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GLOSSARY OF SYMBOLS

I = RF frequency index; Ie[?,!maxj

L = Range gate index; {;}z ?gzlyggzze

k = Time index for a specified pair (I,L); ke[0,N-1]
m = Doppler filter index; me[O,N-1], N=16

Real ang imaginary parts, respectively, of the signal
compoaeni at the output of the Lth range gate, at
time k.

NR(L,k), NI(L,k) = Real and imaginary parts, respectively, of the noise
component at the output of the Lth gate, at time k.

PSI(L,k) = _ Real part of the total output of the Lth gate at
SR(L,k)+-NR(L,k) time K.

PSQ(L,k) = _ Imaginary part of the total output of the Lth gate ’
SI(L,k)i-NI(L,k) at time k.

F(L,m) = Output of the mth doppler filter following the Lth
gate.

FR(L,m), FI(L,m) = Real and imaginary parts of F(L,m), respectively. °

052 = Variance of the in-phase and quadrature phase
Gaussian signal components.
°n2 = Variance of the in-phase and quadrature phase

Gaussian noise components.

N = Order of the Discrete Fourier Transform (DFT) filter.
|+1 = Norm of (+)
p = Noise correlation coeffigienp.
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SUMMARY

In this report, the statistics of the CFAR threshold for the
Ku~band radar are determined. Exact analytical rcuitlts are developed
for both the mean and standard deviations in the designated search mode.
The mean vilue is compared to the results of a simulation reported in
[1], The analytical results are more optimistic than the simulation
results, for which no explanation is offered.

The normalized standard deviation is shown to be very sensi-
tive to signal-to-noise ratio and very insensitive to the noise corre-
lation present in the range gates of the designated search mode. The
substantial variation in the CFAR threshold is dominant at Targe values
of SNR where the normalized standard deviation is greater than 0.7.
Whether or not this significantly affects the resulting probability of
detection is a matter which deserves additional attention. ,

On the optimistic side, the threshold setting and target return
are correiated; this leads us to conjecture that this variation may not
appreciably affect the probability of detectijon, On the pessimistic
side, there is a substantjal variation of the CFAR threshold setting
away from that developed from the noise-only condition.




1.0 INTRODUCTION

The constant false alarm rate (CFAR) thresholding scheme in the
Shuttle Ku-band radar is analyzed for the "designated mode" of operation.
In particular, both the mean and standard deviations are determined for
the threshold ievel.

In search, there are two basic modes nf operation: designated
and undesignated. In the designated mode, range being designated, there
are two overlapping range gates of width 3tv/2, where t is the transmitted

‘pulse width. Four nonoverlapping range gates of width t are used in the

undesignated mode.

Sixteen pulses are transmitted at each of the five RF frequen-
cies. When range designation is available, the pulse width and pulse
repetition frequency are functions of the designated range.
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2.0 DESIGNATED MODE THRESHOLD

The basic signal processing of the Shuttle Ku-band radar for
the designated mode in search is shown in Figure 1. Only those signal
(3 processings pertinent to the CFAR threshold formulation are shown., For
; a more detailed description of the signal processing for the Ku-band
radar, see [2].
The output of the IF filter is downconverted to a complex base-
band waveform

I +3JQ = SI(I,J,k) + 3sqQ(I,d,k) (1)

Before A/D, the I and Q waveforms for the kth pulse are given by

1430 = Ap P(E-KT) explilagteoy)] + n(t) + ang(e) (2)

s

where

A; = the random amplitude of the target return which has the
Rayleigh probability density function with parameter osz,
which represents signal power

8; = a random phase uniformly distributed over (0,2r)

the doppler frequency, which is neglected in this analy-

W, =
d
sis. The effect of doppler on the final results is not
expected to be appreciable.
P(t) = pulse shape of width t seconds
= -1
Tp (PRF)

=
—
ct
~—
-
=
w
e
ct
~——
u

independent zero-mean Gaussian processes with one-sided
power spectral density NO N/H% and one-sided no%se band-
width fe (fc= 237 kHz), which is the 3 dB bandwidth of
Hy(f) (see Figure 1).

The noise power in Nc(t) and Ns(t) is therefore given by

N0 fC - (3)

= for each process.,

e e i e kAl s a i
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The integration process of the presum is also shown in Figure 1
for the designated mode in search. We assume that the received pulse is
ideally designated so that it appears exactly between the two range gates
of width 3t/2, as shown in Figure 1. This, coupled with neglecting the
doppler effect, maximizes the effect of the signal received from the tar-
get on the CFAR threshold.

With these assumptions, the presum output for the kth pulse
for the Lth range gate is

t+31/2
PSI(L,k) + j PSG(L,k)

u
Al—=

[sx(t) y sq(t)]dt

ts+3T/2
Aps exp(jel)+[ ch(t)+j Ns(t{[dt (4)

i

S

where the sum of the samples at the output of the A/D is approximated by

analog integration, This is an excellent approximation since the number

of samples in 3t/2 is sufficiently large at long ranges., The starting

time of the range gate integration is designated t. '
The signal part of the presum output is designated

Ap T exp(ier) = Sp(L,k) + S (L,k) (5)

where SR and SI are independent zero-mean Gaussian random variables,

with variance osz. This is the same value found at the input to the

presum because of the normalization in our definition.

The noise components of the presum output are designated \
t +3t/2

‘ : 175 .

Np(Lok) + 3 N (LK) = L [ [No(e)+3 N (e)]at (6)
t

S

where NR and NI are independent Gaussian random variables with variances

N
o2 () 3- 3, )

T P P L M




Formulation of the CFAR threshold for the designated mode in
search is shown in more detail in Figure 2. In particular, the outputs
of the DFT doppler filters are given by

N=1
F(m) = > |PSI(k)+J PSQ(k)| exp(-j 2tk (8)
=3[ | enls 5

_ for both the early and late range gate outputs. Note that the doppler
filter outputs from the early and late range gates are correlated; this
affects the evaluation of the variance of this CFAR threshold,

The CFAR threshold, T, is formed via the following average

N Lax H N2
I=1 L=-1 n=0
where
I = the RF frequency index, I = ]""’Imax’ Imax = b
L = the range gate index, L=-1: early gate; L=+1: late gate
k = the time or pulse index, k = 0,.,., N-1, N = 16,
m = the frequency of doppler filter index, m = 0,,.,, N-1.

In the next section, the results of the statistical analysis of
T are discussed.
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3.0 PERFORMANCE OF CFAR THRESHOLD

The mean (ensemble average)of the ¢FAR threshold is determined f
in Appendix A and plotted in Figure 3, In this analysis, any doppler
frequency shift away from the center frequency of the nearest doppler
filter 1s neglected. In addition, it 1s assumed that the range designa-
tion is ideal., Both of these assumptions maximize the effect of the sig-
nal on the statistics ¢f the CFAR threshold,
Under the above assumptions, the average CFAR threshold value
for the designated mode versus the SNR at the output of the presum 1is
plotted in Figure 3, where

SR = o%/o, (10) |

As expected, at small values of SNR, the effect of the signal
from the target disappear: and the threshold becomes the value correspond-
ing to noise only,

Also incfuded in Figure 3 is the result of the simulation
reported in [1]. The results of our analysis are normalized in Figure 3 |
so that the average threshold value at 0 dB coincides with that in [1]. o

At this time, we have no explanation for the significant dif-
ference between the exact analytical and the simulation results since
their target dependence is less, even though we assumed maximum target
dependence,

In Figure 4, the normalized standard deviation of the CFAR
threshold is plotted versus the SNR at the output of the presum. This
exact analytical result shows a significant dependence on SNR and a neg-
Tigible dependence on the normalized noise correlation coefficient p. .
For the actual case, we have, as deszribed for the range gates in Fig- y
ure 1, o S

p = 2/3,

P

Inspection of the plot in Figure 4, however, shows little variation as
p varies from 0 to 0.7 ®

It is worthy to note the substantial variation in the CFAR
threshold, particularly at large values of SNR where the normalized ,
standard deviation is greater than 0.3. No attempt has been made to
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determine the effects of this variation on the probahility of detection.
On the optimistic side, the threshold setting and the target return are
correlated; this leads us to conjecture that this variation may not
appreciably affect the probability of detection. Oa the pessimistic side,
there is a substantial variation of the CFAR threshold setting away from
that developed from the noise-only condition.

I T U 11
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APPENDIX A

Here we wish to derive the expected value E(T} of the random
variable T, defined as (see Figures 1 and 2):

1
Té (P N E [F(L,m,I)] (1)

where the dependence of F on the frequency range I is explicitly shown
in (1) and where ¢y is a normalizing constant.

Before we proceed, let us first list the assumptions entailed
in the following derivations.

Assumptions

(1) The in-phase and quadrature-phase components of the sig-

nal and noise are zero-mean, independent, Gaussian random variables (rv).

(2) For different RF frequencies, all rv's are independent.
We can therefore confine our interest to one specific frequency.

(3) For the same range gate (L) and different time slots (k),
the noise variables are independent, i.e.,

Na(Laky) L Np(Loky) for ky # ky
Np(Loky) LNp(Lky)

(4) Real and imaginary parts of either signal or noise are
always independent, i.e.,

NR‘LNI ) SRJ‘SN. ' ' LA

(5) For the same k but different gate, the noise components
are correlated. The covariance matrix is

10p0

_ ' 5 010¢p
R ={COV ;NR(-'I ,k),NI('] :k)uNR(]’k)’NI(] ’k)} = 0“n P0O01TO0

0r01
L a

2 gt T

o s T - o— T r % e et
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Therefore, for different k's, the noise rv's are independent, regardless
of the value of L.

(6) For both range gates and al? times k associated with one
RF frequency, the parts of the signal are identical, i.e.,

SR("]:k]) = SR("]’kz) = SR(1’k3) = SRU’k4)’

for every k],ka,k3,k4 [0,N]. Likewise for the imaginary parts of the
signal SI'

As an immediate vesult of assumption (2), the frequency
dependence can be dropped and T can be written as

Lnax’ 22 :E [F(Lsm) |

=1 m=0

1
25 L,m)

—
1

n

(m) (2)

5 M_' éﬂ)an

where C = C].I and we have defined the rv X(m) by

max

Xm) = [F(-1,m)| + |F(1,m)| (3)

In the following, we shall derive the expected value of X(m). From (3),
it follows that

E{X(m)} = E{|F(=1,m)|} + E{|F(1,m)|} (4)

and, because of the symmetry existing between the two gates, (4) simpli-
fies to

E{X(m)} = 2E{|F(1,m)|} (5)

It is obvious from (5) and the assumptions made that the first moment




(ensemble average) is not a function of the range gate.

A e o o . cen

A3

Henceforth, we

will drop the gate-index dependence from the symbols listed before in

order to simply matters.
Let us call

y(m) & |F(m)]

so that, from (2), (5) and (6),

E(T) = 2c-§2 ECy(m)
m=0

ey
" ’

1‘ aa "
= ijﬁ,s) + rlzﬁn)

.

(7)

Since F(m) is the output of a DFT filter whose input is the set

{PSI(k) + jPSQ(k)}, we have that

N-1 -] 2k
F(m) = z (PSI(K)+jPSQ(k))e N
k=0
which means that
N-1
FR(m) = z PSI(k) cos Zermk + PSQ(k) sin
k=0
. N-1
FI(m) = - PSI(k) sin 2ﬁ$k + PSQ(k) cos =~
k=0

Since PSI(k), PSQ(k) are Gaussian rv's,

i

Zwmk

(8b)

PV

(both signal and noise are Gaus-

sian), so are their linear combinations FR(m) and FI(m), which are also

Zero nean.

We will need the covariance matrix of {Fp(m),F (m)}. From

(8a), we have that

L T

io? oY
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A4
FR m = El <FSI(R) cos 3%$5-+ PSQ(k) sin §%$5>
k=0
N=1 M=
) <?Sl(k) cos 28K + psq(k) sin 21?*)
k=0 =0
kit
. <%sr(r) cos 3%?1 + PSQ(r) sin 3%?%) (9)
But
E{PSIz(k)} = E{st(k)-+NR2(k)-+zs (k) Np(k)} 052 + on2 (10a)
and, similarly,
E{Psqz(k)} EART (10b)

For k # T,

13

E{PSI(k)-PSI(7)} E{(SR(k)-kNR(k)) (sR(T)-+NR(T))} (Assumption 1)

E{SR(k)~SR(r)} + E{NR(k) NR(T)} (Assumptions 3,6)

= g (11a)
and, similarly,
E{PSQ(K)-PSQ(x)} = o (11b)

Also, from Assumption 4,

E{PSI(k)-PSQ(k)} = E{PSI(k)-PSQ(t)} = E{PSI{t)-PSQ(k)} = 0 (12)

B S

o



Substituting (10), (11), and (12) into (9) and after some manipulations,
we get

=]
7 +sin2 Zmnk)

m
s,
iz
=
ny
——
=
—
e
i
(-3
w
no
=
Q
> N
s N
=
i\
/\
(2]
o
w
no
gf"\

or

efFZm) = Moy Z40,2) + 20,2 > (Neg) cos 2IME (13)

The corresponding result for ElF (m)} is easily shown to be the same as
in (13).

Before we examine (13) closer, let us calculate the cross-
covariance term:

N-1 N-T
z z (PSI(k cos 2"&"" + PSQ(K) sin 2’&“")

u

E{FR(m)-FI(m)}

(t) sin 2"mTi-PSQ( ) cos zﬁwi)} (Assumption 4)

PSI PSI(T) sin 21?1 21?k o

k=0 T=o

+ PSQ(k) PSQ(T) cos _Z_lTN[!E sin 21;\1]1'()

. g




A6
We now notice in (14) that, to each term £= k-t>0 in the double summation,
there exists a corresponding term -£=t-k<0 which, because of the sine
function being an odd function, cancels with .the former term. Hence,

E{FR(m)-FI(m)} = 0, for all me[0,15] (15)

and this holds independently of N. The covariance matrix of FR(m).
FI(m) can now be written as

A(m)oas2 + onz 0
A4 cov{FR(m),FI(m)} = N | (16)
0 A(m)'cs2 + °n2
where, from (13) and (16), it follows that
N-1
Am) = 1+2 :Z (1 - ﬁ) cos g%?i (17)
g=1

We will briefly examine A(m). We have that, for m=0,

A(0)

ES =1 + 2[(N-1) - %- 3

1+2EH —17—)] N. (18)

To study the case m#0, let us assume that N is divisible by 4. Then, if
we call €' = N - &, it follows that

AN
‘ ¢ 7

2wmg ! 27

- 2T ooy = 2mm
cos ~==— = cos =y (N-£) = cos

so that (17) reduces to

v

e e et it st v - A 1 S st - e

st e 35 e ek
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A7

/2-1
A{m) =1 + 2 Z (] - ﬁ-n ...N_,'q_i) cos _21;';“5 4 gosmn
£=1
or
N/2-1
Alm) =1 +2 EZ cos g%$§-+ cosm (19)
=]

If we now call &' = N/2-1, it follows that
cos gﬂ%gl = cos gﬂmﬁ%[giil = (-1)" cos g%?i

so that (19) yields

N/4-1
A(m) =1 +2 25 (l+(~1)m) cos g%$§-+ cos "L + cosmm (20)
= |

-—

An immediate conclusion of (20) is that A(m)=0 for m=o0dd. For m=even,
(2) reduces to

N/4-1
Am) = 2|1 + (-1)V2 4 2 z cos ?l’Nl"—E» (21)
g=1

The above holds for an arbitrary N divisible by 4. In the general case,
(21) might yield a nonzero value of A(m), which nevertheless will be

small. However, it is straightforward to show that, if N is a power of 2 b
(which is almost always the case in practice), A(m) of (21) identically
vanishes. Below we summarize the conclusion for the covariance matrix A:

L




. ——

b= covfFp(n)Fym) =

ST BT SEe m

A8

ym=20

S n (22)

sym#O

From (22), some useful conclusions can be drawn. First, we notice that
the noise components at the input affect all doppler filter outputs,
while the effect of the signal is confined to the m=0 doppler filter
only. Furthermore, the effect of the signal on that term is enhanced
by a factor of N as compared to the noise, Hence, for the moderate-to-
high signal-to-noise ratio (SNR) environment, we can claim that the
zeroth filter output is produced by the signal only and the other out-
puts by the noise only. Finally, we notice that, in all cases and for
every doppler filter output, the real and imaginary parts of the output
are independent, This enables us to conclude that y(m) of (6) is a

Rayleigh vv with mean

E{y(m)} = [T v(m) (23)
where
. e ‘,LVNUn i m=0 o
Jﬁ;n—z— sy m#O0
From (7), (23) and (24), it follows that ..
E(T} = C/Z?F-|}/N2cxsz + Mo 2 (N1) M }
or
E{T} = c-N/é?[cs + ol N/;N]—'on:[ (25)




or in terms of the signai-to-noise ratio SNR = osz/onz,

E(T) = C./2mNwo, |:/SNR + N! * -”——-/-N-il

o

Typically, the constant C, in (1) is defined as

—
) -

max

In this case, C = 01'Imax

E(T) =J§ cn.[/SNR ¥ _ﬂi‘ + N /‘ﬂ‘] \

For the specific application considered, N = 16, so that the factor |
1/N = 0.06 can be neglected for even very moderate SNR (say, SNR>0 dB). ;
In this case, we conclude that E{T} varies linearly with (SNR)1/2.

A final comment pertains to the values of SNR and an of (28).
These are the values of the signal-to-noise ratio and noise power at the
input of the doppler filters. Since an A/D converter precedes these fil-
ters, the values of these parameters at the input of the A/D converter,
denoted here by (SNR)1 and opy, respectively, relate to the A/D output
parameters (which are the inputs to the filters) by [2]:

N SNRi
R = T:_—
A/D ,
and
where

1.0129 + 0.0129 - SNRi

= 1/2N, and (26) modifies to

A9

(26)

(27) f:

(28)

. _— - . . - i v S

(29a)

(29b)

(30)

P T T T

N



If we incorporate (29) and (30) into (28), we get

i Wy N
E{T) \/'-,g?.ani. [y [ v ra

which is plotted in Figure 3 for N = 16 as a function of SNR1 in dB.

A0

(31)

I S



APPENDIX B

4‘ 2
We evaluate herein the variance oy

as defined in equation (1) of Appendix A.
From (2) of Appendix A, it follows that:

of the: random variable T,

N-1 N-1 N-1 7

{2 = 2> B+ S S ximy) Kimy) ()
m=0 my=0 m,=0
B my 7y

where

Xm) = JF2(-1m) + F 2T m) + JREm) + FEOm)  (2),

To simplify matters, we will examine two distinct cases: moderate-to-high
and Tow SNR.

1.0 MODERATE-TO~HIGH SNR

According to the previous comments of Appendix A, we can justi-
fiably assume in this case that the zeroth doppler filter output X(0) is
produced by the signa! part of the DFT input only, while all other X(m),
m¢0 are produced by noise only.

1.1 Signal Output (m=0)

e (@) = (fron (2))= E{FRZ(-],O)+F12(-1,0)+FR2(1,0)+F12(1.0) N

+ 2 J[F7(-1,0) +F2(-1 ,6)} '(FR2(1,0)+F12('1,,(‘);)} (3)

Since we have assumed that all random variables appearing in (3) are

exclusively signal functions, we can further invoke Assumption 6 of Appen-
dix A, according to which %

@ |
Fp(=1,0) = Fp(1,0) and Fy(-1,0) = FI(1,0)@ fa)




X

o
i

B2
Substituting the above into (3) yields
shEioh = ae{r? 1,00} + a{F (1,0} o
From (22) of Appendix A, we have (settingfosz>> ana) that
el 2(-1,0)) = EfF 201,00} = W0 2 (5)
so that (4) and (5) combine to give
e{if(0)} = ol (6)

1.2 Noise Qutputs (m#0)

2L e 2, 2/ 0 N e 2oy e 2
E{mio(m)} E{‘R (=1,m) * Fi (=1,m) 4 Fa (1,m) * Fi (1,m)

b 2flFE -1 m) +F 2 (-1m)) (FRz(l,m)+F12(1,m))} (7)

Since all random variables are produced by noise, it follows from (22)
of Appendix A that

E<FR2(-] |m)} = E{E'Iz(],m)} = E<FR2(1,m)} - E{FIZU,m)} - N0n2 b 02

so that
ei )} = ae?+20 (8)
m#0 '
where b tr
p & s’{J(FRZ(-1,m) +F (2 (-1,m) (o2 (1m) + F12(1,m))} (9)

We now proceed to evaluate D. To gg%this, we need the joint statistics

of the zero-mean, Gaussian rv's appearing in (9). Let us find the covar-

iance matrix Rof {Fp(-1,m), Fy(=1,m), Fp(1,m), FI(1,m)}, m#0.
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From (8a) of Appendix A, we have that (assuming only noise input),

-1
E{FRZ('1,m)} = £ ES‘ (NR (k,=1) cos g%?5»+ Ny(k,=1) sin 2%?5)

- (because of assumption 4)

N-1
ngne kzo (cosz 2mnk o402 ank) . Nunz . o2 (10)

and similarly for the others.
Furthermore,

N-1 N-1
{FR( ~1,m) FR ,ﬂl} z z (NR( -1 k) cog UMK 2nmk ("],k) sin 2"&“)

(NR(m) cos EHE4 N (1,7) sin %}-f-‘-) (1)

which, because of Assumptions 4 and 5, reduces to

N-1
E{FR(-I ,m).FR(l.m)} -k kzo 1 (1) cos? 221

¥
L§ N

Ny (=1,k) N[ (1,k) sin? 2K = g 2o = o6? (12)

Hence, the covariance matrix Ris

R = COV{FR(’]’m)oFI('] ,m)-FR(hm).FI(l-m)} =

aé (13)

o -~ O T

° O - o
| O v o)

foo o —1.

Comparing (13) and Assumption 5, we draw the interesting conclusion that
the noise statistics remain unaltered after passing through the complex
DFT doppler filters.
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We are now in a position to evaluate D, If we change to
polar coordinates

F ( =1,m) = Vg cos b FR(I,m) =V cos 4

and - (14) B
R1<"1 )m) = VE Sin ¢E FI(],m) = VL Sin be i j
then (9) is simply written as ;
' |
D = E{vE~vL} (15)

The joint distribution of the envelopes VE and VL’ for the four Gaussian
rv's correlated as in (13), is found from [3] to be

( ( 20y 2.4 241 |
VeV, IVVLUD.ep-_ﬂEWL) ; | i
E*°L ’ |

sy for VE’VL >0
\ 0 » elsewhere

where I ( ) is the zeroth-order modified Besse] function.
(16), 1t fo]]ows that

Vghyop o? (VH, 2) o
__,.W__ 0 l : l]/z cexp (=~ '-Z—I—R—,-TT dVEdVL (]7) ‘
i

From (15) and

If we make the transformation

i ‘ [ ]

1/2

Vet = BLZ yeenp o) |

o a

1/2

VLZ = IR Y exp {~2z} g
g
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whose Jacobian is

and, upon substituting into (17), we get

D = -Lj%-]:[o dy - y2 . Io(yp)—(f dz . exp{-y cosh (2z)}} (18)

The inner integral equals KO(y) (4], where Ko(y) is the zeroth-order
modified Hankel function. Therefore, from (18),

D= l%lf y? Joldey) koly) dy (19)
(o}
0

where we have used the fact that Io(n) = Jo(jn)(do(.) is the zeroth-order
Bessel function). ‘
The integral of (19) can be evaluated. From [5], we find that

f. k,(az) Jﬁ(bz)-z'Y dz
0

- bB-P(B'Y;“+])-P(B'Yéa+])-2-(Y+])-ay-s-] r (84+1)

2

~via+ " '

,2,_-] (B 1;& 1 ; B Yza 1 s B+l - 9_2) (20) s
a

' AN

where 2F](-) is the Gaussian hypergeometric function [5]. Applying (20)
for a=0, =0, y=-2, a =1, b = jpo, we get from (19) that

p = 1RL.

g

- Py (3725 3/25130%) (21)

roj

T e s R e ‘ - R — . -
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From [5], we find that

u

oF1(3/25 3723 15 o%) (1-p2)'2-zr1(-1/2; -1/2; 15 o)

2 [? 1 -p ) k(p i] (22)

where k(-) and E(-) are the complete elliptic integrals of the first and

, second kind [6].

Upon substitution of (22) into (21), we find that

RI .q_2y2 I N
L 009" [z (1-%) k(o2 (23)

From (13), the determinant |R | can be evaluated to be

2

IR| = B8 = g (-5 (24)
From (23) and (24), we finally get
0 = ngZ [26(%) - (1-67) k(6] (25)
From (8) and (25), we derive that
2{ _ 2 2 2 2
m;g{x(m) } = 2No E+ 2E(p°) = (1-p%) k(p )] (26)

Equations (6) and (26) yield the resuit for the first summat1on in (1).
The second term (double summation) is now evaluated. ’

First let us assume that my #n@ and none of them equals zero.
In this case, both X On]) and X Onz) are produgsd by noise, and from (2),
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{ (my) x(m2}~ {J(FRZ Ty ) +F 2 C1m ) (FR20-Tum, ) +F 5 ,mz)}
mn

Ofmlfmzfo )
+ E{,/( 2(l,m])+F ,sn])) (FR (1,m,) *FI ’ }

+ E{J Fa2(=1my) +F 2 (- 1-m]))'(FR (1mp) +F 2 (1m,) )}

' E{jZFRz(I.m])'+F12(1,m]))(FRz(-l,mz)4'F12(-1,m2))} (27)

- arm . m—y——————

We will now show that all random variables under the same square root are
mutually independent. To do this, let us evaluate

2mm, K 2mm, K
m"#mz = = »

2nm21 2nm21 l
. NR(-1,T) cos — +-NI(-1,T) sin —j s

(Assumption 4)

- 2mm. K 2mm, Kk
E 22 NRZ(-l,k) cos N] cos ——Ng—

2mmyk 2ok !
+NI(1k)s1n T sin N

(28)

)

For N a power of 2 and m]afmz, it is easy to show that the summation in
(28) vanishes which, in.turn, means that FR(-1,m]) and FR(-I,mz) are inde-
pendent. Identically, we show that F (-1,m) | Fi(-1,m,). Similarly,

T
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’ 2k (my - m,)
{F (- Tym, ). FR( sy } = 2 22 cos _____%___g_

Finally, by interchanging 1 and -1, we get the symmetrical results for
both gates, which justify our earlier claim that all rv's in (27) are
independent. Therefore,

E{x (my) X (m2>}
Ofm]#mzfo

u

4E2{A/FR2(-1,m])+-F12(-1,m1)}

= 4-(c{/-—’2!-)2 = 2nlo ° (29)

Second, assume that m]=|n2=|n# 0. Because X (0) is produced by the sig-
nal, X (m) by the noise and, due to the high SNR assumption, we get

E{X (m} -E{Xx(0)} (see (22) of Appendix A)
Ver JNZcSZ - V2r ./Nan2 =2 NN 0ap (30)
From the N2 terms involved in (1), one term is given by (6), (N-1) terms

are given by (26), 2(N-1) terms are given by (30) and (N-1).(N-2) terms
are given by (29). Summarizing, we get that

E{TZ} C2-[8N2052+(N-l)-ZNo‘nZE*'?-E(PZ) - (1-¢%) k(Pz)]

+2(N-1) . 2aN/N 9% +'(N-1)(N-2) 2wNOn€1

E{X (m) X(0)}
m#0

#zczNzanz EI-SNR+(1 'JN) E.'*’ZE(QZ) + (12p%) K(pz):[

) (1-}). <~-z>ﬂ (31)

B
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But from (28) of Appendix A, we have that (for high SAR)

E(Th=C - WOF + o L/§Nﬁ+(ﬁ/ﬁ:—ﬂ

therefore,
2
201y = 262 . O"'E' s + 2107, 2l /SR (32)
LU

From (31) and (32), it follows that

var{T} = °T2

= E{T?} - E4(T)

. 2C2N26n2[(4-1r) SNR + (1 ]N> E+2E(p2) - (1-p2) K(p?)

+ (N-2)r - (N-l){ﬂ
ar
cTz = 208 [:(4-1:) SNR + (1 3N—> H(p):[
where
Hp) = 2-m+ 2E(p2) - (1-p%) K(p?) (33)

(Moderate-to-high SNR) ,

T A

The primary quantity of interest is the ratio oT/E{T} which,
for case 1.1 is given by

o0 /Q'CNcn-J(4-v) SNR + (1 -%‘*) H(p)
E{T}

C Ny V27 -6, (/5T + 1)
0
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or
or . J(4 m) SR+ (1- T) Hee)
BT S (34)
/SR + Nl
/ﬂ
" (Moderate-to-high SNR)
2.0 VERY LOW SNR (OR SIGNAL ABSENT)

In this case, all the doppler filter outputs are produced by
noise. If signal is also present (in order for this assumption to be
valid, even for the m=0 filter), we must have that

N

™

+

l Q

w

N

N
=j—

2
Nos << ap

Q
=
[xh)

For N=16, such an inequality is satisfied for SNR in the order of
-20 dB or less. '

From (26) (which also holds for m=0 now) and (29) (which is .
now restricted only to m, #n@), we get that

{12} Cz[ZNzanz [2+26(%) - (1-%) k(pz)]+ N(N-1) znudn'{[

2¢2N2 2[2+(N 1) + 2E(e%) - (1-6%) k(p ):[ (35)

For very low SNR, we have from (28) of Appendix A that

E(T} =C - /3r . N * /Nonz

therefore

E2(T} = 2n C2N 02
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and

2

var(T} = 0.2 = 202N20n2E + (N=1)m + 2E(p%) = (1-p%) Kk(p?) - Nﬂ

or
var{T} = 202N20n2 « H(p) (36)

. where H(p) has been defined in (33). The ratio or/E{T} for this case
(2.0) is found to be

?
i
|
1
|
|
|
o0 /Z'NCon/ﬂ'(};)' i

ETT) vZ -C-NVNicn
or
o4 ;
T . H(p) a
ECTT © N7 ' (37)

(Very Tow SNR)

been plotted in Figure 4 for varijous values of p. The function H(p)
depends on the complete elliptic integrals E(pz) and K(pz), which have
been tabulated for different values of the argument p2 [6]. In Table 1,
we give some values of H(p) as a function of p.

j

|

‘ |

independent of the SNR, as expected, The ratios of (36) and (37) have . %
' o

1

|
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