%. The effect of Euler integration on the 
spiral mode is negligible. 

The effect of A-B integration on the aircraft modes is both 
smaller and in a different direction. Damping ratios for the 
short period and dutch-roll modes are increased by A-B integra- 
tion, although by amounts so small as to probably be negligible. 
The changes in the natural frequencies of these modes are similar 
to that observed for Euler integration. The roll-response is 
degraded slightly in the A-B case and the spiral mode is appar- 
ently unaffected by the integration scheme. 

The CAS-on configurations show some of the same trends as 
those above. In particular, the effects on damping ratios and 
time constants are qualitatively the same as for the CAS-off 
configuration. However, the pitch CAS-mode natural frequency* 
is affected to a much larger extent than is the frequency of the 
short period mode. Euler integration tends to increase the fre- 

quency of this mode as before. On the other hand, for A-B integra- 

tion the CAS-mode natural frequency decreases with sample period, 
a trend that is opposite to that for the other modes. 

* The pitch CAS is a C *-model following design and is described 
in Section 4.1. 33 



As we have seen, the effects of A-B integration on the 
aircraft and CAS modes is generally less than that for Euler 
integration, but A-B introduces spurious roots. The frequency 
and damping for the unwanted roots with lowest frequencies are 
given in Table 2. It can be seen that the spurious roots are 
outside the frequency range of interest for closed-loop manual 
control and, for sample periods as low as .03125, are unlikely 
to present any problems. However, fos the higher sample per- 
iods considered, the roots could lead to undesirable or incor- 

rect open-loop responses (e.g., responses to step inputs). In 

general, the spurious roots could result in an interaction with 
CAS modes and structural modes (if included) that would be 
absent in a continuous simulation or in a discrete simulation 
with a simpler integration scheme. We will not consider this 
issue further in this report but mention it as a factor when 
considering multi-step integration schemes for simulation. 

Bode Responses 

The above analysis ignores zeros and, generally, does not 
give the full picture with respect to the distortions introduced 
by digital integration. Indeed, from a closed-loop standpoint, 
the most important effects of discrete integration are likely 
to arise from phase distortion (lag) rather than from perturba- 
tion of the characteristic modes. To get a better appreciation 
of the overall effects of discrete integration, and as a prelude 
to approximating D*(s), selected Bode responses for the F8 dy- 
namics are presented in Figures 6-9. Additional Bode responses 
for the cases of interest is given in Appendix B. 

Figure 6 shows the effect of Euler and A-B integration on 
the pitch/elevator (O/Be) transfer function for the F8 unaugmented 
short period dynamics. The continuous transfer function, the 
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TABLE 2 
LOWEST FREQUENCY SPURIOUS MODES 
FOR ADAMS-BASHFORTH INTEGRATION 

Sample Period l/16 I l/10 

5 Wn(rad/s) ' Wn(rad/s) ' Wn(rad/s) 
Longitudinal 

CAS OFF: .88 121. .83 49.9 .79 26.7 

CAS ON: . 60 105. .38 44.4 .15 25.8 
. 81 121. .74 50.6 .65 27.3 

Lateral 

CAS OFF: 89 :72 114. .85 46.6 .81 24.5 144. .62 
63.7 .52 36.7 

CAS ON: . 82 120. 74 
. 60 126. 144 

50.0 66 26.9 
56.1 :29 32.8 

Coordinated 

. 70 142. .60 62.9 150 36.2 

corresponding discrete transfer function and a curve of the 
distortion introduced by the discrete integration are all pre- 
sented. Distortion is defined as the ratio of the discrete 
Bode response to the continuous response. Thus, in terms of 
amplitude and phase, it is the difference between the two 
responses, where amplitude is given in dB. Curves are given 
for the highest (T = .l) and lowest (T = .03125) integration 
step of interest. (It has been assumed that the integration 
step size is equal to the sample period.) Figures 7-9 Contain 
similar plots for the roll angle/aileron ($/gA) for the lateral 
CAS/ON configuration and for the $/&A and transverse line-of- 
sight tracking error/aileron (Rc~/G~) transfers for the "coor- 
dinated" lateral dynamics. 
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Figure 7.- Roll/Aileron Bode Responses, Lateral CAS-ON Dynamics. 
a) Continuous. 
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The following observations may be made from these responses 
and those in Appendix B. 

(i) For T = .l, both integration schemes evidence the 
expected periodic behavior with the responses 
repeating at intervals of q = 62.8 rad/sec. The . 
lower sampling periods repeat beyond the range of 
frequencies that are plotted. This sampling effect 
is outside the frequency range of interest for 
closed-loop manual control (say w < lo-12 rad/sec 
for the tasks considered here). 

(ii) As expected, both integration schemes show decreases 
in distortion with decreases in sample period. 

(iii) In the frequency range of interest, the amplitude 
distortion for Euler integration is greatest in the 
region of the oscillatory characteristic mode as a 
result of the reduction in damping discussed in the 
previous section. On the other hand, A-B integra- 
tion tends to show significant amplitude distortion 
at frequencies greater than the characteristic fre- 
quencies, at least for T = .l. This distortion 
introduced by A-B integration will be discussed later. 

(iv) The phase distortion for both schemes corresponds to 
increased phase lag at almost all frequencies. For 
Euler integration, the added phase lag is undoubtedly 
the dominant "error" introduced by discrete integra- 
tion. For A-B integration the additional phase lag 
is almost negligible in the range of interest, but 
there is substantial lag at higher frequencies. 
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For longitudinal control, both outputs that drive 
the visual servos, pitch angle and LOS vertical error, 
have the same additional phase lag as a result of 
the discrete integration. This is true for both 
CAS-OFF and CAS-ON modes. For Euler integration 
of the CAS-OFF configuration the additional phase 
lag corresponds to a transport lag, or time delay, 
of -T seconds: for the CAS-ON configuration the 
additional delay is -% seconds. 

(vi) For lateral control the two outputs driving the 
visual servos, bank angle and transverse LOS error, 
are also delayed by the same amount whether the 
CAS-OFF or CAS-ON dynamics are considered. However, 
unlike the longitudinal control case, the effective 
delays for Euler integration are the same for both 
CAS-ON and CAS-OFF, viz., -T seconds. For Euler 
integration of the "coordinated" dynamics, the 1$/6 
transfer has an added delay of about T seconds, 
but the additional delay for the RE~/~ transfer is 
about 2 seconds. 

2.3.3 Continuous App roximations of Discrete Bode Responses 
(' 

We are now in a position to complete the continuous approxi- 
mation to the open-loop simulator dynamics by deriving suitable 
approximations to D*(s) for the various conditions of interest. 
Because of the restrictions imposed by the OCM, we restrict the 
possible approximations to the following form: 

yi -= D* ij (') ~ “ij (s)e -Tcs 

5 
(21) 
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where D(s)is a ratio of finite polynomials in s with numerator 
degree less than or equal to the degree of the denominator. 
Note that the same "computation" delay, ~~ is associated with 
each transfer function. This was seen to be a good approxima- 
tion for all sets of dynamics considered here but the coordinated 
dynamics. The discrepancy in delays for coordinated dynamics 
will be accounted for by adding a first-order, rational Pade 
approximation to the RET/6 transfer for this case. The values 
for ~~ for the various dynamics and the two integration schemes 
are given in Table 3.* 

The general problem of determining a D(s) that best approxi- 
mates D*(s)eTCS over some frequency range (say, 0 < w<, 12 rad/sec) 
is a variant of the identification problems examined in 
control theory (see, e.g., [171) - A variety of sophisticated 
algorithms have been developed to attack the problem but no 
general solution exists. The application of such algorithms to 
the determination of D was beyond the scope of this effort so 
simpler, more intuitive, schemes were employed. 

The simplest approach to selecting 6 is to use (18) and 

let 

Dij (S) = ~c. (S) (22) 
U 

From the standpoint of the OCM, this means that the state equa- 
tions for the original dynamics are used and discrete integration 
is modeled by adding a delay determined from the phase distortion. 
As we have stated earlier, such an approximation probably accounts 
for the major source of difficulty in discrete integration. How- 
ever, to employ it exclusively is to leave us somewhat uncertain 

as to the closed-loop significance of the amplitude distortions. 

* The delays for A-B integration are large to offset lead intro- 
duced by an added zero to account for amplitude distortion 
(see below). 
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TABLE 3 

APPROXIMATE INTEGRATION DELAYS FOR CONTINUOUS MODELING 

Longitudinal 

CAS-OFF 

CAS-ON 

Lateral 

CAS-OFF 

CAS-ON 

Coordinated 

ROLL ANGLE 

TRACKING ERROR 

EULER 
17 
I I 

T 

3T 
2 

T 

T 

T 

3T -.5T 
2 4 

ADAMS BASHFORTH" 
(WITH ZERO INCLUDED FOR 
AMPLITUDE DISTORTION) 

3T 
2 

3T 
2 

** 

** 

-ST 
4 

* The effective delay for Adams-Bashforth in the bandwidth for manual control 
is virtually negligible. 

** Zero-Modeling of A-B integration was not performed for Lateral Dynamics 



Approximations were found that better accounted for the 

amplitude distortions in simulating the longitudinal control 
task and the lateral control task with coordinated dynamics. 
For Euler integration, this was accomplished by finding values 

for the aircraft stability derivatives that gave characteristic 
modes approximately equal to the principal roots obtained from 
the discrete integration of the original dynamics.* Table 4 

shows the changes in stability derivatives necessary to match 
the roots of the discrete system. Figure 10 compares the result- 

ing approximate continuous transfer functions with the discrete 
Bode responses for Euler integration of the longitudinal CAS-OFF 
dynamics. It can be seen by comparing these results with those 
of Figure 6 that this approximation is closer to the correspond- 
ing discrete Bode response than is the original continuous 
transfer. This is also true for the approximation to the pitch 
CAS-ON dynamics as is seen in Figure 11, although the absolute 
agreement between approximate CAS-ON dynamics and discrete Bode 
response is not as good as for the unaugmented case. 

The strategy for approximating A-B integration was some- 

what different. Values for stability derivatives were adjusted 

to match the characteristic modes as in the case of Euler inte- 
gration. However, the major source of amplitude distortion in 
A-B integration is not the result of the relatively minor pole 
perturbations introduced by this scheme. Rather, the amplitude 

* In the case of the longitudinal CAS-ON dynamics, both stability 
derivatives and CAS parameters were changed to obtain the 
requisite approximation. 
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TABLE 4 

STABILITY DERIVATIVE CHANGES 
TO MATCH DISCRETE ROOTS 

Integration / 
Scheme Euler Adams-Bashforth 

Sample Period Continuous j l/32 l/16 l/10 l/32 l/16 1 

Lonqitudinal 

Mq -.487 -.346 -.194 I 0 -.494 -.516 -.562 

MCX -4.79 -5.00 -5.22 '-5.43 -4.79 -4.86 -4.96 

Coordinated 

L -2.58 -2.69 -2.82 -2.98 -2.58 -2.56 -2.51 
P 

L6 17.24 17.95 18.83 19.91 17.24 17.07 16.74 
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distortion for A-B is characterized by the amplitude ratio not 
"rolling off" as rapidly as the continuous amplitude ratio in the 

mid- to high-frequency region (the actual frequency range depends 
on the sample period). This effect can be modeled by introducing 
an appropriately located zero in the transfer function. However, 
the introduction of such a zero will add phase lead that must be 
cancelled by adding transport lag. 

Figure 12 shows the approximation to the A-B 0/G, CAS/OFF 
Bode response for T = .l. The approximate transfer function 
was generated by introducing a zero at w 2 6.5 rad/sec, setting 
T = 

C .14 seconds and perturbing the pitch damping and static 
stability derivatives as indicated in Table 4. Similar agree- 
ment was obtained for the longitudinal CAS/ON and coordinated 
A-B Bode responses and for different values of T. For the 
smaller values of T, the frequency of the zero increases (to 
w 22 rad/sec for T = . 03125) and the amount of delay that must 
be added is consequently reduced. The effective delays for the 
A-B approximation with the zero added are given in Table 3. 

The nature of the approximation for A-B integration may 

be understood better by comparing the z-transform for a "discrete 
A-B integrator" to that for the Euler integrator. These are 
given by (see Appendix B) 

1 A-B: s -+ ; ;;$-;; 

T EULER: ; -+ - z-l 

(23) 
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When compared with Euler integration, A-B has an additional 
pole and zero in the z-plane. The lead introduced by the zero 
apparently more than compensates for any lag introduced by the 
added pole, thereby giving the overall desirable phase charac- 
teristic for A-B integration. However, for the continuous model- 
ing being attempted here, if the amplitude distortion is to be 
accounted for by adding a zero to the continuous transfer func- 
tion, then the additional delay implied by the second order 
denominator must also be included. 
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2.4 Summary 

In the previous sections the open-loop dynamics for a fixed- 
base simulation were considered. Continuous approximations to 

these dynamics were developed for use in the closed-loop analysis. 

The basic result was that for the frequency range likely to be 
of interest in continuous aircraft control problems, the simulator 

transfer function could be modeled as 

y(s) = 
u(s) 

D(s) eBTSS (24) 

where D(s) is an "approximation" to the Bode response for digital 

integration of the vehicle dynamics (denoted by D*(S)). The 

simulator delay, ~~~ is given by 

-r = -rF + -cH + TV + T 
S C 

(25) 

where -rF, ~~~ -cv and ~~ respectively, are the delays introduced 

by the de-aliasing filter, hold, visual servo and CPU (discrete 
integration). 

It was found that very good approximations to discrete Bode 
responses could be obtained for the longitudinal control tasks 
and for the coordinated lateral control task to be analyzed later. 
These approximations involved perturbation of aircraft stability 
derivatives and CAS parameters to yield continuous modes that 
agreed with the discrete modes and, in the case of A-B integra- 
tion, the introduction of a zero in the continuous vehicle trans- 
fer. Similar approximations for the full lateral dynamics, - 
CAS-ON or CAS-OFF, were not obtained. It is anticipated, however, 
that by incorporating the phase lags introduced by discrete 
integration, the dominant effects on closed-loop performance 
and workload would be accounted for in these cases as well. 
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The approximation of Equation (24) readily lends itself 
to efficient application of the OCM. The system matrices 
corresponding to a state representation of 6 (Equation 1) and 
the values for ~~ are easily obtained for different sample 
periods, etc. For each condition, a single run of the OCM is 
sufficient to predict the corresponding performance. Adjust- 
ment of pilot parameters, specifically observation noise 
levels [18], allows the sensitivity to pilot attention to 
be examined. 

There are shortcomings in the continuous model. For 
example, the effects of aliasing are not considered. Thus, 
the degrading effects of the de-aliasing filter are included 
in the continuous model but not its benefits. This means 
that decreasing the bandwidth, wc, of that filter can only 
lead to negative results, a situation that is not obviously 

true, in general. Similarly, because only the delays inherent 
in the data holds are considered, zero-order holds will always 
show less degradation than first-order holds. But, in some 
instances, the first-order hold may provide advantages that 
outweigh the additional delay penalty. This type of trade- 
off cannot be explored with the continuous OCM. Because of 
these and other potential shortcomings, it was decided to 
develop a hybrid model. This model is discussed in the next 
chapter. 
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3. THE HYBRID MODEL FOR ANALYSIS OF CLOSED-LOOP SIMULATORS 

The development of a hybrid model was motivated by two 
considerations: 1.) the desire to verify the results obtained 
with the continuous model; and 2.) the need to investigate issues 

not readily addressed by the continuous model. One approach to 

developing such a model is to derive analytic expressions for all 
the variables in the closed-loop following, e.g., the techniques 
in Appendix A that were used to develop exact transfers for the 
open-loop simulator dynamics. This approach was explored briefly 
but was abandoned because it would have required major computer 
program development even if it had been successful. Instead, the 

approach taken was to "simulate" the simulation. This involved 

modifying an existing program for a discrete simulation version 
of the OCM [19] as discussed below. 

3.1 Simulation Version of OCM 

To understand the nature of the hybrid model it is necessary 
to review the discrete simulation model of the OCM as described 
in [201. The major relevant aspects of the modeland some of 
the modeling issues are discussed below. 

3.1.1 System-Display Dynamics 

There are no modeling restrictions on the system being 
controlled, other than that a set of displayed elements y(t) at 
a time t be generated from: 
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u(t) = human's control inputs 

w(t) = zero mean, white Gaussian random input 
disturbances or commands* 

For the special case of a linear system, the system equations 

are (as in Equation [l]) 

g(t) = q(t) + Q(t) + $$t) 
(26) 

y(t) = Csgt) + _D,_uw 

where z(t) is the system state vector. The system parameters 

(As, etc.) may be time varying. 

3.1.2 Human Operator Internal Model 

In the OCM, the human is assumed to have an internal charac- 
terization of the input-output response of the system. This 

"internal model" is assumed to be linear, in state variable form, 

irnw = AmxmW + BmumW + ErnFrnW 

&7,(Y) = smxmw + gmumw 

where 

x,(t) = internal model states 

w,(t) = model Gaussian white noise inputs 

etc. 

(27) 

* Actually, deterministic inputs are also allowed but are not 
relevant here. 
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The states of the "internal model" need not be the same as those 
of the system. Indeed, it is not even required that dimension 

km) = dimension Cx,). Similarly, internal representation of 
disturbances can differ from system disturbances. On the other 
hand, the model inputs gm(t) and displayed outputs ym(t) are 
assumed to be the same as the actual system inputs u(t) and dis- 
plays y(t) to avoid numerous conceptual problems, i.e., 

Ymtt) = _yw 
The internal model parameters (A,, etc.) can also be time-varying. 

The choice of an internal model is somewhat subjective. 
When the system is continuous and the operator is well-trained, 
a very reasonable and convenient choice is A -m = As, etc.; i.e., 

the internal model is the same as the system. This, of course, 

is the choice employed in the standard OCM. However, when the 

NsystemN is a simulation of a continuous system, the choice of 
an internal model is less obvious. Because of its generality, 
the hybrid model will allow us to examine alternative choices. 

The internal model is used within the OCM to help generate 
a (continuous time) human operator control input via: 

i(t) = -Lc z,(t) + Lc2 y,(t) 
[ I u_(t) 

(28) 
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The feedback gains 

L 
-C = [TN-lLoPtl &I = kc11 &,2] (29) 

are generated via auxiliary programs that solve the optimal con- 
trol problem for the model equations. The model is also needed -- 
in the construction of the Kalman filter-predictor that generates 
the model state estimate i,(t). 

3.1.3 Human Limitations 

The human generates S,(t) on the basis of the delayed and 
noisy perceived information: 

Ypi(‘) = Ni[Yi(‘-~)] + vyi(‘) i=l,...,NY (30) 

where 
'c = the human's time delay, 

vy(t) = the observation noise at time t, 
and Nit.) is the non-linear observation theshold: 

I x-a. x > a. 1 
Ni(x)= 0 (31) 

I x+a. 1 X < -ai 

In a simulation model, it is possible to implement the non-linear 

observations using Equations (30) and (31). However, in a human 

operator context we find it more meaningful and convenient to 
replace Ni(.) by an equivalent gain, ii. The random imput des- 

cribing function: 
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Ni = erfc ALL 
aim 

(32) 

is used. fii is interpreted as the probability that the human 
will respond to yi, given its present value at time t. 

Each observation noise vyi(t) is a zero-mean, white Gaussian 
noise with covariance: 

vii l-t) 
E [Vyi (t) Vyi(O) 1 = fi (t) 6 (t-a) 

that contains both an additive and a ratioed component: -- 

V" yi (t) = Vyi (t) + 7TpyiE [yi’(t-t 1 

(33) 

(34) 

The quantity fi > 0 is the attentional allocation to the displayed 
variable yi. The fi are constrained by: 

NY 

+z 
i=l 

fi(t) = fT = constant total attention (35a) 

f i+l(t) = fi(t) i-1,3,...,NY-1 (3%) 

to indicate that position-velocity pairs are obtained simultan- 
eously from the display elements, a standard OCM assumption [5]. 

The neuro-motor interface portion of the model is given by 
Equation (28). The motor noises vui (t) are zero-mean white 
Gaussian noises, with covariance: 

E [Vui (t) Vui (0) I = vi(t) 6 (t-a) 

that contains an additive and a ratioed component, 

(36) 

V" ui (t) s vui(t) +~p ui El+) I (37) 
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3.2. Discretized Equations for Hybrid Model 

The hybrid model employs the simulation version of the OCM 

in a closed-loop digital Monte Carlo type computation in which 
"continuous" elements of the loop are updated at a rate signifi- 

cantly greater than discrete elements. In other words, the 

hybird model is a multi-rate sampling system, rather than a true 
hybrid system. (Informal experimentation indicates that a sample 

rate five times that of the discrete elements is adequate to 
simulate continuity for the cases considered here.) In addition, 

to different sample rates for continuous and discrete elements, 
the updating of the discrete equations of the hybrid model is 
different for the two kinds of elements. In particular, discrete 

elements are updated by means of the integration scheme and time- 
step specified for the simulation. The equations for continuous 

elements are updated at the faster rate via the transition matrix 
method of integration described in Appendix B. Below, we proceed 

around the closed-loop, starting with the digital computer, and 

give the basic equations for the hybrid model. 

3.2.1 Vehicle Dynamics 

The digital computer integrates Equations (26) using the 

sampled value of the output of the de-aliasing filter. Given a 

simulator time step T, the system equations generate outputs 

yi(k) = yi(kT) z y(t) from the piecewise-constant inputs U(k-1) 
and w(k-1) via 

x(k+l) = Adx(k) + Bdu(k) + TEdw(k) 

yIk) = Cdx(k) + DdU(k-1) 

where Ad, etc. depend on the integration scheme and are defined 

for various methods in Appendix B. 
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3.2.2 D-A Interface 
The D-A interface consists of the data hold plus visual 

servo. Consider first the zero-order hold. The sampled output, 

Yif is held constant over a sample period. The constant value 

is the input to the visual servo. It is assumed that the operator 

observes both the servo output yid and its rate yid- The trans- 

fer function for the visual servo is given by Equation (12). 

A convenient state space model for the servo is 

orl with 

# = [yid 3id 1 I 

(38) 

(39) 

we have 

2-I -i = _A,_Xi + _bvYi (40) 

This is simulated in the hybrid model in a subroutine called 
DAC via transition matrix integration of (38), i.e., 

s(kT+%A) = ,evA xi[kT+('-1) A] + ~~~v~bvdo.yi(kT) (41) 

where A is the time step for the faster (continuous) sample rate 
and 

R=l, . . ..N2=T/A (42) 
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Thus, the servo outputs are updated Ng times over a system simu- 

lation interval T. For that simulation interval, in the case of 

a zero order hold, the input yi is constant. 

When the data hold is a first order hold the situation is 
a bit more complex. Over a simulation sample period T, yi(t),is 

defined by 

yi (t) = Yi(k) + Mkt, kT<tl(k+l)T _ (43) 

where 

Mk = Yi (k) - yi(k-1) 
T 

To get state-equations for the servo with the input coming from 
a first order hold, we let 

x’ = [Ydi ?di Yi] 

Then 

&=Ax+i;M - - - k 

with 

(44) 

(45) 

Equation (44) will be integrated digitally, at the fast sample 
rate, so yi(t) must be approximated by a piecewise constant func- 
tion. We do this by using average value of yi(t) over the 
interval [!LA, (R+l)A]. Let 5, be defined to be this average 
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value. Clearly, 

%+1 = 5, + AMkr = 2 0,. ..N+ 

with 

50 = y(k) + 

Combining the above yields 

(45) %+l = yi(k) + @+1/2) Yi (k) - yi(k-1) 
NR 

where we have used T = NRA.* 

Now, the same transition matrix update is used as before, 
but the input is changed each A. Thus, with x defined as in 
(39 > 

AA0 x[kT+(R+l)Al = e Av' x[kT+RA] + Je v bvdo.&, 
R = 0, l,...,N$-1 (46 1 

3.2.3 Human Operator Model 

The OCM internal model Equation must be updated every A 
seconds. This is done by the transition matrix method, so 

_xm(kT+RA) = ~m~m[kT+(~-l)A]+~m~[kT+(~-l)A]+~~m~m 

(47) 
y(kT+RA) = ~m~m[kT+RAl + Du[kT+(R-l)A] 

- 
* It is interesting to note that for NI1 = 1, 5 = 

=k'; lk-l) 
Y 

0 
and the subsequent integration is similar to A-B integration. 
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where 

?rn 
&ma 

= e ; r 
A i&-p 

-m =/ e 
0 EmdO (48) 

The human operator model generates a control input u(R), to 
use over the time interval (t, t+A), via 

u(a) - u(R-1) = -L -1 irn(%J 

[ I 

+ L2Vu(R) (49) 

A u(R-1) 

where t = kT + RA and we have suppressed the A's in function 
arguments for convenience. Note that it is the control input 
itself that is considered to be piecewise constant for inter- 
face with the simulator model. This is in contrast to the 

covariance propagation approach corresponding to the standard 
OCM where control-rate is assumed piecewise constant with: 

+ &d$&(‘) (50) 

The gains & = -1 [L lk2] in Equation (49) are the discrete equiva- 
lents of the continuous gains of the standard OCM and are computed 
as described in [19]. 

The discretized observations for the human operator model 
are: 
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where, if 'c = human's time delay, 14 = integer [T/A]. The 

covariance of the piecewise-constant white noise v yi(%) is 
A-'[VFi(a)/fi(!L)] to account for the finite time step. Simi- 
larly, 
VEi/A. 

the covariance of the motor noise vu(R) now becomes 

The observation and motor-noise covariances are defined 
by Equations (33)-(37). These equations require process 
(i.e., ensemble) statistics at time RA. However, these are 

not available from a single Monte-Carlo trajectory, and their 
precomputation for subsequent read-in is unfeasible. The 

approach we have taken is to obtain temporal approximations 
using filtered past data. An approximation 

a(k) A E[yi2 (K-N) I 

is obtained via lst-order filtering of yi 2 (k-N) , 

a(k) = e -A/-r mcl(k-1) + (l-e -A/-rm) yi2 (k-N) (52) 

with initial condition a(N-1) = yi2(0). The approximate variance 
of ui 2(k-l) is found using a two-step procedure that estimates 
(through filtering) the mean and mean-square, and then computes 
the variance. The time constant -rm = 0.5 sec. 

The OCM includes a Kalman estimator and an optimal predictor. 
The estimator processes ypi to generate an a posteriori estimate 
of the delayed state 

ww) = E{z(R-N) yp(0),...,yp(kT+R)} 
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according to well-known equations [lg]. The predictor forms an 
estimate g(8) from ;(&/a) using 

i-&a) = ?rn N+P +/a) Y'f 5 lYi u (R-i-l) i=O-m -m -c (54) 

where u c is the deterministic part of u. In the standard OCM, 
P=O and the prediction compensates for the human's delay. Here, 

we let P be a positive parameterto be selected so as to yield 
the best,performance, the idea being the human operator will 
have to compensate for simulation delays as well as his own. 

3.2.4 A-D Interface 
This interface consists of the de-aliasing filter, a samp- 

ler and an implicit hold corresponding to the piecewise constant 
input assumption associated with integration in the digital com- 
puter. The filter considered here is a third-order Butterworth 
filter which can be represented in state space form as 

. XF = ?.?F + 

A = AF IIF + bF ui(t) 

0 
0 II 2 
w 

C 

U i (t) (55) 

(56) 

Equation (56) is integrated using the transition matrix 

method and a time step of A. However, only the values of the 
filter output at the simulation sample times, ul (kT) (k=O, 1, 
. . . 1 I are used by the computer in subsequent updating of the 
vehicle dynamics. 

For the third order Butterworth 5 = .5 and the value of UC 
is nominally set to half the sampling frequency, but different 
values can be tried within the context of the hybrid model. 
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3.3 Steady-State Solutions 

The hybrid model of the closed loop simulation is a Monte 
Carlo model that normally will require many solutions to obtain 
meaningful statistics. In the analyses to be performed in 
this study we are interested in the steady-state response of 
stationary systems. Rather than average over many Monte Carlo 
solutions, we have assumed ergodicity of the processes and 
utilized time-averaging of a single response. 

Two questions arise in attempting to determine steady- 
state statistics via time-averaging: 1) when should the 
averaging process begin? and 2) what length averaging "window" 
is necessary? Of course, if one averages long enough the two 
questions become moot, but very long averaging times can be 
as expensive as ensemble averaging. Given the practical con- 
straints on run-time, we want to be sure that steady-state 
statistics are not biased by initial transient responses and 
that averaging windows are sufficient to provide enough inde- 
pendent samples, given the correlation times of the processes. 

The rationale for the choice of the "transient window" 
to be discarded and the "averaging window" to be selected in 
the Monte Carlo model is as follows. Let Ml be the estimate 
of the mean of the process obtained by averaging over the 
first Nl samples y(i), i = 1, Nl of output from a Monte-Carlo 
simulation. That is, 

Nl 
1 7 y(i) 

M1 = Nlill 
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Let Vl be the estimate of the variance, defined by 

v1 = 1 
+ ;’ y2 (i) 2\ 

1 i=l - MlJ 

Let M2, V2, N2 be defined in a Similar fashion. We shall 

treat the first Nl samples as the transient window to be 
discarded and the samples from Nl to N2 as the averaging 
window. Let Ml2 and V12 be estimates of mean and variance, 

respectively, over the averaging windowr defined by 

N2 

1 
M12 = N2-Nl 

c y(i) 
i=Nl+l 

N2 

v12 = 
1 

N2-N1 
c i=N +1 

y2(i) - Mf2 
1 > 

It is easy to show that 

N2V2-NlVl + N2M$-NIM; _ (N2M2-NlMl) 
2 

v12 = N2-Nl N2-Nl (‘J2-Nl) 
2 

If we assume Ml = M2 (which is reasonable because, ideally, 

the process mean is zero) then 

v12 = 
N2V2-NlVl 

N2-Nl 

This formula for V12 was used on a representative Monte Carlo 
run of sufficiently long duration to check how V12 for various 

Nl and N2 compares with the estimate of variance obtained by 
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averaging over the entire run. A transient window width of 
3000 samples and an averaging window width of 7500 samples was 
found to give satisfactory results. 

Consider now the confidence that can be attached to the 
results obtained by the above averaging process. Assuming 

y(i) is a zero mean uncorrelated sequence with variance c2, 
(in steady state this is what we expect), 

E(V1-9 = E ; i=i2+l 
I -I 

y2(i) - Mf,) = c2(1-i) 

where N = N2-Nl and 

Var(V12) = 04- ~~ E(yi4) + ~” E(yi4) 

By Chebyshev's inequality, 

P v12 - E(V12) 2 .0502 
> 

5 
2a4 = 800 

N(.05a212 N 

Thus,N = 7500, guarantees that V12 will differ by less than 
5% from the true o2 with probability roughly 90%. 

*Wheny. _ 1 N(0,02) the fourth moment E(yi 4, = 3a4. 
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4. APPLICATION OF SIMULATION MODELS 

In this chapter the models for closed-loop simulation are 
applied to an "example" simulation involving air-to-air target 
tracking. Results are obtained to demonstrate the effects of 
various simulation choices as well as problem-dependent effects. 

Experiments are planned to test the validity of model pre- 
dictions in the above example. Here, as a preliminary demon- 
stration and validation of the modeling approach to analyzing 
simulation requirements, a comparison of model results with 
data obtained from an independent investigation into the effects 
of computation delays [20] is presented. 

4.1 A Target Tracking Problem 

The model of the closed loop simulation will be applied 
to an example to explore and analyze basic simulation effects 
and to (eventually) test the model's validity. The example is 
reasonably realistic, involving the longitudinal and roll-axis 
lateral dynamics of a high performance (F8) aircraft. Longi- 
tudinal and lateral tracking will be considered separately. 
Air-to-air target tracking is the pilot's task. 

Below we define the tracking geometry, target motions, 
and the attacker aircraft dynamics for each tracking task. 
The state-variable descriptions of the system dynamics (target 
plus aircraft) as required for application of the models are 
given in Appendix C. 
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4.1.1 Longitudinal Tracking 

The longitudinal tracking task to be considered is similar 
to that studied in [20], but differs in the definition of track- 
ing error and target input. The equations for this task will be 
developed in an attacker-centered coordinate system with the 
effects of gravity neglected. 

a. Geometry 

Figure 13a shows the geometry of the air-to-air tracking in 
the longitudinal plane. The gunsight is assumed to be fixed and 
aligned with the aircraft body axis. For longitudinal tracking 

we will assume that no information concerning the target's pitch 
angle (or the relative aspect angle) is available. If we assume 

that the target velocity (VT) and attacker velocity are nearly 
equal (VT = V), then, for small (relative) angles 

i = v (YT - y) = ; (Ii, - 1;) = i, + & 
TE bR 

or 

. 

R % = V(hT-h) -R;) (57) 

where R is the target's range and is assumed constant and equal 
to 182.9m (600 ft.), as in [20]. 
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a) LONGITUDINAL (ELEVATION) 

LINE OF SIGHT 

A INERTIAL REFERENCE 

CTE= INERTIAL LINE-OF-SIGHT ANGLE (ELEVATION) 

R = TARGET RANGE 
EV= ELEVATION TRACKING ERROR = +-8 

b) LATERAL (TRANSVERSE) . . 

A 

c 
TT 

= INERTIAL LINE-OF-SIGHT ANGLE (TRANSVERSE 1 

l T = TRANSVERSE TRACKING ERROR=CTT-JI 

J;T= TARGET LATERAL FLIGHT PATH 

Figure 13. - Target Geometry. 
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b. Target Motion 

The target will be assumed to execute random vertical 
evasive maneuvers.* In particular, target altitude variations 
will be generated by passing white, zero mean, gaussian noise 
through a third order filter as illustrated below. 

W 1 x1 1 h, 
s+l s2+JT WT s + u; 

(58) 

By selecting the covariance of the white noise and the cutoff 
frequency of the Butterworth filter, rms altitude variations 
and normal accelerations may be specified. Two motion variations 
will be considered in the longitudinal analysis as indicated 
below. 

I WT - .-.--. -__ __ --.- 
Narrowband 

Input .2 

Wideband 
Input . 5 81.4m (267 ft.)30.48-& .(-3.lg) 

81.4m (267 ft.)8.17&2 (-.8g) 

* We wish to avoid the simple sine-wave tracking task of 1201. 

103 



C. Aircraft Dynamics 

The longitudinal short-period dynamics of the F8 without 
augmentation will be the baseline dynamics.* The dynamics 
we will use correspond to the aircraft operating at an altitude 
of 6096m and a speed of 190 m/set (flight condition #ll). The 
short period dynamics are given by 

q= -.487q - 4.789a - 8.7436, 

k=q-.836a-.lll 6 e 

n = 
Z [Wq-&/57.31x 32.2 (59) 

= . 2818~ -t .0374 6e 

The short period dynamics have a natural frequency of 

WnSp 
= 2.28 and a damping of Es, = .29; this represents poor 

short period handling qualities- [20]. 

The state equations corresponding to the above dynamics 
are given in Appendix C. 

d. Pitch CAS - 

As noted above, the short period handling characteristics 
of the F8 at flight condition #ll leave much to be desired. 
Moreover, we are interested in the effects of simulation param- 
eters as a function aircraft dynamics. A pitch command auq- 
mentation system designed by Honeywell [161 to improve the F8 
- 
* A preliminary analysis incorporating the phugoid mode was also 

conducted, but the differences observed did not warrant the 
additional complication. 

104 



handling will be used here to generate an additional set of 
longitudinal handling characteristics. The pitch CAS design 

corresponds to a C* model-following system with angle-of-attack . 
limiting and trim. For our linearized analysis we can modify 
the augmentation design of [161. Furthermore, a substantial 

reduction in the order of the system needed to represent the 
CAS is possible by noting pole-zero cancellations.* The reduced 

order pitch CAS is illustrated in Figure 14. In this Figure, 
6 

ep 
is the pilot commanded stick (in ft/sec2), Vco is the cross- 

over velocity in the C* specification,and the K's are system 
gains. Kc* is a gain scheduled with dynamic pressure. The 

parameters of the system have the following values: 

V co = 324 

Kc* = + = .158 -- = .00064x 57.3 = .0369 245 
g 

Kll/Klo = .082 

K8/Klo = .72 

With these parameter values the state equations for the 
augmented system are as given in Appendix C. Note the control 
input for these equations is the pilot input and the actual 
elevator deflection is an additional response variable. 

* In an actual CAS implementation, this might not be desirable 
as the eliminated lags are needed for noise suppression, etc. 
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V 
q co 

I 1 
+ 

;I .84Vco- 
+ 

Nz 

+ 
1 

Figure 14 .- Reduced-Order Pitch CAS. 



The F8 with the pitch CAS has short period roots with a 
natural frequency of mnSD = 2.78 and a damping of Es, = -64; 
this constitutes a signi>icant improvement in the short period 
handling qualities. 

4.1 .2 Lateral Tracking 

The lateral tracking task of 1201 was self-excited and, 
therefore, somewhat difficult to analyze. We will examine an 
independent lateral task with target motion. 

a. Geometry 

The geometry for lateral tracking, or tracking in the 
transverse plane, is illustrated in Figure 13b. For small angles, 
constant and equal velocities, we obtain 

VY ~~~ = E TT - (60) 

b. Target Motion 

Unlike the longitudinal tracking problem, it is important 
to include target attitude (roll angle) as a cue for lateral 
tracking (because of the essentially third-order transfer between 
error and control, the tracking task is extremely difficult with- 
out this information). Thus we wish to include target roll angle 
in thedefinition of random target motion. We shall assume that 
the target turns are all coordinated (so yTT = $T). The lateral 
target motion equations are then assumed to be generated by pas- 
sing zero-mean, white, gaussian noise, w, through the filter. 
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>'T 
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The E (a small number) in the third filter is included to keep 
steady-state variance of I), finite. Note that V GT is the 
lateral acceleration of the target. 

C. Lateral Aircraft Dynamics 

The lateral equations of motion for the F8 at flight 

condition #ll are 

. 
P= -2.58~ + .251r - 37.88 + 17.246A + 7.0166r 

. 
r= -.0753p - . 273r + 4.36B + .816AA - 3.186r (61) 

i = .078p - . 994r - .229B + .05173@ + .04566r 

6 = .997p + .078r 

to which we add 

The roots of the lateral characteristic equation yield a 
roll time constant of .42 set, a (stable) spiral time constant 
= 40 set and dutch roll frequency of tind = 2.64 and damping of 
5, = .128. 
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d. Lateral CAS 

The lateral tracking task described above is very difficult. 
Furthermore, the lateral handling qualities are marginally in- 
adequate with respect to the Dutch Roll response (5, = .128 < .19, 
<dtind= .34 < . 35) and the roll response could also be improved. 
Finally, we are interested primarily in a roll-axis lateral track- 
ing task. For these reasons we will modify the basic aircraft 
dynamics by incorporating a modified version of the Honeywell 
lateral directional CAS with Inertial Coordination [161. The 

yaw-axis CAS of [16] has been simplified by assuming (RP(<l, ignor- 
ing the accelerometer lag and the integrator for trim (KR nysL = 0) 

and eliminating the aileron-to-rudder crossfeed. With these sim- 
plifications, the equations for the augmentation system are 

brn = -5 pm + 58 
w 

F, = Pm - P 
A 

8, = r - z @ -KRp P 

6 AC = -KAe(pm - P) - KAY :o 

6 RC = KIRb iR + KR 
nysL nY - KR umsap + KRpm 'rn 

(62) 

The parameters and gains are 
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CY. = 4.5" = .0785 rad 
0 

g/v = .0518 (l/set.) 

KAr3 = (-7.29a + .54) = -.03226 (sec.) 

KAe = -.ll (sec.) 

KRi = -714 
(sec.) 

KR = .0022 x 57.3 = . 126 deg/(ft/sec2) 
nysl 

KRuIn = (.16a + . 008) x 57.3 = 1.146 deg/deg 

= 
KR 

-.la + .012 = .00415 (sec.) 

pm 

KR =. 540. + . 042 = .084 
P 

The state equations are given in Appendix C. We have assumed 
that no pedal inputs are required. The characteristic roots for 
the augmented system yield a Dutch Roll response with 5, = .62 

and und = 2.84, a roll subsidence time constant of .23 set and 
a spiral time constant of 77 sec. In addition, there is a root 
from the roll-rate command mode with -rM = .2 sec. 
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e. Coordinated Lateral Dynamics - 

A simplified set of dynamics incorporating turn coordina- 
tion can be derived directly. These dynamics do not incorporate 
practical CAS features but they can be a useful, simpler alter- 
native. They are obtained by assuming that all turns are 
coordinated. Thus, 

r= +b=sl (63) 

6r = 0 

The state equations for these assumptions are given in Appendix C. 
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4.2 Parameters of OCM 

Parameters for the OCM had to be chosen for the analysis. 
In particular, the parameters corresponding to human limita- 
tions and the cost functional weightings for the lateral con- 
trol task had to be selected. The values used and their 
method of determination are described briefly here. 

The parameters describing the human limitations are 
listed in Table 5. The time delay and motor noise ratio are 
set at nominal values used in past OCM applications [5]. 

Table 5 
OCM MODEL PARAMETERS 

Time Dela 

visual arc 
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Neuromotor time constants were selected via sensitivity analyses 
as described in Section 2.1.5. There is some subjectivity in 
selecting "operating" points from the various sensitivity curves, 
but a value of about .15 sec. for all the F8 tasks considered 
here seemed reasonable.* The base observation noise ratio of 

-14dB is greater than the value of -2Od3 nominally assigned to 
this parameter [5]. The nominal value curresponds to a fairly 
constrained laboratory situation in which the subject is highly 
trained, and receives substantial performance feedback and moti- 
vational input. For larger-scale simulations the same degree 
of training is unusual and higher noise ratios appear to be 
appropriate. 

It was assumed that the pilots would divide their attention 
equally between longitudinal and lateral control tasks. Further, 

we assumed that there was no attention-sharing among individual 
display variables within a task. This corresponds to assuming 

that the visual presentation of target and horizon are effec- 
tively integrated. These assumptions are reasonable and are 
the simplest we can make; past experience with the OCM indicates 
that in most cases performance is not very sensitive to atten- 
tional allocation so long as a reasonable allocation is used. 

The final parameters describing operator limitations are 
the visual thresholds. These were set at the values determined 

in C211. They proved to be of negligible importance in this 
study. 

* In the two-control, unaugmented lateral task the time constant 
associated with rudder control was -.17 seconds. This value 
was a consequence of penalizing rudder control rate variances 
twice as much as aileron control rate variance in the quad- 
ratic cost functional. 
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Application of the OCM also requires specification of a 
quadratic cost functional embodying the task requirements. For 
the longitudinal tracking task, the cost functional was simply 
a weighted sum of tracking error and control-rate with the 
relative weighting selected to give the desired value of TN. 
This situation is identical to that employed in laboratory 
tracking tasks [5] and gives reasonable results because the 
LOS tracking error contains both inner- and outer-loop variables 
(see Equation (57)). 

The cost functional for lateral control tasks was more 
complex. For the CAS-ON and coordinated dynamics, the cost 
functional included a roll error term, (@T-G)*, in addition 
to the tracking-error and aileron control-rate terms. It was 
found that penalizing LOS tracking error about three times as 
heavily as roll error gave a reasonable mixture of response 
errors. 

For the CAS-OFF configuration, sideslip angle and rudder 
control-rate terms had to be added to the cost functional. 
The relative penalties on LOS error and roll error were left 
unchanged from those for the simpler lateral tasks. Sideslip 
angle was penalized as heavily as LOS error and, as noted 
previously, the weighting on rudder control-rate variance was 
twice that on aileron control-rate variance. 

The above parameter choices are not necessarily expected 
to lead to precise performance predictions. They are intended 
to give reasonable estimates of performance and relative work- 
load for the tasks considered. More importantly, predicted 
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changes in performance and workload as a function of simu- 
lation parameters should be relatively insensitive to small 
variations in OCM model parameters*, and these trends are the 
results of interest here. 

4.3 Model Results 

4.3.1 Continuous Model 

The continuous model was used to analyze the effects of 
both simulation parameters and problem variables. With respect 
to the simulation, the effects of integration scheme, servo 
bandwidth, the order of the hold and the de-aliasing cut-off 
frequency are investigated for the longitudinal CAS-OFF dynamics 
and for the coordinated dynamics. Problem dependent effects 
are explored by comparing CAS-OFF and CAS-ON results for both 
longitudinal and lateral tracking and by changing input band- 
width for longitudinal tracking. 

a. Overall Effects of Simulation 

We shall define a basic simulation configuration corres- 
ponding to Figure 4 in which the cutoff of the de-aliasing filter 
is set at half the sample frequency, the visual servo has the 
DMS characteristics (5 = .707, w, = 25), and a zero-order hold 
is used in data reconstruction. 

* This was confirmed, at least partially, by preliminary sensi- 
tivity studies. 
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Figure 15 gives normalized performance for the basic con- 
figuration as a function of sample period and integration scheme 
for longitudinal CAS-OFF, wide-band target tracking and for 

lateral tracking with coordinated dynamics. Normalized per.- 

formance is defined as the tracking error obtained for the 
simulation configuration divided by the tracking error that 
would be obtained in a continuous simulation with no delays' 
(or in flight). * The normalization is determined by computing 
the performance utilizing the original, continuous state equa- 

tions and assuming the only delay is that of the operator 
(.2 seconds). The scores used in normalizing the results (plus 
those for other variables) are given in Table 6. 

Figure 15 shows substantial effects are introduced by the 

simulation, particularly at low sample rates. Even for the 

highest sample rate (T = .03125), there is a 16-20 percent 

performance degradation for longitudinal tracking and a 20-28 
percent degradation for the lateral task. A change of this 

magnitude exceeds the normal intra- and inter-subject varia- 

bility in manual tracking tasks and would, therefore, be 

expected to be significant. For the lowest sample rates the 

performance degradation ranges from 35-60 percent, numbers 
that are clearly consequential. It is clear that, from a 

closed-loop tracking standpoint, A-B integration is superior 

to Euler integration. We note, too, that the effects are 

somewhat more severe for lateral tracking than for the longi- 
tudinal task. 

The results in Figure 15 assume that the only adjustments 
in pilot strategy resulting from the simulation are an increase 

* As might be the case in an all analog simulation with electronic 
displays providing undelayed visual information. 
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TABLE 6 

RMS PERFORMANCE SCORES PREDICTED 
FOR CONTINUOUS SIMULATION 

a) Longitudinal Dynamics (Wide Band Input) 

VARIABLE CAS-OFF CAS-ON 

REV, m (ft) 23. (75.6) 22.3 (73.1) 

0, deg 16.0 16.0 

n 
Z' 

g's 3.02 3.02 

'e' deg 6.45 6.66 

b) Lateral Dynamics 

VARIABLE 

RET m (ft) I 
(@-$,), deg 

8, deg 

ny, ft/sec2 

gA' deg 

6R' deg 

CAS-OFF 

4.9 (15.9) 

13.4 

1.39 

2.45 

4.1 

2.33 

CAS-ON 
- 

7.62 (25.0) 

18.6 

1.86 

4.53 

1.50* 

3.54* 

COORDINATED 

5.8 (18.9) 

14.4 

4.9 

* Generated by CAS 
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Figure 15. -Effect of Discrete Simulation on 
Normalized Performance. 
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in prediction time to compensate for simulator delays and the 
adoption of an internal model that accounts for the amplitude 
distortions (and pole perturbations) introduced by the CPU. 
The results are based on the assumption of a fixed level of 
attention throughout. However, the pilot may choose to devote 
more attention to the task (work harder) and, thereby, reduce 
tracking error. A reasonable question to ask, then, is "How 
much more attention to the task would be required to achieve 
performance levels comparable to those that could be obtained 
in a continuous simulation?" This question can be addressed 

using the model for workload associated with the OCM [181. 

Figure 16 shows the sensitivity of performance to changes 
in attention as a function of sample period. An attention of 
1 on these curves corresponds to an observation noise ratio of 
-14 dB (with attention shared equally between longitudinal and 
lateral tasks). Curves are only presented for Euler integra- 
tion and longitudinal, CAS-OFF dynamics. If a horizontal line 

is drawn through the T = 0 curve at the point of unity atten- 
tion, the intersection of this line with the remaining curves 
defines the attention necessary to achieve the same performance 
as for continuous simulation. The result of this operation is 
plotted in Figure 17 which also includes results for A-B inte- 
gration and for lateral tracking. 

It can be seen from Figure 17 that to achieve the perform- 
ance equivalent to that for continuous simulation, the pilot 
would have to increase his attentional workload by factors up 
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to three for the conditions considered.* This is a substantial 
workload penalty and it might be expected that a compromise 
between performance degradation and increased workload might 

evolve. This would be the case, especially if the pilot had 
not flown the vehicle or a continuous simulator in the same 
task so that there would be no basis for setting a criterion 

level of performance. 

Before leaving the workload question, a further point is 
worth noting. In the describing function literature, it has 
been common practice to associate workload with the generation 
of lead (see, e.g., [221) l However, there has been no quanti- 

tative connection between the amount of lead and the increase 
in workload. In the present context, one can think of the 
increased prediction time necessary to compensate for simula- 
tor delays as imposing a (processing) workload analogous to 
that of lead generation. The measure of attentional workload 
given previously may then be thought of as an alternative 
means of quantifying the workload imposed by the requirement 
for additional prediction. 

b. Effects of Simulation Components 

We have just seen that a basic discrete simulation of an 
aircraft tracking problem could lead to a serious performance 
or workload penalty when compared with a continuous simulation 

with no delay. We now examine the contributions of individual 

* It is interesting that the workload penalty for the coordinated 
lateral task is less than that for the longitudinal task. This 
is the reverse of the performance trend. 

122 



simulation elements to the degradation in performance. Workload 
is not discussed here, but it is expected that each element 

would contribute to the penalty in approximate proportion to 
its percentage contribution to the performance penalty. 

Discrete Integration 

The previous results show A-B integration superior to 
Euler integration but the differences are masked to a degree 
by the contributions of other elements. Figure 18 isolates 
the effect of the integration scheme. Performance has been 
computed, assuming no delays for de-aliasing filter, servo 
or hold, and normalized as in Figure 15. These results empha- 
size the advan,tage of A-B, especially with increased sample 
periods. Comparison with Figure 15 shows that at the longest 
sample period, the CPU accounts for 40 percent of the total 
change for Euler but only about 15 percent for A-B. 

It is of interest to know how significant the amplitude 
distortion and pole perturbations are in comparison to the 
delay. Figure 18 also shows the result of assuming that only 
integration delay is important in Euler integration.* (The 
system model then corresponds to the continuous model plus an 
equivalent integration delay.) The results confirm that, for 
these dynamics and this task, delay is the most significant 
contribution to performance degradation. 

- 
* The amplitude distortions are minor for A-B and, as has been 

noted previously, it is difficult to get an appropriate esti- 
mate of the A-B delay if these distortions are ignored. 
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VisuaZ Servo Dynamics 

Figure 19 shows the effect of visual servo dynamics. 
Results are for the basic configuration and for an identical 
configuration with an infinite bandwidth (zero delay) servo. 
The visual servo dynamics contribute from lo-14 percent of the 
total performance loss in the simulator. The lateral task is 
degraded more than the longitudinal, but the differences are 
small. There is a slight increase in effect with sample per- 
iod even though the servo delay is independent of sample period. 
This undoubtedly results from the fact that as the sample period 
is increased the system is degraded (stability margins, etc.), 
so that adding a fixed delay will have a more pronounced effect. 

Data Hold 

Figure 20 shows the effect of replacing the zero order 
hold in the basic configuration with a first-order hold. As 
noted earlier, the continuous model can only indicate a degra- 
dation in performance due to the increased delay. Figure 20 
shows that the delay associated with the first-order hold has 
a significant effect (12 percent) only at the largest sample 
period. The effect is not very large, even for T=.l. Inas- 
much as the benefits associated with a first order hold should 
increase with increasing sample period, it is possible that 
the differences shown in Figure 20 will be cancelled. 

De-aliasing Filter 

As in the case of the data hold, the continuous model will 
only show degradation in performance with reduction in filter 
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cut-off frequency. Figure 21 shows the magnitude of this degra- 
'1 

dation for the nominal filter cut-off of wc(Hz) =2$ as compared 
with an wc = ~0. The curves include the effect of (Euler) inte- 
gration and a zero-order hold, but it is assumed that wn = ~0. 
The results depend on sample period, as expected, and range 
from 4-16s. The lateral task suffers a somewhat greater loss 
in performance than the longitudinal as was the case with other 
simulation parameters. 

ControZ Loading 

We consider here a closed loop control loading system 
involving a linear control loader servo with digital feedback 
of spring gradient forces. Feedback of bob-weight forces is 
not considered. The system is based on that employed in the 
DMS [15]. A sampled data model for this control loading 
system has be?n developed in [23] and we will use the results 
obtained there in our analysis. 

From the standpoint of system dynamics, the control loader 
introduces a second-order filter between the pilot's stick input 
and the elevator deflection. The filter, when implemented con- 
tinuously, has a natural frequency of wn= 28 rad/sec and a 
damping coefficient of 6=.7. The open-loop effect of digital 
implementation of the control loader is to modify the frequency 
of this filter as shown in the table below. (The damping 
of the control loader is assumed to be adjusted using hardware 
damping, to a value of 6 = . 7 for all sample periods; this 
assumption is consistent with what has become standard practice 
in use of the system.) [23]. 
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EFFECT OF DIGITAL IMPLEMENTATION OF CONTROL LOADING 

Sample Period 0 .03125 .0625 wn (rad/sec) 28 19.5 12.5 1 8.: . / 

The effects of digital implementation of the control loading 
system on closed-loop performance are shown in Figure 22. Also 

shown is the predicted performance for an analog implementation 
of the control loader. Such an implementation was suggested in 

1231. For both cases, it is assumed that the rest of the simu- 

lation has the basic configuration described in Section 4.3.l.a, 
and that Euler integration is used. Performance is normalized 

to that obtained for a continuous system without control loading. 

We note first, from Figure 22, that the control loading 

dynamics degrade tracking performance in this task, even in the 
continuous case. However, one should interpret this result 

cautiously inasmuch as the potential advantages of the kines- 
thetic cues provided by the loader are not considered. Essen- 

tially, the result means that adding filtering in the forward 
loop degrades tracking performance. Digital implementation of 

the control loader decreases the effective bandwidth of this 
filter causing further loss of performance. The overall effect 

can be sugnificant at low sample rates amounting to about 15% 
for T=.l. If control loading is necessary the analog implemen- 
tation seems desirable. With this implementation, the dele- 
terious effects decrease in significance with increasing sample 
period because the effects of other simulation components become 
dominant. 
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C. Effects of Problem Variables 

It was anticipated that there would be an interaction 
between the effects of simulation parameters and problem vari- 
ables such as vehicle handling qualities and input bandwidth. 
Thus, the above tasks were analyzed for different vehicle con- 
figurations* and changes in input characteristics. 

Input Bandwidth 

A limited investigation of the effect of input bandwidth 
was conducted. Longitudinal CAS-OFF dynamics and the basic 
simulation with Euler integration were considered. The input 

was the narrowband tracking input (wT z . 2) described in Section 

4.2. The tracking error for the narrowband input was approxi- 
mately one-third that for the wide band input. However, Figure 

23 shows that when scores are normalized to the continuous 
result, the discrete simulation has a greater effect for the 
narrowband-input than for the wideband-input. This result is 

somewhat counter-intuitive. Apparently, with the wide-band 
input the inherent task difficulty dominates the situation and 
the effects of simulation delays, etc., are muted to some 
extent; when the input is made less demanding, the effects of 
the simulator on performance are emphasized by comparison. 

* The effects of vehicle handling are also examined in Section 4.4. 
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Vehicle Dynamics 

Figure 24 compares normalized longitudinal CAS-ON and 
CAS-OFF performance for the basic simulation. It can be seen 
that the CAS-ON perforamnce is degraded more by the discrete 
simulation than the CAS-OFF performance. These results are 
explained by the fact that the integration delays are larger 
for CAS-ON dynamics than they are for CAS-OFF dynamics (see 
Table 3). 

The effects of longitudinal dynamics when viewed in terms 
of absolute performance are interesting and are also shown in 
Figure 24. The absolute performance for continuous simulation 
is better for CAS-ON than CAS-OFF (by about 3.5 percent) and 
the sensitivity to incremental computation delay is about the 
same for the two configurations. Thus, for a given simulation 
configuration, absolute performance for CAS-ON and CAS-OFF 
configurations will be about the same if Euler integration is 
used and the CAS-OFF configuration can give better performance 
if A-B integration is used. In other words, the discrete simu- 
lation washes out any improvement due to the CAS! 

Figure 25 provides comparative results for the three lateral 
configurations considered. The results do not include any 
amplitude distortion or pole perturbation effects in the CAS-ON 
and unaugmented cases. (Recall that approximations to the 
discrete transfer functions for the CAS-ON and unaugmented 
lateral dynamics were not obtained.) Also, results are only 
shown for the basic simulation with Euler integration. All 
results are normalized by their respective continuous simula- 
tion performance. 
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It can be seen that the coordinated dynamics exhibit the 
most substantial simulation effect. This does not result from 
amplitude distortions but, rather, from the added delay for 
tracking error (see Table 3). .CAS-ON and CAS-OFF configura- 
tios display about the same sensitivity to sample period. 
Tracking error is smallest for the CAS-OFF configuration as 
is the percentage degradation due to simulation (Figure 25). 
The CAS-OFF configuration may give the best performance because 
it is the least constrained system.* However, the requirement 
for manual rudder control may impose a workload penalty that 
offsets the performance advantage for the unaugmented system. 

4.3.4 Hybrid Model 

The hybrid model was used to investigate several issues 
that could not be examined readily in the continuous model 
context. However, results were also obtained for conditions 
that would allow comparison with the continuous model. Results 
with the hybrid model were limited to the longitudinal unaug- 
mented dynamics because of cost and time considerations. The 
results obtained are presented and discussed below. 

* The lateral CAS attempts to keep sideslip angle and lateral 
acceleration small and this inhibits the transverse tracking, 
resulting in larger errors for the target motion considered. 
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Effect of Operator Prediction Time 

It is reasonable to assume that a trained operator will 
attempt to compensate for the delays introduced by the discrete 
simulation. Moreover, it is expected that an optimal policy 
is to predict ahead a time equal to the simulation delay. In 
the hybrid model, operator prediction time* (in number of 
discrete time steps, a) is a parameter (see Section 3.2.3). 

Thus, it is possible to determine the effects of prediction 
time on performance. 

Figure 26 shows the sensitivity of performance to pre- 
diction time (referred to as delay compensation) for the basic 
simulation configurations with both Euler and A-B integration 
and for T = .l and T = .0625. The IIinternalll models for the 
OCM in these cases are the continuous approximations to the 
discrete transfers that incorporate amplitude distortion 

effects; however, no delay is added to the human's delay of 
. 2 seconds to account for the simulations delays. Thus, we 
expect the optimal prediction times to be approximately equal 
to the delay introduced by the simulation. This is indeed 
the case as can be seen in Figure 26. For Euler integration 
the minima occur at -.26 set and -.2 sec. for T = .l and 
. 0625, respectively; the corresponding simulation delays are 
. 27 and .19. 

* In excess of the basic prediction time needed to compensate 
for the operator's delay. 
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For A-B integration the minima are at larger compensation 
times than for Euler. This is consistent with the "zero-model- 
ing" introduced to account for amplitude distortion. With 
T= .l, the optimal prediction time is around .3 seconds and 
the simulation delay is -.32 seconds. For T = . 0625, perform- 
ance does not appear to be very sensitive to prediction time 
in the neighborhood of the optimum. The simulation delay is 
".21 seconds and performance for this prediction time is in- 
distinguishable from optimal performance. Figure 26 also shows 
a curve for the case in which the operator's internal model 
does not include a zero to match the amplitude distortion of 
A-B integration. It was found that for this case a delay 
compensation of only .17 seconds was required. This corres- 
ponds to the delays introduced by the servo, pre-filter and 
zero-order hold. The optimal performance was marginally poorer 
than for the case with amplitude distortion included in the 
internal model. These results suggest that although including 
the zero provides a better model of the effect of A-B inte- 
gration, the increased delay compensation needed to offset 
the extra lead should not be viewed here as a workload penalty. 

These results confirm the estimates of simulation delay 
used in the continuous model. They also demonstrate implicitly 
how operators may adapt their behavior to compensate for simu- 
lator inadequacy. The added prediction required may impose 
a workload penalty as noted earlier. 
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Internal Mode2 

Two questions concerning the pilot's internal model are 
of interest: 1.) What model will the trained operator adopt 
when "flying" the simulator?; and 2.) What is the "transfer" 
effect of a wrong model when transitioning from discrete simu- 
lator to continuous simulator (flight)? At least partial 
answers to these questions for the longitudinal dynamics and 
Euler integration are provided by the results shown in Figure 
27. 

Figure 27 gives performance vs. delay compensation for 
T=. 1 and two internal models. One internal model is that 
derived to match the corresponding discrete transfer function 
while the other is the basic continuous model. It can be seen 
that better performance is obtained when the internal model 
corresponds to the approximate discrete model implying that 
this is a better model of the discrete simulation than is the 
original continuous model. 

Figure 26 also shows the effect of using the model cor- 
responding to T = .l seconds in a simulation where T = .03125 
seconds (i.e., nearly continuous) as compared to using the 
model for T - . 03125 seconds (i.e., the correct one). If the 
operator optimizes delay compensation, performance will be 
degraded by about 10%. If, on the other hand, the delay com- 
pensation appropriate to T = .l is used, a performance penalty 
of about 19% will be incurred. The effect is not substantial 
here but it might be in other tasks. 
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De-aliasing Filter 

The effect of the cutoff frequency of the de-aliasing filter 
on performance is shown in Figure 28. Euler integration of the 
vehicle equations is used and other simulation parameters cor- 
respond to the basic configuration. The results are for a sam- 
ple frequency of 10 Hz (T = .l) so a cutoff frequency of wc = 5 Hz 
satisfies the Nyquist requirement. Results are obtained for 
w 

C 
= 1, 5 and 20 Hz respectively. The lowest value of wc = 20 Hz 

is based on the assumption that there is not significant signal 
power beyond 5 Hz so there is no need to set the filter break- 
point at that frequency and incur the delay penalty. 

The results in Figure 28 favor using the higher cutoff 
frequency, wc = 20 Hz, for this problem. Furthermore, there 
is a substantial penalty for using the low frequency cutoff. 
These two results imply that aliasing is not a problem here. 
We also note that the performance minima for wc = 20 Hz and 
5 Hz occur at about the correct value of prediction time; the 
optimum prediction time for w 

C 
= 1 Hz is much larger but not 

quite so large as the estimated total simulation delay of .53 
seconds. 

Data HoZd 

The effects of using a first order hold instead of a zero 
order hood are shown in Figure 29 for both Euler and A-B inte- 
gration at T = .l and for Euler integration at T = .0625. 
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The corresponding best zero order hold performance values are 
also shown for comparison purposes. 

At a sample period of .l seconds, slightly lower tracking 

errors are obtained for Euler integration with a first order 
hold than with a zero order hold; in addition, the minimum per- 
formance is obtained with less delay compensation. The situa- 

tion for A-B integration and a . 1 second sample period is the 

reverse of that for Euler. That is, for A-B integration the 

first order hold degrades performance. 

A possible explanation for these results is as follows. 
The first order hold uses intersample information which pro- 
vides some lead. For long sample periods and Euler integra- 

tion, the effective lead provided is apparently more beneficial 
than the lag penalty associated with the higher order hold. 
The beneficial effects of a first order hold should decrease 
as the sample period decreases. This is supported by the 

results for T = . 0625 which show no difference between the 
two holds.* In the case of A-B integration the added delay 

of the first order hold dominates. This may be due to A-B 

integration having an implicit first order hold at the input 
(See Section 3.2), thereby reducing any advantage in adding 
such a hold at the output. 

* The delay for the first order hold also decreases with decreas- 
ing sample period but it remains twice as long as that for the 
zero order hold. 
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Comparison with Continuous Mode2 

We have seen, thus far, that the trends of the hybrid 
model either confirm those of the continuous model or they 
differ in ways that are interesting but can be explained. 
The absolute performance predictions of the two models have 
not been compared yet. This is done in Table 7 and reveals 
that the two models do not yield the same tracking performance 
prediction. Moreover, the differences between the two cannot 
be ascribed to statistical variance associated with the Monte 
Carlo nature of the hybrid model. 

Table 7 

COMPARISON OF LONGITUDINAL TRACKING 
ERRORS PREDICTED BY TWO MODELS 

It can be seen from Table 7 that the hybrid model gives 
consistently lower scores than the continuous model. In addi- 
tion, for a given integration scheme, the relative change in 
performance as a function of sample period is substantially 
greater for the hybrid model than for the continuous model. 
(However, for a given sample period, both models predict the 
same relative improvement in going from Euler to A-B integration.) 
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It appears at this time that the OCM in the hybrid model 
is obtaining better rate information from the visual servo than 

is assumed for the continuous model. This was verified by 
replacing the scaling qbservation noise on the rate variables 
in the hybrid model with an additive noise equal to that 
obtained with the continuous model.* This makes the differ- 
ences between the two model results negligible. A potential 
explanation for this phenomenon of better rate information 
lies in the nature of the data reconstruction process. The 
visual servo is driven by a .series of step inputs from the 
data hold. The rate response of a continuous servo to a step 
is a pulse the shape of which depends on the response of the 
servo and the sample period. It is possible that scaling rate 
observation noise with this pulse signal leads to smaller 
effective noises than would be obtained if it were scaled with 
a smooth signal (as assumed in the continuous model). Alter- 
natively, the pulse-like nature of the response may provide 
an onset cue (lead) that is being used by the hybrid model 
in an, as yet, unexplained way. 

It should be noted that the hybrid model of the visual 

servo responds in essentially the same way as would the actual 
visual servo in the simulation. On the other hand, the operator 
may perform a smoothing operation that would result in perform- 
ance closer to that of the continuous model and this smoothing 
is not incorporated in the hybrid model. At this time, without 
data, we are unable to resolve the question of which model gives 
better predictions of absolute performance. 

* The additive noise in the steady-state case computed by multi- 
plying the steady-state variance of the signal by the noise 
ratio. 
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Finally, we believe that the discrepancy between the 
two models in prediction of absolute performance, does not 
negate the comparisons made within either model. 
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4.4 Preliminary Validation 

In this section, the continuous model is used to obtain 
results that can be compared with data obtained previously in 
an independent experiment. The goal is to show, at least in 
a preliminary way, that closed-loop models provide a valid 
means of analyzing simulation effects. 

The data we shall use for comparison purposes are taken 
from [20]. The experiments were conducted on a fixed base 
simulator with the objective of studying the effects of visual 
delays on pilot performance and "behavior" and the interaction 
of those effects with vehicle handling characteristics. The 
piloting task was to track a target executing a sinusoidal 
maneuver in altitude. The pursuing aircraft had five degrees 
of freedom (two longitudinal, three lateral). Time delays 
were introduced in-the visual display of target azimuth and 

elevation errors. An irreducible delay of .047 seconds was 

assumed for the simulation and delays were added in units of 
. 03125 seconds. 

Experimental details may be found in [20]. However, a few 
points concerning the experiment are worth mentioning prior 
to comparing the data with the model results. The sine wave 
used for the target had a frequency of .21 rad/sec which 
should prohibit pre-cognitive tracking. Nonetheless, given 
the large number of runs needed to explore all the conditions 
of interest it would seem that learning of the input would 
take place to some degree. The input for lateral tracking, . 
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on the other hand, was completely random being self-induced by 
inadvertent pilot inputs to the lateral axis; in other words, 
lateral errors were due solely to pilot remnant. Performance 
measurement was in terms of altitude and transverse distance 
errors but the displayed errors were line-of-sight angular 
errors. Perhaps the most important factors to bear in mind 
in considering the experimental data are that almost all data 
are for a single subject (apparently one of the investigators) 
and there is considerable reason to suspect that training 
effects could bias the data. 

The model was used to analyze only the longitudinal track- 
ing task considered in [20]. To avoid questions about the 
pilot's knowledge of the sine-wave input, target altitude was 
assumed to be generated by passing white noise through a 
second-order Butterworth input. The frequency of the filter 
and the rms altitude deviations of its output were set to the 
corresponding sine-wave values of the experiment (i.e., w = .21 
rad/sec and (hT) -2 1'2 = 21 55m) . 

Because of the unknown learning effects and the fact that 
a single subject was used for most of the experiment, OCM model 
parameters were selected to match the base delay (.047 second) 
case for each vehicle configuration considered, as follows. 
Human operator time delay was fixed at .2 seconds for all cases. 
The neuromotor time constant was picked to match the ratio of 
control and control-rate scores for each configuration. The 
values so obtained varied from a TN = .13 sec. to TN = .22 
sec., within the range that could be anticipated for this low 
bandwidth task. Noise ratios were selected to match error 
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scores (to within about one standard deviation). Motor noise- 

ratio was set at the "nominal" value of -25 dB for all cases 
except configuration 1, where a value of -22 dB was used to 
obtain a better match to performance. Observation noise ratios 
for the longitudinal task ranged from about -12 dB to about 
-21 dB. The noise ratios generally decrease as the configura- 
tion number increases. The observation noise ratios appear 

to be on the low side for the high numbered configurations 
given the additional tasks the operator was required to per- 
form (lateral tracking plus a side task). The lower values 
may be a result of a training effect (if configurations were 

run sequentially)* or they may be due to the simplicity of 
the experimental input. 

Model results were obtained for five configurations 
(listed in Table 8) that covered a range of longitudinal hand- 

ling qualities. Configuration numbers correspond to those 

used in 1201. Figure 30 compares model predictions of the 

effects of incremental delay with the corresponding experi- 
mental results. It is important to note that the model results 

were matched only to the 1.5 unit delay cases. It can be 
seen that model predictions are generally within ? la of the 
data for the added delay cases. Furthermore, the relative 
sensitivity to delay as a function of configuration tends to 
parellel that of the data, except perhaps for configuration 8 

at the higher delays. 

* As could be the case for the higher motor noise needed to 
match configuration 1. 
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Table 8 

LONGITUDINAL CONFIGURATIONS [20] ANALYZED 

Conf. No. w n 5 Mct M 
cl La 

1 1.5 .3 -4.45 1.10 2.0 

4 2.5 .2 -8.25 1.00 2.0 

6 3.0 .7 -4.50 -2.2 2.0 

8 2.83 1.59 6.00 -7.00 2.0 

13 4.5 . 70 -11.65 -4.3 2.0 
~~ ~~-. 4 

Figure 3Oc demonstrates two interesting effects. First, 
for this configuration, data were available from two subjects 
and these data tend to bracket the model data. Second, data 
were obtained for a target frequency of twice the base fre- 
quency. To "predict" this effect the frequency of the Butter- 
worth noise filter was doubled and all other parameters were 
left unchanged. The resulting predictions, though less accu- 
rate, are the right order of magnitude and capture the effect 
of changing target frequency. 

The limited results presented in this section demonstrate 
that delays can have serious effects and that the magnitude or 
the effect depends on problem variables. They also show that 
a closed-loop model can predict these effects reliably. This 
conclusion should be tempered somewhat by the fact that it was 
necessary to first match the results for the individual con- 
figurations before predicting the effect of the delays. 
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I 

5. SUMMARY AND CONCLUSIONS 

In this report we have examined the effects of simulation 
parameters and components on simulator fidelity, particularly 
with regard to predicting operator performance and workload. 
Our focus has been on the dynamical aspects of simulator pri- 
marily as they relate to closed loop control. We have gener- 
ally ignored questions that would necessitate inclusion of 
detailed models for cue perception leaving these to future 

study. 

The human pilot in closed loop control will operate on 
essentially continuous outputs to generate continuous control 
inputs. Thus, even when digital computers are used in an air- 
craft simulation, it is meaningful to consider a continuous 
transfer function approximation to the open loop simulation 
dynamics. Such an approximation was developed in this study. 

It consisted of a rational transfer function multiplied by a 
transportation lag. The rational transfer function approxi- 
mated the amplitude distortions introduced by discrete inte- 
gration of the flight dynamics. The delay accounts for all 
the phase lags introduced by the simulator components. These 
phase lags are the major source of degraded performance and 
increased workload in closed loop tasks. However, the ampli- 
tude distortions can be significant for open-loop responses. 

The approximate model was incorporated in the standard 
optimal control model for the human operator. The resulting 
continuous closed-loop model was used to analyze both overall 
simulation effects and the effects of individual elements. 
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The results showed that, as compared to an ideal continuous 
simulation, the discrete simulation could result in significant 
performance and/or workload penalties. The magnitude of the 
effects depended strongly on sample period as expected. From 
a closed-loop standpoint it seemed clear that A-B integration 
was much to be preferred. With respect to the other simula- 
tion components it can be said that any reduction in delay is 
desirable. Such reductions inevitably involve increased costs 
(hardware or software) which must be balanced against the 

expected improvements. 

In addition to the continuous model, a hybrid model was 
developed to allow us to investigate situations that could not 
be treated adequately with the continuous model. Several 
interesting results were obtained with this model. It was 
shown that for this (fairly typical) aircraft control problem 
signal bandwidths were such that the de-aliasing filter cutoff 
frequency could be set at a value greater than half the sample 
frequency. Also, there appeared to be a potential under cer- 
tain conditions for improved simulator performance with a 
first order hold (rather than a zero order hold). The model 
was also used to show demonstrable effects for adopting the 
simulator dynamics as an internal model. Predictions of track- 
ing performance by the hybrid model did not agree with those 
for the continuous model. This discrepancy was not resolved 
but it appears to be associated with the perception of rate 
information from the visual servo. 

A preliminary validation of the continuous model was per- 
formed by comparing model results with data obtained in an 
independent experiment. The model was capable of predicting 
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the effects of computational delays in generating visual cues, 
once model parameters were chosen to match basic conditions. 

We believe the models developed here can be very useful 
in developing engineering requirements for flight simulators. 
These requirements will be problem dependent which is one 
reason why models are needed. As we see it now, the process 
for using the models would involve the following steps: 

i) Use standard OCM to analyze ideal continuous 
simulation to develop baseline performance 
and to determine expected signal bandwidths. 

ii) 

iii) 

iv) 

Analyze distortion introduced by discrete 
integration schemes and develop continuous 
models for discrete dynamics valid over the 
band of interest. 

Analyze effects of integration, cue dynamics 
etc. using continuous model. 

Use hybrid model to examine effects of data 
reconstruction, de-aliasing cutoff frequency 
etc. 

Before this procedure could be used with complete confi- 

dence the models described herein need further validation and 
extension. It is especially important to collect data in a 
carefully controlled experiment to verify the individual simu- 
lation effects. It is also important to resolve the differ- 
ences between hybrid and continuous models. Once these steps 
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are taken, the models should then be extended to account for 
the important issues in providing motion (and perhaps other) 
cues to the pilot. Finally, it would be useful for both models 
to develop continuous approximations corresponding to discrete 
integration of the lateral dynamics of an aircraft. 
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Appendix A 

SYSTEM FUNCTION FROM STICK 
INPUT TO DISPLAYED OUTPUT 

The system function G(s) for the simulation system under 
analysis may be obtained by computing its steady-state response 
to an input of the form e 923. That is, 

Y 
G(s) = ss (t) 

u(t) u(t) = est 

This definition works equally well for time varying parameter 
systems and for fixed-parameter Systems. 

For the simulation system indicated in Figure 4 we have 

Y(s) = F2b) D*(s) ul* (s) 

where 

u*l (s) = u1 (z) 
z=eST 

Using the formula 

u,(z) = 1 residue 
u1 (s) 

poles of ul(s) l-eSTzD1 > 

the output response of the simulation system to an input 
u(t) = e sot is easily computed to be 

A-l 

i 



I 

y(s) 
N (CS-Si)Fl(S)U(S) ),= 

= F2(s) D*(s) 1 
s 

i 
i=o {l-e -(ST-Si)Tj 

where Si i=l, 2, 

u(s) .& - 

. . ..N are the distinct poles* of Fl(s) and 

the 1eftOhalf 
If we drop the terms in noncorresponding to 

s-plane poles, we obtain the steady-state response 

Y,,(S) = F2(d D*(s) 
Fl (so) 

11-e -(s-soIT 

To compute yss(t) by inverse Laplace transformation we note 
the following: 

i) 
1 

(1-e - (s-so) T I 
has an infinity of isolated simple 

poles at s = so+jnQ, n=O, 21, +2,...,+03. Since 

SO = jw, for a cissoidal input u(t), all these 
poles lie on the imaginary axis. 

ii) The inverse Laplace transform of f(s) is 
o+jm 

f(t) = & /. f(s) e St ds 
O-1” 

c 
st = residue Cf(s)e 1 

poles 
of f(s) 

iii) The infinity of poles associated with 
11-e -: S-Si)T I 

i=1,2,... ,N are all in the left half s-plane 

because si are. 

* Distinct poles were assumed, in order to keep the expressions 
simple. Besides, the pre-filter Fl(s) for the simulation system 
does indeed have distinct poles in the s-plane. 

** Strictly, any left half s-plane poles in F2(s)D*(s) should not 
be included in the exprewsion for Yss(s). The final result 
G(s;t) will not be affected, however, because we shall not include 
the contribution due to such poles while computing Yss(t) and 
then G(s;t). 
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iv) 

VI 

vi) 

The inverse Laplace transform formula in (ii) 
is valid for a (meromorphic) 
type in (i). 

s=O is not a pole in y,,(s). 

The residue of 
Cl-e -: s-so)Tj 

function of the 

1 at the pole so + jnS2 is r . 

Using (i) - (vi) the steady state response is 

y,,(t) = F2(so+jnR) D*(so+jnQ)e (s 
lo 

) 

Hence, the system function G(s;t) from u(s) to y(s) is 

(t) 
G(s;t)A Tz+ 

u(t)=e st 

= + :F2t s+jnfi)D*(s+jnQ)e jr&t\ 
n=-m 1 

Fl (s) 

Since D*(s) is periodic in s with period jQ, we have 

G(s;t) = F2(s+jnQ)ejnnt) D*(s)Fl(s) 
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Appendix B 

ANALYSIS OF THE DISTORTIONS INTRODUCED BY DISCRETE INTEGRATION 
IN REAL-TIME SIMULATION OF CONTINUOUS DYNAMIC SYSTEMS 

B.l. Introduction 

The purpose of this Appendix is to examine the effects of 
various integration schemes in simulating the dynamics of a con- 
tinuous system. 

Consider a continuous system with state-space representation* 

g(t) = -AC x(t) + EC u(t) 

(B-1) 
y(t) = cc x(t) 

where 2, y, and u are, in general, - vectors representing the state, 
output and input, respectively. For -AC,, EC and Cc constant, the 
system Transfer Matrix is given by 

y(s) = _Hc(s) gs) 
(B-2) 

EC(S) = C,(SI-&,)-~ B 
-C 

When Equations (B-l) are "integrated" digitally, many inte- 
gration schemes lead to a discrete approximation to (B-l) of the 
form 

zk+l = Ad -Xk + Ed ;k 
(B-3) 

* The results are easily modified to include a term in the output 
equation that is dependent linearly on control. 
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The specific approximations corresponding to a number of differ- 
ent integration formulae are derived in Section 2. Equation (3) 
has the following Transfer Matrix: 

$+) = {cd b&-&d] -l -B&eST (B-4) 

where T is the sample period. 

We are interested in two problems: 

(i) Analysis Problem 

How "closely" does the discrete system (3) approximate the 
continuous system (l)? 

(ii) Synthesis Problem - 

Find a continuous system that approximates the continuous 
nsimulationn system (from human control input to displayed output) 
in which the discrete system (4) is embedded. 

The second problem is clearly related to the first one but 
is not identical to it. Our interest in this problem stems from 
the need for a "continuous" model of the simulation that can be 
used with existing man-machine models to analyze closed-loop 
performance and workload. In the remainder of this Appendix, 
we consider the synthesis problem only as it relates to the 
results of the analysis problem. 
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B.2. State-space Modeling of Integration Formulae 

This section presents the state-space discrete equations 
that describe the application of various numerical integration 
schemes to a continuous, linear system. The original, NXC 
dimensional system is described by Equation B-l. 

It is assumed that the input u(t) to Equation (B-l) is 
sampled every T set, and it is further assumed that the integra- 
tion algorithm uses 

a 
y(t) = gk = ;(kT) for _ kT < t < (k+l)T 

i.e., u_(t) is assumed piecewise-constant over the integration 
time-steps. The discrete-time equivalent of Equation (B-l) 
that describes the evolution of the system is given in a general 
form (B-3). 

The dimension of the control and output vectors in the 
continuous and discrete-time models are the same. However, to 
allow for flexibility to consider high-order integration schemes 
we will not restrict zk and x(t) to have the same dimension 
(although they often will). The matrices Aa, Ed will be a func- 
tion of AC, EC and T for a given integration scheme. Generally, 

Cd = ccl in cases when continuous/discrete state dimensions are 
compatible. Below we give formulae for Aa, Bd for several com- 
monly used integration schemes. 
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B.2.1 One-Step Methods 

Transition Matrix Method 

This is an exact.integration scheme under the assumption 

that _u(t) is piecewise-constant. 

AT TA o 
-XK+l = e-c zck + &e-c EC da :k 

Thus, dim(xk) = dim(_x(t)) and 

&d = exp (ACT) 

Computation of Equation (B5) is via series summation for 

Ad = I + ACT + 
(ACT) 2 (ACT) 3 (ACT) N 

21 + 31 + --- N! 

(ACT) 2 
+ 3! + *.* 

(AcTIN-l B T 
N! 1 -C 

EuZcr Integration 

This is perhaps the simplest integration scheme 

i(t) is replaced by 

k(t) + b&+1 - $1 /T - 

B-4 

(B-5a) 

(B-5b) 

"small" T, 

(B-6a) 

(B-6b) 

wherein 



I - 

Thus, 

'k-t-1 = (& + AcTI Xk + TBc ;k 

so that 

&d = (1 + AcTI (B-7a) 

Ed --c 
= TB (B-7b) 

Runge-Kutta 

This is the most common scheme for integrating nonlinear 
(homogeneous) equations 

Here, zk+l is computed according 

Xk+l = -Xk t g 1 [hl + 2h, + 

where 

-hl = Tf(xk) 

h2 = Tf(,xk + 2 w1 lh) 

h3 = Tf(xh + ; h2) 

h4 = Tf(xk + h3’ 

In the linear case, assuming u_(t) 

(k, k+l), 

f (5) = ficX + EC gk 

to 

z-h3 + _h41 

is constant over the interval 
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Successive substitutions of f(g) into the above equations gives 

T2A2 T3A3 T4A4 
Xk+l = I+ KA -l--q+ 3F + -c 

‘C 2. . 4: 

T.B 
-C Uk 

Xk 

(B-8) 

Therefore, Runge-Kutta is the same as the transition matrix method 
where N = 4 in the summation Equation (B-6). Note that Euler 
method corresponds to N = 1. 

Implicit Midpoint 

For an arbitrary & = f(x), implicit midpoint gives zk+l 
according to 

1 Xk+l - $ = Tf[+xf + &+I) I 

For the linear case we can solve for zk+l explicitly. 

Substitute for f(x) = Z& 5 + E3c I-J, 

,AcT ,AcT 
xk+l -zk=2 Xk+Yj--X -k+l + TB -c ;k 

to obtain 

++l = (2 - AC T/2) -’ (1 + AC T/2bk 
(B-9) + u - AC T/2)-l TBc gk 
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! Thus, 

+d = (I - AC T/2)-l (E + AC T/2) (B-10) 

= L + $T(I - Z$ T/2)-l 

Bd = (& - AC T/2)-l Tl3, (B-11) 

Simplified Integration 

Y(S) 
In this method the transfer function for - u(s) 

is considered 

and the "integrators" l/s are replaced by 

(B-12) 

thus yielding a discrete differential equation, or z transfer 
function. It is necessary to then find a state-space realization 

for the transfer. Since 

g(s) = C,(sl - AC) 
-lB 

-c 

substituting 

s = $ (z-1) gives 

H_(z) = C,[zI - (I_ + AcTI 1-l T$ 

This z-transfer function is realized by 
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Ed -c = TB 

cd = (I + &,T) 

i.e., the same as Euler's method--to no surprise. 

Tustin Method 

In this approach, a better approximation than Equation 
(~-12) to l/s is used, namely 

(B-13) 

If Equation (B-13) is substituted into H_(S), or equivalently 

into 

s g(s) = AC 5 (s) + Bc u_(s) (B-14) 

y(s) = cc E(S) 

it is easy to see that both numerator and denominator terms in 
H(z) will have powers of z NXC . This means that to find a reali- 
zation of the equivalent H_(z) transfer function we require 

yk = -cd xk + -Dd -Uk 

i.e., we need ;k+l during the interval (k, k+l) in which we are 

computing yk+l Clearly, this is not feasible in the feedback, . 
or control context, and the Tustin method will not be pursued 
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any further. Note that the Tustin method is exactly equiva- 
lent to the implicit trapezoidal method where 

-Xk+l - ?$ = 2 T [f($) + f @k+l) 1 

and f(xk+l ) = AC $+l + EC ++l . 

B.2.2 Two-step Methods --- 

It is fairly clear that implicit integration methods will 
not prove useful for cases when there is an independent, unknown 
a priori, input u(t). This is unfortunate since the Equation 
(B-13) approximates l/s well; i.e., for low frequencies 

T eST+l Z 
2 esT-l 

l+sT/2+s2T2/4+... = 1 
l+sT/2+s2T2/6+... s 

(B-15) 

Explicit Trapezoidal 

The problem with the above is the need for uk and ;k+l 
at time k. One way to amend this is to accept a one step delay 
and use instead +l and uk at time k. This scheme 
to as the explicit trapezoidal, or modified Tustin, 

++l - -Xk = 2 T [f&l) + f (?$)I 

wherein 
1T -+- (z+l) 
S 2 z(z-1) 

is referred 

(B-16) 

(B-17) 
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For low frequencies, 

T 1+z-1 = L l-s%/2 . . . 
TX S l+sT/2+... 

i.e., an integrator with a T second delay, as anticipated. 

In order to find the discrete-time state-space representa- 
tion for this method, we substitute f(x) into Equation (B-16) - 

-Xk+l - Xk = c1@c zk + i?c $1 + C2@c gk-1 + EC $-1) 

where c 1 = T/2, c2 = T/2. Since 

X-k+1 - (2 + c1 ??,I xk - ‘2 ?!c X-k-1 =cl EC -uk + c2 !?c uk-1 

-yk = cc -Xk (B-18) 

it can be seen that the equation cannot be represented by means 
of an NXC-order discrete system. We need zk and zkml at time k 
so that we require a 2 NXC order model. A suitable representa- 
tion that is convenient for our work is 

yk = [C : 01 
6 ?k 

(B-19b) 

'd 
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This form is chosen so that the first NXC component of x is 
the vector gk. By taking the z-transform of Equation (B-19), we 
can readily verify that xk satisfies Equation (B-18) as required. 
Other forms of IAd, Ed, Cd) can be obtained via similarity trans- 
formations. This approach yields some insight as to the modal 
structure of the discrete system--there are now two NXC modes-- 
NXC approximate the original modes and NXC modes are "fast", 
i.e., of order T. 

Adams-Bashforth 

The idea behind this method is to ameliorate the inherent 
delay of the explicit trapezoidal scheme. Here, we obtain 
zk+l according to 

-Xk+l - i$ = T(fk + 7 ' A-fk + ;2 A2fk+. . .) 

where V is the backward difference operator Vfk = fk - fk-1. 
For a two-step method we have 

-Xk+l - Xk = T f bk) - 3 -f("k-1) 
I 

(B-20) 

which corresponds to the replacement 

IL + T 32-l 
s 2 z(z-1) 

For low frequencies this gives 

(B-21) 

which is a compromise between Tustin (unachievable) and explicit 
trapezoidal. 
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To find the discrete model for the Adams-Bashforth method 

we substitute f(x) = AC 5 + EC - - u into Equation (B-20) and expand. 
If we define 

c1 = 3T/2, c2 = -T/2 

the resulting equations are in exactly the form of Equation (B-18). 

Thus, Equations (B-19a)-(B-19b) serve as the discrete model, with 
the proper definitions of cland c2. Note that we can model any 
integrator replacement of the form 

1 -f 
Cl z + c 2 

s z(z-1) 

by the above method. 

B.3 The Analysis Problem 

The analysis problem is to determine how well the discrete 
integration schemes (operating at fixed sample-rates due to 
real-time constraints) mimic the continuous system. One approach 
to this analysis is to consider the difference between outputs 
of the "actual" and "simulated" systems for a given input. This 
kind of "error analysis" is carried out, for example, in Rosko 

121. The difficulty with this approach is that it is input 

dependent. We would like results that do not depend explicitly 

on the input and, moreover, that are relevant to closed-loop 
analysis. For these reasons, we examine the relationship between 
the continuous and discrete transfer functions. 
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We define the "distortion function", D ij ('1 I introduced 
by the discrete integration scheme by the following relation 

Dij (S) = Hd (S)/Hc (S) 
ij ij 

(B-22) 

where Hd and Hc are defined in (B-2) and (B-4) and the sub- 
scripts i and j refer to output and input, respectively. That 
is, Hi. is the transfer function relating the ith output to 
the jt i! input. The definition of Equation (B-22) is straight- 
forward with respect to single input systems, whether they 
involve a single output or multiple outputs. Furthermore, the 
determination of the distortion function in these cases may 
be helpful in solving the corresponding synthesis problem, 
especially if the distortion function is of a simple form (e.g., 
a constant gain and pure delay). For the case of multiple 
inputs, the definition provides analytic insight but it does 
not address the synthesis problem because it ignores interac- 
tions that are essential to reproducing the overall input/output 
relations.* 

It should be noted that because the definition is in terms 

of transfer functions, the distortion will be independent of 

the state-space representation. 

* For this case, it is probably best to approximate Hd directly 
without attempting to relate the approximation to the original 
continuous transfer matrix Hc. 
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B.4 Results 

A computer program was developed to compute distortion 
results for several of the integration schemes discussed in 
section B.2. The results are summarized below. The following 

shorthand notation is used in the sequel to identify the inte- 
gration schemes: 

EU : Euler 
TM : Transition Matrix 
RK: Runge-Kutta 
IM : Implicit Midpoint 
AB : Adams-Bashforth 

B.4.1 Integration (H$) = ;) 

Here AC = 0, Bc = Cc = 1. Simple analysis of the integra- 

tion schemes shows that the TM, EU, RK and IM methods yield 

identical discrete transfer function Hd(s) and should yield 
identical distortion results D(s). This was verified to be 

the case. The magnitude and phase distortion results obtained 
are plotted vs. a normalized frequency in Figure B-l. 
For this case, the normalized magnitude and phase distortion 
results are independent of the sampling frequency. 

B.4.2 Computation of D(s) for He(s) =s+ 

The details of computation will, of course, depend on the 
integration scheme used. For illustrative purposes, let us 
consider the Euler scheme. Any other scheme may be worked out 
similarly. Here we are approximating 
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r- 

. 
y=- PY + u 

yk+l = yk + (-PY + u)T 

Thus 

He(s) = 1 
s+p 

and 

Hd(S) = T 
z-1 + pT z=exp(sT) 

so that 

D(s) = (s+p)T 
exp(sT)-l+pT 

From 

D(jw) = (jwT+pT) 
exp(jwT)-l+pT 

it is easy to compute the magnitude and phase distortions as 

Dm(jw) = j D(jw) 1 

Dp(jW) = Arctan{lmag. part D!jw)} Real part D(-J~) 

These are plotted in Figure B.2. 

(B-23) 

B-17 



3.0 

2.5 
A 
0 .- 
E! 

, 0.3 0.4 0.5 0.6 0.7 
w/i-l = l/N 

-0 C C 

I I I I 1 1 
20 10 5 4 3 2 

N SAMPLES/CYCLE 

-*- 

.’ 

-- 

I 

I’ 
,‘0.2 

I 
L 1 

I I 
I I 

I 1 l/51 -= 
S+P jw/fi + p/rcZ I 

I 
P -= 

0 
‘4 O- 

2 
,,0’ 

c ./* / -0.1 

Figure B2A.- Distortion Results for First 
Order Dynamics (He(s) = l/s+p). 



! 

U-J 
- -1.0 L3 

ii 
a 

E 

- 1.5 

-2.o- 

-0.1 

-0.2 
cl 0.1 0.2 0.3 0.4 0.5 0.6 C 

w/a = l/N 

-0.2 

-0.1 

P -= 
D O 

I I I I I I 

20 10 5 4 3 2 
N SAMPLES/CYCLE 

Figure B2B.- Distortion Results for First 
Order Dynamics (He(s) = l/s+p)= 

7 



B.4.3 Computation of D(s) for H,(s) = (s+z) 
- 

Again we shall illustrate only the Euler scheme. We are 
approximating 

. 

u=- zu + y 

Uk+l = Uk + (yk - z”k)T 

It follows that 

D(s) = esT -l+zT 
(s+z) T 

(B-24) 

1 which is simply the reciprocal of the result for Hc = - 
s+p 

with p E z. Hence, the magnitude distortion for a zero is 
simply the reciprocal of that for a pole; the phase distortion 
for a zero is negative of that for a pole. 

B.4.4 Computation of D(s) for any H,(s) 

We note that any He(s) may be written in the factored form 

(B-25) 
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Some of the zi and p. 
3 

may be zero or complex, the latter, of 
course, occurring in conjugate pairs. It then follows easily 
that* 

Dm(Hc(s) 1 = 

n 
Dc(Hc(s)) = C Dp 

L j=l 

(~-26) 

(B-27) 

The result in (B-23), of course, is true for p real, complex 
or zero. Writing p = z + jw we have 

and 

D 1 -= 
P s+p 

Arctan C(w+w)T 
ZT 

-Arctan 1 wT+sin wT 1 
ST-l+cos ;T 

(~-28) 

(B-29) 

(B-30) 

We may hence also compute the effective time delay ~~ for any 
transfer function using (B-29) as 

* We abuse notation here and write Dm(Hc(s)) to denote D (w) for 
the transfer function He(s) and srmilarly for Dp(Hc(s)$. 

I 
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n m 
T~(H~(s)) = C - - c (B-31) 

j=l i=l 

where -r 1 
d s+p. is the effective delay associated with a pole at 

Pj ~ etc. 7 

Thus, the effective delay for transfer function He(s) can 

be bounded by 

5 -rd($(S)) _< n 

B.4.5 f-8 Dynamics 

The aforementioned computer program was used to obtain 
distortion results for various unaugmented configurations of 
the F-8 dynamics corresponding to Flight Condition #ll C211. 
Results for the various integration schemes are given as a 
function of frequency in Figures B-3 - B-6* where the plot 
symbols E, A, T and X respectively denote Euler, Adams-Bashforth, 
Transition matrix and Explicit trapezoidal integration. '(Transi- 

tion matrix and explicit trapezoidal results are shown only for 
the longitudinal short period dynamics.) 

- 
* The use of a normalized frequency is not convenient for 

dynamics other than pure integration 
distortion versus normalized frequency is no longer covariant 
with sample frequency. 
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APPENDIX C 

STATE EQUATIONS FOR F-8 DYNAMICS 

In this Appendix, the state variables and state equations 
for the various F-8 configurations analyzed in the text are 
presented. In general, the state variable description is 

. 
x=&x+l33+Ey 

(C-1) 
y=cg+nu - - 

The state and output variables are not unique and may be 
defined in various ways. The definitions used in the analyses 
conducted here and the appropriate system matrices for (C-1) 
are given below. 

C.l Longitudinal Dynamics 

xl: dummy variable (used in generating target motion) 

x2: hT (ft) 
. 

x3: hT (ft/sec) 

x4 : g (deg/sec) 

x5 : a(deg): angle of attack 

x6: @ (deg) : pitch angle 

x,: h (ft): deviation from nominal altitude 

C-l 



The output variables were selected to be 

y1 = R sV: tracking error (ft.) 

y2 = R EV: tracking error-rate (ft/sec) 

y3 = 8 (deg): pitch angle 

y4 = q(deg/sec): pitch rate 

y5 = nZ (9) : normal acceleration 

y6 = hT(ft/sec2): target normal accel.eration 

For the analysis y1 - y4 are observed by the pilot. Normal 
acceleration n 2' is a response variable of some interest and 
the target's normal acceleration is included as an output for 
convenience. 

The state equations corresponding to the above definitions 
are given in Figure C-1 for the wideband target motions. For 
the narrowband target motion the equations are modified simply 
by letting 

a32 = -.04, a33 = -.2828, c62 = .04, c63 = .2828. 

The system matrices for the longitudinal CAS-ON dynamics 
are given in Figure C-2. The three additional states x8- xl0 
are CAS-states. The remaining variables are defined as before, 
except the pilot's in-out now has units of ft/sec 2 . 

c-2 



- 

C.2 Lateral Dynamics 

The states, controls and outputs are defined as follows 
for lateral tracking with unaugmented dynamics. 

x1 = dummy variable 

x2 = @T (deg) 

x3 = 1) T MegI 

x4 = p (deg/sec) . 

x5 = r (deg/sec) 

X 6 = B (deg) 

x8 = $ (deg) 

x9 
=RE T (ft) 

u1 = 6a (deg> 

u2 = 6r (dey) 

Yl = @T - $A (deg) 
. . 

5 = +T - $A (deg/sec) 

y3 = R ~~ (ft) 

y4 = R ET (ft/sec) 

c-3 
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Y5 = 4 (deg) 
. 

'6 = $ (deg/sec) 

Y7 =n y (ft/sec2) 

y8 = r (deg/sec) 

The corresponding system matrices are displayed in Figure C-3. 

For the lateral CAS, one state is added for model-following 

x1o = pm (deg/sec). Two output responses are added to those 
above, viz. 

y9 = ‘AC (deg) 
ylo = 6RC (deg) 

The resulting system matrices are given in Figure C-4. 

Finally, for the coordinated dynamics, the system matrices 
are given in Figure C-5, where 

x1 - x4 defined as above 

x5 = $ (deg) 

x6 = VJ (deg) 

x7 = R ~~ (ft) 

y1 - Y(j defined as above 
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TOTAL NOISE STATES= 3 
A MATRIX: 

-l.OOOE+OO 0. 0. 
0. 0. 
0. 0. l.OOOE+OO 
0. 0. 
l.OOOE+OO -2,50OE-01 -7.070E-01 
0. 0. 
0. 0. 0. 
0. 0. 
0. 0. 0. 
0. 0. 
0. 0. 0. 
0. 0. 
0. 0. 0. 
1.086EcOl 0. 

B MATRIX: E MATRIX: 
0. l.OOOE+OO 
0. 0. 

-80:743E+OO 0. 0. 

-l.llOE-01 0. 
0. 0. 
0. 0. 

C MATRIX: 
0. l.OOOE+OO 0. 

-l.O47E+Ol -l.OOOE+OO 
0. 0. l.OOOE+OO 

-l.O86E+Ol 0. 
0. 0. 0. 
l.OOOE+OO 0. 
0. 0. 0. 
0. 0. 
0. 0. 0. 
0. 0. 
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0. 0. 
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0. 0. 

-l.O47E+Ol l.O86E+Ol 

0. 0. 

l.OOOE+OO 0. 

0. 2.818E-01 

0. 0. 

Figure Cl.- State Representation for Longitudinal 
Wide-Band Tracking Task (CAS-OFF). 

c-5 



TOTAL NOISE STATES= 3 
A MATRIX: 

-l.OOOE+OO 
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0. 
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0. 
0. 

0. 
0. 

0. 
0. 

0. 0. l.OOOE+OO 0. 0. 
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0. 
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0. 
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0. 
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0. 
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B MATRIX: 
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0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

Figure C2.- State Representation for Longitudinal 
Wide-Band Tracking Task (Pitch C-M-ON)- 
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C MATRIX: 

0. l.OOOE+OO 0. 0. 
-l.O47E+Ol -l.OOOE+OO 0. 0. 
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0. 0. 0. l.OOOE+OO 
0. 0. 0. 0. 

0. 0. 0. 2.086E-12 2.818E-01 
0. 0. l.l30E-04 0. 1.378E-03 

0. 0. 0. 0. 0. 
0. 0. 3.026E-03 0. 3.690E-02 

0. 
0. 

l.O86E+Ol 
0. 

0. 
0. 

0. 
0. 

D MATRIX: 
0. 
0. 
0. 

;:922E-04 
2.657E-02 

Figure C2.- State Representation for Longitudinal 
(cont.) Wide-Band Tracking Task (Pitch CAS-ON). 
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TOTAL NOISE STATES= 3 
A MATRIX: 
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Figure C3. -State Representation for Unaugmented 
Lateral Dynamics. 
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C MATRIX: 
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Figure C3. -State Representation for Unaugmented 
(cont.) Lateral Dynamics. 
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TOTAL NOISE STATES= 3 
A MATRIX: 
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0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 

0. 
0. 
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Figure Cd.- State Representation for Augmented 
Lateral Dynamics. 
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C MATRIX: 
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0. 0. 0. 0. 0. 
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0. -1.672E-03 0. 0. l.lOOE-01 

-;:34IE-01 
D MATRIX: 

0. 
0. 
0. 
0. 
0. 
0. 

-6.050E-01 
0. 
0. 

-l.ZZZE+OO 

-;:941E-02 
0. -6.377~~02 7.653E-01 
0. 0. 4.426E-03 

- 

Figure 4. - State Representation for Augmented 
(cont.) Lateral Dynamics. 
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TOTAL NOISE STAT.ES= 3 
A MATRIX: 
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