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Ii.

Abstract

Spectral Analysis In Geodetic Science and a method for the solution of
least-squares collocation in the frequency domain as well as a fast Toeplitz
Inversion algorithm it thf, Zpaee domain are outlined.

The mathematical background in spectral analysis as applied to geodetic
applications Is summarized. Ingeodetic problems, we usually have discrete
and non-periodic data. The resolution (cut-off frequency) of the GEOS-3
altimeter data has been examined by determining the shortest r.avelength
(corresponding to the cut-off frequency) recoverable. The data from some IM
profiles were used in this study. The total power (variance) in the sea surface
topography with respect to the reference ellipsoid as well as with respect to the
GEM-9 surface was computed.

A fast Inversion algorithm for matrices of simple and block Toeplitz
matrices and Its application to least-squares collocation is explained. This
algorithm yields a considerable gain In computer time and storage in comparison
with conventional least-squares collocation.

Frequency domain least-squares collocation techniques are also introduced
and applied to estimating gravity anoma'ies from GEOS altimeter data. The. e
techniques substantially reduce the computer time and requirements in storage
associated with the conventional least-squares collocation. Numerical examples
given in this paper demonstrate the efficiency and speed of these techniques. The
number of numerical operations required to calculate the signals is proportional
to N logy N (where N is the number of observations) rather than N 2 with the
fast Toeplitz inversion algorithm or N3 with classical collocation.
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1. Spectral Analysis and Applications

1.1 Introduction

Spectral analysis can be defined as the process of calculating and inter-
preting a spectrum. It actually yields a deeper understanding of data as well
as the systems which produced those data. The latter property has been very
useful in geophysical applications.

Spectral analysis is a good tool for the analysis of time or space series.
This approach is commonly known as "the frequency domain method". While
using spectral methods one always has to keep in mind that the frequency domain
approach is not the only way to study time series. Time series can also be
studied using the time domain approach by parametric models such as autore-
gressive. (AR) or autoregreselve moving average (ARAIA) models etc. Brit the

frequency domain approach has great advantages over the time domain approach
as we will explain in this chapter.

The transformation of a record to the frequency domain is termed its
"spectrum". The frequency and/or wavenumber, which is the reciprocal of
frequency, is in many respects a more significant and more useful variable to
use than the time (or space) functions. It is to be noted that transforming a
data vector, say x(t) , into the frequency domain dues n; ► t mean the addition

of anything new but only rearrangement of the given data according to frequency
(or wavenumber) instead of according to time sequence. The advantage of rep-
resentation In the frequency domain comes from the fact that most geophysical
phenomena are expressed theoretically in frequency dependent form. The in-
dependent variable frequency or wavenumber provides a reliable and unique
check on the data in the time domain and on the systems which produce those
data. In the frequency domain, comparisons of different records are referred
to the same value of a certain parameter. Spectral analysis utilizes the whole
signal, so no information is left out. For details see Bath (1974).

1.2 Application Fields of Spectral Analysis

1.2.1 Prediction and Interpolation

As it is very well known, time series analysis is mainly concerned with the
study of the time (or space) variations of physical processes. When the state of
the process is represented by measurements with one or more components at the
time point, then we can represent the variations of the process over time by a
vector of real-valued functions. These functions can be expressed as a sum of
an infinite number of sinusoidal terms, i.e. Fourier series. This is nothing
else but fitting to the data a trigonometric polynomial !n the least-squares sense
so that the value of the function can be predicted everywhere along the profile or
surface.

-1-
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1.2.2 Analysis of Sample Data

We reduce a complicated function to a series of simple trigonometric
function, In other words to Its fundamental wave functions which provide a
different and rather revealing information for the sample sequence.

A time function x (t) can be characterized statistically when the mean,
variance, and covariances between the values of x ( t) at different times are
given. But in the analysis of a finite length of record the spectrum, which Is
the Fourier transform of the autM-ovariance function ea shown later, is often
preferable to the autocovarlauce function mainly for the following reasonst

a) Estimates of the spectrum at neighboring frequencies are generally
uncorrelated. Thus we can interpret the sample spectrum easier than the
sample autocovariance function.

b) As it was mentioned before, in many physical problems the spectrum
Is of direct physical interest to us.

1.2.3 Aid to Computations

We can use spectral analysis as an aid to computations, because some
calculations can be performed more easily in the spectral domain than in the
time (or space) domain. The frequency-domain representations are often sim-
pler to handle computationally. This feature will be applied in Chapter 4 for
the recovery of gravity anomalies from geoid heights which can be called the
solution by frequency domain least-squares collocation.

1.2.4 Filtering and Control

By spectral methods we can compute the wave components of a time (or
spact;) series and remove some unwanted components from the estimates. Fil-
tering represents a weighted average in the time domain and a single multipli-
cation In the frequency domain. So filtering is easier to apply in the frequency
domain than In the time domain.

1.2.5 Differentiation and Integration

By means of differentiation the relative distribution of power can be em-
phasized in the high frequency (Mayhan, 1978, p. 5-27), for example;

X(t) 	 &0C1ew°!
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c^X IM	 d dx` t) .) (inwo) X!
µ ^-

X "1 t)	
do
ot'	 )	

I n w, f X; i.

where X,; are complex Fourier coefficients, tv- 2 !, /" i , . the fundamental
angular frequency, and 1 3-T. Here we cup Pf, - that x" ( t) would have
more high-frequency content than x(t) becausx^ of tl ., -ApIwarance of n`.

If we art, interested in deemphasizing the high -frequent. content of a
signal, then we can use Integration, for example;

u
xl(t) .: P x(t) dt

(Tn—:,
x:

a

x (t)
	 x1(t) 

dt 
-

(In	
)' X, e'Tw

provided the average ( mean) value is zero. In this case x. ( t) would have less
high-frequency content than x(t).

In addition w the applications above, the frequency domain methods have
been successively applied for the estimation of transfer functions for simulation
and optimization of the data vector, for generating new physical theories, for
pattern recognition, for studying periodic solutions to physical problems de-
scribed by differential - -, ►atlons, for approximating non-periodic functions, as
an operatixmal device for sAving differential equations, etc.

1.3 Fourier Series and Fourier Transforms

1.3.1 The Standard Form of Fourier Series

In order to represent a data vector In the frequency domain we shall study
Fourier series and eourler transforms first. According to the Fourier theorem
(Bath, 1974 , p. 26) a periodic function x ( t) having a fundamental period T
and satisfying the Dirichlet ' s conditions can be represented by an infinite Fourier
series	 00

X(t) = —
c
) +	 (a„ cos nwot + h r sin nW) t)	 (1.1)

2	 _!
where wo = 2n/T is the fundamental angular frequency, a,, and b, are Fourier
coefficients. The derivation of eqn. (1.1) is given in Appendix I. The Dirichlet's
conditions can be summarized as follows;

- x( t) Is at least sectionally continuous with finite jumps
- x(t) possesses a finite number of maxima and minima
- The integral r x( t) dt should be convergent.

t
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As an example a typical periodic function is shown in Figure 1.1 below.

X(t)

C(,.

	

T/2	 t

s
	 s-C

Figure 1.1. A Periodic Function.

We can determine they Fourier coefficients of eqn. (1. 1) through the
following steps:

- To find the coefficients a, multiply eqn. ( 1. 1) by cos nw,,t, n 0 0 1,2,...
from both aides and integrate over the period T with respect to t .

- To find the coefficients 1), multiply eqn. (1. 1) by sin n Gk,t , n 1 9 2 0 ...
from both sides and 1ntegrnte over T with respect to t .

In the integration procedure above the following orthogonality relations
have been used:

T/2
sin mwot sin nwot dt = S 0

r

f
 T/2

rcos mwot cos nwc,t dt 	 ; T
0

f,S In  mint cos nwot dt = 0

for m = n 0
oche rw ise	 (1.2.a)

for m n 0
for m n - 0	 (1.2. 1))
othe rw in 

for all m and n	 (1.2. c)

Following the steps above, we have for the Fourier coefficients of eqn. (1. 1)

a„	
T 

f x(t) cos neat dt,	 n s 0,1,2,...	 (1.3. a)
r

2
b n = :r T x(t) sin nwet dt,	 n = 1 0 2 9 ...	 (1.3.i^)

As can be seen from the expressions above: ar in the cosine transform of x( t)
and b., is the sine transform of x ( t) . it is common to call a,, "co - spectrum"
and bn "quad -spectrum" (Bath, 1374, p. 40).

1. 3.2 The Complex Form of the Fourier Series

We can also express the Fourier series in complex form by substituting
the following identities

-4-
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Con nwnt	 ( it"' u,'4 + t, - ' W ' ),°2

(1. 1)
sin nu:;,t	 (t'",W, I _ c► -'`')f(2i)

In eqn. (1.1) to (A twin
a,;

x(t) .;-tyr ; 	 (a - (b )e	 ) f (a - ih ►o r	 '-
t,	 a5 -P

where,	 X., " i (a . - il)), n	 "`,...1-1,0,1,..., 	 (1, 4)

are the complex Fourier coefficients. 'Phis is the complex form of till' Fourier
aeries. if we substitute eqn. ( I .3.-a-1)) in eqn. .. I ), we (nave

X. _ fi r x(t) 
e,:,k.,' 

(it	 (1. H)

The eqn. ( 1. A) is called the "frequency domain repr% seut.ttion of xi t W. The
resulting complex Fourier coefficients art orthogonal (Papotills, 1965) sach that

0 for n t m
F. X, X. = ) 

a . for n m	
(1.9 ►

whe re t; donotca the expectation over 'r, and I,(&) _ E 
I 
x	 t (X, - 0 for n r

We also define a quantity n,, as follows:

ry e, L: :1•^,E(x(t)x(t+T)	 ' wO'd	 to-	 (1,	 (1.10)

Equation ( 1.3) above can be proven as follows;

a) E f X,,t	 J, Et x ( t ) I c-"' W,), 
d 	 (1.11)

since E( x( t) ) Is a constant this expression is zero for n 2 0

b) C(h* x(t)) ° C 	 ^.1—rJ C ( t-u)el Wd1du (1.12)

where C ( t-u) is the autocovariance of the function xi :) and the superscript (*
denotes the complex conjugate. if x( t) is periodic in the mean square svnse,
which will be explained In Section 1 . 3.5, then C ( T ) Is also periodic, i. c.
C ('r)	 G (T + T). Then It follows

E ( X"* . x( t) } _ tx., e s `;	 , 	 (1.13)

Now we can prove that

E(Xi, X n*}	 ,1, 
Jr 

Et X"*.x(u)) 0 - 1 k(^, du

	

e - ' 0- ") W"' du = J 0 for n{ k	 (1.14)
T r	 1 n, for n- k

-5-
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Using a similar approach we can also show the complex form of the Fourier series

E ( jx(t) - 7 X" e
tnt l s^	 0	 (1.18)

n 9K. 0

Let us take the square of the homogeneous equation above In order to see the
cancellations of its terms.

Etx(t) x(t)1 r.I E(X.* x(t)}eln
(
4^p`r.r+f' o3'rX x*(t))e""aOt+Z^	 —E^X,Xk1e(K 14:c?'

r...o A	 •

a C(0) -Lair. et r. we d.Sr.ubt

C (0) - tv,	 0
r.	 ao

wCr* fn(fit e l nWo t + I O,.
A	 ,, r	 n	 a

(1.16)

The last equality follows from eqn. (1 . 30) in section 1.3.6.

Eqn. (1 . 8) can also be de rived directly from eqn. (L 6) via the orthogonality
relationships for the exponential function defined as

ITe
t.4^ae Q snc^^ot dt	

T for n • m

	

 ^ 0 othe rw ise	 (1.17)

Multiplying both sides of eqn. ( 1.6) by e-1 "00 ' and integrating on (0, T) we have

J x (t) 
a -1 n WOt 

d t 
= J t riL-ao Xsel s (,^^p s e! r. tip t dt

t

Interchange the order of summation and integration

J`T x(t) e7" 'O' 
dt = '* X. J 1 

e i a Wo t	 l r^ Wo t 
d t = T X, (1.18)

and

Xr, 

=	 J x(t) @ 1nWOt dt, nTr 
	 = —OC,..• , 0,...,°°	 (1.18)

Z': r.;re is a unique one -to-one correspondence between x(t) and Xn called a
Fourier transform pair, usually denoted by

x (t) k-0 Xn

So for a given x(t), there is one and only one set of Xn , and vice versa. The
set of Xn corresponding to x(t) is called the "spectrum" of x(t) .

Since Xn is complex one needs two graphs to display X,,. One is the graph
of the (X.,+ versus n, or frequency which is called the amplitude spectrum and
the other is the graph of the angle of X n versus n or frequency which is called
the phase spectrum. The expressions for amplitude JXn I and phase angle o,,
are:

X. = k ( a ,' + b r,2 ) i	 (1.20)

,fin =: - tan -1 (b,,/a,) = Arg Xn	 (1.21)

-6-



From these relations we can write

xr. _ X, I e' Yr.	 (1.22)

As readers already have noticed, an far ( for example from eqn. (1.1) or
(1. E1) ) the spectrum of a periodic function x(t) is a discrete distribution made
up of a finite number of frequencies when observational data are used.

1. 3.3 The Cosinewave Form of the Fourier Series

Still another form for eqn. (1. l) can be derived using the Identity

a, cos nwot + b, sin ncwc,t s- A, cos (nubt + (p, )

In eqn. ( 1.1) to obtain
CO

x(t)	 i- ' + E A,, cos (nwot + ip,)
r.=1

(1.23)

where A,, - (a, + b^ ) f' is the amplitude of the cosine wave and ;p,, = - tun ' (b,, /a,, )
is the phase angle of the wave.

1. 3.4 Average Power and RMS Value

There are some cases where we are only Interested In the average power
contained in any frequency component which comprises x(t) . So here we speak
about the power of x(t) . Average power for a certain wavenumber or frequency
Is defined as 2) X„ 12 and plotted against wavenumber or frequency. This function
Is an even function of n, and contains no phase information.

The total average power is expressed as

P
pvG	 T j  x2( t)d 	 (1.24)

and the RMS value of x ( t) Is defined to be

a
[ x(t) ]Ws _ PAVG = [ T JT x', ( t) dtl	 (1.25)

By Parseval I s theorem ( the proof is given in Appendix 1. A) the eqn. ( 1.24) can
be written	 a

a	 a
PAvc =^ 2 > + nF, l (a n 2 + b y 2 ) /2	 (1.26)

or identically in terms of amplitudes of cosinewaves or by complex Fourier
rerwffin inntia

PAYG 
= C^)	 n- 1a +
	 IAra

-7-
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k,

	

Pw, - X: + 2 t 
1 x' 1 2

	 I Xn I 2 	(1.28)
n-1	 n--•

In some reference textbooks eqn. (1 . 26) is expressed in terms of average
degree powers

	

PAac - 10 P12
	 (1.29)

-where Pns • (an + b9)/2 - A ra/2 - 2 I Xn I'. n = I t 2..... and Po - (ao/2)a.

1. 3.5 Mean Square Periodicity

A function x (t) is periodic in the mean t.quarc sense if the autocovariatnce
C(-) Is periodic ( Papoulis. 1968). p. 367), i.e. if C ( T ) - C ( ,r + ,r) for
every T then we can transform C ( r ) to the frequency domain;

w+
C ( T ) ° !.^ rd :, el ' WO T	 (1.30)

where at, are the complex Fourier coefficients of C (T) and defined as

	

D(	 1 ^^ C(T) 
.7 1 r.W^TdT

	

n	 T (1.31)

The power spectrum (also called spectral density) of a function x( t) is the
Fourier transform of its autocovarlance function given as

S(W) = i'_00 C(T)e
twT  

d r	 (1.32.it)

and the inverse Fourier transform can be written

C(T) _ IryMS(w) e'Wrdr

If we substitute eqn. (1.30) in (1.32. a) we obtain

1 ,a

s

I -

	

S(W) =	 a!nJ 
eInW0' a IWTdT

n=-CO 

	

W	 T

(1.32. b)

rw
r 

r 

wO( r. Z (W:,)	 (1.33)

where z (WO = J e tn;Ajo a !W T dT is the Fourier transform of z ( t) = exp(Inwb r).

If we combine the exponential terms of z (WO then we get

z(W0 = 	 1 e' (W_n b)T dT 	 (1.34. a)

This is the Fourier transform of z (t) = 1 with the angular frequency (w - nwc) .
Now denote X = w - nab in order to write

Z(A) _ ^w 1 e' ,1T d 
	 (1.34. b)

The equation above is the classical Fourier transform of z (t) = 1 with angular

-8-
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frequency A . To evaluate the integral above we will show that

1 H 2TT-6(w)

i.e. 2n , 6 (w) and i are the Fourier transform pairs, where 6(w) la the F
Dirac delta function (unit area impulse) defined as follows:

CO
6(t)0 for t4 0,a-

	

	 6 ( t) dt= 1, and finally,	 ,6(t) x(t) _- x(0).
W

For the proof, let us compute the inverse Fourier transform of 2 n - 6(w).

r^X(t) - i - -- J	
e'Wtdw

2n 
r (2TT 6(w)) e' W ' dw = 1
J ^
	

(1.34. c)

Hence, eqn. ( 1.34. b) can be written as

1 H z(A) = 2rr - 6(A) = 2 TT 9 6(w -nwo)

So we have proved that
I"

z(Wn) 
= r e lnwpT a -1nWT dT - 2TT 6(w- nwo)	 (1.35. a)

m

if we substitute this equation in (1.33) we obtain

S(w) = 2rr E ar ft 6(w- nub )	 ( 1.35. b)
n -- w

Eqn. (1 . 35. b) shows that the spectral density S(w) of x(t) is a sequence of
equidistant Impulses.

1.4 Finite Fourier Representations of Arbitrary Functions and Windows

By a Fourier series we can approximately represent an arbitrary function
x (t) as a harmonic polynomial of finite 4 (t) with finite degree N. We have
to truncate a Fourier series at some finite degree, because In practice we cannot
carry the series expansion to infinity. But how large need N be chosen to have
a reasonable approximation to x (t) ? In this section we will attempt to answer
such a question. We will also examine whether

llm xN(t) = x(t)
N -+ o0

for each t in the interval (0, T).

Finite representations of arbitrary functions lead us to the concept of a
"window " , which is described as follows; If x (t) and y (t) are periodic

M

-9-

a



f

F

n

6
N

functions with period T such that

Y( t ) " Jf W(t - -) x(-) dr

then W (t) is called the window through which y ( t) views x (t) . Some Im-
portant properties, which a window should possess, can be stated as followst

1. A window W(t) should be an even function to give equal weight to the
values of x( - ) about a given point.

W(t) - W(-t)

2. W(t) should integrate to 1.

Jr
 W(t)dt = i

so that if x ( t) w c a constant, then we would have y ( t) = c , the same
constant.

3. W (t) should have Its maximum value at t = 0.

(W(t) I s W( 0) for all t

4. W (t) should concentrate as much as possible around the origin, say t - 0.
in order to clarify the concept of concentration, let us consider the area,
A, defined as	 pT/I	 r A 

	

A = J 
T/2 

W(t) dt, and A l = J-A. W(t) dt, AT	 T/2,

such that A, should be as close to A as possible. Thus y (t) should
reflect the behavior of x (t) in the neighborhood of t.

1.4.1 Dirichlet and Feler Kernels

Let us define the discrete Fourier representation of x N (t) as
N

a
4(t) = Z +nE l (a, cos nwo t + b,, sin nwot ), wo = 2n /T	 (1.36)

and substitute egns. ( 1.3. a-b) in the above equation and interchange the order of
summation and integration to obtain

xN(
 
t) = 2 Jj x(a) [cos nwoXcos nwot+sin nwoasin nwodrdX+T^x(a)dX (1.37)

T	 n=1	 0

which can be shortened to

xN ( t) =Tr T [ 0.5 + cos wo(a - t) + ... + cos Moo (a -t)) x (X) A 	 (1.38)
JO,

or as given by many authors

xN( t ) = T JoT DN [Ub(A -t)I x(X) A	 (1.39)

-10-



where	 M(z) = 2 (0 . 6 + cos z + cos 2z 4. ... • 1- cos Nz), z - w t	 (1.40)

Eqn. (1.40) is Identical to

D. (z) - sin ( N+0.5) z /sin (0.5 z)	 t1.41^

The eqn. (1.41) can be shown by multiplying both sides of it by (sin z/`L) and
then substituting eqn. (1.40) for U, ( z) . This function is even and periodic
with period 2n . The function M(z) is called "Dirlehlet's kernel" having the
following roots and maximum value

MM - 
^(2 0 1) for z „_ t 2 "	 4-'	 ( 1.42)

+ 1LN 'fN—
From eqn. (1.39) it can be seen that DN ( z) is the window through which

x,, (t) views x (t) . Dirichlet's kernel has some disadvantages such as not
concentration satisfactorily about t =- 0 , and slow convergence etc.

Parzen ( 1967, pp. 212-213) suggests, as an alternative to eqn. (1.36), the

Fejer's arithmetic mean 7 N (t) defined as

3&dt) = N+1 1XO(t)+x,(t)+... 4 Xtjt)1	 (1.43)

This converges uniformly to x(t) , provided x ( t) is a continuous periodic
function. Ft N (t) can be expanded Into a finite Fourier series as follows

N

xN(t) = ^ (1 - rj+i) (a^, cos nubt+b,, sin nw,;,t) 	 (1.44)

or with integral representation (proof is given in Appendix 1-B)

r
1;N t ) ° T fo FN (2 T7 X,r t ) x(X) dX	 (1.45)

where	
rrFN I z)	 N+ 1 
I_ sin
	 +	 z]^+ z =- 211t /T 	 (1.46)
sin 4 z

FN (z) is called the Fef er kernel.

1. 4.2 The Modified Truncated Fourier Series

A modified expression for the truncated Fourier series is defined by

xN *( t) = -%( t) -* (aN cos Nwot + bN sin Nux,t]	 (1.47)

or with integral representation

xN*( t ) = T Ja DN* (2n T 
t ) x(X) dk	 (1.48)

-11-
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A
C

where	 13t(z) - A„(z) - co,. ' I z - sin Nz /tan ( )	 ( 1.49)

1.4.3. Tukey Means

Tukey suggested the following mean to form a harmonic approximation to
x( t) (parzen, 1967, p. 215)

xN ( t) = 0.25 xn, *(t - T/2N) + 0.5 V( t) + 0.25 x,, *(t + T/2N) 	 (1.50)

We can find the window corresponding to Tukey means by

x" •( t)1 (0.25 M*[^(X - t) -p j + 0.5 Dn,*[^ ( A - t) j

+0.25 DN*[(a- t) + Aj } x(X) d 	 (1.51)

J . TN (T (X- t) j x ( a ) dX	 (1.52)
c

where	 TN( Z) r 0. 25 1)„*( z- R) + 0.5 DN *(z) +0 . 25 DN *( z +"), z-2nt/T (1.53)

and it is called the "Tukey kernel".

For comparison purposes, we show in Figures 1.2, 1.3 the Dirichlet,
Fejer and Tukey kernels. it can be seen that the Tukey kernel provides a
better harmonic approximation, since it is more concentrated around the
origin than either the Dirlch1et or the Fejer kernel.

1.5 Fourier Expansion Using Discrete Data

Lecause of the following reasons we may have to use the values of the
function x( t) at the N equispaced points;

- The determination of the Fourier coefficients of the periodic continuous
function x( t), with period T, might be difficult because of the difficulty in
evaluating the integrals defining the coefficients,

- x ( t) might not be known at all points t in the interval 0 s t T but
may be known only at equally spaced points.

Suppose the values of the function x (t) are known at N equispaced points
to, tl , to,..., tN-1 defined by

t, = n At,	 n = 0,1 9 ... 9(N-1)
	

(1.54)

where At = T/N.

Eqns. ( 1.3. a-b), which are the Fourier coefficients of eqn. ( 1. 1), are
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represented in discrete form, as will be proved later, as follows

2 N-1jW, ;o x( j • At) cos (2njn1N),

b, - 2 o x( j *At) sin( 2 n jn/N),

where

N14 	 (
(N - 1)/2 if N odd
 N/2 if N even

n - 0,1,...,NH	 (1.55. a)

n - 1,2,...,NN	 (1.55. b)

(1.56)

In aqua. ( 1.55. a-b) we let n go up to N„ , because in order to know the
values of the discrete Fourier coefficients (a, b.) to n - a , It suffices to know
them up to M. We can justify this conclusion by using the following identies:

cos (kN + n) wb t j - cos (n wbt 3 )
cos (kN - n)wot j = cos (nwot3)	

(1.57)sin (kN + n) ab t j = sin (n woy
-sin (kN - n) ub t 3 =	 sin (n wot j )

where wo= 2r /T = 2n/N • Gt and t j - j •At and substituting them in egns ( 1.55.a-b)
above we can see the pe riodic lty of the Fourle r coeff is ients at bas is into rval (-NH, NN),
in other wordy

an	
akN« n Ibn 	 bkNtn

 -NH 5 n S NH and k - any integer.= 

Moreover, we notice that an = a-,, and bn . -b - n , where 0 s n5 NH-

As can be seen from eqn (1 . 1) that a n , bn n = 0, 1, 2, 3,..., N„ are the
only distinct Fourier coefficients for N equispaced data points, since from N
equispaced observations we can only determine N other quantities namely an,
b,„ n =0, 1,..., NH.

If we define frequency as the number of cycles In the data interval T(=1)
then NH is known as "Nyquist frequency or folding frequency". And from dis-
crete observations we can only determine the Fourier coefficients up to the Nyquist
frequency. So the eqn. ( 1.1) takes the following form for the discrete expansion:

x(k • Ot) _ o+i ( an cos 2nkn/N + bn sin 2 n kn/N), for N odd	 (1.56)
2 n=1

a N - 1	 aNx (k • At) = 2 +Ni (a. cos 2„ kn/N+b, , sin 2nkn/N)+ "1 bosn k, for N even 11.59)

where N„ is defined as in eqn. ( 1.56).

Now consider the following trigonometric
N - 1	 N

k 
I ocos 2^km/N cos 2n kr/N =	 0

N-1	 IN/2
A, s in 2r► km/N cos 2*► kr/N =	 0

N1 sin 2nkm/N sin2nkr/N = 1N0
k=0	 t 0

identities
for m = r = 0 or N/2
for m ^ r
for m = r ;^ 0 or N/2
for all m and r
for m = r i 0 or N/2	 (1.60)
othe rw Ise
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and suppose the values of the Auction x(t) at N discrete points are given,
then from egos. (1.58) and (1.60) we can determine the Fourier coefficients
an j and b^ , which are defined by egns. Vii. 55. a-b), 1. o.

2 w-1
an a IT J. x(k-4t) cos 2^kn/N, n $0,1,...,Nw

k c	
(1.61)

.Z N - 1

bn = 
N

x ( k •4t) sin 2 n kn/N,	 n a 1 , 2,...,N+.
k.0

it Is also possible to write the complex and eosinewave forms of the discrete
finite Fourier series (corresponding to egns. ( 1. 6), (1.16), and (1 . 23)). Suppose
the continuous function x (t) with square integrable derivative Is defined on the
interval (0, T) and evaluated at N points

k •4t = k -TIN , k=0,1,..., ( N-1)

then the complex form of the Fourier coefficients are given by
1 N- 1

	

X^" ) =	 (an -Ibn) s X	 x(k • 4tl e7 
1QT1kr/N	

(1.62)

and the inverse transform x (k -At) can be expresses as follows
NH

L X(N) .2r1jkDA	 for N even-	 ^
x(k•4t) 

ns 
N

M^^1
y 	 ( 1.63)

Xn
(N) ©:t"fkn/►, 	

for N odd
n e^lw 

where NN Is defined in eqn. (1.56).

The expression for the cosinewave form of the function x(k • 4t) defined
at N equlspaced points (corresponding to eqn, ( 1.33) of continuous function
X(t) ) is

N

	x (k •4 t) =	 + 1 A, cos ( 2 n kn/N - On ), k = 0,1, ... , (n-1)	 (1.64)

where A n = (ana +bna )^, on = - tan-
1 (bn/an)•

The computation of the complex Fourier coefficients defined by eqn. (1.62)
or the computation of a data vector from the complex Fourier coefficients defined
by eqn. ( 1.63) requires roughly N' complex multiplications and additions. Sind
the time of computation of the transforms above Increases by the square of N
data points, computationally It becomes inefficient or even impossible for very
large N. For this reason spectral analysis requiring the discrete Fourier
transform (DFT) has not been so common in the past.

In 1924 Runge and Konlg discovered a method for efficiently computing DFT.
This method Is known as the fast Fourier transform ( FFT) algorithm. However,
Runge and Konig's FFT algorithm has gone unnoticed and FFT was "rediscovered
by Cooley and Tukey In 1965 (Cooley, 1965). FFT takes advantage of the fact that
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DFT can be carried out iteratively, which results in a considerable savings of
eomputstton time and in an improvement of round -off errors associated with
these computations. FFT requires roughly N logs N complex multiplications
aad additions of the classioal discrete Fourier transform method. A detailed
explanation of FFT is given in Appendix 1. D.

The discrete Fourier transform pair for the fast Fourier transform (FFT)
is given as follows=

N-1
N). 1	 's"kr/"x(k•At) a

_

N	 direct Fourier transform (1.65)r<^
h

x(	 N) 2"'k r,/N1^ • At) =	 X(„ a	 inverse Fourier transform (1.88)
0

This transform pair is uaually denoted

X^" )*- , x(k •At)

We see that eqn. (1.62) can be directly transformed into the frequency domain
using FFT, but not eqn. (1 . 63), where the sum is not from zero to (N-1), in the
present form. By rearranging eqn. (1 . 63) we have,

x(k • At) _	 Y^ h) e l^nkn/h +	 Y(N)e l2nka/h	
(1.67)

n O	 n	 NN

where	
Y(N)	

XJN)/2 for n-0
Xr)/2 for n - N►, and N - even
X N )	 otherwise

Eqn. (1 . 67) is equivalent to

h	
taT► kn /N 	 (N)	 J2nkr,/4

	

(1.68)
n 0	 n 0

where the superscript (*) shows the complex conjugate of the function inside the
parentheses.

r

Now let the sum go to (N-1)
%—I

x(k • At) = E 'L (") e t 21
n=0

where	 GJN) 

t o
Y

_	
n

such that

7kn/N+ 
E1 (2

(N))* e 1QT1 kn/N	
(1.69)

n=0 

for 0 s n !5 NH
othe rw ise	 (1.70)

Finally we can write,

x(k • At) = xl (k • At) + x1 ', (k • At)	 (1.71)
N —1

where	 x1 (k*At)	 ZnN) 
et

2T1kn/N
n O 
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which can be calculated by FFT, and x, ( k -At) Is just the complex conjugate of
x1(k-At).

Further, we can show the relationship between the complex Fourier rnp-
resentations of discrete data and continuous function, i.e. the integral form.
The sampled function x ( k -At) is expressed from eqn. (1 . 63) as ( sut poso N
is even)	 P+ H

x(k-At)	 X, c 1"k 	 (1.72)
F - -rl 14 • i

If we compute the Fourier coefficients of the continuous function x ( t) using the
integral form eqn. (1 . 16), we get

& - T j x ( t) e-1
 .toot	

(1.73)

Suppose we evaluate x(t) at the points ( k -At) , k - 0 0 1, .... (N-1) using X,
computed by eqn. ( 1.73). We then obtain

x k At	 X1. e 
i , W0 k . L'is

n
a^ 

YY E,1.:'T k :,^N
	

(1.74)

By the periodicity of the complex exponential we can write
NW

x k -A t - 
r el n k r./^+	

+	 +	 +	 +	 + .. .(	 )	 G^	 (Xi,	 ( Xn-►+	 Xn^+^)	 ^Xr.-^+^	 X:N.,^h)	 ^	 (1.75)

r M-NH41

Equating the coefficients of exp (

Z

2 n 1 k n/N) of eqn. (1 . 72) and (1.76), we get

X(" ) = Xn + 
	 (X^^-^h + Xr,^N)	 (1.76)

From now on A(O will be denoted simply as Xn .

It is very important to note that the coefficient for the nth frequency of the
function defined at N points is the sum of the coefficients of the continuous
function at the (n, n+N, n-N, n+2N, n-2N,.9. ) frequencies. The frequencies
(nfN, n+2N,... ) are called the "ALIASES" of the nth frequency (Fuller, 1976,
p. 119). We already know that the frequency ( N/2) Is called the Nyquist
frequency(see p. 114). The aliases of an observed frequency are those frequencies
v wch are obtained by adding or subtracting integer multiples of twice the Nyquist
hvqueney.

1.6 Breakdown of Variance from Sampled Data (at N Points) and Periodogram

1.6.1 Breakdown of Va rlanc e

The total average power (or the variance) of the function x(k-At) is defined
as follows

-17-
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Mĉ•++
3

POaa - N ^lr o (x(k •4t) )a

i I

(1.77)

or in terms of Fourier coefficients, i.e. In the frequency domain (from the
Parseval's theorem)

k^
PAVOS (no/2)" + ( ana + b.) + Poo" 	(1.76)J i

• XO' + 2 ^: ^ X^^^ + p
i 2, where p►,N' t

(ahN' a 
H )/2 tf N odd

n 3	 k,, /4	 if N even

If we substOute ( a. +	 A.$, where An is the amplitude of the cosinewave
as defined by eqn. (1.84), we get

N,^- a

	

P.V6, 	Ao + ►̂
 n^3 A

na + I'►r„'	 (1.79)

The degree power of this !unction Is given by

( A na + b na )/2 - A,a 	21 xj" for n a 1 9 2, ... # (N. -1)
a	 ao /4	 for n - 0

	

P,	 (aNM + bN49 ) /2 	 for n- N, and N odd (1.80 )
aNN A	 for n - N„ and N even

so finally it is possible to write
N

PAv as -
 t P,2

1.6.2 Periodozram

The periodogram is a function of frequency ( n) and used very frequently
in practice. As we will show later it is the discrete Fourier transform (WIT) of
the autocovarianee function of the data vector :n question. Moreover, it is directly
related to the degree power defined in the previous section.

The Fourier coefficients of egns. ( 1.58-59) can be considered as regression
coefficients ( Fuller, 197C, p. 276). Then by the standard regression analysis we
can partition the total variance ( N • P,4vn ) of the N observations as follows;

N • (a a +1)2)  /2

16 ( n ) = N. L,2 /4
N • (ail' + b: ) /2

04	 H

for n = 1 9 2, ... , (NM-1)
for n = 0
for n = NH and N even
for n = NN and N odd

(1.82)

where the Fourier coefficients are given by egns. ( 1.55. a -b). Notice that eqn.
(1.82) is equivalent to IN ( n)	 N • P. .

by (n) Is usually known as the "peridogram". if we assume that x (t) is a

-18-
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L (n ) /O,
^

X 11 for n	 s 1, 2 9 ... , (N.,-1)
1N(NN)/v ° Xe' for N even
IN (0)/V' Xee
1N(Nj /v" X8 for N odd

(1. M:1)

sc►c{ueocc of nortnal^ ind©pondent (O,v'') random variables, then the rourier
coefficients ( al .b.) o being linear combinations of x(t), will be normally
distributed. These coeffieiernts area independent, because the sine and cosine{
functions are orthogonal in the basic Interval. As a result we can write

Let us substitute egns. (1.55. a-b) in eqn. (1.82) in order to imt an alternate
expression for the periodogrum

N - t
L(0)	 "RkZ',[x(k•At)ju	 (1•Mt)

IN(n) ' N ( 	 x(k • At) cos 2nkn/N) i 	 ; x(k • At) sin 2rkn,!Nj "}(1. S5)

	

if N even, then IN (N„) is given by	
n " 1 9 2 0 ... , N.,

1	 ''-,1
IN (NO :- -^ I ^ x(k • At) cos k^.

k '" 0

If we consider the following trigonometric identities
N	 h

r 1x(k •At) cos 2nkn/N _ 
k	

ix(.--At - µ I cos 2^kn.'N	 (1.S7)
 N

Fx(k • At ) sin 2Rkn/N =	 [x(k•At) -µj sin 2nkn/N	 (I. 8g)
ks1	 Mvl

then eqn. (1. Hie) can be written as

f
1' (n)	 N lL L (x(k•1,t)-µ )cos 2,1 kn/N+C	 (x(k*At)-µ) min 2-?kn'NT

k- ,	 K=1

IX
? {
	

t j x(k#At)-M j(x(j-At)- pJ cos 2.. ,1n ( k-J)	 j	 (1.Sa)' ; N	 ,

N ow let k - J - p, to yield

i "- i
L(n) =	[xIJ'At)-µl(x(J•At+p•At) -MI cos 2 np/N	 (1.4)0)

V =-(N -1)

where 1	 +p s N such that
N-E	 N4

for p 0	 and 
	 for p -'0

substitute these in eqn. (1.90) in order to gat.
N-1	 .l N ,

16(n) = 2	 cos 2nnp/N{ N^I x(j•At)- µl(x(1•ot+IpI•It)-µJ

N^-N

11

S
^' --(N-1)	 J -- 1

L,(n)	 2 `	 -,(p) cos 2 ,Tnp/N, n = 1 9 2 9 ... 9 NH	 (1.91)

-19-
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16 (o) - N' V

where X - t x(At) + x(24t) + ... + x(Nbt) ] IN is the mean value of the
function.

It can be proven ( Fuller, 1976, p. 279) that

	

Lim E [ 1, (w)) s 4r f (w) ,	 w ^ 0	 (1.92;
N "Ce

where	 f(w) = 2ns^y()) cos )w

and	 Lim E { 1N (0) - 2 N µ a ) - 4 n f(0)
N-.®

Having found the Fourier coefficients, tctal average power, and degree
power, now we can compute the uncertainties of these quantities. If the discrete
observations x (k -at) are Independent and normally distributed N (µ, a 2) with
Fourier coefficients ( a„,b n) defined as in eqn. ( 1.61), i.e.

rL N-1
a n = — 1 x(k • ilt) cos 2nkn/N

2 k i	 (1.93)
b” 	N k x(k •4t) sin 2nkn1N

then, as derived in Appendix 1. C
a4e N 1var (aj = E (a n - F(.aj'I = N k;0Cos' 2nkn/N	 (1.94)

using the eqn. ( 1.60) we find

2o
2
/N	 for n :i 0

var (a,) = 4v
2
/N 	 for n = 0	 (1.95)

WINa/N for n = N,, and N even

similarly,

var (bn) = E {bn - E (b„) }a = 12 o a/N for n;1 0	
(1.96)

0 for n = 0, or
n = N. and Neven

Finally, we can compute the variance of the average degree power, Pn , which is
a function of the Fourier coefficients as given in eqn. ( 1.80).

var (P„) = O a/N	 (1.97)
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19  Non-Periodic Functions and the Fourier Transform

1.7.1 Mathematical Definition

In previous sections we dealt with periodic functions exclusively. Now we
wish to find out if It Is possible to express non-periodic functions as a sum of
fundamental sinusoidal functions. The answer is posit0e, but the "sum" is
uneountably infinite (a continuous sum or integral) and each sinusold has essen-
tially zero amplitude. However the sum of all these infinitesimal sinusoids will
produce a non-zero, non-periodic signal.

To present the decomposition of a non -periodic x(t), (Mayhan, 1978, pp.
5-30) we may start with a periodic function xr ( t) and allow the period to extend
to infinity so that a non-periodic x( t) results. If we consider the periodic
function shown in Figure 1.4

XT( t)

T

x(t)

t
a

Figure 1.4. A Periodic Function xT(t), -,
	 t a- - and

a Non -Periodic Function x( t), a t b.

from eqn. (1 . 6) we have

C.^^++	 ,swot
xr(t) = L^ X, a	 +;	 (1.98)

with complex Fourier coefficients,

T/a

X
n
 = 1
 LT/2

 XT(t) a-inwot dt	 (1.99)

As T increases the number of Important frequencies In the expansion of
XT (t) will also Increase, but each having smaller and smaller amplitude. If we
define frequency as the number of cycles in a specified Interval T (period) then
we have for the fundamental frequencies fo and wo

fo = 1/T,	 wo = 2n /T	 (1.100)

then, we have for frequencies

f = n fn ^- 1, 29 3, 4, .. .

f = n fa — Af-, 1 9 a, 2 9 . * *
for T - 1
for T = 2	

n == 1, 2, .. .
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Thus, as T -• - we have xr (t)	 x(t) and

ll	 2Tn 	 w, 	 n 4	 (1.101)

so a general non-periodic x(t) will result.

The harmonic content of x(t) will consist of all angular frequencies W, and
a continuous sum, i.e. in integral, will replace the discrete sum. Since wo is
the fundamental angular frequency, in other words the frequency spacing, the
spacing approaches a small infinitesimal amount denoted by d w as T - .

d w - lim 22 
n	

(1.102)
r .. ono T

This being the case, the amplitude at any frequency will tend to zero. But the
expansion of xr ( t) will not be zero, since we deal here with an uncountably
infinite sum of quantities. Now using the relations above we can write the
complex Fourier coefficients corresponding to eqn. ( 1.16) as

Xn = 2w f -p x(t) a twt dt	 (1.103)

It is common to define

X(W) = Lx(t)  
a—'W' 

dt	 (1.104)

to obtain for eqn. (1.103)

Xn = 2n X( W)	 (1.105)

or in case of discrete data with N observations ( or sampled values)

Xn = N 4t X(W)	 (1.106)

where At is tine data (or sampling) interval; and as T - , so does N. If
we substitute eqn. (1 . 105) In the Fourier (complex) expansion of xr ( t) , then we
end up with a continuous sum for the expansion of x(t) defined as follows

x(t)	 2n J_ m X( W) e' Wt dw	 (1.107)

Eqns. ( 1.104) and (1. 107) are the Fourier transform pair (also I Mown as Fourier
integrals) for the non-periodic function x(t) and usually denoted as

x( 0 E_^ X( W)

There is a one -to-one correspondence between x(t) and X (w). It is also
common practice to use the standard frequency instead of angular frequency. So
if we substii,.:te 2 rrf for w we have from eqns. ( 1. 104) and (1. 107),
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X(f) IN r,p x(t) e- lantedtJ_^o

x(t) = 
J	

X(f) e! 
Or" 

I 
df

^o

(1.108)

(1.109)

In the case of periodic functions we had related the complex Fourier coefficients
X„ to the amplitudes of the sinusoidal function. For a non-periodic function x(t),
it is possible to interpret X( w) as the amplitude density. That is to say, the
amplitude of the sinueold is zero at any one frequency w, however when it Is
considered over any finite frequency Interval dw (or Aw), the amplitude Is not
zero but equal to

Xn
	

2 ry X(w)

Thus, the harmonic content of x(t) can be considered as distributed over all
frequencies with a density X(w).

For non-periodic functions, the Fourier coefficients corresponding to (1.08)
and (1.09) are given below

a(f) = J	 x(t) cos (2nft) dt	 (1.110)

b(f) = j-CO x(t) sin (2rft) tit 	 (1.111)

The equations above can be derived from eqns. ( 1.3. a-b) of a periodic function
as follows:

1+(f) = lim T a„ = -` x(t) cos 2rnt/'r d 
T -.w	 4

substitute f = n/T , to obtain

a(f) _ 	 x(t) cos ( 2rrft) d 	 (1.112)
m

similarly b (f ) can be derived. It can also be seen from eqns. ( 1.108) and
(1.110) that

X(f) = a( f) - I b(f)
	

(1.113)

If the function is known only at discrete points, then the relation between
the complex Fourier coefficients of a periodic function and non-periodic function
can be derived through eqns. ( 1.55. a -b), namely

N-1
A

	

(n) =Nlim 2an = slim
^OD
 k F,o x(k-At) cos 2rrkn/N	 (1. 114. a)

t(n) = lim 
N 

bn = lim	 x(k-At) sin 2rkn/N	 (1.114. b)
N -o co 2	 N —POD k_ O

We know that an is an amplitude, 1/T is the frequency increment, then,
(T -an ) is the amplitude per frequency increment of amplitude density, and
finally, a( f ) is half the amplitude density at frequency "f" (Rayner, 1971, p.
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56). Rayner says 'The relationship between amplitude density and amplitude is
analogous to that between probability density and probability.',

In section 1. 3.2 we expanded a periodic function x (t) with period T into
the complex Fourier series and proved that the complex Fourier coefficients Xn
are orthogonal, i.e.	

j 0 for n mE(XpX.]	 l a„ for n m
where X„ and an are defined by egns. (1.8) and (1.10) rf,spectively.

If the function is not periodic, to be denoted by x( t) , then neither is its
autocovariance, say C (T) . Hence for T / 0 we always have C ( T )	 C (0).
If for some T = T 1 , we have C (T 1 ) = C (0), then 6 ( 'r) is certainly periodic.
Suppose a non-periodic 6 ( T ) is given. For a fixed t shown in Figure 1.5 we
can expand it into the Fourier series in the interval ( -P/2, P/2), where P is
the given interval length (Papoulis, 1965).

A
	

A
C (T)
	

C(T-t)

0	 T

Figure 1.5. A Non-Periodic Function.

The coefficients of the expansion would depend on t in the following way,

C.'(T-t) - n1-0n(t) 
C,Sr.Wo t 9 	 IT I -- p/2	 (1.115)

^n(t)	 p f, C(T -t) e- tnWotdT	 (1.116)

The non-periodic function x(t) can be expanded into a Fourier series in the
interval ( -P/2, P/2) as follows

A_ ^ X. 
e t n Wo t^	 Wo = 2TT /T	 (1.11?)

n	 m	 I t I< P/2

We can show that x ( t) = x (t) in the def fined irate rval. That is to say

E{Ix(t) - x ( t)1 a 1 = 0	 for ItI-eP/2 	 (1. 118. a)

where E denotes the expectation. Eqn. (1. 118 . a) is equivalent to

E{ Ix(t)I a }- E{x(t) x*(t))- E{x*(t) x(t)}+E{Ix(t)I`1 (1.118.b)

and we know that
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E lI x ( t )1'1 - E  11(t) 19 1- 6(0)	 for It I < P/2

We can also show that

E Ix(t) x*( t )1 - E I x* ( t ) x ( t )1 - t(o)	 for It) -e P/2

For the proof: first multiply butte sides of eqn. ( 1.117) by x*( t), then take the
expectation

Efx(t) x*(t)} '	 Ef Xn x*( t )) e"Wot	 ( 1.119)
n -- W

and use eqn. ( 1.1.2) to obtain

E(X.x*(t)} - P ^ Efx(r> x*(t)^e' s4^TdT^ 
P jPC(

T-t)d"4  TdT	 Q,(t) (1.120)

finally substitute eqn. (1 . 120) In ( 1.119) to conclude the proof.

Ef X(t) x*(t)} =' 0,,(t) e ` '' W^ ` dt = C(0)	 (1.121)
n=-OD

Similarly we can show that

E{x*(t) x(t)) = C(0)
	

(1.122)

so we see that each term of eqn. ( 1.118.b) is equal to Cl (0). Thus the proof is
completed.

As to the non orthogonality of the complex Fourier coefficients of non-
periodic functions; we will show that they are approximately orthogonal in a
finite domain.

First, let us compute the expectation of the products of complex Fourier
coefficients, [ X„ X; ] . We can define this product as follows:

X„ 
X.* __ 

P fr Xn x*( t) e 1 1 WO t d t
	

(1.123)

now use eqn. (1 . 120) to obtain

E f X. X:) _ P if, 8.(t) e t.WO t dt	 (1.124)

We see that eqn. (1 . 124) is not zero for n ^ m, i.e. The complex Fourier coeffi-
cients are no longer orthogonal. If 6 (T) were periodic with period T, then we
could easily show that

Pn(t) = at, exp (-Inwot)

and we could write
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Since b (T) is not periodic the coefficients X. are not orthogonal. However,
In eqn. (1.120) If we replace the Integration limits by t aD , then we commit
an error 8(t, P) which is small for large P , so we can write

Go

P eon( 0 "` f C(T -t) a IrWrd T + 6(t, P) - e—"'- (41 e(nwo) + 6(t, P) 	 (1.125)
as

Substitute eqn. (1.125) In (1.124) to obtain

P-E {Xn X*} " a p	 fr el('-94btdt + P f P 
6 (to P). es "k1e dt	 (1.126)

From the equation above we can write

llm P •E (X r X; } _ { s (0w°) 
c.therwle	

(1.127)
► -*CO

We see that E[ IX, 1 2 1 tends to zero as (1/P) for P a co , whereas the
autocovariance E ( X, X,) tends to zero faster, 1. e. the correlation coefficients
of Xn and X, tend to zero also. So we can say that the coefficients Xr's of
eqn. (1. 117), for large F, are approximately uncorrelated.

1. 7.2 Properties of the Fourier Transform

The Fourier transform has some very important properties such as line-
arity, scaling, time shifting, modulation, symmetry, differentiation, convolution,
etc., which are well explained In every text book In this topic (e.g. see Bath,
1974, 11. 42-48). As a result of these properties, some important relations are
given In Table 1.1.

Table 1.1. Summary of Fourier Transforms.

Function

x(0
X 

a,xl (t) +aax2(t)
x(at)

x( t-to)
exp (swot) x(t)
x(t) -cos wot
xl(t)-x2(t)
x1(t) *x2(t)

pn x(t) [nu' derivative x( t)]
x(-t)

Fourier Transform

X(w)
2 rr x(-ce,)

a,X,(W) +a2Xa(W)
( 1/ ja i) X(w/a)

exp (-Iwto) X(w)
X(W- Wo)

( X ( w -wo) +X(ce'+wo)) /2

X1 (w)*Xa (w) /2n [convolution]
X1(w)-X2(w)

( iw) r X (w)
X(_ W)
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In the following sections the convolution property will be applied. The
convolution of arbitrary i4nctions x (t) and y (t) is defined as follows:

X(t) * y  	 X(T) Y(t-T)dT

s Ja X ( t-T ) Y(T) dT

We can apply the convolution both in the time domain and in the frequency domain.

1.7.2.1 Convolution in the Time Domain

If	 x(t) *--* X(w)

Y( t ) *—.- Y(W)

then	 x(t) *y(t) c—ar X (w) Y(w)

The above transform pair can be proven by the following procedure:

z ( t ) = X ( t ) *Y( t ) = J..^X(T) Y(t-T) dT

The Fourier transform of z ( t) is

Z(w) = FI X ( t )* Y( t )) = 1
1 00
-^e-1wcJ

(^ OX (T) Y(t-T) dTdt

J 
X ( T) dTE

D
y(t-T) a-lw` d 

^n 

Now let X = t - T , dX = d t and with T held constant

OD

Z(w) _ -^ x (T) dT TO y(X)  e IWX e-Iw T dX

x(T) e'w^TdT LID Y(X) a - 'WA dA
f, 

Finally we can write

Z(w) = F t x ( t )*Y( t )1 - X(w) Y(w)

1.7.2.2 Convolution in the Frequency Domain

If	 x( t)	 X(w)

	

y(t)	 Y(w)

then	 x ( t)y(t) 	 1 /2 n X (w) * Y (w )

F<
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We can prove this transform pair by defining z ( t) - x ( t) y ( t) and taking the
Fourier transform of z(t)

Z(w) = FIX(t)Y(t) 1 ' f_ x ( t ) Y(t) a- 'W ' dt

For x ( t) substitute the following inverse Fourier transform

X(t) = 2 n J-WX(A)  eU
►tdk

to obtain
Z(w)	 2n 00X(X) dA f j( t)  a-'(w

-W dt

Since the second integral is the Fou rie r transform of y ( t) , (w - A) be ing
the angular frequency, we have

Z(w) = FIX(t) Y(t)l = 1 J- ,, X(A) Y(w-A) dA
or equivalently

Z(w) 2 X(w) * Y(w)

1.7.3 The Finite Record Length and Windows

1.7.3.1 Time Domain Windows

In practice we cannot record the results of an experiment of Infinite length,
so the use of limited record lengths are Inevitable In spectral analysis of obser-
vational series. This forces us to truncate the record at some length, say T ,
such that

Y(t) - ^X(t) for Itl -- T/2
 0	 otherwise	

(1.128)

where x(t) is a non-periodic function defined for (--, -) but recorded only
in the interval (-T/2, T/2), this record being denoted by y ( t). Actually this
truncation is nothing else but applying the rectangular (box-car) window. Then
we can write

y(t) = x(t) ur(t),	 where ur(t) _! 1 for 
Itj< T/2	

(1.129)
l 0 otherwise

thus, the Fourier transform of y( t) is
/d

Y(a) = J Y(t) a- ianrc dt = J_' T/dy(t) a- 12"" dt	 (1. 130. a)
or equivalently

Y(A) = ^x(t) uT(t) a >" dt	
(1. 130. b)

If we substitute eqn. (1. 107) for x(t) above and evaluate the integral, in
other words, use the convolution technique, then we have

Y(X) = I X(A) * U(A)	 ^X(w)UT(w-A) dw,	1.13177	 (	 )
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where, Ur(w-A) is the Fourier transform of ur( t) defined by

UT (w) _ (s1nwT/2)/(w/2)	 (1.132)
Therefore,	 Y (A)	 ,•^^ 

( w) 
in	 A

w1 T 2
	

(1.133)
(w ) 2

In the limit as T - , the right-hand s ido of eqn. (1 . 132) reduces to X (cal ) .
Our main goal is to determine the true spectrum X(w), but because of limited
data we can only estimate Y (w) . So we must design a window, any w (t) , In
such a way that Y (w) will be very close to X(w) . Even with the application
of the most optimum windows we will get a distorted spectrum. The main task,
then, is to keep the spectral distortion close to a minimum.

Windows can be applied either in the time domain or In the frequency
domain. In the time domain:

y(t) - y(t) • w(t) == x(t) 1 u,(t)•w(t)1 a. x(t)•w(t)

In t_ frequency domain:

Y(w) y 
IX(w) * W(w) 

w 
I2  Y ( u") * W(w)

That Is to say, either we compute Y (w) and convolve It with W ( w) , or Instead
we multiply the data vector by a window vector in the time domain and compute
the Fourier transform.

We can state some of the properties, which a spectral window corresponding
to the applied time window must possess:

- small or insignificant side-lobes, I. e. smooth time window without
sharp corners

- high concentration at the main (central) lobe
- symmetry with respect to the y-axis,, In other words, the window

function must be even.

Designing an optimum window for a specific purpose has been a major
challenge to scientists In this subject.

Bath ( 1974, p. 157) classifies windows as follows:

(1) Trigonometric windows, which use trigonometric functions of time
(2) Power windows
(3) Exponential windows

Some of the most commonly used windows will be explained below.
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(1) Rectagelaripox-car or Barlett) Window

W(t)	 1 for I t s T/2
l 0 otherwise

with spectral representation

W(w) - (sin wT/2)/(w/2) - T sine (WT/2n)

i

(1.134. a)

(1.134. b)

where sine (x) - sin n x/(n x) is how the mine function Is defined. A rectangular
window for a Discrete Fourier Transform (DFT) In defined as (Harris, 1979, p.
58)

	W n	
i for n 1-2001,...,(N- 1)	

1.135. a)
( ) lo t 	 otherwise	 l

then the spectral window for the DFT window Is given by

sin (8 (N/2))	 A	 8 - 0 9 1,...,(N-1) (1.135.b)

	

W(0) -	 sin (0/2) e

Since the sine-function has large side-lobes, this window is not very suitable
for a true representation of a spectrum. In addition to this, the magnitude of these
side-lobes decreases slowly and half of them are negative causing displeasing
results, because the power is positive by definition.

Notice that a large T will lead to more details, i.e. to better resolution
In the computed spectrum than a small T. But a small T will lead to better
stability and reliability of the computed spectral estimates, since for small T's
the spectral smoothing extends over a larger frequency interval.

In order to eliminate the effect of the rectangular window and the effect
of noise, Bath (1974, p. 180) suggests to use smoothing In the frequency domain,
e.g.

1 1
XO	

s
too: 50 J	 XO	 + 0.50 J Xi

= to: 023 l	 +(
Xk

0.54 L X+ f 0.23
k

1 
Xk + 1  025 J	 -^ 1 0.50 f 0.25 (

f 0 46
X//

(0.541 Xr,
110.50 JJ

where X. are complex raw Fourier coefficients, whereas Xn are smoothed
complex Fourier coefficients. The above expressions are equivalent to applying
the Hanning and Hamming lag windows In time domain respectively.
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(2) Triangular (Fete r) Window, A i (t )

A!( 
t)	 J 1 -21tl/T for It) T/2l	 0	 otherwise

with the spectral representation

(1. 136. a)

Tsing w
w) - 2	

(w	
1	 7 a Inca

a 	
(1. 1:16. b)

The triangular window for a DFT is defined as (Harris, 1978, p. 69 ►

%(n)	
jn/(N/2) for n = 0,1,,,,,(N/2)
1 ©(N-n) for n . (N'2), ...,(N - 1)	

(1.137. a ►

with the corresponding spectral window

(9)	
N sin(

#)
 ) )
	 e 	 - 0, 1 9 ... ► (N-1)	 (1. 1:17.b)

This spectral window has no ne• 4utive side-lobes, but it has large main lobes,
which do not have high concentration.

(31 Harming (Tukey or Cosine) Window

^ql+co. 2^t/1') /2 for ,tl 'I'/2
h,(t)	 0	 otherwise	

(1. 138. a)

v,th r	 etrnl representation

sin w(T/2 T [sin ( w(T/2) +n) sin ( w( T /2)—-
H11 w 1	 (w'/2)	 + 4 w(T/2)+ n 	+ w cr/2 ►

2 sfnc 2T+4 ts Inc (w ( T/2n)+1) + sinc(w ( T/2,1) -1) j (1.138.b)

or as a function of W (w) of rectangular window

HI(w) = - W(w- T1 )+ i W(w)+ a W (w+ T )	 (1. 138. c)

The Harming window for a D1 'T is defined as (Harris, 1978, p. 60)

hl(n) = fj ( 1-cos2rrn/N) for n- 0,1,...,(N-1)	 ( 1. 139. a)
j	 0	 otherwise

with the corresponding spectral window

H 1 (8) = i W (9)+ a [W(8- N') + W(8+ N 11	 (1.139. b)

where W (8) Is defined In eqn. (1. 135. b). Thus, we see that H l (w) Is a sum
of three sfnc-functions displaced relative to each other and the side-lobes from
the three sfnc-functions cancel each other to a large extent, which is pleasing.
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(4) Hammint Window

hat t) ,s x (0.64+0.46cos2nt/T) for (tl •y T/2	 (1.140. a)
t	 0	 otherwise

with the spectral representation

since T /Z	 stn T/2) +n	 aIn(w(T/Z) -n)1Hs(w) • 0.64 T w(— /2)	 Z9 Tr	
2) + n + w(^ T 2) - J

• 0.54 Tsine 
2 

+0.23T ' inc ( WT+1)+sine( T -1)I	 (1. 140.h^

or in terms of W (w) of the rectangular window

Haw) -0.54 W(w)+0.23 ( W(w+(2r /T)) +W(w-(2, i -1T)))	 (1.140.c)

The Hamming window for a DFT is defined as ( Harris, 1878, p. 62)

0.54-0 . 46cos2*► n/N for n R 0,1,....(N-1)
h(n) • {	 0	 othe rw ise	 (1. 141. o)

with the corresponding spectral window

H,u(8) 0.54 W(8)+0.23(W(A-(2n/N))+W(6+(2r?/N))), 	 (1.141. b)
8 = 0,1 9 ... , (N-1)

where W (0) is defined in eqn. ( 1.135. b). Notice that the Hanning and Hamming
spectral windows correspond to a weighted average over three consecutive values
of the spectral function of the box-car window. The Hamming window also has
small side-lobes.

(5) Cosine-Tapered Rectangular Window

This window is flat over most of the data, but ta[wrs off near the two ends
of the data. For example, it may consist of cosine window at the ends (say 10
at each end) and a rectangular window in between defined as follows;

(1 +cos 10T1 t/T)/,r for -(T/2) , t -0.4 T
C(t) =	 2/T	 for -0 . 4T s t	 OAT	 (1. 142. a)

(1+ Los IOnt/T)/T for 0.4T •- t T/2

with the spectral representation

C• (w)
} sin w(T12) +sir, 4w('1'/10)

71—
	 (1.142. b)

w(T/2) [i -(w(T/IOn

The above window for a DFT is defined as (Rayner, 1971, p. 83)

a 1 -cos ( IOn n) /N J	 ,	 0	 n N110
c (n) =1	 N/10 n' 9N/10	 (1.143)

ki 1-cos (10^(N-n))/N J, 9N/10 n~ (N-1)

.
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An extensive study of various windows designed for different purpxmes Is
given In Harris (1978).

1.7.3.2 Frequency Domain Windows

it is also possible to apply windows In the frequency domain and compute
the effects in the time domain. As an example, suppose tlutt X(w) of it function
x (t) Is truncated outside (-P, P) yielding &(w) defined an

X (t+.)	 X(w) Wr(w), where W,(w)	 (1 for Iw) ° p	 (1, 114)
L 0 otherwise

Since eqn. ( 1.144) corresponds to a convolution of x( t) and w ( t) in the time.
domain, we have

^(t)	 x(t) w
 WP( t1	

( x( ^ ) sin ( t`lr)	 dT	 (1.11^i)

instead of the rectangular truncation above, if we eltrninate the components
of W - P and favor linearly the low-frequency components, then we have

XA (w)	 X(W) • Ap(w)	 (1.1.16.a)

where AP. (w) is the triangular pulse defined by

AP ( (A") = t (1— Iwo/p) if 1W 	 p	 ( 1. 1 46. b)
0	 otherwise

The corresponding equation in the time domain can be expressed via the corr-
volution theorem as

XA
(t) 	 P' U x(T) 2s In* [(T/4)( t -T)d^	 (1.11?)

J- m	 n (T/2)(t - T)

1. 7.4 Power Spectrum Variance Breakdown of Non-Periodic Functions

The energy content of a non-periodic function x (t) is defined by

F:

a
 = J_ x' dt	 (1.145)

or equivalently in the frequency domain by,

21
]D	 ^ 1

,	
•r, X (w) X (- w) d w =

 2
l1 J	 X (w) I' dw	 (1.149)

if x(t) does not have a finite energy, then we have to consider the total average
power P a expressed as follows

r
Pa = #ire —1,	 x- (t) dt	 (1.150)

Papoulis ( 1962, p. 240) classifies functions into the following three classes
according to the magnitude of the power:
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(1) P' -0, obviously contains all functions with finite energy content.
(2) 0 < e < °D , contains all periodic functions, I. e. Ps -^; j X n ( s

where & are complex Fourier coefficients of the function x (t) ,
and of some non-periodic functions as well.

(3) P: - m , 1. e. x( t) has infinite power.

Power Spectrum from Sequenced Data

(a) Using Autocovariance Function

For the statistical analysis of dependent, sequenced data, say x(t) , the
mean variance and the autocovariance function characterize the distribution com-
pletely. But generally the autocovariance function is difficult to interpret and
adjacent estimates are not Independent, so the confidence intervals are difficult
to calculate. On the other hand, the statistical estimates In the frequency domain
are relatively stable and independent.

The power spectrum S (w) of a function x (0) is defined as the Fourier
transform of its autocovariance function Y(0) , which is expressed as

r,

Y(V11	 Tim T 
rTX(T) X(0+,r)dT	 (1.151)

or In case of discrete observations
N -^- I ^

Nî  N i t r o X( T ) X(O +T ),	 =r -AO	 (1.152)

Then, the power spectrum can be written

S (^) = J^mY( 0) a- iw ^dO	 (1.153)

Actually S (w) and y(0) are the Fourier transform pairs usually shown
as

Y(0)	 S(w)

The inverse Fourier transform of eqn. ( 1.122) gives the autocovariance function

1	 a' 
S(w) 

a'W* 
dOY(0) - 2  Lw

(1.154)

The power spectrum S (w) can be directly expressed as a function of
x (0) , (Rayner, 1971, p. 77),

S(w) = T im T 1X(w)I ,
	

(1.155)

The relation between egns. ( 1.152) and (1 . 155) is known as the Wiener-Khint-
chlne relation.
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The eqn. (1.152) cannot be applied In its present form, because Y( O )
is not defined outside 0 in the case of observed data vector x (w) . In the
derivation of eqn. (1.152) we implicitly assumed that x(0) was zero for

0 1 > T/2, but it is not necessarily the case. Suppose 0 is in the range of
(-m. m) and let C (0) be an estimate of the ensemble value of the true auto-
covariance function V ( 0) 9 i.e.

Average (c ( 1b)) - Y(0)	 (1.156)

then, we can make eqn. (1 . 156) apply to all values of 0 through windowing,

0+6) - C(0) W(0)

where W (0) is the window function. Therefore, eqn. (1 . 156) becomes

Ave [C'(0)J = Ave[C(0)J-W(1') = Y(0)-W(0)

and the frequency domain representation

Ave [ S (w)) - S (w) * W (w )
	

(1.157)

where S ( w) is the spectrum (power) of the true autocovariance function of x (+P)
(^) is the window through which Y (0) is viewed, and W(w) is the corres-
ponding spectral window.

The major steps to compute the power spectrum from a series of N
equally spaced observations can be stated as follows:

(1) Remove mean and non -desired effects of low frequencies ( trends).
(2) Compute the unbiased sample autocovariance function C (0) through

1	 N-1- Jr I
C (+^) = N-Irl k^o x ( k ) x ( k +O), ;.where { 0 5 r 

-fin	
(1.158. a)

It is also common tc use the biased sample autocovariance function of the
following form,

N-1-IrI
C (0) =1 E x(k) x(k+O)	 (1.158. b)

N k =o

(3) Apply the selected window to get the windowed autocovariance function

CIO) = C (0) W(d))

(4) Transform C'(0) into the frequency domain as follows
n

S'(f„) = r E 0 C'( r) cos (2rrf,, r-AO) o0	 (1.159)

where AO = constant *As the lag Increment, and As = observational
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Interval, f, - nA2m • NO) with n - 0 9 I, ... , 1 ., (2m -60) - the length of
the basic interval.

Since C'(r• 60) and t1w cosine function are eveu, it Is possible to write

S'(fk) - 41, 	 C '( r - AO) cos (2 n fk r • 416) AAP
	

(1.160. a)

We have to make adjustments for the end data (recall the trapezoidal Integration)
(for details see Bath, 1974 0 pp. 171 -173), therefore,

S'(fk ) a 2A16 (C'(0)+2* 1 C%r*AO)cos m +Ctm*A0)cos nfk 1	 (1.160. b)

with the inverse transform (Atnes, 1972, p. 197)

,-z

C'( r-60)
 - 4m L► ^ 

(S'(0) +2ZS' ( fn)cos m r +S'(m) cos n r J	 (1.160. c)

The eqn. (1.160 . a) can also be expressed in terms of average variance per
prequency band (Rayner, 1971, p. 81), by dividing it' by the length of the basic
Interval, i . e. (2m-AO)

S'(fn) - 2
m 

rY e(r*40) cos 2 n f„ r AO
o

(1.160. d)

The relation between egns. ( 1.160. a), the variance density estimate, and (1. 160. d),
the average per frequency band, are very important and they must be used in the
right places.

Still further we have to make adjustments for the spectrum ends thus finally
we obtain for the power spectrum

S'(0)	 2m C'(0 ) 
+ Mr i C'(r*4{6) + 1 C'(m* A $ )

1	
2 ^1	

nnr 1
S'(f^) = m C'(0)+ m _ 1 C'(r-Ao) cos m +n1 C'(m0O)cos nn, 0 <'n^ m

S'(m) - 2m C'(0)+ m rE (-
1f C'waib)+ (') C'(m•Aip)	

(1.161)

(5) Convolve the raw powers above with W(r), i.e. with the spectral window,
to get 'S(r) . As an example, suppose we decide to use Hanning window. Then
there are two options: ( 1) we can multiply the data by window function and trans-
form to the frequency domain, or (2) we can transform the data vector to the
frequency domain, in other words, a rectangular window is used in the time
domain, and then apply convolution in the frequency domain, which takes the
following form for this particular example.

S(0) =	S'(0)+iS'(1)
$( r) =	 S'(r-1) + S'( r) + + S'(r+l)	

(1.162)
3`(m) = S'(m-1) + S'(m)
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The above estimates are averages for bands 1/(2m• ao) wide, except
at r = 0, m where They are 1/(4m*40) wide centered at w - n r/(m-4th) .

(b_ Using Direct Data Transform

In order to compute the Nwer spectrum we can also transform the data
directly. If x(t) is a non -periodic function and only defined in the interval
(-T/2, T/2) , then we have to use a window, say w ( t) , to obtain

. 2 	aAm	
IJ

w 
T-2x

( t) w(t) e- : arrft dtl

N1 X ( f) * W(f)	 (1. 163)

where f = w/2 TT , and N = the total number of observations. Now recall the
following relationship

X(f) = X(f) * W(f) = a(f) 	 - 19 ( f)	 (1.164)

in order to write

( f) = N [ a* ( f) + 9 ( f) 1.	 if 1 " tow	
(1.165)

Since eqn. (1.165) is an even function, for the one-sided spectrum xe have

f) = 2 [A9(f)+A$(f)1,	 0	 f ` - 1N	 2 AO
(1. 166̂)

If we convert the power density estimates Into average variance . ­ r fre-
quency band, multiplying by 11N, and substitute egns. ( 1.114.a -b) above vje
obtain

A(k) = * [a'(k) +9L(k)I
	 (1.167)

This equation is equivalent to the expression for the degree variance of tho
periodic function. But here we have used windowed dace and the estimate above
is an average for a band centered at "k t1 rather than a discrete estimate at k .

We see that 9 ( k ) contains ( N/2) hill bands and covers the same range
of frequencies from zero to & ( yquist frequency) as 9 (r), which , Ontains
m full bands. So we can make S(k) 	 equivalent to 9 (r) by surr ming over
(N/2m) bands.

Now we can give the steps for the estimation of the power spectrum from
a set of observations, x(t), as follows:

(1) Remove mean and trends.

n
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(2) Apply the window function w ( t) , e. g. use a cosine -tapered rectangular
window given by eqn. (1.142. a), thus

A(t) = x(t)-w(t)
	

(1.168)

(3) Compute the Fourier coefficients a( f) , t (f) through eqns. (1.110) and
(l. 111) or the coeffic ients I (k) , B (k) by egns. ( L 55. a-b), which are related
to a (f ) and B ( f ) through egns. ( 1.114. a-b), using FFT in the calculations.
(4) Calculate the power spectrum A (k) by eqn. ( 1.167) and sum over blocks,
say 5 to 50 (Rayner, 1971, p. 83), to obtain 9( r). If we assume N is even
such that N/2m 2z + 1, then

z

0 ) _ ^a^'}J + k ^: P( k) +ba(k)1/2
r (9^,t 1 )4 L A

	 A

	

SS r) = k .r a .1)_=(a'(k) +bs ( k)1/2,	 0 <, r^ m	 (1.169)
AA
"
 a

^(m) 
_ a -i (

P ( k ) +V ( k )1/2 + CI
k =;S-2

frequency Lands are centered at

0, 1 /2m-t, 2/2m-t,..., ri2m - t,..., 1/2t

(c) Using the Filtering Method

This method will not be discussed here. In this method data are passed
through a band-pass filter, squared, and then summed with a final normalization.
For this method, readers are referred to Otnes ( 1972, pp. 311-315).

1. 7.5 The Confidence Intervals

The chi-square distribution is given by the formula below,

ax a U/S- i .e-X'2/a
c x) =	 2U.q r (U/2)	 (1. 1 70)

where r (v /2) is the gamma function, and v = degrees of freedom.

It is well known that

C
DF *sample variance l

true %ariance I

has Xa distribution, DF being degrees of freedom, i. e. in other words,

t)-Q a/O a = Xa (U)	 (1.171)

By rearranging ibis equation we can write
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AAU*Qa	
P O'	 U.F 

X (U, smaller probability level) 	 x ( U, larger probability levell
 — ( 1.172)

Now let us see the application of the X' distribution in case of spectral
analysis, by going back to the spectrum of the sample variance

r(9z+1)+ z

b a(r)= S( r) _	 (a'(k) + a'(k)1/2	 (1.17:3)
k Jz +0- t

Since a(k) and t (k) are defined from an orthofonal transformation and are
generally assumed to be normally distributed, a ( r) of eqn. (1 . 173) has
2 ( 2z + 1) degrees of freedom in the interval 0 r y m , and 2 ( z + 1) degrees
of freedom at r -- 0, m.

But using a window reduces the degrees of freedom (Tukey, 1967) and
must be considered in computations, e. g. if we use a cosine-tapered rectan-
gular window, then

DF = U	 2 ( 2z+1)(N - G)/N	 (1.174)

where G is the percentage of tapering, and N is the number of total observations.

1. 7.6 Cross Spectral Analysis and Coherence

1.7.6.1 C ross Spectral Analysis

Consider the following linear regression,

y =ax+b

where y, a, b, x are functions of ' It". I et y also be a function of all the
x's in the region, then we can write

y(t) = b(t) + J- a(q)-x ( t-q) dq	 (1.175)

If x(t) and b ( t) are uncorrelated, then by eqn. (1.175) we obtain

C Xv( +^) = J- a ( q )' C XX( ii - q ) dq	 (1.176)

with the frequency domain representation

and
S-YM = A(f)0 SXX(f)	 (1.177)

A(f) = SXr(f0.-(f)	 (1.178)

A (f) is known as the response function of the system.

Recall the definition of the correlation in the time domain, i.e.
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r	
_

pa, - (E x y/N) / [ (E x'/N)* (E y'/N)* 1
	 (1.1?9)

The corresponding correlation in the frequency domain is defined as

Rxr( f) - Sxr(()/((Sxx(f))*(Srr(f))*1	 (1.180)

which is called "the coherence or coherency" and varies between (-1, 1). In the
equation above, Srj (f) is the Fourier transform of the cross-correlation function
C xr (0) and defined as follows

00
	 ^1^

Sxr( f) =	 C xr(1^')' e
- 

tor t * dO t 	 c f < m	 (1.181)

or equivalently,

Sxr(f)	 limm ;I Y ( f)' X*(f)	 (1 . 182. a)

and for one-sided spectrum we have

Sxr( f) = 2JaC.xr(&G)•e- ta nr*d#k - lim 2 Y(f) • X*(f)	 (1. 182. b)
t —. ao T

where Y (f) and X (f) are defined as in eqn. ( 1.108).

For discrete and finite data the eqn. ( 1.182. a-b) can be written ( Rayner,
1971, p. 82)

S-r(f) = NY(f)•C*( f) = N [Y'( f ) * H(f)1[X'(f) * H(f)1 * • 	 (1.183)
_ 00	 f < W

and for the one-sided cross spectrum we write

Sxr( f ) = N Y(f) • X*(f) = N [ Y ' ( f ) * H(f)1[X'(f) * H(f)1 (1.184)

If cross-covariance density estimates are converted into average croGil spectral
density (CSD) per frequency band, then we have

A

^r(k),Sxr(k) ^N 1 2 ar( k ) - i 2	 L 2 a
X (k) + i 2M"(k)]

[ ar( k ) - 1 k( k )1 [aA x(k) + iAx( k )1	 (1.185)

The real parts of egns. ( 1.183) and (1 . 185) are called cospectra, and
imaginary parts of those are called quadrature spectra, that is to say

Sxr ( f ) = Rxy ( f ) - iQxr(f)

or equivalently,	 (1.186)

Sxr( k ) = Rxr(k) - iQxr(k)
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where A, (f) and Aw (k) are eospectra, and 4. ( f) and 4. (k) are quad-
rature spectra.

We can express the cross-eovariances between x and y (assuming means
are zero)

(a) in continuous case:

Cxr(r) = li m T J_^rY( t)-x( t+(U) dt
	

(1.187)

(b) in discrete case:
1	 h- r I

C1,,(0)	 v(t) -x(t+ 0	 W = r .1#P	 (1.188)s N- r tn- ^I
r I.	 ,

I r i s m
Notice that egns. ( 1.187) and (1 . 188) are not even, therefore, we break them into
even and odd series defined as follows:

Cxr,( lb	 i 1C.", 	 +C"(-W)1
	

(1.189)

Cxro(0) ° 	 1Cxr(W)-Cxr( -0)1
	

(1.1Q0)

Eqn. (1 . 189) is transformed into frequency domain through eqn. ( 1. 160) and (1.162)
to get S l w[ (r) which is known as "the cospectrum of y (t) and x(t) ", and de-
fined by	 _1

	

8 xE (r) = 2AIP[Cvt (0)+2X, Cxy ( r)cos mk + CxYE (m ) cos r r]	 ( 1.191. a)

The power of the eqn. ( 1.190) Is computed similarly,
2-1

Sxro( r ) =m ^E1 Cxy o ( r) sin rrO/m	 0 •' r <'m
M-1

= 2AO (C,' ,0 (0) +2 k ^1 (" O(k) sinnrk/m] 	(1.191. b)

S',y o ( r) is known as "the quadrature spectrum of y (t) and x ( t) It . Egns. ( 1.191.
a-b) must be smoothed for the finite length to yield '9,,,1 (r) and 9,,, (r) . Finally
we can write for the cross-covariance

ISxy(r)I = 1SaE (r) +s'o (r)] 1 	 (1.192)

and for the phase

T x,, ( r) = tan -1 [ '§.y 0 (  r) /SxyE ( r)1	 (1.193)

Now, we may summarize the main steps for the calculation of the cross
spectrum:

(1) Remove mean and trends.
(2) Apply window function so that A(t) = x' (t) - h(t), y(t) = y l (t)-h(t) with
the Fourier transforms X(f) = '( f)* H(f), I(f) = f '(f)
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A	 A	 A	 A
(3) Compute the Fou ris r eoeKie tents an ( f ) , bx( f) , a (f), 1), ( f) from eqns.

(1.110) and (1.111), or better the coefficients ix (k) , ix( k ) , k (k) , A, (k ))
from egos. (1 . 66. a-b) using FFT.
(4) Compute the cospectrum and quad-spectrum by rearranging eqn. (1 . 183) into
real and imaginary parts to get

Sxrl ( k ) - [ ax( k ) ay ( k ) +b.(k) b,(k))/2

(1.184)

SxyO (k) a [ a x( k ) br( k ) - ar( k )	 (k)1 /2

(5) Sum the results above over ( 2z + 1) elementary bands to obtain
r(92+1)+ :

S1°'E ( r) - k^r^ L+1)-: [ a,( k ) a, ( k ) +bx ( k ) br(k)1/2
and	 _	 r(S 1)+: A 	 A	 A	

t	 (1.195)

Sxy0(r) -

	

	 [a.(k) by ( k ) - a. ( k ) tx(k)1/2
ksr(S 1)-=

(6) Compute the cross spectrum 1§'.( r) I and the phase ^.( r) from egns.
(1.192) and (1 . 193) respectively.

1.7.6.2 Cohorence

The following expression

are tan h [ Isy ( r ) I1 =	 On C 1 * IF,,,

 ( r) J	
(1.196)

is normally distributed with a variance approximately equal to ( 1/DF) (Rayner,
1971, p. 98). Then the approximate limits of eqn. ( 1.196) are given by

are tan h [ I Sxy ( r ) it * w o, 1 u)	 (1.197)

where * = significance level, and w., = the expected limit, and v = degrees of
freedom.

1.8. Summary

The computation of a spectrum from continuous and discrete data and
spectral analysis has been explained in this chapter. In geodetic applications
we generally have discrete and finite -length data. The selection of finite-length
data causes undes lrable effects on the spectrum known as the spectral
leakage (Harris, 1978, pp. 51 -52). in order to minimize the spectral leakage
windows are applied as explained in this chapter. We believe that this chapter
is a good reference for geodesists, who use discrete and finite-length data.
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2. Spectral Analysis of QZOB-3 Altimeter Data

2.1 Satellite Altimetey

The determination of the gravity field and the shape of the earth has been
the main goal of Geodesy for centuries. U we were able to measure gravity over
the entire earth, then a considerable number of geodetic problems could be solved.
However, In practice, we do not have enough observations In many parts of the
earth, mainly in ocean areas.

Recently the Geodynamies Experimental Ocean Satellite (GEOS-3) obser-
vations have made It possible to determine gravity anomalies from altimeter
height observations. By satellite altimetey we hope to measure the spectrum
of the sea surface to a very high frequency ( a (wavelength) 1000 km I so that
we can determine small scale changes In addition to the Earth's gravity field,
luni-solar effects, atmospheric tides etc. In fact, oceanographers would lice
to know sea topography at the 10 cm level from the mean sea level In order to
detect ocean currents.

The geometry of an altimeter borne satellite with respect to the earth's
center Is Illustrated In Figure 2.1. Here we simply assume that the line OA
connecting the geocenter and the satellite is perpendicular to the instantaneous
sea surface (ISS) and the mean sea surface (MSS). The altimeter measures the
distance (h' - AP') between the satellite and the satellite's footprint of ISS.
We can compute the coordinates of the satellite through the observations made
at the tracking stations distributed in a world-wide network. Hence we can
derive the geodetic (O,a) or Cartesian (X, Y, 2) coordinates of the satellite's
footprint with respect to a reference ellipsoid as well as Its distance (r' - OA )
from the center of this ellipsoid, and consequeutly the height (h = AQ) of the
altimeter above the ellipsoid. The sea surface height (SSH), which is the
separation between the reference ellipsoid and ISS, is computed as follows
(Rapp, 1977, p. 2)

SSH - h- (h l - R+b)	 (2.1)

where R is the refraction correction
b is the a priori altimeter bias (if any)
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A (Sat*ll its)
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f^`\	 SSH - N+aH
/	 r' = OA

h - AQ - r'-r

Reference ellipsoid

0 (Geocenter)

Figure 2 . 1. The Geometry of Satellite Altimetry.

The geold is usually defined as the equlpotential surface coinciding with
MSS. The distance ( N) between the reference ellipsoid and MSS is known as the
geoid height or undulation. There exists a separation ( AN) between ISS and MSS
due mainly to tides, winds, storms, currents, etc. Therefore, SSH should be
corrected for the factors mentioned above in order to obtain the geoid height (N)
Hence we have

N - h-(h'-R + b)-OH	 (2.2)

Eqn. (2.2) Is nothing else but an observation equation, the undulation N being
considered as the observation. For one or more area Rapp ( Ibid, p. 12) uses
the following mathematical model for the adjustment of geoid heights;

N + B A - Ne+V
	

(2.3)

	

where N	 column vector of geoid heights implied by altimeter datc-
B ; the design matrix of error model parameters

column vector of parameters of the error model
N^ column vector of geoid heights Implied by the reference surface

(in our Lase GEM 9 surface to degree 20)

	

V	 column vector of residuals.

For the adjustment purpose a data set of 419294 geoid heights implied by
GEOS-3 altimeter data, In 2003 arc segments, was considered. First a primary
adjustment was carried out, followed by regional adjustments. The details of the
adjustment are described in Rapp (Ibid, pp. 1-24).
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2._gravity Anomaly Recovery

As we mentioned at the beginning of this chapter, we are mainly Interested
in the determination of point and mean gravity anomalies from the GEQS-3 altim-
eler dabs. There are various techniques for the anomaly recovery. Rummel,
Sjoberg and Rapp (1477) have used (1) the inverse Stokes' equation or the
Molodenskii equation (by Rummel); (2) the spectral analysis approach (by
Sjoberg) ; (3) the least-squares collocaticn (by Rapp). In addition to these
techniques, two new methods will be Introduced in this paper (1) the least-
squares collocation using Toeplitz matricep; (2) the frequency domain least-
squares collocation, in the third and fourth chapter respectively.

In the next sections we will examine the power spectrum of the adjusted
GE©S-3 altimeter data and predicted point anomalies along various arc segments.
Point anomalies have been computed from altimeter data by using least-squares
collocation (Moritz, 1875) as follows:

U - C4i w (Cww, + D)_' N
	

(2.4)

where	 predicted point anomalies
jY	 vector of given geoid heights

row-vector of the covariance between the anomaly predicted and
the geoid heights

CNN ; square and symmetric covariance matrix of the given geoid heights
D	 the noise matrix of the given geoid heights (taken diagonal).

The point anomalies predicted as described above do not reflect the contri-
butions of the high-frequency components to the variance (total average power)
due to the following facts:

(1) Altimeter observations used In the adjustment procedure described
above represent averages of two seconds in the low data rate, imposing a 28-
km limit on the shortest wavelength of information.

(2) We use a global covariance model (!g & w and C N above), which
acts like a low-pass filter, in the least-squares collocation.

The spectral analysis approach will enable us to point out the contribution
of every existing frequency or wavelength component to the variance (total average
power). Then we can make a reasonable conclusion about the resolution of altim-
eter data and predicted anomalies.

2.3 Power Spectrum from Geold Heights

in this and following sections we will examine the breakdown of variance
with respect to the frequencies (or wavelengths) and the contribution of each fre-
quency component to the total average power. The power spectra of some ten
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profiles (numbered one to ten) shown In Figure 2.2 have been considered In this
section. From the adjusted OE06 -3 altimeter data we have computed geoid
heights along these profiles at the Intersections of a latitude -longitude graticule
of one degree or arc (Rapp, 1979). Each profile has been considered indepen-
dently for the removal of the mean value along the particular profile from com-
puted undulations and for the computation of the Fourier transform, which was
carried out by FFT algorithms of 1MSL libraries at OSU, by eqn. (1.62), i.e.

N 1

Id

 Ij` x(k fit) d"' nrn/a ^ 	 n n 0 1
0	 NM, j (N

..,

I)/2 if N odds	
(2.6)

where	 X, t the complex Fourier coefficients

x (k- a t) = the geoid height at the ( k- A t) th po int after the removal of the
mean value along the profile

N	 t the number of undulations along the profile.

to section 1.6 we have defined the total average power (variance) of a
function x (k-At) i k = 0 0 1, ... , (N-1) as

N —1

PAVG	 Nk;"(x(k- ©t)) 2

in the time domain and by Parseval ' s theorem as

N,+
PAV G ` L+ P-a

k^©

(2.6)

(2.7)

where
x? to r

Pat 	 21X„,a for
X% W for

21XNN I
a for

n 0
n = 1,2,...,(N.-1)
n NH and N even
P NN and N odd

(2.8)

In the frequency domain. P2 , n n 0, 1 9 ... , Nm is known as the nth degree
power of the periodic function x ( k-At) . Po a Xo is the average value (also
called do value) of the function x ( k-Ot) . Since we have removed mean values
before transformations, they are equal to zero in all our computations. Even
If there exists a mean value during the transformation, the power of zeroth
degree is excluded from the variance to obtain

NN
A

PAVGa = PM G2 - PO	
uE 

Pn2 	(2.9)

The contribution of the nth degree power to the variance is given by

C. = P" / AA
	 (2.10)

and the power implied by frequencies up to M s NH (from now on we will call
M ee cumulative power) is given by
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(2.11. a)

finally, the contributio.. of the M u'-cumulative power is given by

RM " SM /PAW	 (2. 11.  b)

We know that the frequency fp is defined as

fp - n/S	 (2. 12.  a)

where S is the length of the profile, and the wavelength is defined as

x  • S/n	 (2.12. b)

Hence P. 2 can also be called the power of n th -waveleugth component, and we
can consider the wavelength as the variable of the power.

The ten profiles shown in Figure 2 . 1 have been transformed into the fre-
quency domain in order to obtain the degree power P,, a , its contribution c ;, to
the variance, the M t"-cumulative power to the variance. The profiles and the
computation results are described in Table 2.1.

Table 2.1. The Breakdown of Variance According to Wavelengths.

Profile
No.

y^ , tp►a ^ , ^ Lengt p o Wavelength
X> 6000 a> 3000 X> 2000 a> 1500 a> 1000 ,\ > 500 a > 200

S	 cumulative DOWer in maDe De km m
1 -15,-15 40,120 8485 342.8 294.8 318.1 328.3 331.9 337.5 339.7 342.8
2 -37,-37 320,110 13232 367.6 330.4 357.1 359.4 361.1 363.8 365.9 367.4
3 -48 9 -48 10,208 14658 619.2 577.9 601.4 608.4 610.3 614.0 616.3 618.6
4 -60 9 60 165,165 13232 678.2 603.4 641.4 652.3 658.7 665.8 673.5 678.2
5 -60, 65 190,190 13899 269.9 160.8 236.8 245.6 254.1 258.0 265.1 269.4
6 -65, 65 335,335 14344 521.8 437.3 487.5 500.3 504.7 508.8 516.2 521.8
7 -60, 20 60, 60 8784 1520.6 1295.8 1399.3 1451.4 1463.7 1485.6 1505.4 1520.6
8
9

20, 20
-60, 65

120,250
180,180

13479
13899

841.3
562.7

756.2
458.9

801.5
520.2

816.8
534.2

827.9
544.4

830.1
550.9

836.3
558.0

841.3
562.7

10 25, 25 265,341 7760 713.2 605.8 618.8 642.9 659.6 682.0 700.1 713.2

Mean 643.7 552.1 598.2 614.0 621.1 629.7 637.7 643.7

From the table above we see that the long -wavelength components of undula-
tions contribute the greater part of the variance (power) PVC, e. g. X>6000,
X> 3000, X > 2000, X > 1000, X > 500, contribute 86%, 93%, 95%, 98%, 99%, of
the variance respectively.
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2.4 Power Spectrum of Geoid Heights with Respect to the GEM 9 Reference Surface

In the adjustment of GEOS-3 altimeter data a reference surface implied by
GEM 9 potential coefficients to degree and order 20 has been used. Therefore,
we have doe ided to examine the powe r spectrum of geoid heights with respect to
the GEM 9 reference surface, say AN. In order to compute AN first we have
to compute reference surface, i.e. GEM 9 surface, undulations and then subtract
it from adjusted altimeter undulation at the same point. The GEM 9 surface un-
dulations are computed as follows ( Rapp, 1977):

i; A
Nw _ 

'y r)
 ,t (rn).o (Z!,. cos mX + go sin mX) Iso (sin N)	 (2.13)

	

where GM	 ; the geocentric gravitati -al constant

	

r	 ; the geocentric distance , the computation point

	

a	 ; an equatorial radius
C189 SI . ; fully normalized potential coefficients

1S . ; fully normalized Legendre functions
cp,	 ; the geocentric latitude and longitude

	

y	 ; the normal gravity at ;o .

Thus we can write for the undulations with respect to the GEM 9 surface

AN = N-No,	 (2.14)

where N is the adjusted GEOS-3 geoid height at which N R Is being computed.

Seven area of about 13000km length have been selected for the spectral
analysis. These area are described in Table 2.2.

Table 2.2. Arcs 2, 3 9 4, 5, 6, 8, 9 and Statistics.

Arc No.

(See Fig. 2.2)

Latitude

0 1 ► (Pa (Deg.)

Longitude

a l ^a (Deg.)

320,107

Length

(km)

13054

Mean (AN)

(m)

0.3

RMS

2 -37,-37 1.6
3 -489-48 10,186 13021 -0.6 2.3
4 -60, 57 165,165 13010 -0.5 2.1
5 -60,	 57 190,190 13010 -0.6 1.9
6 -650	 52 335,335 13010 0.7 2.6
8 20,	 20 120,245 13061 0.9 2.9
9 -600	 57 180,180 13010 -0.4 2.6
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2.4.1 Power Spectrum when Data are Assumed to be Periodic

If we assume data are periodic, i. e. data repeat themselves indefinitely,
then we will havo a discrete spectrum made up of a finite number of frequencies.
The geoid heights given with respect to the GEM 9 reference surface, which are
defined in eqn. (2.14), have been transformed into the frequency domain using
FFT algorithms mentioned before. Finally the breakdown of variance, I. e.
the degree power, has been computed by eqn. (2.8). The results are described
in Table 2.3.

Table 2 . 3. The Breakdown of Variance and Degree Powers with Reference to
r.rm a %irtana trnm var{ndin rata_

Wavenumber Corres- Wavelength Arc No.
or ponding 2 3 4	 b	 1 6 8 9	 Mean

Frequency Global (km) Degree Power -^
Degree (m ** 2)

1 (	 3) 13020 0.17 0.99 0.20 0.13 0.55 0.18 0.11 0.33
2 ( 6) 6510 0.44 0.22 0.03 0.76 0.44 1.86 0.54 0.61
3 ( 9) 4340 0.17 0.30 0.90 0.54 0.80 1.31 0.19 0.60
4 (12) 3255 0.19 0.52 0.24 ..16 1.46 0.54 0.95 0.58
5 (15) 2604 0.33 1.78 0.51 0.10 0.41 0.14 0.15 0.49
6 (18) 2170 0.08 0.15 0.05 0.06 0.03 0.48 0.18 0.15
7 (21) 1860 0.29 0.01 0.49 0.00 0.69 0.01 0.52 0.29

. + + + + + + + +

1.67
.

7.97 2.42 T. 4.38 4.52 2.64 3.05
.
.

ANa

.

. .

2.70

.

.

5.21

.

.

4.49

.

.

3.71

.

.

6.76

.

.

8.48

.

.

6.81

.

.

5.52

From Table 2.3 we see that the mean of variances of geoid heights is 5.52
ma . But there is an uncertainty on each given geoid height, which is about f 1
m in our case. Then under the assumption of white noise, i.e. no correlation,
we can compute the reduced power as follows (Wagner, 1977, p. 14)

P 2 (reduced) - P 2 (measured) - Ps (noise)	 (2.15)
a (reduced) = 5.52 - 1.00 = 4.42

and finally P = 2.1 m.

So we have recovered about 2.1 m undulation information in addition to the
GEM 9 undulations. From Table 2.3 we also see that X >2000 km contribute about
1.6 m , and X< 2000 km contribute about 1.3 m of this extra, 2.1 m undulation
information.

The results given in Table 2 . 3 also yield a global power for harmonic degrees
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L - 3 9 6, 9, ... . However, we have to keep in mind that we assumed periodicity
of data and used only seven profiles, which are about 1/3 of a great circle around
the earth. So in the next section we will consider non-periodic data and derive
a global power spectrum.

2.4.2 Power Spectrum from Non-Periodic Data

In this section we are after a global degree power using GEOS-3 altimeter
data. However, we do not have any complete altimeter data around the earth.
So we assume that the power spectrum of each profile, which is a part of a great
circle around the earth, is an estimate of the global power spectrum after scaling
the frequencies and power. Since the variance of a sub-profile is a good estimate
for the global variance, the degree power of each sub-profile contains about
( Wagner 1977, pp. 89-93)

C i - S (length of great c i rcle) / S i ( length of sub-prof Ile) 	 (2.15)

times the global degree power of the equivalent global frequency.

Since the data of a great circle around the earth are periodic we can use
• window to obtain a periodic function, say y (n ), n = I t 2 9 ... , No& x , from
• non-periodic function, x (n ), n = 1, 2, .. , , N < Ns.x . We can explain the
above procedure by considering the example above. We are given 120 observa-
tions defined as

x(k-U)), k=0,1,...,119
and

AO = 1°

Now let y(n o AO) be defined as

y (n- A O) = w(n) - x(n-60),	 (2.16)

n = -120, -119,..., 0,..., 119, 120,..., 240
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such that	
r i for O s n s 119

W(n)	 1 o otherwise

then, y(n-do) is defined along the whole great circle. So y(n-Ark) is periodic
and It can be transformed into the frequency domain and interpreted as global.
However, in order to maintain the variance (or average power) of y (n-Ord )
equal to the variance of x(k-,60) , the degree powers of y (n -off,) should be
multiplied by Cs defined by eqn. (2.15), which will be explained later.

In order to compute a global power spectrum we have selected some four
sub-profiles with observations one degree apart, described in Table 2.4.

Table 2.4. Arcs 4, 5 9 6 9 9 and Statistics.

A rc No. Latitude Longitude Length Mean (SIN) RMS(See Fig. 2.2) 0 1 ,09 (Deg.) ^ 1 , ^s (Deg.) (km) (m)

4 -60, 60 165,165 13343 -0.5 2.0
5 -60, 65 1900190 13899 -0.4 2.1
6 -650 65 335,335 14455 0.6 2.5
9 -60, 65 180,180 13899 -0.3 2.5

The global power spectrum of each sub-profile of Table 2.4 has been com-
puted as follows:

(1) The mean of each are was removed from the given data to obtain
N^-+1

x(k-0o) = x(k-Aye) - N 1Lo x(k -AO),	 k=0 , 1,...,(N-1)

where N is the &.,tai number of observations along the particular arc and 0O = 10
in our examples.

(2) x (k-Ao) has been multiplied by a cos in
explained in section 1 . 7.3.1.5, to obtain

y(k-AO) = c(k-0o)' x(k-Ark), -( Z1
where	 j [ 1-cos (25 rrk/N)]

c ( k.AO) _	 1
i[1-cos ( 25n(N k) /N)]
0

e-tapered window, which is

N) s k 5 (C21 N)	 ( 2.17)

if 0 s k !5 N/25
if N/25 s k !^ 24N/25 (2.18)
if 26N /25 < k s (N-1)
otherwise
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and C - 8 (the length of great circle)/s (the length of sub-profile).

( 3) The variance of x( n- AO) , n - 0,1 9 	, (N-1) is defined by eqn. (2.6)
as	 N _1

PAV G2 - 1 ; lx(k-6t)) 2 	(2.19)
N k-0

or equivalently
Na&x-1

PAVG^ -	 ^ ly(k-A iG )J', where N..x - C - N	 (2.20)
^& x k 0

if we neglect the effect of the tapering of the cosine-tapered window. The Fourier
transform of y (k-40) has been computed by eqn. (1.62), 1. e.

No —1

Yn	 VC	 y (k*AO) a—t 2r k n/N Nax	 (2.21)
N..x kmO

where Y. ; the global complex Fourier coefficients (unscaled)
N..x the dimension of periodic data vector y (kto )
C	 the coefficient as defined above.

Equation (2.21) is multiplied by 3Z' in order to maintain the average power
defined by eqn. (2.19) or (2.20).

(4) The breakdown of the variance according to wavenumber (or frequency)
has been computed by eqn. (2. 8), namely

YO for n-0
P;- 21 Y.,	 for n = 1, 2, ... , (Ns-1)	 (2.22)
 YNM for n = NM and N..x even

2 1 YNM ( ^ for n = NM and N..,, odd

where	
NM -
	 Nux/2 	 if N..x even

(Nsax-1)/2 if Ns.x odd

and finally the variance ( total average power) has been computed,
N

PAvGa =	 Pn2	 (2.23)
n=0

The results are described in Table 2.5 for the sub-profile given in Table 2.4.
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Table 2. 5. The Breakdown of Variance and Degree Powers with Reference to
OEM 9 Surface from Non-Periodic Data.

Wavenumber Wavelength Are N9.

__r7 5 6	 1	 9 Meanor
Frequency (km) Power

(m ** 2)

1 40 000 0.01 0.12 0.15 0.12 0.10
2 20 000 0.03 0.21 0.32 0.19 0.19
3 13 333 0.04 0.12 0.18 0.04 0.10
4 10 000 0.03 0.16 0.03 0.06 0.07
5 8 000 0.01 0.39 0.16 0.41 0.24
6 6 667 0.01 0.34 0.19 0.67 0.30
7 5 714 !	 0.06 0.05 0.03 0.62 0.19
8 5 000 0.17 0.06 0.11 0.48 0.18
9 4 444 10.23 0.27 0.29 0.41 0.30

10 4 000 0.14 0.19 0.11 0.35 0.20
f	 11 3 636 0.04 0.01 0.04 0.24 0.08

12 3 333 0.05 0.09 0.42 0.13 0.17	 i
13 3 077 0.09 0.20 0.53 0.06 0.22
14 2 857 0.10 0.12 0.18 0.05 0.11
15 2 667 0.12 0.04 0.12 0.06 0.09
16 2 500 0.14 0.02 0.31 0.10 0.14
17 2 353 0.10 0.00 0.20 0.16 0.11
18 2 222 0.04 0.04 0.01 0.16 0.06
19 2105 0.02 0.11 0.09 0.09 0.08
20 2 000 0.03 0.06 0.18 0.00 0.07
21 1 905 0.10 0.01 0.19 0.05 0.09
22 1 818 +0.14 +0.03 +0.21 0.16 .13

F. 2.64 7.05 4.61 3.25

A.

p AYG

A 3.99 4.31 6.27 8.07 5.66

As we see from Table 2. 5, the mean of variances (average powers) of
undulations with reference to the GEM 9 surface is about 5.66 M2. If we con-
sider a 1 m uncertainty on each given data point, then with the assumption of white
noise for the data, we can compute the reduced power as follows;

$ 2 (reduced) = p2 (measured) - p2(noise)
p 2 (reduced) = 5.66 - 1.00 = 4.66 m 2	(2.24)

and further V = 2.16 m.

Thus we have recovered about 2.16 m undulation information in addition
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to the GEM 8 undulations. From Table 2.5 we also see that X;! 2000 km con-
tribute about 1.7 m , and \ < 2000 km contribute about 1.3 m of this extra
2.16 m undulation information. Notice the almost identical results given in
Table 2.3. where we had assumed periodicity, for reduced, measured powers
and extra undulation information.

2.5 Power Spectrum of Gravity Anomalies

As we mentioned before the main goal of Geodesy is the determination of
the gravity field and the shape of the earth. In sections 2.1 and 2.2 we have
explained how to obtain geoid heights from satellite altimeter data and how to
recover gravity anomalies from these geoid heights. In this section we will
examine the power spectrum of these recovered anomalies. We are mainly
Interested in pointing out the resolution of these anomalies. In other words,
we will try to point out the minimum anomaly wavelength recoverable from
these anomalies.

In our computations throughout this section the N-data vector has been
transformed into the fregaeney domain by eqn. (1.82) after the removal of mean
and discontinuities at the ends. Discontinuities at the ends have been removed
by a cosine-tapered window. Degree powers P and the total average power
PAyG have been computed from eqns. (1.80) and (1.81) respectively. Frequencies
and wavelengths have been computed from egns. (2. 12. a) and (2.12. b).

2.5.1 Power Spectrum from Recovered Anomalies Only

Two GEOS-3 arcs, one In the Calibration area and the other In the Philip-
pines area, have been selected. These arcs are shown in Figure 2.2. Along
these arcs point anomalies have been computed from adjusted undulations at
the data points using least-squares collocation. The data vectors of point anom-
alies have been transformed Into the frequency domain in order to obtain degree
powers, their contribution to the variance, and finally the cumulative contribution
by egns. (2.8) 0 (2.10) and (2.11. b) respectively. The results are described in
Table 2.6.

The. altimeter data used in the adjustment are approximately 2-second
averages. So the shortest wavelength of information recoverable from the ad-
justed GEOS-3 altimeter data of OSU is roughly 28km if we assume the data are
noise-free. in fact we know that they are not noise free. These undulations
have about 1 m standard deviations.

-55-



4D

f

11;

s

r, 0 0 0 0 0 0 0 0 0 0	 0 0 0 0 0 0 .+

g.

o X88.
0 00 0 0 0 0 0 0 0 0 0 	 0 0 0 0 0 0 0►►

S

ok

w MMw ' ^ 0O0 O MP	 qw	 InO^ 94) ^ O O S
O Ili w

ro"
.	 •	 •	 .	 .	 .	 .	 ...	 .

aDD
.	 .	 ••. .. ..

o
. oo 4Ct a :°^ °^^^^o^^tti 	 43; - C; a o 0

n	 a .r

IW
ap^D pi^pp d4 M C^'^ 00! N t0 ^	 pO c^7 ^ p ^D V^ ^1

••
d

00 S S im d^ d^	 Al
d4 EV •M•4

r4	 r+ .-4

^	 a
q, r+ N M aM 1O CO l- OD 47! O^ .. ..	

-44  •S .. a-8 •.93
Nto gr	 ^	 ^^^^

a 1040 to-D54"04 Pt- to-
to
00

OD
Ch0

M ,..,
g

o00OOOOOOOOO O o o

p
... c t S ^̂+ 4.vero^ao^n0m000m0 0

0
o
p

O
p p

O
pp^O ^^ 1Kt.7 U O
	

M M CQ	 N	 .-4 ON   	 v 
C
O O 

c
O 

a
O O O O O O

►► 4N tl

!cc
cc 0 0 0 0 0 O O O O O * C; O O Oz i ,	 a U

^ w	 w ^ * ti	 N• 00 M M N ti 47! M N
8 00 M 0 m 4` Nm .-

M N .-4
1A t0
OD o

.'
(A

ro
q

a+

4 r-4MtM•	 ••	 •	 •	 •	 •	 •	 •	 •	 •	 • •	 •	 • •	 •	 • O• •	 •	 • O• O• •	 •
O 0

A4
 p e^4 O tD u O M M N N M O

t!^	 N
.-4 O O O

P4
Z

it	 a	 °0

a 

,C 4

..	 .

ti^	 ^ V-4

...... •
ti

.	 •
M.

..	 •
4^V

ti 000 N M	 eM "4 C 9 .N
-4

a M .-4 .-4

^ a
q .-4 N M eM ^ CO ^ Oo Q1 ^, x. 40 .. ^ . ^

C
.. ^

-56-

4



From the results given in Table 2.6 we can point out the shortest anomaly
wavelength recoverable from point anomalies implied by GEOS-3 altimeter data.
First we will assume the standard deviations of point anomalies to be about 27
mgals, this having been found in the solution of least-squares collocation. Second-
ly we will also assume that the noise spectrum is equally distributed on each degree.
Then we have, with (1.97)

729 mpe/268 - 2.72 mgalafor the 11" are
var (Pn) a as /N	 729 mgal?/300 - 2.43 mgala for the 12 0 " are

(2.'l5)

We see from Table 2.6 that the signal-to-noise ratio is greater than one
above the 264 km wavelength for the 11

t
 are and above the 115 km wavelength

for the 120 arc.

2.5.2 Power Spectrum from Measured (by Ship) and Recovered Point Anomalies

In the previous section we have examined the power spectrum of computed
point anomalies along two arcs separately. in this section we will examine the
power spectrum of anomalies using predicted point anomalies and measured point
anomalies, which were kindly prov!ded to us by Mr. W. H. Chapman, U.S. Geological
Survey. The anomalies are along the sub-profiles 13, 14, and 15, which are de-
scribed in Table 2.7 and shown in figure 2.3.

Table 2.7. Statistics of Recovered (Predicted) and Measured Point Gravity
Anomalies Along the Arcs 13, 14, 15.

Are
No, N

Length

(km)

Latitude
0,1 003

(Deg.)

26.06 0 22.36

Longitude
X1 , X 2
(Deg.)

122.11, 124.45

Mean
(mgals)

Variance
(mgal ** 2)

Mean Diff.
(mgals)

(Meas-Pred)

-1.6

RMS
Diff.

(mgals)

39.9

Prod.

-43.8

Meas.

-45.4

Pred.

3782.

Meas.

5776.13 132 383
14 78 203 22.54, 24.39 124.53 9 124.71 -58.5 -49.2 4529. 4109. 9.3 23.4
15 168 473 18.08 9 13.88 127.15, 126.28 17.1 13.9 372. 303. -3.2 13.0

The data vectors of predicted point anomalies and measured point anomalies
have been transformed into the frequency domain separately along each sub-profile,
given in Table 2.7, in order to compute degree powers, their contribution to the
variance, and finally the cumulative contribution by egns. (2. 8), (2.10), and (2.11. b)
respectively. The results are described in Table 2.8.

1
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If we assume the standard deviations of predicted anomalies to be 27 mgals
as in section 2.5.1s then we can calculate the uncertainties on each degree power
to be

s	 729/132 - 5.59 mgals for the 1411 are

	

var(Pp)rw •- 729/ 78 - 9.35mipal a for the 14 1' arc	 (2.26)
729/149 - 4.92 mgala for the 15th are

We see from Table 2.8 that for predicted anomalies the signal-to-noise
ratio is greater than one above the 127km wavelength for the 13' h are and above
the 68 km wavelength for the 14 th are, and finally above the 208 km wavelength
for the 151h arc. The 208 km shortest recoverable wavelength of the 15" are is
much higher than 127 and 68 km of the 131i and 141" arcs respectively. Assuming
the same precision for predicted anomalies along each are we can state that the
big difference above is most likely due to LfI100th ocean bottom topography along
the 15 1h are and rough ocean bottom topographies along the 13 th and 14th arcs.

Thus, after all these analyses, we can conclude that the shortest point
anomaly wavelength Implied by GEOS altimeter data Is about 70 km when the
standard deviation of predicted anomalies is about 27 mgals.

Now consider the standard deviation of each measured point anomaly to be
5 mgals. Then we can compute uncertainties on each degree power as follows;

a	 25/132 = 0. 19 mgal2 for the 130 are

	

var(PA)mess = 9—
= 25/ 78 = 0.32 mga? for the 14th are	 (2.27)

25/148 = 0.17 mgal° for the 15 1" are

We see from Table 2.8 that for measured point anomalies, the signal-to-
noise ratio is greater than one above the 12.3 km wavelength for the 13 1" are
and above the 6.3 km wavelength for the 14 1" arc and finally above the 21.5 km
wavelength for the 15 th arc. We conclude from the results above that the meas-
urements (ship) have a much gmater high-frequency contribution to the power
than predicted point anomalies; this we had anticipated beforehand.

2.5.3 Power	 And Recovered Point Anomalies

In previous sertlons we have examined the power spectrum from predicted
anomalies, as well as measured (by ship) and predicted anomalies. In this section
we have selected three more profiles, numbered 16, 17, and 18, which are shown
In Figure 2.3. Along these, measured point anomalies and bathymetry were
provided to us by A. B. Watts of Columbia University. On these profiles we have
computed point anomalies using least-squares collocation from CEQS-3 altimeter
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Figure 2.3. GEOS-3 Ground Tracks and Some Selected Sub-Profiles.
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data. predictions have been made at those points where measured anomalies have
their local maxima or minima and are still not further than 30 km from neighboring
predicti ,)n points. Thee three profiles are described in Table 2.9.

Table 2.9. Statistics of Recovered (Predieted) and ;Measured Point Gravlth'

Anomalies Along the Ares 16, 17 0 18.

rc Length Latitude Longitude Mean Variance	 lean	 it11S4
No. N (km) 01002 Al , Aa ( mgaln) ( mgal^^_	 '	 DIff.	 Miff.

Prec	 Maas. (Deg.) (Deg.) Fred. Mean.
_

Pred. Meas. ( Mcas - Fred) (mgals),

—16 62	 ";	 390 1202. - 3.19,- 4.00 85.12,93.52 -19.5 -18.3 689.	 707.5	 -1.2	 11.5
17 54	 178 1012. -16.76,-17.51 83.23 0 91.87 -24.5 -31.0 1240.	 1791.	 6.5	 19.7

i18 66	 210 1013. 1 -20.53,40.64 183.27 0 92.14 1 - 8.1 1 -22.2 1 153.	 760.	 14.1	 14.7

We have also computed geoid undulations by leust-squares collocation at
those points where point anomalies are predicted along the profiles 16, 17, and
18. All these, the bathymetry, measured anomaly, predicted anomaly, and
geoid undulation profiles (corresponding to the profiles 16, 17, and 1H) are plotted
in Figures 2. 4, 2. 5, and 2 .6 respectively.

The data vectors of predicted point anoMilies and measured point anomalies
have been transformed into the frequency domain along each sub-profile, given in
Table 2.9, in order to obtain degree bowers, their contribution to the variance,
and finally the cumulative contribution by egns. ( 2. 8), (2.10), and (2. 11. b)
respectively. The results are described in Table 2.10.
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As we did In previous sections let us assume that the standard deviations of
predicted anomalies are 27 mgale each. Then we can compute uncertainties on
each degree power:

729/62 - 11.75 mgala for the 16t"arc
var(P„)rred - o►Au/N - 729/54- 13.50 mgala for the 17t"arc	 (2.28)

1729/66- 11.05 mgala for the 18,h arc

We see from Table 2.10 that for predicted anomalies the signal-to-noise ratio
is greater than one above the 200.3km wavelength for the 16th arc and above the
125.9km wavelength for the 17 th arc and finally above the 251.0 km wavelength
for the 181' arc.

Let us again consider, as we did in previous sections, the standard deviation
of each measured point anomaly to be roughly 5 mgals. Then we can compute
uncertainties on each degree power as follows:

25/390 = 0.06 mgala for the 16tharc
var( P„)m", = OM;.• /N = 25/178 = 0. 14 mgala for the 17 1-harc	 (2.29)

125/210 - 0.12 mgala for the 18tharc

We see from Table 2.10 that for measured anomalies, the signal-to-noise
ratio is greater than one above the 22.3km wavelength for the 16 th arc and
above the 11.4 km wavelength for the 17 th tiro and finally above the 17.6 km
wavelength for the 18th arc.

We see again that measurements reflect greater high-frequency contribution
to the total power than predicted anomalies.

Since measurements reflect the shorter wavelength features of anomalies,
the RMS difference between predictions and observations along a particular profile
should get smaller when we use a low-pass filter for:

(1) measurements
(2) both measurements and predictions.

The low-pass filter used here can be described as follows: The data vector
of the tip-tial (or time) domain representation along a particular arc has been
transfovined into the frequency domain. Then the Fourier coefficients have been
truncated above M!9 NH, where N„ is the Nyquist frequency and M is the cut-
off frequency in the basic interval, i.e. the length of the arc in question. Trun-
cating the frequency domain series above the frequency M corresponds to low-
pass filtering. After having generated the complex Fourier coefficients X,,,
applying a filter only involves the truncation of the coefficients above M s NH .
Then by an inverse Fourier transform we can regenerate the spatial domain
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	 representation. in order to make our approach more understandable let us give
an example: Suppose we have an arc of 1000 km length with 100 equally spaced
observations (N - 100) on it. Then the Nyquist frequency In:

NM - N/2 - 50 (in the lute rval of 1000 km)

and the frequency, with eqn. (2.12. a), is

fp - n (in the interval of 1000 km ), n = 0,1, ... , 50

and finally the wavelength, with eqn. (2.12. b), Is

A n - 1/fa - 10OOkm/no n - 1.2..... 50

Thus we can compute the shortest wavelength recoverable, which corres-
ponds to the Nyquist frequency, for this particular example,

AN„ = 1000 km/50 = 20 km

The data vector of observations, say x ( t) , t = 0, 1, ... , 99, Is transformed Into
the frequency domain by eqn. (2.5), Le.

ss

X" $ 100 Z x (k) e— 12 TT Icn /N 	
n =0,1,...,50

The inverse Fourier transform (c. f. eqn. (1.71) ) yields

x(k) = xi (k) +xl*(k),	 k = 0910090999
so

where x l( k) _Zn e 12 TTkn /100

 ' 
such that

n o 	
Zn = j Xn for O s n s 50

Xm = 50 km = 1000 km/M	 M = 20	
l 0 otherwise

Now suppose we want to filter the power contribution of any wavelength
smaller than 50km. Then we have

a M = 50 km = 1000 km/M -. M = 20

Now the truncated complex Fourier coefficients, say Yn, are defined as

Yn _	 Xn for n = 0,1, ..*919920
0 otherwise

Then, finally, we can regenerate the spatial domain reps esentation, say y (t) ,
corresponding to the frequency domain representation Y,. The function y(t)
does not have any high-frequency components above 20. The definition of y (t )
Is as follows:
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Y( t ) - NO +y1*(t)

Where	 so
y1( 

t) an E Yn et an k n/100

nn0

By using low-pass filtering as described above we have filtered out any
power contributions from wavelengths below 50 km, 100 km, and 200 km for the
data vectors of measured anomalies and bathymetry along the sub-arcs 16, 17
and 18 shown in Figure 2.3. The regenerated spatial domain representations
are shown in Figures 2.7, 2.8, 2.9 for a s 50 km, X s 100 km, X s 200 km,
respectively. In addition to the three sub-profiles above we applied low-pass
filtering to the data vector of measured anomalies along the sub-profiles 13,
14, 15 of Figure 2.3 for X s 50km, X S 100km, and X s 200km. The
results are described in Table 2.11.

In the procedures above we have only filtered out the high-frequency coin-
ponents of the power of measured anomalies. In addition we also filtered out the
high-frequency components of the predicted anomalies. The previously defined
low-pass filter has been applied for the data vector of measured anomalies,
bathymetry, as well as predicted anomalies along the profiles 16, 17, and 18.
The regenerated spatial domain representations are shown in Figure 2. 10,
2. 11, and 2.12 for a s 50 km, X s 100 km, X 5 200 km respectively. We
also applied the low-pass filter to the data vector of measured anomalies and
predicted anomalies along the sub-profiles 13, 14 0 15, of Figure 2.3 for Xs 50km,
a s 100 km, and a s 200 km. The results are described in Table 2.11.

Table 2.11. RUB Differences when Low-Pass Filtering is Applied to Point
Anomalies Along the Arcs 13, 14, 15, 16, 17, 18.

Are
No.

Mean DIM.
(Pred-Meal)

(mgals)

RMS
Diff.

(mgals)

RMS when X s 50 km
filtered

RMS when as 100 km
filtered

RMS when X` 200 km
filtered

Both Both Both
Meas. Pred & Meas. Meas. Pred & Meas. Meas. Pred & Meas.

13 6.5 41.7 40.4 40.3 32.0 31.5 18.9 18.9
14 0.0 26.6 23.5 23.2 17.7 17.4 17.5 12.7
15 0.9 13.6 12.6 12.7 11.8 11.7 8.6 8.4
16 -1.2 11.5 11.7 11.3 11.9 10.9 10.3 8.2
17 6.5 18.6 15.3 15.1 13.0 12.5 13.2 12.0
18 14.1 14.4 13.1 13.1 11.1 11.1 8.6 8.2

Mean 1	 4.5 1	 21.1 1 19.4 1	 19.3 1 16.3 1	 15.9 1	 12.9 1	 11.4

We see from Table 2.11 that the RMS differences between the cases ( i)
when only the data vector of measured anomalies are filtered and (ii) when
both data vectors of measured anomalies and predicted anomalies are filtered,
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Figure 2.7. The Low- pass Filtering
(,l s 50km) on Measured Anomalies
and Bathymetry Along Arcs 16,17,18.

1. Altimeter Anomaly (without filtering)
2. Measured Anomaly ( low-pass filtering)
3. Bathymetry ( low-pass filtering)
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are very small. The difffsrences are small because the data vector of predictions
reflects very little power contributions of high frequencies. We also sec from
Table 2. 11 that tho mean of RM differences between predicted and measured
anomalies is 21.1 mgals out of d sub-profiles 19, 14, 16 9 16. 17, and 19. It is
about 11.4 m9als when the power contributions from wavelengths glow 200 km
are filtered out.
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3. Simple and Block Toeplitz Matrices

3.1 Simple Toeplitz Matrices

A Toeplitz matrix Is an (N+1 9 N+1) matrix TN - tk! , where tkJ 0 tk-3
k, j . 0 1 Is . • . , N, that is to say that ties  is a function of ( k—J) rather than of
(k, j) separately. So TN Is a matrix of Or mellowing form

to t-1 t—s ... t— N
t1 tp

1•N .^	 •	 •	 (3.1)

^ G, -s	 to

Covariance matrices of weakly stationary stochastic time series, and matrix
representations of linear time-invarihnt discrete time filters are of Toeplitz
form (Gray, 1977).

The very special structure of the TN matrix can be exploited during the
process of inversion, which yields significant savings In computational time and
storage. In the past, several authors [ (Levinson, 1947), (Trench, 1964), (Kutikov,
1967), (Zohar, 1969), etc. ] have approached this problem and given algorithms to
carry out the Inversion of general Toeplitz matrices.

Since we generally deal with 'positive definite and symmetric normal equations'
in least-squares adjustment and/or collocation, only the Inversion of symmetric and
positive definite Toeplitz matrices will be considered here.

Let us now consider the least-squares collocation model

x = AX+s'+n	 (3.2. a)

which yields the following expression for the s-signal vector (Moritz, 1975, p. 15)

s = C /R AC, `(X-AX),	 Cost + Can	 ( 3.2. b)

or equivalently, when the trend is removed before hand

S = CA  C 1 x	 (3.2. c)

where s is the p-signal vector, x is the ( N+1)-measurement vector, X is the
u-parameter vector with the design matrix A , C. R is the [p, (N+1) ]-crosscovari-
ance matrix between s and x, Cote Is the covariance matrix between s' signals,
C,,,, is the covariance matrix of the noise, and Z° is the [ (N+1), (N+1) ] covariance
matrix of the measurements x. If the number of observations is large, then the
classical Inversion of Z! in eqn. (3 . 2) causes the greatest problem. The Z! matrix
is of Toeplitz form if we assume;
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- observations are at equally spaced points along a profile
- noises are equal
- the covariance function used In the computation of C has the property

(Cgt e ) jk = (C,v ,t ) j -k , this implies the stations. rity of the covariance
function.

With the assumptions above, it followr that:

(1) TN - U is non-aingular
(2) T

N 

Is symmetric, 1. e. tk a - t j k

( 3) ^) joak tkJ a J >06 n = 0,1, ... , N for any set a„ m = 0, 1, ... , n
such that at least one of the ak is not zaro and finite.

A recursive procedure for the inversion of symmetric and positive definite
TN will be given here. 'This recursive inversion requires numerical computations
proportional to (N+1)° compared to (N+1)3 of classical bordering methods and
the storing of only one row of the input TN and the output Tt; -1.

3.2 Inversion of Simple Toeplitz Matrices

It is well known that the inverse of a symmetric and positive definite matrix
is also symmetric and positive definite. Then it is possible to express the inverse
TN -1 of TN as ( Faddeyev, 1963)

'I

TN1 = B T 
A B

where	 1 0 0...... 0
iho 1	 0 ......0

B = bao b21 1 ......0

LNo bN1 bu2.....91

(3.3)

Few 0 ......0

0	 all •....0
A =	 (3.4)

0	 0 ......aNN

In complete agreement with the equality above we can write (Kutikov, 1966)

A -'
 

= B TN BT

or equivalently,	 "

bnk . tk J = 0 ,	 1 = 0, 1, ... , (n-1), n = 1 9 ... , N
k^0
L bnn . 1,	 n = 0 9 1 9 ... , N

a
ba t ttcn = ann • n = 0, 1, ... , N

ksa

If we substtiute the following condition

tk a = tk-d ,	 k, j = 0, 1, ... , N

In the above equations, we obtain
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(3.6. a)

(3.6. b)

(3.6. c)



•
bnk ' tk,t	 0 ►

k =0

ban - It
t

Sbnk ' tk—a =

k^0

i - 0 0 1 9 ... , (n-i), n - lo se 9 ► N

n - 0, I t o oa t N

n-0, I t o .. , N

(3.7. a)

(3.7. b)

(3.8)

Since TN In non-degenerate by definition, bak values are uniquely defined by
the relations above. We will show that (Ibid, p. 63) under conditions ( 1), (2), (3)
we have the following recurrence relations:

bet - I t	 n -0,1,...,N	 (3.9. a)

et	 bnk a tk+1 ,	 n	 (3.9. b)

—2

ant - bnk a tn-k	 n - 0,1, ... , N	 (3.9. c)

bn.l,0 - -e n' a R ,	 n - 0 0 1 0 .. . , (N-1)	 (3.9. d)

bn+l,k = bn,k-1 + bn+ 1,0' bn , n -k r n = 1, 2, ... , ( N-1), k = 1, ... , (n-1) (3.9. e)

In order to show this relation let us write the left hand sides of eqn. (s. 7. a) replacing
n by (n+l):

t+1

 
Y 

bn +l,k ' it-2 ,	 e = 0, 1, ... , n	 (3.10)
k 0

and let us also assume that for the btk k, m = 0, ... , n defined by conditions (3.9)
the relations (3.7)-(3. 8) are satisfied. Using eqn. (3.9) we can write

A

= bn+1 ►O't—a + k7t] bn+l,k ' tk—a + bn +l,n+l*tn+1—a
k5

^
d
"	

n

bn+1,0' t-a + ) bn,k „l ' tk—a +bn +1 9 0	 bn, n—k otk -a +bn+l,n +l ,tn+1 a
k 1	

k-1

cn
bn+1,o ( t—a ',	 bn , n—k'tk-a ) + [ ) bn, t—,att—a + bn+1,n +1 't n+1 —  )

using the equality (3.9. a) and substituting m = k + 1, we obtain
n	

11

	 n-1	

11Xe = b.+ 1,0 [ b0,o t—a + I bn,n —k a tk — a 1 + [ S bn, k tk —.+ 1 + b n,n to+1— a J
n	 k— 1 n	 k -0

Xa = bn +1 ►0) bn .n-k *tk -a +	 bnA atk-a +1 ► 	 s = 0, l,...,ri	 (3. 11)
k —	 k=0

By virtue of eqn. (3 . 7.2.), the right-hand sides of the above equalities are equal
to zero for s = 1, ... , n and by (3.9.b)-(3.9.d) for s = 0 also.

Thus when we consider eqn. (3 . 7.a), then the egns. ( 3.7)-(3.8) follow frcal
the conditions (2.9) by induction. Since b nk n = 0,1, ... , N and k = 0, ... , n are
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unique, we conclude that egns. (3.7) and (3.8) are equivalent to eqn. (3.9).

Let rkJ k, j - 0,1, ... , N denote the elements of the inverse TN 1 such that

" 0

N
ro o

N
ro 1 ...... roN

rlL 411 ...... ri N

TN

rc n,̂" 1 ......

then the following equalities hold (Kutikov, p. 66)
(N+1)	 N	 Z

rkJ	 - rkJ + bn+ i,k at +109+ 1 bN+ 1 ,J

(3.12)

k,j = 0,1,...,(N+1)	 (3.13)

This follows front eqn. (3. 3), where rH+1,J Is taken to be equal to zero.

Since the Toeplitz matrix TN satisfying the conditions ( 1), (2) and (3) Is
symmetric and persymmetric ( i.e. it has symmetry both Its diagonal and cross-
diagonal), in other words

tkJ = tJk ► 	 tkJ '-- tN -J,N -k

we can show that the Inverse TN 1 is also symmetric and persymmetric (Zohar,
1969). The symmetricity of the inverse is apparent, so, we will only show that
TN "1 Is persymmetric. For the proof let us introduce the Exchange matrix E
defined as a square matrix with units along the cross -diagonal, and zeros else-
where. Now suppose A is an arbitrary ( N x N) matrix:. If we examine the
matrix product ( E A T E ), we see that the overall effect is to exchange elements
of A which are located symmetrically with repsect to the cross -diagonal. So
a persymmetric matrix is a matrix H satisfying E H 1 E = H. Now from this
formulation it is easy to show that TN IsIs persymmetric. Let us start with

(U 1 ) (TN r) = I

and note that E E = I to obtain

E(TN) -1 (EE)(TN ) E = EE = I

[E(Tni) 1 E  [ ETN' E  = I

but E TN E = TN . Hence [ E ( TN ) 1 E J = TN' and TN" is persymmetric.

Toeplitz inverses have a very useful property: If the last row of the inverse,
say rN J , j = 0 9 1p ... , N, Is known, then all other elements of the inverse can be
computed Iteratively from rNj . First let us compute rN J by writing from eqn.
(3.13)	 N	 (N-1)	 2

rkJ 2"' rkJ	 + bN,k aNN bN,J
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and letting k - N and also notingr ; J 1) - 0 , j • 0,1, ... , n , bw - 1, we obtain

F^

N	 a
NJ - 84 No	 i -0,1,...,N ( 3.14)

In order to compute the remaining elements of the Inverse we have from eqn.
(3.13)

rk -1,J -1 - rk — ,^ — 1 + bN,k -1 pNN bN,J — 1 	 (3.16)

and also considering persymmetry

rk J - A- J,N -k - rN - J,N -k + bN ,N - J 4 NN- 1

N-1	 2
° rk-1,J -1 + bN 	 4,N-J 	bN,N-k	 (3.16)

Substitute the equality of rN- 1 J •-1 from eqn. (3.16) in eqn. (3.15) to obtain

rk 1,J-1 _ rkJ - bN,N-J aNN NN -k + bN ,k- 1 aNN bN,3-1 	 (3.17)

By considering symmetry and persymmetry, the algorithm can be summarized
as follows:

(1) Compute the last row of the B matrix and ate, through the recursive
procedure defined by eqn. (3.9);

bnn - 1 ,

eQ 2S
n

0 b* • tk +1+

aan„	 bak • to-k,
k o

2
bn+1 60 = —e n  ann

n=O,1,...,N

n - 0 0 1, ... , (N-1)

n=0,19...,N

n = 0, 1, ... , (N-1)

(3.18)

bn+1,J - bn+J..i + bn +l.o bn,n-J	
n = 1 9 2, ... , (N-1)

=
b n+l,n- J+1 - bn,n! + bn+1,0 bn,k-1 r	

J	 1, 2,. .. , ( (n-i) /2)

By the formulae above the reduction in computer storage is considerable, because
bn + 1 , J + bn +l tn - J+l following the calculation can be stored in the place of bn, J-1,
bn,n -k + which are not used in any further calculation.

( 2) Compute rN J , j = 0,1, ... , N and the remaining elements of the Inverse
byegns. (3.14) and (3.17);
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rod 
	 ) -0,1,...,N	 (3.18)

N	 N	 N	 N
raN - rw-S,o - rod,- j ` Mj from symmetry and

pe rsymmetry

rk-s 	
+	 AN 	 11^.

, S-1	 "k ^ ' ^ ,N -k' ^M!' "+N,N- ^ ^,k-1' ^'"'N, J-1 9 k ( NN + 1).... , N, i ° (N - k), ... , k
- j (N + I ,/2 if N oddwhere NN	 ll 14/';d if N even

finally r j _ ;, k -s rN"- ^. i.N -k+ s = r^ -k+i,N -^+s o r,",,, j -s from symmetry and per-
symmetry..

As we mee from the expressions above, we do not have to store all the
elements of the inverse at once. As soon as an element of the inverse is com-
puted it is multiplied by the corresponding element in x-vector of our model
(3.2.2). So we only have to store one row of the inverse in order to solve the
recursive equation (3.17). A computer program written In FORTRAN language
In given in Appendix 3. A.

Using this algorithm some test runs have beeu made in double precision
arithmetic on Amdahl-470 computer. The results are given in Table 3. i.for the
solution of the linear equality

TN F - X
	

(3.20)

where TN is a ( (N +1), (N +1)) Toeplitz matrix whose inverse has been computed
row by .-ow, X In the data vector of length (N+1) and F is the solution vector
of leng►tb (N + 1) we desire.

Table 3.1. CPU Time and Core Storage for the Inversion
of Simple Toeplitz Matrices.

Dimension C P U Time Storage
(N+1) (sec.) (K)

100 0.12 3.2
200 0.48 6.4
400 2.86 12.8

1000 18.21 32.0

From the Table 3.1 we see that the simple Toeplitz inversion is very efficient
as far as time and storage are concerned. If we have equally spaced data with
equal noises, then the covariance matrix of the data is of Toeplitz form and we
obtain identical solutions with the classical inversion algorithms. But if the ob-
servations are not equally spaced and do not have equal noises, then we have to
use interpolated data and give equal noises to the observations in order to use
the algorithm above. Thus we introduce some approximations to our solution.
We can proceed and use this algorithm if we can show that the degree of approx-
imation has negligible effect on the solution vector. To demonstrate the efficiency
of this algorithm and to see the effect of approximation on the solution, two arcs

-81-

f



f

of altlmetry described in Table 9.2 and shown In Figure 2.2 from GE08-3 have
been examined.

Table 3.2. The Description of Arcs 11 and 12.

Arc Area Latitudes (Deg.) Longitudes (Deg.) Length No. of observations
No. 01	 BAs Xi	 ka (km)

11 allbration 12.8480 38.9526 309.9578 291.0051 3540 256
12 Philippines -0.0241 32.4655 146.5301 128.8229 4182 300

As the first step, the point gysvity anomalies have been predicted at observation
points by eq:.. (3.2.c) using the original observations and their uncertainties. As
the second step, equally spaced data have been created from the original obser-
vations and the mean uncertainty of the original observations along the particular
are has been given to each predicted data point as the uncertainty. As the third
step the point gravity anomalies have been computed at the original observation
points by eqn. (3.2. c), but using the simple Toeplitz Inversion algorithm to
invert L' . The statistics of this study are given in Table 3.3 and anomalies
are plotted in Figures 3.1 and 3.2 for the 11 th and 12t"arc respectively.

Table 3.3. The Statistics of Arcs 11 and 12.
Arc No. RMS Max. Diff. Mean Diff.

(mgals) (mgals) (mgals)

11 1.1 5.5 -0.1
12 4.8 32.4 -0.3

The average standard deviation of the predicted point anomalies is about
27 mgals. The RMS differences of 1.1 mgals for the eleventh arc, and 4.8 mgals
for the twelfth are above are much small( than the standard deviations of the
predictions. So It would not be unfair to say that the approximations introduced
In the examples above have negligible effects on the computed point anomalies.

The twelfth are of the Table 3.2 was also used for (1°x 1°) mean anomaly
recovery of some 25 blocks, which are located in a (5 0 x 50 ) block whose co-
ordinates are:

O N = 100 , Os = 50 ,	 ae = 1370, Aw = 1320

The RMS difference between a rigorous least-squares collocation solution and
Toeplitz solution has been found to be only 0.1 mgals with a maximum difference
0.2 mgals . The difference between the two solutions is negligible should we
consider the standard deviations to the predictions, which is about 15 mgals.
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a S Block-Toeollts Matrices

We have defined the simple Toeplitz matrix as a matrix T„ whose (k. j ) th
element Cis is a Amotion of (k - j ) . When tks itself is a matrix. then TN is
oalled a block-Toeplitz matrix. To this section our attention will be restricted
to the case when the block-Toeplitz is real, symmetric, persymmetric and posl-
tive definite. The derivations are very similar with the simple Toeplitz case,
the only difference being the replacement of scalars by matrices. Thus we
generalize the algorithm derived In the previous section. A complete derivation
for the Inversion of positive definite block-Toeplitz matrices can be found in
Kutlkov (1966).

Block-Toeplitz matrices appear quite often in time series analysis. The
simple Toeplitz forme usually arise in one-dimensional Wiener filtering, where-
as block-Toeplitz forms arise in two-dimensional filtering. Suppose x. , s
O.i....,p are random vectors, each vector having length of (q+1), then
the aut000variance matrix (stationarlty also assumed) is of block-Toeplitz form
with dimensionality [ (p + 1) (q + 1) . (p + 1) (q + 1) l . We can see that (q + l) iR

the dimension of the square subblocks and ( p+ 1) Is the number of random
vectors.

3.4 Inversiou of Block-Toeplitz Matrices

Development of the Algorithm

The algorithm given for the simple Toeplitz case is generalized here as
follows;

Simple Toeplitz Case

TN
it _j,  k, j - O,19 ... , N

B
bkJ .	 k,j = 0,1,...,N-a	 aaa„ , a te, , n
eft 0

rka	 k,j	 091,...,N

Block Toeplitz Case

e
TN

Tat as Ts— t, sot = 0 9 1 9 ... , p
B°

Bat s	 opt = O,l,...,p
AL 9 Ago a	 8 - 0910.909p

E.,	 e = 0019.099(p-1)

Bit  ,	 sit = 0119060'p

Now we can write the iterative solution algorithm for the Inversion of the
block Toeplitz matrices corresponding to the egns. (3.18) and (3.19) of simple
Toeplitz inve rs ion.
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(1) BN • I	 s-0,1,...,P

16 - ` j oBsc Ti 10 s - 00 1 9 ... , (P-l)

A;i - c toBst Ti _t • s 000100099p

(3.21)
Bs+%,o - - Es A $ 	 s - 0,1, ... 9 (P-l)

s - I t 2, ... (P-1)

Bs+1,s_Ni - B.,•_c + Bs+1,oBs,c -1 	
t M i t 2,...,(s-1)/2

(2) Arc - An Bp i	t - O,1, .... P

Rs - 4t
N-c,o - 4,	 1 from symmetry and persymmetry)

R4r- c - Arc	 (3.22)

R,-i, c-1 - Re - B;.-• A:, Br.,-c + Brri Ai Br,c-I

s - ( pH +1), ... , p ,	 t - (p-s) , ... , s where pw	
odd- (p+i)/2 if p

p/2 if p odd

from symmetry and persymmetry )
Rr-++ I.v -c*i - R_i,e-i

Similar to the simple Toeplitz case the saving in computational time and in
computer storage is very significant. We used only store one block-row of the
TN and one block-row of the inverse (TN )-1 In cases where we are not interested
In the Inverse itself but rather in the solution. A computer program for the solution
of (3.23) written in FORTRAN language Is given in Appendix 3. B.

The computational time by this algorithm Is proportional top (q+1)3 com-
pared to the p3 (q+1)3 of the classical method of bordering. Some test calcula-
tions on the Amdahl-470 yielded the results given in Table 3.4 In the solution of
the linear equation

TN F - X, N+1 - (q+1)•;p+l)(31.23)

where TN is the block-Tosplitz matrix of dimensionality ((n+l ), (N+1) ] consisting
of ((q+l ), (q+l)l subblocka, F is the solution vector of length (N+1) and X is
the data vector of length (N+1) . Thus for the solution vector we have,
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F a (I:) -1 X	 (3.24)

Table 3.4. CPU Time and Core Stomp for the Inversion
of Blook-T000lits Matrices.

Dimension C PU Time
(sec.)

Storage
(K)P+1 Q+1 N+1

26 2 60 0.24 3
100 2 200 4.42 10
200 2 400 13.26 20
80 6 400 16.80 40
20 20 400 48.86 93

400 2 800 49.68 40

We will now show that the covariance matrix of equally spaced gridded data
Is of block-Toeplitz form. N data are gridded and observations on each profile are
equally spaced, then distances between profiles do not have to be equal to each
other In order to obtain a block-Toeplitz form. As an example let us consider the
three profiles shown in Figure 3.3. The covariance matrix of this model is of
block-Toeplits form and is given below.

-----!	 9l----------> 9

--_-- 12- 	 16	 is	 11'I ----------k 2

Sl 1 	 =

---- 1	 S	 .14	 S	 i7	 S 10 ----------> 1

Figure 3.3. Three Parallel Profiles with Equally Spaced
and Gridded Observations.

To Ti T2 T3

T Tl TO Ti T9
T2 Ti To T1
T,4 Ts Ti To
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Nile re
C(0)	 C(h) C(h +h)

To OF C(0) C(se)
mmetrb C (0)

C(a)	 C( s1 +s) C(s + 	 + @@)V)
Ti n C(a) C	 s +ss )

mmetrb C (a)

Ts
C(2s)	 C	 4	 +si )

C(2s)
C( R+	 +%7'
C( 4s +ss)

symmetric C (2s)

C (3s)	 C	 9+ •1 ) C( 9s +	 + ss^')
Ts C (3s) C ( 9s + h )

symmetric C(3s) 

In order to elaborate the applicability of the block-Teopl ltz inversion In
practice, it was used In the recovery of point and (lo x 1) mean anomalies from
geoid heights. Point anomalies predicted from gridded geoid heights, which are
created from the adjusted satellite altimeter data, are shown in Tables 3.5 and
3. a. The computation points of Table 3.5 are located on 90-E Ridge s and those
of Table 3. a are located in die Hovin Trench Area. These locations have been
selected due to their large anomaly variations. (l o x 1°) mean anomalies predicted
from gridded geoid heights are shown in Tables 3.7, 3.8, and 3 . 9. The (to x 10)
computation blocks of the Tables 3.7 and 3 . 8 are located In the Philippines Trench,
and those of Table 3.9 are located In the Calibration area.

GANOM and CANOM are common in all the Tables and have the following
meanings l

GANOM: Gravity anomaly computed from GEM 8 potential coefficients,
CANOM: Gravity anomaly computed from original adjusted satellite

altimeter data using the rigorous least-squares collocation.
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We see from Table 3.6 that the RM differences between the gravity anomalies
computed from the original adjusted aliimeter data and tbose from the gridded data
(predicted) are 8.0 and 3.0 mills respectively, when using (6 x 66) and (10 x 40)
grids. Theme RM differences are well below the standard deviations of the pre-
dictions themmelves if we consider the standard deviations of predictions to be
27 mgals as before. However, the RM differences In Table 3. 6 are 27.8 0 16.90
and 17.8 mills In the case of (6 x 73), (10 x 36), and (18 x 20) gridded data,
respectively. Only one of the RMS differences is slightly higher then the 27 mgals
standard deviation of predictions considered before.

We also computed (1°x 1 0 ) mean anomalies of blocks 710, 711 0 and 343
given In Tab'se 3.7 0 3.8 0 and 3.9 respectively. The RMS differences between
mean anomalies computed from original altimeter data and (10 x 40) gridded
data are 5.9, 6.2 l 3.6 mgals respectively. The standard deviation of (l o x 10)
mean anomaly prediction is about 7 mgalA. So the RM8 differences above are
smaller than the standard deviation.

From the results above, we can conclude that, in the case of altimeter
data, the RMS differences between predictions from original data Rnd gridded
data are generally less than the standard deviation of predictions. Thus, we
can create a gridded data and predict signals by the fast Tosplitz algorithms
described in this chapter.
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Table 3.6. Pout Asomallea from OZM 9 CoeQichMs. Original Goo Id Heights and 0ridded
Goold Heldlts.

LAT	 LOW	 "NM TAMIMI TAIIM	 CAPOM	 CMIOM-TANOMI ^^'inM-TA

-11.00 AT. N -20.4 -934.8 -26.4 -33.8 11. 1
-11.60 87.20 -20. 8 -08. 6 -911.6 -17.6 :t.0 •;.'
-11.00 47.40 -20.2 -41.9 -ST. a -38.9 1U .0 :.
-11.00 W." -20.1 -42.2 -41.3 -41.4 0.0
-11.00 W.00 -30.0 -938.9 -40. 2 -41.8
-11.00 00.00 -19.9 -;32.4 -32.7 -44.4 -3.0
-11.00 68.20 -19.8 -:3.3 -98.7 -17.1
-11.00 88.40 -19.7 -15.4 -2.1 4.1
-11.00 88.60 -19.6 -0.6 10.0 IS.0 v.l
-11.00 Ga.GO -19.3 -1.4 11.6 11.6 Mo ,•;:
- 11.00 89.00 - 19.4 -T.: 1	 , -0.0
-11.00 89.20 -19.3 -19.5 -18.1 -13.4 ".t
-11.00 89.40 -19.2 -31.3 _3T.9
-11.00 89.60 -19.1 -40.6 -45.4 -47.4
- 11.00 09.80 -19.1 -46.6 -03.8 -34.1 -U. t
-11.00 90.00 -19.0 -00.3 -33.4 -34.8
- 11.00 90.00 -16.9 -51.3 -914. 1 -.13.3
-11.00 90.40 -10.0 -49.6 -30.7 -49.0
-11.00 90.60 -IO.T -45.0 -43.6 -Q.3 1.0
-11.00 90.80 -10.6 -37.0 -'3.4 -37.7 0.1
-11.00 91.00 -10.5 -30.0 _26.2 -J1.7 -1..

RUB DiKereme Between CANOM and TANOMI is 8.0 mgsla
RMB Difference Between CANOM and TANOM2 Is 3.0 mgals

where # TANOMi t the point anomaly computed from (6 x 65) gridded geoid
heights.

TANOM2: the point anomaly computed from ( 10 x 40) grldded geoid
heights.

The grid limits for prediction described in this table are:

fA - -8°o W - -let At - 92°. Aw - Se
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Table 3.6. Point Anomalies from GEM 9 Coefficients, Original Geoid Heights and Gridlded
Geoid Heights. 	 I

LAT	 LON CAIfOM TANMI TM01m TA110l18 CAA011 CAROM-TAW MI CARD*-TANM CAAOW-TAIMM	 ,

28.00 141.00 13.7 -14.7 -12.8 -5.4 0.5 15.2 13.8 5.9
28.00 141.10 13.6 -22.5 -13.7 -5.0 5 .'i 32.2 23.4 14.7
28.08 141.20 13.6 -24.0 -5.5 1.4 25.2 49.2 30.7 23.8
23. 00 141.30 13.6 -14.1 14.0 16.8 45.6 59.7 31.6 28.8
28.00 141.40 13.6 11.5 45.3 49.3 70.2 58.7 24.9 20.9
23.00 141.50 13.d 54.1 87.1 92.9 98.9 44.8 11.0 6.0
A-3.(0 141.66 1?.5 109.7 134.5 138.8 131.3 21.6 -3.2 -7.5
23.00 141.70 13.5 170.0 181.0 183.4 167.0 -0.0 -14.0 -16.4
2x.00 141.80 13.4 2-15.6 lt1.8 223.6 264.5 -	 1 -17.3 -19.1
28.00 141.90 13.4 269.8 254.1 257.1 241.0 -13.1 -16.1
28.00 142.00 13.4 208.7 274.6 277.3 272.2 -26.5 -2.4 -5.1
23.00 142.10 13.3 308.1 281.6 281.9 290.6 -17.5 9.0 8.7
23.00 142.20 13.3 298.5 273.6 275.2 289.4 -9.1 15.8 14.2
2'3.00 142.30 13.2 265.7 251.2 254.3 272.4 6.7 21.2 18.1
2d. 00 142.40 13.2 212.4 216.1 213.9 243.3 30.9 27.2 29.4
23.00 14:3.50 13.2 131.6 172.3 164.4 203.7 52.1 31.4 39.3
2:3.00 14.:. 60 13.1 103.1 1'24.0 113.5 155.1 01.3.0 31.1 41.6
23.00 14::.70 13.1 68.3 73.6 73.5 100.0 31.7 24.4 26.5
23.00 142.60 13.0 34.3 27.2 35.7 41.7 7.4 14.5 6.0
213.00 142.90 13.0 -5.7 -20.7 -3.4 -15.7 -10.0 5.0 -12.3
23.00 14'.'..00 12.9 -35.7 -66.0 -48.7 -67.2 -11.5 -1.2 -18.5
2'.00 143.10 12.8 -103.0 -103.4 -91.2 -109.0 -6.0 -5.6 -17.8
23. 00 143.20 12.8 -133.9 -139.2 -124.1 -138.2 -4.:i -9.0 -14.1
273.00 143.30 1.̀3.7 -148.0 -1ti1.9 -139.9 -132.7 -''#.7 -10.8 -12.8
23. CO 143.40 ?2.6 -149.9 -143.0 -142.9 -151.7 -1.8 -8.7 -8.8
23.Cl0 143.50 12.6 -141.4 -134.3 -136.2 -138.4 3.10 -4.1 -2.2
2^; . 00 143.60 12.5 -123.9 -118.0 -120.3 -117.7 6.2 6.3 2.6
23.00 143.70 12.4 -99.1 -95.8 -97.4 -94.5 4.6 1.3 2.9
2 x.00 x4:3.80 12.4 -63.a -7.1.4 -72.4 -71.2 -2.4 -0.6 1.2
28.00 143.90 12.3 -36.6 -44.8 -47.7 -49.1 -12.5 -4.3 -1.4
23.00 144.00 12.2 -8.8 -22.2 -35.0 -29.2 -20.4 -7.0 -4.2

RMS Difference Between CANOM and TANOM1 is 27.8 mgals
RMS Difference Betweer CANOM and TANOM2 is 16.9 mgals
RMS Difference Between CANOM and TANOM3 is 17.8 mgals

where, TANOMI : the point anomaly computed from (5 x 72) gridded geoid
heights.

TANOM2 : the point anomaly computed from (10 x 36) gridded geoid
heights.

TANOM3 : the point anomaly computed from (18 x 20) gridded geoid
heights.

The grid limits for prediction described in this table are:

ON = 300, os = 26°, XE = 145° 75, Xw = 139:75
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Table 3.7. (1°x 10 ) Mean Anomalies from GEM 9 Coefficients, Original Geoid Heights and Gridded
Geoid Heights.

BLOCK	 LATIN LAIN LONE WNW GEM CANON TANOM CANON- TAR014

71I)	 10. oc 9.00 123. vo 127.00 29.1 -19.6 -:30.4 10.0
1	 .	 , I Q.00 129.00 12d. 00 27.2 31.7 30.4 1.3
1	 '. 100 1. GJ 1:: 0. 00 12').00 25. ei 12: 3 W.4

.%:o 131.00 134.Z° ':'.7 :2.;.3 33.6 -U.4
1 C. c3J 13:3.00 131.4)*

1.00 1'.:.1.00 I12:. bJ !1G. 4 -6o. 9 -09.0 -1.9 
'+.	 0 ^:) 12).x':) 13:.U)^) !.6 (i1.3 5a. 10

13 :. i J l 3 I. (d J .''; . 7 1 U. l :3 ..! -:'	 i•
w 13....J I3	 . CU 30.9 -137. •1 - .i0

J J 13-3. E; G 13) . t, J .'.:. 6 :; 1. .  0 0 .	 : - .1 . el

J 13.:.00 (3 1 .00 :;4.11 .:9.0 1-9.1 ° J.
:. UO t'v 1::.1.00 I2'1.00 :10.8 -141 . G -162. ti :11.:.'.
:' . 00 (, .	 J 129.00 123.00 29.2 63.4 78.3 -13.1
7.00 6.UO 130.0,) 124.00 27.8 61.4 38.8 2.6
7.00 ,.J0 131.00 130.00 26.5 27.4 28.4 -1.0

..	 J .00 ;33.0'0 131.00 2'3.:1 14.:1 1(i.•J -O.0
, . Co J 12.1.0a 127. 00 ,;0.0 -139.2 -113J.1: - 1. c;

121 .0J, 1.2.1. c)J :. e.. 6 4J. 2 .3. 1 -1.9 
13' x .'.;0 113).00 60. V :ii'	 sir J.
13ClJ 130.0j 1-6.3 39.3 x• 1 .7 -'2.4.
13.21 .GJ 131.00 :'u.4 10.0 11.3 -U.Y

R"L9 DIFFERE4CE BETWEE't CANON ANJ TANON IS	 3.9 NGALS

where, TANOM: the (1 °x 10 ) mean anomaly computed from (Yid x 50) gridded
gF;oid heights.

The grid limits for prediction described in this table are:

ON = 110, tps = 40, h = 128°, Aw = 121°

OF

r
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Table 3.8. ( 1°x 10 ) Mean Anomalies from GEM 9 Coefficients, Original Geoid Heights and Gridded
Geoid Heights.

BLOCK	 LATH LAW LONE L.ONW GEM CANON TAI90M CAROM-TAXOM

711	 10.00 9.00 133.00 1312.00 20.6 7. 4 7.9 -0.5
10.00 9.00 1314.00 133.00 19.2 13.1 11.1 -2.0
10.00 9.00 133.00 13.4.00 17.6 7.6 3.9 3.7
19. "' T 3 . GO 130.00 1133.00 ".6.5 23.9 32.0 -:3.9
1..+..?0 9.09 137.410 13W,.00 1U.1 6.6 7.0 - 1.2
9. 00 0.00 133.00 132. 4.J 22.3 23.6 21.3 1. I3
4).W u.00 13•11-.00 133.01) 20.9 13.1 13.7 -0.6
).Co r3.00 13.;.G0 13:.GJ 19.5 47.0 41.0 U.0
r	 '. U ;.JU 13C;.CJ 13-j. LAO 18.1 -i5-3 -16.1.) 0.9

131.GO 13'i.t;J 16.6 G3.9 u.7 :;.2
IJ3;.00 M2.00 23.:; :10.1: :;U.0 0.2

. 0 ' J l i r . 00 13:3.0) 2.2.2 27.3 24.4 1:. 9
"J ; .i`J f.3	 .GJ li~	 .E`'` ^.0 :16.9 43.7 L;
0 ...;J 1:	 a.vJ 13.;.00 19.5 -31.0 -16.1 -1	 b

13	 .0.) 13'). CJ IC.0 36.6 2.
^.k;J 133.( 1 1.00 2 30.9 ::9.? 1.

0 -.J 13,. U,) 1	 -.00 .':3.1 4:.1 tll.l 6.0
`.) t^."'O 134. 4:) l o' ;.GJ -11.9 -34.1 -23.1 -I1.0

:. ,	 .J 6j 13').00 1 "I;) . 00 -k,. 0 .;7.9 30.51
+'..'J 1 13:'.410 13	 .	 ) ;9.'. tr.l 1.r :.'^
l. .'..) I3'3. C.0 13..'! :,. ^, '•0.13 :1

1.,'. 0 4 ) 1d,,.G) V.6 30.3 31.0 -u.'_
v.t:J J If3	 00 1:3'	 ':J .t, I.I3 -:;.1 .9
r.0 ) L:..r.G O 00

1'3:.4;0 13•,.00 ..41.43 X3.6 :31.0 -2.k

RPU9 D I FTERENC:: BETKEE': CANON AN." T.ANOM Ib	 6.2 MGALS

where, TANOM: the (1°x 1°) mean anomaly computed from (10 x 40) gridded
geoid heights.

The grid limits for prediction described in this table are:

ON = 110, (Ps = 40, k = 138 0, Aw = 1310
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Table 3 . 9. ( 1°x 10 ) Mean Anomalies From GEM 9 Coefficients, Original Geoid Heights and Gridded
Geoid Heights.

BLOCK	 LAW	 LATE	 LONE	 LONW	 GrA CANON	 TAN OX	 CANON-TANON

'143	 4-1.0000 3').00 292.08 291.00 -15.4 -3'2.4 -30.11 -..^,. 1ee l ). U0 39.00 293. ( 10 292.00 -15.4 -33. y -33.'t"w^.00
'

31.00 294. G-3 293.00 -15.3. CO 3':. UO 5:95. 00 294.00 -14.9 -::(i .:'4,1. GO v'?.O0 29.^.GJ 293.00 -14.4 -:P'3.i3 .:;i.6 k..;4 ! . k J :i') . V0 29' . CO 29.1. k!O -13 0 -:3.. 3 -.i t	 1. - t00 :; ).Go 10:2. CO 291.00 -1u.6 -:39. ! -:)I.Sr
.

':.,;.`' .00 3.). Oo 1.9	 . X30 20.:.00 - i6.6 -Wir . 7 -:i .. G -:i. 1:i'.. C 0 3' • . 00 . ?	 '.; (1 29j. CO - t u . 4 -::':. u -3 l .:).'30 :3.;.00 ':	 :.:0 '2)•x.00 -1b.0 -	 .a.0.(.:0 :i;'j	 00 29o.QJ 29 ;.00 -7G.4 -.:O.0 - `.'.G t.9ti..k,0 i.	 J ::9 s'. 01) ::)u.00 -!C'•.j -^.:^ -tir.1 -;i.13	 ..(.i) .0 _'..lJ 491.G0 -W.0 -'1":.0 -'i?.:• -.).l:i	 OU ;::.00 24.i.1;0 :292.00 -11).0 -:i':.'s' -:36.'.' .03 .00 "9 00 :39 J. 00 -17.7 -.ai . G -2u. 1; 0 .:i0,J 'Al
?9;3 -	 7. ^: -1:i . 4 - 3	 ::3'..00 39 , . t` ^ - 9 . U

-10.6"".GJ :: , .v0 ?9::.JO 2')t.VU -i4.fl -	 .:t
3..	 J ^.;) 4',.0.1) 29.i.GO -19.a -19.1 -^[f;..3
3 '	 +'v

0 `29:'	 .ki0 29.•.GO - .u.7 - ^.9 - 11	 :i 1.9.:	 .00 3),.x'0 2,9'*.(,0 -17.4 -+.i..3 -1^.•.;i U.:i .. . t J ::.. 00 29 :. v 0 2".). Gu - 1 i . U - , :.:i -9.4 -:; U3i.GO 29'!. CJ "191.CJ -:1.'1 -13.l ai.:i
.

•v3u.C'J :i	 ,J
'

39:1. G0 "9:1.k;0 -^1.6..	 J 3	 . 0U t•. ^`0 1?^? , . 0U -1 1 . 1 - t^.	 '):3 •.00 .VO 29 29•.-.CJ -;i. c.S^.CJ 0	 . '0 :39 i.GO 2)•i.00 ^ -.,.0
3,.C ') ,._ .. Cj 39.'.G0 29U. 00 - tu.1.• - f i•.J -(L. 1 U. UP

Rh?S DIFFER,, ';CL BETWE-F- 1 CANON AND T,4LPION IS	 2.6 NGALS

where, TANOM: the (1°x 10 ) mean anomaly predicted from (10 x 40) gridded
geoid heights.

The grid limits for prediction described In this table are:

O N = 40°.5, 03 = 34°5, AE = 297°5, XM = 291°.5
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4. Fourier Transforms and Frequency Domain Collocation

Satellite altimeters such as those on Geos-3 and Seasat-1 satellites intro-
duced in the last several years have provided multitudes of measurements of
geoid heights. to Chapter 2 we analyzed some of this Geos -3 altimeter data. In
the near future other measurements such as gravity gradients by satellite borne
gradiometers, range and/or range- rate measurements by satellite-to-satellite
tracking (SST) techniques may be available in large quantities. The processing
and interpretation of this data by conventional methods is very costly and time
consuming, even sometimes being impassible. The analysis of such data usually
Involves convolutioti in the space domain, e. g. conventional colloc ation, but only
simple multiplications in the frequency domain (see sections 1.7.2.1 and 1.7.2.2
for convolution) as we will show later In thin chapter. Thus, frequency domain
methods can be considered as efficient tools in our computations aad analyses.
We compute frequency domain representations via Fourier transforms of space
domain representations.

Fourier transforms can be used for many different purposes. Jordan (1978)
shows how to use Fourier transforms for upward continuation, for computing
anomalies from geoid heights and for solving Stokes' integral, etc. as an appli-
cation of Wiener filtering ( Moritz, 1967), which is a special case of our approach
to be explained in this chapter. Fourier transforms will be applied on the expres-
s ions in the space domain. Therefore, the theory of least-squares collocaation in
the space domain will be briefly explained below just for the purpose of complete-
ness. For details readers are referred to Moritz ( 1975).

4.1 Least-Squares Collocation

Least-squares collocation is a method utilizing minimum variance estimation
for a model of the form ( Moritz, 1975, p. 7)

x = A X + s' +n	 (4.1)

where	 x : the N-vector of observations (measurements)
X : the u-vector of parameters or unknowns
n : the N-vector of the measuring errors (noise)
A : the design matrix of dimension (N x u)
s' : the N-vector of signals measured

The vectors s' and n are purely random and they have zero expectation (average
or mean value), i.e.

E{ s'} = E {n} = 0 	 (4.2)
Let "s" denote the signal vector of length P to be predicted defined as
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s = to,, ss..... fit] T 	 (4.3)

and let us assume zero expectation for signal s and no correlation between the
s 4Wd measured or the signal to be predicted and the noise, i. e.

E(s) -0, E{s' • n T } - 0, Efs ` nT I- 0	 (4.4)

`ben we can proceed as follows.

Eqn. (4.1) can be written in the following way

x - AX+ [0 11 re'+nJ	
(4.5)

where 0 denotes (N x P) zero matrix and I denotes (N x N) unit matrix.
It is convenient to substitute

v - [sa - + n J	
(4.6)

playing the role of "ras iduale ", and

B = [ 0 11	 (4.7)

so that eqn. (4.5) can be written .As

x = A X+Bv	 (4.8)

Eqn. (4.8) has the form of condition equations with parameters (liotila, 1967).

Here, for least-squares adjustment, we minimize

v T Q
-1 v = minimum	 (4.9)

where Q is the covariance matrix of the v-vector and may be defined as a
partitioned matrix

Q =	 Cox	 C..l	 (4.10)
[Cal • Co l /' + Cna

where C.. = cov (s, 9),	 Case = cov (s, s')
Cs; = cov (s', e), Ca, = cov (f, n)
Cry,= cov (sI's)

The covariance between two functions, say f and g, is defined as

cov (f,g) = E f[f-E(f)] [g-E(g)I T )	 ( 4.11)

'thus using the definition above and recalling the assumptions given by egns. (4.2)
and (4.4), we obtain
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C.. = Ef a o r }, C.'.' = E(a' a' T ),	 C" = E fn nT }

Cost - E fs a' 9, C.l . -	 Efs' a T }	 (4. 12)

The minimization of eqn (4.9) is equivalent to

# _ ivy Q -1 v -KT (AX+Bv-x)	 (4.13)

where K is the column vactor of correlates or Lagrange multipliers. in order to
minimize eqn (4.13) we proceed as follows

a # = vT Q-1 - K T B = 0
av
af
a X = - KT A	 = 0	 ( 4.14)

AX+ 11' -x = 0

The solution of the equations above ,feld;

X = [9 (BQBT) -1 A) -1 AT(BQBT) 1 x

V = ART Irk AR T % -1 / x — A Y%
t- % - ^- r	 I-- ----r

Substitute eqns. ( 4.7) and (4.10) above for B and Q respectively to obtain

X = (AT -1 A) -1 AT -1 x	 (4.15)

v - L
F^ s
	

Cast Z! -1 (x - AX)	 (	 )
s'+n]	 L x-A X 	 4.16

where	 = C.1 1, + Co,	 (4.17)

By using the definition (4.11), with egns. (4.2) and (4. 4), it can be easily seen

Cxx =	 = Cd .t + C an

(4.18)
Cox = Cost , Cx. = Cot 

so we can write for s given by eqn. ( 4.16)

s = Cox Z7
-1 ( x - A X)

The errors of estimations are (Moritz, 1975, pp. 32-33)

Exx = (A T Cxx A)-1

E.. = C.. — Cox Csx C. + HA Exx 
A T HT

(4.19)

(4.20)

(4.21)

-96-



,^:tiere H = Cox C;;'.

If we assume there are no parameters ( i. e. X - 0) in the adjustment, as
we assumed in the second and third chapters in the determination of gravity
anomalies and undulations from Geos -3 altimeter data, then we can write (c. f.

in. (2.4)) for the signal

s - Cox CxxI x	 (4.22)

and for the errors on signal

E.. = C.. —Cox CxxI 
C a 	(4. 23)

The equations given in this section solve our problem in the space domain.
The inversion of the covariance matrix of observations Cxx , which has a dimen-
sion equal to the number of observations (N) , is very costly and time consuming
for large N. Therefore, we seek another solution, which is faster and c •eaper
than the space domain solution, i.e. the frequency -domain solution. It It, this
alternative which is to be discussed in the next sections.

4.2 Frequency Domain Collocatio n

In the previous section we derived the space domain equations of least-
squares collocation. In what follows, we will derive the corresponding equations
in the frequency domain. Thus the least -squares collocation is carried out In the
frequency domain and solved for the desired quantities. The application of the
inverse transform ( Fourier) yields the corresponding desired quantities in the
space domain. All the required transforms are carried out by the fast Fourier
transform (FFT) to facilitate and speed up the computations.

We have defined the discrete Fourier transform (LEFT) pairs by eqns. (1.65)
and (1.66) in section 1.5. Here we use a slightly different definition for the DFT
pairs expressed as follows;

N-1
X„ =-71p E x (k) exp ( - i2 TT kn/N ),	 (direct Fourier transform) (4.24)

k - o	 n = 0, 1, ... , (N-1)

N -1
x (k)= 1	 Xn er.p (I 2 rrkn IN), 	 ( inverse Fourier transform) (4.25)

r = o	 k = 0,1,...,(N-1)
The equations above are derived from egns. (1.65) and (1.66), first by multiplying
both sides of (1.65) by IN' in order to obtain

N-1
Yn = ,/' Xn ► _ 

3FfkEox(k) exp(-I2Trkn/N)	 (4.26)
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and then substituting X. = Y, OT in eqn. (1 . 66) to obtain
M -1

x (k) _^
	

Y. exp (12rr kn/N)	 (4.27)
. o

Eqns. (4.26) and (4.27) are equivalent to (4.24) and (4 . 25) respectively, and can be
seen following the replacement of Y. by X, above.

Eqn. (4 . 24) can be written in a matrix form as

X = Al • X	 (4.28)

where	 X = [ X0, X1,...,Xr, _1 Ir , x	 [x(0), x ( 1),..., x(N-1) ]T

e 2n1OO/N `-?m1oA........ e-2TT1(N-.)O/N
/-2 TT 101N	 -2TTt11/N	 -2Tf1(N-1)1/N

1	 e	 =	 e	 ........	
4.29)

e

Al =	 ( 

TT100-1)/l 89TT11(N-1)/N...... a 2TT1(N-1)(N-1)/N

Here Al is the transform matrix and equal to the Fourier matrix defined by

F = [ Fkp ] _	 [ exp ( -2r 1 kn/N) l. 	0 s k, n s ( N-1)	 (4.30)

.3o we can write	 Al = F
	 (4.31)

As we mentioned before, we used the space domain equations (4.22) and ( 4.23) for
the determination of gravity anomalies and their errors from geoid heights. Now
we can derive the corresponding equations in the frequency domain. The Fourier
transform pairs for observations, signals and covariance matrices will be denoted
as follows.

x E--1 X, s F--^ S, C x. H C xs

C.xH Csx • C xx H Cxx E.. +---0 Ess
(4.32)

The vector of measurements (x) ar.d the vector if signals (s) are trans-
formed Into the frequency domain through

X=A 1 x,	 S=A1s
	 (4.33)

where the transform matrix A l is defined by eqn. (4.29) being equal to the
Fourier matrix defined by ( 4.30). In order to obtain the frequency representations
of the covariance and cross -covariance matrices C xx , C.. , C. .' , we recall the
definition of covariances and cross -covariances given by eqn. (4.11)

Cxx = E {[ X - E (X)] [ X - E (X)]t}
	 (4.34)
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where (t) denotes the complex conjugate and transpose operation. substitute
eqn. (4.28) for X in (4.34) to obtain

Cxx - E {[Ai x - E(Ai x)l [ Ai x - E(Aix)1tI

= Al Er(x - E(%)] [x - E(x)] ) Al

Since the expectation of the terms inside the braces iu equal to Cxx, the
covariance matrix cif observations, we can write

Cxx - Ai Cxx Al 	 (4.35)

Similarly, we can prove that

Csx = Ai Cm. Alt (4.36)

Cxs = Al Co Alt (4.37)

Css = Ai C.. Alt (4.38)

Ess = Al E.. Alt (4.39)

Having transformed the space domain quantities into the frequency domain,
we can write the frequency domain collocation solutions corresponding to eqns.
(4.22) and (4.23) of the space domain solutions

S = Csx Cxx X	 (4.40)

Ess = Css - Csx Cxz Cxs	 (4.41)

Following the computation of the signal vector c and its error Ess in the

frequency domain, we can find the signal v,--tor s and its error E.s in the space
domain by applying the inverse transform as explained below. From eqn. (4.33),
we can write

s = A'S

Since Al = F is an orthogonal matrix (recall the orthogonality relations of ex-
ponential knotions as explained in the first chapter), we have for the signal

Of	 s = At S	 (4.42)

r	 and similarly for the error matrix

E.. = Ai Ess A l	(4.43)
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► 	 # X	 I

t3 	 +	 B	 y"	 .k

We see from eqns. (4.40) and (4.41) that we still have to Invert the matrix
Cxx , which has dimension (N x N), N being equal to the total number of obser-
vations. We transformed everything into the frequency domain to avoid the
Inversion of the covariance matrix Cx, , which also haj dimension (N x N). The
computations of Cxx, Csx, and Cx, from egns. (4.35), (4.36) and (4.37) respec-
tively, require the product of three (N x N) full matrices In each case. 3o If we
go blindly, we will have to perform many more computations compared to the
direct collocation solution in the space domain. However, we will show later
that a frequency domain matrix (FDM) is diagonal if the corresponding space
domain matrix (SDM) Is circular, and asymptotically diagonal if the 3DM is
of the Toeplitz form. In addition, we will show tha t Wi t,, uisagijual c.'ements of
the FDM is the Fourier transform of the first column of OiL- carresponding SDM.
Hence, we do not have to compute the FDM by the dirrK t transfoii. ation of the
corresponding SDM, for example, as in eqn. (4.35), which requires the product
of three (N x N) matrices.

4.3 Diagonalization of Toeplitz and Circulant Matrices

Suppose we have a stationary covariance function and equally spaced (or
sampled) observations along a profile, then, as we explained in the third chapter,
the covariance matrix of observations are of the Toepiitz furii,. 1u addition, If
this profile forms a complete circle, then the resulting covariance matrix is
circular. ;'. circulant matrix, say Tc , is one having the form

tp	 t1	 to	 .	 .	 .	 tN -1

tN -1	 tO	 t1	 .	 .	 .	 tN -2

Tc = t, -a	 tN -1	 to	 .	 .	 . (4.44)

t̂1	 ^,	 is	 to

The circulant matrix Tc is a spw.ia.l type of the simple Toeplitz matrix TN-1

given by eqn. ( 3.1) such that Lk == tN- k , k = 1, ... , (N-1). The diagonalization
of Tc and TN -1 will be given in order to see that the eigenvalues of Tc and TN-1
(asymptotically) are the diagonal elements of their frequency domain repi esentatiens.

4.3.1 Diagonal izat ion of :oeplitz Matrices

As in the third chapter, we denote a simple Toeplitz matrix by T N-j. The
dimension of TN-1 is (N x N) and defined as in eqn. (3.1) such that Its elements
on symmetric diagonals are identical and its diagonal elements are equal. AsFume
the covariance function tk of TN-1 is absolutely summable, i.e.,

00

k -L co tk

	
(4.45)

then, for large N, Fuller ( 1976, pp. 133-138) proves that
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t .

Ft TN- 1 F = Diag ( Ao. A1,..., ",-1)	 (4.46)

whore F is defined by eqn. (4.30) and ', n are the eigenvalues of T„ . The
eiger values (An ) are defined as follow.,,,:

An = 2 n t ( w,),	 w, - 2 n n/N ,	 n - 0 9 1 9 ... , (N -1)

where t(wn ) Is the spectral density of the tk expressed as
1 W

t (w ^) = .2 n k ^^ tk exp (-i wn k ), n 0, 1, ... , (N-1)	 (4.47)

'thus, we can write for eigenvalues
CO

A ^ = kImL, 
e-1ankniv^	 n = 0,1,...,(N-1)	 ( 4.48)

Since we cannot carry the summation in eqn. (4.48) to infinity, and becasue
tk is absolutely summable, i. e. tk gets smaller with increasing ,k 1, we will
assume:

(1) tk = 0 for k -^ N i we can write for the eigenvalues of TN-1
N-1

tk e-0IrrknA = to + &I (tk tk +tN -k) 
a-12 TTknA

An	 k=-(N-1) 

Hence	 A = VY • Ft. t n
	

(4.49)

where A = [Ao r A1r ... , )IN -1]T. t  = [ to , ( h +tN -1),(t2+tN-2)r...,(tN-1 + tl)], and

F is the Fourier matrix defined by eqn. ( 4.30).

In the following sections, we will come across products such as FTN _ 1 Ft
Instead of FtTN _ l F as given In eqn. (4.46). Therefore, we will define the
vector of the eigenvalues of FTN _1 Ft as follows:

A = 3 ' F t tn
	

(4.50)

(2) tk = 0 for k > m, where m s N/2 : with this assumption, TN-1 becomes
(to be denoted as TN,_1)

to 	 t ..... t. n

t to ........ t-n 	 0

TN-1	 t . ..... t1 	 t_1 .... t_n

t_n

0^

to tn-1....... t0

WW

Of

(4.51)
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If we fill the zero elements of '!`N _, in such a way that the resulting matrix,
say 71c, is circulant, i.e.

to t—i ..... t— n 0.	 tn.... ti a CO Cl .... VN-1

t1 to t *^-.'' R ....t2 ' c©.... cN-2

Tc - t, .......... to t_1 ........0 (4.521
0 . t ........	 ti to	 . . . . t . . .t-„

t_1 ........'.'0 to* ........ to C1 c2 .... C0

where ( Lk	 for k = 0,1,. . . , m

C k

-

- 
) t,-k for k = (N-m), ... , (N-1) (4. 5.")

0	 otherwise

then TN-1 and Te are asymptotically equivalent which can be proven as follows
(Gray, 1Y77, pp. 27-29):

n

lira ITN -1 - TC ^ - lim 1 E k I Itk I'^ + It-kV 1
N -. ao	 N -• oo N k= 0

n 	
r }	 7

	

S Nl-. m N "t ` I k 1 2 + I t-k 1 2 J	 0

from the sumniabiLty of covariance functions. Thus

1 im ('I'N 	- Tc I	 0 , i.e	 1 im 'CN - Tc
	 (4.54)

N-.cr.+	 N- CO

In what follows, we w ill see tr.a.t the diagonalization of a e it- lar matrix is
dimple and its eigenvalues can be found easily. Since i,4-1 is asymptotically
equivalent to the circular matrix Tc , the eigenvaLucs of T N -1 are equal to those
of Tc and TN - 1 can be diagonalized similar to Tc.

4.3. 2 Diagonalization of Circular Matrices

We defined a eircula.nt matrix Tc by eqn. (4.44). The eigenvalues, Xn,
and eigenvectors, Y n , of Tc satisfy the following equation,

TC ' Yn = Xn ' Yn +
	 n = 0,1, ... , (N-1) 	 (4.55)

TWhere Y . = C Yln + Y2 n + • • • + Y(N-1) n ]	 Let rn be a root of the equation rN _ 1 such
that

-12 TTrn = e	 n = 0, 1, ... , (N-1)	 (4.55. a)

and let us set

Y Jn = r^ +
	 J+n=0,1—.,'N-'I)	 ('•r^^
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be written

0
rn

r 1n

L rN-1
n

r0n
r in

n

rn" -

(4.57)

Now substitute eqn. (4.44) for Tc to obtain

co rno + c, rn1 + ....... + cN-1 ra -1 ° ^n rno

N- 1
cN -1 rn o + v ) rni + ....... + CN rn	 = An 

rnl

N-
cl rA + ca •rni + ....... + co rn 1 = An rn - 1

(4.58)

and multiply the first equation of (4.58) by rn , the second by rn -1 , and sc, forth.
Then use r. +k = rnk in order to see the equality for each equation if

N -1

^n = k^a ck' rnk 	 (4.59)

The substitution of eqn. (4.56. a) in (4.59) yields;
P -1

^ a = k ^o ck e-18rrkn/N V	 n = 0 ,1,...,(N-1)	 (4.60)

Hence, the characteristic vectors are given as

Yo = [ 1, 3- lawn/N , e -1a rr (N -1)n /N IT,	 n = 0, 1, ... , (N-1)	 (4.61)

and the orthonormal matrix, which also diagonalizes the original matrix Tc , of
l	 eigenvectors is F., in as

'	 1
F = IN[ Yo ' Y1 ....I YN _1 1	 (4.62)

Eqn. (4.62) is equivalent to eqn. (4.30) defined previously, i. e, the Fourier matrix.
Since F is the orthonormal matrix of eigenvectors, we can write (Byron et. al.,

`	 1969, pp. 120-124)'

r

'

	

	 Ft T, F = Diag (ao, ^l1 , ... , )1,,_1)	 (4. 63. a)

dente,

f	 A = [r10 , a1 ,..., a,4 -1 ] T = IN' • F • c	 (4.63. b)

Here Ft denotes the complex L.onjugate transpose of F as usual and c is the first
row (or column) of Tc . Similarly, the diagonal elements of F Tc F t are expressed
as follows

_ 3N Ft c	 (4.63. c)
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Thus we have proved that the Fourier matrix ( F) given by eqn. (4.30) is
the orthonormal diagonalizing matrix formed by the eigenvectors of eit' .,^r a
Toe.plitz matrix or a circular matrix. The eigenvalues can be computed simply
by eqn. ( 4.50) for Toeplitz matrices and by eqn. ( 4.60) for circular matrices.

4.4 Frequency Domain Collocation on Oae-Dimensional Region

4.4. 1 Large N and the Classical Wiener Filtering

In section 4.2 we derived the least-squares collocation express Ions in the
frequency domain, and in the previous section we showed that the transform
matrix A l = F defined by eqn. (4.29) is, in fact, the diagonalizing matrix of
the covariance matrix Cxx, Cxs, Csx. Therefore, we can write for the frequency
domain collocation covariance matrices Cxx , C xs , Csx, and Css .

	

xx	 xx	 xx

Cxx = Diag (Xo ! X1 ! • • • ! XN-1 )

xS

C4 = Diag (;o , Xx% ... 0 AN _1

Csx = Diag (aox, X ML , ... ! ^N.1 )

	

s	 ss	 ar

	

CAS = Diag ( )so !	 AN-1)

( 4.64)

where )ln ! ^n + Xn + ^nsr n ° 0, 1, ... , ( N-1) are the eigenvalues of Cxx , Cxs , Cox ti

and Co. respectively. Thus, we can write for the frequency domain collocation
solutions (expressed by egns. (4.40) and (4.41))

Sn = all Xn 
/Anx
	 (4.65)

n = 0, 1, ... , (N-1)

X7
	 sx xs x

( yss)n = X n — Vn X n A
x

x	 ( 4 .66)

where S,, is the n-th signal of S vector and (Ess)n is the corresponding error, and
Xn is the n-th value of X vector, i.e. S= [So 2  S	 + XT	 to+ X1,..., XN_1]1+...,SH _1] 	=[X•

The eigenvalues in eqn. (4.64) are computed from eqn. (4.50) when the cor-
responding space domain matrix is of the Toeplitz form and from eqn. (4.63. c)
when it is a circular matrix. The equations given by (4.65) and (4.66) lead us to
the very well known "the classical Wiener Kolmogorov filter".

Having found S in the frequency domain we can easily obtain the corresponding
s-signal vector in the space domain applying the inverse transform as expressed by
eqn. (4.42). The computation of the error matrix Ess from Ess through eqn. (4.43)
is also very simple: Consider the diagonalization of the circular matrix Tc by
eqn. (4.63.a). Now suppose the diagonal elements of F tTc F, i.e. the eigenvalues

Xn, are given and the circular matrix Tc is asked. Then the first row c_ of Tc
is found from (4.63. b) by multiplying both sides of the equation from left side by
Ft to obtain
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E = 
1

Ft Jl

Since Ess = F Ess Ft has a similar form with (FTC Ft) in addition to its
diagonality, the error covariance matrix of signals (Ess) is circulant and its
first row S, is computed as follows

- R 
F 

a 
.53	

(4.67)

where d ss = [do , dl ,, .. , cl, _1 ] are the diagonal elements of Ess . The com-
putatiou of the remaining elements of E,. Is straightforward by recalling; the
definition of circular matrices given by eqn. (4.44).

Thomas et. al. (1976, pp. 3-4) relates the overall estimation error to a
single quantity, namely to the rms estimation error, Q, defined by

N

a. s 2 = N E {s S T j -
 L L E { ( S T - s ) J }	 ( 4.68)

where N is the length of the s-signal vector to be predicted
ST is the vector of true signals.

Eqn. (4. 68) is equivalent to

Q s' = N Trace ( Ess)	 (4.69. a)

br by the Parsenval's theorem mentioned in section 1.3.4, it is equivalent to
N-1	 gg

as ' = N Trace ( Ess)	 E Ak	 (4. 69. b)
k 

Thus we have completed the solution of the s-signal vector and its error. The
total number of computations for the frequency domain least-squares collocation
explained above is proportional to N log n N multiplications and additions compared
to W in the case of the space domain least-squares collocation.

Moritz (1967) introduced the frequency domain method explained above as
"the least-squares filtering", and Sjoberg et al. (1977) applied it for the prediction
of mean free-air gravity anomalies from altimeter data along one arc at a time.
In his computations, Sjoberg assumed the covariance orcross-covariance t k to be
equal to zero for k ? M (M = 70) compared to tk = 0 for k - N in our solutions.

Following the derivation of the frequency-domain algorithm, it was necessary
to test It. In order to do so,, we selected two arcs, which are the 11-th and 12-th
arcs of Figure 2.2. Our aim was to determine free-air point gravity anomalies
from altimeter data at data points along one are at a time. We followed the com-
putational steps as outlined below:
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(1) The data vector of geoid heights, say x( k ), k - 0 9 1, ... , N-1, was
transformed into the frequency domain by eqn. (4.33).

(2) The covariance matrix C,, of geoid heights and the cross-covariance
matrix C,, between observations (geoid heights) which were computed by using
the empirical covariance functions given by the subroutine COVA of Tscherning
and Rapp (1974) and signals were transformed into the frequency domain by
eqn. (4.50).

(3) The frequency domain representation of the signal vector was computed
by eqn„ (4.65).

(4) Fina.ly, the desired s-signal	 In the space-domain was computed
by eqn. (4.42).

For our examinations, we first considered a 682 km long segment of the
11-th arc and denoted it ARC 11-A, and a 1380 km long segment of the 12-th arc
and denoted it ARC 12-A. Secondly, we considered Arcs 11 and 12 in their total
lengths. These arcs and the statistics between the space domain collocation
solution (SDCS) and the frequency domain collocation solution (FDCS) are described
in Table 4.1. The free-air point anomalies determined by the SDCS and FDCS
are shown in Figures 4.1, 4.2, 4.3, and 4.4 for the arcs 11-A, 12-A, 11, and
12 respectively. Table 4.1 and Figures 4.1 to 4.4 do not include about 1. 5% of
predictions made at the beginning and at the end of each arc. We deleted them due
to their large differences from those of SDCS. This big difference Is caused by
the negligence of off-diagonal terms in FDCS known as "edge effects" (Thomas et.
al., 1976).

Table 4.1. The Statistics Between SDCS and FDCS Along
The Arcs 11-A, 12-A, 11, and 12.

ARC Latitude Longitude Length No. of RMS Mean Max.
No. Obsns. Diff. Diff. Diff.

tp l , rp. (Deg.) X1, A2 (Deg.) (km) (mgals) (FDCS- (FDCS-

12.848, 18.197

SDCS) SDCS)

11-A 309.957, 306.844 681.9 50 1.8 0.1 - 4.3
12-A -0.024,	 10.881. 146.530, 140.565 1380.2 100 11.7 -0.3 I	 -42.3

11 12.848, 39.751 309.957, 291.194 3511.2 254 2.6 -0.2 8.4
12 -0.024, 32.466 140.530, 126. 823 4162.3 300 5.3 -0.6 -33.6
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4.4.2 Small N and the Windowed Frequency Domain Solution

In the proceeding section, we asp _.ned a long data length (large N) over
an interval longer than correlation distances and used asymptotically equivalent
expressions for the eigenvalues of the space domain covariance and cross-co-
variance matrices in order to compute the corresponding asymptotically diagonal
frequency domain covariance and cross-covariance matrices. In the case of a
short data length and small N the asymptotic equalities mentioned above are
no longer valid. Therefore, in this section, we will introduce the windowed
frequency domain collocation algorithm. This algorithm retains the necessary
computational speed to solve large problems but uses data given over an interval
shorter than correlation distances. The frequency domain representations of
covariance and cross-covariance matrices become band-diagonal here and
diagonal in the limit as N gets larger and larger. By "windows" we try to
minimize the number of super-diagonal bands, which is proportional to the side
lobe energy (for the frequency domain representations of windows see section
1.7.3.1) of the data spectrum(Heller et al., 1977, p. 13). In what follows, we
transform the "windowed data" into the frequency domain and perform our
solutions there in order to compute the s-signal vector and the E..-error
covariance matrix. The solution of the s-signal vector given by eqn. (4.22) is
achieved in two steps:

- the solution of y = C X X x
- the solution of s = C.x CXX x = C.x y

4.4.2. 1. The Computation of y = cxX x

We want to solve a system of equations

Cxx . y = x	 (4.70)

for the y-vector. Since Cxx is usually a full matrix, this solution would require
r	 approximately N3 computer operations. In order to reduce the number of com-

puter operations, we first multiply the data vector, x, by an appropriate window
matrix to control the sidelobe energy of the spectrum of the data vector, then
transform it into the frequency domain, i.e.

X = A2 . x	 (4.71. a)

and for the frequency domain representation, Y, of the solution vector, y

Of	 Y = (A2t )-1 -y	 (4. 71. b)

where As is the transform matrix defined as

Az = F w	 (4.72)
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Here F is defined in eqn. (4.30) and w is a window matrix (usually diagonal).
For the covariance matrix of X (analogous to tho derivatlun of eqn. (4.35)) we
can write

Cxx = A  Cxx A 

= F w :%. w Ft	(4.73)

Hence eqn. (4.70) takes the following form in the frequency domain

Cxx Y = X (4.74)

We solve the system of linear equation above for Y, and we compute the y-vector
in the space domain from eqn. (4.71.b),

y = Ata Y	 (4.75)
= w Ft Y

Why solve the system of linear equations in the frequency domain such as
defined by eqn. (4.74) instead of solving the corresponding equations in the space
domain such as eefined by eqn. (4.70)? The reason is that Cxx is nearly band-
diagonal and the solution of eqn. (4.74) can be carried out inexpensively by an
efficient algorithm such as the banded-Cholesky decomposition (Forsythe et al.,
1967).

In order to show the almost band-diagonal form of Cxx we write eqn. (4.73)
in the following form (Heller et al., 1977, pp. 55-59)

Cxx = 2 K F2N w C,X w Fan, K r	(4.76)

where: K is the sampling matrix defined as

1 0 0......0 0 0
0 0 1••••••0 0 0

K = :	 (4. 77. a)

0 0 0•••...0 1 0 (Nx2N)

F2 N is (2N x 2N) Fourier matrix defined as

F2N = {( F20kn I = 1 [ e— 12TT kn/2Nl' 0 s k, n s (2N-1)	 (4. 77. b)

A is the (2N x 2N) extended version of the w window matrix and defined as

w = 0 0	 (4. 77. c)
(2N x 2N)

Here, w is a diagonal matrix with diagonal elements (wo, w l r ... , wN-1 )

defined by the window function, and 0 is (N x N) zero matrix.
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A
Cxx is a (2N x 2N) circular matrix defined as

A

	

	 Cxx C xx

cxx C xx J
C xx = r ,	 l	 (4.77. d)

Here Cxx Is a Toeplitz matrix with elements

Cxx[( t -N)- At ] for t> 0
Cxx(I -At) = 0	 for I = 0

1C,x[0+N) e At) for L < 0

By substituting the definitions of K, F.)N , w, and Cxx above in eqn. (4. 76),
we can see that eqn. (4.73) and (4.76) are equivalent. Eqn. (4.76) can also be
expressed as

A

C xx = 2K F2N w F2N F2N Cxx Fa F2N W F2N Kr

	

= 2 K WxxC W K T	 (4.78)
where

W = F2N w FaN r	 "xx = FIN Cxx F2N	 (4.79)

r	 We have shown in section 4.3.2 that the frequency domain representation --f
a circular matrix is diagonal as given, for example, by eons. (4.63.a) and (4.63.b)
From eqn. (4.63. a) we can write for the circular matrix Tc

Tc = F- Diag (Xo,Xj,...,XN-1) Ft	 (4.80)

A
If we let N go to 2N VA then Tc of eqn. (4.80) and W of eqn. (4.79) have similar
forms. Therefore, W is also circulant with the elements

A

[ W 
11
Jkn = O k—n +	 0 5 k, n s (2N-1)	 (4. 81. a)

i

we can write for the first row, say 
0, 

of W

- ( 0 of 01. ... ,Q2N -1)T 	 N FI (0)	
(4.$1.b)

as can be derived from eqn. (4.63. b), where(^) is the vector of the diagonal
elements of w jiven by eqn. (4.77. c). It also — follows directly from eqns.
(4.63. a-c) that Cxx given by eqn. (4.79) (recall that Cxx is circulant) is
diagonal as expressed below

A
Cxx = Diag (moo , M , ... , w 2N _1 )	 (4.82. a)

r^

Actually, the W, 1 s are the eigenvalues of Cxx given in eqn. (4.77. d) and they can be
computed using eqn. (4.63. c)

w = 3TNT FaN c	 (4. 82. b)
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where w = ( U-bg c^ , ... , WaN-1) * is the power spectrum of Cxx, and
c is the first column of the circular matrix Cxx •

A

A	
Now substitute egns. (4.77. a), (4.81.a), and (4.82.a) for K, W, and

Cxx respectively, In eqn. (4.78) and use some simplifications to obtain
2N-1	 n s j,k 5(N-1)

(6xx) jk = 2 AEo o f- aj C2 1-ak WL	 0- E = n.N-t	
(4.83)

where 01 and w t are defined by egns. (4.81. b) and (4.82. b), respectively, and
S2.t represents the complex conjugate of fly. The equation (4.78) is now a very
efficient formula for the calculation of Cxx . This comes about because when we
select a window which has a mainlobe and a series of very small sidelobes, then
Cxx has an almost band-diagonal structure with some elements in the upper right
and lower left corners. Hence, the solution of eqn. (4.74) can be carried out by
the band-diagonal and corner implementation of the Cholesky decomposition, which
requires numerical operations proportional to (Ne a - N), where Na is the width
of the band, compared to N" for conventional solutions.

The out-of-band elements of Cxx can be made very small by selecting an
appropriate window and matrix bandwidth (usually less than 10) so that we can
neglect the out-of-band elements in our solutions. if Cxx with zero out-of-band
elements is denoted by C,, , then we can state that C 6 Is an approximation to
the exactly tra- usk ruled matrix Cxx.C xx • Tnis approximation affects the solution
vector y of eqn. (4.70). The magnitude of the error on y can be controlled by
the choice of window and matrix bandwidth as mentioned above. The approximation
above is the only error introduced in the calculation of the y-vector.

There are many windows one can ase for the purpose of minimizing the api rox-
imation affects. Here we will only examine the Kaiser window which has proved to
be very useful in signal processing applications. The Kaiser window is expressed
in the space domain as follows:

wk (n) = Io (B	 )^)/k (Q),	 -NH s n S NH	 (4.84)

( (N-1)/2 if N odd	
I k

where NH	
t N/2 if N even '	 lo(x)	 kL-o (k! )' 2

and

	

	 8 is a constant that specifies a frequency response trade-off between the
peak height of the sidelobe ripples and the width or the energy of the
mainlobe.

The space domain and frequency domain representations of the Kaiser window for
P = 2, 4, 6, and 8 are shown in Figure 4.8.

Having examined the Kaiser window, we return to the elements of Cxx defined
by eqn. (4.83) . The right-hand side of this equation is the convolution of tk with
the weighting function
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Ne+1 Na+1 -

N13 + 1 NB+1

_A

1't ( j , k ) - 1)t-IJ Dt- 2k

	(4.85)

This weighting function Is very small and consequently negligible when Ik - j I > N1,
and (k - j I < (N - N.) which correspond to the product of a mainlobe and sidelobe or
two sidelobes. it is for this reason that we have tried to find a window function
with very small sidelobes. As a result, we only compute the band-diagonal and
upper right and lower left corner elements of Cxx shown in Figure 4.6. hence,
we have for the super-diagonal elements

11	

2N-1

[C xXJk ^k+n " 2	 ^^
-2 k ^Z-2(k+^) 

W^	
0	

m.' (N 

m-1)	
(4. 8C. a)

No1= 0

and for the upper right corner elements
2a —i	 _

[C xx)k,^ = 2 Z= tZ1-2k?,t-2J Wt	 {(N-NB+k)^ j{ ` NB	
(4. 86. b)

The lower diagonal elements of C are just the complex conjugates of thf^ corres-
ponding symmetrical elements of the upper diagonal elements.

If we let w (window matrix) go to I (identity matrix) and N B go to zero, i.e
only the elemei 's of the main diagonal are retained, then the algorithm presented
above reduces t. ' 'the Generalized Wiener Filtering" described in section 4.4.1.

Figure 4.6. The structure of Cxx under Fourier transformation.
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4. 4.2.2 The Computation of a Cox

For the computation of (C,x • y) we will utilize the fast 'Toeplitz matrix
multiplication. Thus, the y-vector will be multiplied by the Toeplitz matrix
C,x such that this algorithm will take many less operations than the standard way
of multiplying the y-vector by C.x . Suppose the crass-covariance matrix Ca,
has dimension (M x ri), then the matrix-vector multiplication requires roughly
(M • N) multiplications and additions. If M is very small compared to N then
any classical matrix-vector multiplication can be used. However, If M is large
then the fast algorithm presented below would be more efficient.

In the proceeding sections we assumed M N so that C.x is a Toeplitz
matrix. If M e N, then C,x is a partition of a Toeplitz matrix. In the case of
M N we extend C,x in such a way that the resulting matrix, to be denoted as
(',x, is a square Toeplitz matrix. The first M elements of the product (C.x • y)
contains the desired product (C.x • y).

In order to achieve a fast multiplication of (Cox • y) , we imbed C.x in a
(2N x 2N) circulant matrix, say Tc , as explained below. The cross-covariance
function y,x (k -AO) between signals and measurements is extended to the range
-(2N-1) ^: k s (2N-1) by the definition

y,x(k • AO)	 for 0 !^: k	 (N-1)
E,x(k•AO) =	 0	 for k = N	 (4.87)

y,x [(k-2N) • AOI for (N+1) ` k ` (2N-1)

and	
E,x(—

k•AO)=E.x [(2N-k)1 •AO]	 for 1 -^ k s (2N-1)

where 60 Is the spacing between s and x. The matrix Tc with the elements

( Tc )Jk = E.x [ ( k -J ) •A OI
	

(4.88)

is c irculant with the property.

Tc (
Y

0 / _
 (CS X

 d y
	 (4.89)

For the fast matrix-vector multiplication, we transform the vector ( Y ) and
Tc into the frequency domain as explained in section 4.2 (analogous to eqn. (4.33)
and eqn. (4.63) for( O ) and Zc respectively) to obtain

Y = [ Ya, Yl , ... , Y2N-i) T = F2N \ 0 /
	

(4.90)

and

Tc	 = Fa N Tc F2N = D iag (>,o • Xi , ... , a aN-i )

X = [XO'X1,...9A2N -1]' = 32N F2N c
	 (4.91)
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where FN is defined in eqn. (4. 77. b) and C is the first column of Tc . Hence,
we can write

_	 rCox Y1Te • Y = F,7N \ d /	
Yoao, Y l al , ... , Y2N-1 X2N-11	 (4.92)

Finally, we apply the inverse Fourier transform to obtain

,},	
xo Y"

C
Fox Y)	

F21N X1:Y1	 (4.93)
d /

N-1Y2N-1

The first M elements of the product (C;, x • y) is the desired product (Cox* y),
so multiplication is completed. The number of operations of the entire procedure
amounts of three FFT applications, therefore, it is proportional to (N log s N).

4.4.2.3 An Application of the Windowed Frequency Domain Collocation

In order to demonstrate the efficiency of the windowed frequency domain
collocation algorithm described above, we selected an arc of altimetry (12 th
are of Figure 2.2), which is 4162 km long and has 300 observations (N -- 300),
and computed the (v x 5") free-air mean gravity anomaly of block 711 (PN = 100,

70 ♦ 	 10320)  L.... I Figurere d F We also c mnutcd the ( 10 x 1 0 )(p g = ^^, ^ = 131 , Aw  	 s
how

n au r+6 ♦1+. ^-	 8_ ^? _-^

anomalies inside 71.1 from the geoid heights along Arc 12 by the following techniques.

^12

,

I

I^

711 •r \
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Figure 4.5. The locations of Block 711 and Arc 12.
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(1) Conventional Least _Squares Collocation

Here mean anomalies were computed from eqn. (4.22) as explained in
section 4. 1.

(2) Classical Wiener Filtering ( i.e. Frequency Domain Collocation with l. .arge N)

The y-vector and C XX matrix of eqn. (4.22) were transformed into the
frequency domain by egns. (4.33) and (4.50) respectively, to obtain

Y = CXX X = [Diag(LO9 X19 .. . 9 XN -1 ) 1 -1 X

	

1/Ao 0	 ........ 0

	

0	 1A1 ........ 0
=	 X	 (4.94)

	

0	 0	 ........ 1AN-1

then an inverse fast Fourier transform was applied to Y to yield

	

y = CXX1 x = Ft Y	 (4.95)

Finally, we computed the s-signal vector by

S = CsX y

where s represents the signal vector of mean anomalies and C, represents the
cross-covariance between mean anomalies and observations (geoid heights).

(3) Windowed Frequency Domain Ccllocation

The x-vector and CXX matrix of eqn. ( 4.22) was transformed into the frequency
domain by egns. (4.71. a) and (4.73) respectively, to form the following system of
linear equations

C XX Y = X	 (4.96)

We solved the linear equations above for Y using the Cholesky 's decomposition as
explained in section 4.4.2, then we computed y = C,^ 1 x vector by an inverse
transform defined by eqn. (4.75), i. e.

y =wFtY

Finally, we computed the s-signal vector of mean anomalies by

s = C6X y
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The results of the three solutions explained above are described in Table
4.2.

Table 4.2. Mean Anomalies (1°x 1 0) from the GEM-9 Coefficients, from Least
Squares Collocation, Wiener Filtering, and Windowed Frequency
Domain Collocation by Using Undulations Along Arc 12.

BLOCK No. = 711

Size LAT (NW) LON (NW) Ag(mgals) Ag(mgals) Ag(mgals) Ag(mgals)
(Deg.) (Deg.) (Deg.) Wiener Windowed

GEM-9 Collocation Filtering Freq. Dom.
Collocation

5 x 5 10 132 20.5 17.3 16.9 17.2
1 x 1 10 132 20.6 17.7 17.7 17.5

133 19.2 15.4 15.1 15.5
134 17.8 13.2 12.1 13.5
135 16.5 11.1 10.5 11.4
136 15.1 8.9 9.3 8.8

9 132 22.3 20.0 19.1 19.7
133 20.9 17.6 15.9 17.5
134 19.5 15.2 13.9 15.2
135 18.1 13.0 12.3 13.0
136 16.6 11.0 10.8 10.8

8 132 23.5 22.0 21.8 21.7
133 22.2 19.6 19.4 19.4
134 20.8 17.3 17.2 17.2
135 19.5 15.3 15.1 15.2
136 18.0 13.7 13.5 13.6

7 132 24.2 23.5 21.0 23.3
133 23.1 21.3 20.7 21.1
134 21.9 19.2 18.9 19.1
135 20.6 17.3 17.7 17.3
136 19.3 16.0 17.3 16.1

6 132 24.5 24.4 23.8 24.3
133 23.6 22.5 22.3 22.5
134 22.6 20.7 21.0 20.6
135 21.5 19.0 20.0 19.0
136 20.3 17.8 19.7 17.8
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The RMS difference of 25 (1°x 1°) mean anomalies between least-squares
collocation and Wiener filtering is 0.87 mgals compared to 0. 16 mgals between
least-squares collocation and windowed frequency domain collocation. However,
both RUB differences can be considered small conpared to the 15 mgals standard
deviation of the. (1°x 10 ) anomaly predictions. Here we have recovered about 3. 5
mgal anomaly information with respect to the GEM 9 surface. The small magni-
tude of the recovered anomaly masks the efficiency of the algorithm. To achieve
a considerably higher magnitude we considered block 614 (O N = 150, cps = 100,

k = 1390 , Xw = 1340 ), through which the 12th arc passes. Unfortunately we
recovered only 5.2 mgals with respect to the GEM 9 surface, so it did not help
us much to check the efficiency of the algorithm.

4.5 Windowed Frequency Domain Collocation with Sine -cosine Coefficients

In section 4. 4.2 we have seen that the frequency domain covariance matrix
Cxx of windowed observations has a bnad-diagonal shape with some elements in
the upper-right and lower-left corners. In addition, the elements of Cxx are
complex valued. In order to use the standard banded Cholesky alg': rithm for the
solution of the system of linear equations given by eqn. (4.76), we have to elimi-
nate the upper-right and lower-left corner elements of Cxx in addition to real-
valued band-diagonal elements. If we use a sine-cosine transform (Fuller, 1976,
pp. 135-1371 instead of a Fourier transform, then th e

 resulting new covariance
matrix Cxx is real-valued and band-diagonal (Heller et. al., 1977, pp. 38-39).

The sine-cosine transform enables us to delete redundant components from
the real-valued data at negative frequencies.

Consider a circular symmetric matrix, Ts , defined as follows;

c (0) c (1)........ c (2) c (1)
c (1) c (0)........ c (3) c (2)

Ts =	 ( 4.97)

c (1) c (2)........ c (1) c (0)

The circulant matrix Ts given above can be derived from Tc defined by eqn.
(4.44) by substituting C (N-1) = C (1), C (N-2) = C (2),.... The characteristic
roots of Ts are (Fuller, 1976, pp. 135-137)

(N -1) /2

Ec(n) cos 2-rnj/N
n =—(N —1) /2

Xi 
=	 N /2

Ec(n) cos 2rrnj/N

s =- A+l

fo r N odd

j= 0, 1, ... , (N-1)
	

(4.98)

for N even

The equation above k is a root for j = 0 and (N-1)/2 repeated roots for
j = 1, 2, ... , (N-1)/2, and finally another root for j = N/2 when N is even. We
can find two orthogonal vectors for each of these repeated roots. These vectors are
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1ao = 7NT[1, 1, ... , 1 1 	for j = 0

a j _ / 1, cos 2TT	 cos 2rrN,..., cos 2rr (N-1 )j 9 j =1,2, ... ,NM(4.99.a)

a, _	 [1, -1, 1, -1, ... , -1 ] 	 j = N/2 and N even

bj = r0,sin2rrN, sin2rrN,. .... sin 2rr^N 
J

, j=1,2, .... M (4.99.b)

where	
NM = f(N-1)/2 for N odd

l N/2 - 1 for N even

Hence we can form an orthogonal matrix Q as given below

Q = 7 [A]

where	 er a  /,/T
a1	

if N odd

iM
A=

a  I I"T
al

if N even

a,/a

and	 bi
b

B =

^M

(4.100)

Since Q r is composed of the N characteristic vectors given by eqns. (4.99. a)
and (4.99.b) we can write

Q Ts Q 	 = Diag (^lo,a1,...,aN_l)	 (4.101)

where X j is defined by eqn. (4.98).

There exists a linear relation between the characteristic vectors of Q and
the characteristic vectors of the F matrix defined previously. The F-matrix
given by eqn. (4.30) can be written as follows

fo

F =	 fi

fN —1

where	 fj _	 [ 1, e- 12rra/N, 
e-i2rr2j/N ...' e -12 rr(N-1) J/N ]

IR
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From egns. (4. 99. a-b) and (4.10X) it is possible to write

a, = 
1

[f j + & -a] 14.102)
b j = 1 [ fj - & -a]

Using the relation given by eqn. (4. 102), the Q matrix is written

Q = H F	 (4.103)
( N-1)/2 	(N-1)/2

where	 i	 i
--- ----------r----------

N = odd
1	 i	 i	 (N-1)/ 2

	

72 --- -- --- 1 --+--1-----	 )	 (4.104.a)  
I • 	 i	 -

(N-1) /2

-2-1-------J_--1--------

(N/2)-1
J	

i 1_	 111	 N - even

--------_^-^ ------
	(4.104. 1,1

(N/2)-1

(N/2)-1	 (N/2)-1
Now we can write down the frequency domain equations (windowed) when

the sine-cosine transform (Q) instead of the Fourier transform ( F) is used
for the computation of y = C,,,, x. The x-data vector is transformed into the
frequency domain by

X = A3 x	 (4.105)

and the y-solution vector (unknown) by

Y = ( Al ) 1 y	 (4.106)

where A. ie the transform matrix defined as

An = H F w	 \4 107)

For the covariance matrix of X given by eqn, (4. 105) we have (analogous to the
derivation of eqn. (4.35))

Cxx = A3 Cxx At

= H F w Cxx w Ft Ht	 (4.108)
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or equivalently

Cxx = 2 K H2N F2N WCxx w FA HI K'
	

(4. 109. a)

where K, F2N , w, and C xx are defined by egns. (4.77. a-d) respectively, and HM
is defined by eqn. (4.104. b) after letting N -► 2N. Eqn. (4.109. a) can also be
written as

A
Cxx = 2 K H2N F2N W F2N F2N 	 Cxx FaN F2N W F2N F2N 	 K T

= 2 K H2N	 Cxx AT %N KT	 (4.109.b)

A	 AA	 A

where W = F2N w F:N , C xx = FaN Cxx F2N	 (4. 109. c)

If we denote
WH = H2 N W	 (4.110)

then we can write
A

Cxx = 2 K WH Cxx WH K r	 (4. 111. a)

Eqn ^ (4.111. a) is similarA to eqn. (4.78), the only difference being the replacement
of W of eqn. (4.78) by WH in eqn. (4.111. a). Although NJ of eqn. (4.78) is a
circular matrix, WH of eqn. (4.111. a) is not. Therefore, we will use eqn. (4.109. b)
to determine the elemeats of Cxx. Through the substitution of the definitions for
K, HN , and Hari it is easy to see that

K H2N = Hy K

Thus we can write eqn. (4.109.b) as follows

Cxx = 2 %K WCxxWK T K
	

(4.112)

Now substitute Aeqns. (1. 104. b) and (4.77. a) for HN and K respectively and eqn.
(4.109.c) for W and Cxx in eqn. (4.112). After some simplifications, we obtain

-2N+2J)(k- 2k+'?1-2N+2k) Wt for 0 s j,k s N/2

ye,
-2N+2J)( LIA+2k-3J ZII+N-a k)WQ for 

IN/2<k!g
0 S j 

sN/2
N/2

0 Sk^N /2 (4.113)

Iva 9 -3N )(^^-2k+9,t-2NQk)WI for W2 <j 5(N-1)N -1	 (((

^(%+N_2j -`llilaj-3N )(Dj+N-2knl+2k-3N)WI for N/2<j,ks(N-1)
1=0

where Stn and W are given by eqns. (4. 81. b) and (4. 82. b) respectively and

n_n = (1 2 kN-n , i = 0, 1, 2, .... Since C xx given by eqn. (4.113) is approximately
band-diagonal, as shown in Figure 4.7 (Heller et. al., 1977, p. 41), we only
compute the elements of the band-diagonal, so we can write
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2N-1

-2J + Qt
a N1..,.1

YArk-2J + flj

[CXXIJVk= a

Xi( '11-N- 2,
0



z

2N -1

^E A-W + nt-2N+2J)(r1j-2(J+ n ) + ^^-2N+2 (J + n)) W^

for 0 S j 5 N/2, 0 S m s Nil such that m+j 5 N/2

[Cxx14j+. _

	

	 (4.114)
2N 1

^E ( XA'N-a j- ot+2j-SN)(?i,+<N-2(j+.) - 5142Q+s)-3N ) Cot

for N/2 < J 5 (N-1), 0 5 m s No such that m+j s (N-1)

where Ne Is the width of the band.

Ne+1

Figure 4. 7. Structure of Cxx under sine-cosine
transformation (N = even).

Having computed Cxx we can go back to the solution of the system of linear
equations

Cxx Y = X
	 (4.115)

where X, Y, and Cxx are given in egns. (4. 105), (4. 106), and (4.114), respectively.
The equation above can be solved for Y by using the standard band-diagonal Cholesky
decomposition which numerical computations are proportional to (Ne 2 N). Finally,
we can compute the space domain solution vector (y) from eqn. (4. 106) to obtain

y= C XX1 x = w Ft Ht Y
	

(4.116)

Thus, the windowed frequency domain solution using sine-cosine coefficients, in

	

g	 order to compute the s-signal vector, is completed.

Since we use a highly tapered window, such as the Kaiser window, in order
to minimize the width of the band, Cxx will have very small eigenvalues. In
other words, Cxx is almost ill-conditioned (Heller et. al., 1977, p. 42). Con-
sequently, Cxx has to be modified before solving eqn. (4.115). This modification
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can be done by adding a small amount, say d, to the diagonal elements of Cxx
to obtain

'Cxx = C xx + 6 	 (4.117)

Thus, Cxx cannot have any eigenvalues smaller than b, therefore, Cxx is
well-conditioned.

The addition of ( 6 I) to Cxx actually corresponds to the addition of

.	 -a	 - aD = d Diag (wo , w -ai , ..., wN_1 )	 (4.118)

where wa are the window coefficients, to the space domain covariance matrix,
Cxx, (Ibid., p. 43). A detailed study on the introduction of 6 and its consequences
can be found in Heller et. al. (1977, pp. 42-47).

4.6 Frequency Domain Collocation on a Two-Dimensional Region

4.6.1 Large N and Two-Dimensional Wiener Filtering

In previous sections, we have considered equally spaced observations along
a single profile exclusively for the determination of the s-signal vector. In this
section, we Will consider observations criven along more than one prnfiln 1narlincra^	 o	 Y^••^•^•	 •'D
us to the two-dimensional frequency domain collocation. In order to obtain
covariance matrices (for observations) of block-Toeplitz form, we will select
the profiles in such a way that observations form a grid as well as they are
equally spaced along every individual profile.

Let us denote that;

M	 is the number of parallel profiles with N observations along each
XD	is the data vector of (M N) observations

C.DXD 
is the covariance matrix of observations (it has block-Toeplitz form)

SD	 is the signal vector desired
CSD "D is the cross-covariance matrix between signals and observations.

We can transform xD into the frequency domain as follows

(4.119)XD = FD XD

where	 F 0..... 0
0 F..... 0

FD =

0 0..... F
fL (MN) x (MN) l

here F is (NxN) Fourier matrix given by eqn. (4.30).

(4.120)
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SD = Ca x Cx lx Xo
D D	 D D

(4.127)

Hence the covariance matrix of X. can be expressed as (analogous to the
derivation of eqn. (4.35))

CX D X D = FD Cx D x D F^

Since C,D X  has a block-Toeplitz form, we can write

w

(4. 121)

T11 T12
T

_ T21 O
Cx D X D	 S

TM  TM2

T13 ...... TIM

T23...... T2 

TMa ...... TMM

(4.122)

where T 1 , are (N x N) square blocks of Toeplitz form so that eqn. (4.121)
becomes

FTI, Ft FT12 Ft .... FTC Ft
_ FTa 1 Ft FT22 Ft .... FT2M Ft	

(4. 123)CxDxD

FTM1Ft FTM2 Ft .... FTMM Ft

We demonstrated before that the elements of (F T 11 Ft) converge to the elements
of the diagonal matrix

D11 = 2rr Diag I t11(4), tii ( W 1)+ • • • , t i! ( WN-1 )1
	

(4.124)

where t i , (w,) is the spectral density of T 11 , and it is given by eqn. (4.47) evaluated
at n = 0,1, ... , N-1.

Fuller (1974, pp. 308-310) shows that the elements of (F TA Ft), j # k
also converge to the elements of the diagonal matrix

Djk = 2n Diag [tjk(wo)9 tjk(Wl)1..., t jk( W N-1)lr j 4 k	 (4.125)

where tjk ( wa ) is the spectral density of T j k , and is given by eqn. (4.47) evaluated
at n = 0, 1, ... , N-1. Thus, we can write eqn. (4.120) approximately as

D11 131 2...... DIM

Cx x = D21 D22...... Dam	 (4.126)
o D

Dw11 DM2 ...... DMM

where D jk , j, k = 1, 2, ... , M, which are square sub-matrices of Cx D x D , are
diagonal.

The solution of the sD -signal veOltor from two dimensional, data can be
written (in the space domain) from eqn. (4.22)
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In the determination of SD above, the costly and time consuming part is the
inversion of (;,D,^ or equivalently the computation of (CXD1xD 

xD ). Let us denote

YD = 
CXDXD XD
	

(4.128)

and define the frequency domain representation of yD (c. f. to eqn. (4.119)) as

YD = FD yD	 (4.129)

then we can write

YD = Cxp D XD	 (4.130)

Since Cx D X D defined by eqn. (4.126) is formed by (N x N) diagonal sub-matrices,
we can easily and cheaply invert and compute the product (CxD X  X D ). Then, by an
inverse Fourier transform, we obtain

Yo = FDt YD	 (4.131)

Finally, we compute the S D -signal vector

D D

The algorithm described above is equivalent to the 'two-dimensional 'Wiener filtering".

4.6.2 Small N and Two-Dimensional Windowed Frequency Domain
Collocation with Sine-Cosine Coefficients

If N, the number of observations along a single profile, is small then the
(F TA Ft ) submatrices of eqn. (4.123) do not converge to a diagonal matrix.
Therefore, in the case of small N, we will use the windowed frequency domain
collocation in a two dimensional region as explained below. In order to obtain
real-valued and band-diagonal submatrices for C X D X  the orthogonal matrix Q
of sine-cosine coefficients given by eqn. (4.103) will be used instead of the imagi-
nary matrix F given by eqn. (4.30) in the transformation from the space domain
into the frequency domain.

Consider the definitions M, XD , CXD 
XD , 

SD , Cs X D , aF given in the pre-
ceeding section. Here the transformations are applied as follows, The 4-data
vector is transformed into the frequency domain by

f	 xD = QD W D XD
	 (4.133)
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.0

.0

. H F [(MN) x (MN)]

(4.134. a)

w 0...... 0
0 w......0

WD =

0 0 ...... w I (MN) x (MN) ]

(4.134.b)

here w Is the window matrix (diagonal with diagonal elements
(WO , W1 , ... ,W N -1 ) defined by the window function).

and yD -solution vector is transformed by

YD = [ ( QD WD) t I -1 YD	 (4.135)

and finally, the covariance matrix CxD XD by

CX D X D = QD WD CXDxu WD' QD	 (4.136)

Substitute eqn. (4. 134. a) for Qo , eqn. (4.134. b) for w D , and eqn. (4.122) for
Cx D x D to obtain

HFWT11 wFtHt HFwT12 wFtHt ........ HFwT1MwFtHt
HFWT21 WFtHt HFWT22 wFtHt ........ HFWT2 ,, wFtHt

CX D X D =	 ( 4.137)

HFwT,X1 wFt11t HFwT,,,awFtHt ........ HFWTMMwFtHt

We can write for each square (N x N) sub-matrix of CX D XD

Bjk = HFwTjk wFtHt= 2KH2N F2 NwTjk wFBN HaNK r, 1 5J,k 5 M	 (4.138)

where K, H2N , F2N , w are defined as in section 4.4, and

l ,k is a circular matrix (2N x 2N) eAtended from T,k as explained in
section 4.4.2.

Eqn. (4.138) is band-diagonal as shown in section 4.5. The elements of the (N x N)
band-diagonal matrix BJk can be computed as in eqn. (4.116).

As before, we are here interested in solving the system of linear equations
e

Of

	 CX D X D YD = XD
	 (4.139)

Since C XD XD consistsof sub-matrices which are band-diagonal, eqn. (4. 139) can
be solved by a modified Cholesky's decomposition which requires (M 3 NB 1T)

-127-

--- — - --A



operations compared to (M'j hTp ) in the space domain solution for y®. Following
the computation of Yo from eqn. (4.139)we can find thv y D -solution vector from
eqn. (4.135)

Yo = w®	 t YD	 (4.140)

Finally, we can wrtie for the So-signal vector

SD = CS p Xp lb
	

(4.141)

Thus, the windowed frequency domain collocation in two-dimensional region is
completed. Due to extensive programming needed for this technique we did not
apply this algorithm.

4.7. Summa

In this chapter we have covered one- and two-dimensional frequency domain
least-squares collocation. For a fast solution we have introduced an approximation
and neglected off-band diagonal (off-diagonal in the case of Wiener filtering) terms
of the frequency domain representation Cxx of the covariance matrix, c XX , of
observations. Theseeglected term cause	 -error in ^	 _ tIl_^	 ^ a	 n -ea.Li va aaa the pied l^:Lat1[l Ui sllyii.-I:3.

In order to minimize this er, ^or, and yet preserve the speed of the algorithm,
effective wia	 ire used so that the off-band diagonal terms of Cxx , the frequency

domain. cc r, 	 natrix of tint, windowed data, are as small as possible. Designing
an optimur,	 or a r,articular purpose and the error anplysis due to the approx-
imatioi me,	 dove are open for future studies.
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;,. (,_onclusions

As we stated before, the modern instrumentation enabled its to collect a
large amount of geodetic data. In order to process and interpret this data
efficiently we introduced the frequency methods and the fast inversion cif

Teoplitz matrices.

In chapter 2 we reduced the complicated function of geoid heights along; a
single profl.le to a series of simple trigonometric functions in order to investi-
gate the resolution (or cut-off frequency) of the GE OS-3 altimeter data as a
function of wavelengths or frequencies. The minimum full wavelength recoveraale
from GE OS-3 altimeter data has been found to be about 100 km with the assumption
of 27 mgals standard deviation on predicted point gravity anomalies. We also
computed the tti,.^tal power in the sea surface topography at and above 20 cycles/
revolution, which is equivalent to the total power with respect to the GEM- 9
surface. This ,Rower is about 2. 1 meters from some 9 profiles described in
Table 2.3.

In Chapter 3 we introduced a rigorous fast inversion algorithm for matrices
of simple or block Toeplitz forms. In least-squares collocation solutions we have
to invert the covariance matrix of observations (denoted by C W C,,x throughout
the paper). This covariance matrix has a dimension, say N, equal to the number
oll observations. In the case of equally weighted and spaced observations along
a single profile and an isotropic and global (stationary) covariance function used in
the computation of C , the resulting covariance matrix, C, is of simple Toeplitz
form. The inversion of such a covariance matrix requires a numerical operation
proportional to N2 compared to W in case of conventional inversions. If we
have observations forming a Cartesian grid with the properties explained above,
then ?I is of block-Toeplitz form. The inversion of such a block Toeplitz matrix
requires roughly (N3 Fa ) numerical operations, where N in equal to the number
of observations along a single profile and P is equal to the number of profiles,
compared to (N3 P) in the case of classical inversions. Another advantage of
Toeplitz inversion algorithms over classical inversion algorithms are that we only
have to store one row in the case of simple Toeplitz matrices and one-block row in
the case of block Toeplitz matrices. The only disadvanta.gee in the application of
Toeplitz algorithms are the following:

a) The requirement of gridded data consisting of equally weighted and spaced
observations along, at least, a certain direction.

b) The requirement of an isotropic and global (stationary) covariance function:
in the computation of C. This is also assumed in regular collocation.

In our computations of gravity anomalies from geoid heights we used the theoretical
covariance function given by the subroutine COVA of Tscherning and Rapp (1974).
This function satisfies the second requirement. In order to satisfy the first
requirement we created gridded data from GEOS-3 altimeter data using the

M
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subroutine 1! MMICT of the Geodetic Science Plotting Package ((;SPP) writWn by
Sunkel (1979). By using the subroutine PREDICT, it took roughly 1 second CPU
time on Amdahl 470 of ().SU for the prediction of 1000 points. The mean variance
of original observations was assigned to each of the predicted data. These are
the ouly approximations introduced when we compare ToepliL ,,, solutions and
rigorous least-squares solutions. So it is up to the user to decide beiweeu the
gain in computer time, storage and approximations. In our cases, as we showed
In Chapter 3, the approximations are negligible.

The simple and block Toeplitz algorithms are much more efficient than the
classical inversion algorithms, but for very large N, say g;,cater than 1000,
they are time consuming and become inefficient as well. Yet another faster
method is the frequency domain collocation discussed in Chapter 4. Here every
quantity in the space domain is transformed into the frequency domain and the
solution in performed there. For a fast solution we take advantage of the simple
structure of the frequency domain covariance and cross-covariance matrices. In
the limit as N - - these matrices become diagonal and the method reduces to
the generalized Wiener filtering. By the use of the frequency dornain least-squares
collocation, a considerable gain in computer time and storage is obtained in com-
parison with conventional least-squares collocation or least-squares collocation
with Toeplitz inversion. However this method has disadvantages as well, such
as the aforementioned disadvantages in the application of Toeplitz inversion al-
gorithms and the errors due to edge effects.

The methods presented in Chapters 3 and 4 shov 6 that they are effective tools
for a fast calculation of desired signals from large amounts of gravimetric data. In
previous chapters these methods have been demonstrated for obtaining gravity
anomalies from geoid heights.
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Appendix 1. A

Fourier Series Representation of Periodic Functions and Parseval's Theorem

A periodic function x(t) with period T , i. e. x(t) = x(t + T) can be

C	 arbitrarily closely approximated by a harmonic polynomial of degree N and
period T such that

N

AN(t) _	 +	 (an cos nwot + b„ sin nwot)	 (1. A. 1)
lit-e l

The closeness oft to x t is usually computed b least-squares a roxi-

	

^( )	 ( )	 Y	 I?u	 Y	 q	 PP
mation over the interval (0, T) defined by

V2 ( t ) = JT [X(t)
 - xN( t ) ] a dt	 (1.A.2)

v  (t) , whose parameters are ao , al , b1 v ... , aN , bN , is to be minimized. So
let us substitute eqn. (1.A.1) in (1.A.2) to obtain

N

va(t) = JT [x(t) - 2 n1 (a„ cos nwot +bn sin nwot)]a dt (1. A. 3)

Now let us take the derivatives of eqn: (1. A. 3° with respect +-- + e pa -mcters:
N

ava(t} = 2 J[x(t) - .- E ( an cos nwot +b n sin nwot)]cosmwotdt (1.A.4.a)

	

7) a.	 T	 2	 n:1

rN

^ btu = 2 [x(t) -Z -	 (a, cos nwot+bn sin nwot)] sin mubt dt (1. A. 4. b)

	

s	

JT
	 1 1

The solutions to 6v4(t)/2a. = ava(t)/abm = 0 give the desired parameters.

Recall the orthogonality relations defined by eqns. (1.2. a-b) in order to solve
egns. (1. A. 4. a-b) for the parameters

a„ =L JT x(t) cos nwot dt ,	 n = 0,1,...,N	 (1. A. 5. a)

T(^
b°	 T JT x(t) sin nwot dt	 n = 1,2,...,N	 (1. A. L. b)

How close does eqn. (1. A.1) approximate the true function x ( t) 7 In order to
answer this question open the parenthesis of eqn. (1.A.2) to getI

	

V,2( t)= 

JT 

1[a(t) dt
+J T

 xr,a(t) dt - 2JT x(t) xN (t) dt	 (1. A. 6)

Using the orthogonality relations mentioned above we can easily derive tlu-
OF
	 ^	 N

T JT  xN a(t) dt= T 
J T [2 +	 (an cos nwot + by sin nwot)ldt = 1 2^ + t ^ (an +bn2)

n=1	 n=1

(1. A. 7)

(Eqn. (1. A. 7) is called Parseval's Theorem) and
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fT	
r l

a N
 x(t) 4(t) d  = T\ 2/ + 2 U. (ana +bna)	 (1. A. 8)

Therefore eqn. (1. A. 6) can be written as

r la
	 N

V2 ( t) 
= J 

T xa(t) dt - (T `2 + 2 nn1(ana
+bna)] Z 0	 (1.A.9)

or

JT(
	 (1a

	
^-+

Xat)dt\—/ + 

N

N
(an+bna

](1. A. 10)
T 	 2	 n-1

Eqn. (1. A. 10) is known as Bessel's inequality. From this inequality we can read
that

lim an = lim bn = 0

Now let y (t) be equal to xN( t) in the limit as N -, i.e.
CO

Y(t) = lim xN(t) = 
ao 

+ E (an cosnc-,t+bn sinncLbt)	 (1. A. 11)
N-.ao	 2	 n=1

where an and bn are Fourier coefficients of square integrable function x(t).
By Bessel's inequality the partial sum of squares of the Fourier coefficients
cone einn f— n a Haan»n	 /	 7 65.«.aF i..«	 TL..	 C.. -^.. 4L., "-_ i..	 ^....! S..s ^a,^ —ny squQ^ v integrable func t ion. iucivauiv the function y(6) is
square integrable on (0, T) . Now consider

d(t) = x(t) -y(t)
	

(1. A. 12)

then, d (t) is also square integrable on (0, T) . By Shwarz' inequality we can write
write

0 S JT Id(t)I'dt S 
JT 

Id(t)I d 	 (1. A. 13)

This expression is equal to zero by the "theorem of uniqueness of integrable
functions". That is to say

d(t) = 0 ,	 x(t) = y(t)	 (1. A. 14)

Thus all the Fourier coefficients in the Fourier expansion of d(t) are zero
according to the "theorem of uniqueness of continuous functions". Hence we can
conclude that

x(t) = lim xN(t) = 2 +
CO
 Z (an cos nubt + b n sin nwot) (1. A. 15)

N-+m	 n=1
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Appendix 1. B

Fejer Kernel and the Derivation

Substitute egns. (1.3. a-b) In (1.44) to obtain
N

xN (t) = 2 ^^ L(1- n )x(a)(cos ntobacosnubt + sinnwoXsinnt^t] da+ 1 r x(a) dX
T err n s L N+1	 T T

TJT^n l\N+L x(X)cos[nwo(X-t)]l dX+ T fT x(X) dX 	 (1.B . 1)

Now let z = t,b (X - t) to have
N

-VN( t) = T 

jT 

L	 \1 N+1/ x(^) cos nz] dX + T f T x(X) del	 (1. B. 2)
nal

_	

JT1xN(t) = T 	FN +i(z) x(>,) dX	 (1. B. 3)

N
where FN+1(z) =1+ 2

  nr+1(1 -n/(N+1) )) • cos n  is called the Fejer kernel. The
Fejer kernel consists of cosine functions as we can see from the definition above.
Thus it is possible to express the Fejer kernel as a sum of cosine functions as
follows:

FN +i( z ) = 1 + 2(1 - 
N
+ cos z+2(1- N ^cos2z+... +2(1- W cosNz (1. B. 4)

Multiplying eqn. (1. B. 4) by sin z/2 from both sides we obtain,

sin 2 F
N+1( z) = sing +2(1-N+sin2 cos z +... +2(1- NN^sin2 cosNz (1. B. 5)

Using the trigonometric identity

2 sinx cosy = sin(y + x) - sin (y-x)	 (1. B. 6)

we can easily prove that

sin2FN+1(z) = sin 2+(1-N1 )(sin 2z-sin z)+(1- 
2 

)(sln E
2

z- sin gz)+...

+(1-N+1)[sin(N+J)z-sin(N-f)z]

= N+1 sin2 +Nlilsin2z+... +-sin(N +t)z

1	 N

N+1 n^0 
sin (n + J) z	 (1. B. 7)

Thus the Fejer kernel can be expressed as

FN+i( z ) = 
1	 sin n+iz

N+1 n = a sin z
(1. B. 8)

The expression for the Fejer kernel is not used in its present form. It can be
simplified further, first by writing
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M

N

FN.,^(z) - N+1 s in 1 z o ^O sin 2 sin (n + .") z (1. B. 9)

then, opening the sum of the expression above to get
3

FN+1(z) - 2(N+1)[2siniz siniz +2sinjz sin 2z+...+2sinizsin(N4)z] 	(1. B. 10)

finally using the trigonometric identity

2 sin x sin 	 = cos(x - y) - cos (x+y)
	

(1. B. 11)

we obtain

FN+1 ( Z 	 sin a 
i 

z [ 2 - 2 cosa i z + cos z -- cos 2z + cos 2z + ... + cos (N-1)z-cos (N+1)z ]
2(N+1)

a
2 (N+1) [ 2 - 2 cosy Z + cos z - cos (N+1)z ]

a
s2 (N+1) [ 1 - Cosa (N+1)Z+ sine ( N+1) Z ]	 (1. B. 12)

The equation above is equivalent to

1 sin (N+1)(z/2) a

FN +1(z) = N+1 L sin(z/2)	 J	
(1: B. 13)
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Appendix 1, C

Variances of Fourier Coefficients

Let us suppose that the function x (k-At) Is independent and normally
distributed N (µ , oa ) , and has the Fourier coefficients defined by eqn. (1.93),
i.e.

{
an^= 2 NE x k-At cos 2rrkn/N^
b,	 N k= o (	 ) sin 2Trkn/Nj '	

n =0,1,...,NH	 (1.C.1)

where NH = ( N/2)	 if N even
(N-1)/2  if N odd

So if we denote

Y = [ aO, a1 ,....., a.H : T ,	 X [x(0)1,x(At),......,x((N-1)Ot)JT

1 1 1 .............. 1

2 Tr 1 4 Tr 1 2 N-1 Tr 1
1 cos	

N	
cos

N	
.......cos	

N
G =—

2 (1. C. 2)N

'^ 4rr NH

L
cos N	 cos 2 IN-N n NH...... cos

then we can write

Y = G X
	

(1. C. 3)

The variance -covariance matrix of the function Y can be expressed as
follows (Uotila, 1967) :

= G	 G 	 (1. C. 4)Y

	 x

where Er is the variance -covariance matrix of the Fourier coefficients (ao,
al , ... , NH ) and Ex is the variance -covariance matrix of x (k-At) , k = 0,

(N-1) , which is diagonal with diagonal elements equal to va by assump-
tion, i.e.

I
x 

= diag ( a2 , va ,..., a2)	 (1. C. 5)
e 

`	 Therefore, we have,

f	 a& a0	 ......	 0

0 on ......	 0

Y
•	

as 
G GT	 (1. C. 6)

0	 0	 ...... p6 
a

NH
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We know already that G and G  are orthogonal such that

N0 ...•.... 0	 2 0......0

GG T= 4
	 0 (N/2) ........ 0	 ,^ 2	 0 1...... 0

.	 :	 :N. .	 .
0	 0 ........ (N/2)	 0 0 ......1

L

Thus eqn. (1.C.4) can be written as

Be

(1. C. 7)

2 
CT aN

Q;a = var(a,) _ N 
Cr a

2 or
N

for n = 1, 2,. .. , (NH -1)

for n = NH and N even

for n = 0, or n = NH and N even (1. C. 8)

Similarly we can prove that

	

I

2	 a
N

a b^j, = var (b„) =	 0

2 2
N ^

for n = 1 9 2 9 .	 (NH -1)

for n = NH and N even

for n = NH and N odd

(1.C.9)
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Appendix 1, D

The Fast Fourier Transform ( FFT)

The number of operations required by the conventions , Fourier transform
method Is proportional to Na , N being the number of data points. On the other
hand, the FFT algorithm requires a number of operations, which Is proportional
to (N logs N) . The FFT is an algorithm by which the discrete Fourier trans-
form (DFT) can be computed much more rapidly than by other available algorithms.

Let DFT be defined as in eqns. (1. ! Z) and (1.66), namely,
N-1

X, = 1	 x(k-At) e-ia^rkA/N	 (1. D. 1)
N ,=O

	

N-1	 t1aTTkn/Nx(k-Qt) = I X„ a	 (1. D. 2)
a as 0

When N is a product, say N = r-s , then the Fourier transform can be calculated
In a two-stage process. That Is to say, as if X. and x ( k-At) were defined on
two dimensional (rxs) arrays with array indices (kI , ko) and (u l , no) such that

k	 ao ( kl, ko)
	

(1. D. 3)

k = k1 - r + ko	 for ko = 0, 1, ... , (r-1) and kI = 0,1, . . . , ( 8 -1)

n ------* ( nl , 
n

o)
	

(1. D. 4)

n = nI - s + no for no = 0, 1, ... , (s-1) and n1 = 0,

If we define	 % = exp (2 r► i /N)	 (1. D. 5)

and use eqns. (1. D. 3) and ( 1. D. 4) , then we can write

kn	 k In Ira	 kon 1! .	
k Inor	 k°n0

Wry = WN	 WN	 WN	 WN

1 e Wrk° n l - W, k ln o . WNkono	 (1. D. 6)

Thus eqn. (1.D.2) becomes

	

e-1	 r-1

	

x(k- At) = x[(kl ,ko)- At] = E	 ^0 x(alrno)• 
Wr 0 n 1 . We 1 no. WNd'° (1. D. 7)

n
°— 

n 
1

If we denote

then,

r —1

X/
1
	= WN

k0 n0	 k n

`kOfno) 	
ni S

O X(nl fno) a W
r O 1	 (1. D. S)

2_1

x[(k1 ,ko)-At] =	
E	

1
34 ko 	

W'n0	
(1.D.9)

no= o
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Notice that first; we sum over nl in eqn. (1. D. 8) to form an intermediate
array X1(ko , go) and then sum over no. Hence X 1(kos ,b) is wN ko °o times
a set of r-term Fourier transforms. Finally eqn. (1. D.9) is a set of is-term
Fourier series with X1(koI no) as coefficients. The total computation amounts
to

r'- is + s2 - r = N(r + s)	 (1. D. 10)

for this particular two-stage process.

Similarly, It can be shown that it N = rl x r2 x ... x r° , then the number
of operations Is equal to

Nx(rl+ra+...+r°)

If we further assume that r l = ra = ... = r,,, then N = r' and the number of
epemtions is equal to

N - m - r = N (log r N) r = N (logs N) r/ logs r
	 (1. D. 11)

when r is equal to three, we obtain the lowest number of calculations. This can
be proven by minimizing the above equation, I. e.

Y ( r ) = N flow- M rAnga r	 to be min— mi7.ed	 (1. D. 12)

The solution to y 1 (r) = 0 gives the optimum factor r .

y'( r) = N (log2 N) [ log ar - r a 
rr 

(logs r) ]/(loga r)a = 0	 (1. D. 13)
This Is equivalent to

a	 1
log2 r-rar (log2 r) = log2 r-pn2 = 0

The solution of the above equation is:

r = 21 '	 3	 (nearest integer)	 (1. D. 14)
However for r = 2, 4, 8,... we can further reduce calculations by avoiding

multiplications when the powers of wN are simple numbers like +1, f I . There-
fore the most commonly used FFT algorithms use r = 2, 1. e. N = 2 ° . Genern.11y
a seperate derivation is given for this case. Let

x(k-At) * -*.	 Y.	 k,n = 0,1,...,(N-1)	 (1. D. 15)

	

x (2k'- At) F ;o- 	 Xn l 	 k'n' = 0, I t .... ((N/2)-1)	 (1. D. 16)

	

x [ (2k'+1) - A t ] -e -a► 	 X„ r J

then the discrete Fourier transform (DFT) Xo, can be written as
N-1

Xar = N kLo x(k-At) WN 	 (1. D. 17)

using eqn. (1. D. 16) we have
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= 1 j(N^ [x(2k,,^t),ww^k',,'+x((2k'+1)•©t)•wN(^k' +i)^']^
N l k^^o

But we know that wNA m %/2 , therefore

1 (N /j 1	 —k,n,	 1 (N/	 1	 —Or;	 n'

Y>ri = I_QR
T2) ,x(2k'•pt)• wN/a + N/2	

x[(2k'+1)•At]' wN/2 "v'N
 k 0 	( 	 ) k' ®

which can be written as

X„' =	 [ Xd + X^^ W;	 (1. D. 20)
and

x,,I+ (N/a)	 M' [ X„► - x d W  ]	 (1. D. 21)

	

Notice that X',, and X"", in eqn. (1. D. 21) are, 	calculated through
"doubling". So this successive doubling continues until it is no longer a multiple
integer of 2.

When the FFT algorithm is used, we avoid computations by a factor pro-
portional to atN , where (xN is a constant times the ratio of the number of ope ra-
'LIOU , in t4he conventional method over that of FFT, i.e.^aVUO au wav vvu	 _

an = c Ne/ ( N logy N) = c N/loge N
	 (1. D. 22)

where c is a constant greater than one. The computational reduction by a factor
atN (assuming c = 11 for various N are tabulated below:

N	 UN

2 2

16 4

256 32

1024 341

4096 341
8192 630

16384 1170

Since less operations are required in FFT computations, the truncation
error is considerably smaller than that of conventional computations. Thus FFT
gives more accurate results.

In order to demon<<trate a simple application of the FFT algorithm, the
discrete data given at N points were transformed by the "FFT13" subroutine
of the IMSL library and by the conventional algorithm. The results are given
below:
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L

LI

L

F°

LI

N	 Conventional Method (sec.) FFT Method (Sec.)

266	 2.62	 0.06
612	 9.92	 0.13

The time required for computing Fourier transform by conventional al
gorithms and by the FFT algorithm is illustrated in Figure 1. D.1 below (ex-
tracted from Cooley, 1969).

I
N • Na Real DPI• Points

Figure 1. D.1. Time required for calcuiation of Fourier transform
of real data on IBM 7094 using FORTRAN with con-
ventional and fast methods.

We have tried to introduce the FFT algorithm as a computational tool here.
For detailed discussions see Brigham (1974) and Path (1974).
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Appendix 3.A. A FORTRAN Program for Mlle Inversion of Simple Toeplitz Matrices.

/C 	 SUBROUTINE TOEPL ( B,C,X,F,MAX)
C --------- -r..---^^e--C
C	 FUNCTION	 —

^---.--.--...----o--------^--.^-	 --^
TD COMPUTE THE TOEPLITZ INVERSE OF	 'T'

C AND MULTIPLY IT BY THE DATA VECTOR 	 'X'
C TO GET	 'F'
C	 PARIZTERS	 B	 — THE INTERMEDIATE VECTOR OF LENGTH —MAX
C TO GET THE INVERSE
C	 C	 — VECTOR OF LENGTH —MAX— .CONTAINS THE FIRST
C 'T' ON INPUT AND RE'. 'LACED BY	 BY INVERSE
C ROW OF	 'T' ON INPUT AND REPLACED BY TILE
C INVERSE LATER
C	 X	 — DATA VECTOR OF LENGTH —MAX—
C	 F	 — VECTOR OF LENGTH —MAX— AND yS PRODUCT OF
C TINV :P X
4,	 MAX	 — THE DIMENSION  OF THE TOEPL I TZ MATRIX 	 'T'

--------°---------------------------------------------------------

SUBROUTINE TGZPL ( B, C, !X, F, MAX)
IMPLICIT REAL*B(A—H,0--'L)
DIMENSION B(1),	 C(1),	 X( 1), F(1)

c
f3 i MAX) = 1 - D0

C	 COMPUTE	 'AA' AND 'E' VARIABLES OF	 THE ALGORITHM

11

DO 13 IC= 1, MAX
E=0.D0
AA= 0. D0
DO 11 L-1,K
r; A= TIAX L+ 1
AA=AA+B(NA) *C(L)
E=Ea•S(NA) *C(K L+2)
CONTINUE
AA= 1. DO/.A_4
IF(K. EQ. IlW GO TO 13
( ()A ?tri F;	 ' B' VECTOR iTS TAG RECURS I VE AALCOn 11117M.
EAA"-EW-AA
NB= r11 X-IC
B(N3) = EA 1
IF(X. EQ. I) GO TO 13
IMALI F=IC/2
ICR=14OD(K, 2)
DO 12 LL.- 1, KHALF
NBI=NB+LL
r?B2r T1A).- LL.
TI=B(NE1)
B(NB 1) = B(NB 1) +EAA*B(NB2)
1F(I(R.EQ.0.AND . LL.EQ . KHALF) GO TO 12
B( N132) - B(NB2) + EAA*T1
CONTINUE
CONTINUE

COMPUTE THE LAST RAW OF THE INVERSE
DO 14 I =1, MAIX
C( I)=AA*B( 1)
... MULTIPLY THE COMPU'T'ED ELEMENTS OF THE INVERSE

OF XVECTOR
NI=MAX
DO 15 NJ=I,MAX
CALL TMULT (C,X,F,NI,NJ,MAX)

COMPUTE THE REMAINING ELEMENTS OF THE INVERSE
THE CORRESPONDING ELEMENTS OF THE X-VECTOR
N= 1
NN= MAX
M:--MAX-1
PIIii1LF= MAX/2+ 1
MM= r1+MHALF
DO 17 I=MHALF,M
I I = DIM- I
N=Ni-I
NN=NN-i
NL= I-•PI1L4LF+ 1^^
T1 = AA*B(NL)	 ^^ ^. Warr Ild„ ►•,,
T2= A.A.*B( 11)
DO 16 J=N,NN
NBI=M--J+i
T3= Ii( NB1) *T1
T4= B(J) .1:'1'2
C(J) =C(J+ 1) -T3+T4
CALL TNULT (C,X,F,II,J,NAX)
CONTINUE
RETURN
EIv'D	
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10
2)030
40
50
60
70
(30
90
100
110
120
130
140
150
160
176)
1130
190
200
210
220,
230
240
250
260
279
280
290
300
310
320
330.1
340
350
360
370
360
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
010

BY THE C0PA. PART
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SUBROUTINE TMULT,X,F,NI,NJ,MAX) B 10
F: ------- ------ 	 —	 ---------- B 20
C . THIS SUBROUTINE CONSIDERS SYMMETRY,PERSYMMKrRY AND COMPUTES B 30
C THE PRODUCT B 40
C ...	 C(NJ)	 IS THE	 (NI,NJ)TH,(NJ ,NI)TH,(NII,NJJ)TH,(NJJ,NII)TH ELE B 80
C OF THE INVERSE B 60
C . NI = ROW NUMBER OF THE INVERSE B 70
C NJ = COLUMN NUMBER OF THE INVERSE MATRIX B 69
C----------------------------------------- ------ B 90

IMPLICIT REALy'3(A—H 2 O—Z) B 100
DIMr.NSION C( 1; ,	 X( 1) ,	 F(1) B 110
NIT=MAX—NJ+1 B 120
NJJ= I-iX--NI+1 B 130
F(NI)=F(NI)+C(NJ)*X(NJ) B 140
IF(NI.E(1.NJ.A-+D.NI.EQ.NII) 	 RE'T'URN B 160
IF(NI.EQ.NJ)	 CO TO I B 160
F(NJ)=F(NJ)+C(NJ)*?((NI) B 170
IF(NI.EQ.NII) RETURN B 160
F(NJJ) =F(NJJ) q. C(NJ) *X(NI I) B 190

1 F(NII)=F(NII)+C(NJ)acX(NJJ) B 200
RETURN B 210
END B 226
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Appendix 3.13. A FORTRAN Program for th.3 inversion of Block ToAplitz Matrices.

C SUB11OITTINF. BTOEAL(B, DUMMY, C , E, AA, EAA, TI, TEMP. W,BG,T3.T4 , AINV.III, A 10
C IC) A 20
C A 30
C ------ ----------------------------------------- ---------------------- A 40
C FUNCTION	 - TO COMPUTE THE INVERSE OF BLOCK TOEPLI'r'L A 50
C 'T' AND MULTIPLY IT B1- THE, DATA VECTOR A 00
C ' X'	 TO GET	 ' F' A 70
C PARAMETERS	 T	 - THE BLOCK TOEPLITZ MATRIX TO BE INVWMD A DO
S: 11	 - THE I NTERMED I ATE MATR I X OF D 1 MEN. ( I R, I (7) A 90
C TO OBTA I II 1W.INVERSE A 10u
C C	 - FIRST BLOCK itow MATRIX OF 'T' MATRIX ON A 110
C LATER REPLACED BY THE BLOCK INVEWSE ROW:` A 130
C INi ur,LATER REPLACED BY BLOCK INVERSE A 1030
C ROWS A 140
C X	 - DATA VECTOR OF LENGTH -MAX- A 150
C F	 - VECTOR Oi

l
LENGTH -HAX- WD IM PRODUCT OF A 160

C TINV * X A 170
(: IR	 - NO.O:' MAXIMUM ROW'S 1' OSS I BLE 11 10111
C IC	 - NO.OF MAX1PIUM COLUMNS POSSIBLE A 190
C I MAX - D 11'= I I ON OF THE SQUARE SUBBLOCKS OF ' T' A 200
C J MAX - D I HENS 101	 OF	 ' T ,	 MATRIX A 310
C EIAX	 - RATIO Oil JMAX OVER	 AX, MAX-JMAX/IMAX A 220
C ! B 14 DUMMY) CAN SHARE THE SAME: i.00AT I oNs 	 CALLING PROGRAM IS A 230
l: CALL B'rOEPL(B.B.C,1:.AA,r-,AA.'ri,'rEii', ,ra,:3G,'rJ.T4,AINV, III, IC) A 240
C----------- --------------- A

A 36 0
SUBROUTINE BTOEPL (B,DU?IMY,C,F,AA.EAA„rt,T y;M1 ,T2,BG,T'J.T4,AINV, IR, A 271)

11C) A 11W
1Pll'IACIT REAL*6(A- x1,0-7. 1 A 290
DIPR:NSIOPI	 B( I11, IC) .	 DUPI-IY( III, IC). 	 C( III, IC) A 300
DIKEbSION	 E( [t(, III) ,	 AA( IR, III),	 E:AA( III, III).	 T1( III, IR) ,	 T2( IR, IR) A 310
DI?11:NSION	 '1"J( [It, 111) .	 '1'4( 1R, 111).	 BG( IR, 110,	 'TEMP( Ill, IR) ,	 AINV( 1) A 320
COPI.4014 . ' D I PIF N.'	 I MAX, JMAX, MAX A 330
LOGICAL PICK A W)

C .	 I N I T i AL I `LE	 -D- MATRIX TO ZERO A 35J
CALI. DZE:110 (B. 111* 70 A 360
I PL% - I !t^ I R A 370
NBM= (MAX- , 1) It I MAX A 360
DO	 I I	 I - l, I PUL: A 394)
.1.1 = rIBM+I A 400

11 B( 1.J.1)=I.DO A 410
C A 4'22

COPII'irrl:	 'AA' AND 'E'	 MATRICES OF	 THE ALGORITHM A 430
DO	 16	 It= i . MAX A 440
DO	 12	 1= 1 , I MAX A 450
DO	 12 .1= 1. 1 MAX A 460
E( I. J I r 0. DO A 470

12 AA( i , J) = 0. DO A 480
DO	 13	 I.= :. K A 490
NBC .- (L- 1) :,: I PIAX A 500
NBA= ( MAX-L) * I PIXX A 510
ID='! A 520
CALL. Pn!LT (B, C. TEMP, TEMP, BG, IR, IC, NBA, NBC, ID) A 530
CALL ABS ( AA, BG, AA, IR. IC) A 540
IF(K.EV.FLAX)	 CO TO 13 A 550
NBC = (K-L+ I ) * I r1AX A 560
CALI, DR) LT ( B. C. TEMP, TEPID, BG, IR, IC. NBA, NBC. ID) A 570
CALI. ADS	 (E, BG, E. I It, IC) A 580

13 CON'rINl1E A 593
C I N V ER'1'	 ruE StIlUARE PIA,TR I X	 'AA' A 600

CALI. AAINV	 (A.'l.AlPiV.IR) A 610
I F(K. E(!. PIAX)	 GO TO	 16 A 620

C ... COPn'u'1'E: 	 'B'	 MATRIX	 USING RECURS IVE ALGORITHM A 630
C ' T' l '	 IS TIIE THE SQUARE MATR 1 X	 TO BE ADDED TO	 THE PRODUCT A 640
C ' r l̂  I	 T I MrS	 ' EAA'	 . WHERE.	 EAA = Eck AA A 650

I D= L N 600
CAL ► . Pnll•T (DU,K”, D I IPIPIY, 3, AA, FAA, III, IC, AX, NX. ID ) A 670
P 1 C,Kr . . FALSE. A 680
DO	 14	 1	 .. I P1AX A 690
DO	 14.	J- 1. I PIA': A 700

14 I:AA( 1 , J) `--I.AAt 1. J) A 710
NB=(PIAX-K-l) J:: IPIAX A 7:0
CALI. PUTIN	 (B.E:AA, IR. IC.NB.P,CK) A 73o
IE'( K. Eli. ()	 GO TO	 16

740KIIAI.F = K,':`	 Or, A
PICFC=.TVIE. A 7w)
Ial=PI(?D( K.2)	 ^"^ A 770
110	 Iii	 1 , 1,- 1 , KIIAI ..F A 780
NB1 , r, D+Li.Y: 1DIAX A 790
CALI. PUT :N	 (B,T1, IR, IC,NBI,PICK) A (101
PII;:.'°-NBP^-}.[.1PI1X	 i^•. A .310
CAL).	 1`111''N	 (F3.'IW.I It. IC, NBF.,PICK) A BZJ
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C
I D= 1
CALL MUL'" ( DUMMY, DUMMY, EAR., T2, T3, IR, IC, NX, NX, ID)
CALL AABJ (B,'T1,T3. IR, IC,NP1)
IF(KR. EQ. 0. AND. LL. EQ. EHALF) GO TO Ad
CALL MULT (DUPIMY, DUMMY, EAA, T1, T^, Ik, 1C, NX, NX, xrs ►
CALL AABS (B, -1'2, T3, IR, IC, NB2)

16 CONTINUE
16 CONTINUE

C	 . COPIPUTE THE LAST BLOCK ROW OF THE IrVW'T? , 1±•
ID=3
BO 17 I=1,MAX
NL=e I-1),:IMAX
CALL MULT (B,C, AA, TEMP, TEP!P, III, IC, NI.,NL.,ID)

17 CONTINUE
P I C IC= . TRUE .
DO 18 J=1.MAX
NI=(mAX-1)*IMAX
NJL;(J- 1)*IMAX
CALL PUTIN (C,T1,IR.IC,NJ,PICR)

18	 CALL BPIULT (T1, X, F, NI, NJ, IR. IC)
C

N= 1
NN=MAX
PI= KAN-1
NHA-LF= MAX/2+ 1
MP= M+ MHALF
DO 20 I=MHALF,M
II=MP—I
N= NT 1
NN= NN-1

C	 COMPUTE	 T1 = B(N, N—S) 1fRMf-sP * .f A
ID=3
NI_.=(M—II?*IMAX
CALL MULT (B, DUMMY,AA,TEMP.T1,!R,IC,NL.NL,I1))

C	 CONFUTE ' T2 = B(N.S— I)TRANSPOSE * AA
NL=( I1-1)*IMAX
('ALL PIULI (B, DUNKY, AA, TFM, T2, IR, IC, NL, NL, ID)

C	 CC- -a.' JTE THE REMAINING SUBBLOCKS OF THE i NvFrI 7Z,

C	 ° VECTOR
I 1)= 4
DO 19 J= :I. NN
NB 1= ( PI—J) I PI)!
NB2= (J-1) I kM
CALL PIULT (B.DUMMY,T1,'Ir:MP, M, IR, IC,NBI,NB1, ID)
CALL MUL'C (B, DUMMY, T2, TEMP. T4,IR,IC,NB2,NB2,ID)
CALL ZZTi' (C, T3, T4, IR, IC, NB2, TEMP)

19	 CALL BMULT (TEPL)', X, F, NI., NB2, IR. IC)
20 CONTINUE

RETURN
END

A 8;i O
A 640
A 860
A Su
A 870
A 860
A 600
A c r0
A. 910
A 920
A 9'30
A 940
A 96(3

960
970

A 909
A 9913
A !060
A 1010
A 1020
A 1030
A 040
4 1060
A 106.3
A 1070
A 1060
1 1090
A 1100
A 1110
A 1120

1130
A 1(4H
A 1160
A 1160
A 117v
A 1160
A 1190
A 1200

4." MULTIPLY BY A _ 10
A 122G
A 1230
A 1240
c,	 ^reel

A.

'?9t,

A r:
A 1320
4 !q30
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10
20
30
40
50
60
70
80
90
100
110
120
130,
14G
150
160
170
180
190
200
210
220
230
240
25v
260
270
28()
29,',)
300
310
320

SUBROUTINE AAI1(V (AA,AINV,IR)

... THIS SUBROUTINE COMPU'T'ES THE INVERSE OF AA—MATRIX

... AA IS THE PL41RIX TO BE INVERTED ON INPUT AND INVERSE ON OUTPUT

IMPLICIT PEAL*8(A—H,0—Z)
DIMENSION AA(IR, IR) , 1INV(1)
COMMON /D IMEN/ IMAX, JPIAII, MAX
IY( 1)'( It.K—I)/2
N=0
DO 1 I=1,IMAX
DO i J=1.I
N=N+1
AINV( N) =AA( 1. J)
CALL DSINV (AINV, IMAX, 1.D-14, IER)
T F(IER.E4.0) GO TO 2
WRITE: (6.7) HER
STO1' 10
CONTINUE
DO 6 I=1,IMAX
1;0 u J- 1, IPIAX
IF(J— I) 3,4,4
N= 17( I ) +J
GO TO 5
N=IN(J)+I
CONTINUE
AA( 1. J) = A.INV(N)
RFTISF.N

FORnIAT ( I OX, ' I NVERS ION ERROR IER =',I4)
END

SUBROUTINE PUTIN (A.B.IR,IC,NA:PIGK)

--B— IS THE MATRIX TO BE INSERTED FOLLOWING (NA)TH COLUMN OF
A—PL2IRIX IF PICK=.FALSE.,OR ELSE TO PICK FROM 'A' IF PICT -.TRUE.

IMPLICIT REA,*B(A—H2O—Z)
DIMENSION A(IR,IC), B(IR,IR)
COMMON /0lNMv N,M
LOGICAL ?ICI:
IF(PICK) GO TO 2
DO 1 I=1,N
DO 1 J=1,N
NN=NA+J
A( 1.VID=B( 1, J)
Brim
DO 3 I=1,N
DO 3 J=1,N
NN=NA+J
B(I,J)=A(I,NN)
RETURN
END

SUBROUTINE ABS (A,B,R,IR,IC)
-----------------------------
.. SUM UP 'A' AND 'B' MATRICES TO GET 'R' MATRIX

iMPLIC!T REAL*B(A—H.O—Z)
"rTS IGia A( IR, IR) , B(IR, IR) , R(IR, IR)

i—
!	

,N

END

C
C
C
C

1

2

3

4
5
6

C
C
7

C
C
C
C

1

2

3

C

19
20
30
40
50
60
70
80
94)
100
110
129
130
140
150
160
170
180
190
200
210

D 10
D 20
D 30
D 49
T)
	

50
D 60
D 70
D 80
n 90
D 100
D 110
D 120
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SUBROUTINE AABS (A,T,TT,IR , IC,NB) E 10
C-------------------------^--- E 20
C . SUPS UP T AND T 'I--MATRICES AND INSERTS IN A MATRIX FOLLONING E 30
C (NB) TII	 COLUMN E 40
C E 50

IMPLICIT REAL*8 ( A—H2 O—Z) E 60
DIMENSIO

N
 T( IR, IR) ,	 A( IR, IC) , TT( IR, IR) E 70

COMMON /D I MEN/ N, M, MAX E 80
C . T 90

DO	 1Ii1,N E^ 100
DO	 l J=1 , N 1 110
NNE NB+J E: 120

1 A( I. NN) =T( I,3)+TT( 1, J) E 130
RETURN K 140
END E 15CP

SUBROUTINE MULT (A,C,D,E,R,IR,IC,NJI,NJ2,I1)) F 10
IMPLICIT REAL*8(A—H2O—Z) F 20
DIMENSION A( IR, IC) . 	 C( IR, IC) ,	 D( IR, IR) ,	 E( IR, IR) ,	 R( IR. IIU F 8t)
COHNON /DIMEN/ N,M F 40

C F 50
GO TO (1,3,5.7,9),	 ID 7 60

1 CONTINUE F 70
DO 2	 I = I,N F GO
DO 2 J = 1,N F 90
R.(I.J)=0. DO F 100
DU.' K= 1, N F 110

2 R( I.J) = R( I,J)+D( I,K)*E(K,J) F 120
RETURN F 130

C DO 4	 I=1,N F 140
DO 4 J = 1.N J, 150
R( I, J) = 0. DO F 160
NC=NJ2+ J F 170
DO 4 K-- :,N E 180
NA= NJ I+K F 190

4 R( ).J) = R( 1,J)+A( I, NA) *C(K,NC) F 20;)
RETURN F 210

5 DO (3	 I = 1,N F 220
DO 6 J=I,N F 230
.)J=NJ1+J F 240
C(I,JJ) =0.D0 F 250
DO 6 K= I . N F 26s)

6 C( I. JJ)=C( I,J.I)+D( I,K)*A(K,JJ) F 270
RETURN F 280

7 DO 3 I=1,N F 290
DO 8 J=1.N F 300
JJ = NJ 1+J F 310
HkI,J) = 0.D0 F 320
DO 8 K=I,N F 330

B R( I. J) = R( 1, J) +D( 1, K) *A(K. JJ) F 340
RETURN F 350

9 DO	 1C	 !=1,N E' 300
JJ = NJI+I F 370
DO	 10 J= 1 , N F 380
R(?.J)=0.DO F 39()
DO	 10 K=I,N F 400

10 R( I,J)=R( I,J)+A(K,JJ)*D(K,J) F 410
REVIRN F 420
END F 430

C

1

SUBROUTINE ZT.I`T (Z,T3,T4, IR, IC, NB. TS) G 10
IMPLICIT REAL*8(A—H 2 O—Z) G 20
DIMENSION Z( IR, IC) ,	 T3( IR, In),	 T4( IR, III) ,	 T5 ( IR. IR) G 30
COMNOW /D I PIEN/ N, M G 40

G 50
M1=1d11+N G 60
DO	 1	 i = 1,N G 70
DO	 t	 J = i , Ii G 80
MM=M1+J (' 90
NN=NB+J G 100
Z( I,NN) = Z( I,MM) —T3( I,J)+T4(I,J) G 11th
T5( I,J) = Z( I,NN) C 120
RETOIW C l.)J
END G 14n
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C
C

I

SUBROUTINE BMULT (C,X,F,NI,NJ,IR,IC) H 10
---------------------------- H 20

COMPUTE PRODUCT OF	 'T'	 AND PROPER PART OF	 'X' TO GET	 'F' IL 30
ILLICIT REAL*8(A—H 2 O—Z) H 40
DIMENSION X(1) , 	 F(1) ,	 C( IR, IR) H 50
COMMON /DIMEN/ IMAX,JNAX,MAX `d 60
II=NI/IMAX+1 H 70
JJ=NJ/ IPL X+I 11 80
PIM= MA)- JJ+ 1 H 90
NI I= (MAX— 1)*IMAX—NJ H 100
NJJ=(?LAX-1)*IMAX--NI 11 110
CALL AB (C,X,F,NI,NJ,IR,IC) If 120
I F (I I . EQ. JJ . AI(D. I I . EQ. Li) 	 RETURN H 130
LF(II.EQ.JJ)	 GO TO 1 H 140
CALL. ABTR ( C,X,F,NJ , NI, IR, IC) II 150
I F (I I . EQ . MM)	 RETURN it 16v
CALL AB IC,IL,F,NJJ,NII,IR,IC) Ii 170
CALL ABTR (C,X,F,NII,NJ.I,IR,IC) H 180
RETURN H 190
END H 2O3

C
C
C

1

SUBROUTINE Ab (T,X,F,NI,NJ,IR,IC)
IMPLICIT REAL*B(A—H2O—Z)
DIMENSION T( IR, IR) . X(l) , F(1)
COMnION /DIMEN/ IMAX , JMAX,MAX

... COMPUTES THE PRODUCT OF 'T'
ADDS 'I'0 'F'

DO 1 I=1,IMAX
II=PiI+I
DO 1 J= 1, I KAX
JJ=NJ+J
F( IT) =F( II)+T( I,J)*X(JJ)
RETURN
END

10
20
30
40
50

AND PROPRE PART OF 'X' AND
	

60
70
BO
90
100
110
120
130
140

SUBROUTINE ABTR ( T, X, F, N I , NJ, IR, IC) J 10
IMPLICIT REAL*B(A—H 2 O—Z) J 20
DIMENSION T( IR, III) , 	 X(1) ,	 F(1) J 30
COMMON /DIMEN/ . IMAX,JMAX,MAX J 40

C	
•

J 50
DO	 1	 I=1,IMAX^ J 60
II=NI+I J 70
DO 1 J=I,IMAX J 80
JJ=NJ+J J 90

1	 F(II) = F(II)+T( J, I)*X(JJ) J 100
RETURN J 110
END J 120

b
1

p̂ppRI^	 ^	
PAGE IS
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