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ABSTRACT 

The dependence (or independence) of baseline accuracies, obtained from 

a typical mission of a spaceborne ranging system, an several factors is investi- 

gated. The emphasis is placed o n a  priori station information, but factors such 

as the elevation cut-off angle, the geometry of the network, the mean orbital 

height, and to a limited extent geopotential modeling a re  also examined. 

The results a re  obtained through simulations, but effort has been made 

to give some theoretical justification whenever possible. Guidelines for freeing 

the results from these dependencies a re  suggested for most of the factors. 
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1. INTRODUCTION 

In the past decade o r  s o  laser  ranging to artificial satellites proved to be 

one of the most precise and efficient tools for geodetic positioning. The benefits 

from its use were realized early enough to encourage further development of the 

hardware as well as  exterlsive application to problems related to earth dynamics. 

One of the areas where this system will be of major importance is plate 

tectonics. Almost half a century after Alfred Wegener published his continental 

drift theory icegener, 19281, space geodesy provided scientists with a sound tool 

for measuring the relative motion of the cantinental plates. As our knowledge and 

understanding of geophysical phenomena related to plate tectonics improved, it 

became apparent that there exists a high correlation between the location of the 

plate boundaries and earthquake epicenters. Further, it has been the conviction of 

several scientists that geophysical activity in the region of a fault contains vital 

information about the actual occurrence of earthquakes. It is therefore highly 

desirable to be able to monitor such activities (dilatancy, strain accumulation, tilt, 

etc .) a s  they are  related to seismic hazards. The regional aspect of plate 

tectonics, therefore, is mainly concerned with the deformation of the plates near 

their boundaries a t  the fault zones. The best way of determining this deformation 

is  monitoring the motion of several benchmarks located near the fault relative to 

that of points significantly away from it. Since a fault zone can be of quite large 

extent, in order to be able to deduce meaningful results a large number of points 

is required and quick, frequent resurveying of the area. 

A system that can meet all the requirements and still be cost effective is 

a Satellite Ranging System (SRS). The idetr behind this system is  the inversion of 

the traditional satellite trilateration scheme. Due tothe large number of points whose 

positions must be determined, the active (and expensive) station, e .  g.,  the laser,  

is placed - on the spacecraft and the ground stations a r e  targeted with relatively 



cheap reflectors. The advantages of this scheme in terms of cost a r e  obvious. 

Historical Review 

The idea of the "upside-down" laser  was first  suggested in the late 'GO'S 

a t  the time NASA undertook the task of improving the existing hardware so that 

higher accuracies could be achieved. In 1974 a research team from The Ohio 

State University Department of  Geodetic Science undertook jointly with the 

Smithsonian Astrophysical Observatory the investigation of what was then called the 

"Close-Gr!d Gcodynamics Measurement System" (CLOGEOS) . The part  investigated 

a t  SAO pertained to systems and objectives, while the one a t  OSU to optimum system 

use. The points stud ied under the second part  included station configurations, orbital 

configurations, observational accuracy and data reduction techniques [Muellcr e t  a1 . , 
19751. Following this, a much more realistic simulation study was published 

[Kumar, 19761 in which the variation of several of the aforementioned factors, a s  

well a s  new ones, was examined in detail. It must be mentioned here that at that 

time there was no final decision taken either for thc t.ype of ranging instrument to 

be used o r  for the orbit of the carrying spacecraft. The variations in orbital 

configuration werc based thcrefore on theoretical arguments and the selection made 

was otherwise arbitrary. As for thc ranging system, it was implicitly assumed to 

be a pulsed laser  withorit r ~ l i t , ~  out any other suitable candidates (c. g., radio Doppler). 

Although these studies did not producc the final answers to the problems involved 

with the system, they clarified to a high degree most of thcm and se t  up guidelines 

for future investigations. 

On the other hand, SAO produccd a final report [SAO, 19771 on the investiga- 

tions conducted by thcm pertaining to systems and obicctives for CLOGEOS. The major 

findings of that study we re the following: (1) Most promising sys tems for relative 

positioning a t  the 1 cm level a r e  the pulscd l a se r  and the radio Doppler, (2) System 

accuracy is hindered by insufficient knowlcdgc of atmospheric effects :itid loss of 

information due to va riablc weather conditions. As a t.csul t of thcse two findings, 

further investigations on the above subjects wcre proposed. A3 for the objectives 

for the employment of such a systcm, it was emphasized that the main application 



of the system should be the densi ficaticin of geodetic networks in the fault regions 

and their subsequent resurveying in order to produce the required information 

leading to a four-dimensional (space and time) deformation model. Secondarily, 

the system could also be useci for studying other phenomena of interest to geodesists, 

geophysicists, glaciologists, and rel,ated disciplines. 

The momentum acquired from these two investigations and those conducted 

independently a t  Goddard Space Flight Center [Vonbun et a l .  , 1975; Agreen and 

Smith, 19731 along with the recent developmcnts in hardware capabilities pushed 

the investigation into the next phase. The usc of a pulsed laser  was finalized and 

the idea of testing the prototype using the space shuttle under development gave 

birth to a new system, the "Spacelab Geod.ynamics Ranging System" ( S G I S ) .  The 

San Andreas fault-system zone was selected a s  e test area and an e r r o r  analysis of 

this specific system was performed at Business and Technological Systems, Inc. 

(BTS) under the guidelines set b,y CS IT [Gibbs and IIaley , 19781. 

At this point i t  was felt that a variance analysis for the new system SGIB 

seemed proper.  Our study was conducted in two phases. The initial phase is an 

analysis of the proposed exper ime~ta l  sys tern with shuttle flights. The key issue 

in this a:alysis i s  the variation and dependence of thc recovered base1ii.e precision 

due to the v;i:-intior. o f  certain factors such a s  baseline length, a priori station 

information, o~>servational accurac,v, clcvation cut-rC1 anglc and network design. 

As this phase reached  it,^ end, a workshop at thc University of Tcxas at Austin, 

organized by G S K ,  brought t0gethc.r thc various investigators of SGRS and the 

candidak users  of thc systcnt. Thc purpose ot' this workshop was to review the 

cul.rent system design 2nd g:lthc.r i n f o r m  tion from i ts  potenti:il users  pertinent to 

system impi.ovcment and opcration?l systcm design. The I-csults of the discussions 

and the rc~commcnd:ltions from this mccting [Report from the \Vorkshop on the 

Spaceborne Gcodynnmics Ranging S,vstcm, 1979) plmovcd to be of major importance 

for the design of the of thc opcrationnl sgstcm and for this rcnson a brief summary 

is given belcw: 

1 . 'The i;.ser tl-ansmittelm-receivc~~' svstem must be desipwtl to ~acduce the 

cost of the ground rc~flc~ctors (below $1 000 pc I -  unit) nnd sti l l  be c;~pable of centimeter 

level geodesy . 
3 



2. Granted that the system is designed along the l i n e ~  set during the work- 

shop sessions, geophysicists and seismologists concluded that several unique appli- 

cations of the system a r e  possible and of great interest to  the scientific world. 

Primarily, the system should be deployed at various a reas  around the globc in an 

attempt to "capture" a modeieate-sized earthquake. 

3. Tectonic plate motion monitoring can be achieved by use of a system such 

a s  SRS both for near boundary deformations a s  well a s  for relative plate motion 

determination. 

4 .  In the light of the proposed systcm design, several-mainly of geophysical 

interest-experiments a r e  proposed for the study of intcrplate and intraplatc movcmcnts 

and their relationship to a r ea  seismicity. 

5 .  The system can be used to cstablish global and local gcodctic control net- 

works of high quality. Mapping and resurveying of large arcas  with sparse o r  no 

geodetic control could be covered very rapidl,~,  effecticcly and, ahove all, at low 

cost commred to classical methods. 

6 .  Various other appl icstions of the system a r e  possible {placiology, atmos- 

pheric sciences, precise time transfer,  e tc  ) providcd that the :lystem be designed 

in a cost effective manner ,and bc capablc of achieving relative positioning accuracy 

of one to two centirnetcrs over intrrsite distances of ten to fifty kilomctcrs. Since 

the technologv is available, it is recommcnded that the system be designed for a 

high flying (-- 1000 km mean altitude) dedicated sntcllite ,and cqulpped with a short 

pulse (0.2 ns) I:lse~.. 

Thc analysis of the cepabilitics of the ncw svstem as  it evolved from the 

guidelines se t  at  the above mrbeting ccmstitutcs the second phase of the present study. 



2 .  OUTLINE O F THE INVESTIGATION 

The main oblective of t h i ~  study is to determine the dependence of the 

recovered baseline prec ision on the following factors: 

(1) A prlori station information, 

(2) obselvational accuracv, 

(3) geopotential model, 

(4)  elevation cut-off angle, 

(5) baseline orientation (network geometry). 

The reason for selecting thc baselines a s  representative end products of 

the whole process is twofold: p r ima~ .~ ly ,  the baseline lengths and the angles between 

them a r e  the oclv estimable quantities in the adjustment and secondzrilv bccause in 

most applications of t h ~ s  system the conclusions will be based on the haselinc length 

variation between missions. Sincca only a covat.mncc ,a.nalvsis is performed, zrvcral 

simplifications were donc in thc course of simulating the ohsr:~mtions. I t  must bc 

pointed out that it was mainly duc tc restrictions imposed b y  the available software 

that wc :~ctuallv had to simulate obse;vi~tions (GEODYN requires eithci. real o r  

simulated observntions in o~dcnr to form thc n c ~ r m ~ l  cya t ions  :lnd thclrbv computc~ 

variance-covari:mcc' m:~triccs for Lhc parameters or  functions of the par*amctcrs 

s u c h a s t h c  baselines). Ia'ora pure covari,ancc;tn.~l~sis,  noobservations (real o r  

simulatrd) a 1.c rcqui rcd . I t  w:is :111.i*:tdy mentioned in thc Inti-oduction that the 

pr.c.scnt investigation deals with two diffc11.cnt vclrsions of thc basic system. Thc 

differences cornc mainly from the c:~r~.ving vclliclc :~nd the selected o~.bit. In thc 

first version i t  is ; ~ s s u r n ~ ~ l  that thc 1:tscr sht ion will be placed in a low orbit 

(mean altitucic -- 100 km) : ~ b o : ~  rd the shuttlc (valid? tion experiment). Thc second 

version is based on n frcc-flving dedicated satellite at a maan altitude of - 1000 krn. 

The invcst~gation of only thcsc pa~*ticulnr vtai.sions is based on thc conclusions and 

rccommcndntions of the SC; I 6  \Vorkshop [ 19791 :it Austin. 
.- 
.) 



The characteristics of the active part  of the systcm, the laser ,  were 

assumed to be the same in both cases .  Detallcd descriptions of the various 

components of the systcm appcar in several reports compiled by the different 

agencies and companies involved in the dcvclopment of thc sys tem . The only 

tnforrnatton which was actually used in this study i s  the rate at  which the laser  

can operate, 10 pps, and the prcstmtly feasible rcs~iu:.!~:: :ur the single observation, 

10 cm. Although it i s  highly probable that thc ncw ~ene ra t ton  pulsed lasers  with 

0 .2  ns pulsewidth and rcsol~~tiori  of 2 cm will k operational at the time the 

system flies, we felt that it was nlr)rc proper to perform our investigation 

based on present capabilities. The ~ . r~sul t s  of this study can be rather easily 

projected to indicate thc impact of such :m important improvement in the hardware. 

The simulation site selectcd covers part  of the San Andreas fault systcm in 

Cal tfornia and Nevada. Tht. 1 2  ground-ba svd rcflecto r s  form a rectangular grid 

400 !an long and 200 km wide (Fig.  1 ) .  The coordinates of thcse ..tations were 

obtained from BTS so that a direct comp:lrison of our results wi th  theirs would be 

feasible (Table I ) ,  Thc c;!~servingsequcncc \\.;IS thc same for all passes and for both 

orbits. The scqucncc that we sclectcd is shown in FYg. 2. In rcality after a short 

acquisition per i d  of about I 0  s , the laser  points to visible stations consecutivc!y 

until all  of thcrn have bccn o h s c ~  v t d  .and then cvclcs back to make ,ulothcr set of 

observations. .Is thc spacecraft asccbnds (01% dcsccnds) O V ~ I .  the horizon, only n few 

of the stations a re  visible. This results in ;In inc.1-cascd numbor of observations 

for the pcriphcr-al stations comparcd to the whole. It was felt, howcver, that for 

the purpose or this simulation :md being consistent with other simplifications (e. g.,  

weathcr effect simulation), thc* fixcul schc~iulc w:ls adc~quatc. 

The satcll i tc orbits gcnvr-:~tcd wcrc t>:~scd c)n :i s~mplificd forcck mcdel . Two- 

body nlotion was a1ssurncatl nnci ihc* gr;lvit:~t 1nri:11 c ~ ~ l - t h  modcl consisted simply of Ghi 

a& .I2 . Onlj . c srcular  v:criations riuc to .I, wc.1.e c~onsidc~'ed in the numericully 

integrated c q u  tions of motion . l 'hc lntcbgt.:it ion stcaps izc* was 10 s . The simulated 

ranges were compukd from intcr.pol:ltcd st;itca I ectors using n thi rd-order finite dif- 

ference mcthod . This proccdulu. was dic ti1tc.d t)v thc fact that in order  to obtain state 



I'ig. 1 'I'cst area in <':I] iforni:i with the l o w  orbit gl-rmndtl-ncks 
sup~rimposc*d. 111~. cir c l c s  :i~.c the p~.oirhction cf clew- 
tion rings for- various clev:~t ion cu 1--off anglcs mc:~sured 
:lt t h ~  c-cntcr. point of thc grid. 
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Fig. 2 Relative positions of the retroreflcctors i n  
t t , ~  California test area.  The lines indicate 
the obsel.vational sequence . 



vectors a t  the 10 pps rate from the numerical integration, computational 

tns tabilities and unfavorable round-off accumulation introduced unacceptable 

biases on the results. The interpolation technique was tested against strafght- 

forward integration and was found far  more efficient in teims of computation 

time and accuracy . A summary of the i n f o n ~ ~ a t  ion pertinent to the generation of 

the two orbits and the corresponding range observations is  presented in Tables 2, 

3 and 4. 

In order to be able to compare our results with those of other similar inves- 

tigations (like BTS), we used only nine passes (50% of the available) for the low orbit. 

The reason for using only one-half of the passes is that we assumed that there is a 

fifty-fifty chance that a pass will be observed depending on the weather conditions in 

the area. This, of  course, is the simplest way of modeling the weather, but it was 

felt to be adequate for our purpose. For the high orbit only eight passes were used 

(25% of the available) and the observing rate was lowered to 1 pps . To compensate 

for this decrease in the amount o f  data, we increased the observaUona1 precision to 

10 c m / f i  2 3 . 2  crn, assuming that the ten observations within each one-second 

interval a r e  independent. This assumption had also been made at BTS when devel- 

oping their data set  for the low orbit. We used this data set  a s  provided by them for 

checking our software (GEODYN) and verifying their results. For the sake of brevity, 

the above three data sets will hereafter be referred to as  OSUL, OSUH, and BTSL 

respectively . 

As mentio .2d previously, the computer program used for the adjustment of 

the observations was GEODEW, obtained from NASA a t  an earlier time. This 

program is designed primarily for complex dynamic solutions and its use for the 

present investigation somewhat beats its purpose. However, since other investigators 

used this program already and a number of its capabilities simplified to a high degree 

the task undertaken, we decided to use it. W e  should mention here that in the present 

investigation only dynamic solutions were considered, Although in [Kumar, 19761 

and [Kumar and Mueller, 19781 the geometric solutions a r e  shown to be more promis- 

ing than the dynamic, we decided that on the basis of today's technolorn the realization 

of simultaneous ranging to the required more than six (or even four) ground stations 



Table 2 Data used in the elmulation procedure. 

Central Body C c r ~  tants 

Law Satellite 0 rbit 

a = 6778170.32 m 

e = 0.00 

i = 50' 

n = o0 
w = 0" 

M = 0" 

Epoch TO: oh UT, June 1, 1974 

High Satellite Orbit 

a = 7378160.00m 

e = 0.00 

i = 50" 

n = o0 
w = 0" 

M = 0' 

Epoch To: oh ZPr, June 1, 1974 



Table 3 Distribution of Observations per Station per Pass for the 
Low Orbit (OSUL) 
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Table 4 Distribution of Observations per Station per Pass for 
the High Orbit (OSUH) 
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from a spaceborne laser is practically impossible. Furthermore, we chose to use 

the short-arc mode, primarily in order to avoid the accumulation of biases in the 

recovered baselines due to uncertainties in the force field description (mainly the 

part pertinent to earth gravity modeling), and secondarily realizing that only a 

small fraction of a full revolution will be covered by observations since the stations 

are allspread over a very limited area .  Unlike other software packages which are 

specifically designed for short-arc adjustment, GEODYN treats the short-arc solution 

as  a collection of simultaneously reduced short (in duration) "long arcs  . I' There are  

no approximate solutions to the equations of motion nor any other approximation 

whatsoever. As it is explained in [Mueller e t a l . ,  19751, one cannot expect to 

determine anything but relative positions from such a limited mission. The geo- 

potential model therefore must be held fixed and the optimum way for its description 

must be determined through suitable experiments. For our purposes we nominally 

used the GEM7 spherical harmonic expansion up to degree and order sixteen (16 .16 ) .  

This was dictated by the fact that the same model was also used by BTS in their 

investigation. The groundtracks of the generated satellite passes a re  depicted in 

Fig. 3 (OSUL) and Fig. 4 (OSUH) . 
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Fig. 4 High orbit groundtracks (OSUII) . 
Seven day mission. 



3. THE ESTIMATION PROCESS 

The estimation process is described in [Martin e t  a l . ,  19761. This discus- 

sion, though , is limited in theoretical details and treats mainly the technicalities 

and the implementation of the process in the associated computer program. A simi- 

la r  brief recollection of the formulas i s  also given in [Gibbs and Haley, 1978J. Ac- 

cording to these references the method employed in GEODYN is  Bayesian estimation. 

This type of estimation makes use of a priori information about the parameters in the 

form of a weight matrix derived from the prior distributions of the paiSameters. 

In most cases  no such distributions a r e  available and the weight matrices a r e  

derived from the assurncd standard deviations of the a priori estimates for the 

parameters. In very r a re  circumstances a full variance-covariance matrix 

obtained from a previous solution is used for the determination of these weights. 

This latter procedure led several scientists into a different interpretation of the 

process, namely the so-called "least squares estimation with 'observed' parameters.  " 

By doing this, assuming that our approximate parametcrs a r e  the outcome of 

some measurements, we effectively change their character from fixed quantities to 

stochastic ones. It i s  not that there exist no problems where the parameters a r e  

inherently of that nature, but in our problems, especially when dealing with parameters 

such a s  Cartesian coorulimtes, we cannot justify such an assumption. We should 

also point out that quite frequently the above procedure is used to improve 

the condition of the normal equations and in extreme cases tc produce a full rank 

normal matrix for a problem which otherwise would be unsolvable in the domain 

of Cayleian matrix a1p;~br~i . 'I'he applictition of such "weighted" constraints on 

the estimates may very well distort the rc?sults in various ways and sometimes it 

may even result in unaccephble answe1.s. From this point of view, the estimation 

process i s  directly related to the concept of estimable parameters, due to R. C. Bose. 



It i s  proved in [Rao, 1973, p. 2241 that the necessary and sufficient condition for a 

llnear Aurctton of the parameters to bc esttmable is that the rank of the normal equa- 

tions t s equal to  the number of the parameters under estimation. A necessary and 

sufficient condition for thc case where generalized inverses a r e  w e d  is also given in 

the above reference. The advantage of dealing with estimable quantities is that they 

a re  unique and unbiased for any solution of the normal equations and have minimum 

variance among all linear unbiased estimates. In this sense it is obvious that if 

we can identify the estimable parameters in the problem and if we can modify the 

model so that all the parameters a r e  estimable, we have guaranteed ourselves a 

unique minimum vari,mcc unbiased cstimatc. This k i n g  the case, the need for 

a-priori statistical information on the parametcrs is alleviated, and our estimates 

a r e  based only on the information provided through the observations. 

In the case where we cannot find such a set of estimable parameters to 

describe the system, we can still by-pass the need for exterior information by 

use of a generalized inverse solution. If it is possible to find linear parametric 

functions that fulfill the estimability c r  itc~.ia, thcn the analysis of the system can 

be done on the basis of thesc results.  In the case of a geometric solution in 

satellite goedesy, for example, it has been shown [Mueller nt 11. , 19751 that thc 

baseline lengths in the network and the angles fol-med by any .'.:ee stations a r e  

estimable. For most of thc applications in geodynamics, thesc two quanti tics a r e  suf- 

ficient for inferring motions and drformations in the area.  The advantages of 

parametrizing a problem in terms of estimable quantities have been recognized 

by most scientists and effort has been made recently to idcntify these quantities for 

various geodetic problems. The complex functional rela tionships be tween the 

observables and the pax-amete1.s a r e  the only reason that estimable parametr~zation 

has not been in wide use yet. The case of laser observations, howevcr, has been 

treated extensively in [Van Gelder, 19781, and the estimable pa ramekrs  have been 

determined for extremely simplified models as well a s  for more complicated ones 

whthl-e secular perturbations due to J2 were included. 

One therefore has a11 the tools to perform :1 proper study of a system such 

as the SRS, at least for simple simulations a s  is the case here.  



If this is so, then one can natural1 y ques tton the reason behind this investigation 

and its major concern for the effects of a prtort information for nonestimable 

parameters. The answer to this is rather simple. Re?: world problems a re  

far more compltcated than an error  analysis based or, a simulation of the system, 

and although major effort is currently devoted to improving and updatin~ our 

estimation procedures we a r e  far from being able to solve our problems in the 

fashion described above. Our best alternative, therefore, is to study in detail the 

current procedures to a degree that would allow u s  to justify our results and to 

determine how optimistic o r  pessimistic thcy may be duc only to biases introduced 

by the employed procedure. 

In an effort to examine and clarify the inherent characteristics of Bayesian 

ef ' imation, some of the major variations of this process a rc  p msented and com- 

pared to the well-known least squares estimation in the Appendix. It should be 

pointed out that the csc of Bayesian estimation over least squares is an open 

question for statisticians as well as for sctentists using thesc methods. Subjectivity 

versus objectivity is a rather philosophical question, and wc feel that it i s  not thc 

purpose of this study to provide the answer. One conclusion that can be drawn i s  

that there a rc  situations in applied science wherc one mcthod is  better t h n  another. 

It is therefore our responsibility to choose bctwecn the two 'and to do this we must 

study both. The stand wc take here is that thc choice will be made on the basis of 

the problem requirements only, irrespective of the personal preference of the 

invcstipators. 



4 .  CONSTRAINTS, RANK X3EFlCIENCY AND ILL-CONDITIONING 

I N  SHORT-ARC S<)L,UTIONS 

In thc course of this investigirtion wc* have pointed out that we a r c  pr i~nar i ly  

interested in determining the influence of station-rclatcd a priori information on 

the baselines' pmcision. I t  i s  onlv natural, however, to adtlrcss the following 

question: Whqt is the rationllc for using such information'? Thc :mswcr to this 

question is not a s  simple :IS one might cxpcc.t. If thc problem is studied in depth, 

it w i l l  soon bccomc aprarent thqt this is just nnothcr way ol posing thc following 

fundamental question: Sublcctivc (Daycs) or  oblcctivc (Gauss-hlarkov) cslimation? 

This i s  an  open question for thc ~Lqtisticians :md has a rathcr philosophical than 

mathematical nature. Orus should, thcrcfor-el, not expect ;ui answer from a limited 

study as this one. Wc would rathcr tliscwss the* fic*txlctic :~spccts of the problem and 

refrain from attempting to providc n conclusive ,mswcnr, a s  that is outside thc scope 

of this study. 

In the theory of linear spatuas, rank dchfect o f  m l t r ~ x  is the numhcbr of lincar 

dcpcndcncics which cbxist among its culumn.;. I f  wen conv,idei, :L m:~trix A a s  a linear 

trnnsformation from a spacca IRE to a space P ", thnt is, A : 8' -, B', then the. 

following cxamplc illustr:~tes thc concept of r:mk dcfic-icncg. From lincar algebra 

it is known that t h ~  column t.:ink of ;I m:alr.is is the s:lmc :IS its row r;mk, where 

by column (row) rank wc mean thc m:lximum numbc~t. of linc*nr.ly independent columns 

( 0.: ;) of the matrix. Supposc. n -' m for A and r;mk (A)  k whc.1-c thc dimensions of 

A a r c  n by m (rows x columns). h o r n  thc nbovc thcwrcm it is obvious that thc rank 

of A will be at most m ,  whcn :ill its columns a r c  1 ir.c;l rly indc~pcbndc*nt. I f ,  therefore, 

k - m, the rank dcficicncy of A is zero or A is of "full r;mk. " If k c m, then thc 

diffrrcwccb m - k m - r:mk (A )  is  !he t-:wk dcficicncey of A. In tcrms of 1ine:lr 

oper.;!or theory this means thnt the null s p w e  of thc opci.ator. rcprcscntcd by A is 

not just thc zero clement, Kcr(A) r { O  j ,  whcw the null spacea o r  kerru*l of a linear 

oprato; .  on P' is  dcfiwd a s  thc subset of i t s  domtin ~t ' ,  consisting of elements x / O 



for which Ax - 0 holds. Using .mother thcorem ncw, wc c;in s h t e  that thv trnna- 

formation is not "one-to-onc" o r  "tnlectivc" and thc equation Ax ,y thcrr forc  docs 

not have a unique solution for x. 

Thc las t  r e m a ~ k  provides the link k t w c e n  thc. mathematical :md the stati atfcal 

and pt~vsical Interprctati ta of rank dcficicncg. I f  y dcnotcs thc vector of o b ~ c r v a t i o n s  

in a systcm and x thc vector of pnrn w t c r s ,  with A thc design mqti-ix relating the two, 

then given a s e t  of n indcpcndcnt obscrvations (n I m),  only k r d ( A )  pa rarnctc IS 

out of tht- total m can be cs t imacd unic, ucl y .  Phvs ically this simply mcb.uls that the 

given set of obscrvations d o c s  not contain thc informqtion nccuicd for thc dctrrminqtion 

of thc* m - k pnramctcrs . In thir scnsc, thc parnrnctcrs which can b c  C-stimatccl 

from thc given obscrvntions coruqtitutc tht- sc.1 of "rstim?blc" p:lr:lmcW~.s of the- 

svstcm . \!'(* c:ln concludc thc*rofolV that for cnch kind of ohsc~.v;~tion in n giv:-n 

system t h r r c  is a corrersponclil~. stat of "c*stin~:tl)lr" p : ~ r : ~ m c ~ t t ~ r s .  It Is casy to scat1, 

for cxnniplc, th:it obsc11.ving the vr!loc.ity of a \.c*bic.lc is not csnough to dcfinc i t s  

position in spncc nnd ti;ncb. \\'c must find, thc.l.c-fol.c*, n w:iy to ~-t-m:(iy this hnn:lic.;lp 

in orulcl. to solve thc p r o b l c n ~ .  T l ~ i s  ishsic.:llly donc thl-ough the. ;~pplic.ntion of 

c.onstr:~lnts on thtn noncstirn:d,lc p:~rnmt*ti .rs .  \ \ ' t3 c,in cblimin;~tc, for ins?;mc.c*, thesc 

pnrnmcbtc*rs 1)) allopting ccb~.tnin vnlucs for. t11c.m (:tbsolutc& c - o ~ ; t r : ~ ~ n t s ) ,  di~tc~~..nicc.d 

from il ili f f c a  rcml npp1.0:1~.11. In this sc>nscb th(1 "nont~ sti ~ I : I  1)lc " 1x1 I':I me1 tc l lms  :I rtl not 

p:~ r:lrnratc. 1.s :mymore> 1:u t cotus~lnts o f  t hc* pr.ol11c.m. A solut ion of this pr.ohlem 

through 1c:ls t scju'l 11~s (t c) :lcc.ount Ib 1. t-c~rluntl:~nt ol)sc*l.v:~t ions when n 'I. n ~ )  \vil l 

provide mitlimum \:11.i:mc.c unbi:~sc.ci cst in~.~tcas fol. ail (c.stim:~blc by now) p:1r:lmc1tc>~ s 

[ J C I ~ ,  1!#7:il. 
, . I ht1l.c* :I t.cl si1u:tt ions, ho\vt~v~81., ~vh('l't~ 1ht'l'th is 1'eb:lson to b c ~ l i c ~ \ - ~  th:~t th:) 

nvd il;~l,lc s ta t is  lit.;ll info ~m:rtiotl :~ln>ut 111t. noncls tinl;~l~lta t~:~l.:~mc.tr~l.s is of poor qu:lIit\. 

and c*nSo~.cinpthc*m in thc castim:~t ion p~.ot.c~ss woultl ~.c.sult in tn~~c;ison:tblc distortion 

of thc rc~sul ts :~nd sorncht irncss cs;chn intiic:~tc~ nonexis tt*nt intrlnsi stc~ncy in thc obsclr- 

a i m  'I'hc- solction of  thcl :,roblc*rn in this C . : I S C ~  c.:in Inb obt;!inr-tl utilizing wh:~t 

is c:lllc.ci :i sct oS f1cxil)le con st^:^ ints . 'I'bL*sc in turn can bt* tbithcb~. ;~~'bitl ' : ll-y in 

numlr*r (but <.nough t o  pl*ovidc* ;I solution) 01- thcy cs:,n 1x8 iusc c.nough lo mtkc  thc 

1e:lst squ:trcAs no~.m:il nlu:lt icm matrix (h' ~ ' ~ 2 )  of full r-:ink. l'h~ 1nttc.r :1t-c 



called "minimuml~ or  "minimal" constraints. It is obvious that these minimum 

constraints are not unique and the stability of the solution depends on the selection 

of these constraints. There is, however, a set of minimum constraints which 

is best in the sense that it does not discriminate among the parameters and provides 

a solution which is least affected by numerical instabilities in the system. This set 

of constraints i s  called "inner adjustment" constraints, and the theoretical and 

practical aspects of their application have been discussed extensively in [Rao, 19 731 

and [Blaha, 19711. We will not attempt a discussion of the pertinent details again, 

but we will point out that this approach is basically the same a s  solving the original 

set of normal equations by use of a generalized inverse of N [Rao, 19731. The 

advantage of the "inner constraintsf1 is that we obtain the same results without the 

troublesome computation of a generalized inverse. The application of this type of 

ccnstraint in the present investigation was not possible due to limitations in the 

a m  ilable software . 
Finally, another type of constraint which is widely used for the solution of 

rank deficient systems is  the "weighted" o r  "relative" constraint. Since these 

were used in our test, we will elaborate on them and give some more details in 

addition to those which were already mentioned in the discussion of the estimation 

process. The idea of "weighted" constraints originated from the Bayes imi approach 

of estimation in linear models . In this case, however, the a priori information 

which is added to the normal equations is based on an a priori known distribution 

of the parameters and the reason for using this information is well justified i f  

one accepts Bayes' theorem. What we are trying to s tress  here is that in Bayesian 

estimation, the weighting of the parameters on the basis of a priori information is 

not intended to alleviate the rank deficiency in the problem nor the ill-c cnditioning 

of the normal equations. It merely makes use of all available information in order 

to arrive at estimates which a r e  closer to the true values of the parameters, 

although not unbiased anymore. If, therefore, we know the prior distribution of 

the parameters, then this approach is fully justified a s  long as we are  aware of the 

consequences of the Bayesian approach (biased parameters). In this sense the 

inclusion of a prio r i  information on the parameters should not at all be related to 



the inherent rank deficiency o r  ill-condition of the problem. 

Weighted constraints, however, are used to overcome this problem. Their 

application in this sense is very dangerous a s  far as their effects on the results are  

concerned. In general, the argument on which this practice is based is that prior 

knowledge of the parameterst range of values is available th mugh direct observations 

on them or  from a previous solution. In the first case we change the role of the 

parameters to observations, and by doing this we are  effectively removing them from 

the parameter list altogether. If in such a case we applied the weighted constraints 011 

the nones timable parameters only, then we have resolved the rank deficiency of the 

problem since we already know that for estimable pars.meters the design matrix 

(hence the normal equations) is in general of full rank. The catch is that in several 

cases we are either unable to observe the parameters because of their nature (e . g. , 
Cartesian coordinates) or  we directly substitute their "observed" values with some 

appmximate ones. In both these cases, the variance of these "measurementst1 is 

based on some personai confidence interval for the assigned values rather than 

what actual measurements would indicate. In the limit, as the a priori variance 

is decreased, the results of this adjustment are equivalent to those of absolute 

constramts, where we have changed the role of the nonestimable parameters to 

scme adopted constants of the problem. For the case where we indeed have direct 

observations on some parameters (e . g . , absolute gravity measurements in a gravity 

network), then we nus t  treat them as observations with the proper variance- 

covariance matrix as we do for all  other observations . This, of course, brings in 

the probleni of determining the relative weights when diffel-ent types of observations 

are simultaneously adjusted. This is a different problem, however, and we need 

not concern ourselves with it at this point. The important thing to note is that 

this type of observation should be treated in the usual manner and not used as a 

means for circumverr ting the rank deficiency in the problem. 

A s  far as the second case is concerned, where the weighting is based on a 

previous solution, we can identify two subcases . If all o r  some of the parameters 

were obtained from a previous adjustment , then their full variance-covariance 

matrix should be used in the new one, and the result is a standard Bayesian adjustment 



a s  described previously. If, however, only the diagonal elements (variances) a r e  

used (which is common practice), then the resulting parameters (which a r e  biased 

due to the use of a priori information) are not minimum variance - minimum bias 

estimates since the arbitrary diagonalization of the covariance matrix has changed 

their prior distribution from the one represented by the full matrix. Such practice 

is dangerous not only for the rank deficient problems but for those with full rank 

as  well. In the case of the first, it merely provides deceiving results while in 

the second case it may distort the results instead of improve them. Some investi- 

gators choose to ignore the consequence of the last remark since they only judge the 

quality of their results from the magnitude of their a posteriori variances. These 

variances, however, a re  affected (and usually deflated) by the wrong a priori inputs 

and their statis tical interpretation i s  very much qu =tianable. 

This discussion can be summarized in the following. Rank deiiciency is  

av inherent characteristic of each observational system, and in order to over- 

come it we must study the system and determine the source of this deficiency. 

This can be done through the determination of the estimable parameters for the 

system and their comparison with the list of our soive-for parameters. If there 

are observations (direct o r  indirect) which can be done to determine the non- 

estimable parameters, then we can perform these observations and include them 

in our adjustment alleviating the rank deficiency. When this i s  not possible but 

we have prior information in the form of a full covariance matrix, then we can 

perform a minimum variance - minimum bias estimation (Bayesian approach) 

where we obtain a soiutiqn for all parameters a t  the expcnse of their ~ ~ b i a s e d -  

ness.  Alternatives to these a r e  the inner constraint approach or a direct gen- 

eralized inverse solution and the arlopti~n of absolute constraints. W e  point out, 

however, that the Alst does not provide unbiased estimates for nonestimable 

parameters. The similarities of this approach to Bayesian estimation a re  

pointed out in the Appendix. An interesting and illustrative discussion of this 

approach is  given in [Crafarend and Schaffrin, 19741. The implications of the 

use of absolute constraints a r e  rather obvious. The results a re  a s  good a s  the 

adoptedvalues. One only needs to consider the by now popular leveling network 



example where the absolute heights of the points can take different values 

depending on a single point's adopted height [Van Gelder, 19781. 

Having discussed the nature of the various approaches to overcome rank 

deficiency problems in general, we proceed in examining the work and the results 

obtained therefrom for a satellite laser ranging system, in particular when used 

in the short-arc mode. The theoretical investigation of this system is given in 

[Van Gelder, 19781 where i t  is shown that for the simple case of a general elliptic 

orbit secularly perturbed by the Jz harmonic, the rank deficiency is two. From 

the numerical tests which were performed for the case of the spaceborne laser, 

however, the results seem to contradict theory. Test runs with even three absolute 

constraints on a single station's position vector failed to provide an acceptable solution 

indicating serious instabilities in the normal equations. This, however, should not be 

taken as  a proof that there is a flaw in the theoretical investigations, but rather as an 

indication that for a strong solution there is something more than rank deficiency to 

be considered. That other element was already mentioned in the estimation process 

discussion, and it is related to the geometry of the prcblem. In our investigations 

we are dealing with an extremelv !i=ited area (only 200 km by 400 km) and with 

short s r c s  of leneth :vhich at best reach only a tenth of a full revolution. With such 

pocr geometry any in forrna tion about the coordinate ~ t e m  definitim, which would 

normally come from the orbital dynamics, is so little and insufficient that the 

ill-conditioning of the normal equations dominates the problem rather than the 

inherent rank deficiency. In this case it may be that by increasing the number of 

observed arcs this instability is greatly reduced. This, however, must be investi- 

gated since such an increase would also introduce new parameters in the original 

problem. At present a definition of the origin and orientation of the coordinate 

system through six suitable absolute constraints seems to be our best alternative. 

Since these are a set of "over-constraints " (the theoretical rank deficiency still 

remains two) but essential in order to provide results clearly independent of 

numerical instabilities, we refer to them as "quasi-minimum" constraints 

following [Van Gelder, 19781. 



5 .  DESCRTPTION O F  THE EXPERIMENTS 

The investigation was cmducted in three stages which offers a natural 

classification for the description of the experiments. In the initial stage preliminary 

experiments were conducted in order to familiarize ourselves with the problem, the 

available software and to set up guidelines for experiments that would follow. The 

second stage deals with the experiments on the low orbit and the final stage with 

similar experiments for the high orbit. 

A. Preliminary Experiments 

When a simulation study i s  conducted, it is very important to have the ability 

to check the results with those obtained independently either through a different 

approach or a different study by another organization. Since in our case a similar 

study was conducted in parallel a t  GSFC and BTS, we followed their guidelines in 

setting up the experiments in order to be able to compare our results. The main 

purpose of the preliminary experiments was to become familiar with the problem 

ar$ to test our own software (GEODYN version 7508.0) using the data provided by 

BTS (BTSL). Since our main concern is the effect of a priori information on the 

baseline precis ion, the preliminary test focused on the variation of this factor. 

These tests explored the baseline precision varrati~nw as the a prior i information 

about the stations, the orbit and the observational accuracy varied (Table 5). 

The effect of an erroneous geopotential model on the baseline precis ion was also 

investigated. As is  pointed out in [Gibbs and Haley, 19781, the BTSL data set 

was generated on the basis of GEM1 (4, I), while in our tests the earth is 

modeled through GEM7 (16.16). We felt that this inconsistency between the data 

generation and the reduction techniques should be cleared a s  to its effect 

on the precision of the baselines. Intuitively one expects that since we are dealing 

with a limited area and we are doing a short-arc adjustment, there should be no 



Table 5 Baseline Standard ~eviations! Preliminary Test Results. 

Station constlaints2 1 m 1 m 5 m 25 m Quasi-Minimum 
Constraints 1 m 

Orbital ~ o n s t r a i n t s ~  Convtratned Constrained Constrained Free Free Cons tra incd 

91-81 (!!G km) 0.98 9 .42  0 .98 0 .98 0 .98 0 .97 

91-71 (.il km) 1.01 9 .71  1.01 1.01 0 .95  1 .OO 

91-61 (100 km) 1 04 10.12 1.04 1.08 0 .98 1 .05 

91-51 (202 km) 1.  14 10.75 1.14 1.17 1.04 1 .12 

91-21 (302 Gm) 1. 17 11.10 1 .17 1.30 1.08 1 .16 

91-11 (403 km) 1. 14 1 O . G G  1.14 1 .33 0 .76 1 .11  

91-15 (449 km) 1.17 10.09 1.17 1 .30 1 .01 1 .17 

91-92 (52 km) 1.08 10.31 1 .08  1.09 1 . 1 1  1.07 

91-93 (103 km) 1.04 10.15 1.04 1.08 1.04 1.06 

91-94 (152 km) 1.08 10.28 1.08 1.11 1 .08 1 .08 

91-95 (203 km) 1.04 10.24 1.04 1.11 1 .04 1.06 
I 

Average A Posteriori 
I Standard Dcvialions of - 20 cm - 30 cm - 80 cm -- 500 cm - 4 cm - 
I 

Station Coordinates (X, Y, Z )  

Table values a r e  In centimeters. '~tandard deviations in each Cartesian coordinate. 
3Constralnts a s  applicrl by BTS: 58 m In X. Y. % and 5 . 8  cm/s in X, Y,  2 .  

I 



change in aur precision estimates. Meed  our numerical tests showed no 

difference (at least in the order of millimders) in the baseline precisions 

although there are appreciable changes in their lengths. The results are not 

tabulated since they are identical for all baselines. 

We can summarize the findings of these preliminary tests in the following. 

An almost linear relationship exists between the precision of the observations and 

the precision of the recovered baselines. Although this is not a peculiarity of 

dynamic solutions (as it is for the geomrtrical ones) we can probably attribute it 

to the fact that there is a uniform distribution of stations in the area with apprai-  

mately equal numbers of observations from each station to an optimal set of 

satellite passes covering i t  as an umbrella from all possible angles. This whole 

setup strengthens the geometry of the problem to such a degree that in this respect 

it behaves almost as a geometric problem. As can be seen from Table 5, there is 

some variation in the baseline precision a s  the constraints were varied from case 

to case. In connection with the estirnability problem in the short-arc mode, the 

last entry in the table shows an average standard deviation of the recovered 

Cartesian coordinates of the strtions. It is quite obvious that since they are  

nonestimable quantities their precision is strongly dictated by the input a priori 

information. These numbers were not included to prove that these quantities are  

nonestimable, but rather to show the pitfalls one faces if he were to choose 

these quantities as the basis of his investigation. The a priori weighted constraints 

on the orbital elements were introduced in accordance with the guidelines and 

tests conducted at BTS [Gibbs and Haley, 19781. For reasons discussed in 

[Van Gelder , 19781, these constraints were never again introduced in the system 

in the tests that followed. 

In the last column we included the results obtained at BTS in their Run # l a  

[Gibbs and Haley, 1978, p . i : 5 (  which most closely resembles our Test # 1.  The 

tabulated values in the above reference pertain to precision of the horizontal com- 

ponents of the baselines only, but fol  comparison ndrposes and because of the 

relatively short distances involved they can be taker1 as the precisions of the base- 

lines' lengths themselves. It is mident from these cumbers that our results are 

in excellent agreement with theirs. 
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B. The L o w  Orbit Experiments 

The results of the p ml imina ry tests indicated that most of the variation in 

the baseline precisions came from the variation of the weighting scheme and the 

selection of an elevation cut-off angle. The dependence of the results on the 

observational precision turned out to be rather straightforward, and therefore 

no h r t h e r  investigation for this factor seemed necessary. As f ~ r  the network- 

orbit configuration effects, related to the geometric strength of the problem, 

little could be done since the orbit and the network design were given and assumed 

to be the common denominators for all experiments. 

With the above in mind the investigation concentrated mainly on the effects 

of weighting and elevation cut-off angle and to a lesser  degree on the effects of 

geopotential model variations. Three different weighting schemes were adopted : 

(1) strong weighting for all stations, assuming that the standard deviation for each 

of the three coordinates (X, Y, Z) is 1 m, (2) mild weighting based on a standard 

deviation of 25 m in each component, and (3) t'quasi-minimum constraintstt solutions, 

that is, the coordinate system is defined by holding fixed six coordinates properly 

distributed among three selected stations. 

The t'quasi-minimum" constraints for both OSUL and OSUH orbits were 

arranged as follows: 

(I) Station  REF$^ 1: X and Y coord lnates held fixed, 

(ii) StationI1EF$15: Y and Z coordinates heklfixed, and 

(i ii) Station RE ~ $ 9 5 :  X and Z coordinates held fixed. 

The elevation cut-off angle wa s varied twice, 20" assumed to be the nominal value 

and 35" above horizon. The attention given to this factor is warranted by the fact 

that a higher cut-off angle could simplify the design of the grciund reflectors and 

reduces their manufacturing cost. Some of the te? ts were repeated using a different 

geopotential model in order to verify the results ohtsined from the preliminary 

experiments and detect possible interactions due to the variation of the other two 

factors. In all cases no a priori information on the orbit was introduced. Addi- 

tional discussion for the ttquasi-minimum" constraints is left for a later section. 



C.  The High Orbit Experiments 

The results obtained from the investigation of the low orbit indicated that 

the designed experiments were suitable enough to allow the determination of the 

effects of considered factors on the baseline precisian. In addition to this, the 

fact that a comparison of the results from the two orbits would reveal their 

dependence on the spacecraft's mean al*Itude canvinced us to follow the same 

experimental design. The description of these experiments is omttted stnce they 

are identical to those for the low orbit as described in the previous section. Addi- 

tional tests were performed in this case where the mah objective was the determina- 

tion of the lleffectivefl rank deflciency of the problem. By "effective" rank deficiency 

we mean the combined effect of the inherent rank deficiency of the short-arc mode 

adjustment and the deficiency arising f ram the ill-conditioned normal equations 

which is characteristic of the specific problem under study. The strategy followed 

in this case was to relax the number of 'Quasi-minimum1' constraints and the? 

examine the condition of the resulting normal equations. A s  one can gather from 

the above, the effective rank deficiency depends grossly on the design of the experi- 

ment and the quantity, structure, and quality of the collected observations. It would 

be useless, therefore, to try to quote for it a number such as  two, three o r  six, 

while it is  more appropriate to give some general guide1 ines that can be followed 

for a broad class of problems. 



6.  RESULTS O F  THE LOW AND HIGH ORBIT EXPERIMENTS 

The results which a r e  presented and discussed in the following sections 

were obtained from the experiments conducted with the low orbit (OSUL) and the 

high orbit (OSUH) in the last two stages of the investigation. As explained in the 

previous section, there is  a total of twelve basic experiments, six for each orbit 

(three weighting schemes for each of the two cut-off angles). The quantities ana- 

lyzed are naturally the standard deviations of the e stimated basel lne lengths. For 
n n - 1  
( baselines which a network of say n stations, there is  a maximum of m = 

can be formed in all possible combinations (without repetition) among the stations. 

In our case n = 42, which yields m = 861; and considering the fact that there were 

twelve different solutions, we arrive a t  the total number of standard devtations to 

be analyzed: 10,332. Although theoretically n large data sample has several 

advantages, practically one can infer almost the same amount of information (not 

a s  accurately though) by restricting the analysis to a smaller sample formed on 

the basis of certain justifiable assumptions. We will elaborate on this a little 

further in the course of explaining the method of analysis, since these assumptions 

lay part of the foundation of our conclusions. 

A. Detection of Sources of Variation in the Sample Through 

an Analysis of Variance (ANOVAL 

The analysis of variance (hereafter referred to a s  ANOVA) is a statistical 

method of analyzing measurements depending on various kinds of effects (called 

factors) which simultaneously affect them, in order to make qualitative and quanti- 

tative inferences of these effects [~cheff;, 19591. 

Since the method implies the existence of some measurements, it i s  only 

natural to expect that the f irs t  step-the setup of the experiment-poses an experi- 

mental design problem, The fact that inferences a r e  to be made on the basis of the 



experimental results leads ln turn to a problem tn estimation and decision theory. 

For a euccessful experiment one should identif'y the factors affecting the measure- 

ments and make sure that the designed experiment will yield all possible combina- 

tion treatments. Once the measurements are available they are  arranged ln a 

rectangular array which is baeically a pictorial summary description of the experi- 

ment and the measurement process. Usually the factors in an experiment will be 

varied within a certain range of values which a re  of interest to the person who con- 

ducts the experiment. These variations constitute the levels for each factor. To 

obtain meaningful results we must have several observations (and even better, an 

equal number) at each level for all possible combinatims . When more than one 

factors enter the problem, a setup such as  that described above is called a 

complete factorial experiment. An example of such an experiment with three factors 

A, B, and C at I, J, K levels respectively is shown in Table 6.  The simplest entity 

in an ANOVA table is the observation. Each observation is indexed in the following 

manner: one index for each factor plus one index which denotes the order of the 

observation within the M observations performed at  each level combination (we 

tacitly assumed an equal number, M, of such observations in all levels). The next 

entity which is of interest to us is the set of the M observations for each treatment. 

They are easily identified in the table since they all have the same indcx values for 

the indices associated with the factors. This entity is called a - cell. In the simplest 

setup there will be only one observation in each cell, (M = 1). 

There are  two ways of intcrpre ting the ANOVA table. In the most usual case 

we assume that given R cells with M observations in each one, each cell represents a 

random sample of size M drawn from R normal ppulations with identical variance 

02.  This means that we are only interested in the specific variations (levels) of the 

factors a s  erltered in the experiment disregarding the fact that these variations may 

be only a subset of many more possible. The effects of these factors on the observa- 

tions arc therefore fixed with respcct to the specific experimental setup, thereby the 

name ~f this ANOVA model: fixed effects or Model I ANOVA. In the second case 

the interpretation is similar to the above except that now we make the assumption 

that the selected levels constitute a randomly selected sample from a large normal 



Table 6 Arrangement of Data for a Three- Fgctor Experiment 
Factor A: I levels; Factor B: J levels; Factor C: K levelr, 
M obeervationa per cell (treatment or level combination). 

population of realizations of the considerrd factors, with an associated variance 

a: .  As i t  is probably obvious by now, the names associated with this Interpretation 

are: Random effects o r  Model ll ANOVA. For the sake of completeness we mention 

here that it is possible to have an experiment wherc both fixed and random effccts 

may be present simu1taneous:y. This setup is usually referred to as the Mixed Model 

ANOVA. The next step, irrespective of which model we a r e  using, is the estimation 

problem. Since this part is mainly computational we will restrict ourselves to 

discussing the procedure which should be followed for the examplc shown in Tablc 6 .  

A generalization of the method for factorial designs of higher order than three will 

then be obvious without need for a general and involved presentation. 

The estimation process i s  based on the Gauss- Markoff theorem and it involves 

the computation of a number of "sums of squares" (SS) of deviatione about various 

pivot values which will be explained in the following. T h e ~ e  sums of squares will be 

used then in the computation of the "mean squares" (MS) which form the tnput of the 

decision theory problem. It can be easily verified that for the setup of Table 6 the 

total number of observations i s  given by the product IJKM, and the given se t  of data 

is said to span an IJKM-diniansioml space. Denote by { yijkr 1 the set  of obeerva- 

tions, yijk. being the mth observation in the i, j ,  k "treatment  combination'^ o r  the  
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cell with "coordtnateeW i, j, k in Table 6.  Let u i r  be the expected value of the 

measurement on thlr combination of factors and f elrm 1 - N (0, a2 ) (independently) 

the random nolse component of yl~k,. Our linear hypothesis, whlch con~titutes the 

basis of the estlmation is  : 

( y l ~ k l  u l~k  + e l J k l  
n: 1 fe lJk.  1 - Independently N(0, a*) 

Under 0 each ul, k i s  modeled as follow: 

where C1 is the "grand mean" of the population, that is, the average of all the cells' 

ule. In ordc ;. to avold cumbersome notation involving multiple summations, avc r- 

aging over a subscript is denoted by replaclng the corresponding M e x  by a dot. 

For example, p =  u s , ,  =yfjk. . It turns outthat under 0, anunbiased 
A 

estimate of Cc is  the average of all thc observations, 1 .e.,  p =  y, , . . . The 

remaining components in the expression for u t ~ k  a re  the effects of the factors 
A B C  re  s c  

(at, a~ , a::) and their "intera~tions'~ (atJ, a ~ k ,  . . . , a::' ), the effects, that is, 

which exist due to the simultaneous operation of these factors. The interactions 

cannot be attributed to a single factor but mly to their coexistence. If no inter- 

actions exist, then the factore are  said to be "additive. " In a sense thcn! Is no 

arrelation among them and each operates independently of the others. When 

the number of observations in each cell is the same, as is the case here, the 

observational s p a c e i  can be decomposed into 2' + 1 (provided M > 1) mutually 

orthogonal subspaces with a cansequent decomposition of the total sum of squares 

lnto simpler sums. The dimensions of these subspaces are the degrees of freedom 

(DF) associated with the corresponding SS. The estimates of the various effects 

a d  interactions a re obalned from combinations of averages over different indices 

depending on which component we are cstirnating. For example, 



Followtng these example deviations, m e  can form all the component8 hvolved 

tn the expressim for ;ilk and thereby compute their SS's. A ~ u m m a r y  of the com- 

putatlonal procedure la shown below. 

Spece - fhxwce Spanned By Elmens ion (D F') SS - 
4 - P 1 ssy 'wm? ... 

A A  *A AA k main effects a ~ ,  . . . , a1 1-1 SSA -- JKM (;:b2 

B main e f i c t s  
A D  4 ale . . . , 8.4 J-1 ss. = IKM 5 6:)' 

xc C maln effects '.c 4 
ale . .  ., au K-1 ss, - ISM f; (2)' 
*A9 - A  8 - A D  2 

~ A B  ABinteractiona a l l ,  . . . , ~ I J  (I-l)(J-1) SSu ; KM 5 (air ) 
A n  c - 9; - 0 C  2 

fBC DC interactions all, . . . , ~ J K  (J-l)(K-1) S S r  ; IM (a,. ) - AC - Ar . - A t  2 dK AC interactions all, . . . , a 1 ~  (I-l)(K-1) SSAC = JM 7 (a . r )  
- A D C  - A D C  * A U c  2 ;C.r ADC intcractions a ,  . . . , a ( I - ( J - 1 -  SSm' M 5 (sit ! 

SS. C C ~ z ( y l , k . - y ! ~ k . )  
2 d9 Error  e y - Y . IJk(M-1) 

1 J k .  

Total about 
grand mpan 

The dccarnposition of 2 into its direct sum of the above nine orthogonal subspaces 

gives rise to the following identity: 

Oncc thc SS's hnvc kc* computed, thc MS's arc readily obtalncd by dividing with the 

corresponding I)l."s. 

At this point we can answer qucst9r)r~s cont'c.ning thc significance of each 

factor o r  a n y  of thctr intcractions. Wc can solvc, that is, the dccision theory problcrn. 

Thc various hypothcscs to be tcstcvr tan set  up and the tests a r c  based on compari- 
C 

sans of MP ratioe with thcwrcticnl valuc3 of an j dtst~.ibution. Wc wil l  not go into 

furthi~r d c t ~ t l  for this tmi stcp s i m c  in our case wc did not do any te.-ti g, the 

reasan !wing wc wc7 c. only cmncemd with the- effects in a rclativc sense, n fact 

which in our a s c  could infcrrcd from thc : ~ c s  of the SS's direcuy. Ins ted  

we will give o detailed description of how this method was implemented in our 

case and present the rceults that we obtained. 



The factors which we c a n s i d e l ~ d  to affect the precision of the baselines 

were their length, the mean orbital height, the a priori weights on the station 

coordinates, the elevstion cut-off angle, and the orientation of the baselines in 

the grid. Since the grid design was fixed, the same baselines ~ o u l d  be estimated 

from each solution irrespective of the selection of the rest  of the factors. Due 

to the s>mmetry in the grid it was possible to  select a set  of baselines ranging 

from 15  to 300 km in length, a t  1 3  km increments (12 levels of ~a r i a t i ona , ,  for 

which we could cover all possible realizations of the rest  of the factors, but mai* 

the baseline orientation variations. It can be verified from Fig. 1 that the cardinal 

directions of the grid a r e  running almost parallel and perpendicular to the satellite 

groundtracks. We selected as  our reference the side defined by stations 91 and 11, 

with respect to which we determined the orientation of the various baselines ( i . e . ,  

any baseline parallel to 91 - 11 has bearing 0', any one pelpendicular to it 90', e tc .  I .  

To avoid overcomplicating the setup we grouped the baselines into three groups: 

baselines with bearing between 0' and 30'. between 30' and 60:, and between 60' 

and 90' ( three levels of variations). Since we were only esamining tivo types of 

orbits the mean orbital height had only tTvvo variation levels, 460 km and 1000 h. 

The nominal ele\ation cut-off angle for laser observations i s  usually 50'. The 

reason we were interested in an increased cut-off angle is that this ivould result 

in s simpler retro-reflector design tvith a consider~ble decrease in cost. Two 

levels of variations were therefore considered, the nominal 20: and the 33' option. 

The last factor to be considered, the a priori station coorclimte ~veightiw, had 

three levels of variation. .\ priori standard deviations of 1 m in the three 

Cartesian coordinates of all  stations in the grid denote strong weighting. In the 

second lariation the standard deviations a r e  increased to 2.3 m denoting medium 

weighting, and the third variation is the solution ivith 'quasi-minimum" cons t ra ins .  

The l a t t e rue re  applied on stations 11 (0, = 0 . 0 0 1  m, 0 ,  = 0 . 0 0 1  m) ,  13  c f f .  = O.0?1m, 

U: = 0.001 m), and 93 (0, = 0.001 m, f f :  = 0.001 m ) .  For the above setup of five 

factors with their associated levels of varia:ion ive have a t 2 t a l  of -132 treatments, 

half of which pertain to the low orbit, the other half to the high orbit .  From the 

twelve solutions which a r e  needed in order to cover all  possible combinations of 

factor tariations, we selected the standard deviations or baselines ivhich fell in 



each of the treatment categories and formed the ANOVA Table 7. Only one obser- 

vation per cell (M=l) was made since we were not interested in testing any hypotheses, 

but only in ascertaining the relative importance of the five factors as  reflected on 

the corresponding SS's . A summary of the setup and the notation in Table 7 is  the 

following: 

Factor Levels 

L baseline length 1 2  25 km through 300 km incrementing 
by 25 krn 

H mean orbital height 2 400 km (OSUL) and 1000 km (OSUH) 

W weighting schemes 3 A: a = U, = a, = 1 m all stations 
B: U x = 0, = U, = 25 m all stations 
C : "quasi-minimum" constraints (see 

text ) 

E elevation cut-off angle 2 20" and 35" above the horizon 

0 baseline orientation 3 0"-30", 30"-60°, and 60"-90" (see text) 

Using the data from Table 7 we computed the SS's and MS's following the standard 

computational procedure as  described previously. The numerical results are 

presented in Table 8. It can be readily verified from this table that the elevation 

cut-off angle is responsible for most of the variation in the data, followed by the 

rest  of the factors with ccinsiderably smaller effects. In order to determine the 

importance of the factors in the case of the two orbits (OSUL and O S T J H )  independently, 

two more tests we re performed. For each test only half of the data (pertaining to 

the relevant orbit) were analyzed. Numerical results a re  shown in Table 9 for OSUL 

and Table 10 for OSUH. These tests revealed some interesting facts for the effect 

of the orbital height on the way the rest  of the factors affect the baseline precision. 

At first the dominance of the elevation cut-off ar,gle was reconfirmed as  well as the 

fact that baseline length variations a re  second in line as far as the precision is 

concerned. For the low orbit, however, the orientation of the baselines is more 

important than the weighting scheme, while in the case of the high orbit it is the 

one with the least effect. This is reversed for the weighting scheme which in the 

case of the hi& orbit is almost a s  important as  the baseline length factor. This 
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Table 8 ANOVA Results for Test A 

ANALYSIS OF VARIbUfCE.. . -TEST A 

LEVELS OF FACTOR3 
L 12 
H 2 
W 3 
E 2 
0 3 

Lh' 
H W 
LHil 
E 
LE 
Hi% 
LHE 
WE 
LIE 
m 
L6-m 
0 
LO 
HO 
LEO 
KO 
LIJO 
m:o 
L W O  
EO 
LEO 
BE0 
LIE0  
WE0 
LPlEO 
RiEO 
Lwao 
TOTAL 



Table 9 ANOVA Results for Test B (OSUL ) 

LEVELS OF F A C M M  
L 12 
W 3 
E 2 
0 3 

SOURCE OF 
VARIATION 

0 
LO 
WO 
LWO 
EO 
LEO 
mo 
L I E 0  
TOTAL 

SUIB OF 
SQUARES 

LEVELS OF FACTOZ'S 
L 12 
w 3 
E 2 

SOURCE OF 
VllRIATIOl 

EO 
LEO 
WE0 



significant interaction of orbital height, weighting scheme and baseline orientation 

is also confirmed from the corresponding SS's (SSn w and SSHO ) of Table 8 for the 

complete data set analysis. The large value for SSH n in this 'able indicates that 

the applied a priori weights on the station coordinates will produce significantly 

different results depending on the orbital height of the spacecraft. Combining this 

with the results of Tables 9 and 10 we can say that the higher the orbit the larger 

the variation in the prec isf on of the baselines due to identical variations of a priori 

station weights. These general remarks confirmed what we intuitively expected. 

In the following we examine the data for each of the Eactors individually, and we 

present whenever possible the theoretical explanation for the trends exhibited in 

them. 

B. Baseline Precision Variations Due to Different A Priori Station Information 

The plots which are presented and discussed in this section are  graphical 

representations of the tabular values (Table 7) of the standard deviations and 

provide a more illustrative tool for the investigation of their variations. The 

quantities denoted by SA, SB and SC in these graphs correspond to the standard 

deviations obtained from the three weighting schemes A, B and C respectively. 

The quantity SM corresponds to the arithmetic mean of the SA, SB and SC. Figs. 

5, 7 and 9 illustrate the variation of the standard deviations for both systems, 

for the three orientation classes and for a 20" elevation cut-off angle. Figs. 6, 

8 and 10 give the same information when the elevation cut-off angle i s  increased 

to 35". Figs. 11 and 12 finally were produced from the same set of data by 

averaging over the three classes of orientation. 

From Figs. 5a, 7a, 9a and l l a  one can conclude that the relative influence 

of the weights remains unchanged for differently oriented baselines, at least for 

the given geometry. We can reach a similar conclusion for the case of the high 

orbit from Figs. 5b, 7b, 9b and 12%. These conclusions seem to hold true for 

either choice of the elevation cut-off angle, as  can be gathered from Figs. 6a&b, 

8a&b, 10a&b, and 1 l b  and 12b. Inferences, therefore, about the influence of the 

a priori station position information can be drawn from Figs. 11 and 12 alone. 
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Concentrating on these figures we can readily verify that the standard 

deviations in most of the examined cases have a nearly 1 inear tendency to increase 

with increased baseline length, a fact which was tntultively expected. The only 

significant exception from this rule is the case of llquasi-minimumv constraints 

for the high orbit when the elevation cutoff angle is 35". Possible causes behind 

this result will be examined later. Relatively speaking, in the case of the low 

orbit the resultu of the test with "quasi-minimum" constraints are always the best 

in t e rns  of absolute magnitude, whi:e for the high orbit they are  of inte rrnediate 

quality for the 20" cutoff angle test and fluctuate around 2.8 cm with no definite 

pattern when the cutoff angle is  35". From Fig. l l a  it is clear that for the low orbit 

the "quas i-minimum" constraints and the uniform weightkqg with a priori stat ion 

standard deviations of 1 m produce almost identical results . From Fig. 1 lb we 

can see that these two schemes produce diffe rent results, the latter being about 

10% above the first one in all cases. By changing the elevation cutoff angle, the 

number of observations was rqduced equally for all three cases, A, B, and C. 

One would therefore expect an increase in the standard deviations proportional to 

the ratio J /&Go, with n being the total number of obsermtions in each case. 

Such an increase would be manifested in the graphs as a shift in the "baseline 

sigma" scale and the relative location and shape of t h e ~ e  graphs should rema in 

the bame . The reason they do not come out as  such 1 ies in the fact that even 

thou$$ all observations are of the same quality in terms of accuracy, they are not 

the same in term of "geometricll quality. A s  it will be explained in a later 

section, the low elevation observations provide geometric strength in the solution 

which cannot possibly be compensated for by an equal number of medium or  high 

elevation observations. Comparing the two figures ( l l a  and b) one can verify that 

the loss of the low elevation observations affects the solutions with uniform weights 

more and within these the weaker estimates are obtained from the solution with 

the smaller weights. What is important from all these observations on the two 

graphs is  that the internal structure of the observations plays a catalytic role on 

the performance of a given weighting scheme. The loss of observations from one 

case to the other i s  about 47% wilich warrants an increase of the standard deviations 



by a factor of about 1.37. Even if we consider this, the resulting estimates show 

an additional 40% deterioration which i s  the result of the missing low elevation 

observations a s  explained above. 

These conslusions hold true for the high orbit also (Figs. 12a & 12b). The 

effect of the elevaf ion cutoff angle change on the influence of the weighted constraints 

in the baseline standard deviations i s  even greater in this case. A 40% reduction 

in the observations implies an increase in the standard deviations by a factor of 

about 1.33; fromthe results, however, it is evident that even after we reduce the 

estimates to the s a n e  number of observations, the 35" elevation cutoff angle test 

yields poorer results by about 60% on the average. It is also interesting to note 

that strict uniform constraints produce rather optimistic standard deviations 

compared to a "quasi -minimumM constraints solution. As for the rather "irregular" 

results of the latter, in the high elevation cutoff angle test (Fig, 12b), the explana- 

tion lies in the missing observations rather than the applied constraints, the 

reason being that the constrained stations lie in the border of the grid and in the 

nominal case (20") they collect a larger number of observations conpared to the 

rest of the stations, especially a t  low elevations. Wlth the cutoff angle increased 

to 35". this advantage is lost and with i t  the strong "link" between the applied 

constraints and the parameters under estimation. This, in turn, produces a very 

loose system and therefore an ill-conditioned set of normal equations. An examina- 

tion of the station coordinatesf quality of recovery reveals some interesting facts. 

Although the coordfnates are  not estimable quantities, the application of the 

constraints changes their status to what is called ;'conditionally estimable." 

Since the constraints are  identical for  both elevation cut-off angles, a relative 

comparison of their standard deviations is not completely unjustifiable. The 

average results are  shown in Table 11. 



Table 11 

Elevation 
Cutoff 

Average Standard Deviations (in cm) 
V V r) 

Angle 
A 1 a 

It is  obvious from the above table that the loss of the low elevation observations 

has affected the three coordinates differently. The standard deviations in the Y 

component increased by a factor of three compared to those for X and Z which 

only doubled. This weakness in the Y component i s  also evident from the compari- 

son of the correlations in the Y components among different stations in the grid 

which are approximately equal distances apart. In the 20" case these correlations 

show an increasing trend from 0.28 for stations near the northeast side of the 

grid, to 0.88 for stations a t  the southwest area. In the 35" case the same trend 

is also present, but in this case the rate of change is much steeper, from about 

0.22 a t  the northeast side to almost 0.99 at the southwest. The increase in the 

correlations can only be due to the loss of the low elevation observations, since 

no other parameter was varied between the two tests. A s  for the actual trend, 

which is present in both cases, it is probably due to the way the Y component was 

constrained: the Y coordinates of stations 11 and 15. As can be seen from Fig. 2, 

both these stations lie a t  the northeasternmost side of the grid and one should 

the refore expect a weaker determination of the Y components as one moves away 

from the vicinity of stations 11 and 15. The combined effect of weak determination 

and high correlations in the Y components accounts for the irregular behavior of 

the baseline standard deviations. This view is also supported from the results 

depicted in Figs. 6b, 8b, and lob. As  it is seen from the first two figures, baselines 

with orientation angles from 0" to about 60" wi~h respect to the direction defined ~ l y  



stations 11 and 91 are much more affected than those with orientation angles 

between 60" to 90". the reason being that due to the specific location of the grid 

in space the baselines in the second group have significantly smaller components 

along the Y-axis compared to the baselines in the first g r ~ u p .  The er rors  

the refore propagate in a more favorable way for the second group of baselines 

(Fig. lob). 

Jn addition to the tests essential for the comparison of the different weighting 

schemes, some tests were conducted with different "quasi-minimum" constraints 

in connection to the rank deficiency problem ~r the short-arc mode. Description of 

this problem and a discussion of the results was presented in the section on rank 

deficiency and ill-conditioning in short-ar c solutions. 

C. The Effect of the Elevation Cut-off Angle on the Baseline Precision 

From the ANOVA tests 02 both orbits (OSUL and OSUH), i t  is obvious that the 

elevation cut-off angle is the factor responsible for the largest variation in the baseline 

pmcision. Here we examine these variations in a more detailed manner, accounting 

for the fact that an increase in the cut-off elevation results in a simultaneous decrease 

in the number of observations in the problem. With the frequency of the observations 

held fixed for any choice of the cut-off elevation, the loss of observations is propor- 

tional to the percent reduction of the originally "observable" portion of a given pass. 

Based on simple geometrical relationships between the orbit and the observ- 

ing station, we can derive the following formula for the length of the observable arc, 

given the maximum elevation (Em=) that the satellite reaches with respect to the 

station and the minimum elevation (Emin) beyond which no observations a r e  

permissible: 

f sin [(Em + Emin) + (PI+ Po)] sin [(Emax - Emin) + (PI - PO)] tan S = 
sin (Emin + Po) 

where : 

S is the length of the arc  in geocentric angle measure 

Po is the parallactic angle at the satellite, subtended by the geocentric radius 



of the station when the satellite elevation is equal to Emin 

P1 is the parallactic angle (as Po) for satellite elevation Emu. 

The parallactic angles are  complted from the following formulae given the radius of 

the orbit a (assumed circular) and the mean earth radius a. : 

a, sin PO = - cos Emin and sin R = cos E, 
a a 

The arc  lengths can be given in time measure also once the period of the satellite is 

computed from Kepler's third law: 

The periods for the low and the hi& orbits in our test are for example: 

OSUL: p =I 92 min; OSUH: p z 105 min 

Based on the above, Table 12 gives some numerical examples for the arc length of 

overhead passes (Em,, = 90") for three different choices of the minimum cut-off 

angle. In addition to the angular length and the duration of each arc, the percent 

reductim is also given for comparison purposes. 

Table 12 

Cut-off 
Angle 

0 rbi t 
OSUL I OSUH 

Arc Length Duration Arc Length Du rat ion 

40" -- 10 min Go0.----. .- - - 18 min 
4 63% 4 50% ' 
1 5" 75% -- 4min 3 0" 67% - 9min 

33% j i 33% 
1 0"------ -- 3 min 2 00- - 6 min 

The conclusion that can be drawn on the basis of these percentages is that 

the reduction in length, hence in observations too, is very significant (33%) for the 

two cut-off angles considered in our testa. The additional implication i s  that we 

are not decreasing our observatims uniformly (such would be the case if we had 



decreased the frequency of the observations) but only at the beginning and the end 

of each pass. As pointed out already in the previous section, even if all our obser- 

vations a re  of the same precision, their geometric quality depends on the relative 

positions of the observer and the target. It i s  rather simple to realize that when a 

distance is to be estimated indirectly, the best measurements to do are the distances 

between its end-points and a third point on the same line. The low elevation observa- 

tions are the 'third" points for our problem. It is conjectured in [Van Gelder, 19781 

that each of these low observations ccmtains as much geometric information a s  two 

observations in medium elevations. 

To get an idea of the geometric quality of these observations, we have plotted 

in Fig. 13 the average standard deviations for our baseline sample for the two 

different cut-off angles. At first glance one might think that indeed the precision is 

-. ' by a factor of two going from the 20" (S20 curve) to the 35" (S35 curve). We 

must consider though that the loss of the observations should be accounted for first 

and is depicted by the dashed curve. So this curve gives the expected precision if in 

the 20" angle case we had decreased (uniformly) our observations to as many as we 

had in the case with 35". On the basis of this curve, the deterioration of the results 

due to purely worse geometry is about 40%. In order to overcome this we would have 

to increase observaticmal frequency (already 10 pps) to unrealizable rates. It is, 

therefore, recommended that we include as  many low observations a s  possible. 

This, of course, should be further examined when systematic effects (like measure- 

ment biases, atmospheric refraction model inadequacies, e tc. ) are  included in 

future simulation studies. It is expected that the accuracy of these observations 

(although their precision may be the same) will in general be poor due to biases and 

unmodelled effects. One should therefore try to find the "golden cut" so  that with 

proper weighting of these observations or even setting limits a s  to their number per 

pass, an improved geometry can be achieved with tolerable biases at the same time. 

To these direct effects of the cut-off angle we must add its interaction with 

two other important factors. We a1 ready dis2ussed the first one, the weighting 

schemes. In the case where "quasi-minimum" constraints are applied, it must be 

established beforehand that the stations which are to be constrained have enough 
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Fig. 13 

and uniformly distributed observations on all passes in the solution. It should 

always be kept in mind that the constraints "flow" through these observations in 

order to determine the orbit, based on which the observations from the unknown 

stations determine their position. 

The other factor which seriously interacts with the cut-off angle is the 

baseline orientation relative to the satellite passes. Again the reason lies behind 

the geometric quality of the low observations. More details will be given in the 

next section where the orientation factor is  examined. 



D. Variations of the Baseline Precision Due to Different Network-Satellite 
Pass Configuration 

One of the factors which affect the precision of the recovered baselines 

in satellite ranging networks is the relative orientation of these baselines with 

respect to the satellite pass(es). Because of the dependence of this effect on the 

adopted cut-off angle, we have already given some hints on the source of the 

problem in the previous section. These remarks, however, were based on purely 

intuitive geometric consideraticins. In this section the problem is examined more 

systematically, and the use of a simple example will clarify the situation and 

provide some justification for the results of the numerical tests. 

Our simple setup is shown in Fig. 14. A satellite pass lies on the plane 

defined by the axes X and Z . Disregarding time for the moment and denoting by 

Fig. 14 
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subscripts i the ith satellite point and j the jth staticm, the geometric distance 

between them is  

Now we add one more station in the picture, station k, which also observes the 

satellite at a different epoch (close to the ith) and measure the range rk 1. From 

two sets of this type of observation we want to estimate the distance (baseline 

length) between statione j and k. For the sake of s implic ity let us assume that the 

orbit is perfectly known, so the only unknowns will be the station coordinates (XJ, 

YJ, ZJ) and (Xtr, Yk, Zr) . The design matrix of partial derivatives with respect to 

the parameters will typically look like the one below: 

Parameter: XJ Y J 2 J XI, Y k  Z r 

Examinaticm of this matrix indicates the sensitivity of the system in each param- 

eter under e stimation. We consider two different cases of baseline-pass configu- 

ration. In the first case we examine the baseline 1-2 which is perpendicular to 

the plane of the pass. Since all satellite points have zero Y coordinates, the 

derivatives 3 rll/3 Yl and a rz /a Yz are  equal to ~ l / r i i  and yz/rzl respectively. 

Unfortunately, the ranges do not vary too much in a short interval such as a 

ten-minute pass and therefore neither do these partials. This set-up therefore 

is very insensitive with respect to Y1 and Ya, and such a solution would yield very 

poor estimates for these parameters. For this case the baseline length is 

simply I YI - Yz 1, so obviously the poor resulta will propagate in the determination 

of b ~ .  We now examine the other extreme case where the stations 3 and 4 define 

a baseline on the plane of the pass. In this case the derivatives for Y1 and YZ are  

zero, since Yl = 0 = Y2; so their determination is impossible. The baseline b34 

is now given by 



a d  the result therefore wlll be independent of the estimates Y1 and Ya. Between 

the two extreme cases discweed above, the quality of the recovered baseline 

changes from poor to best as its orientation varies from perpendid.ar to parallel 

to the plane of the pass. 

One must realize that these examples are  indeed oversimplified, and in 

realit1 the situation is much more complicated. They are adequate enough, however, 

to illustrate how poor geometry can affect the results of qclally precise observations. 

The regular grid design of the network which we investigated and the convenient 

014entation of the satellite passes with respect to its sides provided an excellent 

set-up for numerical tests. In Fig. 15 we plotted the average standard deviations 

from our standard sample of baselines, for the three different orientation classes 

which we considered as representative for this problem. We observe that in general 

the baselines which belong to the (0"-30") and (60"- 90") orientation classes a re  

better determined than these which lie in the middle. This, of course, happens 
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because these seta of baselines are  more "parallel" to the satellite passes than the 

others. A slight variation Ln the results for the (60' - 90') class 1s most probably 

due to a slightly unbalanced collection of obeervatione from ascendhg and deecendlng 

paa sea . 
Finally we must point out again that although relatively speaking the baselines 

which are nearly aligned wlth passes will have smaller standard deviations than the 

rest, their absolute quality will depend highly on the adopted cut-off elevation as 

already explained in the previous section. 

E, Baseline Bias Due to "Erroneous" Geopotential Model 

When we outlined the purpose of this investigation we stressed that we were 

mainly interested in the determination of the degree of dependence (or independence) 

of the baseline standard deviations on certain factors. In this sense we are  unable 

toquote absolute numbers for the expected accuracy of the results except possibly 

for the component due to noise in the observations only . Average results for both 

orbita (OSUL and OSUH) a re  depicted in Fig. 16. Most systematic effects (e. g.,  

refraction) have been disregarded throughout the course of study. It is known, 

however, that almost all models used to correct for these systematic effects are 

imperfect and an uncertainty i s  always attached to their results. It is therefore 

expected that our baseline accuracy will be affected by these uncertainties and in 

fact worsened. Results on the magnitude of these components of thc totd variance 

were recently given by [Smith, 19781. 

In addition to the inflation of the total baseline variance, imperfect corrections 

for systematic effects introduce biases also in the actual baselhe length estimates. 

We alread dnted out that in our investigation the only case where such effecbs 

were of concern to us was in deriving the baseline precision from an estimation 

process based on a different geopotential model from the one used to generate 

the observations. Various cases were rerun using GEM7 (3,1), GEM7 (8 ,8) ,  and 

GEM9 (16,16); and the baseline precisions were compared to the original tests with 

GEM7 (16.16). In all cases the results were identical down to the millimeter 

level. We noticed, however, very significant differences in the recovered 
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basclinc lcngths and in thc hcight di fferences ktwecn stations. This w:ts not ' 

further pursued since it is a major pi-ohlcm in itself ant1 another study quite 

different from this  onc should dcal with i t .  tire do want to stress that this must 

be cleared to satisfaction bcforc concepts such as "rcpcatability" arc cmploycd 

in ordc t to dctcrminc station motions from baseline length vnriations. 

ORIGINAL PAC13 1s 
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7. SUMMARY: CONCLUSIONS AND REOOMMENDATXONS 

The objectives of the caductul investtgatlon were to determine the nrtation 

of the h e l i n e  precir ton in an SRS s p t e m  due to var iau factom nrcb as  the a priori 

welghted constralnb an statlon positions, the increue (or decreare) of the elevation 

cut-off angle, the relatlve orientation of the baselira and satellite passes, and the 

accuracy of the observations. 

Through ANOVA testa for both of the orbits considered, it has been established 

that theue factom produce significant varlatlono when our accuracy goal Is 1 cm . 
Aside from their dlrect effects, it has been shown that some of these lactors interact 

wlth each ather producing very undealrable results. The decrease of the elevatlm 

cut-off angle is shown to be the factor responsible for the largest variations which 

in this case are due both to the decrease In the number of observa tions as well a s  

to the degradation of the geornetrlc strength of the system a s  a whole. The effect 

of changing the a prlorl station information was examined in parallel wlth the 

problem of ccmstratnts and rank deficiency in the system. From numerical tests 

It Is establtahed that for the specific problem examined, the effective rank deftclency 

(inherent rank deflciency plus Ill conditioning in the no.7 la1 equations) i s  a t  least 

four and on the basls of theoretical considerations at most six. The necessity 

therefore for "quasl-minimum" type of coastralnts is clear and so is the fact that 

their number and arrangemat in the network depends highly on the geometry of 

each lndlvtdual problem. As far as Bayesian (biased) estimation techniques are 

concerned, It has been explained that no meaningful results will be obtalned unless 

the a prior{ covariance rnatrlx for the station positions reflects reallty to a high 

degree of approxlmatlon . In v Iew of the mtxed emotions In the statlsttcal world for 

the Bayesian estlmatlon technlquea, lbrther detailed study of the theoretical basls a s  

well as the approprta tencss and the consequences of such techniques applied in 

geodetic problems must be undertaken. The wefirlneas of estimable parametrtzatlon 

of our problem waa polnted out at several lnrrtances. This should be connldered 



when fuhrm software in developed o r  the exiatlng software i s  groarly modified. 

The geometrb streaqth d the network-delltte pasrsea carflguration play8 an 

important role in obtahing mtform reaults throughout the rurveyed a n a .  fn 

the dealgn of the ground networka therefore we ahouM dwaya conatder the kind 

of aatelllte coverage that the rpecific area has (assuming that thin b dictated by 

the adopted orbit which tvlll not chpnge drastically in the ahort time fmnre of the 

aurvey). Obtaining the optimum network in this senre will not be feasible ln all 

canes since other factors (auch a s  the direction of expected motion o r  the actual 

location of the area) will alm impoee rentrictlms oa the dedgn. A reasonable 

compromise should always be feasible though. h fact alnce most of the f u t u r ~  

potential users of the system have already indicated the primary arena of interest, 

it would probably be beneficial if larger simulatims were c d u c t e d  for all these 

areas. In these future simulation studies it is  important that we include :.if known 

syetematic e r ro r  sources in t enns  of the best currently available models. For 

all study areas prevlous weather records must be examined and some r..alistic 

weather model must be developed for each one. It is  rather awkward to expect 

that el the r all stat i m s  a re vie ible o r  that none c f them is due to unfavorable 

weather condft im . The qua1 ity, quantity, and frequency of ground collected 

weather data must be established and the scnsitivlty of the adopted atmospheric 

refraction model must be examined in terms of the resulting biases due to residual 

refraction. A decision must be taken with respect to the type of the laser to be 

used in the operatimal system and instrumental binees from laboratory calibrations 

should be included in the future simulations. The problcnr of the geopoter,t:al model 

used in these simulatiars seems to be much more complicated than what was 

originally expected. Although the prwision of the results i s  insensitive to any 

changes in the assumed model, the resulting biases may be orders of magnitude 

larger than the quoted standard deviations. Although this investigation was not 

concerned with the nccuracy of the baseline lengths but rather with their precision, 

some of the tcsts which we performed using different gocpotcntial m a k l s  indicate 

that a more detailed examination of the problem 1s in order. The argument of 

"repeatability" which is  so much used in recent publications on SRS must be 
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re-examined. We do not actually know whether slow processes (such a s  s t k i n  

accumulation) will leave the local field unchanged between regular resurveys. It 

i s  dangerous therefore t o  make such an assumption because the results may show 

motions which have nuthing to do with reality. In view of the use of this system by 

scientists in different disciplines, a warning must be given along with the results a s  

to their suitability for the various applications. Attempts to establish strain models 

on the basis of the changes in the Cartesian coordinates of the ground reflectors 

have already iken place. In order to associate accuracy estimates with such a 

model we must first prove that strain i s  a n  estimable parametric function of the 

nonestimable coordinates. If this proves to be true, then such a treatment can be 

justified provided the coordinates a re  obtained from the proper estimation process 

(e. g., inner constraints 19ast squares adjustment) . 
We hope that the results obtained herein and those which a r e  to come from 

the proposed further investigations of the system will provide sound arguments 

for the appropriateness and the capabilities of a satellite laser ranging system. 
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APPENDIX 

The following quotations serve as an introduction to the subject of this 

Appendix. 

In this name [mathematical statis tics], "mathematicalt' seems 
to be intended to connote rational, theoretical, or perhaps mathe- 
matically advanced, to distinguish the subject from those problems 
of gathe ring and condensing numerical data that can be considered 
apart from the problem of inductive inference, the mathematical 
treatment of which is generally relatively trivial. The name "dta- 
tistical inferencet' recognizes that the subject is concerned with 
inductive inference. [Savage, 19721 

Subjective expectations, valuations and preferences and their 
changes from person [to person] o r  in the course of time can and 
should be investigated by means of "objective" statistical methods. 
Trying to use them as a basis of statistics is like trying to gauge 
a fever thermometer by means of the patient's shivers. [van Dantzig, 
19571 

I shall call them "Bayes" probabilities because, frequency or 
not, they are  the ones needed for insertion into Bayes's theorem. 
Savage argues that they are "personalistic", that is, they are a 
property of the individual and not of society. I would dispute this 
myself, and agree with Jeffreys in saying that in scientific questions 
they are objective. They only differ between individuals because 
the individuals are differently informed; but with common knowledge 
we have common Bayesian probabilities. itre can ignore this side- 
issue in the present account. [Lindley, 1958) 

I have to comment on the sentence: "It is the greatest strength 
of the Bayesian argument that i t  provides a formal system within 
which any inference or problem can be described ". I would like to 
turn it around and say: "I1 i s  the greatest defect of the Bayesian 
argument that it provides a formal system according to which you 
can believe what you wish and, furthermore, without any data". I 
believe the search for the sort of panacea envisaged is a false one, 
which i s  based on a total misunderstanding of the nature of language 
and the nature of knowledge. Here again I believe some homework 
is desirable. [Kempthorne, 19721 



Biased Linear Estimation 

The problem of estimation arises in most sciences today and although some 

still consider i t  as the primary and exclusive area of interest to statisticians, many 

theoretical developments can be credited to other scientists as  well. The problem 

can be briefly stated as the determination under certain conditions, of quantities 

which are  related through a known functional relationship to a given set of observa- 

tions. By conditions we mean a set of criteria that we establish in order t o  obtain 

optimum estimates in the sense implied by these criteria.  A set of such criteria 

which is most often used in physical sciences 9.nd engineering is the following: 

(1) linear 

(2) unbiased, 

(3) minimum variance estimators. 

For a detailed discussion of these and other possible criteria, one may consult 

[Rao,1973]. Since the choice of the criteria i s  more o r  less subjective and depends 

on the nature of the problem in hand, a good deal of controversy and confusion is  

evident from the literature whenever a comparison of different estimators is 

attempted. Most of this is  due to variations of the second property-the unbiasedness. 

A number of statisticians, for instance, substitute this by "method consistency," a 

concept proposed by Fisher and Haldane. An even greater number of scientists 

follow the approach proposed by the late Professor L .  J . Savage 11954 (1972 ed. ) 

and 19621, whereby they attempt to uniformly minimize the variance of the 

estimators a t  the expense of unbiasedness . A deeper study of the problem reveals 

the origin of the problem a s  being the definition of probability adopted by each of 

the parties. An elegant and extensive presentation on the four different definitions 

of probability i s  given in [Papoulis, 19651. They a r e  as follows: 

A .  Axiomatic (measure theory), 

B . Relative frequency (Ton Mises), 

C . Classical (favorable outcomes over total "equally likely" alternatives), 

D . Measure of belief (inductive reasoning) . 

We will not argue here which of thc above is  most suitfile a s  a definition, although 

we personally belicve that the foundation of sht is t ics  lies in the axiomatic definition 



rather than any empirically or intuitively cmceived definitians . The purpose of 

the following sections is to present the structure of certain biased estimators 

which are often used in our areas of interest and to compare them whenever 

possible with the unbiased estimators pointing out advantages of the one over 

the other. To the best of our knowledge, the flrst thorough examination of 

Bayesian estimation techniques in connection with geodetic pmblcms is [Bossler , 
197 21. 

The argument on which the application of biases estimation is based is that 

if  we have prior information on our parameters we should use it in order to obtain 

more accurate a posteriori estimates. On the other hand, unbiasedness is essen- 

t ia l  in our problems if we want to make correct inferences from our results. We 

should always keep in mind that geodetic problems are mainly dynamic (the earth is 

not rigid! ). The majority of our estimates therefore are estimates of the true 

averages of the parameters over the time span of the observational data set. These 

averages change with time and the use of biased estimation techniques does not 

guarantee that the introduced biases between different solutions wil l  be the same. 

This being the case we can readily conclude that any model for the rate of change of 

the parameters in question wi l l  be biased too. Considering that the accuracy of our 

param &ers can be improved by improving the quality of our observations-which is 

possible in most cases-it seems unreasonable to seek this improvement a t  the 

expense of unbiased results. We can probably j wtify the use of biased estimation 

at preliminary stages of our research when we only want to obtain a rough picture 

of the problem with a limited number of observations. When we proceed, though, 

to explore the fine structure of the problem, such techniques should be avoided at  

all costs . 



Best Linear Es tlmation 

Let us consider the model (Y, XB, oav): 

and the estimable parameteric functim aT 8 to be determined. For the development 

of the theory we need m t  make any assumptions an the ranks of X and V . It will 

simplify the derivations though if we assume that both a re  of full rank. A general 

treatment of the problem is given in [Rao, 19711. From the above set up, we may 

find a best linear unbiaaed estimator (BLUE) of aT 8 ; here, however, we a re  interested 

in seeing the results obtained when we drop the restriction for unbiasedness . Assume 

that the new estimator of a T 8  is bT Y. The estimation of b is based on the minimi- 

zation of the mean square error  (MSE) of bT Y: 

MSE @' Y) = E [bT Y - aTfl]2 = a minimum (1) 

After some algebraic manipulation, we can reduce the above to the following form: 

It is obvious that we have one equaticm containing both unknowns 8 and 0 , and its 

minimization for b presupposes some knowledge for both of them or at least for 

their ratio S/U . We have at  least three choices to circumvent this problem: 

a) Use some a priori value for 8 /U which we base either on prior experience (if 

any) o r  on what seems reasonable to us, 

b) Consider B as a random variable with a priori mean dispersion E[B 8'1 . Note 

that we need m t  !mow the actual dts tribution of 8 ,  mly the mean dispersion 

matrix is required. ln this case (1) must be modified: 

c) Close inspection of (2) reveals the m i f l c a c e  of the individual terms inside 

the brackets. The first term represeats t3r mriance while the second the bias 

squared. The mntrix (!)(I)' t h  can, Wrpmted  a * r e ~ v e  we,, 

that we may associate with the bias compared to the v h c e .  One can there- 

fore select this matrix according to which of the two quantities b more important. 



Irrespective of which of or  any other caaceivable approach we select 

for the determination of . the resulting equatims are identical ln 
fi d '  appearance. To follow a unified approach m, adopt the notation = W 

with the proper hterpretatim implied. Minimizatian of the MSE leads to the 

following set of equations: 

(v+xwx')~  = X W ~  (4) 

b = (V +xwx')' X W ~  (5 

b ' ~  = a' WX' (V + XWX' )' Y (Bayes Linear Earnator, BLE) (6) 

b T y  = ~ 'V'V'X  + w').' xTv"y (6') 

with: 

* = ixT V' x + w')' X' V'Y (7) 

The superscript * denotes a biased estimate. We can write the analogous expression 

for the least squares estimate (LSE) of 6 ae: 
8̂  = vTv-I x)* xTv' y (8 

Comparing (7) with (8) we see that j* + b a s  w-' + 0 .  The matrix W' however 

cannot be a null matrix except in special cases. If we choose for instance 
1 

W = I, then w*' = k21 so that a s  k + 0 * W' + 0 in the limit. In this sense 

we can state that the LSE is the limit of the BLE . The above choice of W leads to 

a special type of BLE, introduced by Hoerl and Kenaard who called them "ridge 

estimators" due to their similar mathematical structure to methods used for 

ridge analysis of second-order response surfaces [Hoerl and Kennard, 1970a and 

1970bI. These estimators will be discussed in more detail later. 

There a re  two points of interest that we would like to examine, namely, the 

bias in b* and its mean error dispersion. Both will be compared to the LSE 

counterparts. We denote: 

T = (X'V'X + w")" (9 

Then (7) is written a s  

j* = T xTVaY (1 0) 



To obtain the biae: 

E [ B * I  81 = EITX'V'Y~ 8 I 
= TXTv"xB 

t 1 = T(X V ' X  + w4)B - TW* B 
= T T" 8 - TW" 8 
= B - TW'B 

In the ISE case, since $ is unbiased, 

The BLE la therefore negatively biased. It can be shown that this bias is toward 

the origin in the sense that the norm of b* is smaller than that of b. 
We derive now the mean error dispersion matrix for I*: 

where without loss of generality we have selected U' w = ~ ( 8 8 '  ). 

For the I S E  fi we have: 

Recalling the definition of T we may establish the following inequality between 

(13) and (14) : 
-1 3 ?; (xTv-lx + w ) (xT v-I X) -l (15) 

Two matrices A and B a re  said to fulflll A > B if A - B is  nan-negative definite. 

To obtain the above we must further assume that W is non-negative definite which 

is true for all three choices of W previously described. In the case that we make 
A 

a different choice of W, the mean error  dispersion for B * i s  



Xf 49 = 0, then: 

For 8 f 0, then, and for every choice of W, there &eta a regtua of the parameter 

space in which (16) produces resuli's smaller than (14). h general, therefore, we 

can state that there ie a region, including the origln (8  = 0). for which the BLE is 

a uniformly smaller mean w a r e  error  estimator of B compared to the LSE and 

another region for which the converse la true. The more general case where the 

estimate of a T 8  is not a homogenreaus function of the observations Y, 1. e., it has 

the form b ' ~  + c with c a vector of constants, cm be found in [Rao, 19761. 

We conclude this section giving a .  expreseton which relates the BLE with 

the ISE: 

,9* = ( x T v - l x  + w'jl x' v-ly 

= (X'V"X + w')" (xT V'X) (xT v3xj1 xT v" Y 

= (xT v' x + w')' ( x T  v4 x )  # (18) 

or setting G = (x' V"X + w")" X'V' X,  we had2 

It i s  obvious from (19) that the BLE can be cansidered as a linear transformation 

of the LSE . This is a striking similarity of this type of estimator with "shrinkage 

estimators" used to uniformly improve unbiased estimators. We point out that it 

can easily be shown that the BLE "pulls11 the esttmate j* towards the origin as 

a whole, i.e., 11 j* 11 5 (1 8̂  11, and not each of its compone~.ts individually. 



Rid- Estimation 
II 

Ae pointed out earlier, ridge ertimatiaa ir a rpecial type of bWed eattma- 
1 

t i a  whereV = Iand W p I. It i s  rather a r y  toviunl i re  the r au l t8  when 

either or  none of the h v e  b true. In [Haerl and Kennard, 1970a) for b tance ,  

the case where W K = [6 it k: ] b ah0 treated under the same name. Al l  these 

variatiaarr can be categ~rized aa me tho& wing ' b i f o  nn" prior distributione of 

the parametera (even though this ie not explicitly stated). We examine in what 

follow8 the properties of them eatlmatora, aad we compare them whenever 

posaible with the BLUE. 

Under the LSE theory the e?rpectation of the quared length (L') of the 

distP1ce between the true 8 and it. BLUE estimate # La 

We therefore obtain 

cud assuming that the errors c are  normally distributed: 

Var [L' ] = 2 0 4  t r  (x'x)-' (22) 

We are interested in the dependence of the above quantities on the condition of our 

normal equations X'X. Let the eigenvalues of X'X be A ,. , = A 1 2 Xg 2 . . . 2 Xp 

= A, i n >  0, where p i s  the number of parameters. Then: 
P 

E[L'] = 0'; ( l A 1 )  ard var(L2] = 2 u 4 C  (lh*)' 
= 1 1=1 (23) 

On the basis of (23) we can see that the lower bounds for the average and the 

variance of L' are : 

a2 / X l i a  ~ l l d  2 g4 /X2ain 

respectively , If our experiment is carefully set up so that it fulfills the require- 

menta of a complete orthogonal design, then X'X - I, and we have no problem in 

obtaining stable estimates. In geodesy, however, most of our problems are  nan- 

linear and we very rarely have the chance to "dedgnl' the setup. These facts 



reeult In extremely ncm-orthogonal problems which in serveral cases produce 

'bumerically singularw normals due to the high correlatlona among the parametera. 

The condition of a symmetric ma trlx i s  deffned [ Fbreythe and Moler , 1967) as: 

for m y  selected norm /( . (1 . Specifbally , for the Euclidean norm [{bid]: 

colld (A) = A,,/X,,, 2 1 

The equality holds for orthogonal matrices always. The farther the condition number 

is from unity, the more ill-conditioned the matrix is. When X.1, is very small, we 

see from (24) that the distance L will tend to be large and it will vary more lnten- 

slvely than a sl ight change in our design warrants. Although our results n re 

unbiased, they may be too "far" from the true values. To  quote [Hoerl and Kennard, 

1970a) : lllrle least squares estimate suffers from the deficiency of mathematical 

optimization techniques that give point estimates; the estimation procedure does not 

have built Into it a method for portraying the sensitivity of the solution to the optimi- 

zation criterion1' (minimum sum of squares of the residuals). In support of this, 

[Marquardt and Snee, 19751 go one step further in identifying the cause of this 

insensitivity: "The 'fly in the ointment' with least squares i s  its requirement for 

unbiasedness." W e  do not comment on this since we have already pointed out the 

relevance of unbtasedness in geodetic problems. Instead we wil l  investigate some 

interesttng properties of ridge estimators. The usual form of a ridge estirthte n 

be obtained from (7) by direct substitution of V - I and W" = I, 2 0: 

To make matters simpler we assume that X'X has been properlj scaled so  

that ft is already in correlation fonn and the proper transformation haa been applf 

on X' Y also. Equation (25) can also be written as 

If ( A i )  denote the eigen values of x'X, then the eigenvalues of R and 2, (41) and 

(t) i )  respectively, are: 
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E 1 = l / ( A l  + k') 

rll ' A , / ( h  + 3) 

Since 2 Ir rymmetric porltive & b i t e ,  z 'Z  = z', and since the eigenvalues of 

2' are (r):) we have: 

*T 2 ti*)T (a^*) = IP z T z i  - B z i q:. B " i  (29) 

Now by (28) sls. = h / ( h  + ka) s 16 hence: 

I I ~ ^ * I I  r l  I II i I I  

The inequality (30) esitiDlishes the fact that ridge estimators are  "shorter" tn 

a global smre  than their LSE ~nratelparts.  The fact that B^* depads on k' 

milker the residual sum of squares also a h c t i o n  of @: 

L 

Since our criterion of optimization is to find a 8 * that glves the minimum (O* 

we see that a different minimum will be obtained for each choice of k2. This 

will be examined next. 



The Ridge Trace 

Moat of the problems that we a r e  faced with a r e  largo both in term8 of the 

amomt of data prd the number of parameters inwlved. In addition to this moat of 

these problems a r e  non-linear and we very rarely see the interrelattars between 

the parameters unless some geometrical approach i s  feasible. Ridge elltimates 

claim to be the ,answer to such problems (at the expense of unbi;scdness, of course). 
L1 

If we denote by 4 m1 estimate of 8, then the residual sum of squares is: 

In the abovc(O.lndenotes the r.~inlmum obtained from the LSE theory. Prom the -. 
above we see that a( 8 ) is a continuous knction of a and the loci of (D - constant 

* 

are concentric h.yperellipsoids centered a t  8 .  The continuity implics that for a - Ly 

given @ ( 8  ) -= 00 > 0 there will always be a 80 which produccs this 00. Obviously 
N 

we are interested in determini% a specific 80 which would fulfill un optimality 

criterion in some scnsc. A natural choice is for the one that prodwes the minimum 

bias. We state thc problem formally: 
-1  - 

~ n c i  s k that minimizes 8 B uncicr the cmatraint that (a - B^)' (x'x) (8" - 8^) 
= @ a .  The solution of this problem through Lag rangtan mhimizatim yields: 

So the ridge estimator i s  the answcr to this problem. The value of k2 -which in the 

above is the inverse of the Lap;m~c*e multiplier for the Oo constraint-is determined 

80 thnt it is  consistent wid, the prescribad ~ P C I  value. Actually it is  simpler to 

choose a certain value for > 0 and complte thr! (DO d u e  later. The prcvious 

approach, howct .:r, sheds some light on the role of k2 in ridge estimation. In 

[Hoerl and K e n w d ,  1970a1 another fnterprctation which lc!ads to tdentical rcsults 

is  also discussed. A more general dtscusston which allows for rank deficient X 

and V (error variance-cwarhncc matrix) is given in [Rao, 1971). 



An examination of the ltkelihood hnction for i* reveals that the loci of 

constant likelihood are also concentric hyperellipsoids centered a t  8 . Based on 

this and the similar fact that holds for the c~ = constant surfaces, Hoerl and 

Kennard introduced the concept of the "ridge trace" which i s  the path described 

by the estimate in the likelihood space. This is practically obtained from plots 
A 

of the components of 13 * for various choices of k2 . Their justification for the use 

of this concept as a means of studying these estimators is  the fact that although 
A 

"long" and "short" ' 's are equally likely, the 'longtt ones, which will probably 

be farther away from the true value B , may not always have equal physical meaning. 

This i s  where although not mathematically or  statistically stated, the use of Bayes' 

approach is implied. The mathematical expression that provides useful information 

for the ridge trace is the mean square error E [ L ~  (k2)] which is considered as the 

loss function. The following expression can be derived by use of the expectation 

ope rator: 
2 2 

E [L Or )I E I($*- &'(B^* -8)l 

The first of the terms in (34) represents the total variance of the parameters, while 
.. A 

the seccmd is the square of the bias introduced when 8 * i s  used in place of 8 .  To 

obtain the first result we can use the definition of Z from (26) and its associated 

eigenvalues from (28) and the fact that: 

In [Hoerl and Kennard, 1970al i t  is  shown that there exists a @ :. 0 for 

which E [ L ~  (k2 )] < E [ L ~  (O)], k2 = 0 being the case for the LSE unbiased estimate 

b.  This existence theorem can be proved by examining the behavior of L @ ) 
and be). In the same reference the following key results are derived: 

Theorem 1 : The total variance LI @ ) is a continuous, monotonically 

decreasing function of '? . 



T:~;?rem 2: The squared bias L= (p ) is a continuous, monotonically 

increasing function of l? . 
On the basis of the above it is down that: 

These results are  very important since they Micate that for an ill-cmditicmed 

system (Ami,  0) the total variance will tend to be too large a s  k2 + 0' while 

the bias will be zero irrespective of the condition of X ~ X .  As we move a little 

from the origin and k2 > 0, we introduce a very small amount of bias (the 

derivative of La is nearly flat around the origin) and at  the same time we redlice 

the total variance tremendously. This is  better understood from Fig. 1 -which 

is reproduced from [Hoerl a d  Kennard, 1970al. It is a graphical 

representation of L1, La and their sum E[L* (k2)]. As i t  can be seen from this 

figure, the ridge estimate produces a uniformly smaller mean sqw,re e r ro r  than 

that of the LSE, for 0 < 9 < 0.6. For k2 z 0.06, the ridge trace achieves its 

minimum. This point c wresponds to the "minimum variance - minimum bias" 

estimate of 8, the one that Rao refers to as BLIMBE in [Rao, 19731. The 

determination of the k2 value that will produce this estimate for @ is as follows. 

We treat the general case that for each component of 8 a different @ is adopted. 

Let P' A P = xT x where h i s  the eigenvalue matrix and P the matrix of 

the eigenvectors of X'X. Denoting a = P@ i; can be shown that starting with an 

approximation of /1 and choosing each k: = u2 /&:, the iterative solution until 

a;'& stabilizes will produce the desired set of k2 's and the corresponding ridge 
1 

estimzte p * .  In the casc of large systems where this procedure may be very 

tedious and expensive, the direct solution using the pseudoinverse of xT as shown 

in [Rao, 19731 might be more efficient to use. Numerical examples for the 

iterative approach can be found in [Hoerl and Keriard, 1970b; Marqardt  and 

Snee, 19751. In the second reference the results of the ridge estimator a re  
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Fig. 1 

compared to the generalized inve rse estimates also. Marquardt [I9701 has also 

given an excellent comparison of ridge estimators, generalized estimators and 

least squares estimators. This reference is particularly valuable, for i t  compares 

the ridge estimates with those obtained from an "inner constraintt' adjustment; a 

procedure very popular with geodesists. The ridge jstimator should by no means 

be confused with the gcheralized inverse counterpart, even though the two have 

several properties in common. A numerical example solved analytically [ibid.] 

with both methods provides a number of interesting results and an illustrative 

comparison of these estimators. 



The collcept, the foundation, and some of the most popular techniques for 

biased linear estimation were presented. The emphasis placed on ridge estimators 

1s not without justification. One can very easily see their structural resemblance 

to what geodesists call "weighted constraints" adjustment. A better understanding 

of these estimators will probably help in their optimal utilization in our problems 

rather than outright rejection. It is ,  for instance, true that in a short-arc solution 

even when the inherent rank deficiency is taken care of, critical geometry or too 

short passes or any combination of such factors may result in a very ill-conditioned 

and unstable system. If there is no way to obtain a linear unbiased estimate (hence 

a BLUE) or if we agree that we can tolerate a certain amount of bias, then a ridge 

estimator with controlled bias may very well be the answer to our problem. A 

last remark though should be made concerning the unbiasedness of parametric 

functions. If a minimum norm least squares g-inverse i s  used to obtain the BLIMBE 

of a parametric function a7 13, then the resulting estimate will be unbiased if w e  

erroneously assumed that i t  did not admit a LUE initially and if a'@ is estimable. 

For the ridge estimator this is  not true. In this case, therefore, all parametric 

function will be as signed biased estimates irrespective of their status under the 

classical least squares theory. 

The epilog: 

"The science of statistics is essentially a branch of Applied 
Mathematics, and may be regarded as mathematics applied 
to observational data. ' I  [ Fisher, 19251 
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