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I. Introduction

The closed looop eigenstructure of a linear system has long been
recognized as an important consideration in the design of control systems.
Most attention in the control literature has baen given to the behavior
of closed loop eigenvalues as paramaters of the control system are varied,
and the root locus has eamerged as a tool to study this behavior. The
behavior of closed loop eigenvectors has also received a lot of attention
because for multi-input multi-output (MIMO) systems the placement of
aiganvectors can be used to shape transient responses, decouple inputs and
outputs, and rejact certain types of disturbances.

The design procedure we have in mind is to specify an asymptotic
eigengtructure that can be achieved with high gain state feedback. Then
the design can be simplified to choosing a single gain so that bandwidth
constraints are satisfied. A way to do this using the linear quadratic
regulator (IQR) is given in [1,2]. The design procedure suggested there
is to specify an asymptotic eigenstructure, choose quadratic weights
based on these specifications, and then vary a single parameter multi-
plying the control weights. In this paper we propose the following
alternative procedure: specify an asymptotic eiguistructure. choose a
state feedback matrix based on these specifications, and then vary a
single parameter multiplying this matrix. The alternative procedure does
not have the advantages of guarenteed stability, phase and gain margins
of the LQR; but is important none~the-less. Both procedures suffer the
serious drawback of requiring full state feedback. A precursor to both

of these procedures is in ([3,4) where state feedback is used to achieve
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a non-asymptotic eigenstructurs.
Thig paper starts with a review of the finite and infinite zaro

structure of the cpen loop system, and treats the infinite zeros as

»¢ll defined quantities. The behavior of the closed locp eigenstructure

ig reviewed, and then an algorithm is prasenﬁad to compute the asymptoti-
cally infinite eigenstructure. Next we show how a MIMO system can be
decomposed inte separate single-input single~cutput (SISO} systems that
have the same asymptotically infinite eigenstructures. Then we present
the previously mentioned algorithm for achieving a desired asymptotic
eigengtructure with full state feedback, and then we finish with several
axamples.

Previous analysis techniques for multivariable root loci have ap-
peared in {5,6]. In the former an algorithm is presented to compute the
asymptotically infinite patterns of the closed loop eigenvalues. The
first of our algoritims is similar to this, but differs importantiy in
that we compute the asymptotic behavior of the eigenvectors and we
introduce a subspace decomposition of R® which can be used decompose the
gystem into SISO parts. In the latter reference the root .ocus is in-
terpreted as living on a Riemann surface. We have not used this ap~
proach because of computational reasons and because we are not yet con=-
vinced tlat an engineer trying to design a control system need concern
himgelf with Riemann surfaces.

The linear systems we consider are restricted to having the same
number of inputs and outputs, being controllable and observable, being
nondegenerate, and having distinct finite zeros. Further restrictions are

placed on the allowable asymptotically infinite behavior of the root locus.
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In later work we hope to remove soms or all of these restrictions and to

study in more detail the synthesis of output feedback.

Notation

Matrices are denoted by capital letters, scalars and vectors by lower
case lettars. AT and yH are the transpose of A and the Hermitian transpose
of y. Subspaces are denoted by script letters, with the exception of
R“. "Im A" and "ker A" are the image and kernel of the linear map A.
The dimension of ( is dim {/, subspace inclusion is ~, subspace inter-

section is N, and linear combination of subspaces is (+ V.
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II. Pole Zero Configuration of an Open loop System

We are concerned with the following linear time invariant system:
X = Ax + Bu L
Yy & (2)

where

xe R

u€ R
m

ye R .

The number of inputs and outputs are equal. We assume that the realiza-

tion is minimal, which is equivalent to assuming that (A,B) is controllabla

and (A,C) is observable. The open loop system has n poles and n zercs
associated with it, and in this gection w& review their dynamic intere
pretations.

The open loop peles are the n eigenvalues of A. The open loop poles

are the complax fraquencies that can appear in the output without appear=-

‘ing in the input.

There are n zeros associated with the open loop system, of which
p are finite and n~p are infinite. The zeros ars sometimes called
“transmission zeros." The finite zeros are defined to be those finite

values of s which reduce the rank of

A-8l B



-6~

We assume that the finite zeros are distinct and that the system is not
degenerate in the sense that not all values of s in the complex plane
reduce the rank of the matrix. The finite zeros are the finite

solutions lg of the generalized eigenvalue problem (7],

A-sgI B xo

i
0 =0 i=1,..., p. (3)
=-C 0 vi

Under our assumptions the number of finite zeros is 0 < p < n-m. As-

gsociated with each finite zero are right zero directions x0 and vo

{ i It
igs also possible to define the generalized eigenvalue problem
OH _OH 0
[yi ni) A-s, I B
- 0 1-1'000' p’ (4)

-C 0

and associated with each finite zero are also the left zero directions
ygﬂ and ngn + The finite zeros are the complex frequencies "absorbed"

by the system in the following sense. If at time t=0 the system is at

sit
for t 2 0 will

state x(0) = xg, then an input of the form u(t) = vge
result in y(t) = 0 for t > 0 (8].
The n-p zerces at infinity are well defined and can be given the

following interpretation [9]. If the input is of the form

2
u(t) = Euié(i) () 3 (5)
i=Q

where Go(t) is an impulse, Gl(t) is a doublet, and so on; and if the

initial state of time ¢t = 0~ is

e % vt v b it inny ontiidi
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2

x(0") = = Pa‘mi ; (6)
=0

where u

0 is arbitrary and the remaining uy vectors satisfy
s - - -
aatly u,
Y] =0, 3
CAB .
o cB vy
3 J _J 4

then the output y(t) = 0 for t > 0. The large matrix in (7) is called

a Toeplitz matrix. The integer 2 is characteristic of the open loop

system and will be interpreted in the next section.
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III. The Asymptotic Eigenstructure of the Closed Loop System
We use output feedback of the form

\l.‘i‘x}" (8)

where K is an mxn invertiable matrix and k is a real number in the

range 0 < k < ®. The closed loop system matrix is

1
ACR-A-EBKC' (9’

and its eigenvalues, right, and left eigenvectors arxe defined in the

usual way by
(Acz - 'iI)xi - 0 i'lp-ao’n (10)
H
Yi(aei - aiI) -0 i=},...,n . (11)

As k is varied from infinity down to zaro the n closed loop eigenvalues
trace out a root locus on the complex s plane and the right and left
eigenvectors "spin" in R". We are particularly interested in asymptotic
behavior as k + 0, which we now review.

As k + 0 p of the n branches of the root locusg approach finite
zeros. The right and left eigenvectors associated with the eigenvalues
on the finite branches approach the right and left zero directions.

The finite zeros and zero directions can be computed using the generalized
eigenvalue problems (3,4), and for notaticnal convience we group the

solutions inte

0 0 0
$ = diag (sl,..., SP)



o~

S ani dhie B SERE B

xo - {xg.-o“ x l

Q

0

Y = IYS;.:.. Y] .

v o

The remaining n-p branches approach the infinite zeros. The n-p
right eigenvectors associated with the sigenvalues on the infinite
branches will asymptotically span the same subspace of !P:pannod by all
possible x{07) of (6), and a similar property can bes derived for the
left eigenvectors.

The information we have given so far about the finite and in-
finite eiganstructure can be computed knowing only the cpen loop system,
and does not depend on the output feedback gain matrix X. Unfortunately
this information is not encugh for a good analysis of a control system,
and this is especially true for an analysis of the agymptotically infinite
eigenstructure. In the rest of this section we list properties of the
asymptotically infinite eigenstructure, mrat of which depend on X, and
in the next gection we show how thase propextiiss can be computed,

The infinite branches of the roct locus break into m patterns. The
order of the ith pattern is D where "order" is defined tc be the number
of closed loop eigenvalues in the pattern. The following identity must
be true:

m

;‘§1 ng=n-p
and the highest order pattern is r. It turns out that r = 1+1, where
i is given in (5,6,7). There are ni asymptotes in the ith pattern.

The closed loop eigenvalues approach these asymptotes and have a magnitude

approximately equal to

= o o 3
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The asynptotes are spaced (360;'%}' apart, maks angles with the positive
real axis of

(u'g (o) + zsso)' L=0,3u00, B2,
n
4

and have a center of gravity “’:.' The n
th

" right and left eigenvectors

associated with the 1™ pattern asymptotically span ths same subspaces

of Rn as

4 ad nj.-l' Ld

B\’i, mi,..., A Wi

n, -1

T o T ® i T e
c nil (m) ni"°‘0 (A C) ni -

For notational convenience wa group the asymptotic properties into

[ ] [
duq(:l,.. .s ta)

=
.

« o
{vl,... ' \’ml

x
a

[nlc---r nn]

-
]

Wyreeer B

.
]

{ (01' 111 21,.Q-’ [nl*lll,
023 12' 22,0.-' [32'1]2,...(!1“'1]&).]
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Each part ij of the multi-index Y describes the A"‘v; vector. The
[_J [

complex numbers 01 and J: and the complex m-vectors vy and n: nust
occur in complex conjugate pairs.
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An Algorithm to Compute the Asymptotically Infinite Bigenstructure
The problem of f£inding the asymptotically infinite eigenstructure
can be concisely stated as: Given A,B,C, and K £ind 8, N , K, ¥, and
Y. We fixst go through a series of definitions and then solve tha
problem. The algorithm can be progranmed on a computer using the stable
numerical algorithms of EISPACK [10] (specifically singular vilue de~
composition (SVD) and the eigenvalue problem), but we make no claims that
our algorithm is the "fastast® or "best". We apologize for the nota-

tional nightmare that follows, but we do not yst know of any way to
avoid it,

., Define the matrices

G, = a1y i=l,..., r

where ¥ is the highast order pattern, and define the subspaces of n"

{"1 = kar Gl

U: - k.: Gl notdﬁ k‘: Gr

Vo= 1

o.

v T
1 = ker Gl

v T T
!.' = Xeor Glf"‘\...{"ﬁ ker Gr .

The subspaces are nested so that
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0- u:gccoguo- l‘

0- v:c "';Vo. n.'
and theiyx dimensions are
liﬂdiﬂui-dh Vi i‘o,....tc

Define the indices

.1 - 11-1- ti 1 - 1,...; r I
and it follows that
T
> oa=n.

We restrict our attention to systems for which », is the numbaer of ith

order patterns and 11 is the number of patterns greater than ith order.

Next we define the matrices

Ui I} Vi iﬂ’l’t." t'l
where the columns of Ui form a basis for ui and the columns of vi form
a basis for Vi' The dimensions of both ui and vi are mxli. We decompose

] L J o«
§ , N, and M into

-« ] o0
§ = diag (81,..., sr)

uﬂ a L

- [N10~"l N!l

a [ ) [ J

M = ["1""' Hr]

In gensral each s:
-]

attention to systems for which each s1 is diagonal. The diagonal elements

is a uixni block diagonal matrix, but we restrict our



are the s;'s associated with ith order patterns., Each of the N: and M:
matrices have dimensions mxmi and havae as columns the d;'t and ﬁ;'s

associated with ith order patterns. As we will see later,

® o

Ui = Im Ni+1 + ...+ Im Nr
iw' csry r=1

® ]

%i = Im ni+1 + eie +Im nr

and in general

L od
mN NN #0

3 i .
mM, N InM #0
i 3
In words the top relationships tell us that one of the possible sets of

&
basis vectors of Ui is the vj's associated with patterns of greater than ith

order, and that in general the vj

statement can be made about the n:'s. The last definitions are

's are not orthogonél. A similar

i - -
g, )rwd

Ty = Ve X050 TV 460

i ) i=l,..., ¢

and the Jordan form decompositions

A, of [wh
‘l‘i = [Wil Wiz] o o WH i=},..., r.
i4 :
The matrices Wil and Wi3 have as many columns as there are ith order
patterns, and w12 and wi4 have as many columns as there are greater
than ith order patterns. The dimensions of '1‘i are gi-l X 21-1'
Wy and w, 4 are 21_1 xm, and Wy and W, , axe gi-l X ,Qi. Finally
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we conclude this long paragraph with the fauct that if there are no ith

w0, 2 - § T =0,

order patterns then n 1

g-1 "R Ut Vit Y

L. o L
and the si' N‘, N,, “11’ and “13 matrices vanish.

The algorithm to £ind S o N » N s Y, and ¥ is:

i

1) Use SVD to compute U,, vi, and ®, for i=l,...,r,

2) Use LA for iml,...,r to compute Y.

3) Compute *ri for i=l,..., r.

4) Compute the Jordan form decompositions of 'ri for i=l,...,r.

5) Compute s:. u:. and N: for iel,...,r by

Mg = VM

6) Compute wi for i=1,..., m by

o - b
i “i
uaa ni o0
ni CA Svi
where B L " N ﬂi‘l .
ni CA Bvi

The following explanation of the first step may bea helpful. The

columns of Ui form a basis for the kernel of
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CB

: 1-1,..:’ 1’-1 '3
calp

80 to compute U1 we can use SVD to compute an orthonormal basis of this

tall skinny matrix. Likewise V, can be found by computing the kernel

i
of
(ce)T
: 1‘1' .. 'r‘l -
i
@i’

i and vi with orthonormal vectors, but this

is a convenient by-product of SVD. There are many other ways to compute

It is not necessary to fill U

the kernmel of a matrix, and SVD is almost certainly not the method
to use when computing the Ui's and Vi's by hand. However, there may be
difficulty determining the dim ui' and SVD is the most reliable way to

do this. If there is difficulty determining the dim (/, then the root

i
locus may have “"strange” behavior such as asymptotically infinite patterns
that shift ¢ lars at large radii.

We note that we have used the last column of a Toeplitz matrix to
find the order of each of the asymptotically infinite root locus patterns.
We have restricted our attention to systems for which this can be done.

In general the entire Toeplitz matrix must be used.
The generic case is when Rank (CB) = m. This should be viewed

as a mathematical property, see [11] for a precise definition of "generic."

If the system to be analyzed is generic then it has n-m transmission zeros

e ke W 1 r—— e
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and m first order infinite patterns. The l:'., Vi

the eigenstructure of XCB, For design purposes the ganeric case is too

s , and ﬁ:‘t make up

restrictive to be of interest. This is easiest to see for SISO systems, for
which root loci with second and higher orxder infinite patterns ars common=

place.
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V. Proof of Analysis Algorithm

In this section we prove the fifth step of the algorithm to f£find the
asymptotically infinite eigenstructure. The proof of the sixth step we
defer until the next section. The first four steps do not need to be
proved.

The proof of the first atep is by induction and uses the fact that
all of the closed loop eiganvalues s, and the associated Vv, vactors must

3 p
satigfy

kKL + d(s,)1vy = 0 j=1,00., 1 (12)

where

0(s) = c(sI-A) "B

- 1

:

i=]l s

To show that (12) is true we note from (1,2,8,9,10, and 11) that

-1 ’0 j‘l,voo' n

and therefore for j=1,...,n we have that

{(A-s . I)x, +BV, = 0

3773 3
Cx, = -kK 2y, = ¢(s.I-a) lav
3 3 5j ) B\j

k&t + c(s I-A)"lswj =0,

3
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The firxst step of the induction proof is to show that the fifth

step is valid for s:, Nl' and ﬁ;. We assune without loss of generality

that first order patterns exist. Equation (12) can be rewritten

kKL G o+ o2y, =0 §ml,..., n
s, 1 s j
3 b
As k + 0 this becomas
[BjI - T].}vj = j- geeas I
wherxe
2 = kg
% j

The nonzerc eigenvalues of T, correspond to first order patterns because

1

the closed loop eigenvalues s, are solutions of

3

o

3 k

The single solution s, traces out a first order pattern. The right and

3

left eigenvectors of Tl are the v?'s and n;'s associated with first order
patterns, and therefore the fifth step is true for i=l. The v;'s ag~

sociated with second and higher order patterns lie in the kernel of Tl'

which is ul. Heuristically speaking, there vg's are not "trapped" by
the sgl term.
The next step in the induction proof is to assume that é:-l’ N:-l '
o

ﬁ:-l are valid and then show that S:, N:, and Mi are valid. 1I1f
h

3 oo t
N4 is valid then the Vj vectors associated with > i~ order

and

patterns form a basis for ui-l' Therefore for each of these v?‘s there

exists a wj such that v? = Ui-luj' Substituting into (12) we get
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-1 :
[k‘ * Q(',)]Ui-le - o j = 1;0.0; 21-1 ®
Multiply on the left to get
T+ 1 2
Vi_l[kx + (‘j)lui_imj = j - Foaey 1_1 !
which reduces to
H _- 1 .H 1 -
["""1-1K 1°1-1 * T V%0t °("I)J wy =0
s s
b 3
J=loeendly

As k*0 this becomes

-}
(’j: - Ti)wj - o j'lp;o., zi_l
whare
0 i
"k' .
o T
The nonzero esigenvalues of Ti correspond to ith order patterns because
the closed loop eigenvalues ‘j are the i solutions of
’oc
o B
3 k
' » )
The wj s can be used to compute vj = Ui-le and therefore Nil - Ui-lwil'
Using a similar argument M: - vi-lwia' The v;’s asgsociated with greater
h ~i

than it order patterns are not "trapped" by the s, term of (12) and

3

therefore lie in UL' This completes the proof.
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VI. A Bigh Gain Decomposition of the System into m SISO Systems

Thexre are m asymptotically infinite patterns of the root locus,
and as we will now show we can decompose the MIMO system into m
8180 systems, each of which has one of the infinite patterns. After
doing this we will prove the sixth step of the analysis algorithm
(£inding the center of gravity of the infinite patterns).

Use the v, and N, vectors to define the following SISO systems:

:.: = AX + biu

Y =cx iel,..., m
u--k—l-y

where

X, = kn:“x v

The return difference equation of each of the SISO systems is

1+ gi(')/ki where

qi(s) - ci('I - A)-lbi

= 2 L B\) isl,..., m.
j-n .j :I. i

Since the closed loop poles are the zeroes of the return diffarence

equation we have that



1l g’i(l)/ki -0

which can be rewritten as

k

i

;;m-rlnb

22

i’l.oonpﬂ I3

i-lgcuoo m .

Carry out the long division and the result is

n

vhere

B

L

'i-

ni-l

-Bi. Pesebt ™ 8 +a-o .0

L) n o
_ngoa ‘nvi

[ ni“l o
nica BV "

L] nj.-l L.J

nica BV i

”010

'ﬁil( vy

] =
X i i’l,boopm (13’

To verify that the asymptotically infinite pattern of each of the SISO

systams is the same as one of the patterns of the larger system we need

only nots that as X*0 (13) can be approximated by

n
L

i

- -
"%

i.lposc' m .

To verify the sixth step of the analysis algorithm of section IV we

approximate (13) by

.0 i.lpnoopm -

R e n o
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The sum of the n, infinite eigenvalues in this pattern must equal Bi

i
and therefore the center of gravity is
Bi
wi-n_ 1-1,.-..! .
i

For n, = 1 the term "center of gravity" could be more appropriately
replaced by "starting point.”

Some of the SISO systems may have complex coefficients. When this
happens a ssecond system exists which has the complex conjugate coefficients.
To work with only real coefficients a 2x2 system must be used. The

closed loop eigenvalues of the combined asymptotic pattern are solutions

of
n n
i, 1= i 1%
(s = + % 01) (s = + " ,.1) 0,
which is
2n n
i 2 i 1l w,2
s "+ Ra(s)s +k2 "il =0 .

The center of gravity of the combined asymptotic pattern can be found

to be “““’1’-
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Vii. An Al thm to theais an c Bi with Full
gtats Feedback

¥We consider a system with full state feedback:

X ®Ax + B

ae-in

xe 2
udl..

We assune that (A,B) is controllable. The problem is to choose a feed-
back matrix P such that as k0 the closed loop system has achieved «

described eigenstructure. Conciszely stated the problem is: Given

89, 0, 5, 8, andy find r.

The solution is
rexs o 1w, o (14)

where

U e [Bv,, ABV,,....A 1 BV,

n.~1l n -1
o 00 2 [ n
BV, , ABV,,..., A mwuua°mg

P = Permutation matrix that rsarranges the columns of
UY in an arbitary way except that the last @ columns
of t.!Y are

n,=-1 n2-1 ® n -1

1 L m ©
1'A szluon,A va
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mmzumx,s.n.mv"mmnmmnm., ™ work just

with real mumbers then replace the complex conjugats columns of x°.

¥, and U7 with their real and imaginary parts, and replace the 2x2 blocks !

-
8 ,';
—» §
in 8" by

u =» o

.1 Im l‘

E [

-In 31 Re s

One way to interpret this result is that state feedback is used to
place the finite and infinice zeros and zero directions, and as the
feedback gain is increased the cloced loop eigenvaluss and eigenvectors
approach these zeros and zero directions.

The dasired asynptotic eigsnstructure is not completely arbitrary.
We restrict ocur attention to cases whars the finite zeros axe distinct

and the 8‘ matrix is diagonal. More fundamental are the restrictions that

(1) the complex sg'n, s:'s. xg'l. and v:‘s occur in complex
conjugate pairs;

{2) for each zero dirsction xg there must exist a v? such that
' (A-tgnxg + W?. - 0y

(3) the number of finite zarcs must be 0 < p < n-ms
(4) the columns of x° and U' must be linearly independent; and

(5) the multi-index Y must specify m asymptotically infinite
patterns whose orders total to n-p.
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To prove that (14) is true we compute the asymptotic eigenstructure
using the previous methods described in this paper. Once T is fixed we
can trsat the state feedback problem as an output feedback problom

i-hi-lu
Y=

u--';-zy .

The asymptotically finite eigenstructure must satisfy

A-lg ] xg
s 0 1-1.-.-,9 .
0
: 4 0 vi
m-utmbocamnhnwun-.dthntavgmumhmt

(A-ogz)xg +* w: = 0, and because T is constructed in such a way that

”‘2 = 0. Mext we show (for isl,...,m) that the i*® asymptotically

infinite pattern is ni':h order and has s: and v: associated with it.
By the way ¥ is constructed !‘UYP = [0 u"s"] and in particular
nj_-l ol @ ®»
FA B\oi - vi.i . B0 if we start with
[k + 0(81)]\" =0 {=s1,..., n (15)
where  $(s) = P(sI-A) 1B , and if we let v, =V, for isl,....m,
then as k*0 (15) can be rewritten
[ _J
u"'—' I v -O 1-1;..., m . ‘16)
ni i

e DR e w6



27

n
Bquation (16) is true if ‘xi = -83/k, vhich is the equation for an 1*® order

pattern. This completes the proof of the synthesis algorithm.

We note that once we have chosen 80, x°, 57, N, and Y thare does
mmemmmuyuammmo:quuuvr This
is sasiest to see for the SIS0 case becauss it is a well known classical
root locus result that the open loop poles and finite zercs determine the
centexr of gravity of the single asymptotically infinite pattern.

Equation (14) can be sisplified in the generic case (Rank (CB) = m).

Mnhnvoe"-!t'm: {(14) bacomes
reus )0 noedyt. an

Equation (14) can be simplified even more in ths SIS0 case when the
state space realization is in controllable cancnical form. PFor S180
systems thare is only one asymptotically infinits pattern, it suffices
to set v, = 1, and thare does not exist any freedom to place the zero
directions x;, is1,..., p. The procedure is to choose the finite zeros
sg for iel,..., p whare 0 < p < n~1; then form the polynominal

P

Q 1
’ I (l-t’_} ws + 39-1'9. L . Bo s
iw]

and then the state feedback matrix is

re ‘Boo 81.---, 39_10 0,..., 9} . {18)



VIII. Examples
In the first exanple we analyze the asymptotically infinite

sigenstructure of a linear system. Then we use full state feedback

to achieve a specified asymptotic eigenstructure.

Example 1 |
We use the sama system as example 2 of [5]. Given the following ‘

A,B,C, and K matrices we use the algorithm of section IV to f£ind the

asymptotically infinite eigenstructure.

p- -

12 ~60 28 -4 32 36 -54

28 75 12 30 0 45 -92 .
-8 -13¢ 33 48 12 71 0

A= | -8 -14 -6 21 -18 5 24
-4 62 -21 =~-12 =18 =35 24

64 - 9% 18 24 12 €0 -200

9 =22 10 -2 12 14  -33
6 o0 8] (.3 2 3]

2 1 3 11 7 -1

6 4 0 1 4 1




1 0
K= |0 1
0O 0

The open loop eigenvalues are -3, -2, =1, 0, 1, 2, 3.

U, and V, matrices we need

i i

1 -1

B=|0O 0

0 0
4 -5
CAZB = 0 -1
0 0

1l 0
Ul-l 2
0 1
0 0
vl- 1l 0
-2 1
ml-l

=29-

To £ind the



At this point we know there will be a first, second, and third order

infinjite pattern. The multi-index Y is therefore

Yy = (01, 02, 12, 03, 13, 23)
where

nl-l,nz-z,andna-:! .

The T,'s and their Jordan form decompositions are

i
1 -1 2
"rl-xca-ooo
o o0 o

1 1 -1 1 0 O 1T -1 2

=]lo 1 1 o o o] o 1 -

o o0 1 o o od Lo o 1

1 (o]
1 1
T, (v’l‘x u) v’;cmau1
1 0
1 1 1 0 1 1l
=
0 -1 0 0 0 -l

H-1, 6 -1 H 2
T3 = (V2K UZ) V2CA.802 = -8 .,

SRR ——

i e



Therefore we have that

1 1
> -l v.= |0 e
e U 1 1
0 2
1
“-1 Q-U =} 1 “-
8, vy = 0¥y Ny = VW, =1 1
0 -1
-1 0
- =
s v, n, = )
1

The center of gravities are
¥, = -2
Y, = = 1/2
by=-1 .

In summaxry, there is one first order pattern along the negative real

axis with a radius of k 1; there is one second order pattern with

angles + 90°, radius k'll 2. and center of gravity -1/2; and there is
1/2

one third order pattern with angles 0°, : 120°, radius 2k '°, and

center of gravity -1.



Example 2

consider a system with

0 1l 0 1 FO 0
-5 -4 0.1 1l 0 0
A= Bm
0.1 0 -1 1 1 0
| o o 0 -5 0 1

For three different cases we specify the asymptotically infinite eigen-
structure and then compute the state feedback matrix F. Since this is a
generic example we use equation (17) to compute F. The asymptotically

finite eigenstructure is the same in each case.

s° = =3%2i x =1 0 t 0 i .

-4

- -

The infinite eigenstructure differs for each case. The specifications
and the resulting F matrices are shown in Table 1. The root loci are
shown in Figure 1.

In the first case we have s: = 1 and s: = 2, The two first order
patterns stay on the negative real axis. In the second case s:'z =13+ /3%
The two first order patterns make angles of $120° with the positive real
axis. 1In the third case s:'z o -3 ti. Again there are two first
order patterns, this time making angles of *30°, and the system is un-

stable for high gain.



oo o_.]

Matrices Used in Example 2

Case NS (N) P
1 1 0o | o 0 1 0 ]
| o 2 | BRE 4 0 2|
2 [ o 1 8 2 0 1
L-4 2 | 16 4 -4 2
3 o T ] ~ 8 2 0 1
| -4 -2/3 -27.713 -6.928 -4 -3.464
- L o



=34=-

Figure 1
Root Loci for Ex le 2
Case #{
+3
1 : = - %5
-15 -10 -5 o}
-3
Case ¥2
t . * '
Case #3




IX. Conclusions

For a restricted class of linear systems we have shown how to
analyze the asymptotic eigenstructure as control gains get very large.
More importantly, we have shown how to decompose MIMO systems into
SISO systems that have the same asymptotically infinite eigenstructures,
and we have shown how to use state feedback to achieve a desired

asymptotic eigenstructure.
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