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ABSTRACT

An analysis of test system misalignment is presented for dynamic tension

test. Sheet type rectangular 1100-0 aluminum specimens are used for discussion.

For a constant strain rate tension test, the strain rate is constant only

on the neutral axis of the specimen. The following resultF have been obtained:

(a) The lower the strain rate is,the more significant the misalignment errors

become. (b) Misalignment errors of 50% have been found at the extreme fibers

of the specimen. (c) The strain rate variation in the cross-section decreases

with increasing plastic strain and vanishes at plastic strain equal to 0.8% at

the midspan of the spec-mien.. (d) The neutral axis will shift toward the

centerline of the specimen as the plastic strain increases. But, it will

reach a limit and will not completely move back to the centerline.

A more restricted uniform strain rate formulation is also presented.

The result is compared with that of the nonuniform strain rate formulation.
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]. INTRODUCTION

The effect of misalignment in a tensile test system has been previously

investigated by a number of investigators [1,2]. These investigators have

also identified the sources of misalignment as poor conformance of specimen

centerline to top and bottom grip centerlines, poor alignment of the top and

bottom grip centerlines, and inaccurate machining of the talst specimen itself.

A more detailed description of test system misalignment and the discussion

concerning the need for such investigation may be Found in Refs. [1,2] and also

in Wu and Rummler [3].

In [3], a comprehensive analysis of misalignment effect was presented

for tension test under static loading condition. In the analysis, three cases

of misalignment were considered, which were the symmetric case, the cantilever

case, and the case of the pinned specimen with eccentricity. It was found

that the symmetric case is the most critical one as far as the effect of mis-

alignment is concerned. In addition, Wu and Rummler concluded that the stress-

strain curve is significantly affected by misalignment at strain levels corre-

sponding to the knee portion of the stress-strain curve. Moreover, the strain

at the outermost fivers of the specimen is strongly affected by misalignment

and the misalignment effects are smaller for load trains with longer pull rods.

The dynamic mechanical properties of materials have become increasingly

important in the recent years. Tension tests have been conducted at various

fixed strain rates to determine the dynamic behavior of materials. The problem

h	 of test system alignment which exists in the static test would also carry over

to the dynamic test. However, to the present investigators' knowledge, the

alignment problem under dynamic tensile load has not been investigated in the

literature.
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In this paper, an analysis of test system misalignment is presented for

dynamic tension test. For simplicity, rectangular specimens of the sheet type

are considered in this investigation. Only the symmetric case of misalignment

is studied due to the finding of [3) that this is the most severe case. Speci-

mens of 1100-0 aluminum have been chosen for investigation. The reason for

using this material as an example for discussion is that the constitutive

equation employed in the present analysis has been shown to describe both the

dynamic stress-strain behavior and creep * for this material [G] and the material

constants have already been determined. Theoretically speaking, the method

presented herein would also apply to other materials.

The purpose of this study is to investigate the effect of strain rate on

the misalignment problem. The equations derived are used to calculate the

strain rate distribution and the misalignment error at the center section of

the specimen. The center section is of interest, since the strain measuring

devices (extensometer, strain gage, etc.) are usually attached to the center

of the specimen.

In Section 2, the constitutive equation used in the analysis is briefly

described. The field equations for the misalignment problem found in the

dynamic tension test and their discretized numerical models are formulated in

Section 3. In the formulation, the strain rates are nonuniform across a

cross-section of the specimen although the specimen is subjected to a constant

strain rate test (constant strain rate at the neutral axis (N.A.)). A more

restricted formulation where strain rate is constant all over the specimen is

included in Appendix A. The results of this uniform strain rate formulation

The ultimate goal of this re'seareh progam is to determine the effect of mis-
alignment in the creep test. The results obtained in this report will be
used directly in the creep investigation.
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serve as the initinl guess for c6taining nir lerical solutions of the highly

nonlinear equations of Section 3. A detailed computing procedure for solution

of this set of nonlinear equations is desnribed in Appendix B.

The numerical results and discussion are presented in Section k. It is

believed that the effort made in this research contributes toward n more

thorough ;nderstanding of the misalignment effect in the tension test.
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2. THE CONSITUTIVE EQUATION

The constitutive equation used in this investigation is the same as that

given by Wu and Yip [5] for strain rate sensitive materials. This is a modified

version of the endochrenia constitutive equation o:iginally proposed by Valanis

[5]. For constant strain rate monotonic tension test, the constitutive equation

is

a " 1 (1 + o0 [a0 - (a0 _ ay) ( l + ^) -n ]	 (1)

in which a is the stress; a 0 is the intercept of tho asymptotic line of the

reference stress-strain curve with the stress axis; a y is the yield stress;

0 and n are material constants; z is the intrinsic time defined by

4 - k( 6)0	 (2)

and k is the strain rate sensitivity function governed by

6 /
k(6) _	 - Rs kn	 )	 (S)

On

where

0 ' c - a/E	 (4)

is the plastic strain, e is the total strain, E is Young's modulus, $
s 

is a

material constant, and O E is a reference strain rate.

Equation (1) represents a set of constant @ stress-strain curves. For

1100-0 aluminum at 150°C, the function k(0) was determined by Wu and Chen [4]

from a set of experimental data for the strain rate range of 10
-4
 to 10 3 sec-1.

This function is reproduced in rig. 1, where Ss and 0R are equa:;, to
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3.643 x 10' 2 and 1.30 x 10^ 5 sec-1 , respectively. Figure 2 shows three a vs.

0 curves, each corresponding to a constant 4 with corresponding k values equal.

to 1.00, 0.75 and 0.60. These three curves are used in the study of misalign-

ment to be reported in the next section.

Finally, it must be mentioned that equation (l) describes only the plastic

behavior of the material under consideration.

.._	 sv. y^ ^^l/W^^.`	..... _ a,..:..-.:^-^_.#	 •Nwiifi+dF.r+i .^'._^.I_^.	 ^.e.. _...	 :.



G

3. FORMULATION OF THE MISALIGNMENT PROBLEM

When a misaligned specimen undergoes a constant strain rate dynamic

tensile test, it is expected that the strain rate varies both along the

lateral and the longitudinal directions of the specimen. The strain rate

remains constant only along the N.A. which is defined as the location of the

mean stress (load/area) as in Ref. [3].

Specimen dimensions and the coordinate system are chosen the some way

as in Ref. [3), and the latter is shown in Fig. 3(a)• Figure 3(b) shows the

load train configuration of the symmetric case of misalignment. In the

analysis, it is assumed that plane cross-sections remain plane during defor-

mation. Thus, the strain e at a point in the specimen is given by

e(x ,y)	 e _ ._.Y—
p (x)

where x and y are coordinates shown in Fig. 3(a), e is the strain on N.A.,

and p(x) is the radius of curvature of the specimen. The radius of curvature

is expressed in terms of the strains of the top fiber e  and the bottom fiber

C  through the expression

P 	 heB - eT

in which h is the width of the specimen. The distance d(x), which specifies

the location of the N.A. and is measured from the bottom fiber of the specimen

is ,given by

A   eB-e
h	 C  - e 

^ m

i

(5)

(b)

(7)
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Due to the variation of strain rate in the specimen, the misalignment

problem is quite complicated mathematically. Only numerical solutions are

feasible. Therefore, the specimen is discretized as shown in Fig. 4. The

stress, the strain, and the strain rate in each element are assumed to have

constant values. Only half of the specimen needs to be considered due to

the symmetric :landing condition. Thus, the half span Is cut into I sections

along the longitudinal direction and resulted In I + l planes to be investi-

gated (see Fig. 4a). Ilie lateral direction (the width h) is cut into J

sections as shown in Pig, 4b.

Based on the discrete model and the constitutive equation (1), the

stress-strnin relr'„ion in the element (i ) j) is

aid " lt^^ (l + 00 rij ) E o	 (cry	 oy)(1 + Rrij ) ^n l l

With I - 1,,..,I + 1 ;	 i M 1,..0,J
	

(8)

While equation (1) is exact, an additional assumption is made to arrive at

equation (8). It is assumed that a generic point in the specimen maintains

the same strain rate throughout the test although the strain rate may vary

from point to point in a cross-section. Since the strain rate at a generic

point varies only very slightly (this is justified by the numerical results),

this assumption constitutes a close approximation when equation (8) is used

to compute the stress.

The strain rate sensitivity function is

kij = 1	 ^s An	
n

	 (9)

f
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x
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Since the reference plastic strain rate ^ R may be di;rexent than tho- attlin

rate at the N . A., Ow it is convenient to rewrite eqtwlon (9) as

4

k id	 A U - 8 n1. - 6 4n	 (10)
0 )	 OR

8 
k ( )

I
It is remarked that 0 is prescribed for each test and 4 

R 
is known from the

experimental data (see Ref. [4)), Hence the last term on the right-hand side

of equation ( 10) is determined. The strain rate sensitivity function on ".-he
I

N.A., denoted by K, may be obtained by putting 0' 
ij 

W 0 in equation (10).

Thus,

0
kn	 i

( It

and equation ( 10) reduces to

k 
ij - 

k	 kn	 (12)

In the numerical computation, the strain rates are expressed by the increments,

1,. 0. 1

Ao ij\
k	 k	 U 

- 	
(13)

ij	 $	
( A^

Furthermore, from equations ( 4) and ( 2)p it is obtained

aij 
= e 

ii - 'ij 
/I 	 (14)

and

4	
- 

k	 (e	 - ai r /E ) 	 (15)
ij	

kid
	 ij -.1 
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The linear distribution of strain in a ^ross-section renders

ij	 IT	 (siB .. 
Cif) ( 

_ ^^ ) ► 	 !^ , . a ,	 (16)

for the strain at the ith plane (sec Fig. 4b). The strains cIT and c,, are

referred to the continuous, deformed cross-section, whereas cii is assigned

to the discretixed planes of the numerical model.

Balance of force acting on the specimen gives

P M I	
f

adA-b 	 rtdy

	

A 

	 (17)

In which P is the force, b is the thickness and A is the cross-sectional area

of the specimen. In a discrete ,form, this equation leads to

P	
i	

oij ;
	 i	 1,,..,I +
	

(18)

for the ith plane. The expression h/J is the width of the element under con-

sideration at the ith section.

The stress a and the intrinsic time ^ at the N.A. are related to the

load P by

a I U + ^Z) (CF O -( aO ` ay) (1 + 
Z) -n

k

Note that the quantities r, k, and e are assigned as input during numerical

a	 calculation.

The balance of moment is given by

MW - fA  ay dA - peP + by J oc dy	 ?C)

(19)

I ^-

r ,



v.

10

In tho discrete model, this equation bcoomes

K	 P + bil
	

1j	
i n	 (21)P i X	 10

jW1	 Cij

for the ith plane,

Referring to Fig. 3(b), the following equation is obtained

14 04	 6 r'^.^.ni.. L du+1
+1LiP 	 d^	

(22)—

where

6	 6 + (d ,	 h/2)	 (23)

and u1 	 .7is the deflection at ith section, 6 
is 

the eccen tricity, L is the pull

rod length, and d 
8 
denotes the location of the N.A. 

it 
the grip end. The

distance d 
s 

is that of d evaluated at i - I + I and is further given by

d s - 11 . 
el+l,B -- 

^	

(24)
T+1,13	 "I+1,T

where 
e 1+1, 

T and e 
1+1, B 

are strains of top and bottom fibers respectively at

the grip and.

The curvature relation is

1	
d 

2 
u i" — 
2	

(25)
Pi dx

i

which in its difference form is

C 
iB 

C 
iT 

U i+1 - 2u i + U 
i-I	 i ft i t —j- 1	 (26)

Ax 2

r'

.t^' tMOV	 ^ ---) -)
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where Ax is the uniform distance between cross-sectional planes.

The formulation of the misalignment problem under dynamic loading

condition is now complete. The set of equations (8), (15), (18), (21),(214) and

(26) constitutes a system of highly nonlinear equations, which can be solved

numerically for variables 7ij , eiT , 6i8 , Zij , ui and d s for a specified load

P subjected to the following boundary conditions:

du
dx 0
	 at	 x = 0	 (27)

and

U	 0	 at	 x = k/2	 (28)

In the above equation, R is the length of the specimen.

5 ,`

1

M

i
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4. RESULTS AND DISCUSSION

During analyses, three different values of strain rake are assi ned to

the N.A. as input data to investigate the influence of strain rate on misaligned

tensile specimen. The strain rates investigated are 1.30 x 10-5 , 1.24 X 10-2,

and 7.63 x I0M1 see-1 and their corresponding values of strain rate sensitivity

function k are 1.00, 0. 7 5 and 0.60.

The sheet type rectangular speciments are used. The geomet`.ical data for

the specimen are

pull rod length/specimen length - 2

specimen length (Z) = 63.5 mm

specimen width (h) = 12.7 111111

specimen thickness (b) = 3.2 nun

eccentricity d = 0.05 b

In order to reduce computer time, only four sections have been cut along

both the longitudinal and the lateral directions of the specimen, i.e., I 	 4

and J = 4. Thus, the unknown variables have been reduced to 55 in number and

the set of nonlinear equations discussed in Section 3 consists now of 55

equations. Due to the minimum number of elements in the discrete numerical

model, some unstable numberical results are experienced at the grip end at

the larger strain level and will be discussed later in the text. Nevertheless,

this model provides a consistent output under a variety of loading conditions.

Since the area of interest for the misalignment analysis lies in the iUdspan

of the specimen (the measuring devices are usually attached to the midspan),

most of the results to be discussed are related to this area.
0
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The normalized strain rate sensitivity function k/K for the top and

bottom fibers at the middpan is plotted in rig. 5 against the plastic strain

0 for the three strain rate levels previously mentioned. It is seen that k

decreases (increases) rapidly at small strain level for top (bottom) fiber

until Q reaches 0.8l, when k becomes uniform across the cross-section. Hence,

the variation of strain rate in a cross-section diminishes as strain increases.

This phenomenon can be explained from the following equation

AO
ij 

= A® 
ea s	 k
	

(29)

which is obtained by rearranging equation (13). At the small plastic strain

ranee, k/lc is greater (smaller) than unity for the top (bottom) fibers, and

0ij increases slower (faster) than O and causes misalignment errors. As 0

exceeds 0.8%, k/k approaches to unity and equation (29) leads to

AO iiF^t A6
	

(30)

The implication of equation (30) is that, at larger strain level, the relative

error arisen from misalignment is always decreasing.

The effect of strain rate can be further examined from Fig. G, where k

at the misdpan is shown varying with the width of the specimen for two levels

of 6. It can be concluded that the range of variation of k ata cross-section

is wider and that a uniform distribution of strain rate is achieved at a

larger strain level for larger strain rate loading.
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The misalignment error at the geometrical centerline (or center error)

at the midepan is shown in Fig. 7 * for three levels of strain rate. The

center error, denoted by E c (7), is defined 'iy fcc -- e)/e. It is seen that

the center error is always decreasing in the plastic range and vanishes at

large strain.	 This result is also expected from equation (29). Generally,

the center error is within 2% for annealed aluminum undergoing plastic defor-

mation and vanishes mostly when the plastic strain is 2% or more.	 Although

this investigation does not cover the effect of misalignment in the elastic

range, it is expected that a result similar to that of Ref. [3] prevails, i.e.,

the misalignment effect is very significant near the interface between the

elastic and plastic ranges, or the knee portion of the stress-strain curve.

The error would then decrease as the plastic strain increases,

The most important finding from Fig. 7 is that the misalignment effect

reduces with increasing strain rate. An interpretation of this finding is

that the material exhibits higher resistance to deformation at higher strain

rate and this help retard the influence of misalignment.

Misalignment errors of the top (ET) and bottom (Eb) fibers are plotted

in Fig. 8. They have the same trend as the center error but with much greater

magnitudes. The errors at lowest strain rate considered (k = 1) and at 0 = 0.1%

are +50% and -45% for bottom and top fibers, respectively. Therefore, any

investigation which is related to the local deformation of the extreme fibers

at small plastic strain range may lead to invalid conclusion due to the signif-

icant misalignment errors discussed above.

Due to the limitation of computational feinds, the curves for k = 0.75 and
0.60 have not been completed at higher 9 ;Level. However, it is expected
that the curves will follow the trend shows: by the dashed Lines in Figs. 7-10.

,
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The location of the N.A. is plotted in Fig. 9 for the midspan. It is

seen that the smaller the strain rate is,the greater mobility the N.A. has.

The peak values of d/h is resided within the range of u equal to 0.5% to 1.0%

for the three strain rates considered and can be approximately correlated to

the points on the stress-strain curves where the stress-strain curves begin

to flatten out. These points are shown by arrows in Fig. 2.

It is known from the discussion earlier that k/k +1 when 8 > 0.8%.

Under this condition equation (30) leads to

@ ij - 8 = Cii	 for k- -). I

k

where Cij is a constant which varies along the cross-section. is the defor-

mation continues to the extent that the plas...Lc strain dominates the total

strain, the expression for the location of the N.A. can then be obtained from

equation (7) and approximated by

d	
e1B - 

Q	 (32)

(0 IB - 0)	 (81T _ 8)

where the subscript 1 denotes the quantities at the midspan. Evidently,

equations (31) and (32) suggest that the value of d I/h would reach a plateau

(constant) as 8 is large. In fact, this is indeed the case in rig. 9. For

the case of k = 1.0, the d 1 /h curve reaches a plateau of value 0.51 for 8

approximately equal to 1.75%. It is expected that the other two curves would

also behave in a similar manner and find their own plateaus as Q becomes large.

The bending moment at the end of the specimen may be found from

(31.)
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This equation was derived in Ref. [ ] and is shown inFig. 3. The moment lit is

plotted in Fig, 10 for the three eases considered. It is found that the load

P and the distance d  affect the end moment greatly. As far as the strain

rate effect is concerned, the magnitude of the end moment is greater at greater

?train rate. This is resulted from the larger stress that a specimen can

sustain at a higher strain rate for a fixed plastic strain. Hence, the load

P is also greater for greater strain rate. On the other hand, due to the

influence of ds , the end moment follows the trend of d s and reaches a maximum

value at the small strain range and then drops off rapidly and approaches a

plateau at large strain.

The deflection curves are shown in Fig. 11 for three levels of 6 for

R = 1 and two levels each for k -- 0.75 and 0.60. Within the range of investi-

gation, it is found that the rate of deflection decreases as the plastic strain

increases.

Finally, the solutions presented above are compared with those obtained

from a more restricted formulation given in Appendix A, in which the strain

rate is assumed to be uniform throughout the specimen. Figures 12--14 show

the results from both formulations for the case of R = 1.0. With respect to

the solutions of the nonuniform strain rate formulation, the predicted mis-

alignment errors and the Shifting of the N.A. by the uniform strain rate for-

mulation are overestimated at the small strain range and underestimated at

the larger strain range. For the uniform strain rate formulation, the function

k is uniform across the cross-section and the N.A. returns to the geometric

centerline of the specimen at large strain. Although strain rate was not

considered a :factor in the work of Wu and Rummeler [3], it is seen that the

formulation of [3] belongs to that of the uniform strain rate formulation and

the N.A. would also return 'to the geometric centerline at larger strain level.

I ^"y

IL
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The above two formulations are correlated during the course of numerical

calculation. The results of the uniform strain rate formulation serve as the

initial Suess for the solution of the highly nonlinear equations obtained from

the nonuniform strain rate formulation. The procedures of computation are

presented in Appendix B. Since only the monotonic loading condition is of

interest here, the step size AU is assigned for each iteration. It is found

that for the purpose of rapid convergence, A5 should increase with the plastic

strain. However, due to the small number of elements used in the discretky

model, the numerical results at larger strain level are unstable at the grip

ends of the specimen (but is stable elsewhere in the specimen). It takes a.

great amount of trial and error procedure to select a correct step size so

that the numerical output is convergent. It is anticipated that the problem

of numerical instability mentioned above would be improved with greater number

of elements taken in the discretized model.

Y	 ..
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5. CONCLUSIONS

The following conclusions may be drawn from the present study of 1100-0

aluminum specimens:

(1) based on the endochronic constitutive equation, the formulation of

the misalignment problem in the dynamic tension test has been developed. Two

assumptions are made: (a) plane cross-sections remain plane during deformation;

and (b) the strain rate history effect is negligible in the computation of

stress (equation (8)). The second assumption is justifiable due to the

extremely small var:tation in the strain rate throughout the tension test for

each element of the discrete model.

(2) The lower the strain rate is at the tension test, the more signifi-

cant the misalignment errors become. Three levels of strain rate, i.e.,

1.30 x 10-5 , 1.24 x 10-2 , and 7.63 x 10
-1
 sec

-1
 are investigated. In this

strain race range, the misalignment error at the geometrical centerline of the

specimen is within 2% and vanishes mostly as the pinstic strain increases

beyond 2%. At the extreme fibers of the specimen, the misalignment errors

approach to 50% at the very small plastic strain range. Therefore, any inves-

tigation related to the local deformation of the extreme fibers will have to

account for the misalignment effect.

(3) In the range of plastic deformation, the error introduced by mis-

alignment decreases with the magnitude of plastic strain. Bence, it is con-

jectured that the most significant effect of misalignment occurs at the inter--

,	 face between the elastic and the plastic range. This conjecture is in agreement

with the finding of Wu and Rummler [3] that the most significant error occurs

at the knee portion of the stress-strain curve.
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(4) At the midspaii of the specimen, the variation of strain rate

between extreme fibers decreases with increasing plastic strain. The strain

rate reaches a uniform value at plastic strain equal to 0.8Z,

(5) The N.A. will shift toward the gcometri,cal centerline of the

specimen as the plastic strain increases. But, it will reach a limit and

will not move back to the geometrical centerline at large plastic strain as

anticipated by the uniform strain rate formulation.

(6) The misalignmcitc errors and the shifting of the N.A. predicted by

the uniform strain rate formulation in which the Strain rate is constanL for

the whole specimen Lire always overestimated at the small plastic strain range

and underestimated at the larger plastic strain range.

(7) Tile formulation of Wu 
and 

Rummler [3] belong to the case of uniform

strain rate formulation.
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FIGURE CAPTIONS

Fig . 1 Strain Rate Sensitivity Function for 1100-0 At

PIS. 2 Constant Strain Rate Stress-Strain Curves

PIS , 3	 (a) Specimen Dimensions and the Coordinate System,

(b) The Load Train Configuration of tile Symmetric Case 
of Misalignment

PIS. 4 The Discrete Numerical Model

Fig. 5 The Normalized Strain Rate Sensitivity Function of Top and Bottom

Fibers at Midspan

Pig, 6 Variation of k at the Midspan with Respect to the Width of the

Specimen

Fig. 7 Center Error at the Midspan

Fig. 8	 Misalignment Errors of the To p and Hottoin 'r4hers nt-

Fig. 9	 Location of N.A. at the Midspan

Fig. 10 The End Moment

Fig. 11 The Deflection Curves

Fig. 12 Center Error for the Two Formulations	 1.0)

Fig. 13 Errors at Bottom and Top Fibers for the Two Formulations	 1.0)

Fig. 14 Locaton of N.A. for the Two Formulntions (k - 1.0)
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APPENDIX A - Uniform Strain Rate Formulation

In thin formulation ) the wain rate is assumed to be conaxtaant throughout

the specimen in addition to the usual assumption that plane cross-•sections

remain plk e during deformation. The load and moment balance equations are

obtained in cloacd Form, Thus, in order to obtain a numerical, eolution, it

is only necessary to cut the specimen into I element along the x-direction.

S aInace oC farce gives

Cg

P w	 a dA w b t3 f o l e di
JA.	 tT

where subscripts T and S indicate location at top and bottom fibers, respec-

tively. Since, for monotonic loading,

E )

it follows

Note that in this formulation k(a) is constant throughout the* rest.

Equations (1), (Al) , and (A3) combine to give

2

CO

 G	 v

k 2 ( 2^ + 2r 22 + (a0 Gy) (n '2̂)	
0^ ;-n+2

+	 (a - a )2 z"2n+2 ^	 >	 for 4 > q	 (A4)
T

where	 z - 1 + 04.

(Al)



A2

The balance of moment is

f
CT

CD
()	 .. f ay dA o -p FA + bp2

	
art, d 	 (A5)

A 

which may be written no

II(x) * _ p P + bp2(
HI

 + X12 + ^'3 + rii4 )	 (A6)

where

"1j 2 dr,

	

21	 a2 y a -3 - _ 0	 y r;-n+3 + 0_ ly --n+2 b-
2 3	 2	 ,}-	 3-n	 G	 2-n

	

6 k	 z 

(A7)
(fib 2

zg2J
	 `gig
4T

	

2	 2	 2a

	

1	 °U ^3 + (a0 - y ) z-2n+3 _ 
a (apn - a^) ^-n+3	

(A$)k3 	 2	 3 - 2n	 3 - n	 -HO
T

f4

43

da

M3 	 kE dr,

T

a2	 a2	 --n+3

3 E $	
z2 2 +	 z3 - (2 - n) a0 (Go - Cly) 3k 	 - n	 (A9)

-n+2	 z-2n+3	 2 ?-2n+2
z^

+ ap (ap - ay)z	 + (1 - n) (a0 - ay) 3 - 2n	 (Cr0 `
 Y) 2

ZT



and

A3

M	
4B a

2 do d4
4	 r2 d4

^T

3

2	
-3 - 

o2(o0 .. 
a ) z-n+3 + d0
	

y
(o0 - 

o) 2 
z-2n+3

= E it 
3	 3

ZB
3 z-3n+3

(a0	

cry)3

Z 

(A10)

To arrive at the above equation;, equation (A2) was integrated with the

requirement of monotonic loading beginning at the zero stress state. Thus,

e = k + E
	 (All)

Combining equations (All) and (l), the following relation is obtained

1 + Rke = 1 + sE0) z - E (00 - oy)z`n+1
C

(Al2)

Hence, the variables u, p, Ei. eB , z  and z  can be solved numerically from

the system of equations (A4), (A6), (Al2), (6), (22) and (25) subjected to the

boundary conditions given by equations (27) and (28).



Bl

APPENDIX B - Numerical Procedures for the
Nonuniform Strain pate formulation

In this calculation, the specimen is discretized into 4 elements along

both the longitudinal. (I - 4) and the lateral (i - 4) directions. Algebraically,

there are 55 unknown variables with 55 nonlinear equations. They are:

Variables: aij (20), 
siT (5) ' tiB (5), 411 (20), u1 (4), ds(1)

Equations: eq. (8) - 20, coq. (15) - 20, eq. (18) - 5 eq. (21) 5,

eq. (24) - 1, eq. (27) - 4.

The computation of k ij needs special attention. Specifically, the fol-

lowing exprossion should be incorporated into equation (10):

-	 -
cij - trig /B	 Ac 	 A r

kn	
i

kn	 kn

q	 - 3/B	 A-e - Aa/g

(c(n)e(n-1)) - 
(a (n) - a(n_l))

ij
kn 	---	

ij	 ij	 ij	
(Bl)

( (n) _ ^(n-1) ) _ (;(n) _ a(n-
1))/Bf

where e ( ) is the strain at the nth step andsib-^) is that of the previousij 
step.

The numerical procedures are ^as follows:

1.	 Use the solution of the uniform strain rate formulation as the initial

guess to compute the first solution of the nonuniform formulation. This

solution is the first loading step beyond the elastic limit. In obtaining

this solution, the yield stress a^^ and the yield strain 
CY 

are used a s

the corresponding values for the (n - 1) th step. In this case, equation

(Bl,) is reduced to

I ^^

w



B2

^n L	 kn i^  oil B	 (B2)
4

2. Increaser or	 by a prescribed step size At; or Ap.

3. Calculate the mean stress, metro strain and load for the new stem.

4. Modify the true solution of the previous step according to the ratio

(n) (n-1) and input the modified results as the initial guess for the

current step of computation.

S.	 solve the system of equations and calculate the misalignment errors.

Note that in this step, the expression (Bl) should be used.

6.	 Repeat Steps 2 through 5. The computation terminates at a prescribed

strain. Note that the stop size A6 needs to be increased with 0.
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