Simulation of a Navigator Algorithm

for a Low-Cost GPS Receiver

For Reference

Ward F. Hodge
MOI TO be thxen frijm hus hoont

February 1980

National Aeronautics and Space Administration

Ward F. Hodge

SUMMARY

The analytical structure of an existing navigator algorithm for a low cost GPS receiver is described in detail to facilitate its implementation on in-house digital computers and real-time simulators. The material presented includes a simulation of GPS pseudorange measurements, based on a two-body representation of the NAVSTAR spacecraft orbits and a four component model of the receiver bias errors. A simpler test for loss of pseudorange measurements due to spacecraft shielding is also noted.

INTRODUCTION

The global positioning system (GPS) is a worldwide navigation network, being developed by the Department of Defense, which eventually will comprise a constellation of 24 NAVSTAR earth satellite spacecraft for transmitting navigation information to: system users. Its obvious potential for additional utilization by a large number of non-military users has attracted attention in fields as diverse as general aviation (GA) and shipping. The cost of the GPS receiver for such users, which measures pseudorange from the user craft to four of the NAVSTAR spacecraft simultaneously, has been recognized as one of its major design factors (reference 1). The fact that simultaneous measurement of the pseudorange data requires a minimum of four receiving channels represents a significant cost consideration.

Interest in developing a practical low-cost GPS receiver for civilian users has led to the formulation of position fixing and navigation schemes based on the use of a-single channel instrument. As pseudorange data must then be received sequentially rather than simultaneously, there is a need for investigating the resulting navigational accuracy and the effect of user craft motion between measurements. In this connection, the effects of intentional degradation of the GPS signals, loss of pseudorange data due to spacecraft shielding, and the time between updating all require additional study. The purpose in this paper is to describe one such low-cost navigator algorithm, as devised by the Mitre Corporation (reference 2), in sufficient detail to facilitate its implementation on digital computers and real-time simulators at LRC. The block diagram in figure 1 depicts the overall simulation structure, which comprises two main elements that respectively define the pseudorange measurements model and the navigator algorithm. Additionally, the FORTRAN names of principal program variables and calls to subroutines are indicated at appropriate places on figure I for convenience of reference to the current in-house version of Mitre's programing (see reference 2), which is included in the APPENDIX.

A
a
$b_{I D} \quad$ intentional degradation component of $b, n . m i$.
spacecraft azimuth, deg
semimajor axis of spacecraft orbit, n. mi. equatorial radius of the geoid, n. mi.

GPS pseudorange bias error, equivalent n. mi.
ionospheric delay component of b, n. mi.
multipath and receiver noise component of b, n. mi.
user clock bias component of b, n, mi.
polar radius of the geoid, n. mi.
eccentric anomaly of spacecraft orbit, deg
eccentricity of spacecraft orbit
eccentricity of the geoid
spacecraft true anomaly, deg
pseudorange partial derivative matrix
local topocentric altitude, ft
$k^{\text {th }}$ row of H matrix
inclination of spacecraft orbit, deg
mean anomaly of spacecraft orbit, deg
number of Δt updating periods (see eqn. (4))
spacecraft mean motion, deg/sec (eqn. (4))
local topocentric position, n. mi.
pseudorange measurements vector, n. mi.
$k^{\text {th }}$ pseudorange measurement, n. mi.
time since pericenter passage in spacecraft orbit, hrs
geographic or geodetic East longitude, deg

Subscripts:

CT cross track

G Greenwich meridian
$k \quad k^{\text {th }}$ spacecraft
P GPS constellation index for spacecraft phase angle
s. GPS constellation index for spacecraft orbit plane phase angle or local reference site

Notation:

Δ () incremental value or dwell time interval
(${ }^{\wedge}$) estimated value
() ${ }^{\mathrm{T}}$ matrix transpose
()$^{-1}$ matrix inverse
$\}$ vector

PSEUDORANGE MEASUREMENTS MODEL

The flow diagram in Figure 1 shows the simulation employed for the pseudorange measurements to incorporate models for the respective motions and positions of the NAVSTAR spacecraft and the user craft relative to a local topocentric reference site, and for the measurement errors associated with the GPS receiver. The first of these is ionospheric delay, which is modeled as a deterministic error in terms of an ion density scale factor and pseudorange path length. Multipath error and receiver noise is modeled next, and is represented simply as random white noise. The third type of measurement error simulated is the user clock bias, which includes random white noise and a starting offset in addition to drift and aging terms that increase with time and are associated with the assumption that the clock is driven by a crystal oscillator. The remaining error source is the intentional degradation bias, which is generated separately for each spacecraft by independently passing uniform random numbers through an exponential filter. Scaling of the filter's Gaussian output is then adjusted to give a standard deviation on the pseudorange for each spacecraft such that the 2σ user position error resulting from all four spacecraft is 500 meters.

GPS PSEUDORANGE MEASUREYENFSSMODEE $[G P S]=$

Figure 1. SIM ULATION BLOCK DIAG RAM

GPS/NAVSTAR Spacecraft Position. - As indicated in Figure 1, there are several steps in determining the required true topocentric positions of the four NAVSTAR spacecraft. This process begins with the inertial position of the spacecraft orbit relative to geocentric equatorial axes $\mathrm{I}, \mathrm{J}, \mathrm{K}$ having I toward the vernal equinox and K along the earth's spin axis as illustrated in Figure 2. The orbit orientation relative to these axes is defined by the three angles Ω, i, and ω as indicated. Let $P Q W$ be a set of perifocal axes aligned with the orbit plane such that W coincides with the normal to the orbit plane, and P is along the line of apsides toward perigee. The position of the spacecraft in its orbital plane is given by its geocentric distance p, and true

Figure 2. Spacecraft Orbit Orientation
anomaly f. The transformation
to perifocal coordinates P, Q, W is given by

which are then transformed to I, J, K inertial coordinates

$$
\left\{\begin{array}{l}
X \tag{2}\\
Y \\
Z
\end{array}\right\}=W(\Omega, i, \omega)^{-1}\left\{\begin{array}{l}
P \\
Q \\
W
\end{array}\right\}
$$

where,
$W^{-1}=\left(\begin{array}{c:c}\cos \omega \cos \Omega-\cos i \sin \omega \sin \Omega & -\sin \omega \cos \Omega-\cos i \cos \omega \sin \Omega!\sin i \sin \Omega \\ \cos \omega \sin \Omega+\cos i \sin \omega \cos \Omega & -\sin \omega \sin \Omega+\cos i \cos \omega \cos \Omega i-\sin i \cos \Omega \\ \sin \omega \sin i & \cos \omega \sin i\end{array}\right.$

The task of obtaining ρ and f, for evaluating equations (1) and (2) for each of the four spacecraft, is considerably simplified by the assumption of two-body circular orbits $(e=0)$. In this case the position of the apsidal line in the orbit plane and the time of perigee passage are arbitrary, and ω and T may be set to zero so that the apsidal and nodal lines coincide and equation (2) reduces to

$$
\left\{\begin{array}{l}
X \tag{2a}\\
Y \\
Z
\end{array}\right\}=\left(\begin{array}{cc}
\cos \Omega & -\cos i \sin \Omega \\
\sin \Omega & \ddots \cos i \cos \Omega \\
0 & \sin i
\end{array}\right)\binom{\rho \cos f}{\rho \sin f}
$$

and usual two-body orbital equations

$$
\begin{align*}
& \rho \quad=\frac{a\left(1-e^{2}\right)}{1+e \cos f}=a(1-e \cos E) \\
& \tan \frac{f}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2} \tag{3}\\
& M \quad=n(t-T)=E-e \sin E
\end{align*}
$$

become

$$
\rho=a, M=E=n t, \quad\left\{\begin{array}{l}
T=0 \tag{3a}\\
n=\sqrt{\frac{\mu}{a^{3}}}
\end{array}\right.
$$

The next step is to calculate the unique values of f_{k} for each of the four spacecraft, which specify their locations in the GPS constellation. As the planned configuration is for eight spacecraft equally spaced in each of three orbit planes, inclined 63° to the equator with their nodal lines equally spaced 120° apart, each spacecraft will have a unique combination of Ω_{p} and an in-plane angle f_{s}. The arrangement assumed for the present simulation is illustrated in figure 3 for one such orbiting ring of eight spacecraft. In addition to Ω_{p}, each of the three spacecraft rings has an initial rotation f_{p} from the. line of apsides as indicated. Taking f_{p} and f_{s} into account, the true anomaly for any of the spacecraft is given by

$$
\begin{equation*}
f_{k}(t)=f_{p}+f_{s}+n t \tag{4}
\end{equation*}
$$

in which,

$$
f=\frac{\pi}{4} \quad(s-1), 1 \leq s \leq 8
$$

$$
f_{p}=\left\{\begin{array}{rl}
-\pi / 12 & p=1 \\
\pi / 12 & p=2 \\
0 & p=3
\end{array}\right.
$$

$$
t=\quad t_{0}+m \Delta t
$$

Figure 3. Spacecraft Orbital Spacing Geometry.

To illustrate these calculations, suppose the third spacecraft ($k=3$) happens to be the fourth one in the first ring so that $p=1$ and $s=4$. The true anomaly is then given by $f_{3}(t)=-\pi / 12+3 \pi / 4+n t$, and $\Omega_{1}=0$. Thus, the
 at the required times.

Geocentric Location of Local Reference Site. - The required spacecraft posLion vectors R_{k} relative to the user's local reference frame are obtained first in inertial coordinates as $\left(\rho_{k}-\rho_{s}\right)$, then transformed to topocentric coordinates with origin at the local reference site. The true geocentric location of the local reference site origin is given by the vector ρ_{s}, which is calculated from its geographic coordinates $\ell_{s}, \phi_{s}, h_{s}$ using the geoid model and rotational transformation respectively illustrated in Figures 4 and 5. The sketch in Figure 4 represents an $x-z$ meridian plane view of the earth in cross-section that shows the relationships between geodetic and geocentric latitude and radial distance, which are defined by

$\cos \phi_{s}^{\prime}=\frac{\left(h_{s}+C\right)}{\rho_{s}} \cos \phi_{s}$
$\sin \phi_{s}^{\prime}=\frac{\left(h_{s}+s\right)}{\rho_{s}} \sin \phi_{s}$
$\rho_{s}=\sqrt{\left(h_{s}+C\right)^{2} \cos ^{2} \phi_{s}+\left(h_{s}+s\right)^{2} \sin ^{2} \phi_{s}}$

Figure 4. Geoid Geometry.

With reference to Figure 5, the geocentric right ascension of the user's local reference site at time t is
$\theta_{S}(t)=\theta_{G}(t)+\ell_{S}$
or
$\theta_{S}(t)=\omega_{\theta} t+\ell_{s}$
so that its geocentric coordinates are

$$
\left.\begin{array}{l}
x_{s}=\left(h_{s}+C\right) \cos \phi_{s} \cos \theta_{s} \\
y_{s}=\left(h_{s}+C\right) \cos \phi_{s} \sin \theta_{s} \\
z_{s}=\left(h_{s}+s\right) \sin \phi_{s}
\end{array}\right\}
$$

Υ_{I}
(Vernal equinox)

Figure 5. Transformation between local Topocentric and geocentric coordinates.

As $\left(\rho_{s}, \theta_{s}, \phi_{s}^{\prime}\right)$ also define the origin of the local topographic axes \therefore (U, E, N), with respect to which the user craft motion is referred, the transformation of $\left(\rho_{k}-\rho_{s}\right)$ to these coordinates is

$$
R_{k}=\left\{\begin{array}{l}
z_{k} \tag{8}\\
x_{k} \\
y_{k}
\end{array}\right\}=G\left(\phi_{s}^{\prime}, \theta_{s}\right)\left\{\begin{array}{c}
x_{k}-x_{s} \\
y_{k}-y_{s}^{\prime} \\
z_{k}-z_{s}
\end{array}\right\}
$$

where

Pseudorange Measurements. - The remaining step in simulating the pseudorange measurements is to express the R_{k} in terms of range to the user craft, then corrupting the resulting range vectors ($\mathrm{R}_{\mathrm{k}}-\mathrm{R}$) by adding the simulated GPS receiver bias errors as indicated in Fígure 1. This procedure is illustrated by the sketch in Figure 6, and the resulting pseudoranges are given by

$$
\begin{equation*}
r_{k}=\left(R_{k}-R\right)+b \tag{9}
\end{equation*}
$$

where R is the user's assumed true position in (U, E, N) coordinates as furnished by a user craft motion simulator such as a general aviation trainer (GAT).

Figure 6. - USER/NAVSTAR Range Geometry.

The lower portion of Figure 1 depicts the general structure of Mitre's GPS low-cost navigator algorithm. There are three main computational tasks associated with the algorithm operation. These are determining if any of the four pseudorange measurements are lost due to shielding of the GPS receiver, estimation of position and receiver bias corrections, and computing the position and velocity updates by means of an $\alpha-\beta$ smoother.

GPS/NAVSTAR Shielding. In order for the GPS receiver to acquire a pseudorange measurement, the apparent elevation of the NAVSTAR spacecraft relafive to the receiver antenna on top of the user craft must be greater than 10°. The spacecraft is considered to be shielded, so that the pseudorange measurement to it is lost, if either its orbital motion or user craft maneuvering cause this condition not to be met. The
testing procedure
employed by Mitre for

Figure 7. - Spacecraft Shielding Geometry.
determining whether any
of the four spacecraft are shielded is a rather complex scheme, based on
their azimuthal positions and apparent elevations relative to the user craft. A much simpler test is illustrated in Figure 7. The only requirement is to determine whether the spacecraft in question is above the $E^{\prime \prime}-\mathrm{N}^{\prime \prime}$ plane-, which coincides-with that of the user craft's wings. Thus, the $\mathrm{k}^{\text {th }}$ spacecraft will not be shielded as long as the $Z_{k}{ }_{k}$ component of $r_{k}{ }^{-b}$

$$
\left\{\begin{array}{c}
X_{k}^{\prime \prime} \tag{10}\\
Y_{k}^{\prime \prime} \\
Z_{k}^{\prime \prime}
\end{array}\right\}=\left(\begin{array}{ccc}
\cos \varphi & 0 & -\sin \varphi \\
0 & 1 & 0 \\
\sin \varphi & 0 & \cos \varphi
\end{array}\right)\left(\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left\{\begin{array}{l}
X_{k} \\
Y_{k} \\
Z_{k}
\end{array}\right\}
$$

remains positive.

The apparent spacecraft elevation

$$
\begin{equation*}
\varepsilon_{k}=\tan ^{-1}\left(\frac{z_{k}^{\prime \prime}}{\sqrt{x_{k}^{\prime^{2}}+Y_{k}^{\prime "^{2}}}}\right) \tag{11}
\end{equation*}
$$

still must be tested if the receiver antenna coverage is assumed to be limited to a minimum value of ε_{k}. However, the fact that ε_{k} is defined relative to the $E "-N$ " plane, rather than the local horizon (E-N plane), still permits avoiding the need to evaluate complicated conditions on the spacecraft azimuthal position and the user craft bank angle... aty,....

User Craft Position and Bias Error Corrections. - The procedure used for obtaining these quantities is based on a linearized Taylor's series expansion of equation (9) about the current estimate of user craft position and GPS receiver bias (see reference 1). This expansion is

$$
\begin{equation*}
r_{k}=\hat{r}_{k}+\left.\frac{\partial r_{k}}{\partial \mathrm{U}}\right|_{\hat{U}} ^{\Delta \hat{\mathrm{U}}}+\ldots \tag{9a}
\end{equation*}
$$

where $\mathrm{U}=[\mathrm{R} \vdots \mathrm{b}]^{\mathrm{T}}=[\mathrm{XYZb}]^{\mathrm{T}}$ and $\Delta \hat{\mathrm{U}}=\mathrm{U}-\hat{\mathrm{U}}$. By expressing equation in rectangular form and differentiating,

$$
\begin{aligned}
& \left.\frac{\partial r_{k}}{\partial U}\right|_{\hat{U}} \quad \Delta \hat{U}=\left.\frac{\partial r_{k}}{\partial X}\right|_{\hat{U}} ^{\Delta \hat{X}}+\left.\frac{\partial r_{k}}{\partial Y}\right|_{\hat{U}} \Delta \hat{Y}+\left.\frac{\partial r_{k}}{\partial Z}\right|_{\hat{U}} ^{\Delta \hat{Z}}+\left.\frac{\partial r_{k}}{\partial b}\right|_{\hat{U}} . \\
& =\left(\frac{\hat{X}-X_{k}}{r_{k}-\hat{b}}\right) \Delta \hat{X}+\left(\frac{\hat{Y}-Y_{k}}{r_{k}-\hat{b}}\right) \Delta \hat{Y}+\left(\frac{\hat{Z}-z_{k}}{r_{k}-\hat{b}}\right) \Delta \hat{Z}+\Delta \hat{b} \\
& =h_{k} \Delta \hat{\mathrm{U}}
\end{aligned}
$$

Rearranging equation (ga) and solving for ΔU gives

$$
\begin{equation*}
\Delta \hat{\mathrm{U}}=\mathrm{H}^{-1} \Delta \mathrm{r} \tag{12}
\end{equation*}
$$

where $\Delta r=\left\{r_{k}-\hat{r}_{k}\right\}$ and $H=\left[\begin{array}{llll}h_{1} & h_{2} & h_{3} & h_{4}\end{array}\right]^{T}$, in which the estimated pseudorange measurements \hat{r}_{k} may be calculated by evaluating equation (9) in the form

$$
\hat{r}_{k}=\sqrt{\left(X_{k}-\hat{X}\right)^{2}+\left(Y_{k}-\hat{Y}\right)^{2}+\left(Z_{k}-\hat{Z}\right)^{2}}+\hat{b}
$$

using the spacecraft ephemeris data R_{k} and the current estimate of \hat{U}.

User Craft Position and Velocity Update. - The Mitre GPS navigator

 algorithm is formulated to provide smoothed estimates of updated position and velocity, by approximate smoothing backwards in time over the four r_{k} measurements. The procedure is to calculate $\Delta \hat{U}$ after each new pseudorange measurement is received, by processing it with the most recent values for the other three elements of r_{k}. As the dwell time to receive a pseudorange measurement is Δt, new values of $\Delta \hat{U}$ are generated every 1.2 sec . Thecorresponding position and velocity updating is accomplished by an $\alpha-\beta$ smoother/predictor of the form$$
\left.\begin{array}{l}
\hat{\mathrm{V}}(t+\Delta t)=\hat{\mathrm{V}}(\mathrm{t})+\beta \Delta \hat{\mathrm{U}} / \Delta \mathrm{t} \tag{13}\\
\hat{\mathrm{U}}(\mathrm{t}+\Delta \mathrm{t})=\hat{\mathrm{U}}(\mathrm{t})+\alpha \Delta \hat{\mathrm{U}}+\hat{\mathrm{V}}(\mathrm{t}+\Delta \mathrm{t}) \quad \Delta \mathrm{t}
\end{array}\right\}
$$

These quantities are also used to estimate cross-track error

$$
\begin{equation*}
\hat{\mathrm{R}}_{\mathrm{CT}}=(\mathrm{X}-\hat{\mathrm{X}}) \cos \psi-(\mathrm{Y}-\hat{\mathrm{Y}}) \sin \psi \tag{14}
\end{equation*}
$$

where

$$
\psi=\tan ^{-1}(\mathrm{Vx} / \mathrm{Vy})
$$

in which X, Y, V_{x}, and V_{y} are outputs from the user craft motion simulator.

CONCLUDING REMARKS

The simulator structure described herein provides a useful analytical tool for conducting further research and evaluations of navigator algorithms based on the use of a low-cost GPS receiver. A simpler test for loss of pseudorange measurements due to spacecraft shielding is noted. This test eliminates the need for the relatively complex one contained in Mitre's programing (see reference 2).

REFERENCES

1. Noe, Philip S.; and Myers, Kenneth A.: A Position Fixing Algorithm for the Low-Cost GPS Receiver, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-12, March 1976.
2. Shively, Curtis A.: A Real-Time Simulation for Evaluating a Low-Cost GPS Navigator. TR-80W00081, The Mitre Corporation, 1980.
```
ののn%の
ELAPSED TIME PERIODS（UPDATE INTERVALS）
TIPEETSTRTATIM＊OELT
TRUE TIME IIN HOJRS）
SIMJLATE TRUE USER CRAFT POSITIJN ANO VELOCITY
TIME－（TIME－TSTRT）＊3600．DELT－DELT＊3600．
calculate true andmaly f fjr kth spacecraft
F＝（FP（JORB（KTH））＋（JSAT（KTH）－1）＊45．＋30．＊TIME）＊RD？
GALCULATE SDACECRAFT POW COOROIVATES
Calculate lJk cookilnates of kih spacecraft
COSNDE－CUS（DMEGA（JJRZ（KTH））\＆RPD）
SINNOE＝SIN（DMEGA（JORA（KTH））＊RPD）
VECIJK（1）＝A＊（CDS1DE＊COS（F）－CJS（63．＊RPC）＊SINNDE\＆（TN（F））
VECIJK（2）＝A＊（SINHOF＊COS（F）COS（S3．＊RPD）＊COSNDE＊SIN（F））
VECIJK（3）－A＊SIN（S3．＊RPD）\＃SIN（F）
CONVERT SPACECRAFT COOZDINATES FROM IJK TO UEN SYSTEM
GPS PARARETER DEFINITIONS FOR GADER FIELO SCENAPID ISIMULATEDI
（ORIGIN AT ACY VIR）（ATLANTIC CITY）
WITMJUT INTENTIUIAL OEGRADATION IJRIAS－OI
SET JBIASEI FUK INTENTIONAL GPS DEGRADATION
DIMENSION FO（3），TMEGA（3），VTISI，OX（甘OOI，PY（800）
DIMENSION PHASE（J）．CRAFI（3），IX（4），NJSH（4），OJSH（4）
DIMENSIUN RANGE（4），EL（4）：A2（4），SATPOS（4，3）
DIMENSION VECPOU（3），VECIJK（3），VECUEN（3），5TACOR（3）
OIMENSIUN IRIZ1
CUMMUK／NAVER IEGRQRThILBLAS（4I，EION（4）LEMPE（4）
COnHUKCTMPERITSTBT：DELTE ETEFIPSIM
COKHON／NVFLG／JMPE，JIONE．JSSE，JCLKE，JBIAS
COMMON／NVPAR／ALPHA，BETA；BETAL，\(\triangle D A P T A, A D A P T B ~\)
COMMO：H／SATS／JORG（4），JSAT（4），．）ROLO（4），JSHD（4）
COMMON／NVEST／USER（4），VEL（4），JSERS（4），VELS（4）
CALL SEFDHD
```



```
ALPHAC． 2 s SETAE．OL S BETAI＝．OL \(\$\) ADAPTAE． 2 \＆ADAPTAE．OL
TSTRTE13．90 \＆DELTEL． 2 s ALT－U．SRLATE．688629 s RLING＝－1．301608
JORB（1）＝2 JURO（2）＝1 SJRR（3）－1 S．JORB（4）－2
```



```
INPUT DATA FOR SIMULATEO LANOING APDRCACH COURSE
PI＝3．14159255358774 S RPD＝PI／180．\＆DPR－180．／PI
CALL PSEUDO
OO 7 JTH＝1：4 S OJSH（JTH）＝0．
7 JSHD（JTH）＝0．
SET UP GPS CONSTELLATION PARAMETERS（ A IS IN NAUTICAL MI．）
A＝1．436820 E＋4 © OMEGA（1）＝0．OMEGA（2）－120．\＆OMEGA（3）＝240．
FP（1）＝－15．S FP（2）：15．S FP（3）＝0．
IX（1）＝7329 s \(\mathrm{IX}(2)=1641\) \＆ \(\mathrm{I} \times(3)=6753\) \＄ \(\mathrm{IX}(4)=4159\)
INITIALIZE INTENTIONAL DEGRAOATION ERROR BIAS
ZGAIN－EXP（－4．＊DELT／1800．）
TAU－ 30 MIN
CONG＝528．16080．
SAT 1 SIGMA 500M2DRMS／2＊HDOP1．537
CONU＝2．＊SDRT（3．）＊CONG
CONZ－CONUFSART（2．＊4．＊DELT／1800．）
TAU＝ 30 MIN
IR（1）＝3117 3 IR（2）－ 1379 s IN＝I
\(00802 \mathrm{~J}=1,4\)
CALL GETRANIIR，IN， \(2, R N, Y I, Y 21\)
IN． 2
802 B14S（J）－RN F CONG
Clock error model parameters
SO＝1000．16080．
1 USEC INITIAL CLOCK OFFSET
FO＝DELT100．6
FRACT FREO ERR＊DELT＊10＊＊9／6050
FD＝0ELT＊＊2／1．216 E＋7
FRACT FREO ORIFT／SEC＊DELT＊＊2＊10＊＊9／6080
S5－50．16030．
FRACT SHORT TERM STABILITY \(\# 10 * * 916080\)
SET INTIIAL CRAFT POSITIDN AND VELOCITY
DELT＝DELT／3600．S CRAFTIII＊2／0080．S CRAFTI2）＝X SRAFT（3）＝Y
\(005 \mathrm{I}=1.3\) S VE（ 1 I）＝0．
5 USER（I）CCRAFT（I）＋0．
USER（4）＝VEL（4）＝0．
VEL（1）＝2OT S VEL（2）＝XOT VEL（3）－YOT
ITER IS THE ITERATION FQR WHICH PSEUDDRANGE ANO
ELEVATION DF BEST 4 SPACECRAFT ARE COMPUTED
ITER＝TIM＝0
MAIN LUOP STARTS HERE
33 ITEREITEP＋
KTH 15 THE SPACECRAFT NUMBER
DO 17 KTHEI， 4 \＆NJSH（KTH）＝0 S ERRJR（KTH）＝0．
TIMETIM＋I
```

Convert spacecrafi cooadinaics fran idx Ta Uen sysiem

CALL IJKUE (TIME,ALT,RLONG,RLAY,VECIJK,VECUEN)
CRAFT(1)Eliouso. S CRAFT(2)=X S CRAFT(3): Y
VVI-VECUEN(1)-CRAFT(1)
VVZ-VECUEN(2)-GFAFT(2)
VVZ-VECUEN(3)-ERAFT(3)
OEN=VV3 SF(ABS(VV3).LT..000001) DEN=SIGN(:000001,VV3)
AZ(KTH)-ATANZIVYZ,OEN) S IF(AZ(KTH).OT.O.) AZ(KTH)-AZ(KTH)+2.QPI
DENEYOT
COMPUTE GAT VEGOCITY HEADING RELAYIVE TO TRUE NOPTH (DX:O)
[F(ABS(YOT)-LT-OJJOOI) DENASIGN(.000001,YOT)
GCRS=ATANZ(XOT-DEN)
IFIGCRS.LT.O.) GCRS=GCRS*2.*PI
VVNI -VVI
VVA2-VV2*COS(GCRS)-VV3*SIN(GCRS)
VVN3 $\operatorname{VVV3*COS(GCRS)+VVZ*SIN(GCRS)~}$
VVANI-VVN1* CJS (PHI) + VVN2 *SIN(PHI)
VYNN2-VVN2*こOS(PHI)-VVN1*SIN(PHI)
VVNN3=VVN3
RADS (VV2**2 + VV3**2
RADN $=$ SORT (VVNN $2 *$ * $2+$ VVNN3**2)
EL(KTH)=ATAN2(VVVN1,RADN)
IF SPACECRAFT ELEVATION IS LESS THAN 10 DEG. CHECK FOR SHIFLDING IF(EL(KTH).LE.(PI/2B.)) NJSH(KTH)-1
6 GO FROM SHIELDED TO NOT, OR NOT TO SHIELDED ONLY IF TMO SAME
C DECISIONS IN SUCCESSION
IF(NJSH(KTH).EQ.JJSH(KTH)) JSHD(KTH)=NJSH(KTH)
OJSH(KTH)=NJSH(KTH)
IF JCLKE NOT O INCLUDE CLOCK BIAS ERROR
C SSE SHIJRT TERM STABILITY, EOUIV. NAUT. MI.
C SO. STARTING OFFSET, EQUIV. NAUTICAL MI.
FD. FREQUENCY OFFSET, EOUIV. NAUTICAL MI. FD. FREQUENEY ORIFT, EDUIV. NAUTICAL MI. IF(JCLKE.EQ.OI GOTO 470
CALL GETRAN(IR,IV,2,RN,Y1,Y2)
ECB = RN * SS
CBIAS-SO+FO*TIM+FO*TIM**2*ECB
ERROR (XTH) -ERROR(KTH) +CBIAS
C LF JMPE NOT O, INCLUDE MULTIPATH ERROR
470 IF(JMPE.EO.JI GOTO 410
ERRORI-C.
CALL GEIRAN(IR,IN, 2,RN,Y1,YZI
EMPE $(K T H)=R N$ * 35.16080.
ERROR (KTH)=ERROR(KTH) +ERRORI +EMPE(KTH)
IF JBIAS NOT O, INCLUOE CORRELATED (30 MIN) NOISE BIAS
410 IFIJBIAS.EO.OI GJTO 460
CALL GETRANSIR,IY,2,RN,RY,YZI
BIAS(KTH)=CJNZ*(2Y-.5) Z ZGAIN*BIAS(KTH)
ERROR(KTH)=ERROR(KTH)+3IAS(KTH)
IF JIONE NOT O, INCLUDE IONOSPHERIC DELAY ERROR
460 IF(JIONE.EO.U) GJTE 203
EPRIMP.94793*COS(EL(KTH))
EION(KTH)=.0052433/5 TRT(1.-EPRIM**2)
ERROR(KTH)=ERROR(KTH)+EION(KTH)
203 RARGE(KTH)=SJKT((VECUEN(1)-CRAFT(1))**2+RADS) \&ERROR(KTH) DO 204 101,3
204 SATPOS(KTH,1)=VECUEN(I)
IF(ITER.EQ.I.ANO.KTH.LT.4) GOTO 17
C DO ESTIHATE OF USER PREDICTED POSITION (USER) AND VELOEITY (VEL)
C ANO OF SMOOTHED USER POSITION (USERS) AND VELOCITY (VELSI
CALL ESTIMIRANGE,SATPOS,USER,VEL,USERS,VELS,KTH)
COMPUTE CROSSTRAGK NAVIGATIOV ERROR
$X X=U S E R(2)-C R A F T(2) ; Y Y=U S E R(3)-C R A F Y(3)$
CTE=XX*COS(GCRS)-YY*SIN(GCRS)
ATE - XX SIN(GCRS) + YY COSCGCRSS
ENY - SORTIXX**2 YY**2)
ELEVEEL(KTH)*DPR \& AIMOAZ(KTHI*DPR
HOGEPSI*JPR S BANK=PHI ODPR
17 CONTINUE
THIS 15 THE ENO JF JNE ITERATION
G070 33
SIOP
END

```
            SUBRDUTINE ESTIMIRANGE,SATPDS,USER,VEL,USERS,VEIS,RTHI
            DIMENSION RANGF(6),USERS(4),VELS(4),VEL(4),SATPTS(4,3),\SER(4),
        IHMAT(4,4),R2AR(4),DELR(4),OELU(4),8B(4,1),IPIVOT(4),INNEY(A),
        2HRMAT(3,3)
            COMMON/IMPAR/TSTRT,DELT,ITER,PSIN
            COMMON/NVFLG/JMPE,JIONE,JSSE,JCLKE,JRIAS
            COMMONINVPAR/ALPHA,JETA,EETAI,ADAPTA,ADAPTB---
            COMMQSISAIS/JQRA(4),J5AL(A),DROLO(4),15HDC41.
            IFCITERGFAFGUTI 10:
            DO 11 J=1.4 s JELR(J) © O:
    11 88(J,1)=0.
    10 CONTINUE
            USER ESTIMATE OF USER POSITION
            HMAT H mATRIX
            RBAR(KTH)=(SATPOS(KTH,1)-USER(1))**2+(SATPOS(KTH,Z)-USER(Z))**2
            RBAR(KTH)=SORT(RAAR(KTH)+(SATPOS(KTH,3)-USER(3))**2)
            OELR(KTH)ORANGE(KTH)-RHAR(KTH)-USER(4)
            SIMULATE SHIELDING IF JSSE NOT O
            IFTJSSE.EJ.JTGOTU213
            IF SHIELDING SIMULATED, FIND FIRST SPACECRAFT SAIELDED IF ANY
            00 212 J=1,4
            IF(JSHD(J).NE.O) GOTO 210
    2ll CONTINUE
            GOTO 213
            NO SPACECRAFT SHIELDED
    210 NS=J
            NUMBER OF FIRST SPACECRAFT SHIELOEO
            FORM 3X3 HRMAT FROM VISIBLE SPACECRAFT
            K=0
            00 215 J=1.3
            K=K+1
            IF(K.EO.NS) K=K+1
            SKIP SHIELOEO SPACECRAFT
            DO 215 JCOL=1,3
    215 HRMAT(J,JCOL)=(USER(JCOL)-SATPOS(K,JCOL)|(RANGE(K)-USER(4))
            CALL MATINVI3,3,HRMAT,I,BB,O,OET,ISCALE,IPIVOT,INDEXI
            COAST CLOEK BIAS OURING SHIELDING
            00 216 I=1,4
    216 DELU(I)=0.
            00 217 I=1:3
            K=0
            DO 217 J=1.3
            K=K+1
            IF(K,EO.NS) K=K+1
            SKIP SHIELDED SPACECRAFT
    217 DELU(I)=DELU(II+HRMAT(I;J)*OELR(K)
            GOTO 33
            GalCULATE h matrix fjr all four spacecraft
    213 DD 24 J=1,4
    24 HMAT(J,4)=1.
            00 25 J=1,4
            OO 25 JCOLe1.3
            HMAT(J,JCJL)=(USER(JCOL)-SATPOS(J,JCOL))/(RANGE(J)-USER(6))
    25 CONTINUE
            CALL MATINV(4,4,HMAT, 1,BB,O,DET,ISCALE,IPIVOT,INDEX)
            GALCULATE DELTA-U 3Y MATRIX MULTIPLY
            OD 34 I=1,4
    34 DELU(1)=0.
            00 26 1=1,4
            OD 26 k=1,4
    26 DELU(I)=HMAT(I,K)*DELR(K) & DELU(I)
            UPDATE USER ESTIMATE GY ALPHA-BETA TRACXER
            SHOOTHING AND PREDICTION BY ALPHA-BETA
330061 J-1.4
    USERS(J)=USER(J)+ALPHA*DELU(J)
    [F(J.NE.l) GJTO 64
    VELS(J)=VEL(J)*.2*BETA*OELU(J)/DELT
    GOTO 65
    64 VELS(J)=VEL{J)*BETA*DELU(J)/DELT
    65 VEL(J)=VELS(J)
    O1 USER(J)=USERS(J)+DELT#VELS(J)
        RETURN
        END
```

SURRQUTINE IJKUE(TIME,ALT,RLDNG,RLAT,VECIJK,VECUENIDIMENSION VECIJK(3), VECUEN(3), VEC(3),STACOR(3),TPIJK(3,3)
ALT - STATION ALTITUOE OF U-E-N SYSTEM. IN NAUTICAL MI.
RLONG - STATIJN LONGITJDE OF U-E-N SYSTEM, IN RACIANS
RLAT - STATIJN LATITUDE DF U-E-N SYSTEM , IN RAOIANS
IJKUE IS a SUBROUTINE FOR COORDINATE TRANSFORMATINN RETVEEN
I-J-K (GEOCENTAIC EOUATORIAL) ANO U-E-N ITOPOCENTRIC LOCAL)
coordinate frames
0.2618 IS EARTH TURN RATE (15 DEG/HR) IN RAD/HR JNITS
THR=.2618*TIME T RLONG SINTHESIN(THR) S COSTH=COS(THR)
SINPHIESIN(RLAT)S COSPHI-COS(RLAT)
COMPUTE THE STATION COJRDINATES OF THE U-E-N SYSTEM ORIGIN IN
I-J-K COORDINATE FRAME
ECCSO=1.-.970645**2 S OENO-SORI(1.-ECCSO*SINPHI**2)
$x=(3443.936 / 0 E N O+A L T)=\operatorname{COSPHI}$
2=13443.936*(1.-ECCSQ)/DENO+ALT)*SINPHI
RHO-SORT(X**2+2**2)
SINPHI=I/RHO \$ CJSPHIEX/RHO
STACOR(1)=X*COSTH S STACOR(2)=X*SINTH S STACOR(3)=Z
GOMPUTE THE TRANSFGRMATION MATRIX FOR I-J-K TO U-E-N SYSTEMS
TRIJK(1,1)=COSPHI*COSTH
TRIJK(1,2) ©COSPHI*SINTH
TRIJK $(1,3)=S I N P H I$
TRIJK(2,i)=-SINTH $\operatorname{TRIJK}(2,2)=\operatorname{COSTH} \operatorname{TRIJK}(2,3)=0$ 。
TRIJK $(3,1)=-5 I M P H I * C O S T H$
TRIJK(3,2)e-SINPHI*SINTH
TRIJK(3,3)=COSPHI
${ }_{c}^{C}$
002
22 VEC(I)=VECIJK(I)-STACOR(I)
VEC STORES THE POSITIDN COOROINATES OF THE SPACECRAFT U.P.T. TE
THE U-E-N QRIGIN, GUT IN I-J-K CODROINATES
$0023 \quad I=1,3$
VECUEN(I)=0.
$0023 \mathrm{~J}=1.3$
23 VECUEN(I) -VECUEN(I)+TRIJK(I,J)*VEC(J) RETURN
END

17 Key Words (Suggrsted by Author(s))
18. Distribution. Stateraent

Unclassified - Unlimited
Subject Category 04
19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page) Unclassified

