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ABSTRACT

The dependence (or independence) of baseline accuracies, obtained from
a typical mission of a spaceborne ranging system, on several factors is investi-
gated. The emphasis is placed on a priori station information, but factors such
as the elevation cut-off angle, the geometry of the network, the mean orbital
height, and to a limited extent geopotential modeling are also examined,

The results are obtained through simulations, but efforti has been made

to give some theoretical justification whenever possible, Guidelines for freeing

the results from these dependencies are suggested for most of the factors.
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1. INTRODUCTION

In the past decade or so laser ranging to artificial satellites proved to be
one of the most precise and efficient tools for geodetic positioning. The benefits
from its use were realized early enough to encourage further development of the
hardware as well as extensive application to problems related to earth dynamics.
One of the areas where this system will be of major importance is plate
tectonics. Almost half a century after Alfred Wegener published his continental
drift theory {Wegener, 1928], space geodesy provided scientists with a sound tool
for measuring the relative motion of the continental plates, As our knowledge and
understanding of geophysical phenomena related to plate tectonics improved, it
became apparent that there exists a high correlation between the location of the
plate boundaries and earthquake epicenters. Further, it has been the conviction of
several scientists that geophysical activity in the region of a fault contains vital
information about the actual occurrence of earthquakes. It is therefore highly
desirable to be able to monitor such activities (dilatancy, strain accumulation, tilt,
etc.) as they are related to seismic hazards. The regional aspect of plate
tectonics, therefore, is mainly concerned with the deformation of the plates near
their boundaries at the fault zones, The best way of determining this deformation
is monitoring the motion of several benchmarks located near the fault relative to
that of points significantly away from it. Since a fault zone can be of quite large
extent, in order to be able to deduce meaningful results a large number of points
is required and quick, frequent resurveying of the area.

A system that can meet all the requirements and still be cost effective is
a Satellite Ranging System (SRS). The ide2 behind this system is the inversion of
the traditional satellite trilateration scheme. Duectothelarge number of points whose
positions must be determined, the active (and expensive) station, e.g., the laser,

is placed on the spacecraft and the ground stations are targeted with relatively
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cheap reflectors. The advantages of this scheme in terms of cost are obvious,

Historical Review

The idea of the '"upside-down'' laser was first suggested in the late '60's
at the time NASA undertook the task of improving the existing hardware so that
higher accuracies could be achieved. In 1974 a research team from The Ohio
State University Department of Geodetic Science undertock jointly with the
Smithsonian Astrophysical Observatory the investigation of what was then called the
"Close-Grid Geodynamics Measurement System' (CLOGEOS). Thepart investigated
at SAQ pertained to systems and objectives, while the one at OSU to optimum system
use. The points studied under the second part included station configurations, orbital
configurations, ohservational accuracy and data reduction techniques [Mueller et al .,
1975}, Following this, a much more realistic simulation study was published
{Kumar, 1976)] in which the variation of several of the aforementioned factors, as
well as new ones, was examined in detail. It must be mentioned here that at that
time there was no final decision taken either for the type of ranging instrument to
be used or for the orbit of the carrying spacecraft. The variations in orbital
configuration were based therefore on theoretical arguments and the selection made
was otherwise arbitrary. As for the ranging system, it was implicitly assumed to
be a pulsed laser without rulitig out any other suitable candidates (c.g., radio Doppler).
Although these studies did not produce the final answers to the problems involved
with the system, they clarified to a high degree most of them and set up guidelines
for future investigations.

On the other hand, SAO produced a final report [SAO, 1977} on the investiga-
tions conducted by them pertaining to systems and objectives for CLOGEOS. The major
findings of that study were the following: (1) Most promising systems for relative
positioning at the 1 cm level are the pulsed laser and the radio Doppler, (2) System
accuracy is hindered by insufficient knowledge of atmospheric effects and loss of
information due to variable weather conditions. As a result of these two findings,
further investigations on the above subjects were proposed. As for the objectives

for the employment of such a system, it was emphasized that the main application




of the system should be the densification of geodetic networks in the fault regions

and their subsequent resurveying in order to produce the required information
leading to a four-dimensional (space and time) deformation model. Secondarily,

the system could also be used for studying other phenomena of interest to geodesists,
geophysicists, glaciologists, and related disciplines,

The momentum acquired from these two investigations and those conducted
independently at Goddard Space Flight Center [Vonbun et al,, 1975; Agreen and
Smith, 1973] along with the recent developments in hardware capabilities pushed
the investigation into the next phase. The use of a pulsed laser was finalized and
the idea of testing the prototype using the space shuttle under development gave
birth to a new system, the ""Spacelab Geodynamics Ranging System' (SGRS). The
San Andreas fault-system zone was selected as ¢ test area and an error analysis of
this specific system was performed at Business and Technological Systems, Inc.
(BTS) under the guidelines set by GSFC [Gibbs and Haley, 1978].

At this point it was felt that a variance analysis for the new system SGRS
seemed proper. Our study was conducted in two phases. The initial phase is an
analysis of the proposed experimental system with shuttle flights. The key issue
in this analysis is the variation and dependence of the recovered baselii.e precision
due to the varintion of certain factors such as bascline length, a priori station
information, ohservational accuracy, elevation cut-~“y angle and network design.
As this phase reached its end, a workshop at the University of Texas at Austin,
organized by GSFC, brought together the various investigators of SGRS and the
candidate users of the system. The purpose of this workshop was to review the
current system design and gather information from its potential users pertinent to
system improvement and operational system design. The results of the discussions
and the recommendations from this meeting [Report from the Workshop on the
Spaceborne Geodynamics Ranging System, 1979] proved to be of major importance
for the design of the of the operational system and for this reason a brief summary
is given belew:

1. The ii.ser transmitter-receiver system must be designed to reduce the
cost of the ground reflectors (below $1000 per unit) and still be capable of centimeter

level geodesy.




2. Granted that the system is designed along the lines set during the work-
shop sessions, geophysicists and seismologists concluded that several unique appli-
cations of the system are possible and of great interest to the scientific world.
Primarily, the system should be deployed at various areas around the globe in an
attempt to "capture' a moderate-sized earthquake.

3. Tectonic plate motion monitoring can be achieved by use of a system such
as SRS both for near boundary deformations as well as for relative plate motion
determination.

4. In the light of the proposed system design, several—mainly of geophysical
interest—experiments are proposed for the study of interplate and intraplate movements
and their relationship to area seismicity.

5. The system can be used to cstablish global and local geodetic control net-
works of high quality. Mapping and resurveying of large arecas with sparse or no
geodetic control could be covered very rapidly, effectively and, ahove all, at low
cost compared to classical methods.

6. Various other applications of the system are possible (glaciology, atmos-
pheric sciences, precise time transfer, etc.) provided that the system be designed
in a cost effective manner and be capable of achieving relative positioning accuracy
of one to two centimeters over intersite distances of ten to fifty kilometers. Since
the technologyv is available, it is recommended that the system be designed for a
high flying (~ 1000 km mean altitude) dedicated satellite and cquipped with a short
pulse (0.2 ns) laser,

The analysis of the capabilities of the new system as it evolved from the

guidelines set at the above meeting constitutes the second phase of the present study.




2. OUTLINE OF THE INVESTIGATION

The main objective of thir study is to determine the dependence of the
recovered baseline precision on the following factors:

(1) A priori station information,

(2) observational accuracy,

(3) geopotential model,

(4) elevation cut-off angle,

(5) baseline orientation (network gcecometry).

The reason for selecting the baselines as representative end products of
the whole process is twofold: primarily, the baseline lengths and the angles between
them are the only estimable quantities in the adjustment and secondarily because in
most applications of this system the conclusions will be based on the baseline length
variation between missions. Since only a covariance analysis is performed, ceveral
simplifications were donc in the course of simulating the observations. It must be
pointed out that it was mainly due tc restrictions imposed by the available software
that we actually had to simulate observations (GEODYN requires either real or
simulated observations in order to form the normal ecuations and thereby compute
variance-covariance matrices for the parameters or functions of the parameters
such as the baselines). For a pure covariance analysis, no observations (real or
simulated) are required. It was already mentioned in the Introduction that the
present investigation deals with two different versions of the basic system. The
differences come mainly from the carrying vebicle and the selected orbit, 1n the
first version it is assumed that the laser station will be placed in a low orbit
{mean altitude ~ 100 km) aboard the shuttle (validation experiment), The second
version is based on a free-flyving dedicated satellite at a mean altitude of ~ 1000 km.
The investigation of only these particular versions is based on the conclusions and
recommendations of the SGRS Workshop [1974] at Austin,

~
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The characteristics of the active part of the system, the laser, were
assumed to be the same in both cases., Detailed descriptions of the various
components of the system appear in several reports compiled by the different
agencies and companies involved in the development of the system. The only
information which was actually used in this study is the rate at which the laser
can operate, 10 pps, and the presently feasible resutuiion {ur the single obscervation,
10 cm, Although it is highly probable that the new generation pulsed lasers with
0.2 ns pulsewidth and resolution of 2 em will be operational at the time the
system flies, we felt that it was nore proper to perform our investigation
based on present capabilities. The results of this study can be rather easily
projected to indicate the impact of such an important improvement in the hardware.

The simulation site selected covers part of the San Andreas fault system in
California and Nevada. The 42 ground-bascd reflectors form a rectangular grid
400 lan long and 200 km wide (Fig. 1). The coordinates of these ~tations were
obtained from BTS so that a direct comparison of our results with theirs would be
feasible (Table 1), The c!:servingsequence was the same for all passes and for both
orbits. The sequence that we selected is shown in g, 2. In reality after a short
aoquis ition period of about 10 s, the laser points to visible stations consecutively
until all of thern have been observed and then cveles back to make another set of
observations. As the spaccecraft ascends (or descends) over the horizon, only a few
of the stations are visible. This results in an increased number of observations
for the peripheral stations compared to the whole. It was felt, however, that for
the purpose of this simulation and being consistent with other simplifications (e.g.,
weather effect simulation), the fixed schedule was adequate .

The satellite orbits generated were based on a simplified force medel. Two-
body motion was 2ssumed and the gravitational earth model consisted simply of GM
and J, . Only i:e secular variations due to J, were considered in the numerically
integrated equations of motion. The integration stepsize was 10 s, The simulated
ranges were computed from interpolated stiute vectors using a third-order finite dif-

ference method. This procedure was dictated by the fact that in order to obtain state
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Table 1

Participating Station Coordinate List

Reference Ellipsoid: GRS 67

Earth-fixed Geocentric Coordinates

STATION » LAT1TUDE HEIGUT (w) X (wm) Y (m) % (wm)
Q L

1 REFO11 11 i3 3 0.0 070 1324.000 ~2277155.029 -4485283.429 3910768.512 1
I REFOI12 i 37 42 0.0 9.9 1828. 000 =2260490.906 -4520663.151 3360282, 797 |
1} REFO13 13 37 21 0.0 0.0 1828. 420 ~2241964.216 ~4356272.911 G842505. 890 '
i oL 14 Hxg 00 0.0 6.0 1524, 000 ~2225555. 8!7 -4390145, 636 3310323, 362 [}
1 15 06 47 0.0 0.0 1066 . 860 =2208298.75 ~4626340. 538 J78I9GR . 014 )
1 2 Hyd 20 0.0 0.6 1828, 800 "23654[8.249 ~4483253, 3653 US61222,. 491 !
1 22 37 & 0.6 6.0 1219. 260 ~28+7311.308 ~4518766.792 3829919 . 440 t
! 23 36 47 0.0 0.0 914,400 -23830193.399 -4553597. 171 I7ILYUL3. 404 |
t 24 3o 25 0.9 0.0 G0Y9.600 ~2313144.256 ~-4589194.107 Sveh871.815 [}
I 23 36 ¢ 0.0 0.0 1066. 300 ~2204096. 542 ~4624504.933 $7U4814.511 |
1 31 36 29 0.9 0.9 1219.200 ~2373L03. 031 —-45536708.307 3T72I145.497 {
i 32 36 19 0.0 90 4957.200 =2304041,247 -4570455.461 3756845,271 {
I 33 36 8 0.0 0.0 914.400 =2336397.571 -4588336.267 B740702,.685 i
t 41 36 21 0.0 G.0 1371.650 ~2395213,617 -4552552.267 3760307, 201 [}
t 42 36 it 0.0 0.0 1371.600 =23U56U13.191 ~4369093.231 UTLUIL2. 739 |
! 43 36 60 6.9 0.0 1219.200 =2YTTHIS. 1V ~4387345.612 : !
1 Gt Jo 46 0.0 0.9 1524, 0G0 -2453109.089  -44977 13,930 I
t b 16 30 0.0 Q.0 10706, 300 ~2420U508.783  -4516087.713 ]
t 53 36 12 0.0 0.9 10G6. LoV =2316916.091 ~4551943.729 !
1 lu I-‘D.:‘l- 54 36 2 0.8 6.0 1471. 660 =2407586.447  —4509518,.706 § |
l 53 35 51 0.0 0.0 CH2.000 458734+, 681 J(i.n l"" o790 |
i 66 as 30 0.0 0.0 THL. 060 -4622045.019 3662633, 0061 |
| 61 36 i 0.0 0.0 D1.060 ~4477¢70.393 ST 188,029 I
1 62 45 38 0.0 0.0 122,060 -3512980.119 JT25280. 180 |
! 63 45 37 0.9 0.0 702,000 ~4548637,.763 5694154.826 |
| o4 45 16 0.0 0.0 1219.000 -4584687. 220 J06277TH. 120 !
| 65 44 5% 0.0 0.0 702,000 ~42519140.0+0 FO30238. 507 !
! 71 Lo 1 0.0 0.0 G1.000 =14¢B2I05. 305 Y297 .00, 207 )
] it 4% 10 ¢.u V.Y 91.060 B =-4510710,991 Ju')8_7'.3.500 i
! ?3 35 19 0.0 Q.0 122,000 =25 450k 106 ~45L0V L0 . $UT VOOO6TL. 605 1
| 4 34 39 o0.9 0.0 J035. 000 "a"(lNM. 127 =45350952. 1D6 303(N.l9 4248 [}
! 75 34 34 0.0 0.0 1219.660 <2503636.70¢ ~4617167.502 ¢ USOF 176937 t
1 H1 3 52 0.0 0.0 305. 000 ~2600198.9Y8  —4IT0HY . 772 37 1040-3. 0735 t
] 32 45 d1 0.0 9.0 152,000 =2G4U012, 139 ~ 151093, 42 Hoded ¢4, 851 i
| [y 35 11 6.0 9.0 152,000 -"564«:] l . I')I ~4U266.671 R 1A .mm..l.,f. }
| 133 G4 S0 0.0 0.¢ 1829, 000 2 —45313 140, 9948 BTG, 9l \
I REFUlS 115 S 29 0.0 v.u VLL, VY =4636001, 40V HArDIY NP RN | I
} NEFUY I 91 45 43 0.0 Q.0 437.060 ~44T2Y27 . 62% STO2991. 947 {
i HEF0O92 92 45 22 0.0 0.0 610,000 —4309630.70% VLTI 28 }
I REFL93 23 @4 1 0.0 0.0 914,400 7. ~4346070.990 T} VLN T HSL ( |
! REFO94 94 3 41 0.0 Q@.0 1219.000 -206“66!: (76 ~4oL0433. 419 LGO60Yl30.JU3 [}
I REFO9S 25 34 20 0.9 6.0 395.000 ~2550919. 124 -4614b34.636 BITL25. 2069 :
[
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vectors at the 10 pps rate from the numerical integration, computational
instabilities and unfavorable round-off accumulation introduced unacceptable
biases on the results. The interpolation technique was tested against straight-
forward integration and was found far more efficient in terms of computation
time and accuracy. A summary of the inforination pertinent to the generation of
the two orbits and the corresponding range observations is presented in Tables 2,
3 and 4.

In order to be able to compare our results with those of other similar inves-
tigations (like BTS), we used only nine passes (50% of the available) for the low orbit.
The reason for using only one-half of the passes is that we assumed that there is a
fifty-fifty chance that a pass will be observed depending on the weather conditions in
the area. This, of course, is the simplest way of modeling the weather, but it was
felt to be adequate for our purpose. For the high orbit only eight passes were used
(25% of the available) and the observing rate was lowered to 1 pps. To compensate
for this decrease in the amount of data, we increased the observaiional precision to
10 em//10 = 3.2 cm, assuming that the ten observations within each one-second
interval are independent. This assumption had also been made at BTS when devel-
oping their data set for the low orbit. We used this data set as provided by them for
checking our software (GEODYN) and verifying their results. For the sake of brevity,
the above three data sets will hereafter be referred to as OSUL, OSUH, and BTSL
respectively.

As mentio *2d previously, the computer program used for the adjustment of
the observations was GEODYN, obtained from NASA at an earlier time. This
program is designed primarily for complex dynamic solutions and its use for the
present investigation somewhat beats its purpose. However, since other investigators
used this program already and a number of its capabilities simplified to a high degree
the task undertaken, we decided to use it. We should mention here that in the present
investigation only dynamic solutions were considered. Although in[Kumar, 1976]
and {[Kumar and Mueller, 1978] the geometric solutions are shown to be more promis-
ing than the dynamic, we decided that on the basis of today's technology the realization

of simultaneous ranging to the required more than six (or even four) ground stations
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Table 2 Data used in the simulation procedure.

Central Body Ccr.stants

a, = 6378160.00 m

1/t 298.247167 427

w, = 0.72921151467s"
GM = 398603 x 10°m s>
Ja 0.001 082 7

Low Satellite Orbit

a = 6778170,32 m
e = 0,00

i = 50°

Q =0

w = 0

M = 0

Epoch To: 0" UT, June 1, 1974

High Satellite Orbit
a = T7378160.00 m
e = 0.00
i = 50°
£ = 0
w = 0
M = 0

Epoch To: 0" UT, June 1, 1974
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Table 3

Low Orbit (OSUL)

Distribution of Observations per Station per Pass for the

STAT1Gi
PASS# NEFOI1 DEFAIZ2 NEFOL1S REFOI14 REFO(3 REFO21 NEFO22 REF023 REFO24 REFEES REFO3L  REFO32
1 [2¥) CB (T3 & 143 <3 66 (2] 73 29 (2] 65
o [ 91 101 110 124 63 63 e (¢ 79 04 ['Y'4
st G Fow 1w 92 w2 k&4 o kg3 2 (] 69 ]
[ [0 Lo GO ¥ 150 4 GO 65 kil 09 (Y] (9%
Ll OO vl 161 110 22 Gv [ 72 79 9 60 ]
<0 't DY a“? <3 rt] G Ul 63 04 49 H9 Lo
S0 114 107 1G22 o7 92 w 6 k¢!l 71 09 o8 [
G3 (29 o4 (34 k&4 127 T2 6o (34 72 29 63 039
i [ 74 93 102 169 119 635 69 ke 7o Ve o7 67
®TOTAL® 733 GO 703 a7 9839 ol8 608 cl14 €41 730 654 339
STATION
PASSs REFOCS NEFO41 REF042 REF043 REF03! REFUS2 REFOJ3 REF054 REFOJS REFO36 REF061 REFCG2
1 0«9 o3 (2 66 79 66 63 63 065 76 20 (3%
4 (24 M [3¢3 o7 57 G 63 G 65 (1) L3 o2
25 (4 oY 66 345 64 (¢ 66 (28] [44] 63 o0 (]
P [ (2] [ (49 3 66 63 (1] 65 w 73 (24
31 1] [ (] X4 59 62 O [ 66 (2] 59 ol
45 ov S U 59 vl 53 53 G9 60 <0 K] (4]
o o7 o7 [} 65 09 {14 06 (94 (%] 62 70 w9
&5 [ [ G 67 73 G Ol 6q [a4] 70 79 (303
JE (39 (1% GO o7 39 vl (1 (24 67 (29 00 63
TOTAL* 63 LT0 g} 589 611 SV 571 675 go2 (s} 029 537
STATION
PASS#s REFO63 WMNF0G64 RCFOAG NETFO71 REFO?72 REFO73 REFO?4 REFO?73 REFO81 REF082 REFO33 REFOD4
1 (3] [0/ 63 75 62 ) G4 59 73 62 S8 67
4 (D 06 69 60 63 67 70 4 61 66 69 4
st o7 63 63 v2 71 69 (X4 65 78 7% 72 69
24 61 <0 63 76 oL 60 53 o0 74 o2 59 b7
31 €5 o (] (3] 04 67 71 73 63 00 70 7%
46 64 (29 [y} a3 <2 G 69 02 93 74 o9 70
S0 [ 64 62 3 o (D] 67 0% 76 75 k¢ Gl
434) (3% ©1 (3 74 od 60 459 (2] 76 (] GO G4
1) [+ (28] 9 62 04 03 71 73 (] 6v 71 T
*TOTAL® gl 077 602 645 593 506 590 610 002 611 600 601
STATION
PASS# NEFOE3 REF091 REF092 REF093 REF094 REF095 *TOTALX
1 48 71 60 87 G% 56 2819
“+ c3 (2] [ 76 87 113 3037
23 67 101 (341 79 73 70 3122
24 4] v3 (14 57 56 37 2849
31 82 (39 (24 ” a7 112 3076
46 &5 107 76 70 71 a7 2761
40 (24 103 81 79 72 69 3121
353 59 749 G2 30 57 58 2839
50 a1 66 w0 74 u7 110 3090
*TOTAL* 639 724 644 631 646 732 26774
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Table 4 Distribution of Observations per Station per Pass for
the High Orbit (OSUH)
STATION
PASS# REFOI! REF@12 REFO13 REFO14 REFO1S NEFO21 REF822 REFO23 REF024 REFO25 REFO31 TNEFOI2
1 1% 14 19 16 30 13 14 14 15 18 14 14
° 11 12 12 12 12 11 12 12 12 18 12 12
20 18 13 14 13 13 14 13 14 14 14 14 14
i 12 12 12 13 13 2 12 12 13 13 12 13
o 14 14 13 14 13 13 13 13 T 14 14 1
4) 12 13 13 13 14 12 13 18 1 15 13 i3
52 13 13 ] 13 13 13 19 13 13 13 13 13
$7 13 13 13 14 15 13 13 18 14 1% 13 14
STOTAL® 102 104 104 108 113 101 104 104 107 114 105 107
STATIOR
PASGs NEFO33 REFO41 REF042 REFO43 REFO31 REFO32 REFO33 REFOS4 REFO3S REFOT6 REFO61 REF062
B 14 14 14 14 1 13 13 14 14 15 13 i3
9 12 12 12 e 1t 11 12 12 12 13 11 12
20 14 14 14 14 1% 14 1% 13 19 13 14 13
25 13 12 13 i3 12 12 12 12 13 14 12 12
a6 14 14 I 1% 14 4 14 14 14 14 14 14
41 13 13 13 13 12 12 13 13 13 15 12 12
52 13 13 13 13 13 13 14 14 14 15 14 14
57 1% 14 ¢ 14 13 13 13 13 14 15 12 13
*TOTALX 107 105 106 197 102 102 105 106 108 114 102 10¢
STATION
PASS# REFO63 REF064 REFO63 REFO71 REFO72 REFO?3 REFO?4 REFO75 REFON! TNEFES2 REFOD3 REFOD4
1 13 14 13 13 13 13 13 14 12 13 19 13
9 12 13 14 1 12 12 18 18 11 11 12 13
20 1% 14 14 13 15 15 15 15 16 15 16 15
25 12 13 13 12 13 12 13 15 12 12 12 13
36 14 13 14 14 15 15 15 15 15 15 15 15
41 13 13 19 12 12 13 19 15 12 12 12 13
e 15 145 15 14 14 14 19 19 16 15 1% 15
57 13 13 15 12 13 13 19 14 12 a 13 13
*TOTALE 106 109 116 103 106 107 109 110 105 105 100 110
STATION
PASSe IEFOOS REFO1 REF092 TEF023 REFO94  1KFOOE  #TOTALR
1 153 12 13 13 13 13 581
9 15 11 11 12 [R) 16 o122
20 15 16 16 16 16 16 603
a5 14 11 i 12 13 18 529
30 16 16 13 17 )6 17 [T
41 14 12 12 12 18 14 Gl
52 16 15 16 16 17 19 593
g 14 | 4 2 14 19 1} 867
*TOTAL® 110 105 108 11 114 124 4323
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from a spaceborne laser is practically impossible. Furthermore, we chose to use
the short-arc mode, primarily in order to avoid the accumulation of biases in the
recovered baselines due to uncertainties in the force field description (mainly the
part pertinent to earth gravity modeling), and secondarily realizing that only a

small fraction of a full revolution will be covered by observations since the stations
are all spread over a very limited area. Unlike other software packages which are
specifically designed for short-arc adjustment, GEODYN treats the short-arc solution
as a collection of simultaneously reduced short (in duration) 'long arcs.'" There are
no approximate solutions to the equations of motion nor any other approximation
whatsoever. As it is explained in [Mueller et al., 1975], one cannot expect to
determine anything but relative positions from such a limited mission. The geo-
potential model therefore must be held fixed and the optimum way for its description
must be determined through suitable experiments. For our purposes we nominally
used the GEM7 spherical harmonic expansion up to degree and order sixicen (16, 16).
This was dictated by the fact that the same model was also used by BTS in their
investigation. The groundtracks of the generated satellite passes are depicled in

Fig. 3 (OSUL) and Fig. 4 (OSUH).
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3. THE ESTIMATION PROCESS

The estimation process is described in [Martin et al,, 1976]. This discus-
sion, though, is limited in theoretical details and treats mainly the technicalities
and the implementation of the process in the associated computer program. A simi-
lar brief recollection of the formulas is also given in [(Gibbs and Haley, 1978]. Ac-
cording to these references the method employed in GEODYN is Bayesian estimation,
This type of estimation makes use of a priori information about the parameters in the
form of a weight matrix derived from the prior distributions of the parameters.
In most cases no such distributions are available and the weight matrices are
derived from the assumed standard deviations of the a priori estimates for the
parameters. In very rare circumstances a full variance-covariance matrix
obtained from a previous solution is used for the determination of these weights.
This latter procedure led several scientists into a different interpretation of the
process, namely the so-called 'least squares estimation with 'observed' parameters."
By doing this, assuming that our approximate parameters are the outcome of
some measurements, we effectively change their character from fixed quantities to
stochastic ones. It is not that there exist no problems where the parameters are
inherently nf that nature, but in our problems, especially when dealing with parameters
such as Cartesian coordinates, we cannot justify such an assumption, We should
also point out that quite frequently the above procedure is used to improve
the condition of the normal equations and in extreme cases tc produce a full rank
normal matrix for a problem which otherwise would be unsolvable in the domain
of Cayleian matrix algzhri. The application of such '"weighted' constraints on
the estimates may very well distort the results in various ways and sometimes it
may even result in unacceptable answers, From this point of view, the estimation

process is directly related to the concept of estimable parameters, due to R.C. Bose.
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It is proved in [Rao, 1973, p. 224] that the necessary and sufficient condition for a
linear function of the parameters to be estimable is that the rank of the normal equa-
tions is equal to the number of the parameters under estimation. A necessary and
sufficient condition for the case where generalized inverses are used is also given in
the above reference. The advantage of dealing with estimable quantities is that they
are unique and unbiased for any solution of the normal equations and have minimum
variance among all linear unbiased estimates. In this sense it is obvious that if
we can identify the estimable parameters in the problem and if we can modify the
model so that all the parameters are estimable, we have guaranteed ourselves a
unique minimum variance unbiased cstimate, This being the case, the nced for
a-priori statistical information on the parameters is alleviated, and our estimates
are based only on the information provided through the observations.

In the case where we cannot find such a set of estimable parameters to
describe the system, we can still by-pass the need for exterior information by
use of a generalized inverse solution, If it is possible to find linear parametric
functions that fulfill the estimability criteria, then the analysis of the system can
be done on the basis of these results. In the case of a geometric solution in
satellite goedesy, for example, it has been shown [Mueller at 21,, 1975] that the
baseline lengths in the network and the angles formed by any .".ce stations are
estimable. For most of thc applications in geodynamics, these two quantities are suf-
ficient for inferring motions and deformations in the area. The advant ages of
parametrizing a problem in terms of estimable quantities have been recognized
by most scientists and effort has been made recently to identify these quantitics for
various geodetic problems. The complex functional relationships between the
observables and the parameters are the only reason that estimable parametrization
has not been in wide use yet. The case of laser observations, however, has been
treated extensively in [Van Gelder, 1978], and the estimable parameters have been
determined for extremely simplified models as well as for more complicated ones
where secular perturbations due to J» were included.

One therefore has all the tools to perform a proper study of a system such

as the SRS, at least for simple simulations as is the case here.
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If this is so, then onecan naturally question the reason behind this investigation
and its major concern for the effects of a priori information for nonestimable
parameters, The answer to this is rather simple. Ren! world problems are

far more complicated than an error analysis based or. a simulation of the system,
and although major effort is currently devoted to improving and updating our
estimation procedures we are far from being able to solve our problems in the
fashion described above. Our best alternative, therefore, is to study in detail the
current procedures to a degree that would allow us to justify our results and to
determine how optimistic or pessimistic they may be due only to biases introduced
by the employed procedure.

In an effort to examine and clarify the inherent characteristics of Bayesian
es: imation, some of the major variations of this process arc presented and com-
pared to the well-known least squares estimation in the Appendix. It should be
pointed out that the use of Bayesian estimation over least squares is an open
question for statisticians as well as for scientists using thesc methods., Subjectivity
versus objectivity i3 a rather philosophical question, and we feel that it is not the
purpose of this study to provide the answer. One conclusion that can be drawn is
that there are situations in applied science where one method is better than another,
It is therefore our responsibility to choose between the two and to do this we must
study both. The stand we take here is that the choice will be made on the basis of
the problem requirements only, irrespective of the personil preference of the

investigators.
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4. CONSTRAINTS, RANK DEFICIENCY AND ILL-CONDITIONING
IN SHORT-ARC SOLUTIONS

In the course of this investigation we have pointed out that we arc primarily
interested in determining the influence of station-related a priori information on
the baselines' precision, It is only natural, however, to address the following
question: What is the rationale for using such information? The answer to this
question is not as simple as one might expect. If the problem is studied in depth,
it will soon become aprarent that this is just another way of posing the following
fundamental question: Subjective (Bayes) or objective (Gauss-Markov) estimation?
This is an open question for the statisticians and has a rather philosophical than
mathematical nature. One should, therefore, not expect an answer from a limited
study as this one. We would rather discuss the geodetic aspects of the problem and
refrain from attempting to provide a conclusive answer, as that is outside the scope
of this study.

In the theory of linear spaces, rank defect of a matrix is the number of linecar
dependencies which exist among its columns, If we consider a matrix A as a linear
transformation from a space R" to a space R”, thatis, A : R"~ R’, then the
following example illustrates the concept of rank deficiency. From linear algebra
it is known that the column rank of a matrix is the same as its row rank, where
by column (row) rank we mean the maximum number of lincarly independent columns
(-0+3) of the matrix. Supposc n < m for A and rank (A) k where the dimensions of
Aarec nbym (rows x columns). From the above thecorem it is obvious that the rank
of A will be at most m, when all its columns are lirearly independent. If, therefore,
k = m, the rank deficiency of A is zero or A is of "full rank." If k< m, then the
difference m - k' m - rank (A) is the rank deficieney of A, In terms of linear
operator theory this means that the null space of the operator represented by A is
not just the zero element, Ker(A) / {0}, where the null space or kernel of a linear

operator on R® is defined as the subset of its dom:in B°, consisting of clements x 7 0
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for which Ax - 0 holds, Using another theorem new, we can state that the trans-
formation is not "one-to-one' or "injective' and the cquation Ax v therefore does
not have a unique solution for x,

The last remavk provides the link between the mathematical and the statistical
and phyvsical interpretation of rank deficicney., If y denotes the vector of observations
in a svstem and x the vector of para neters, with A the design matiix relating the two,
then given a set of n independent observations (n © m), only k rank(A) parameters
out of the total m can be estimaed uniguely, Physically this simply means that the
given sct of observations does not contain the information needed for the determination
of the m - k parameters, In this sense, the parameters which can be estimated
from the given observations constitute the set of "estimable " parameters of the
svstem . We can conclude therefore that for cach kind of observation in a given
system there is a corresponding set of "estimable” parameters. It is easy to see,
for example, that obscerving the velocity of a vebicle is not enough to define its
position in space and time., We must find, thevefore, a way to remedy this handicap
in order to solve the problem. This isbasically done through the application of
constraints on the nonestimable parameters,  We can climinate, for instance, these
paramcters by alopting certain values for them (absolute constramts), determined
from a different approach. In this sense the "nonestimable’ parameters are not
paramete rs anymore but constants of the problem. A solution of this problem
through least squares (to account for redundant observations when n > m) will
provide minimum variance unbiosed estimates for all (estimable by now) parameters
[Rao, 1973).

There are situations, however, where there is reason to believe that the
available statistical information about the nonestimable parameters is of poor quality
and enforcing them in the estimation process would result in unreasonable distortion
of the results and sometimes even indicate nonexistent inconsistencey in the obser-
vations. The soletion of the nroblem in this case can be obtained utilizing what
is called a set of flexible constraints . These in turn can be cither arbitrary in
number (but enough to provide a solution) or they can be just enough to make the

least squares normal equation matrix (N A'A) of full rank. The latter are
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called "minimum" or "minimal"” constraints. It is obvious that these minimum
constraints are not unique and the stability of the solution depends on the selection
of these constraints, There is, however, a set of minimum constraints which

is best in the sense that it does not discriminate among the parameters and provides
a solution which is least affected by numerical instabilities in the system. This set
of constraints is called "inner adjustment" constraints, and the theoretical and
practical aspects of their application have been discussed extensively in [Rao, 1973]
and [Blaha, 1971]. We will not attempt a discussion of the pertinent details again,
but we will point out that this approach is basically the same as solving the original
set of normal equations by use of a generalized inverse of N [Rao, 1973]. The

advantage of the "inner constraints' is that we obtain the same results without the

troublesome computation of a generalized inverse. The application of this type of
constraint in the present investigation was not possible due to limitations in the
3 available software.

Finally, another type of constraint which is widely used for the solution of
rank deficient systems is the '"weighted' or ''relative' constraint. Since these
were used in our test, we will elaborate on them and give some more details in
' addition to those which were already mentioned in the discussion of the estimation
process. The idea of "weighted" constraints originated from the Bayesian approach
of estimation in linear models. In this case, however, the a priori information
which is added to the normal equations is based on an a priori known distribution
of the parameters and the reason for using this information is well justified if

one accepts Bayes'theorem. What we are trying to stress here is that in Bayesian

estimation, the weighting of the parameters on the basis of a priori information is
not intended to alleviate the rank deficiency in the problem nor the ill-c anditioning
of the normal equations., It merely makes use of all available information in order
to arrive at estimates which are closer to the true values of the parameters,
although not unbiased anymore. If, therefore, we know the prior distribution of
the parameters, then this approach is fully justified as long as we are aware of the
consequences of the Bayesian approach (biased parameters). In this sense the

inclusion of a priori information on the parameters should not at all be related to
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the inherent rank deficiency or ill-condition of the problem.

Weighted constraints, however, are used to overcome this problem. Their
application in this sense is very dangerous as far as their effects on the results are
concerned. In general, the argument on which this practice is based is that prior
knowledge of the parameters' range of values is available through direct observations
on them or from a previous solution. In the first case we change the role of the
parameters to observations, and by doing this we are effectively removing them from
the parameter list altogether. If in such a case we applied the weighted constraints on
the nonestimable parameters only, then we have resolved the rank deficiency of the
problem since we already know that for estimable parameters the design matrix
(hence the normal equations) is in general of full rank. The catch is that in several
cases we are either unable to observe the parameters because of their nature (e.g.,
Cartesian coordinates) or we directly substitute their "observed" values with some
approximate ones. In both these cases, the variance of these ""measurements' is
based on some personal confidence interval for the assigned values rather than
what actual measurements would indicate. In the limit, as the a priori variance
is decreased, the results of this adjustment are equivalent to those of absolute
constraints, where we have changed the role of the nonestimable parameters to
scme adopted constants of the problem. For the case where we indeed have direct
observations on some parameters (e.g., absolute gravity measurements in a gravity
network), then we musttreat them as observations with the proper variance-
covariance matrix as we do for all other observations. This, of course, brings in
the problem of determining the relative weights when different types of observations
are simultaneously adjusted. This is a different problem, however, and we need
not concern ourselves with it at this point. The important thing to note is that
this type of observation should be treated in the usual manner and not used as a
means for circumventing the rank deficiency in the problem,

As far as the second case is concerned, where the weighting is based on a
previous solution, we can identify two subcases. If all or some of the parameters
were obtained from a previous adjustment, then their full variance-covariance

matrix should be used in the new one,and the result is a standard Bayesian adjustment
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as described previously. If, however, only the diagonal elements (variances) are

used (which is common practice), then the resulting parameters (which are biased

due to the use of a priori information) are not minimum variance - minimum bias
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estimates since the arbitrary diagonalization of the covariance matrix has changed

their prior distribution from the one represented by the full matrix. Such practice
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is dangerous not only for the rank deficient problems but for those with full rank
as well. In the case of the first, it merely provides deceiving results while in
the second case it may distort the results instead of improve them. Some investi-
gators choose to ignore the consequence of the last remark since they only judge the
quality of their results from the magnitude of their a posteriori variances. These
variances, however, are affected (and usually deflated) by the wrong a priori inputs
and their statistical interpretation is very much questionable.

This discussion can be summarized in the following. Rank deficiency is
ar inherent characteristic of each observational system, and in order to over-
come it we must study the system and determine the source of this deficiency.
This can be done through the determination of the estimable parameters for the
system and their comparison with the list of our soive-for parameters. If there
are observations (direct or indirect) which can be done to determine the non-
estimable parameters, then we can perform these observations and include them
in our adjustment alleviating the rank deficiency. When this is not possible but
we have prior information in the form of a full covariance matrix, then we can
perform a minimum variance - minimum bias estimation (Bayesian approach)
where we obtain a soiution for all parameters at the expense of their wbiased-
ness. Alternatives to these are the inner constraint approach or a direct gen-

eralized inverse solution and the adoption of absolute constraints. We point out,

A A e

however, that the first does not provide unbiased estimates for nonestimable
parameters. The similarities of this approach to Bayesian estimation are
pointed out in the Appendix. An interesting and illustrative discussion of this

; approach is given in [Grafarend and Schaffrin, 1974]. The implications of the
use of absolute constraints are rather obvious. The results are as good as the

adopted values. One only needs to consider the by now popular leveling network

RS TR AR i
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example where the absolute heights of the points can take different values
depending on a single point's adopted height [ Van Gelder, 1978].

Having discussed the nature of the various approaches to overcome rank
deficiency problems in general, we proceed in examining the work and the results
obtained therefrom for a satellite laser ranging system, in particular when used
in the short-arc mode. The theoretical investigation of this system is given in
[Van Gelder, 1978] where it is shown that for the simple case of a general elliptic
orbit secularly perturbed by the J2 harmonic, the rank deficiency is two. From
the numerical tests which were performed for the case of the spaceborne laser,
however, the results seem to contradict theory. Test runs with even three absolute
constraints on a single station's position vector failed to provide an acceptable solution
indicating serious instabilities in the normal equations. This, however, should not be |
taken as a proof that there is a flaw in the theoretical investigations, but rather as an
indication that for a strong solution there is something more than rank deficiency to
be considered. That other element was already mentioned in the estimation process
discussion, and it is related to the geometry of the prcblem. In our investigations
we are dealing with an extremely limited area (only 200 km by 400 km) and with
short arcs of length which at best reach only a tenth of a full revolution. With such
pocr geometry any information about the coordinate system definition, which would
normally come from the orbital dynamics, is so little and insufficient that the
ill-conditioning of the normal equations dominates the problem rather than the
inherent rank deficiency. In this case it may be that by increasing the number of
observed arcs this instability is greatly reduced. This, however, must be investi-
gated since such an increase would also introduce new parameters in the orig inél
problem. At present a definition of the origin and orientation of the coordinate
system through six suitable absolute constraints seems to be our best alternative.

Since these are a set of "over-constraints'' (the theoretical rank deficiency still
remains two) but essential in order to provide results clearly independent of
numerical instabilities, we refer to them as ''quasi-minimum' constraints

following [Van Gelder, 1978].
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5. DESCRIPTION OF THE EXPERIMENTS

The investigation was conducted in three stages which offers a natural
classification for the description of the experiments. In the initial stage preliminary
experiments were conducted in order to familiarize ourselves with the problem, the
available software and to set up guidelines for experiments that would follow. The
second stage deals with the experiments on the low orbit and the final stage with

similar experiments for the high orbit.

A. Preliminary Experiments

When a simulation study is conducted, it is very important to have the ability
to check the results with those obtained independently either through a different
approach or a different study by another organization. Since in our case a similar
study was conducted in parallel at GSFC and BTS, we followed their guidelines in
setting up the experiments in order to be able to compare our results. The main
purpose of the preliminary experiments was to become familiar with the problem
and to test our own software (GEODYN version 7508. 0) using the data provided by
BTS (BTSL). Since our main concern is the effect of a priori information on the
baseline precision, the preliminary test focused on the variation of this factor.
These tests explored the baseline precision var-ations as the a priori information
about the stations, the orbit and the observational accuracy varied (Table 5).

The effect of an erroneous geopotential model on the baseline precision was also
investigated. As is pointed out in [Gibbs and Haley, 1978], the BTSL data set

was generated on the basis of GEM1 (4, 1), while in our tests the earth is

modeled through GEM7 (16,16). We felt that this inconsistency between the data
generation and the reduction techniques should be cleared as to its effect

on the precision of the baselines. Intuitively one expects that since we are dealing

with a limited area and we are doing a short-arc adjustment, there should be no
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Table 5 Baseline Standard Deviations’ Preliminary Test Results,

Test 0sU 1 osu 2 Oosu 3 0OSU 4 OSU 5 BTS 1a
Station Constraints® 1m 1m 5m 25 m Quasi-Minimum 1m
Constraints
Orbital Constraints® Constrained Constrained Constrained Free Free Constrained
Standard Deviation
{ Qbservations 10 em 100 cm 10 cm 10 cm 10 cm 10 em
Bascline/Length
91-81 (26 km) 0,98 9.42 0.98 0,98 0.98 0.97
91-71 (51 km) 1,01 2.7 1.01 1.01 0.95 1.00
91-61 (100 km) 1.04 10,12 1,04 1.08 0.98 1,05
91-51 (202 km) 1.14 10.75 1.14 117 1,04 1,12
91-21 (302 km) 1.17 11.10 1.17 1.30 1,08 1.16
91-11 (403 km) 1.14 10.66 1.14 1.33 0.76 1,11
91-15 (449 km) 1.17 10.09 1.17 1.30 1.01 1.17
91-92 (52 km) 1.08 10,34 1.08 1.08 1,11 1.07
91-93 (103 km) 1.04 10.15 1,04 1.08 1.04 1.06
91-94 {152 km) 1,08 10.28 1.08 1.11 1.08 1.08
91-95 (203 km) 1,04 10.24 1.04 1.11 1.04 1.06
Average A Posteriori
Standard Deviations of ~ 20 cm ~ 30 cm ~ 80 cm ~ 500 cm ~4cm -

Station Coordinates (X,Y,Z)

!able values are In centimeters ,

®Constraints as applied by BTS: 58 minX,Y,Z and 5.8 cm/s in X, ¥,Z.

2Standard deviations in each Cartesian coordinate.
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change in our precision estimates. Indeed our numerical tests showed no
difference (at least in the order of millimeters) in the baseline precisions
although there are appreciable changes in their lengths. The results are not
tabulated since they are identical for all baselines,

We can summarize the findings of these preliminary tests in the following.
An almost linear relatfonship exists between the precision of the observations and
the precision of the recovered baselines. Although this is not a peculiarity of
dynamic solutions (as it is for the geomrtrical ones) we can probably attribute it
to the fact that there is a uniform distribution of stations in the area with approxi-
mately equal numbers of observations from each station to an optimal set of
satellite passes covering it as an umbrella from all possible angles. This whole
setup strengthens the geometry of the problem to such a degree that in this respect
it behaves almost as a geometric problem. As can be seen from Table 5, there is
some variation in the baseline precision as the constraints were varied from case
to case. In connection with the estimability problem in the short-arc mode, the
last entry in the table shows an average standard deviation of the recovered
Cartesian coordinates of the stitions. It is quite obvious that since they are
nonestimable quantities their precision is strongly dictated by the input a priori
information. These numbers were not included to prove that these quantities are
nonestimable, but rather to show the pitfalls one faces if he were to choose
these quantities as the basis of his investigation. The a priori weighted constraints
on the orbital elements were introduced in accordance with the guidelines and
tests conducted at BTS [Gibbs and Haley, 1978]. For reasons discussed in
[Van Gelder, 1978], these constraints were never again introduced in the system
in the tests that followed.

In the last column we included the results obtained at BTS in their Run # la
[Gibbs and Haley, 1978, p .4 which most closely resembles our Test # 1. The
tabulated values in the above reference pertain to precision of the horizontal com-
ponents of the baselines only, but f¢1 comparison parposes and because of the
relatively short distances involved they can be taken as the precisions of the base-
lines' lengths themselves. It is evident from these numbers that our results are

in excellent agreement with theirs.
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B. The Low Orbit Experiments

The results of the preliminary tests indicated that most of the variation in
the baseline precisions came from the variation of the weighting scheme and the
selection of an elevation cut-off angle, The dependence of the results on the
observational precision turned out to be rather straightforward, and therefore
no further investigation for this factor seemed necessary. As for the network-
orbit configuration effects, related to the geometric strength of the problem,
little could be done since the orbit and the network design were given and assumed
to be the common denominators for all experiments.

With the above in mind the investigation concentrated mainly on the effects
of weighting and elevation cut-off angle and to a lesser degree on the effects of
geopotential model variations. Three different weighting schemes were adopted:
(1) strong weighting for all stations, assuming that the standard deviation for each
of the three coordinates (X,Y,Z) is 1 m, (2) mild weighting based on a standard
deviation of 25 m in each component, and (3) "quasi~minimum constraints' solutions,
that is, the coordinate system is defined by holding fixed six coordinates properly
distributed among three selected stations.

The "quasi-minimum" constraints for both OSUL and OSUH orbits were
arranged as follows:

(i) Station REF#11: X and Y coordinates held fixed,

(if) Station REF#15: Y and Z coordinates hel fixed, and

(iii) Station REF@95: X and Z coordinates held fixed.

The elevation cut-off angle was varied twice, 20° assumed to be the nominal value
and 35° above horizon. The attention given to this factor is warranted by the fact
that a higher cut-off angle could simplify the design of the ground reflectors and
reduces their manufacturing cost. Some of the terts were repeated using a different
geopotential model in order to verify the results obtained from the preliminary
experiments and detect possible interactions due to the variation of the other two
factors. In all cases no a priori information on the orbit was introduced. Addi-

tional discussion for the "quasi-minimum' constraints is left for a later section,
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C. The High Orbit Experiments

The results obtained from the investigation of the low orbit indicated that
the designed experiments were suitable enough to allow the determination of the
effects of considered factors on the baseline precision, In addition to ihis, the
fact that a comparison of the results from the two orbits would reveal their
dependence on the spacecraft's mean altitude convinced us to follow the same
experimental design. The description of these experiments is omitted since they
are identical to those for the low orbit as described in the previous section, Addi-
tional tests were performed in this case where the main objective was the determina-
tion of the "effective' rank deficiency of the problem. By "effective' rank deficiency
we mean the combined effect of the inherent rank deficiency of the short-arc mode
adjustment and the deficiency arising from the ill-conditioned normal equations
which is characteristic of the specific problem under study. The strategy followed
in this case was to relax the number of 'quasi-minimum' constraints and then
examine the condition of the resulting normal equations. As one can gather from
the above, the effective rank deficiency depends grossly on the design of the experi-
ment and the quantity, structure, and quality of the collected observations. It would
be useless, therefore, to try to quote for it a number such as two, three or six,
while it is more appropriate to give some general guidelines that can be followed

for a broad class of problems.
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6. RESULTSOF THE LOW AND HIGH ORBIT EXPERIMENTS

The results which are presented and discussed in the following sections
were obtained from the experiments conducted with the low orbit (OSUL) and the
high orbit (OSUH) in the last two stages of the investigation. As explained in the
previous section, there is a total of twelve basic experiments, six for each orbit
(three weighting schemes for each of the two cut-off angles). The quantities ana-
lyzed are naturally the standard deviations of the estimated baseline lengths., For
a network of say n stations, there is a maximum of m = 9-@—2-—1-1 baselines which
can be formed in all possible combinations (without repetition) among the stations.
In our case n = 42, which yields m = 861; and considering the fact that there were
twelve different solutions, we arrive at the total number of standard deviations to
be analyzed: 10,332. Although theoretically a large data sample has several
advantages, practically one can infer almost the same amount of information (not
as accurately though) by restricting the analysis to a smaller sample formed on
the basis of certain justifiable assumptions. We will elaborate on this a little
further in the course of explaining the method of analysis, since these assumptions

lay part of the foundation of our conclusions.

A. Detection of Sources of Variation in the Sample Through
an Analysis of Variance (ANOVA)

The analysis of variance (hereafter referred to as ANOVA) is a statistical
method of analyzing measurements depending on various kinds of effects (called
factors) which simultaneously affect them, in order to make qualitative and quanti-
tative inferences of these effects [Scheffé, 1959].

Since the method implies the existence of some measurements, it is only
natural to expect that the first step—the setup of the experiment-—poses an experi-
mental design problem. The fact that inferences are to be made on the basis of the
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experimental results leads in turn to a problem in estimation and decision theory.
For a successful experiment one should i{dentify the factors affecting the measure-
ments and make sure that the designed experiment will yield all possible combina-
tion treatments. Once the measurements are available they are arranged in a
rectangular array which is basically a pictorial summary description of the experi-
ment and the measurement process. Usually the factors in an experiment will be
varied within a certain range of values which are of interest to the person who con-
ducts the experiment. These variations constitute the levels for each factor. To
obtain meaningful results we must have several observations (and even better, an
equal number) at each level for all possible combinations. When more than one
factors enter the problem, a setup such as that described above is called a

complete factorial experiment. An example of such an experiment with three factors

A, B, and C at I, J, K levels respectively is shown in Table 6. The simplest entity
in an ANOVA table is the observation, Each observation is indexed in the following
manner: one index for each factor plus one index which denotes the order of the
observation within the M observations performed at each level combination (we
tacitly assumed an equal number, M, of such observations in all levels). The next
entity which is of interest to us is the set of the M observations for each treatment.
They are easily identified in the table since they all have the same index values for
the indices associated with the factors. This entity is called a cell. In the simplest
setup there will be only one observation in each cell, (M—=1),

There are two ways of interpreting the ANOVA table. Inthe most usual case
we assume that given R cells with M observations in each one, each cell represents a
random sample of size M drawn from R normal populations with identical variance
02, This means that we are only interested in the spécific variations (levels) of the
factors as entered in the experiment disregarding the fact that these variations may
be only a subset of many more possible. The effects of these factors on the observa-
tions are therefore fixed with respcct to the specific experimental setup, thereby the
name of this ANOVA model: fixed effects or Model I ANOVA. In the second case

the interpretation is similar to the above except that now we make the assumption

that the selected levels constitute a randomly selected sample from a large normal
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Table 6 Arrangement of Data for a Three- Factor Experiment
Factor A: Ilevels; Factor B: J levels; Factor C: K levels,
M observations per cell (treatment or level combination),

Levels of A
1 rarers I
Levels of B J
Y e yul ynu o Yuu
1 . . .
Levels Yium ces Y v Y - Yiam
of
C
Yixi .o Yixa yun ‘e A2 4191
K . . . .
Yikm .o Yinkm Yikwm - Yixw

population of realizations of the considered factors, with an associated variance
o}. Asitls probably obvious by now, the names associated with this interpretation
are: Random effects or Model I ANOVA. For the sake of completeness we mention

here that it is possible to have an experiment where both fixed and random effects
may be present simultaneousiy. This setup is usually referred to as the Mixed Model
ANOVA. The next step, irrespective of which model we are using, {s the estimation
problem. Since this part is mainly computational we will restrict ourselves to
discussing the procedure which should be followed for the example shown in Table 6,
A generalization of the method for factorial designs of higher order than three will
then be obvious without need for a general and involved presentation.

The estimation process is based on the Gauss-Markoff theorem and it involves
the computation of a number of ''sums of squares' (SS) of deviations about various
pivot values which will be explained in the following. These sums of squares will be
used then in the computation of the '"'mean squares' (MS) which form the input of the
decision theory problem. It can be easily verified that for the setup of Table 6 the
total number of observations is given by the product IJKM, and the given set of data
is said to span an lIJKM-dimensional space. Denote by [Ym- } the set of observa-
tions, yius being the mth observation in the i,§,k "treatment combination' or the
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cell with "coordinates' {,§,k in Table 6. Let u;x be the expected value of the

measurement on this combination of factors and {esxs } ~ N (0, 0%) (independently)

the random noise component of y¢;xa. Our linear hypothesis, which constitutes the
basis of the estimation is:

‘yun = Ugyx + @15k
) {esyxs } ~ independently N(0, 0%)

Under §! each uyy, is modeled as follows:

'Yy 8¢ A A
Uggx = B*ﬂs‘*‘a:*au‘*au + Ay t Ay t At

where i is the "grand mean" of the population, that is, the average of all the cells’

u's. Inordec: to avoid cumbersome notation involving multiple summations, aver-
aging over a subscript is denoted by replacing the corresponding index by a dot.
For example, 4 =u___ and Usx = yiu, . It turns out that under {3, an unbiased
estimate of 4 is the average of all the observations, {.e., B=y.. .. . The
remaining components in the expression for uy,« are the effects of the factors

(a:. a?. ag) and their "interactions" (a:,', agf. v s:;.c ), the cffects, that is,
which exist due to the simultaneous operation of these factors, The interactions
cannot be attributed to a single factor but only to their coexistence. If no inter-
actions exist, then the factors are said to be "additive." In a sense there is no
correlation among them and each operates independently of the others. When

the number of observations in each cell is the same, as is the case here, the
observational space £ can be decomposed into 2° + 1 (provided M > 1) mutually
orthogonal subspaces with a consequent decomposition of the total sum of squares
into simpler sums. The dimensions of these subspaces are the degrees of freedom
(DF) associated with the corresponding SS. The estimates of the various effects
and Interactions are oltained from combinations of averages over different indices

depending on which component we are cstimating. For example,

Boo=y

)

ag =y, T YL,

aA B

A1y = Yia,, =¥, .. - Y., vy,

~ABC
Qg

Yie. = ¥Yi5.. = Yex. = Yoae.  t Y. v Y. Yo, YL
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Following these example deviations, one can form all the a components involved

{n the expression for u;; and thereby compute their SS's,

putational procedurn is shown below,

A summary of the com-

2

Space Source Spanned By Dimension (DF) 88
Z, - A 1 ss, = WKMY
Z. A main effccts a1, ..., a1 1-1 sS» ~JKMZ @Gi
% B maincffects  aj, ..., a J-1 sSe = IKM I @)’
X.  Cmaln effects &, ..., & K-1 sSc - 1IM I (a)?
X, ABinteractions 4, ..., a1  (I-1)d-1) sSw - KM 3 F @1)?
X, BCinteractions A, ..., ax  (J-1)(K-1) SSwc =IME T (a5 )’
L. ACinteractions af, ..., ap (I-1)(K-1) SSic =JMZ T @)’
L ABC intcractions anty ..., atoe  (I-1)J-1)(K-1) SSuc= M ); § ? (ain ¥
X, Errore {yima = yigu. ] 1IRM-1) ss. - L 737 2L (yime - e, )
i Total about IJKM-1 sS, ; ‘zh:}.:()'uu')’....)

grand mean

-t

The decomposition of X into its dircet sum of the above nine orthogonal subspaces

gives rise to the following identity:

SS;, SS 4 SSa + 85Sg + 88¢ 4 SSap + SSuc + SSac + SSaxc + SS.

M

Once the SS's have been computed, the MS's are readily obtained by dividing with the

corresponding DF's.

At this point we can answer questions conce - aing the significance of each

factor or any of their interactions. We can solve, that is, the decision theory problem.

The various hypotheses to be testea can be set up and the tests are based on compari-

sons of MS ratios with thecoretical valucs of an ?distribution. We will not go into

furthor detadl for this inal step since in our case we did not do any te-ting, the

rcason being we we' ¢ only concerned with the effects in a relative sense, a fact

which in our case could be inferred from the -

Jes of the 8S's directly. Instead

we will give a detailed description of how this method was implemented in our

case ana present the results that we obtained .
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The factors which we considered to affect the precision of the baselines

were their length, the mean orbital height, the a priori weights on the station
coordinates, the elevation cut-off angle, and the orientation of the baselines in

the grid. Since the grid design was fixed, the same baselines would be estimated
from each solution irrespective of the selection of the rest of the factors. Due

to the ssmmetry in the grid it was possible to select a set of baselines ranging
from 235 to 300 km in length, at 23 km increments (12 levels of variations), for
which we could cover all possible realizations of the rest of the factors, but mainly
the baseline orientation variations. It can be verified from Fig. 1 that the cardinal

directions of the grid are running almost parallel and perpendicular to the satellite

groundtracks. We selected as our reference the side defined by stations 91 and 11,
with respect to which we determined the orientation of the various baselines (i.e .,
any baseline parallel to 91 -11 has bearing 0°, any one perpendicular to it 90°, etc. ).
To avoid overcomplicating the setup we grouped the baselines into three groups;

4 baselines with bearing between 0° and 30°, between 30" and 60°, and between 60°
and 90° ( three levels of variations), Since we were only examining two types of

orbits the mean orbital height had onlv two variation levels, 400 km and 1000 km.

The nominal elevation cut-off angle for laser observations is usually 20°. The
reason we were interested in an increased cut-off angle is that this would result

in a simpler retro-reflector design with a considersble decrease in cost. Two
levels of variations were therefore considered, the nominal 20° and the 35" option.
The last factor to be considered, the a priori station coordinate weighting, had
three levels of variation, A priori standard deviations of 1 m in the three
Cartesian coordinates of all stations in the grid denote strong weighting. In the
second variation the standard deviations are increased to 25 m denoting medium
weighting, and the third variation is the solution with "quasi-minimum’ constraints,
The latter were applied on stations 11 (¢, =0,001 m, ¢, =0,001 m), 15¢(0.=0.001m,
0-=0,001m), and 95 (¢.=0,001m, ¢- =0.001 m). For the above setup of five
factors with their associated levels of variation we have a t>tal of 432 treatments,
half of which pertain to the low orbit, the other half to the high orbit. From the
twelve solutions which are needed in order to cover all possible combinations of

factor variations, we selected the standard deviations of baselines which fell in
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each of the treatment categories and formed the ANOVA Table 7. Only one obser-
vation per cell (M=1) was made since we were not interested in testing any hypotheses,
but only in ascertaining the relative importance of the five factors as reflected on

the corresponding SS's. A summary of the setup and the notation in Table 7 is the

following:
Factor Levels
L baseline length 12 25 km through 300 km incrementing
by 25 km
H mean orbital height 2 400 km (OSUL) and 1000 km (OSUH)
w weighting schemes 3 A: 0y=0y =0, =1 m all stations
B: 0y =0y =0; = 25 m all stations
C: "quasi-minimum'" constraints (see
text)
E elevation cut-off angle 2 20° and 35° above the horizon
baseline orientation 3 0°-30°, 30°-60°, and 60°-90° (see text)

Using the data from Table 7 we computed the SS's and MS's following the standard
computational procedure as described previously. The numerical results are
presented in Table 8. It can be readily verified from this table that the elevation
cut-off angle is responsible for most of the variation in the data, followed by the
rest of the factors with considerably smaller effects. In order to determine the
importance of the factors in the case of the two orbits (OSUL and OSVJH) independently,
two more tests were performed, For each test only half of the data (pertaining to
the relevant orbit) were analyzed. Numerical results are shown in Table 9 for OSUL
and Table 10 for OSUH. These tests revealed some interesting facts for the effect
of the orbital height on the way the rest of the factors affect the baseline precision.
At first the dominance of the elevation cut-off aigle was reconfirmed as well as the
fact that baseline length variations are second in line as far as the precision is
concerned. For the low orbit, however, the orientation of the baselines is more
important than the weighting scheme, while in the case of the high orbit it is the

one with the least effect. This is reversed for the weighting scheme which in the

case of the high orbit is almost as importam as the baseline length factor. This
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Table 8 ANOVA Results for Test A

ANALYSIS OF VARIANCE.....TEST A
LEVELS OF FACTORS

L 12

H 2

W 3

L 2

(1] 3
GRARD MEAN 1.81250
SOURCE OF SUNMS OF DICREES OF MTAW
VARIATION SQUARZS FREZDOM SQUARES B RO
L 37.42805 11 3.40255 1.84
| 3.48481 1 3.42481 1.87
LH 1.17963 11 0.10724 ©.02
w £.49847 2 4,24924 2.¢6
LW 6.24431 22 0.238333 0.53
HW 9.63028 2 4.81544 2.19
LHV 0.93968 22 0.04271 0.21
E 144.00759 1 143.90750 12.04
LE 10.15917 11 0.92356 0.56
HE 0.01815 1 0.01815 0.13
LHE 0.25519 11 0.07774 ©.23
WE 2.45097 2 1.22349 1.11
LVE 1.0350569 22 0.04633 0.22
HWE 4.78949 2 2,39475 1.55
LEVE 0.84218 a2 ©.05225 0.20
) 3.65625 2 1.82213 1.25
Lo 5.25985 20 ©.23568 0.9
HO 2.C90E8 2 1.04544 1.62
LHO 2.63968 22 0.11999 0.25
W0 2,04985 & 0.58747 0.77
LVWO 2.30569 14 0.05240 .20
HVO 1.63051 4 0.40762 0.64
LHVWO 1.83294 44 0.041568 0.20
EO 3.94651 2 1.97240 1.40
LEO 2.68819 22 0.12219 0.35
HEO 0.88332 2 0.44256 0.67
LHEO 2.3863% 22 0.10847 0.55
WEO 1.16431 + 0.20108 0.5¢4
LWEO 1.66236 44 0.00778 0.19
HVWEO 1.2€329 4 0.34582 0.59
LHVEQ 1.63005 44 0.,03750 0.19
TOTAL 269.992350 431

.

39




wr

by g

Table 9

ANOVA Results for Test B (OSUL)

ANALYSIS OF VARIANCE.....TEST B

LEVELS OF FACTORS
L 12

W 3

E 2

0 3
GRAND MEAN 1.90281
SOURCE OF SUNS OF DEGREES OF MEAR
VARIATION SQUARES FREELO:! SQUARES £ PIS =
L 22.18718 11 2.01702 1.42
W 2.96037 2 1.4E919 1,22
LV 1.56296 22 0.07104 0,27
E 70.34116 1 70.84116 3.42
LE 7.58051 11 0.63914 0.62
VE 0.19704 o 0.09852 0.21
LVE 0.69963 22 0.00453 0.07
0 4.40481 2 2.29241 1.3
LO 5.80319 22 0.25387 0.51
WO 0.24241 4 0.056060 0.25
LVO 0.50093 44 0.00534 0.08
EO 3.68925 2 1.84463 1.26
LEO 3.78974 22 0.17155 0.41
VEO 0.10296 4 0.02574 0.16
LVEO 0.13370 44 0.00304 0.66
TOTAL 123. 82884 213

Table 10 ANOVA Results for Test C (OSUH)

AWALYSIS OF VARIANCE.....TEST C
LEVELS OF FACTORS

L 12

W 3

E 2

0 3
GRAND MEAN 1.72269

CE OF SUMS OF DEGREES CF MEAN

%’RHII{ATION SQUARES FRLEDOM SQUARES * RS ®
L 16.42051 11 1.49277 1.22
¥ 15.16808 2 7.58449 2.%5
LW 5.62102 22 0.23559 0.51
E 74.08449 1 74.08449 £.61
LE 3.43384 1t 0.31217 0.56
WE 7.04343 2 3.52171 1.€3
LWE 1.77324 22 0.02C50 0.23
0 1.34231 2 0.67116 0.92
Lo 2.09433 22 0.09520 0.81
WO 8.75796 4 0.90449 0.97
LWO 3.83870 449 0.08724 0.80
EO 1.14287 2 0.57144 0.76
LEO 1.29380 22 0.05581 0.2¢
WEO 2.44463 4 0.61116 0.72
LWEO 3.17870 44 0.07224 0.0¥
TGTAL 142,61884 215
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significant interaction of orbital height, weighting scheme and baseline orientation
is also confirmed from the corresponding SS's (SSww and SSuo) of Table 8 for the
complete data set analysis. The large value for SSuy in this ‘able indicates that
the applied a priori weights on the station coordinates will produce significantly
different results depending on the orbital height of the spacecraft. Combining this
with the results of Tables 9 and 10 we can say that the higher the orbit the larger
the variation in the precision of the baselines due to identical variations of a priori
station weights. These general remarks confirmed what we intuitively expected.
In the following we examine the data for each of the factors individually, and we
present whenever possible the theoretical explanation for the trends exhibited in

them.

B. Baseline Precision Variations Due to Different A Priori Station Information

The plots which are presented and discussed in this section are graphical
representations of the tabular values (Table 7) of the standard deviations and
provide a more illustrative tool for the investigation of their variations, The
quantities denoted by SA, SB and SC in these graphs correspond to the standard
deviations obtained from the three weighting schemes A, B and C respectively.
The quantity SM corresponds to the arithmetic mean of the SA, SB and SC. Figs.
5, 7and 9 illustrate the variation of the standard deviations for both systems,
for the three orientation classes and for a 20° elevation cut-off angle. Figs. 6,

8 and 10 give the same information when the elevation cut-off angle is increased
to 35°. Figs. 11 and 12 finally were produced from the same set of data by
averaging over the three classes of orientation,

From Figs, 5a, Ta, 9a and 1la one can conclude that the relative influence
of the weights remains unchanged for differently oriented baselines, at least for
the given geometry. We can reach a similar conclusion for the case of the high
orbit from Figs. 5b, 7b, 9b and 12a., These conclusions seem to hold true for
either choice of the elevation cut-off angle, as can be gathered from Figs, 6a&b,
8a&b, 10a&b, and 11b and 12b, Inferences, therefore, about the influence of the

a priori station position information can be drawn from Figs. 11 and 12 alone.
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Concentrating on these figures we can readily verify that the standard
deviations in most of the examined cases have a nearly linear tendency to increase
with increased baseline length, a fact which was intuitively expected. The only
significant exception from this rule is the case of ""quasi-minimum' constraints
for the high orbit when the elevation cutoff angle is 35°. Possible causes behind
this result wil! be examined later. Relatively speaking, in the case of the low
orbit the results of the test with "'quasi-minimum" constraints are always the best
in terms of absolute magnitude, while for the high orbit they are of inte rmediate
quality for the 20° cutoff angle test and fluctuate around 2.8 em with no definite
pattern when the cutoff angle is 35°. From Fig. 1la it is clear that for the low orbit
the "quasi-minimum" constraints and the uniform weighting with a priori station
standard deviations of 1 m produce almost identical results. From Fig. 11b we
can see that these two schemes produce diffe rent results, the latter being about
10% above the first one in all cases. By changing the elevation cutoff angle, the
number of observations was reduced equally for all three cases, A, B, and C.

One would therefore expect an increase in the standard deviations proportional to
the ratio \/_52? /1 ﬁgs-o, with n being the total number of observations in each case.
Such an increase would be manifested in the graphs as a shift in the "baseline
sigma'’ scale and the relative location and shape of these graphs should remain

the same. The reason they do not come out as such lies in the fact that even
thoussh all observations are of the same quality in terms of accuracy, they are not
the same in terms of 'geometric' quality. As it will be explained in a later
section, the low elevation observations provide geometric strength in the solution
which cannot possibly be compensated for by an equal number of medium or high
elevation observations. Comparing the two figures (11a and b) one can verify that
the loss of the low elevation observations affects the solutions with uniform weights
more and witkin these the weaker estimates are obtained from the solution with

the smaller weights. What is important from all these observations on the two
graphs is that the internal structure of the observations plays a catalytic role on
the performance of a given weighting scheme. The loss of observations from one

cage to the other is about 47% winich warrants an increase of the standard deviations
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by a factor of about 1.37. Even if we consider this, the resulting estimates show
an additional 40% deterioration which is the result of the missing low elevation
observations as explained above,

These conslusions hold true for the high orbit also (Figs. 12a & 12b), The
effect of the elevaiion cutoff angle change on the influence of the weighted constraints
in the baseline standard deviations is even greater in this case. A 40% reduction
in the observations implies an increase in the standard deviations by a factor of
about 1.33; fromthe results, however, it is evident that even after we reduce the
estimates to the same number of observations, the 35° elevation cutoff angle test
yields poorer results by about 60% on the average. It is also interesting to note
that strict uniform constraints produce rather optimistic standard deviations
compared to a ''quasi-minimum'' constraints solution. As for the rather "irregular"
results of the latter, in the high elevation cutoff angle test ( Fig, 12b), the explana-
tion lies in the missing observations rather than the applied constraints, the
reason being that the constrained stations lie in the border of the grid and in the
nominal case (20°) they collect a larger number of observations compared to the
rest of the stations, especially at low elevations. With the cutoff angle increased
to 35°, this advantage is lost and with it the strong "link'' between the applied
constraints and the parameters under estimation. This, in turn, produces a very
loose system and therefore an ill-conditioned set of normal equations. An examina-
tion of the station coordinates' quality of recovery reveals some interesting facts.
Although the coordinates are not estimable quantities, the application of the
constraints changes their status to what is called 'conditionally estimable."

Since the constraints are identical for both elevation cut-off angles, a relative
comparison of their standard deviations is not completely unjustifiable. The

average results are shown in Table 11,




s

Table 11
Elevation Average Standard Deviations (in cm)
Cutoff
X Y Z
Angle
200 1.0 1.2 1.2
35° 2.0 3.5 2.5

It is obvious from the above table that the loss of the low elevation observations
has affected the three coordinates differently. The standard deviations in the Y
component increased by a factor of three compared to those for X and Z which

only doubled. This weakness in the Y component is also evident from the compari-
son of the correlations in the Y components among different stations in the grid
which are approximately equal distances apart. In the 20° case these correlations
show an increasing trend from 0. 28 for stations near the northeast side of the

grid, to 0.88 for stations at the southwest area. In the 35° case the same trend

is also preseht, but in this case the rate of change is much steeper, from about
0.22 at the northeast side to almost 0.99 at the southwest. The increase in the
correlations can only be due to the loss of the low elevation observations, since

no other parameter was varied between the two tests. As for the actual trend,
which is present in both cases, it is probably due to the way the Y component was
constrained: the Y coordinates of stations 11 and 15, As can be seen from Fig. 2,
both these stations lie at the northeasternmost side of the grid and one should
therefore expect a weaker determination of the Y components as one moves away
from the vicinity of stations 11 and 15. The combined effect of weak determination
and high correlations in the Y components accounts for the irregular behavior of
the baseline standard deviations. This view is also supported from the results
depicted in Figs. 6b, 8b, and 10b. As it is seen from the first two figures, barelines

with orientation angles from 0° to about 60° with respect to the direction defined oy
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stations 11 and 91 are much more affected than those with orientation angles
between 60° to 90°, the reason being that due to the specific location of the grid
in space the baselines in the second group have significantly smaller components
along the Y-axis compared to the baselines in the first group. The errors
therefore propagate in a more favorable way for the second group of baselines
(Fig. 10b).

In addition to the tests essential for the comparison of the different weighting
schemes, some tests were conducted with different ''quasi-minimum' constraints
in connection to the rank deficiency problem in the short-arc mode. Description of
this problem and a discussion of the results was presented in the section on rank

deficiency and ill-conditioning in short-arc solutions.

C. The Effect of the Elevation Cut-off Angle on the Baseline Precision

From the ANOVA tests on both orbits (OSUL and OSUH), it is obvious that the
elevation cut-off angle is the factor responsible for the largest variation in the baseline
precision. Here we examine these variations in a more detailed manner, accounting
for the fact that an increase in the cut-off elevation results in a simultaneous decrease
in the number of observations in the problem. With the frequency of the observations
held fixed for anv choice of the cut-off elevation, the loss of observations is propor-
tional to the percent reduction of the originally ""observable' portion of a given pass.

Based on simple geometrical relationships between the orbit and the observ-
ing station, we can derive the following formula for the length of the observable arc,
given the maximum elevation (Ep,,x) that the satellite reaches with respect to the
station and the minimum elevation (Ey,jn) beyond which no observations are

permissible:

! ]
s = Y sin [(Emax * Emin) * (P1+Po)] sin [(Emax = Emin) + (P1 - Po)]

sin (Emin * Po)

where:
S is the length of the arc in geocentric angle measure

Po is the parallactic angle at the satellite, subtended by the geocentric radius
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of the station when the satellite elevation is equal to Eqyip

P, is the parallactic angle (as Po) for satellite elevation Epqx-

The parallactic angles are computed from the following formulae given the radius of

the orbit a (assumed circular) and the mean earth radius a,:

sinPo =

le

cos Emin and sin by = ? ¢c0s Emax

The arc lengths can be given in time measure also once the period of the satellite is
computed from Kepler's third law:

3
a

p=2my\gy GM = 398603 x 10° m®/s®

The periods for the low and the high orbits in our test are for example:
OSUL: p== 92 min; OSUH: p = 105 min

Based on the above, Table 12 gives some numerical examples for the arc length of
overhead passes (Eyax =90°) for three different choices of the minimum cut-off
angle. In addition to the angular length and the duration of each arc, the percent

reduction is also given for comparison purposes.

Table 12
Orbit
Cut-off OSUL OSUH
Angle
Arc Length Duration Arc Length Du ration
0° 40° — ~ 10 min 60°—- -~ - ~ 18 min
v 63% v 509
20° 15° 75% ~ 4 min 30° 67% ~ 9 min
+  33% +  33% |
35° | 10°=— ~ 3 min 20°e— — ~ 6 min

The conclusion that can be drawn on the basis of these percentages is that
the reduction in length, hence in observations too, is very significant (33%) for the
two cut-off angles considered in our tests. The additional implication is that we

are not decreasing our observations uniformly (such would be the case if we had
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decreased the frequency of the observations) but only at the beginning and the end

of each pass. As pointed out already in the previous section, even if all our obser-
vations are of the same precision, their geometric quality depends on the relative
positions of the observer and the target. It is rather simple to realize that when a
distance is to be estimated indirectly, the best measurements to do are the distances
between its end-points and a third point on the same line, The low elevation observa-
tions are the "third" points for our problem. It is conjectured in [Van Gelder, 1978]
that each of these low observations contains as much geometric information as two
observations in medium elevations.

To get an idea of the geometric quality of these observations, we have plotted
in Fig, 13 the average standard deviations for our baseline sample for the two
different cut-off angles. At first glance one might think that indeed the precision is

-+ 'by a factor of two going from the 20° (S20 curve) to the 35° (S35 curve). We
must consider though that the loss of the observations should be accounted for first
and is depicted by the dashed curve. So this curve gives the expected precision if in
the 20° angle case we had decreased (uniformly) our observations to as many as we
had in the case with 35°. On the basis of this curve, the deterioration of the results
due to purely worse geometry is about 40%. In order to overcome this we would have
to increase observational frequency (already 10 pps) to unrealizable rates. It is,
therefore, recommended that we include as many low observations as possible.
This, of course, should be further examined when systematic effects (like measure-
ment biases, atmospheric refraction model inadequacies, etc.) are included in
future simulation studies. It is expected that the accuracy of these observations
(although their precision may be the same) will in general be poor due to biases and
unmodelled effects. One should therefore try to find the "golden cut" so that with
proper weighting of these observations or even setting limits as to their number per
pass, an improved geometry can be achieved with tolerable biases at the same time.

To these direct effects of the cut-off angle we must add its interaction with
two other important factors. We already discussed the first one, the weighting
schemes, In the case where "'quasi-minimum' constraints are applied, it must be

established beforehand that the stations which are to be constrained have enough
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and wniformly distributed observations on all passes in the solution. It should
always be kept in mind that the constraints "flow' through these observations in
order to determine the orbit, based on which the observations from the unknown
stations determine their position.

The other factor which seriously interacts with the cut-off angle is the
baseline orientation relative to the satellite passes. Again the reason lies behind
the geometric quality of the low observations. More details will be given in the

next section where the orientation factor is examined.
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D. Variations of the Baseline Precision Due to Different Network-Satellite
Pass Configuration

One of the factors which affect the precision of the recovered baselines
in satellite ranging networks is the relative orientation of these baselines with
respect to the satellite pass(es). Because of the dependence of this effect on the
adopted cut-off angle, we have already given some hints on the source of the
problem in the previous section. These remarks, however, were based on purely
intuitive geometri~ considerations. In this section the problem is examined more
systematically, and the use of a simple example will clarify the situation and
provide some justification for the results of the numerical tests.

Our simple setup is shown in Fig. 14. A satellite pass lies on the plane
defined by the axes X and Z. Disregarding time for the moment and denoting by

Fig. 14
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subscripts i the ith gatellite point and § the jth station, the geometric distance

between them is
ry = [Xe-x)% + (vi-y)? + (21- 2],

Now we add one more station in the picture, station k, which also observes the
satellite at a different epoch (close to the ith) and measure the range r,;. From
two sets of this type of observation we want to estimate the distance (baseline
length) between stations j and k. For the sake of simplicity let us assume that the
orbit is perfectly known, so the only unknowns will be the station coordinates (Xj,
Yy, Zy) and Xk, Yx, Zx). The design matrix of partial derivatives with respect to
the parameters will typically look like the one below:

Parameter: X, Y, Z, Xy Yy Zy

X=Xy Ya-¥y Zi-2
Ty r'n T

Ty 0 0 0

. xl"Xk - Yl"Yk _M
Tet: 0 0 0 Il Tx1 Tkl

Examination of this matrix indicates the sensitivity of the system in each param-
eter under estimation. We consider two different cases of baseline-pass configu-
ration. In the first case we examine the baseline 1-2 which is perpendicular to
the plane of the pass. Since all satellite points have zero Y coordinates, the
derivatives 3r11/dY, and drz 4/dYzare equal to Yy/ru and Yo/, respectively.
Unfortunately, the ranges do not vary too much in a short interval such as a
ten-minute pass and therefore neither do these partials, This set-up therefore

is very insensitive with respect to Y; and Y2, and such a solution would yield very
poor estimates for these parameters. For this case the baseline length b2 is
simply | Y - Y2/, so obviously the poor results will propagate in the determination
of bi. We now examine the other extreme case where the stations 3 and 4 define
a baseline on the plane of the pass. In this case the derivatives for Y and Yz are
zero, since Yy =0 = Yz; so their determination is impossible. The baseline baq

is now given by

bes = [(Xs - X4)° + (25 - znzlis
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and the result therefore will be independent of the estimates Y1 and Y.. Between
the two extreme cases discussed above, the quality of the recovered baseline
changes from poor to best as its orientation varies from perpendicular to parallel
to the plane of the pass.

One must realize that these examples are indeed oversimplified, and in
reality the situation is much more complicated. They are adequate enough, however,
to illustrate how poor geometry can affect the results of equally precise observations,
The regular grid design of the network which we investigated and the convenient
orientation of the satellite passes with respect to its sides provided an excellent
set-up for numerical tests, In Fig. 15 we plotted the average standard deviations
from our standard sample of baselines, for the three different orientation classes
which we considered as representative for this problem. We observe that in general
the baselines which belong to the (0°-30°) and (60°- 90°) orientation classes are
better determined than these which lie in the middle. This, of course, happens
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because these sets of baselines are more "parallel’ to the satellite passes than the
others. A slight variation in the results for the (60° - 90°) class is most probably
due to a slightly unbalanced collection of observations from ascending and descending
passes,

Finally we must point out again that although relatively speaking the baselines
which are nearly aligned with passes will have smaller standard deviations than the
rest, their absolute quality will depend highly on the adopted cut-off elevation as
already explained in the previous section.

E, Baseline Bias Due to "Erroneous' Geopotential Model

When we outlined the purpose of this investigation we stressed that we were
mainly interested in the determination of the degree of dependence (or independence)
of the baseline standard deviations on certain factors. In this sense we are unable
toquote absolute numbers for the expected accuracy of the results except possibly
for the component due to noise in the observations only. Average results for both
orbits (OSUL and OSUH) are depicted in Fig. 16, Most systematic effects (e.g.,
refraction) have been disregarded throughout the course of study. It is known,
however, that almost all models used to correct for these systematic effects are
imperfect and an uncertainty is always attached to their results. It is therefore
expected that our baseline accuracy will be affected by these uncertainties and in
fact worsened. Results on the magnitude of these components of the total variance
were recently given by [Smith, 1978].

In addition to the inflation of the total baseline variance, imperfect corrections
for systematic effects introduce biases also in the actual baseline length estimates,
We alread: Hinted out that in our investigation the only case where such effects
were of concern to us was in deriving the baseline precision from an estimation
process based on a different geopotential model from the one used to generate
the observations. Various cases were rerun using GEM7 (3,1), GEM7 (8,8), and
GEMS9 (16,16); and the baseline precisions were compared to the original tests with
GEM? (16,16). In all cases the results were identical down to the millimeter

level. We noticed, however, very significant differences in the recovered
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bascline lengths and in the height differences between stations, This was not
further pursued since it is a major problem in itself and another study quite

different from this one should deal with it. We do want to stress that this must
be cleared to satisfaction before concepts such as "repeatability" are employed

in order to determine station motions from bascline length variations,

; 318
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7. SUMMARY: CONCLUSIONS AND RECO MMENDATIONS

The objectives of the conducted investigation were to determine the variation
of the baseline precision in an SRS system due to various factors such as the a priori
weighted constraints on station positions, the increase (or decrease) of the elevation
cut-off angle, the relative orientation of the baseliries and satellite passes, and the
accuracy of the observations.

Through ANOVA tests for both of the orbits considered, it has been established
that these factors produce significant variations when our accuracy goal is 1 cm.
Aside from their direct effects, it has been shown that some of these factors interact
with each other producing very undesirable results. The decrease of the elevation
cut-off angle is shown to be the factor responsible for the largest variations which
in this case are due both to the decrease in the number of observations as well as
to the degradation of the geometric strength of the system as a whole. The effect
of changing the a prior{ station information was examined in parallel with the
problem of constraints and rank deficiency in the system. From numerical tests
it is established that for the specific problem examined, the effective rank deficiency
(inherent rank deficiency plus ill conditioning in the no-71al equations) is at least
four and on the basis of theoretical considerations at most six. The necessity
therefore for ''quasi-minimum'' type of constraints is clear and so is the fact that
their number and arrangement in the network depends highly on the geometry of
each individual problem. As far as Bayesian (biased) estimation techniques are
concerned, it has been explained that no meaningful results will be obtained unless
the a priori covariance matrix for the station positions reflects reality to a high
degree of approximation. In view of the mixed emotions in the statistical world for
the Bayesian estimation techniques, further detailed study of the theoretical basis as
well as the appropriatencss and the consequence:s of such techniques applied in
geodetic problems must be undertaken. The usefulness of estimable parametrization

of our problems was pointed out at several instances. This should be considered
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when future software is developed or the existing software is grossly modified.
The geometric strength of the network-sat ellite passes configuration plays an
important role in obtaining uniform results throughout the eurveyed area. In
the design of the ground networks therefore we should always consider the kind
of satellite coverage that the specific area has (assuming that this is dictated by
the adopted orbit which will not change drastically in the short time franie of the
survey). Obtaining the optimum network in this sense will not be feasible in all
cases since other factors (such as the direction of expected motion or the actual
location of the area) will also impose restrictions on the design. A reasonable
compromise should always be feasible though, In fact since most of the futurs
potential users of the system have already indicated the primary areas of interest,
it would probably be beneficial if larger simulations were conducted for all these
areas. In these future simulation studies it is important that we include 1! known
systematic error sources in terms of the best currently available models. For
all study areas previous weather records must be examined and some r.alistic
weather model must be developed for each one. It is rather awkward to expect
that either all stations are visible or that none ¢f them is due to unfavorable
weather conditions. The quality, quantity, and frequency of ground collected
weather data must be established and the sensitivity of the adopted atmospheric
refraction model must be examined in terms of the resulting biases due to residual
refraction. A decision must be taken with respect to the type of the laser to be
used in the operational system and instrumental biases from laboratory calibrations
should be included in the future simulations. The problem of the geopotertial mode!l
used in these simulations seems to be much more complicated than what was
originally expected. Although the precision of the results is insensitive to any
changes in the assumed model, the resulting biases may be orders of magnitude
larger than the quoted standard deviations. Although this investigation was not
concerned with the accuracy of the baseline lengths but rather with their precision,
some of the tests which we performed using different goepotential maodels indicate
that a more detailed examination of the problem {s in order. The argument of
"repeatability' which is so much used in recent publications on SRS must be
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re-examined. We do not actually know whether slow processes (such as strain
accumulation) will leave the local field unchanged between regular resurveys. It
is dangerous therefore to make such an assumption because the results may show
motions which have nothing to do with reality. In view of the use of this system by
scientists in different disciplines, a warning must be given along with the results as
to their suitability for the various applications, Attempts to establish strain models
on the basis of the changes in the Cartesian coordinates of the ground reflectors
have already ken place. In order to associate accuracy estimates with such a
model we must first prove that strain is anestimahle parametric function of the
nonestimable coordinates. If this proves to be true, then such a treatment can be
justified provided the coordinates are obtained from the proper estimation process
(e.g., inner constraints lezast squares adjustment),

We hope that the results obtained herein and those which are to come from
the proposed further investigations of the system will provide sound arguments

for the appropriateness and the capabiiities of a satellite laser ranging system.
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APPENDIX

The following quotations serve as an introduction to the subject of this

Appendix,

In this name [mathematical statistics], "mathematical' seems
to be intended to connote rational, theoretical, or perhaps mathe-
matically advanced, to distinguish the subject from those problems
of gathering and condensing numerical data that can be considered
apart from the problem of inductive inference, the mathematical
treatment of which is generally relatively trivial. The name "Sta-
tistical inference' recognizes that the subject is concerned with
inductive inference, [Savage, 1972]

Subjective expectations, valuations and preferences and their
changes from person [to person] or in the course of time can and
should be investigated by means of '"objective' statistical methods.
Trying to use them as a basis of statistics is like trying to gauge
a fever thermometer by means of the patient's shivers. [van Dantzig,
1957]

I shall call them ""Bayes' probabilities because, frequency or
not, they are the ones needed for insertion into Bayes's theorem.
Savage argues that they are "personalistic', that is, they are a
property of the individual and not of society. I would dispute this
myself, and agree with Jeffreys in saying that in scientific questions
they are objective. They only differ between individuals because
the individuals are differently informed; but with common knowledge
we have common Bayesian probabilities. We can ignore this side-
fssue in the present account. [Lindley, 1958]

I have to comment on the sentence: 't is the greatest strength
of the Bayesian argument that it provides a formal system within
which any inference or problem can be described”. Iwould like to
turn it around and say: ''I. is the greatest defect of the Bayesian
argument that it provides a formal system according to which you
can believe what you wish and, furthermore, without any data", I
believe the search for the sort of panacea envisaged is a false one,
which is based on a total misunderstanding of the nature of language
and the nature of knowledge. Here again I believe some homework
is desirable. [Kempthorne, 1972]
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Biased Linear Estimation

The problem of estimation arises in most sciences today and although some
still consider it as the primary and exclusive area of interest to statisticians, many
theoretical developments can be credited to other scientists as well. The problem
can be briefly stated as the determination under certain conditions, of quantities
which are related through a known functional relationship to a given set of observa-
tions, By conditions we mean a set of criteria that we establish in order to obtain
optimum estimates in the sense implied by these criteria. A set of such criteria
which is most often used in physical sciences and engineering is the following:

(1) linear

(2) unbiased,

(3) minimum variance estimators.

For a detailed discussion of these and other possible criteria, one may consult
[Rao,1973). Since the choice of the criteria is more or less subjective and depends
on the nature of the problem in hand, a good deal of controversy and confusion is

evident from the literature whenever a comparison of different estimators is

attempted. Most of this is due to variations of the second property—the unbiasedness,

A number of staiisticians, for instance, substitute this by '""method consistency," a
concept proposed by Fisher and Haldane. An even greater number of scientists
follow the approach proposed by the late Professor L.J. Savage [1954 (1972 ed.)
and 1962], whereby they attempt to uniformly minimize the variance of the
estimators at the expense of unbiasedness. A deeper study of the problem reveals
the origin of the problem as being the definition of probability adopted by each of
the parties. An elegant and extensive presentation on the four different definitions
of probability is given in [Papoulis, 1965). They are as follows:

A. Axiomatic (measure theory),

B. Relative frequency (Von Mises),

C. Classical (favorable outcomes over total "equally likely' alternatives),

D

Measure of belief (inductive reasoning).

We will not argue here which of the above is most suitable as a definition, although

we personally belicve that the foundation of statistics lies in the axiomatic definition
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rather than any empirically or intuitively conceived definitions, The purpose of
the following sections is to present the structure of certain bie sed estimators
which are often used in our areas of interest and to compare them whenever
possible with the unbiased estimators pointing out advantages of the one over
the other. To the best of our knowledge, the first thorough examination of
Bayesian estimation techniques in connection with geodetic problems is [Bossler,
1972],

The argument on which the application of biases estimation is based is that
if we have prior information on our parameters we should use it in order to obtain

more accurate a posteriori estimates. On the other hand, unbiasedness is essen-

tial in our problems if we want to make correct inferences from our results. We
should always keep in mind that geodetic problems are mainly dynamic (the earth is
not rigid!). The majority of our estimates therefore are estimates of the true
averages of the parameters over the time span of the observational data set. These
averages change with time and the use of biased estimation techniques does not
guarantee that the introduced biases between different solutions will be the same.
This being the case we can readily conclude that any model for the rate of change of
the parameters in question will be biased too, Considering that the accuracy of our
parameters can be improved by improving the quality of our observations—which is
possible in most cases—it seems unreasonable to seek this improvement at the
expense of unbiased results. We can probably justify the use of biased estimation
at preliminary stages of our research when we only want to obtain a rough picture
of the problem with a limited number of observations. When we proceed, though,
to explore the fine structure of the problem, such techniques should be avoided at

all costs.
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Best Linear Estimation

Let us consider the model (Y, X8, 02V):
Y = XB +¢€; € ~ N0, 02V)

and the estimable parameteric function a'B to be determined. For the development
of the theory we need not make any assumptions on the ranks of X and V. It will
simplify the derivations though if we assume that both are of full rank. A general
treatment of the problem is given in [Rao, 1971]. From the above set up, we may

find a best linear unbiased estimator (BLUE) of aTB; here, however, we are interested
in seeing the results obtained when we drop the restriction for unbiasedness. Assume
that the new estimator ofa' B is b' Y. The estimation of b is based on the minimi-

zation of the mean square error (MSE) of b'Y:
MSE ®'Y) = E[PY - 2a'B)® = aminimum 1)
After some algebraic manipulation, we can reduce the above to the following form:
MSE(b'Y) = o? [b'Vb + (b'X -a') (B/0) (B/0)" X'b - a)] @)

It is obvious that we have one equation containing both unknowns 8 and 0, and its

minimization for b presupposes some knowledge for both of them or at least for

their ratio 8/0. We have at least three choices to circumvent this problem:

a) Use some a priori value for 8/0 which we base either on prior experience (if
any) or on what seems reasonable to us,

b) Consider 8 as a random variable with a priori mean dispersion E[BB']. Note
that we need not inow the actual distribution of 8, only the mean dispersion
matrix is required. In this case (1) must be modified:

MSE®' Y| B) = gg[(b*y -a"BY¥ | B] (Bayes' risk) (3)
¢) Close inspection of (2) reveals the significance of the individual terms inside
the brackets. The first term represents the variance while the second the bias
T
squared. The matrix (g )(g) then can be imterpreted as the relative weight

that we may associate with the bias compared to the varisnce. One can there-
fore select this matrix according to which of the two quantities is more important.
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Irrespective of which of the abov$ or any other conceivable approach we select
for the determination of (g) g) » the resulting equations are ide;tlcal Tin
appearance. To follow a unified approach we adopt the notation (E)(g ) =W
with the proper interpretation implied. Minimization of the MSE leads to the
following set of equations:

(V+XWX)b = XWa 4

b= (V+XWX")! Xwa 5)

b'Y = a'WX'(V+XWX")'Y (Bayes Linear Estimator, BLE) (6)

bY = A X VX+wH) x'vly 6’)
with:

é* = (XT VX + w-l)-l X'vly "

The superscript * denotes a biased estimate, We can write the analogous expression
for the least squares estimate (LSE) of B as:

B = x'VIx) xX'vy ®)
Comparing (7) with (8) we see that 8* > § as W*» 0. The matrix W' however
cannot be a null matrix except in special cases. If we choose for instance
W = ‘é‘ I, then W' = k’I sothatask - 0 => W* - 0 inthe limit. In this sense
we can state that the LSE is the limit of the BLE. The above choice of W leads to
a special type of BLE, introduced by Hoerl and Kennard who called them "ridge
estimators' due to their similar mathematical structure to methods used for
ridge analysis of second-order response surfaces [Hoerl and Kennard, 1970a and
1970b]. These estimators will be discussed in more detail later.

There are two points of interest that we would like to examine, namely, the
bias in 5 * and its mean error dispersion. Both will be compared to the LSE
counterparts. We denote:

T = X' VX +wh? ©)
Then (7) i8 written as
B*x = TX'viy (10)
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To obtain the bias:

E(A*| 81 =E(TX'V'Y| B )

TX'V'XB

TX'Vv'x + w)B8 - Tw' 8
TT'B - TW' 8

B - TwW'B (11)

In the LSE case, since ﬁ {s unbiased,
E(B] =8 12

The BLE is therefore negatively biased. It can be shown that this bias is toward
the origin in the sense that the norm of é* is smaller than that of 3

We derive now the mean error dispersion matrix for B*:

E E [B*-B)(B*-B)) = E
ﬁY[( ) ( )] 5

E (B*- E (B®](B*- E A"
Y[B Y(B*)l[ﬁ* Y(ﬁ*)l +
[E 8% - BIE (B* - BY
=§[a’ (T - TW'T) + TW* 88" W’ T)

o2(T - TW'T) + TW* E(BB") W' T
o?T - e?TW'T + *TWw'ww'T
o?T (13)

where without loss of generality we have selected olw = E@BB ! ).
For the 1SE ﬁ we have:

E({B-BB-B) =o' V')’ (14
Recalling the definition of T we may establish the following inequality between
(13) and (14):

(XT v-lx + w‘l)'l < (xT V'l x)'l (15)
Two matrices A and B are said to fulfill A > B if A - B is non-negative definite.
To obtain the above we must further assume that W is non-negative definite which

is true for all three choices of W previously described, In the case that we make

a different choice of W, the mean error dispersion for ﬁ* is
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D" = E(B*-B)(B*-B)) = o*T-TW'T) + TW' B8 W' T (16)
it B = 0, then:
DA* = e (T-TW'T) < 0® X'V'X)* an

For B # 0, then, and for every choice of W, there exists a region of the parameter
space in which (16) produces resulis smaller than (14). In general, therefore, we
can state that there is a region, including the origin (8 = 0), for which the BLE is
a uniformly smaller mean square error estimator of 8 compared to the LSE and
another region for which the converse is true. The more general case where the
estimate of a' 8 is not a homogeneous function of the observations Y, i.e., it has
the form b'Y + ¢ with ¢ a vector of constants, ¢n be found in [Rao, 1976].

We conclude this section giving an expression which relates the BLE with
the LSE:

B+

i}

X'vix+whlx vy
X'vix+whH' ' vy x'vix)'x'vy
X Vix+wH (XTvix)h (18)

1]

orsetting G = (X'V'X + wh)*X"v* X, we have
ﬁ* = Gﬁ (19)

It is obvious from (19) that the BLE can be considered as a linear transformation
of the LSE. This is a striking similarity of this type of estimator with "shrinkage
estimators' used to uniformly improve unbiased estimators. We point out that it
can easily be shown that the BLE 'pulls' the estimate ﬁ"' towards the origin as
awhole, i.e., | B*] s | 8 ||, and not each of its componerts individually.
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Ridge Estimation

As pointed out earlier, ridge estimation {s a special type of biased estima-
tion whereV = Iand W = E} 1. It is rather easy to visualize the results when
either or none of the alove is true. In [Hoerl and Kennard, 1870a) for instance,
the case where W = K = [8 ¢ k3] is also treated under the same name. All these
variations can be categorized as methods using 'uniform' prior distributions of
the parameters (even though this is not explicitly stated). We examine in what
follows the properties of these estimators, and we compare them whenever
possible with the BLUE,

Under the LSE theory the expectation of the aquared length (L’ ) of the
distance between the true 8 and its BLUE estimate 8 1s

E(L?] = E[E-B) (B-B) =0 r x'%)’ (20)
We therefore obtain

E[f'8) = B'B + o* r xX'%)’ @1
and assuming that the errors € are normally distributed:

var [L?] = 20% tr X"X)7? ' (22)

We are interested in the dependence of the above quantities on the condition of our
normal equations X'X. Let the eigenvalues of XX be A aax =A12 X2 2 .., 2},

=gt > 0, where p is the number of parameters. Then:
P P
E[L’) = 0 Z (1) and var{L?] = 20* I /) (23)

On the basis of (23) we can see that the lower bounds for the average and the

variance of 12 are:
Oz/k.g,, and 20‘/)\2“! (24)

respectively. If our experiment is carefully set up so that it fulfills the require-
ments of a complete orthogonal design, then X'X ~ 1, and we have no problem in
obtaining stable estimates. In geodesy, however, most of our problems are non-

linear and we very rarely have the chance to 'design' the setup. These facts
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result in extremely non-orthogonal problems which in serveral cases produce
"numerically singular' normals due to the high correlations among the parameters.
The condition of a symmetric matrix {s defined [ Forsythe and Moler, 1967) as:

cond (A) = JAIJA*]
for any selected norm || - ||. Specifically, for the Euclidean norm [ibid}:
cond (A) = Amx/Aun 21

The equality holds for orthogonal matrices always. The farther the condition number
is from unity, the more ill-conditioned the matrix is. When A4, i8 very small, we
see from (24) that the distance L will tend to be large and it will vary more inten-
sively than a slight change in our design warrants, Although our results are
unbiased, they may be too "far'" from the true values. To quote [Hoerl and Kennard,
1970a): '"l1.ae least squares estimate suffers from the deflciency of mathematical
optimization techniques that give point estimates; the estimation procedure does not
have built into it a method for portraying the sensitivity of the solution to the optimi-
zation criterion' (minimum sum of squares of the residuals), In support of this,
[Marquardt and Snee, 1975] go one step further in identifying the cause of this
insensitivity: "The 'fly in the ointment' with least squares is its requirement for
unbiasedness." We do not comment on this since we have already pointed out the
relevance of unbiasedness in geodetic problems. Instead we will investigate some
interesting properties of ridge estimators. The usual form of a ridge estimate +. n
be obtained from (7) by direct substitution of V = and wis= k’l. ¥ 20:

Br = @'X+K¥)'X'Y = RX'Y (25)
To make matters simpler we assume that X'X has been properly scaled so

that it is already in correlation form and the proper transformation has been applf

on X'Y also. Equation (25) can also be written as
B* - [1+K X'%')'8=28 (26)
If (A, denote the eigen values of X' X, then the eigenvalues of R and Z, (§;) and

(M) respectively, are:
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€. = 1/ +xY @7
N = A/ (s + K (28)

Since Z is symmetric positive definite, 2'Z = 2%, and since the eigenvalues of
z? are m'.) we have:

BB = 228 = §'226 s nk. B8 (29)
Now by (28) Nax = M /(A1 +k?) £ 1; hence:

1B+l = na |81 s 1l B (30)
The inequality (30) establishes the fact that ridge estimators are "'shorter" in
a global sense than their LSE counterparts. The fact that B * depends on k?
makes the residual sum of squares also a function of K:

©* &) = (Y -XB%' (Y - XB")

=YY - B9 X' Y- BB @1

Since our criterion of optimization is to find a é * that gives the minimum ©*

we see that a different minimum will be obtained for each choice of k®. This

will be examined next.
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The Ridge Trace

Most of the problems that we are faced with are large both in terms of the
amowunt of data srd the number of parameters involved, In addition to this most of
these problems are non-linear and we very rarely see the interrelations between
the parameters unless some geometrical approach is feasible, Ridge estimates
ciaim to be the answer to such problems (at the expense of unbiusedness, of course),

If we denote by E an estimate of 8, then the residual sum of squares is:
(Y - %B)' (Y - XB)

(Y -XB) (Y-XB) + (B-B) XX)(f-3)

Gasn + O(B) (32)

L2

h

In the above @, denotes the rainimum obtained from the LSE theory. From the
above we sce that ©( E) is a continuous function of E and the loci of © - constant
are concentric hyperellipsoids centered at é . The continuity implies that for a
given © (E) = @Yo > 0 there will always be a Eo which produces this ©o. Obviously
we are interested in determining a specific Eo which would fuliill .n optimality
criterion in some scnse. A natural choice is for the one that produces the minimum
bias. We state the problem formally:

Find a Fthat minimizes E'Eundcr the constraint that (E - 5‘)Y (XYX) (E - 5)
=@o. The solution of this problem through Lagrangian minimization yields:

~ ~

B - x'x+kn' X'y B» (33
So the ridge estimator is the answer to this problem. The value of k® —which in the
above is the inverse of the Lagrar~e multiplier for the ©Oo constraint—is determined
so that it i{s consistent witl, the prescribed o value. Actually it is simpler to
choose a certafn value for k¥* > 0 and compute the ©o value later. The previous
approach, howev..r, sheds some light on the role of k? in ridge estimation. In
[Hoerl and Kennard, 1970a} another interpretation which leads to identical results
is also discussed. A more gencral discussion which aliows for rank deficient X

and V (error variance-covarfance matrix) is given in [Rao, 1971],
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An examination of the likelihood function for ;§* reveals that the loci of
constant likelihood are also concentric hyperellipsoids centered at é . Based on
this and the similar fact that holds for the ¢ = constant surfaces, Hoerl and
Kennard introduced the concept of the "ridge trace' which is the path described
by the estimate in the likelihood space. This is practically obtained from plots
of the components of é * for various choices of k. Their justification for the use
of this cdncept as a means of studying these estimators is the fact that although
"Jong' and "'short" B‘* 's are equally likely, the "long" ones, which will probably
be farther away from the true value 8, may not always have equal physical meaning.
This is where although not mathematically or statistically stated, the use of Bayes'
approach is implied. The mathematical expression that provides useful information
for the ridge trace is the mean square error E [L2 (k2 )1 which is considered as the
loss function. The following expression can be derived by use of the expectation
operator:

E [L? k)]

E[B*-B) B*-B)

P ~
02 §1 Xi/(xi +]’(2)2 + k4 ﬁT (XTX‘*‘I(',I)—‘ 3

L (&) + Lo () (34)

The first of the terms in (34) represents the total variance of the parameters, while
the second is the square of the bias introduced when B* is used in place of 8. To
obtain the first result we can use the definition of Z from (26) and its associated

eigenvalues from (28) and the fact that:
var [f¥ = 0% ZX'X)* 2’ (35)

In (Hoerl and Kennard, 1970a] it is shown that there exists a i€ > 0 for
which E [L? (¢)] < E[LZ (0)], k® = 0 being the case for the LSE unbiased estimate
é . This existence theorem can be proved by examining the behavior of L (k2 )
and Le(k2 ). In the same reference the following key results are derived:

Theorem 1: The total variance L, (kz) is a continuous, monotonically

decreasing function of w2
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Thcorem 2: The squared bias Ly (k) is a continuous, monotonically
increasing function of i .

On the basis of the above it is shown that:
lim dLyk’) _ 2
K20t d ?) 20"

Hm dLo(K) _
o —dzi—-)d( o =0 67

These results are very important since they indicate that for an ill-conditioned

[ w IR

1 (1/AZ) (36)

system (Aun ~ 0) the total variance will tend to be too large as k? - o while
the bias will be zero irrespective of the condition of X'X. As we move a little
from the origin and k® > 0, we introduce a very small amount of bias (the
derivative of Lz is nearly flat around the origin) and at the same time we reduce
the total variance tremendously. This is better inderstood from Fig. 1 which
is reproduced from [Hoerl and Kemnard, 1970a}. It is a graphical
representation of L., Lz and their sum E[1? (k2 )]. As it can be seen from this
figure, the ridge estimate produces a uniformly smaller mean square error than
that of the LSE, for 0 < ¥ <0.6. For K = 0. 06, the ridge trace achieves its
minimum, This point corresponds to the "minimum variance - minimum bias"
estimate of B8, the one that Rao refers to as BLIMBE in [Rao, 1973]. The
determination of the kK* value that will produce this estimate for B is as follows,
We treat the general case that for each component of 8 a different K is adopted.
Let P'AP = X'X where A is the eigenvalue matrix and P the matrix of
the eigenvectors of X' X. Denoting & = PB il can be shown that starting with an
approximation of 8 and choosing each ki = 02 /& &, the iterative solution until
oo stabilizes will produce the decired set of k® 's and the corresponding ridge
estimzate é*. In the casc of large systems where this procedure may be very
tedious and expensive, the direct solution using the pseudoinverse of X' as shown
in [Rao, 1973] might be more efficient to use. Numerical examples for the
iterative approach can be found in {Hoerl and Kennard, 1970b; Marquardt and
Snee, 1975]. In the second reference the results of the ridge estimator are
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compared to the generalized inverse estimates also. Marquardt [1970] has also
given an excellent comparison of ridge estimators, genecralized estimators and
least squares estimators. This reference is particularly valuable, for it compares
the ridge estimates with those obtained from an "inner constraint' adjustment; a
procedure very popular with geodesists. The ridge =stimator should by no means
be confused with the generalized inverse counterpart, even though the two have
several properties in common. A numerical example solved analytically {ibid.}
with both methods provides a number of interesting results and an illustrative

comparison of these estimators.

80

RSt e SR R St i Al dh i e AR I e il A il ibinah b ¢y Lo W £



Summary

The councept, the foundation, and some of the most popular techniques for
biased linear estimation were presented. The emphasis placed on ridge estimators
is not without justification. One can very easily see their structural resemblance
to what geodesists call "weighted constraints' adjustment. A better understanding
of these estimators will probably help in their optimal utilization in our problems
rather than outright rejection. It is, for instance, true that in a short-arc solution
even when the inherent rank deficiency is taken care of, critical geometry or too
short passes or any combination of such factors may result in a very ill-conditioned
and unstable system. If there is no way to obtain a linear unbiased estimate (hence
a BLUE) or if we agree that we can tolerate a certain amount of bias, then a ridge
estimator with controlled bias may very well be the answer to our problem., A
last remark though should be made concerning the unbiasedness of parametric
functions. If a minimum norm least squares g-inverse is used to obtain the BLIMBE
of a parametric function a' B, then the resulting estimate will be unbiased if we
erroneously assumed that it did not admit a LUE initially and if a'B is estimable.
For the ridge estimator this is not true. In this case, therefore, all parametric
function will be assigned biased estimates irrespective of their status under the

classical least squares theory.
The epilog:
"The science of statistics is essentially a branch of Applied

Mathematics, and may be regarded as mathematics applied
to observational data." [Fisher, 1925]
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