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ABSTRACT

An analysils of test system misalignment is presented for dynamic tension
test, Sheet type rectangular 1100~-0 aluminum specimens are used for discussion.

For a constant strain rate tension test, the strain rate is constant only
on the neutral axis of the specimen. The following results have been obtained:
(a) The lower the strain rate is, the more sigrificant the misalignment errors
become. (b) Misalignment errors of 50% have been found at the extrgme fibers
of the specimen. (c) The strain rate variation in the cross-section decreases
with increasing plastic strain and vanishes at plastic strain equal to 0,87 at
the midspan of the specimen, (d) The neutral axislwill shift toward the
centerline of the specimen as the plastic strain increases. But, it will

reach a limit and will not completely move back to the centerline.

A more restricted uniform strain rate formulation is also presented.

]
: The result is compared with that of the nonuniform strain rate formulation.




1. INTRODUCTION

The effect of misalignment in a tensile test system has been previously
investigated by a number of investigators [1,2]. These investigators have
also ldentified the sources of misalignment as poor conformance of specimen
centerline to top and bottom grip centerlines, poor alignment of the top and
bottom grip centerlines, and ilnaccurate machining of the tost specimen itself.
A more detailed description of test system misalignment and the discussion
concerning the need for such investigation may be found in Refs. [1l,2] and also
in Wu and Rummler [3].

In (3], a comprechensive analysis of misalignment effect was presented
for tension test under static loading condition. In the analysis, three cases
of misalignment were considered, which were the symmetric case, the cantilever
case, and the case of the pinned specimen with eccentricity. It was found
that the symmetric case is the most critical one as far as the effect of mis-
alignment is concerned. In addition, Wu and Rummler concluded that the stress-
strain curve is significantly affected by misalignment at strain levels corre-
sponding to the knee portion of the stress-strain curve. Moreover, the strain
at the outermost fibers of the specimen is strongly affected by misalignment
and the misalignment effects are smaller for load trains with longer pull rods.

The dynamic mechanical properties of materials have become increasingly
important in the recent years. Tension tests have been conducted at various
fixed straln rates to determine the dynamic behavior of materials. The problem
of test system alignment which exists in the static test would also carry over
to the dynamic test. However, to the present investigators' knowledge, the
alignment problem under dynamic tensile load has not been investigated in the

literature.
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In this paper, an analysis of test system misalignment is presented for
dynamic tension test. For simplicity, rectangular specimens of the sheet type
are considered in this investigation, Only the symmetrlc case of misalignment
is studied due to the finding of [3] that this is the most severe case. Speci-
mens of 1100-0 aluminum have been chosen for investigation. The reason for
using this material as an example for discussion is that the constitutive
equation employed in the present analysis has been shown to describe both the
dynamic stress-strain behavior and creep* for this material [4] and the material
constants have already been determined. Theoretically speaking, the method
presented herein would also apply to other materials.

The purpose of this study is to investigate the effect of strain rate on
the misalignment problem., The equations derived are used to calculate the
strain rate distribution and the misalignment error at the center section of

the specimen. The center section is of interest, since the strain measuring

devices (extensometer, strain gage, etc.) are usually attached to the center
of the specimen.
In Section 2, the constitutive equation used in the analysis is briefly

described. The fleld equations for the misalignment problem found din the

dynamic tension test and their discretized numerical models are formulated in
Section 3. In the formulation, the strain rates are nonuniform across a

t cross~section of the specimen although the specimen is subjected to a constant
strain rate test (constant strain rate at the neutral axis (N.A.)). A more
restricted formulation where strain rate is constant all over the specimen is

included in Appendix A. The results of this uniform strain rate formulation

%

The ultimate goal of this research progam is to determine the effect of mis-
alignment in the creep test. The results obtained in this report will be
used directly in the creep investigation.




nonlinear equations of Section 3., A detalied computing procedure for solution
of this set of nonlincar equations is deseribed in Appendix B,

The numerical results and discussion are presented in Section 4, It is
believed that the effort made in this research contributes toward a more

thorough nnderstanding of the misalignment effect in the tenslon test.
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2. THE CONSITUTIVE EQUATION

The constitutive equation used in this investigation is the same as that
given by Wu and Yip [5] for strain rate sensitive materials. This 1s a modified
version of the endochronic constitutive equation ociginally proposed by Valanis
[6]. For constant strain rate monotonic tension test, the constitutive equation

is

o =% (L+BD) [og = (9= o) (1+ 507" (1)

in which ¢ is the stress; 9 is the intercept of the asymptotic line of the
reference stress-strain curve with the stress axis; Uy is the yield stress;

B and n are material constants; z is the intrinsic time defined by
L= k(8)o (2)

and k is the strain rate sensitivity function governed by

. 6
k() =1~ 8, &n <5n> (3)
where
8 =¢ - o/E (4)

is the plastic strain, € is the total strain, E is Young's modulus, BS is a

material constant, and éR is a reference strain rate.

Equation (l) represents a set of constant 6 stress-strain curves. For

1100-0 aluminum at 150°C, the function k(é) was determined by Wu and Chen [4]

4 -1

from a set of experimental data for the strain rate range of 10 ~ to 103 sec ",

This function is reproduced in Fig., 1, where Bs and éR are equal to
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3,643 x 1072 and 1.30 x 10™° sec'l, respectively. Figure 2 shows three o vs.
0 curves, each corresponding to a constant 6 with corresponding k values equal
to 1,00, 0.75 and 0,60, These three curves are used in the study of misalign-
ment to be reported in the next scctilon.

Finally, it must be mentioned that equation (1) deseribes only the plastic

behavior of the material under consideration.

%g" . . .
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3. TFORMULATION OF THE MISALIGNMENT PROBLEM

When a misaligned specimen undergoes a constant strain rate dynamic
tensile test, it is expected that the strain rate varies both along the
lateral and the longitudinal directions of the specimen. The strain rate
remains constant only along the N.A. which 18 defined as the location of the
mean stress (load/area) as in Ref. [3],

Specimen dimensions and the coordinate system are chosen the same way
as in Ref. [3], and the latter is shown in Fig., 3(a). TFigure 3(b) shows the
load train configuration of the symmetric case of misalignment. In the
analysis, it is assumed that plane cross-sections remain plane during defor-

mation. Thus, the strain € at a point in the specimen is given by

e(x,y) = € = E%&y (5)

where x and y are coordinates shown in Fig. 3(a), t is the strain on N.A.,
and p(x) 1is the radius of curvature of the specimen. The radius of curvature

is expressed in terms of the strains of the top fiber ¢, and the bottom fiber

T
€y through the expression

p(z) = E"'%'E" (6)
B T
in which h is the width of the specimen. The distance d(x), which specifies

the location of the N.A. and is measured from the bottom fiber of the specimen

is given by

d eB"E
= (7
B~ fr

g
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Due to the variation of strain rate in the specimen, the misalignment
problem is quite complicated mathematically. Onlv numerical solutions are
feasible, Therefore, the specimen 18 discretized as shown in Wig. 4. The
stress, the strain, and the strain rate in cach element are nssumed to have
constant values. Only half of the specimen needs to be considered due to
the symmetric loading condition. Thus, the half span I8 cut into I scctions
along the longitudinal direction and resulted i4n I + 1 planes to be investi-
gated (sBee Fig., 4a), The lateral direction (the width h) 48 cut into J
sections as shown in Fig. 4b.

Based on the discrete model and the constitutive cquation (1), the

stress~strain relriion in the element (1,j) is

l-m&wu 3 - - —n .
o5 kij (1 + Saij> [50 (co ay)(l + Bcij) 1 3
with 4 = 1,,..,I+1 ; J= 1,0, (8)

While equation (1) is exact, an additional assumption is made to arrive at
equation (8). It is assumed that a generic point in the specimen mailntains

the same strain rate throughout the test although the strain rate may vary

from point to point in a cross~section. Since the strain rate at a generic
point varies only very slightly (this is justified by the numerical results),

this assumption constitutes a close approximation when equation (8) is used

3 to compute the stress.

The strain rate sensitivity function is

0
=1 - i
kij 1 B, 4n (éR> 9)

)
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Since the reference plastic strain rate éR may be diiferent than the atrain

rate at the N.A., U, 1t 18 convenlent to rewrite equatlon (Y) as

0 2
3 - waé'l - m—Q:a
kij 1~8,4on ( i ) B, n (5R) (10)

It 18 remarked that D is preseribed for each test and éR 18 known from tie
experimental data (see Ref. [4]), Hence the last term on the right~hand side
of equation (10) is rdetermined. The strain rate sensitivity funetion on the

N.A., denoted by k, may be obtained by putting éij = B in equation (10).

k=1~ B, &n (%) (11)

and equation (10) reduces to

Thus,

_ /0
ki;j =k~ B, &n (%‘i) (12)

In the numerical computation, the strain rates are expressed by the increments,

d.e.,

A0
k,, =k-g s (—H (13)
1] 8 AB

Furthermore, from equations (4) and (2), it is obtained

<

? Ogy = €44 " Gij/E (14)

and

o= - /n
kyy (eg5 = 0y47E) (15)

3

gij
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The linear distribution of strain in ; ~ross-section renders

L - gjxa:‘ -21.) [ .

for the strain at the ith plane (scc Fig, 4b). The strains €4p 80 £, are
referred to the continuous, deformed cross-section, whereos T iy assigned

to the discretized planes of the numerieal model.

Balance of force acting on the specimen gives

P = j o dA = b j o dy (17)
A

in which P is the force, b is the thickness and A is the cross-sectional area

of the specimen. In a discrete form, this equation leads to

P8 o5 iel,,I41 (18)
j

for the ith plane. The expression h/J is the width of the element under con-

sideration at the ith section.

The stress ¢ and the intrinsic time 7 at the N.A. are related to the

load P by

»>|rg
8

(1 +82) [op=(gy = 0 )(1 + ) M (19)

xﬂ!w

- T T ———

Note that the quantities 2, k, and o are assigned as input during numerical

calculation.

The balance of moment is given by

1363
1)
~

M(x) = ~ f

oy dA = - peP + bp J e dy (
A

ot
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In tha discrete model, this cquation becomes
M, == p, £ P 4 DB % o P Lm1,..,I41 (21)
1 (O J Py gk 1 £1 e
for the 1th plane.
Referring to Fig. 3(b), the following cquation is obtained
du
® T+l
Mi “ P (6 tug - L m3;-) (22)
where
*
§ m §+ (dq - 1/2) (23)
and uy is the deflection at {th secction, § is the cecentrieity, L is the pull

rod length, and dg denotes the location of the N.A, at the grip end. The

distance ds is that of d evaluated at 4 = I + 1 and is further given by

-

e - €
d, = b D (24)
®T+1,8 T I+l,T
where er+lﬁrand gI+l,B are strains of top and bottom fibers respectively at

the grip end.

The curvature relation is

d™u
Py dxi

which in its difference form is

E,, = E u ~ 2u, +u
iB - iT | itl 21, i=-1 ; Lm1y...,I-1 (26)
Ax
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where Ax 1s the uniform distance between cross-sectional planes.

The formulation of the misalignment problem under dynamic loading
condition 1s now complete. The set of equations (8), (15), (18), (21), (24) and
(26) constitutes a system of highly nonlinear equations, which can be solved
numerdically for variables gij’ Eympr Eypo Cij’ uy and dS for a specified load

P subjected to the following boundary conditions:
=0 at x =0 (27)

and
u=0 at x = /2 (28)

In the above equation, £ is the length of the specimen.

e T T R e
<o o co -
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4. RESULTS AND DISCUSSION

During analyses, three different values of strain rate are assigned to
the N.A. as input data to investigate the influence of strain rate on misaligned

5 2

tensile speedmen, The straln rates investigated are 1,30 X 107 , 1,24 x 10°°,

and 7.63 x 10”1 sec“l and thelr corresponding values of strain rote sensitivity
function k are 1,00, 0.75 and 0.60.
The sheet type rectangular speciments are used. The geometiical data for

the specimen are

pull rod length/specimen length = 2

specimen length (&) = 63.5 mm

gspecimen width (h) = 12,7 mm

specimen thickness (b) = 3.2 mm

eccentricity § = 0,05 h

In order to reduce computer time, only four sections have been cut along

both the longitudinal and the lateral directions of the specimen, l.e., I = 4 |

and J = 4. Thus, the unknown variables have been reduced to 55 in number and

the set of nonlinear equations discussed in Section 3 consists now of 55
equations. Due to the minimum number of elements in the discrete numerical
model, some unstable numberical results are experienced at the grip end at

the larger strain level and will be discussed later in the text. Nevertheless,

this model provides a consistent output under a variety of loading conditions.

' Since the area of interest for the misalignment analysis lies in the midspan
. of the specimen (the measuring devices are usually attached to the midspan),

most of the results to be discussed are related to this area.
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The normalized strain rate sensitivity function k/k for the top and
bottom fibers at the midspan is plotted in Fig. 5 against the plastic strain
8 for the three strain rate levels previously mentioned. It is seen that k
decreases (incrcases) rapidly at swmall strain level for top (bottom) fiber
until 0 reaches 0.8%, when k becomes uniform across the cross-section. Hence,
the varilation of gtrain rate in a cross-section diminishes as strain increases.

This phenomenon can be e¢xplained from the following equation

B -
- s k
Aoij AD e (29)

-/ N
.If..\l...__ii
which is obtained by rearranging equation (13). At the small plastic strain
range, k/k is greater (smaller) than unity for the top (bottom) fibers, and

eij increases slower (faster) than 8 and causes misalignment errors. As 0

exceeds 0.8%, k/k approaches to unity and zquation (29) leads to

AGij ~ AB (30)

The dimplicatien of equation (30) is that, at larger strain level, the relative

error arisen from misalignment is always decreasing.

The effect of strain rate can be further examined from Fig. 6, where k
at the misdpan is shown varying with the width of the specimen for two levels

of 8. It can be concluded that the range of variation of k at a cross-section

- T

is wider and that a uniform distribution of strain rate is achieved at a

. larger strain level for larger strain rate loading.

g;!
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The misalignment error at the geometrical centerline (or center error)
at the midspan is shown in Fig, 7* for three levels of strain rate. The
center error, denoted by Ec(%), is defined hv (ec - E)/E. It is seen that
the center error is always decreasing in the plastic range and vanishes at
large strain. This result is also expected from equation (29). Generally,
the center error is within 27 for annealed aluminum undergoing plastic defor-
mation and vanishes mostly when the plastic strain is 2% or more. Although
this investigation does not cover the effect of misalignment in the elastic
range, it i1s expected that a result similar to that of Ref. [3] prevails, 1.e.,
the misalignment effect is very significant near the interface between the
elagtic and plastic ranges, or the knee portion of the stress-strain curve.
The error would then decrease as the plastic strain increases,

The most important finding from Fig. 7 is that the misalignment effect
reduces with increasing strain rate. An interpretation of this finding is
that the material exhibits higher resistance to deformation at higher strain
rate and this help retard the influence of misalignment.

Misalignment errors of the top (ET) and bottom (EB) fibers are plotted
in Fig. 8. They have the same trend as the center error but with much greater
magnitudes. The errors at lowest strain rate considered (k = 1) and at 6 = 0.1%
are +507% and -457% for bottom and top fibers, respectively. Therefore, any
investigation which is related to the local deformation of the extreme fibers
at small plastic strain range may lead to invalid conclusion due to the signif-

icant misalignment errors discussed above.

* -
Due to the limitation of computational funds, the curves for k = 0.75 and
0.60 have not been completed at higher 9 level. However, it 1s expected
that the curves will follow the trend shown by the dashed lines in Figs. 7-10.

e
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The location of the N.A. is plotted in Fig. 9 for the midspan., It is

seen that the smaller the strain rate is, the greater mobility the N.A, has.

The peak values of d/h is resided within the range of v equal to 0.5% to 1.0%
for the three strain rates considered and can be approximately correlated to
the points on the stress-strain curves where the stress-strain curves begin
to flatten out. These points are shown by arrows in Fig. 2.

It is known from the discussion earlier that k/k - 1 when § > 0.8%.

Under this condition equation (30) leads to

8,, - 6 =20C for §-+ 1 (31)
k

where Ci 15 a constant which varies along the cross~section. 3 the defor-

3

mation continuss to the extent that the plas..c strain dominates the total
strain, the expression for the location of the N.A. can then be obtained from

equation (7) and approximated by

d 0, - 0
N 1B (32)

(eln -0 - Oyp - ®)

where the subscript 1 denotes the quantities at the midspan. Evidently,
equations (31) and (32) suggest that the value of dl/h would reach a plateau

(constant) as 6 is large. In fact, this is indeed the case in Fig. 9. For

the case of k = 1.0, the dl/h curve reaches a plateau of value 0.51 for 8
approximately equal to 1.75%. It is expected that the other two curves would
also behave in a similar manner and find their own plateaus as 6 becomes large.

The bending moment at the end of the specimen may be found from

M =P - La) (33)

4’.&;"7.’ e

Haals EE.;'..
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This equation was derived in Ref. [3] and is shown in Fig. 3. The moment M is

plotted in Tig. 10 for the three cases considered. It is Ffound that the load

P and the distance dS affect the end moment greatly. As far as the strain
i rate effect is concerned, the magnitude of the end moment is greater at greater
’ strain rate. This is resulted from the larger stress that a specimen can
sustain at a higher strain rate for a fixed plastic strain. Hence, the load
P is also greater for greater strain rate. On the other hand, due te the
influence of ds’ the end moment follows the trend of ds and reaches a maximum
value at the small strain range and then drops off rapidly and appyoaches a
plateau at large strain,

The deflection curves are shown in Fig. 1l for three levels of 8§ for
k = 1 and two levels each for k = 0.75 and 0.60. Within the range of investi-
gation, 4t is found that the rate of deflection decreases as the plastic strain
increases.

Finally, the solutions presented above are compared with those obtained

from a more restricted formulation given in Appendix A, in which the strain
rate is assumed to be uniform throughout the specimen., Figures 12-14 show
the results from both formulations for the case of k = 1.0. With respect to

the solutions of the nonuniform strain rate formulation, the predicted mis-

alignment errors and the shifting of the N.A. by the uniform strain rate for-

mulation are overestimated at the small strain range and underestimated at
E the larger strain range. For the uniform strain rate formulation, the function
k 1s uniform across the cross-section and the N.A. returns to the geometric
centerline of the specimen at large strain. Although strain rate was not
. considered a factor in the work of Wu and Rummeler [3], it is seen that the
formulation of [3] belongs to that of the uniform strain rate formulation and

the N.A. would also return to the geometric centerline at larger strain level.

B o G e S s 56555 -
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The above two formulations are correlated during the course of numerical
calculation. The results of the unifurm strain rate formulatilon serve as the
initial guess for the solution of the highly nonlinear equations obtained from
the nonuniform strain rate formulation, The procedures of computation are
presented in Appendix B. Since only the monutonic loading condition is of
interest here, the step size A8 is assigned for each iteration. It is found
that for the purpose of rapid convergence, A8 should increase with the plastic
strain, However, due to the small number of eclements used in the discrete
model, the numerical results at larger strain level are unstable at the grip
ends of the specimen (but is stable elsewhere in the specimen). It takes a
great amount of trial and error procedure to select a correct step size so
that the numerical output is convergent. It 1s anticipated that the problem
of numerical instability mentioned above would be improved with greater number

of elements taken in the discretized model.

Beie et . oo b
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5, CONCLUSIONS

The following conclusions may be drawn from the present study of 1100-0
aluminum specimens:

(1) Based on the endochrenic constitutive equation, the formulation of
the misalignment problem in the dynamic tension test has been developed. Two
assumptions are made: (a) plane cross~sections remain plane during deformation;
and (b) the strain rate history effect is negligible in the computation of
stress (equation (8)), The second assumption is justifiable due to the
extremely small vardation in the strain rate throughout the tension test for
cach element of the discrete model,

(2) The lower the strain rate is at the tension test, the more signifi-
cant the misalignment errors become, Three levels of strain rate, i.c.,

) 1,24 x 1072, and 7.63 x 10”% sec™ are investigated. In this

1.30 x 10°
strain race range, the misalignment error at the geometrical centerline of the
specimen is within 2% and vanishes mostly as the piastic strain increases
beyond 2%. At the extreme fibers of the specimen, the misalignment errors

approach to 50% at the very small plastic strain range. Therefore, any inves~-

tigation related to the local deformation of the extreme fibers will have to

account for the misalignment effect.

(3) In the range of plastic deformation, the error introduced by mis-

alignment decreases with the magnitude of plastic strain. Hence, it is con-

} jectured that the most significant effect of misalignment occurs at the inter~

; . face between the elastic and the plastic range. This conjecture is in agrecement
with the finding of Wu and Rummler [3] that the most significant error occurs

at the knee portion of the stress-strain curve.
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(4) At the midspan of the specimen, the variation of strain rate
between extreme fibers decreases with increasing plastie strain., The strain
rate reaches a uniform value at plastie strain equal to 0.8%,

(5) The N.A. will shift toward the geometrical centerline of the
specimen as the plastic strain inereases., But, it will reach a limit and
will not move back to the geometrical centerline at large plastic strain as
anticipated by the uniform strain rate formulation.

(6) The misaligrmeut errors and the shifting of the N,A., predicted by
the uniform strain rate formulation in which the strain rate is constant for
the whole specimen are always overestimated at the small plastic strain range
and underestimated at the larger plastic strain range,

(7) The formulation of Wu and Rummler [3] belong to the case of uniform

strain rate formulatiun.

[ L e M i s
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FIGURE CAPTIONS

Strain Rate Sensitivity Function for 1100-0 A

Constant Strain Rate Stress-Strain Curves

(2) Specimen Dimensions and the Coordinate System,

(b) The Load Train Configuration of the Symmetric Case of Misalignment
The Diserete Numerical Model

The Normalized Strain Rate Sensitivity Function of Top and Bottom
Fibers at Midspan

Variation of k at the Midspan with Respect to the Width of the
Specimen

Center Error at the Midspan

Misalignment Errors nf the Top and Bottom T'ihers at the Midspan
Location of N,A, at the Midspan

The End Moment

The Deflection Curves

Center Error for the Two Formulations (k = 1.0)

Exrors at Bottom and Top Fibers for the Two Forimulations (k = 1.0)

Locaton of N.A. for the Two Formulations (K = 1.0)
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APPENDIX A = Uniform Strain Rate Formulation

In this formulation, the strain rate is assumed to be constant throughout

Al

the specimen in addition to the usual assumption that plene cross-sections

remain ple e during deformation. The load and moment balance equations are

obtained in closed form. Thus, in order to obtain a numerical golution, it

is only necessary to eut the specimen into I clement along the x=~direction.

Balance of force gives

g,
B g
P = [ o dA = hp J 0 === dr
az
A KT

(A1)

where subseripts T and B indicate locatlon at top and bottom fibers, respec~-

tively, Sinece, for monotonic loading,

dg = k(6)do = k(b) (de . %g)

it follows
dg  k(p) B drx

Note that in this formulation k(é) is constant throughout the test.

Equations (1), (Al), and (A3) combine to give

2
y 9] 1) g

_bo Y% %) =2 3 1 %] -2

Pz {(za * zzs)z * Oty TR TR

z
B
1 2 =~=2n42 ) .
+ R (oo oy) z }ZT , for g > Q
where z =1+ BL.
e TR T - P

(A2)

(A3)

(A4)




A2

The balance of moment is
p
M(x) = = j oy dA = = ¢A + bp [ or de (A5)
A‘\ ﬁrr
which may be written as
- n
M(x) = = pe Pk bp"(My + My + My + M) (AG)
where
g
M, = 14 dr
L kZ
S
o O, ~ O - g13
-k |- BB (i), (D) pme
2,3 2 ¢ T3 - 3-n/" 2~-n -
Z
T
(A7)
5 2
MZ L] J XE dg ‘
b
2 2 %p
el (%=3, Do %) ks 29090 T 9y) s A8
3 3 3 - 2n TTE e ® - (A8)
k¥ ER b3
T
L
3 kE dr
S
2 2
o1 % -2 , % -3 g3
N 5 2t 32" = (2= n)oy(o, - oy) T (A9)
EB
=203 -=2n+42
_ ==nt2 _ - z . _ 2 z
+ CALCA cy)z + (1 n) (o, qy) T (cr0 oy) 5 )
Zp




A3

and

by 7
[ o3
1 1%-3_ 2, e-nt3 2 ~-2n+3
= E2k3 L 3 2 oo(oo o)z + 60(00 o)z
z
e i
- (o0 - cy) = ) (A10)
Zp

To arrive at the above equations, equation (A2) was integrated with the

requirement of monotonic loading beginning at the zero stress state. Thus,

g
b= (Al11)

= |

g =

Combining equations (All) and (1), the following relation is obtained

Bo
_ -0} - _B _ =111
1+ Bke = (1 -+ 7 ) 2 T (co cy)z (A12)

v Ep* Zp and zp can be solved numerically from

the system of equations (A4), (A6), (Al2), (6), (22) and (25) subjected to the

Hence, the varilables u, p, ¢

boundary conditions given by equations (27) and (28).

O
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APPENDIX B = Numerical Procedures for the
Nonuntform Strailn Rate Formulation

In this calculation, the specimen is discretized into 4 elements along

both the longitudinal (I = 4) and the lateral (J = 4) directions. Algebraically,

there are 55 unknown variables with 55 nonlinear equations. They are:
Variables: o, (20), &4 (5), €4(5), Ly (20), u,(4), d_(1)

Equations: eq. (8) - 20, cq. (15) -20, eq. (18) -5, eq. (21) -5,
eq. (24) -1, eq. (27) -4,

The computation of kij needs special attention, Specifically, the fol~

lowing expression should be incorporated into equation (10):

. (.9_11) . (eil - oril/E) . i (Aeij - A({?j/E)

g - of/E Ae - Ao/E

(n) _ _(m=1) _ , (n) _ £n-1), .
=xn{(eij fiy )7 gy oy D/F }

- (11— = (D (B1)
(e(n) - z(n l)) _ (U(n) . 5(n l))/E
where e(n) is the strain at the pth step and e(n-l) 1s that of the p i
14 , nk p an i3 s tha e previous
step.

The numerical procedures are as follows:
1. Use the solution of the uniform strain rate formulation as the initial

guess to compute the first solution of the nonuniform formulation. This

solution is the first loading step beyond the elastie limit. In obtaining

this solution, the yield stress czj and the yield strain Eij are used as
the corresponding values for the (n - l)th step. In this case, equation

(Bl) is reduced to

ki



B2
gn\—5=] = n ”:i“"f”*i‘” (B2)
0 e - of/E

2. Increase z ov 0 by a prescribed step size AZ or AB.
3. Calculate the mean stress, mean strain and load for the new step.

4., Modify the true solution of the previous step according to the ratio
E(n)/g(n-l) and input the modified results as the initial guess for the

current step of computation.

5. Solve the system of equations and calculate the misalignment errors.

Note that in this step, the expression (Bl) should be used.

6, Repeat Steps 2 through 5. The computation termingtes at a prescribed

strain. Note that the step size AB needs to be increased with 0.
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