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ABSTRACT

TRW has been contracted by JPL to conduct a study of the

solid deployable antenna reflector which has been developed

at TRW. The maximum deployed diameter stowable in shuttle

has been determined for the original concept and for new

more efficient concepts developed as part of this study.

Estimates of weight, surface accuracy and cost have been

made for the various configurations. Fijve critical tech-

nologies have been identified which would be required to manufacture
large solid deployable reflectors. These technologies are concerned
with surface accuracy improvement and verification.
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1.0 INTRODUCTION

This report is a summary of the results of a study performed at TRW to
determine the feasibility of stowing Targe solid antenna reflectors in the
shuttle using the Advanced Sunflower Concept developed at TRW. This work
was sponsored by JPL as part of its study of precision self-deployable antenna
systems, which in turn is part of the NASA Large Space Systems Technology (LSST)
program, :

The deployment concept was originally developed at TRW to meet the new
requirement for large diameter, high accuracy reflectors to be used in the 6
to 100 GHz range or higher, within the size limitations of the launch vehicle.

The contract outlined two major tasks. The first was to conduct an
investigation of the original deployment concept, including the following:

(1) Determine the largest antenna of this design stowable in the
shuttie payload compartment. ,

(2) Determine the upper boundary for surface‘quality versus
antenna diameter.

(3) Determine packing efficiency and weight versus diameter.

(4) Develop ROM cost estimate versus diameter and surface quality.
(8) Perform the above tasks for offset fed antennae.

(6) Identify critical technologies required for construction of

these antennae.

The second task involved the development of advanced designs which would
allow antennae up to 100 feet in diameter to be accommodated by the shuttle.
The same information as in the first task was to be obtained for the most
promising of these designs. The original concept of a 6 Main Panel, 33.2 foot
reflector deployed on shuttle, is illustrated in Figure 1. An 80 foot reflector
of the preferred advanced design is shown in Figure 2.

To satisfy these requirements, the following studies have been performed.
The original design was optimized to achieve *the most efficient packaging.
Estimates were made of antenna weight and surface accuracy. Critical tech-
nologies were identified which would be required to manufacture large antennae.

These estimates and technologies apply to both the original and advanced designs.
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Several concepts were identified for increasing the diameter stowed in shuttle,
and the advantages and disadvantages of each are disucssed.

A detailed study of offset reflectors was not performed due to time limita-
tions and since it was given the lowest priority by JPL. Preliminary investiga-
tion, however, indicates that these would stow more compactly than axial-feed -
antennas of the same diameter, due to the reduced panel curvature. Manufacture
would be more difficult, however, due to the fact that some symmetry is lost, -
and more, different shaped, panels must be built. - '

2.0  TECHNICAL DISCUSSION

2.1 Optimization of the Original Concept

The 6, 12 and 18 main panel configurations of the original design were
optimized with an f/D of .4; these configurations are shown in Figures 3 through
8. The optimization was accomplished by adjustment of the hinge locations to
allow a more efficient packing of the panels and subsequent trimline adjustment
to avoid interference between panels when stowed. The procedure is illustrated
for a 12-panel design in Figure 9 which shows the affect of adjustment in one
direction for the five degrees of freedom available. Figure 10 shows the results
of optimization of the 6-panel configuration compared to the original design of
the 11-inch mode! (Figure 11). It was determined that for antennas of this f/D,
more than 18 main panels would not improve the stowing ratio. As shown in
Figures 6, 7, 8, and 9, each triangular panel must remain within an angle
determined by the number of panels. A larger number of panels results in smaller
angles. However, since the curvature of the triangular panels remains the same,
they cannot be stowed as close to the center resulting in a larger stowed diameter.

The results of this study are summarized in Figure 12, The largest antenna
possible in the shuttle with an f/D of .4 as predicted by this graph would be
42 feet with the 18 panel configuration. An increase in the f/D ratio to .62
for the 18 panel configuration would allow an antenna of about 50 feet to be
stowed. Such an increase may also allow the dse of more panels, to reduce the
stowed diameter still more, at the cost of increased complexity. A similar f/D
increase would not result in significant improvement for the 6-panel configuration;
however, since the panel width is the governing factor of the stowing ratio rather
than the curvature. Figure 13 illustrates the effect of an increase in f/D for
the 6 and 18 main panel configurations.
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Figures 14, 15 and 16 show the three configurations as they might appear
in the shuttle payload compartment. Figures 17 and 18 show an isometric view
of the 18 Main Panel configuration deployed 4nd stowed,

%

2.2 MWeight Estimate

The weight of antenna reflectors has been estimated for diameters of 16
to 100 feet. The results are plotted in Figure 19. The weight of feeds and
sub-refiectors are not included. Since the weight of the refiector sandwich
structure predominates (90-98%), the data is approximately valid for advanced
configurations described in later sections which may require additional hinges
or other hardware. The following assumptions were made for the calculations:

(1) Reflector
(a) The 24 foot antenna reflector has the following properties:

face sheet density (graphite-epoxy): .06 lb/in3

core density (aluminum honeycomb): 1.6 1b/ft3
. face sheet “hickness: .009 in
core thickness: .5 in

(b) The 100 foot antenna reflector has the following properties:

face sheet density: .06 1b/in3
core density: 3.2 1b/ft3
face sheet thickness: .018 in
core thickness: 2.0 in

(c) The area density is linear between the 24 and 100 foot diameters.

(d) Adnhesive weight for all antennas: .012 1b/ft3/side.
(e) White paint .004 in. thick at .05 1b/in3.
(2) Support Ring

(a) The 24 foot reflector support ring weighs 8.81 1bs. based on a
previously designed camputer'%ode].

(b) The ring for the 100 foot reflector weighs 10 times the ring for
the 24 foot reflector or 88.1 1b.

(c) The weight of the rings for intermediate sizes varies linearly
~ between the above values.
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| (3) Other hardware, including hinges, drive shafts, tiedowns, deployment }
springs and dampers

{a) ¥he weight of the hardware for the 24 foot reflector shall be
determined by the ratio:

Weight of Hardware (24 foot) ._ Weight of Ring (24 foot)
Weight of Hardware (16 foot) Weight of Ring (16 foot)

8 where the 16 foot component weights are obtained from a previously
designed antenna and the ring fov the 24 foot weighs 8.81 1b.

(b) The weight of the hardware for the 100 foot reflector is ten
“times that for the 24 foot. : ;

(c) The weight of the hardware varies linearly between the 24 and
3 100 foot antennae.

R T R T T

(4) The weight of the 16 foct antenna is calculated from the above-
» mentioned model and does not follow the calculation for the 24 to 100
4 foot antennae.

2.3 Surface Accuracy

An attempt has been made to estimate the surface quality obtainable for the
large aperture antenna reflectors of both the original and advanced designs. Four
separate estimates have been made. The first three are based on presently avail-
abie fabrication technology, imprpved fabrication technology and post-fabrication
adjustment of the panels, respectively. The fourth estimate is for a system with l
on-orbit active control of panel contour. Details of the improved technology, i
post-fabrication adjustment and active control are discussed in Section 2.4.

The estimates of error without active controls are based upon the following
assumptions. Where & is the RMS panel deviation, L is the panel true length, and
t is the panel thickness, all in inches.

f (1) Errors in the panels as fabricateds

A. Existing technology

- 5 =2.0 X104 L
w - B. Improved technology
s=.7%10% ¢

A
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C. Post-Fabrication Adjustment
& = .0005" for all Tengths.
(2) Assembly errors '

A. For the largest antenna in the one,.two and three ring
configurations (40, 80 and 120 feet respectively).

0 Error due to inspection system tolerance: & = .0005 per 20 ft
o Error due to positioning of'pane1s: § = .001" per row of panels
0 Error due to 1G deflections: ¢ = 001" per row of panels.

.B. For the smaller antennae in each configuration, the total
error due to assembly is .001" less than that of the largest,
per 10 feet diameter reduction.

(3) Deployment Errors

A. for the single ring confiyuration: ¢ = .001" per 40 ft diameter

B, for the Z ring configuration: & = .0 5" per 40 ft diameter

C. for the 3 ring configuration: & = ,0015" per 40 ft diameter

+ .0015".

(4) Errors due to thermal effects

. K
A, & = 7

where K = 1,185 X 10’5 based on the previously analyzed 16 foot
diameter reflector whose panel length and thickness were 54"
and .32" respectively and whose maximum RMS error due to
thermal effects was .002".

B. For the 100 foot reflector, disregarding the fact that there
may be three separate rings, L = 570", t = 2" and s = .0034".

) C. & varies linearly between these values for all reflectors
\ : (Figure 20).

P, The pan%b thickness varies linearly from .32" for a 16 foot
“diameter to 2" for a 100 foot diameter refiector (Figure 20).

=

¥ These errors are summarized in Tables 1, Z and 3.
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For the fourth estimate, the active control compensates for the errors due _
to assembly, deployment, and thermal effects. The fabrication.errors with im-
proved technology (Table 2) are assumed to apply with a factor of four improvement.
A11 four error estimates are plotted versus antenna diameter in Figure 21. Also
included in Figure 21 is the acceptable RMS error for various antenna freguencies.
These values are based on the equation:

. i _ -(4n &2
Antenna Efficiency = ng. = e A

where A 1is the wavelength of the antenna frequency, and:

In this equation, if the focal length (f) is equal to .8 times the radius (r)
that is, the f/D ratio is .4, then:

e = .719 A2
where AZ 1s the RMS error of the reflecting surface.
If %- = ,02 is an acceptable ratio, resulting in a gain/loss of 10 log ng = .274 db,

- e . .02, _
then hE —:'ﬂ"g' .—7~T§- .0278x

2.4 Critical Technologies

Several critical new technologies judged necessary for the construction of
successful large diameter antennae have been identified. These technologies mainly
concern the advanced fabrication and adjustment techniques mentioned in Section 2.3,
and related problems, In addition, they apply equally to both the original design
and the advanced concepts, and therefore, no additional technologies have been
defined for the advanced concepts.

The five proposed studies are outlined in Tables 4 through 8. Table 4
# describes a program to investigate ways to improve manufacturing and reduce the
as-fabricated errors discussed in Section 2.3. The second study (Table 5 and
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Figure 22) would determine the design of back-up structure-and adjustment joints

of panels for post-fabrication adjustment of contours. The sstive control concept

is described in Table 6, and Figures 23 and 24 illustrate two possible systems.

A study of layup molds for large reflectors is described in Table 7, and a contour
measuring device for assembly and testing complete reflectors is proposed in Table 7,
and a contour measuring device for assembly and testing complete reflectors is pro-
posed in Table 8 and illustrated in Figure 25.

2.5 Alternate Designs For Improved Packing Density

Several designs have been considered as possible alternatives to improve
the stowed to deployed diameter ratio, and thereby increase the size of the
antenna stowable in the shuttle. Of the six designs examined, one, the sunflower
concept, is an existing and successful design, one is a modification of the
original design, and the other four involve the addition of a second and possibly
a third ring of panels to the original configuration.

2.5.1 Sunflower

This design, illustrated in Figure 26 has been previously developed for
space applicitions and is capable of providing a 100 foot antenna stowab™ in
the shuttle. The major drawback, however, is that upon deployment, the panels
are not connected together and would require either complicated latching mech-
anisms or considerable EVA to achieve a sufficiently accurate reflector.

2.5.2 Main Panel Hinges Removed

In an attempt to allow greater flexibility in the geometry, the hinges
between the main panels and support ring were removed and arms were added to
control deployment. These control arms extend from the torque tube at the sup-
port ring to the outboard hinge between the triangular panels. In this con-
figuration the main panels are supported and driven by the triangular panels.
The concept is jllustrated in Figure 27. A new set of possible hinge point
adjustments were generated for optimization, similar to that for the original
optimization (Figure 9), with ten degrees of freedom. The optimization study,
however, indicated that no significant improvement in stowed diameter was to be
gained by this approach, since the curvature of the panels or the outside length
of the triangular panels still governs the ratio. The loss of stiffness with
the removal of the hinges also makes it undesirable. This method may be useful,
however, for stowing antennae into non-cylindrical compartments.

i
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2.5.3 Double Ring Configurations

The most successful approach, so far discovered to impfove packing, has
been to break the antenna into two rings of panels rather than one. By this method,
the effect of the panel curvature is reduced and the panels may be folded closer
to the axis of the reflector. Several ways of attaching and controlling this
second ring have been examined. With the possibie exception of the last, all of
the concepts have the potential of being extended to a three-ring configuration,
perhaps using different concepts for each ring.

2.5.3.1 Equal Numbers of Panels in Each Ring

The simplest double ring configuration consists of converting a single
ring of panels by splitting each panel approximately mid length. The hinges of
the single ring are repeated in each new ring. The main panels of the outer
ring are hinged to the outboard end of the main panels of the inner ring, while
the triangular panels of the two rings are not connected. By utilizing this new
degree of freedom and by manipulation of the outer ring hinges, the second ring
can be optimized independently, taking advantage of the reduced curvature of
the shorter panels. This approach is illustrated in Figure 28,

2.5.3.2 Half as Many Panels in the Inner Ring

To reduce the number of panels required for the system described above,
the inner ring may be comprised of half as many panels as the outer, taking ad-
vantage of the reduced packing density required in the lower part of the stowed
antenna. Since alternate outer ring main panels are then unsupported, additional
mechanisms must be added to completely control deployment. A configuration with
6 main panels in the inner ring and 12 in the outer js illustrated in Figures 29
through 32, and a 18-36 configuration is shown in Figures 33 through 36.

2.5.3.2.1 Long Arms as Dummy Main Panels

f
To substitute for the inner ring main panels, control arms could be

substituted. These arms are connected to the support ring and are driven by the
same drive shaft as for the original panels. This configuration is alternate B
in Figure 37 which shows a six panel inner ring and a twelve panel outer ring.

A major drawback of this configuration is that the arms are not connected to the
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inner ring of panels as were the main panels which results in a less stiff
reflector. The controcl arms may also add significant weight and complexity to the
structure,

2.5,3.2.2 Pin and Slot Between Inner and Outer Triangular Panels

An alternate control device conéept, which eliminates the need for
the long control arms, consists of a pin and slot joint between the inner and
outer ring triangular panels. This concept is alternate A in Figure 37. The
exact location on the back of the parels and the shape of the slot have not been
determined, although preliminary stucies indicate that the design is feasible.
While this device would reduce weight compared to the control arms, the reflector
would be more unstable during deployment since the position of the three panels
between the two controlled outer ring panels is not completely defined, throughout
deployment. This lack of definition would be acceptable, however, since it does
not allow panel interference or jamming, and upon deployment, the outer ring of
panels is supported more rigidly at the outer edge of the inner panels, rather
than by the support ring through the control arm.

2.5.3.2.3 Outer Ring Main Panels Pinned to Inner Ring Hinge Line

In this version, illustrated in Figure 38, alternate outer ring main
panels are made very narrow, and the inboard end is attached to the hinge line
b- . 2en the triangular panels of the inner ring. The principle advantage is that
the control arms are eliminated, while still providing a unique position for all
panels throughout deployment. This concept has not been fully developed, due to
time limitations, and there remain interference problems between certain panels
in the fully stowed position. A third ring would be more difficult to design
for this configuration than the others, although it may be useful as a third ring
added to a second ring of another design.

3.0 COST ESTIMATES
i
ROM cost estimates have been made for four reflector configurations, all
with a stowed diameter of 14.5 feet to fit in the shuttle orbiter bay.

The cost breakdown and configuration description are presented in Table 9
and the cost is plotted versus diameter in Figure 39. The estimates were based
on 1980 rates.




MEL-79-B-126
4.0 CONCLUSIONS

It has been determined that for the original single riné concept, an 18
main panel configuration would prdvide the most efficient stowed package, al-
lowing a 42 foot diameter reflector to be accommodated by the shuttle payload
bay. With a constant f/D ratio, fewer panels would result in less complexity at
the cost of stowable diameter. More panels would both increase complexity and
reduce stowable diameter.

Reflector weight has been estimated to range from 68 1b for a 16 foot
antenna to 7800 1b for a 100 foot antenna.

Contour errors have been estimated for various manufacturing techniques,
and it has been concluded that oneorbit active control would be required for
antenna frequencies greater than 100 GHz. However, 20 GHz is achievable for

most sizes without adjustment, if improved fabrication technology is implemented.

A double ring configuration has been chosen as the most promising to
increase the deployed diameter. Up to 80 foot diameter reflectors could be
stowed with an 18 main panel inner ring and a 36 main panel outer ring. Six
and 12 main panels in the inner and outer rings respectively would allow a
49 foot reflector, compared to 42 feet for an 18 main panel single ring, which
has the same number of panels.

Reflector cost has been estimated between $1.4 million and $4.6 million,
depending on size and configuration.

5.0  RECOMMENDATIONS

Several critical technologies have been identified, all of which are
concerned with the contour accuracy of reflectors. It is recommended that a
study be conducted for each. The first choice for a single study which would
improve contour the most would be the development of a post-fabrication adjust-
ment technique. This technique would compensate for systematic errors due to
the mold and due to fabrication of individual panels. It also would bias the
contour to minimize thermal distortions. Existing molds can be used for panel
fabrication and improvement in the accuracy of individual panels can be evaluated
by measuring the contour before and after adjustment with existing inspection
equipment. The main disadvantage of this system is that it requires a dual
structure which represents a significant increase in cost and weight.

-10-
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An additional or alternate study would be to improve contour accuracy by i

increasing mdld accuracy and panel fabrication procedures without adding structure
behind the reflector surface.

To achieve the highest degree of accuracy, an active control system should
be studied. Two concepts are illustrated in Figures 23 and 24. The concept of
Figure 23 1in conjunction with post fabrication adjustment would compensate for :
many of the errors but with the addicional adjustment capability of the concept i
shown in Figure 24, or new concepts, the accuracy could be further improved.

It is recommended that a study of active control systems be conducted in con-
Junction with the post-fabrication adjustment system. After completing develop-
ment of an actuating system for individual panels this éystem would be combined
with a contour sensing systeh for verification on a single panel, then multiple
panels and finally a complete reflector. The accuracy predictions for each of
the contour improvement techniques are illustrated on the plot of Figure 21.

An additional recommendation is to build a scale model of a dual ring reflector
to verify the kinematics of this new concept and to further evaluate the results ‘
of the critical technology studies. o

s .

6.0  NEW TECHNOLOGY

The following is a list of items considered new technologies reportable -
co NASA. In all cases the innovators are the authors of this report (William B. ]
Palmer, Staff Engineer, TRW; and Martin M. Giebler, Member of the Technical
Staff; TRW), and the technologies are presented only in this report.

e Post fabrication adjustment techniques for solid deployable
reflector panels, pages 37, 38

e On-orbit active control of panel contour, pages 39, 40, 41
e Contour measuring and assembly device for large reflectors, pages 43, 44

e Double ring deployable reflector configuration, pages 47-50
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33.2 FT. REFLECTOR ON SHUTTLE

6 MAIN PANC

FIGURE 1
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FIGURE 2 80 FT., 24.4 METER PRECISION DEPLOYABLE REFLECTOR ON SHUTTLE
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FIGURE 5 18 MAIN PANEL CONFIGURATION
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BEFORE OPTIMIZATION
(11 INCH MODEL)

AFTER OPTIMIZATION

FIGURE 10 6 MAIN PANEL CONFIGURATION BEFORE
AND AFTER OPTIMIZATION
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11 INCH MODEL

FIGURE 11
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F/D= .4 6 MAIN PANELS F/D=.5

| F/D= .4 18 MAIN PANELS |

FIGURE 13  EFFECT OF INCREASED F/D. (ALL ANTENNAS
51 FT. DIAMETER DEPLOYED)
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FIGURE 20  THERMAL DISTORTION AND SHELL TH!CKNESS

VS. REFLECTOR DIAMETER
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TABLE 1 ESTIMATE OF RMS ERROR, EXISTING TECHNOLOGY
ERROR 1 RING 2 RINGS 3 RINGS

' CONTRIBUTOR | 200 300 400 | 400 e0r 80 | 8O' 1000 1200
i AS FABRICATED 017 .020 .031 |.0154 .0294 .043|.029 .038 .047
ASSEMBLY .001 .002 .003|.004 .005 .004|.007 .008 .009

DEPLOYMENT {.0005 .0008 .001 |.0015 .002 .003|.0035 .004 .0045

THERMAL .002 .0022 .0024|.0024 .0027 .003|.003 .0034 .0037

TOTAL 10205 .0250 .0374].0233 .0391 0540 .0425 0534 .0642
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TABLE 3 ESTIMATE OF RMS ERROR, POST FABRICATION
PANEL ADJUSTMENT

ERROR 1 RING 2 RINGS 3 RINGS
CONTRIBUTOR 20 30' 40'| 40" &0 80'i 80' 100° 120"
POST FAB ADJUSTMENT  {.0005 .0005 .0005|.0005 .0005 .0005|.0005 .0005 .0005
ASSEMBLY .0010 .0020 .0030|.0040 .0050 .0060|.0070 .0080 .0090 | =
g ' DEPLOYMENT .0005 .0008 .001 |.0015 .0020 .0030|.0035 .0040 .0045 ’
|| 13 THERMAL .0020 .0022 .0024| .0024 .0027 .0030|.0030 .0034 .0037
TOTAL .0040 .0055 .0069| .0084 .0102 .0125|.0140 .0159 .0177
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1 EXISTING PANEL FAB TECHNOLOGY
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3 POST FAB PANEL ADJUSTMENT - T !
4 ON ORBIT ACTIVE CONTROL, COMPENSATES FOR ' !
060 - ASSEMBLY, DEPLOYMENT AND THERMAL ERRORS ‘
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FIGURE 21 PREDICTED CONTOUR ACCURACY OF LARGE
DEPLOYABLE REFLECTORS LAUNCHED ON SHUTTLE
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TITLE:
OBJECTIVE:
APPROACH:
TASKS: @
¢
o
®
®
[

TABLE 4 CRITICAL TECHNOLOGY STUDY 1

CONTOUR ACCURACY CONTROL FOR PRECISION DEPLOYABLE KEFLECTORS.

IMPROVE ACCURACY OF FABRICATING INDIVIDUAL PANELS.

DESIGN, FABRICATE AND MEASURE PANELS TO DEMONSTRATE THE
ADVANTAGE OF ONE CONFIGURATION OVER ANOTHER. ANALYTICAL
MODELING WILL BE UTILIZED WHERE FEASIBLE TO PREDICT

THE EFFECT OF THE VARIOUS PARAMETERS.

IDENTIFY PARAMETERS THAT COULD CONTRIBUTE TO DISTORTION
MODEL PANEL AND VARY PARAMETERS TO ASCERTAIN CONTRIBUTION
OF EACH

DESIGN TEST PANELS TO ISOLATE EACH PARAMETER TO DETERMINE

ITS CONTRIBUTION

FABRICATE BOTH FLAT AND CURVED PANELS TO ISOLATE THE
PARAMETERS AND PROVIDE CONTROL AND REPEATABILITY OF

THE FABRICATION PROCESSES

MEASURE CONTOUR ACCURACY

OPTIMIZE THE CONFIGURATION
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TITLE:
OBJECTIVE:
APPROACH:
TASKS: ®
®
®
[ ]
®
@
®

TABLE 5 CRITICAL TECHNOLOGY STUDY 2

CONTOUR ACCURACY IMPROVEMENT B8Y POST-FABRICATION ADJUSTMENT OF
PRECISION DEPLOYABLE REFLECTORS.

DEVELOP CONCEPT FOR IMPROVING ACCURACY OF IND!VIDUAL PANELS BY
POST FABRICATION ADJUSTMENT.

ONE OR MORE CONFIGURATIONS WILL BE CHOSEN FROM TRADE-OFF STUDIES
OF VARIOUS CONCEPTS. THE ACCURACY OF THE CONCEPTS WILL BE
DEMONSTRATED BY DESIGNING, FABRICATING AND MEASURING THE CONTOUR
OF PANELS REPRESENTATIVE OF A DESIRED LARGE DIAMETER REFLECTOR.

CONCEPTUAL DESIGN OF ALTERNATE CONFIGURATIONS

USE ANALYTICAL MODEL TO DETERMINE OPTIMUM NUMBER AND LOCATION

"OF ADJUSTMENT POINTS

CHOOSE PRIME CONFIGURATION AND DESIGN SHELL, AND BACK-UP STRUCTURE

FABRICATE SHELL ON EXISTING MOLD OF 98 IN. FOCAL LENGTH IF DEEMED
ADEQUATE

FABRICATE BACK-UP STRUCTURE
MEASURE CONTOUR

ADJUST TO OPTIMIZE CONTOUR

"y

<y
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GRAPHITE FRAME

—t- FLEXURE TO MINIMIZE EFFECT
OF TEMPERATURE DIFFERENCES
OF FRAME AND SHELL

1 g /— THREADED STUD TO ADJUST CONTOUR

ZREFLECTNE SURFACE OF GRAPHITE SHELL

FIGURE 22 CONTOUR ADJUSTMENT CONCEPTS
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TITLE:

OBJECTIVE:

APPROACH:

TABLE 6 CRITICAL TECHNOLOGY STUDY 3

A STUDY OF ACTIVE CONTOUR CONTROL OF LARGE PRECISION DEPLOYABLE
REFLECTORS.

DEVELOP CONCEPT FOR IMPROVING ACCURACY OF COMPLETE REFLECTOR IN
SPACE WITH ACTIVE ADJUSTMENT.

AN ANALYTICAL MODEL WILL BE USED TO PERFORM THE TRADE-OFFS OF THE

CONCEPTUAL DESIGNS. AFTER THE ADJUSTMENT LOCATIONS AND THE
REQUIRED FORCE/MOTION iS DETERMINED THE ACTUATING SYSTEM WILL BE
DESIGINED. ONE OR MORE TYPICAL JOINTS WiLL BE DESIGNED, FABRICATED
AND TESTED TO VERIFY ITS CAPABILITY. A BREADBOARD OF THE SENSOR
SYSTEM AND CONTROL ELECTRONICS WILL BE DESIGNED AND BUILT TO
DEMONSTRATE THE COMPLETE SYSTEM ON A REPRESENTATIVE PANEL.
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APPLIES MOMENT TO PANEL TO COMPENSATE
FOR PANEL CURVATURE DUE TO

PROVIDES LINEAR MOTION TO COMPENSATE TEMPERATURE GRADIENTS - 6 PLACES
i FOR CHANGES JN PANEL WIDTH AND MAINTAIN

e PROVIDES ROTARY MOTION TO CORRECT FOCAL LENGTH - 6 PLACES » 1
| 1 CORRECT FOR PANEL TWIST - - ~ ]

- R ALSO PROVIDES DEPLOYMENT . /\ _
;. T . TORQUE AND RATE CONTROL - & PLACES . ‘

: /‘\ v./ ! — y
d CAM MOVES HINGE IN DIRECTION SHOWN ‘! 3

SLOTTED HOLE IN KINGE HALF

i - e

’ e — / - I ZV

X 5 1s PROVIDES LINEAR MOTION TO - L

A 3 '\.“ @ COMPENSATE FOR RELATIVE DISPLACEMENT T .

: §b OF THE INBOARD HINGES ~ & PLACES - ) \MOVES PANEL TO COMPENSATE

: EOR PANEL TWIST - 6 PLACES

SECT. A-A /—\\ FITTING ON SHAFT APPLIES MOMENT ~

SLOTTED HOLE IN HINGE HALF ALLOWS ”
VERTICAL MOTION PRODUCED 8Y ;
OTHER ACTUATOR

TYPICAL CAM ACTUATION
FOR LINEAR MOTION

NN

@ ALL ACTUATORS ARE GEARED STEPPER MOTORS SECT- BB

@ ACTUATORS MOVE PANELS IN DIRECTION iNDICATED BY ARROWS

FIGURE 24  SHAPE CONTROL ACTUATION SYSTEM FOR
LARGE PRECISION DEPLOYABLE REFLECTORS
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TITLE:

OBJECTIVE:

APPROACH:

TASKS:

TABLE 7 CRITICAL TECHNOLOGY STUDY 4

A STUDY OF LAYUP MOLDS FOR LARGE PRECISION DEPLOYABLE ANTENNA
REFLECTORS.

TO DEFINE A MOLD CONFIGURATION THAT WILL PROVIDE THE NECESSARY
ACCURACY WITH MINIMUM PRODUCIBLITY COSTS.

DESIGN REQUIREMENTS WILL BE DEFINED., METHODS FOR FABRICATING THE
MOLD WILL BE COMPARED AND SIZE CONSTRAINTS ESTABLISHED, A
PRELIMINARY DESIGN WILL INCORPORATE THE REQUIRED FEATURES FOR THE
MOST COST EFFECTIVE CONFIGURATION,

DEFINE ACCURACY AND SIZE REQUIREMENTS

CONSIDER FABRICATION METHODS TO PROVIDE THE DESIRED ACCURACY
DETERMINE SIZE LIMITATIONS OF MOLD FOR INDIVIDUAL REFLECTOR PANELS
DETERMINE OPTIMUM MATERIAL FOR MOLD

DEFINE TEMPERATURE CONTROL SYSTEM FOR CURING REFLECTOR PANELS
PRELIMINARY DESIGN OF MOLD '

PROVIDE COST ESTIMATES FOR VARIOUS SIZE AND ACCURACY REQUIREMENTS

i 1
*
.

T e

W amanid

e




TABLE 8 CRITICAL TECHNOLOGY STUDY 5
:
|
TITLE: CONTOUR MEASUREMENT SYSTEM FOR LARGE, SOLID SURFACE, ANTENNA
REFLECTORS. .

S

OBJECTIVE: DEVELOP CRITICAL COMPONENTS OF THE MEASUREMENT SYSTEM.

APPROACH: A CONFIGURATION WILL BE CHOSEN FROM ALTERMNATE COINCEPTS,
CRITICAL COMPONENTS WILL BE DESIGNED AND FABRICATED TO VERIFY
THE OPERATION AND ACCURACY OF THE 3YSTEM.

s Raomad memn

—SV—

TASKS:  ® PERFORM CONCEPTUAL DESIGN GF ALTERNATE CONFIGURATIONS o
®  MAKE TRADE OFF STUDIES OF CONFIGURATIONS : s

® CHOOSE PRIME CONFIGURATION i

® DESIGN CRITICAL COMPONENTS FOR DEMONSTRATION

e i e+ b o2

® FABRICATE AND ASSEMBLE SYSTEM

PRES . Sewapeier et

® MEASURE A PANEL TO DEMONSTRATE THE AC;URACY OF THE SYSTEM

: 1
. LJ

[




PRELOADED BEARING

PIVOT FOR MEASURING ROD

TELESCOPING SPINDLE \

STEPPER MOTOR /BALL-SCREW
FOR RADIAL POSITIONING

COUNTER WEIGHTS

MEASURING ROD

\

HOIST TO RAISE SPINDLE ‘
FOR REFLECTOR SET-UP

I { .. O { el

MEASURING ROD

LINEAR VARIABIE
DIFFERENTIAL TRANSFORMER
(LVDT DISPLACEMENT)

" SUPPORY STRUCTURE

MOTOR DRIVEN ROTARY TABLE | FOR ASSEMBLY

FIGURE 25 REFLECTOR ASSEMBLY AND INSPECTION TOOL
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STOWED
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. DEPLOYED

FIGURE 26 100 FOOT DIAMETER SUNFLOWER REFLECTOR
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10.8

31.8 DIA

/ #.2F10.D.

2.6

2.2

Xz

DEPLOYED

FIGURE 28

21.6

DOUBLE RING CONFIGURATION WITH EQUAL
NUMBERS OF PANELS IN EACH RING (12 MAIN
PANELS PER RING SHOWN)

STOWED
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FIGURE 30 6-12 MAIN PANEL DOUBLE RING 3
CONFIGURATION, DEPLOYED
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ORIGINAL PAGE IS
OF POOR QUALITY

STOWeD

DEPLOYED

18-36 MAIN PANEL DOUBLE RiNG
CONFIGURATION

FIGURE 33
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FIGURE 35  18-36 MAIN PANEL DOUBLE RING

CONFIGURATION, STOWED
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R SLOT ATTACHED TO OUTER RNG
D TRIANGULAR PANELS
1
) PN ATTACHED TO BNNER RING
\f ::I// TRIANGULAR PANHS

A . -

]1 s / i

i/ N M

k4 NS

ALTERNATE A. TRIANGULAR PANELS OF OUTER AND INNER
RINGS: CONNECTED BY A PIN AND SLOTTED EINK

FIGURE 37

Lt i S vy AR R {7 e e TR et 2 S L P e i

/‘{

CONTROL ARM TO ALTERNATE
OUTER RNG MAIN PANELS

/-MA.N PANRL

MARN PANH. HINGE CONNECTED
TO DRIVE SHAFT

DRIVE SHAFT INTERCONNECTING CONTROL ARMS AND
WINER RING MARN PANEL HINGES

URHVERSAL JOINT

ALTERNATE B. OUTER RRNG CONTROUED B8Y LONG ARMS TO THE SUPFORT RING

DOUBLE RING CONFIGURATION MECHANISM
ALTERNATES (6-12 MAIN PANELS SHOWN)
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PANEL INTERFERENCE

FIGURE 38

DOUBLE RiNG
RING PINNED T

CONFIGURAT]

TO INNER RING

HALF PANELS
SHOWN

ON, OUTER

PIN JOINT BETWEEN NARROW
MAIN PANEL OF THE OUTER

RING AND THE HINGE LINE OF
THE INNER RING
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TABLE 9

CONFIGURATION
NO. MAIN PANELS, INNER RING

NO. MAIN PANELS, OUTER RING
DEPLOYED DIA, FT {METERS)

ENGINEERING

MANUFACTURING
RECURRING
NONRECURRING

PRODUCT ASSURANCE

MATERIAL

TOTAL

ASSUMPTIONS:

A
6
0
300

$ 615,107

386,977
185,000

37,145
204, 093

$1,428,322

® MATERIAL CHARACTERIZATION COMPLETED
DOES NOT INCLUDE THE FOLLOWING:

® ANY ENVIRONMENTAL TESTS
e GROUND HANDLING EQUIPMENT

® SHIPPING CONTAINER

B
18

[
42 (13)

$ 696,712
801,433
195, 104

81,844

266,213

$2,041,306

ROM COST ESTIMATE BREAKDOWN

C
6

12
49 (15)

$ 971,213

741,515
352, 261

75,392

396, 357

$2,536,738

D
18
36

80 (24)

$1,111,098

2,004,045
501,239

203,710

905,030

$4,725,122
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