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Abstract

Spectral Analysis in Geodetic Science and a method for the solution of
lcast-squares collocation in the frequency domain as well as a fast Toeplitz
inversion algorithm ir the space domain are outlined,

The mathematical background in spectral analysis as applied to geodetic
apolications is summarized, Ingeodetic problems, we usually have discrete
and non-periodic data. The resolution (cut-off frequency) of the GEOS-:
altimeter data has becn examined by determining the shortest wavelength
(corresponding to the cut-off frequency) recoverable., The data from some 18
profiles were used in this study. The total power (variance) in the sea surface
topography with respect to the reference ellipsoid as well as with respect to the
GEM-9 surfacc was computed.,

A fast Inversion algorithm for matrices of simple and block Toeplitz
matrices and its application to least-squares collocation is explained. This
algorithm yields a considerable gain in computer time and storage in comparison
with conventional least-squares collocation.

Frequency domain least-squares collocation techniques are also Introduced
and applied to estimating gravity anoma’les from GEOS-{ altimeter data. The.e
techniques substantially reduce the computer time and requirements in storage
associated with the conventional least-squares collocution, Numerical examples
given in this paper demonstrate the efficiency and speed of these techniques. The
number of numerical operations required to calculate the signals is proportional
to Nlogy N (where N is the number of observations) rather than N° with the
fast Toeplitz inversion algorithm or N® with classical collocation,
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1. Spectral Analysis and Applications
1.1 Introduction

Spectral analysis can be defined as the process of calculating and inter-
preting a spectrum, It actually yiclds a deeper understanding of data as well
as the systems which produced those data, The latter property has been very
useful in geophysical applications,

Spectral analysis is a good tool for the analysis of time or Bpace series,
This approach is commonly known as "the frequency domain method'.  While
using spectral methods one always has to keep in mind that the frequency domain
approach is not the only way to study time series, Time series can also he
studied using the time domain approach by parametric models such as autore-
gressive (AR) or autoregressive moving average (ARMA) models ete, But the
frequency domain approach has great advantages over the time domain approach
as we will explain in this chapter,

The transformatjon of a record to the frequency domain i8 termed its
"gpectrum', The frequency and/or wavenumber, which is the reciprocal of
frequency, I8 in many respeets a more significant and more uscful variable to
use than the time (or space) functions, It I8 to be noted that transforming a
data vector, say x(t), intothe frequency domain does not mean the addition
of anything new but only rearrangcement of the given data according to frequency
(or wavenumber) instead of according to time sequence, The advantage of rep-
resentation in the frequency domain comes from the fact that most geophysical
phenomena are expreesed theoretically in frequency dependent forni, The in-
dependent variable frequency or wavenumber provides a reliable and unique
check on the data in the time domain and on the systems which produce those
data. In the frequency domain, comparisons of different records are referred
to the same value of a certain parameter. Spectral analysis utilizes the whole
signal, 80 no information is left out, For details see Bath (1974).

1.2 Application Fields of Spectral Aralysis

1.2,1 Prediction and Interpolation

As it {8 very well known, time serics analysis is mainly concerned with the
study of the time (or space) variations of physical processes, When the state of
the process is represented by measurements with one or more components at the
time point, then we can represent the variations of the process over time by a
vector of real-valued functions. These functions can be expressed as a sum of
an infinite number of sinusoidal terms, i.e. Fourier series. This is nothing
else but fitting to the data a trigonometric polynomial in the least-squares sense
so that the value of the function can be predicted everywhere along the profile or
surface,

-1-




1.2,2 Analysis of Sample Data

We reduce a complicated function to a series of simple trigonometric
functiont, In other words to its fundamental wave functions which provide a
different and rather revealing information for the sample sequence,

A time function x(t) can be characterized statistically when the mean,
variance, and covariances between the values of x(t) at different times are
given. But in the analysis of a finite length of record the spectrum, which is
the Fourier transform of the autocovariance function £.s shown later, is often
preferable to the autocovariauce function mainly for the following reasons:

a) Estimates of the spectrum at neighboring frequencies are generally
uncorrelated, Thus we can interpret the sample spectrum easier than the
sample autocovariance function,

b) As it was mentioned before, in many physical problems the spectrum
is of direct physical interest to us,

1,2.3 Aid to Computations

We cun use spectral analysis as an aid to computations, because some
calculations can be performed more easily in the spectral domain than in the
time (or space) domain., The frequency-domain representations are often sim-
pler to handle computationally, This feature will be applied in Chapter 4 for
the recovery of gravity anomalies from gcoid heights which can be called the
solution by frequency domain least-squares collocation,

1.2.4 _ Filtering and Control

By speciral methods we can compute the wave components of a time (or
space) series and remove some unwanted components from the estimates., Fil-
tering represents a weighted average in the time domain and a single multipli-
cation in the frequency domain, So filtering is casier to apply in the frequency
domain than in the time domain,

1.2.5 Differentiation and Integration

By means of differentiation the relative distribution of power can be em-
phasized in the high frequency (Mayhan, 1978, p. 5-27), for example:

x(t) = z x“.o“‘wo’

DB -
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x'(ty - -‘%‘{-‘l -S: (Inae) X c‘ we !
Wt

(inwcf‘x, l" ’

xry = X0

™~

where X, are complex Fourler coefficients, «w. - 2+/™ i the fundamental
angular frequency, and |- /=Y. Here we cun =« that X' (t) would have
more high-frequency content than x(t) because of the appenrance of o',

If we are interested in deemphasizing the high-frequency content of a
signal, then we can use integration, for example:

) = [ xyd =¥ (T.?‘ZC;)" o

X (t) = I x‘(t)dt ::'?.-( 1 >3 X. olnw“,
o -

\inwo

-]
provided the average (mean) value is zero. In this case x, (t) would have lcss
high-frequency content than x(t).

In addition to the applications above, the frequency domain methods have
been successively applied for the estimation of transfer functions for simulation
and optimization of the data vector, for generating new physical theories, for
pattern recoguition, for studying periodic solutions to physical problems de-
scribed by differential . . 1ations, for approximating non-periodic functions, as
an operaticnal device for solving differential equations, ete.

1.3 Fourier 8~ries and Fourier Transforms

1.3.1 The Standard Form of Fourier Serics

In order to represcnt a data vector in the frequency domain we ghall study
Fourier series and rourier transforms first, According to the Fourier theorem
(Bath, 1974 , p. 26) a periodic function x(t) having a fundamental period T
and satisfying the Dirichlet's conditions can be represented by an infinite Fourier
series @

x(t) = -92-9+z (&, cos nwet + b, 8in nwyt) (1.1)
vl

where wy = 2n/T is the fundamental argular frequency, a, and b, are Fouricr
coefficients., The derjvation of eqn. (1.1) is given in Appendix 1. The Dirichlet's
conditions can be summarized as follows:

- x(t) is at least sectionally continuous with finite jumps

- x(t) possesses a finite number of maxima and minima

- The integral j x(t) dt should be convergent,

'
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As an example a typical periodic function is shown in Figure 1.1 below,
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Figure 1.1, A Periodic Function,

We can determine the Fourier coefficients of eqn. (1. 1) through the
follow ing steps:
- To find the coefficients a, multiply eqn. (1.1) by cosnw.ti, n=0,1,2,...
from both sides and integrate over the period T with respect to t,
- To find the coefficients b, multiply eqn, (1.1) by sinnurt, n-1,2,...
from hoth sides and integrate over T with respect to t,

In the integration procedure above the following orthogonality relations
have heen used:

2 for m=n#0

fsln mwot sin nwot dt otherwise (1.2, a)
H

ror m;:.n.’;o (102-.))
otherwisc

H
e it ..

T/
0

T/2 for m=n#0
-rrc"” muot COB nwot dt T
0
0

f

J"sln mupt cos nuypt dt forall m and n (1.2.0)

Following the steps above, we have for the Fourier coefficients of eqn. (1.1)

2

a, = -,Fjrx(t)cos nupt dt, n=0,1,2,,.. (1.3,
2

b, = ?Lx(t) sin nw,t dt, n=1,2,... (1.3.h)

As can be seen from the expressions above: a; is the cosine transform of x(t)
and b, is the sine transform of x(t). It is common to call a, 'co-spectrum"
and b, "quad-spectrum'" (Bath, 1974, p. 40).

1.3.2 The Complex Form of the Fourier Serles

We can also express the Fourier scrics in complex form by substituting
the following identitics

-4~




cos nu'.'i‘ . “‘! s “1'_’! + "-', w )/2

sin nwt o (elTwet - emir ity /(2))
in egn, (1.1) to obtain B
x") ‘Bﬂ"”Z:‘(ﬂ "ib)‘.' \*.“("). ‘.' ‘“ -ih )(I"u‘ (1.5’
- ' y -
X(t) ) XN e % 0.6
B s
where, X, =2 ~1h)y n o mperen=1,0,1,..0, (.7

are the complex Fourier coefficients, This is the complex form of tve Fourier
series, If we substitute eqn, (1.3.a-b) in eqn, (1,9, we have

1 r "'lalu.‘(.'
X, TJ?x(t) e dt (1. %

The eqn, (1. 8) is called the "frequency domain representation of xity'', The
resulting complex Fourler coefficients ar: orthogonal (Papoulis, 1965) such that

Jo for nzm 1.9)

Oy 1 =
EiX. X! lo, forn m

.
where B denotes the expectntion over T,and E(X)) = Eix(v)), E(X,) =0 forny 0,
We also define a quantity a, as follows:

1 - VI 1 -t gt
o, = 'ff, E{x(t) x(t+T) o Wo'g -.-rf'('pw VT g (1. 10)

Equation (1. 9) above can be proven as follows:
-in w(’)'

a) E(X) - [ Eixan) o a, (.11

since E[x(t)] is a constant this expression I8 zero for n # 0

1

r
where C(t-u) is the autocovariance of the funcuion x¢) and the superscript (*)
denotes the complex conjugate, 1f x(t) Is periodic in the mean square 8sense,

which will be explained in Section 1.3.6, then C(7) i8 also periodic, i,c,
C(7") =C(T7+T), Then it follows

E{X**x(t)} = a o' & (1.13)

b) E{X*x(t)}=+= 'E{x(t)x‘(u)]e“w"tdu :-—%JYC(t-u)v"wdjdu (1.12)

Now we can prove that

E{X, X*} = ,-rl- _[ E{X* x(u)} e '@ qu
b

= Aa e (s qu = ) O o n <k (1.14)
T Jr o, for n=k
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Using a similar approach we can also show the complex form of the Fourier serics

E(Ix(t)y= ) X, e'"@"|?} = o (1.15)

riWa®

Let us take the square of the homogeneous equation above in order to see the
cancellations of its terms,

Eix(t) x(t)i-F E(Xs x(0]8 796 FE1x xetyle "0+ £ § pox x el

= C(0)-F @ e'no ghitot - Fax U grUol 4 F 0,

A= G

n C(O) ;2,{’* = 0 (1,16)
The last equality follows from eqn, (1,30) in section 1.3.5.

Eqn. (1.8) can also be derived directly from eqn. (1.6) via the orthogonality
relationships for the exponential functicn defined as

Wt etnw (T for n=m
J: ¢!t ot rkal dt =10 otherwise (1.17

Multiplying both sides of eqn. (1,6) by e™'**°' and integrating on (0, T) we have
Jf'Y x(t) e % gt = L I X,e't o g truot gt
Interchange the order of summation and integration

J‘ x(t) e "% dt = 2 x.f o' tWot girlot g - T x (1.18)
T e T
and

xn =-'-1i‘-— x(t) (‘3..“':“’0t dt' n‘-'-'-°°..-..0...-,"’ (1'19)

rl
Jr
Ticre is a unique one-to-one correspondence between x(t) and X, calleda
Fourier transform pair, usually denoted by

So for a given x(t), there is one and only one set of X,, and vice versa, The
set of X, corresponding to x(t) is called the "spectrum' of x(t).

Since X, is complex one needs two graphs to display X,. One is the graph
of the |X.,| versus n, or frequency which is called the amplitude spectrum and
the other is the graph of the angle of X, versus n or frequency which is called
the phase spectrum, The expressions for amplitude |X,| and phase angle ¢,
are:

IX,) = 4 @2 + b3 (1.20)
®, = -tan"' (b,/a,) = Arg X, (1. 21)
-6~
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From these relations we can write

X, = |x.|e'"™ (1.22)
As readers already have noticed, so far (for example from eqn. (1.1) or

(1. 6) ) the spectrum of a periodic function x(t) is a discrete distribution made
up of a finite number of frequencies when observational data are used,

1.3.3 The Cosinewave Form of the Fourier Series
Still another form for eqn. (1.1) can be derived using the identity

a4,co8 Nwot + b, sin nwet = A, cos (Nuet +0.)

In eqn, (1.1) to obtain

)]

x(t) = -‘5-9 + RE‘ A, COB (Duot + ©.) (1.23)

where A, = (a°+ bf)%‘ is the amplitude of the cosine wave and ¢, = -tan™' (b,/a,)
is the phase angle of the wave,

1.3.4 Average Power and RMS Value

There are some cases where we are only interested in the average power
contained in any frequency component which comprises x(t). So here we speak
about the power of x(t). Average power for a certain wavenumber or frequency
is defined as 2|x,, Ia and plotted against wavenumber or frequency. This function
is an even function of n, and contains no phase information,

The total average power is expressed as

P
Pic = -'!I.'Jr x%(t) dt (1.24)

and the RMS value of x(t) is defined to be

[X(t)Jwe = Pag = -Lf x°(t) dt]% (1.25)
(L) lnme va T Jy

By Parseval's theorem (the proof is given in Appendix 1. A) the eqn. (1.24) can
be written 2

2 a -
Pue =(F) + I @°+b5/2 (1. 26)

or identically in terms of amplitudes of cosinewaves or by complex Fourier
coefficlents

o a ] © 2
PA;‘G = ( 2 ) + ﬁ 2 An (10 27)
n.xl
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P = X+ {21|x5l‘ -2_'3(.,!' (1.28)

In some reference textbooks eqn. (1.26) is expressed in terms of average
degree powers

Pk = 5 B (1.29)

where P,°=@’+b?)/2 = A%/2 = 2|X,|°, n=1, 2,..., and P& = (a,/2)°,

1.3.5 Mean Square Periodicity

A function x(t) is periodic in the mean rquare sense if the autocovariance
C (") Is periodic (Papoulis, 1965), p. 367), i.e, if C(T) = C(* +T) for
every * then we can transform C(r) to the frequency domain;

23]

C(r) = L a, e (1. 30)

| W28

where «, are the complex Fourier coefficients of C (7) and defined as

o, = ,—}.— LC(T) ety (1.31)

The power spectrum (also called spectral density) of a function x(t) is the
Fourier transform of its autocovariance function given as

S(w) = }_wC(T)e"wTdr (1.32,0)

and the inverse Fourier transform can be written

C(T) = -2-1-; *s(wy e dr (1.32.b)

- S

If we substitute eqn. (1.30) in (1.32,a) we obtain

My

§(w) =n=z;wa“ J

where z(w,) = fwwe‘“on ¢ @7 dr is the Fourier transform of z(t) = exp(inwoT).

<%
e "WoT Ty ﬁzma,_ z(w,) (1.33)

-0

If we combine the exponential terms of z (w,) then we get

Z(W,) = J‘_: 1 ¢ (w-no)T g, (1. 34.2)

This is the Fourier transform of z(t) =1 with the angular frequency (w - nuwo}.
Now denote )\ =« - nuwy in order to write

Z(A) = J‘_wwl e"')‘TdT (1.34.h)

The equation above is the classical Fourier transform of z(t) =1 with angular




frequency A . To evaluate the integral above we will show that
1 &« 2nd(w)

l.e. 2m 8(w) and 1 are the Fourier transform pairs, where &(w) is the F
Dirac delta function (unit area iinpulse) defined as follows:

8(t)=0 for t# 0, f 6(1) dt =1, and finally, f 6(t) x(t) =~ x(0).

For the proof, let us compute the inverse Fourier transform of 2m * §(w).

x(t" = 1 S';—ﬂ‘[”7~'1f.o e’w‘dw

= ._1_ ® 6 1wt =
2- I.Jzn (@l e™ dw =1 (1.34.c)

Hence, eqn. (1.34.b) can be written as
1 «> z(A) = 2n:8(X) = 2n8(w-nwo)

So we have proved that

@©

2(w,) = J‘mexnwo'r e~ "WT 41 . oon 8(w- 1 we) (1.35.2)

If we substitute this equation in (1.33) we obtain

Sw) = 2n 0, 8(w-nuy) (1.35.b)

n ®e

Eqgn. (1.35.b) shows that the spectral density S (w) of x(t) is a sequence of
equidistant impulses,

1.4 Finite Fourier Representations of Arbitrary Functions and Windows

By a Fourier series we can approximately represent an arbitrary function
x(t) as a harmonic poclynomial of finite x,(t) with finite degrec N, We have
to truncate a Fourier series at some finite degree, because in practice we cannot
carry the series expansion to infinity., But how large need N be chosen to have
a reasonable approximation to x(t) ? In this scction we will attempt to answer
such a quection. We will also examine whether

Nl_i.noln Xn(t) = x(t)
for each t in the interval (0,T).

Finite representations of arbitrary functions lead us to the concept of a
"window", which is described as follows; If x(t) and y(t) are periodic
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functions with period T such that

yt) = J: W(t-7)x(")dr

then W(t) is called the window through which y(t) views x(t). Some im-
portant properties, which a window should possess, can be stated as follows:

1.

2.

3.

A window W(t) should be an even function to give equal weight to the
values of x(°+) about a given point.

W(t) = W(-t)
W (t) should integrate to 1,
IW(t)dt =1

8o that if x(t) =c a constant, then we would have y(t) =c¢, the same
constant,

W (t) should have its maximum value at t =0,
Iw(t)| s w(0) forall t

W (t) should concentrate as much as possible arocund the origin, say t = 0.

In order to clarify the concept of concentration, let us consider the area,

A, defined as 1/2 rm
A= r /W(t)dt. and A, = W(t)dt. AT <« T/2,

such that A, should be as close to A as poss ible. Thus y(t) should
reflect the behavior of x(t) in the neighborhood of t,

1.4.1 Dirichlet and Fejer Kernels

Let us define the discrete Fourier representation of x,(t) as

x(t) = 2 +2 (a, co8 nwot + b, 8in nwot), wo=2n/T (1.36)
Alax]

and substitute eqns. (1.3.a-b) in the above equation and interchange the order of
summation and integration to obtain

X(t)y=—= J' { 2 x(}\)[cos NWoA co8 nwot +8in nwoA 8in nwot]rdM—fx(A)d}; (1.37)

which can be shortened to

X (t) =_2'fr[0.5 +c08 Wo(A-t) + ... +cos Nup (A-t)] x(A) dr (1. 38)
(o)

or as given by many authors

X%(t) -—I Dy[wo(A-t)] x(A) dA (1. 39)
-10-




where Dv(z) = 2(0,64+cos2+co82z+,,, +cos Nz, 2z wt (1. 40)

Egqn. (1.40) is identical to

D.(z) = sin (N+0.5) z/8in (0.5 2) (1. 41

The eqn, (1.41) can be shown by multiplying both sides of it by (sin z/2) and
then substituting eqn, (1.40) for D, (2). This function Is even and periodic
with period 2n, The function D.(z) is called "Dirichlet's kernel' having the
following roots and maximum value

~ {(2N+1) for z =0 .
D\ (2) = ( 21 4 1.42
A for z = +3R+1’ TN+1"" " v
From eqgn. (1.39) it can be secn that Dy (2z) is the window through which
Xn (t) views x(t). Dirichlet's kerncl has some disadvantages such as not
concentration satisfactorily about t = 0, and slow convergence ete,

Parzen (1967, pp. 212-213) suggests, as an alternative to cqn, (1.36), the
Fejer's arittmetic mean X, (t) defined as

Rlt) = mag (B +x(0+ 4 x(t)] (1. 13)

This converges uniformly to x(t), provided x(t) is a continuous periodic
function, X\ (t) can be expanded into a finite Fourier sc¢ries as follows

N

X(t) = ,.Eo (1 '-ﬁnTi) (2, cos nupt + b, sin nw,t) (1.44)
or with integral representation (proof is given in Appendix 1.B)
T
- A=t
% (t) =%J‘OF~(2n =) x(X) dA (1. 45)

where

1 rsin(N+1) iz
Fu(z) = N+1[ sin 22

Fy(z) is called the Fejer kernel.

s
], z-2nur (1. 46)

1.4.2 The Modified Truncated Fourier Series

A modified expression for the truncated Fourier series is defined by

X*(t) = x(t) -8 [ay cos Nwot + by sin Nuut] (1. 47)
or with integral representation

1 -
xe(t) = 7 [ o endgt) xo) a (1. 48)
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where DX(2) = Dy(z)-co. iz = -lnNz/tan(g) (1. 49)

1.4.3. Tukey Means

Tukey suggested the following mean to form a harmonic approximation to
X(t) (Parzen, 1967, p. 215)

X (t) = 0,28 x*(t-T/2N) + 0.5 x*(t) +0.25 %.*(t + T/2N) (1.50)
We can find the window corresponding to Tukey means by

x/(t) = ) 0.2 DRTA-1-F1+0.5 Do3E A= 1)

+0.25 m*r?,f'l(x-tngl} X(A) dA (1, 51)
= ['1 1 (22 -t)] x(\) dA 52
[F &R o-n1xo (1.52)

where Tw(z) = 0.25 D\*(z - ﬁ) +0.5 Dy*(2z) +0.25 Dy*(z +-‘§‘), z=2nt/T (1.53)

and it is called the ""Tukey kernel",

For comparison purposes, we show in Figures 1,2, 1.3 the Dirichlet,
Fejer and Tukey kernels, It can be seen that the Tukey kernel provides a
better harmonic approximation, since it is more concentrated around the
origin than either the Dirichlet or the Fejer kernel,

1.5 Fourier Expansion Using Discrete Data

Lecause of the following reasons we may have to use the values of the
function x(t) at the N equispaced points;

- The determination of the Fourier coefficients of the periodic continuous
function x(t), with period T, might be difficult because of the d.fficulty in
evaluating the integrals defining the coefficients,

- x(t) might not be known at all points t in the interval 0= t< T hut
may be known only at equally spaced points.

Suppose the values of the function x(t) are known at N equispaced points
tO. tl’ ta.n LI ] tN_l deflned by

t!\ = ﬂAt, n=0’1’noo’(N-1) (1.54)
where At = T/N.
Eqns. (1.3.a-b), which are the Fourler coefficients of eqn. (1.1), are

-12-
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represented in discrete form, as will be proved later, as follows

N=]
a, " é‘ o x() * At) cos (2njn/N), n=0,1,...,Nu (1,66, 1)
b, = %:’;‘0 x() *At) sin(27jn/N), n=1,2,...,Ny (1.56. b
where
L [(N-1)/2 if N odd .
Ny { N/2 f N even (1.5

In eqns. (1.585.a-b) we let n go up to N,, because in order to know the
values of the discrete Fourier coefficients (a,,b,) to n ==, itsuffices to know
them up to Ny. We can justify this conclusion by using the following identies:

cos (kN +n)wot; = cos (nwot,)
cos (kKN - n) wot, cos (nwoty)
sin (kN + n) uyp t, sin (n wot;)
-sin (KN - n) wo t, Bin (nwot;)

i

(1.87)

]

n

where wo=2n/T = 2n/NeAt and t; = j+At and substituting them in eqns (1, 55.a-b)
above we can see the periodicity of the Fourier coefficients at basic interval (-Ny, Ny,
in other worde

an

. amn} -N« < n< Ny and k = any integer.
n

ka+n

0 u

Moreover, we notice that a, =a_, and b, =-b_,, where 0 < ns N,

As can be seen from eqn (1.1) that a,, b, n=0, 1, 2, 3,..., N, are the
only distinct Fourier coefficients for N equispaced data points, since from N
equispaced observations we can only determine N other quantities namely a,,
b,y,n=0,1,..., Nyo

If we define frequency as the number of cycles in the data interval T (=1)
then N, Is known as '"Nyquist frequency or folding frequency'. And from dis-
crete observations we can only determine the Fourier coefficients up to the Nyquist
frequency. So the eqn. (1.1) takes the following form for the discrete expansion:

N
x(k+at) = -529-&2‘,‘1 (a, cos 2nkn/N + b, sin 27kn/N), for N odd (1.58)
ns
Ny=1
x(k*At) =-§9-+‘§1(a,,c092n kn/N+b, sln2nkn/N)+52-'i"cos”k. for N even (1,59)
where N, is defined as in eqn. (1.56).

Now consider the following trigonometric identities
N for m=r=0 or N/2
{ 0 for m# r
N/2 for m=r# 0 or N/2
0 forall m and r
{N/Z for m=r# 0 or N/2 (1. 60)
0 otherwise

N=1
. Zocos 2"km/N cos2nkr/N =
N=1

kgo gin 2"km/N cos 27kr/N

Nee 1
kgo sin 2"km/N sin2nkr/N

L

-14-




and suppose the values of the function x(t) at N discrote points are given,
then from eqns, (1,58) and (1. 50) we can determine the Fourier coefficicnts
a,, and b,, which are defined by cqns, (1.85.a-b), l.e,
LB
8, =& I x(kedt)cos 27kn/N, n=0,1,...,N.
k=o (1.61)

Nea

b, =& § x(keAt) sin2nkn/N, n=1,2,...,N.
ﬁu-o

It is also possible to write the complex and cosinewave forms of the discrete
finite Fourier series (corresponding to eqns. (1,6), (1.16), and (1.23)). Suppose
the continuous function x(t) with square integrable derivative is defined on the
interval (0, T) and evaluated at N points

kAt = k*T/N, k=0,1,...,(N-1)
then the complex form of the Fourier coefficients are given by

1 &! an
n"‘)" i (8,-1b,) = 'ﬁ'kznx(knan e" ko/N

(1.62)
and the inverse tranaf«z:'m x(k*4t) can be expresses as follows
X(M oM for N even
xkeat) sl astt’ (1. 63)
nﬁ,ﬂ”xn‘"’ ™M for N odd

where N, Is defined in eqn. (1.56).

The expression for the cosinewave form of the function x(k *At) defined
at N equispaced points (corresponding to eqn, (1.23) of continuous function
X(t))Is

N
X(keat) = %Q‘;g; A, cos(2mkn/N-@,), k=0,1,...,(n-1) (1.64)
where A, = (8, +b)®, ¢, = -tan" (b /a,).

The computation of the complex Fourier coefficients defined by eqn. (1.62)
or the computation of a data vector from the complex Fourier cocfficients defined
by eqn, (1.63) requires roughly N° complex multiplications and additions, Since
the time of computation of the transforms above increases by the square of N
data points, computationally it becomes inefficient or even impossible for very
large N. For this reason spectral analysis requiring the discrete Fourier
transform (DFT) has not been so common in the past.

In 1924 Runge and Konig discovered a method for efficiently computing DFT,
This method is known as the fast }ourier transform (FFT) algorithm, However,
Runge and Konig's FFT algorithm has gone unnoticed and FFT was '"rediscovered
by Cooley and Tukey in 1965 (Cooley, 1965), FFT takes advantage of the fact that
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DFT can be carried out iteratively, which results in a considerable savings of
computation time and in an improvement of round-off errors associated with
these computations, FFT requires roughly N loga N complex multiplications
and additions of the classical discrete Fourier transform method. A detailed
explanation of FFT is given in Appendix 1. D,

The discrete Fourier transform pair for the fast Fourier transform (FFT)
is given as follows;

Xw" %'21 x (k°At) e'“m"/" direct Fourier transform (1, 65)
X (keAt) -:goxﬁ") 2"tk o/ inverse Fourier transform (1, 66)
This transform pair is uaually denoted
xMa— x(k-at)
We see that eqn, (1.62) can be directly transformed into the frequency domain

using FFT, but not eqn. (1.63), where the sum I8 not from zero to (N-1), in the
present form. By rearranging eqn. (1.63) we have,

N N e
x (keAt) = 2 VRISULAN IR L PO (1.67)
nB0 n = Ny,
where ) x(/2 for n=0
Y, = | X(¥/2 for n=N, and N =even
XM otherwise

Eqn. (1.67) is equivalent to
N 18MTka/N ‘
x(kedt) = gOYS“)e + ?o(Yn(“))* eBTHeA (1. 68)
n n

where the superscript (*) shows the complex conjugate of the function inside the
parentheses.

Now let the sum go to (N-1) such that

- N=1
x (keAt) = ZOZS‘N) RELTTV +ngo(z£~)v RELATVL (1.69)

where v{) for 0sns N
2= { 3 otherwise (1.70)

Finally we can write,

X(kedt) = %, (keAt) + x~ (k*At) (1.71)
N=1
where X (k*at) = ,,ZOZSN) RERIIL
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which can be calculated by FFT, and x,” (k*At) Is just the complex conjugate of
x;(k 'At).,

Further, we can show the relationship between the complex Fourier rep-
vosentations of discrete data and continuous function, i.ec. the integral form.
The sampled function x(k *aAt) is expressed from eqn, (1,63) as (suppos> N
is even) i

x(keat) = T xPe™ v A (1,72)
If we compute the Fourier coefficients of the continuous function x(t) using the
integral form eqn, (1.16), we get

) -l{wc\! .
T X(t) e 1,73
% = L [ x (1.73)

Suppose we evaluate x(t) at the points (k-+At), k=0, 1,..., (N-1) using X
computed by eqn, (1.73). We then obtain

- ke A
x(keAt) = némx,, ¢

= Z X, RELEEYS (1.74)

)

By the periodicity of the complex exponential we can write

§ elgﬂhr./"

r me=Nyel

Equating the coefficients of exp (2nikn/N) of eqn. (1.72) and (1, 75), we get

X(k'At) = lxh +(xn.h + xn“,) + (x;,-gh + xm,;}\) + LY l (1. 75)

x‘:) = X, + .t‘ (Xp-an + Xogan) (1. 176)
From now on A,f") will be denoted simply as X,

It Is very important to note that the coefficlent for the nth frequency of the
function defined at N points is the sum of the coefficients of the continuous
function at the (n, n+N, n-N, n+2N, n-2N,...) frequencies. The frequencies
(ntN, n+2N,,..) are called the "ALIASES" of the nth frequency (Fuller, 1976,
p. 119). We already know that the frequency (N/2) is called the Nyquist
frequency (see p. 114). The aliases of an observed frequency are those frequencics
v wch are obtained by adding or subtracting integer multiples of twice the Nyquist
frequency.

1.6 Breakdown of Variance from Sampled Data (at N Points) and Periodogram

1.6.1 Breakdown of Variance

The total average power (or the variance) of the function x(k-+At) is defined
as follows
-17-




- N-t
Pud' = -— Z Jx(keaty)® (1.77)

or in terms of Fourier coefficients, i.e, in the frequency domain (from the
Parsoval's theorem)

e
Pus’ = (8/27 + # § (8, +b,") + B’ (1.78)

(8n,, +b~ 5)/2 i N odd
By, /4 if N even

It we substitute (&) + b}) = A,®, where A, is the amplitude of the cosinewave
as defined by cqn. (1.64), we get
u“-l
Pua" “Ao” + 2 3 A+ D] (1.79)
n

-l

L ] st 2 2 ]
=X +2 T Ix,|°+ B,° where B

The degree power of this function is given by

(8,2 +b, )/z =A/2=2]X,|? for n=1,2,,..,(N.-1)

3 aoM for n=0
P, = @, +b2)/2 for n=N,and N odd (180
o, /4 for n =N, and N even

so {inally it is possible to write

N
Puc® = i P, (1,81

v, 30

1,6.2 Periodogram

The periodogram is a function of frequency (n) and used very frequently
in practice, As we will show later it is the discrete Fourler transform (DFT) of
the autocovariance function of the data vector in question. Moreover, it is directly
related to the degree power defined in the previous section,

The Fourier coefficients of eqns. (1.58-59) can be considered as regression
coefficlients (Fuller, 197G, p. 276). Then by the standard regression analysis we
can partition the total variance (N ‘Pl ) of the N observations as follows:

N (a%+l),,)/2 for n=1,2,...,(Ny-1)

_ . ﬂo /4 for n=0
W(n) = N a2 /4 for n =N, and N even
N-(a.‘-’"“+ b’)/2  for n=Nyand N odd

(1.82)

where the Fourier coefficients are given by cqns, (1,55.a-b). Notice that eqn.
(1.82) Is equivalent to L(n) = N+ P2,

L (n) I8 usually known as the 'peridogram'', If we assume that x(t) isa
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scquence of normal, independent (0,0°) random variables, then the Fourier
cocfficionts (a,,b,), being lincar combinations of x(t), will be normally
distributed, These coeffirionts are independent, because the sine and cosine
functions are orthogonal in the basic interval, As a result we can write

L(n)/o «x for n = 1,2,...,(N.=1)
L.(N..)/o ~X: for N even

k(O)/o —oRg”

WN)/0? ~%®  for N odd

(1. 83)

Let us substitute eqns. (1, 86.a-b) In eqn. (1.82) In order to get an alternate
expression for the periodogruam

Nt

h(O) = E lx(k*At)l (1. 84)
""l -1 P

L(n) = “ x(k'At) cos znkn/N] { Lg«(k-fat) 8in 2vkn/N] }(1-?"5)

e 2 X M
If N even, then k(N..) is given by n=12,.00,N

l %;-1 '
L(Ny) = 'ﬁ [ZX(k‘At)C()B ] (1. 86)
k=0
If we consider the following trigonometric identities
N
2 x(keAt) cos 2rnkn/N = kz‘ [x(hsAty~-u ) cos 27kn/N (1.87)
N
Tx(k At) sin 2nkn/N = X [X(ke4t) = u] 8in 2rkn/N (1. 88)
ke A

then eqn. (1. 85) can be written as

L(n) - {[L(x(k *4Lt)- @ ) cos zwkn/N] [; (x(k*At)- u) 8in 2 kn N }

= —{t f'lx(k A -plix(jeAty - @] cos 2nn (k-j)/ N" (1.89)
Now let k - j = p, to yleld
(n) —-'NNZI I;IX(J'M)-ul(x(J'AHp'At) M] cos 2~ np/N (1.90)
where 1< j+pp;-(1:.1such that
N=}

N+
& for p> 0 and J:I for p<0

substitute these in eqn, (1.90) in order to got

Nesl

(n) = 2{ cos 2nnp/N{"' l\c(j°At) plixgeot+|p|* H)-u]\
-N-
L(n) = ; ';;(p) cos 2nnp/N, n=1,2,...,N. (1.91)
R il U
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L(0) = N %*°

where %, = [x(At) + x(24t) +...+x(N4t)]/N is the mean value of the
function,

It can be proven (Fuller, 1976, p. 279) that

le E[k(w)l =4n f(w), w#O (1.92)
where f(w) - f JY(§) cos ju
and Lim E {L(O) -2N u®) = &nt(0)

N = ®

Having found the Fourier coefficients, tctul average power, and degree
power, now we can compute the uncertainties of these quantities, If the discrete
observations x(k *At) are independent and normally distributed N(u,0°) with
Fourier coefficients (a,,b,) defined as in eqn. (1.61), l.e,

g N=1
a, = Z x(k*dt) cos 2nkn/N
(1.93)
b, =N E x(keAt) 8in 2nkn/N
then, as derived in Appendix 1.C
40° &
var @, = Ef{a, - E¢a)}® = =y~ L cos® 2nkn/N (1.94)

using the eqn, (1, 60) we find

20°/N for n#0
var (a,) = | 40°/N  for n=0 (1.95)
40%/N for n=N,and N even

similarly,

[20"‘/N forn#0
var (b,) = E{b, - E(b,) }? 0 forn=0, or

n =N, and N even

(1.96)

Finally, we can compute the variance of the average degree power, P,, which is
a function of the Fourier coefficients as given in eqn. (1, 80).

var (P,) = 0°/N (1.97)
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1,7 Non-Periodic Functions and the Fourier Transform
1.7.1 Mathematical Definition

In previous sections we dealt with periodic functions exclusively, Now we
wish to find out if it is possible to express non-periodic functions as a sum of
fundamental sinusoidal functions., The answer is positire, but the "sum" is
uncountably infinite (& continuous sum or integral) and each sinusoid has essen-
tially zero amplitude. However the sum of all these infinitesimal sinusoids will
produce a non-zero, non-periodic signal,

To present the decomposition of a non-periodic x(t), (Mayhan, 1978, pp.
5-30) we may start with a periodic function x:(t) and allow the period to extend
to infinity so that a non-periodic x(t) results, If we consider the periodic
function shown in Figure 1.4

Xr(t)

AAVALVALY

Figure 1,4, A Periodic Function x(t), -=<~ t = and
a Non-Periodic Function x(t), a: t~ b,

from eqn, (1.6) we have

[
xi(t) = L X,e % ¥ (1.98)

NS B

with complex Fourier coefficients,

T/
x, = 7 xi(ty e trwot gy (1.99)
" T der/2

As T Increases the number of important frequencies in the expansion of
Xr (t) will also increase, but each having smaller and smaller amplitude, If we
define frequency as the number of cycles in a specified interval T (period) then
we have for the fundamental frequencies f, and w,

f,=1/T, wo = 21/T (1.100)

then, we have for frequencies

f
f

nfo~1’2’ 3' 4'000 fOI‘ T=1
nfo~%' 1'%’ 2'000 fOI‘ T=2

n=1,2,...
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Thus, as T + > we have x (t) -+ x(t) and

lim 2nn

= - T 7
Im Z2B =@, -ecncs (1.101)

so a general non-periodic x(t) will result.

The harmonic content of x(t) will consist of all angular frequencies w, and
a continuous sum, i,e.in integral, will replace the discrete sum, Since w, is
the fundamental angular frequency, in other words the frequency spacing, the
spucing approaches a small infinitesimal amount denoted by dw as T -~ =,

2n
dw = Yl_l}t:a--,r— (1.102)

This being the case, the amplitude at any frequency will tend to zero., But the
expansion of xr(t) will not be zero, since we deal here with an uncountably
infinite sum of quantities. Now using the relations above we can write the
complex Fourier coefficients corresponding to eqn. (1.16) as

dw (e -] -
X, = 52 | x(t) e at (1,103)

-t

It i8 common to define

x
X(w) = f_wx(t) e W gt (1.104)
to obtain for eqn. (1.103)

X, = -‘2’—“—’ X(w) (1. 105)

”

or in case of discrete data with N observations (ur sampled values)

.
Xo = Noar X(w) (1. 106)

where At is the data (or sampling) interval; andas T -« , sodoes N, If
we substitute eqn. (1.105) in the Fourier (complex) expansion of x:(t), then we
end up with a continuous sum for the expansion of x(t) defined as follows
1 [~}
X(t) = 5= f X(w) e " duw (1.107)

Eqns. (1,104)and (1. 107) are the Fourier transform pair (also known as Fourier
integrals) for the non-periodic function x(t) and usually denotzd as

X(t) == X(w)
There is a one-to-one correspondence between x(t) and X(w). It is also

common practice to use the standard frequency instead of angular frequency. So
if we substiicte 2nf for w we have from eqns. (1.104) and (1.107),
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0

X(t) = [ x(ty e='2" tdt (1.108)
L3TIP

x(t) = ftx(f) ¢ df (1. 109)

In the case of periodic functions we had related the complex Fourier coefficients
X, to the amplitudes of the sinusoidal function. For a non-periodic function x(t),
it is possible to interpret X(w) as the amplitude density. That is to say, the
amplitude of the sinusold is zero at any one frequency «, however whea it is
considered over any finite frequency Interval dw (or Aw), the amplitude is not
zero but equal to dw
X, = o X(w)
Thus, the harmonic content of x(t) can be considered as distributed over all
frequencies with a density X(w).

For non-periodic functions, the Fourler coefficients corresponding to (1.08)
and (1, 09) are given below

a(f) I:x(t)cos (2nft) dt (1.110)

b(f) J._:x(t) sin (2nft) dt (1.111)

The equations above can be derived from eqns. (1, 3.a-b) of a periodic function
as follows:

i

a(f) = Hm -:}-‘- a, = JM Xx(t) cos 2nnt/T dt
- 2 -
substitute f =n/T, to obtain

a(f) = J"” X(t) cos (2nft) dt (1,112)

similarly b(f) can be derived. It can also be seen from eqns. (1.108) and
(1.110) that

X(fy = a(f) -ib(f) (1.113)

If the function is known only at discrete points, then the relation between
the complex Fourier coefficients of a periodic function and non-periodic function
can be derived through eqns. (1.55.a-b), namely

Ne)

ﬁ(n) = lim % a, = Nlim kZox(k-At) cos 2rkn/N (1.114,a)
N = — ==

b(n) = lim -15“- b, = lim R’Z:)x(kmt) sin 2nkn/N (1.114.b)

We know that a, is an amplitude, 1/T is the frequency increment, then,
(T ea,) is the amplitude per frequency increment of amplitude density, and
finally, a(f) is half the amplitude density at frequency ''f'" (Rayner, 1971, p.
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56). Rayner says "The relationship boetween amplitude density and amplitude is
analogous to that between probability density and probability, "

In section 1.3.2 we expanded a periodic function x(t) with period T Into

the complex Fourier series and proved that the complex Fourier coefficients X,
are orthogonal, i.e, f 4
E(X,X,) = 0 for n#¥m

a, for n=m
where X, and &, are defined by eqns. (1.8) and (1.10) re:spectively,

If the function is not periodic, to be denoted by X(t) , then neither is its
autocovariance, say C( ). Hence for v # 0 we always have (5(T) < C(O)
If for some T = 1,, we have ¢ (T,) =C(0), then oY T) I8 certainly periodic,
Suppose a non-periodic L( ) I8 given, For a fixed t shown in Figure 1.5 we
can expand it into the Fourier series in the interval (-P/2, P/2), where P (s
the given interval length (Papoulis, 1965),

A A
c(m C(r -t)
0 T 0t —

Figure 1,5, A Non-Perijodic Function,

The coefficients of the expansion would depend on t in the following way,
C(T-t) =n)§mﬁn(t> el r ot ||« /2 (1.115)

1
By = ) Cli-by e

The non-periodic function ﬁ(t) can be expanded into a Fourier series in the
interval (-P/2,P/2) as follows

A = Wo = 2 /T
Xty =, L X, et {18<oe .11

x(t) in the defined interval, That is to say

= toloty g (1.116)

We can show that &(t)
E{|x(t) - x(t)]?} = 0 for |t|< P/2 (1. 118, a)
where E denotes the expectation. Eqn, (1.118,a) is equivalent to
Ef [x(t)]?]- E{x(t) X*(t)} - E[x*(t) X(t)}+ E{|%(t)[®} (1.118.b)
and we know that
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Etlx(t)I") = E[ |x(t)|°) = & (0) for |t| < P/2
We can also show that

E[x(t) x*(t)] = E[x*(t) x(t)] = &(0) for |t| < P/2
For the proof: first multiply boil sides of eqn. (1.117) by x*(t), then take the
expectation
E(X(t) x*(t)} = ,,.):,,E“‘" x*(t)} e'"wo! (1.119)
and use eqn. (1,12) to obtain
E {X, x%(t)} -':';J:E[xm x*(t)}e ! P WoT gr om %Lcu-n et WoTdr = B (t) (1.120)
finally substitute eqn. (1,120) in (1.119) to conclude the proof,

E{x(t) x*(t)] = f: R.(t) e'"wotdt = C(0) (1.121)

M- ®

Similarly we can show that
E {x*(t) x(t)} = C(0) (1.122)

so we see that each term of eqn. (1.118.b) is equal to é (0). Thus the proof is
completed.

As to the non orthogonality of the complex Fourier coefficients of non-
periodic functions; we will show that they are approximately orthogonal in a
finite domain.

First, let us compute the expectation of the products of complex Fourier
coefficients, [X, X,*]. We can define this product as follows:

X, Xu*= -l-f X, x*(t) e'"Wotqy (1.123)
P J,
now use eqn. (1.120) to obtain
E{X, X,} = -I-J‘ B,(t) e'*wo' gt (1.124)
PJp
We see that eqn. (1.124) Is not zero for n# m, i.e. The complex Fourier coeffi-
cients are no longer orthogonal. If é (7) were periodic with period T, then we
could easily show that
Ba(t) = a,exp (-inwot)
and we could write

X = {0
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Since tm is not periodic the coefficients X, are not orthogonal. However,
in eqn. (1.120) if we replace the integration limits by +~ , then we commit
an error 8(t,P) which is small for large P, so we can write

Pogy(t) = [ E(r-t) " %0TdT + B(t,P) = o7 Wo' s(nwo) + 8(t, P)

Substitute eqn. (1.125) in (1.124) to obtain

PE (X, XJ} = gﬂl;,gﬁf’ e'(* "ot g¢ + %J, 8(t, P} e "&o' gt

From the equation above we can write

,“m p‘E{Xn x:} = {'(“wo) for n=m

0

(1. 1256)

(1.126)

1,127
otherwise ( )

We see that E[ |X,|°] tends to zero as (1/P) for P - ~, whereas the

autocovariance E[X,

] tends to zero faster, i.e. the correlation coefficients

of X, and X, tend to zero also. So we can say that the coefficients X,'s of
eqn. (1.117), for large P, are approximately uncorrelated.

1.7.2 Properties of the Fourier Transform

The Fourler transform has some very important properties such as line-
arity, scaling, time shifting, modulation, symmetry, differentiation, convolution,
etc,, which are well explained In every text book in this topic (e.g. see Bath,
1974, 11. 42-48). As a result of these properties, some important relations are

given in Table 1.1,

Table 1.1. Summary of Fourier Transforms.

Function

x(t)
X(t)

2% (t) +a3xa(t)
x(at)
x(t-to)

exp (1 wot) x(t)

X(t)+cos wot

xl(t)'xa(t)

Xy (£)*x3(t)
p" x(t) [n* derivative x(t))
x(-t)
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Fourier Transform

X(w)
2nx(-w)
a) Xy (w) +azXz(w)
(1/la]) X(w/a)
exp (-lwty) X(w)
X(w-wo)
(X (W-wo) + X (w+uwo))/2
X, (W)* X;(w)/2m  [convolution]
Xy (w)* X (w)
(lw)" X(w)
X(-w)




In the following sections the convolution property will be applied. The
convolution of arbitrary functions x(t) and y(t) is defined us follows:

x() *y(t) = [ x(r)y(teryar
= I:x(tﬂ)y(-r)d-r

We can apply the convolution both in the time domain and in the frequency domain,

1,7.2,1 Convolution in the Time Domain
If X(t) <= X(w)
y(t) <  Y(u)
then X(t) *y(t) «——» X(w) Y(w)

The above transform pair can be proven by the following procedure:
X

2(t) = x(tyry(t) = [_x(r)ytenydr

X0

The Fourier transform of z(t) Is

Fix(yryo)l = [ emwr” x(ryy(tr) doat

mx Ty dT ® t-r) e '@ dt
[ xenyar [y

7 (w)

Nowlet A =t-7, dAx =dt and with T held constant
J'-wx(T)dT J‘—Coy(k) e.lwA e-‘wT dA

J‘..m X(T) e“wTdT I-my(h) e-!w,\ dA

il

Z(w)

Finally we can write
Z(w) = FIx(t)*y(t)] = X(w) Y(w)

1.7.2,2 Convolution in the Frequency Domain

if X(t) - X(w)
y(t) <> Y(w)

then X(t)y(t) = 1/27 X(w)*Y(w)
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We can prove this transform pair by defining z(t) = x(t) y(t) and taking the
Fourier transform of z(t)

Z(w) = FIx(hy() = [ x(tyy(t) e dt

For x(t) substitute the following inverse Fourier transform

x(t) = 5= ] x(n) eMax

to obtain ® » ‘
Z(w) = -z-!; J‘_QX(J\)dA f_my(t) e~HwW=A)y gy

Since the second integral is the Fourier transform of y(t), (w-A) being
the angular frequency, we have

1 (4
Z(w) = Flx(t)y(t) = -g;f_u,X(MY(w-A) dA

or equivalently 1
Z(w) = 3 X(w)* Y(w)

1,7.3 The Finite Record Length and Windows

1.7.3.1 Time Domain Windows

In practice we cannot record the results of an experiment of infinite length,
8o the use of limited record lengths are inevitable in spectral analysis of obser-
vationa] series. This forces us to truncate the record at some length, say T,

such that x(t) for |t] < T/2

y(t) = 0 otherwise (1.128)

where x(t) is a non-periodic function defined for (-*, ) but recorded only
in the interval (-T/2, T/2), this record being denoted by y(t). Actually this
truncation is nothing clse but applying the rectangular (box-car) window, Then
we can write 1 for |t| < T/2

y(t) = x(t)ur(t), where ur(t) ={0 othe rwise (1.129)

thus, the Fourier transform of y(t) is
Y (X)

or ejuivalently
Y (X)

If we substitute eqn. (1.107) for x(t) above and evaluate the integral, in
other words, use the convolution technique, then we have

Y(A) = -2—1n—X(A)*U(A) =-§;'f_wX(w)Ur(w—A)dw (1.131)
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f.myu) emiamrt gt = _f_ r/zy(t) e-tamr dt (1.130.a)

.tox‘t) ur(t) e A de (1.130.b)




where, Ur(w=-)) Is the Fourier transform of u,(t) defined by

U(w) = (sinwT/2)/(w/2) (1.132)

Therefore, ®
in [(w=A)(T/2
Y(A) -ﬁf_,x(w)%g%)-}é-u (1.133)

In the limitas T - =, the right-hand side of eqn. (1.132) reduces to X(w).
Our main goal is to determine the true spectrum X(w), but because of limited
data we can only estimate Y(w). So we mustdesign a window, say w(t), In
such a way that Y (w) wlill be very close to X(w). Even with the application
of the most optimum windows we will get a distorted spectrum, The main task,
then, is to keep the spectral distortion close to & minimum,

Windows can be applied either in the time domain or in the frequency
domain. In the timc domain:

y(t) = y(t)yew(t) = x(t)fur(t)ew(t)] = x(t)ew(t)

In the frequency domain:

Y(w) = -,};X(w)* W(w) = -é-l-;\'(w)*W(w)

That is to say, either we compute Y (w) and convolve it with W(w), or Instead
we multiply the data vector by a window vector in the time domain and compute
the Fourier transform.

We can state some of the properties, which a spectral window corresponding
to the applied time window must possess:

- small or insignificant side-lobes, i{.e., smooth time window without
sharp corners

- high concentration at the majn (central) lobe

- symmetry with respect to the y-axis, in other words, the window
function must be even.

Designing an optimum window for a specific purpose has been a major
challenge to scientists in this subject.

Bath (1974, p. 157) classifies windows as follows:
(1) Trigonometric windows, which use trigonometric functions of time
(2) Power windows

(3) Exponcntial windows

Some of the most commonly used windows will be explained below,
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(1) Rectangular (Box-car or Barlett) Window

<
v+ 3 o e 7
with spectral representation
W(w) = (8in wT/2)/(w/2) = T sinc (wT/2n) (1.134,b)

where sinc (x) = sin nx/(nx) is how the sinc function Is defined, A rectangular
window for a Discrete Fourier Transform (Dl-"l‘) is defined as (Harris, 1978, p.
58)

l fOl‘ n “0.1.....(N'1)

0 otherwise (1. 135,a)

w(n) =
then the spectral window for the DFT window is given by

8in (0 (N/2)) _,ga=
w(e) = —;T,f—(-,,/%;no A, 8=0,1,...,(N-1) (1.135.b)

Since the sinc-function has large side-lobes, this window is not very suitable
for a true representation of a spectrum. In addition to this, the magnitude of these
side-lobes decreases slcwly and half of them are negative causing displeasing
results, because the power is positive by definition.

Notice that a large T will lead to more detajls, i.e, to better resolution
in the computed spectrum than a small T. Buta small T will lead to better
stability and reliability of the computed spectral estimates, since for small T's
the spectral smoothing extends over a larger frequency interval,

In order to eliminate the effect of the rectangular window and the effect
of noise, Bath (1974, p. 180) suggests to use smoothing in the frequency domain,

e.g.
X! = [0:54 0.46
0. 50} Xo +{0.50} X
0,23 0. 54} 0.23
Xe {o 25 X1 +{0.50 Xe # {0.25} Xier
0.46 0.54
= +
Xy {O.SO}X(“A"’ {o.so} Xy
where X, are complex raw Fourier coefficients, whereas x,f are smoothed

complex Fourier coefficients, The above expressions are equivalent to applying
the Hanning and Hamming lag windows in time domain respectively,
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(2) Triangular (Fejer) Window, 4r(t)
{1-2|cl/'r for jt| T/2

0 otherwise (1.136,.a)

Ar(t) =

with the spectral representation
sin® (w -z-) 2 wT

A( w) = — W = Tﬂ‘nc 'T‘-;" (lo ‘36.'))

The triangular window for a DFT is defined as (Harris, 1978, p. 59)

\(n) = {n/(N/2) for n=0,1,...,(N’2
‘ A(N=n) for n - (N'2),...,(N-1)

with the corresponding spectral window

28 - B S a0 N L1

This spectral window has no negative side-lobes, but it has large main lobes,
which do not have high concentrotion.

(1,137.1m)

(3) _Hanning (Tukey or Cosine) Window
1+co82nt/T) /2 for {t|- T/2
h(t) - {( It

0 otherwigse
v.tlh . - ctral representation

sin w(T/2) 1‘[sln(w(T/2)+n) 8in (w( T/2)-")J
Huw) = 27 w2y + 4l wT/2)+m * @(T/2) -

(1.138,a)

4

2 < 8inc 2'1‘ ': sinc(w(T/2m)+1) +8inc(w(T/2n)=- ”l (1.138,b)

or as a function of W (w) of rectangular window
2 2
Hyw) = + Ww- 55+ W)+ + Ww+5) (1.138.¢)

The Hanning window for a DFT is defined as (Harris, 1978, p. 60)

_ [%(1-co82rmn/N) forn=0,1,...,(N-1)
hy(n) = { 0 otherwise (1.139.2)
with the corresponding spectral window
Hl(e)~ﬁW(G)+—[W(9--)+W(6+ 2] (1.139.b)

where W () is defined in eqn. (1.135,b). Thus, we sce that H,(w) I8 a sum
of three sinc-functions displaced relative to each other and the side-lobes from
the three sinc-functions cancel each other to a large extent, which is pleasing,
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(4) Hamming Window
. 7(0.84+0.46c0o82nt/T) for [t|< T/2 1. 140,
ha( t) 1 0 otherwise . *)

with the spectral representation
- sinw(T/2 sin(w(T/2)+7) . sin(w(T/2)-n)
Halw) o.am—%—)w” ) +o.za'r[—-l-17-4-1——lw(,r ) o AL - ]

] wT Y, wT _
0.54 Toine 2L 40.23T[aine( e 1) +aime (& 1)] (1,140,

or in terms of W(w) of the rectangular window
Ho(w) 70,54 W(w)+0.23[ W(w +(2"/T)) + W(w=(21/T)) ) (1. 140,¢)

The Hamming window for a DFT (s defined as (Harris, 1978, p, 62)

0.54-0.46cos2n/N for n=0,1,,..,(N-1)
ha(n) = { 0 otherwise (1.141.9)
with the corresponding spectral window
H;(8) = 0.54 W(68)+0.23[{W(A-(2r/N)) +W (8+(2n/N))}, (1. 141, b)

an 0, l. ) "N'l)
where W (0) is defined in eqn. (1.135.b), Notice that the Hanning and Hamming
spectral windows correspond to a weighted average over three consecutive values
of the spectral function of the box-car window, The Hamming window also has
small side-lobes,

(6) Cosine-Tapered Rectangular Window

This window is flat over most of the data, but tapers off near the two ends
of the data. For example, it may consist of cosine window at the ends (say 10%
at each end) and a rectangular window in between defined as follows:

2/T for -0,4TSt “ 0.4T (1.142.)

(1+cos810nt/T)/T for -(T/2)<t- -0.4T
c(t) =
(1+cos10nt/T)/T for 0,4T -t »T/2

with the spectral representation

. _ 3 8in w(T/2) +siu 4w(T/10)
C@) =} TE73 11 - (@(T/10m)°) (1.142.b)

The above window for a DFT is defined as (Rayner, 1971, p. 83)

fA{1-cos (10nny/N] , 0 <n- N/10
, N/10 - n~ 9N/10 (1. 143)

c(n) =\1
\%ll-cos(lowm-n))/m. 9N/10-" n* (N-1)
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An extensive study of various windows designed for diffe rent purposes is
given in Horrls (1978),

1.7.3,2 Frequency Domain Windows

It is also possible to apply windows in the frequency domain and compute
the effects in the time domain. As an example, suppose that X(w) of a function
x(t) Is truncated outside (-P,P) ylelding X (w) defined as

r1 for Jw|l - p
L0 otherwise

X (w) = X(w) Wi(w), where Wyw) = (1. 144)
Since eqn. (1.144) corresponds to a convolution of x(t) and w(t) in the time
domain, we have

b -]

X(t) = X(1) * wo(t) = [ _x(r )'":,‘(Tt/f’,‘:‘ﬂd (1,145

Instead of the rectangular truncatior above, if we eliminate the components
of |w!| » P and favor linearly the low-frequency components, then we have

Xp(w) = X(w)*dpw) (1.146,0)
where 4, (w) I8 the triangular pulse defined by
1-|w if jw
Be (w) "{( |wl/py mh'crlme (1.146.b)

The corresponding equation in the time domain can be expressed via the con-
volution theorem as

28in’ [(T/4)(t-T) 4, (1. 147)
n(T/2)(t-T)

Xa(t) = | x(7)

1,7.4 Power Spectrum variance Breakdown of Non-Periodic Functions

The energy content of a non-periodic function x(t) is defined by

E = .J! LX () dt (1. 148)
or equivalently in the frequency domain by,
A - v om _l_ " 3 . )
B o J‘ X(w) X(-w)dw 2,.J. IX (w)[? dw (1. 149)

If x(t) doos not have a finite energy, then we have to consider the total ave rage
power P° expressed as follows

4
= Jim —J'F x“(t) dt (1. 150)
-
Papoulis (1962, p, 240) classifies functions into the following three classes

according to the magnitude of the power:
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(1) P* =0, obviously contains all functions with finite energy content.

(2) 0<P*<®, contains all periodic functions, i.e, P* =  Jx.
where X, are complex Fourier coefficients of the function x (t),
and of some non-periodic functions as well,

(3 P'==, j,e, x(t) has infinite power.

Power Spectrum from Sequenced Data
(8) Using Autocovariance Function

For the statistical analysis of dependent, sequenced data, say x(t), the
mean variance and the autocovariance function characterize the distribution com-
pletely. But generally the autocovariance function is difficult to interpret and
adjacent estimates are not independent, so the confidence intervals are difficult
to calculate, On the other hand, the statistical estimates in the frequency domain
are relatively stable and independent.

The power spectrum S (w) of a function x(¥) is defined as the Fourier
transform of its autocovariance function ¥(¥), which is expressed as

vy = lim 2 [ (1) x(p4mydr (1.151)
e 0O t
or in case of discrete observations
——
Y(¥) = lim —_—m 2 X(T) X(Y+71), Y =ray (1.152)

r =0'1.000’(N-1)
Then, the power spectrum can be written

8 (¥) = f_ Y e 1wV gy (1.153)

Actually S (w) and y(¥) are the Fourfer transform pairs usually shown
as

Y(¥) *—> S(w)

The inverse Fourier transform of eqn. (1.122) gives the autocovariance function

vy = 3= [ _sw) eV ay (1.154)

The power spectrum S (w) can be directly expressed as a function of
x(¢), (Rayner, 1971, p. 77),

S(w) = }im % IX (w)|? (1. 155)

The relation between eqns, (1.152) and (1.155) is known as the Wiener-Khint-
chine relation.
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The eqn. (1.152) cannot be applied in its present form, because ¥(y)
is not defined outside ¥ In the case of observed data vector x(¥). In the
derivation of eqn, (1.152) we implicitly assumed that x(y) was zero for
|®|> T/2, but it is not necessarily the case, Suppose ¥ Is in the range of
(-m, m) and let C (¥) be an estimate of the ensemble value of the true auto-
covariance function y(¥), l.e.

Average (C(¥)) = ¥(¥) (1. 1566)
then, we can make eqn. (1.156) apply to all values of ¥ through windowing,
C(¥) = C(¥) W(¥)
where W (y) is the window function. Therefore, eqn. (1.166) becomes
Ave[C'(¥)] = Ave[C(¥)*W(¥) = Y(¥)'W(Y)

and the frequency domain representation

Ave[S(w)] = S(w) * W(w) (1,157
where S(w) is the spectrum (power) of the true autocovariance function of x ()
(¥) is the window through which Y¥(¥) is viewed, and W(w) is the corres-

ponding spectral window,

The major steps to compute the power spectrum from a series of N
equally spaced observations can be stated as follows:

(1) Remove mean and non-desired effects of low frequencies (trends).
(2) Compute the unbjased sample autocovariance function C (¥) through
L vmslel | o - e
=TT K 1.158.a
€ = {1 L. %(k) x(k+), where { &2 © "0 ( )

It I8 also common tc use the biased sample autocovariance function of the
following form,
1 ~-1~|r|
= — 1,158.b
C ¥) N kgo x(k) x(k+¥) ( )
(3) Apply the selected window to get the windowed autocovariance function
C'(¥) = C(¥) W(¥)
(4) Transform C'(¥) into the frequency domain as follows
]
S'(f,) = rg' C'(r) cos (2nf, r-AY) AY (1. 159)

where Ay =constant*As the lag increment, and As = observational
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interval, f, =n/(2m°+Ay) with n =0, 1,..., 1 , (2medd) = the length of
the basic interval,

Since C(r<4¥) and the cosine function are eveii, it is possible to write
2
8'(fi) = 4,5, C(r+0y) cos (2nf, reav) oy (1,160, a)

We have to make adjustments for the end data (recall the trapezoidal integration)
(for details see Bath, 1974, pp. 171-173), therefore,

S'(f,) = 2ch’(o;+z,&c'(r-w)co-'}n£‘-t +C{m*4¥)cos nf,]  (1.160.b)

with the inverse transform (Otnes, 1972, p. 197)
=1

L_(s0)+2 Eis'(fn)coaﬂr-&‘-l-‘- +8'(m) cos mr) (1.160.c)

4meAy
The eqn, (1,160,a) can also be expressed in terms of average variance per
prequency band (Rayner, 1971, p. 81), by dividing it by the length of the basic
interval, l.e. (2m-Ay)

C'(rdy) =

S'(f,) = —f; 2 C'(ra¥) cos 2nf,r AY (1. 160.d)
r =0

The relation between eqns, (1.160.a), the variance density estimate, and (1. 160.d),
the average per frequency band, are very important and they must be used in the
right places,

Still further we have to make adjustments for the spectrum ends thus finally

we obtain for the power spectrum
=1

| L] Y .
S'(0) = C(o)+m L‘ clr Aw)+ C(mAdJ)

S'(f,) = L C(0)+ m:;c'(r'Aw) coa"'t'l's-f-'l'C(m‘Aw)cos mn, 0 <nvm

[ Bt

(6) Convclve the ruw powers above with W (r), i.e., with the spectral window,
to get S(r). As an example, suppose we decide to use Hanning window. Then
there are two options: (1) we can multiply the data by window function and trans-
form to the frequency domain, or (2) we can transform the data vector to the
frequency domain, in other words, a rectangular window is used in the time
domain, and then apply convolution in the frequency domain, which takes the

following form for this particular example.
S(0)= %8"0)+#8"1)
S(r)y= % s'(r-1) +3 8'(r) + £ S'(r+1) 1162
S(m) = % 8'(m-1) +% S'(m) (1.162)
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The above estimates are averages for bands 1/(2m-ay) wide, except
at r =0, m where they are 1/(4m+Ay) wide centeredat w=mn r/(meAy).

(b) Using Direct Data Transform

In order to compute the puwer spectrum we can also transform the data
directly, If x(t) (s a non-periodic function and only defined in the interval
(-=T/2, T/2), then we have to use a window, say w(t), to obtain
a

i

s
T f {/_x(t) w(t) e 2T g

1 x(n s winf (1.163)

$(1)

1}

where f=w/2n, and N = the total number of observations, Now recall the
following relationship

X(f) = X(0) * W(f) = acf) - 1b5) (1. 164)

in order to write

1

m (1. 165)

8¢y = ;‘,-lﬁ'(fnﬁa(fn. HE

Since eqn. (1.165) is an cven function, for the one-sided spectrum ve have

f = 2 he s © f < - 1,166
, 41 N[a(f)+6(f)]. 0 f <5 ( )

If we convert the power density estimates into average variance ..»r fre-
quency band, multiplying by 1/N, and substitute eqns. (1.114.a-b) ahove we
obtain

8(ky = #[a%Kk) +bB%K)] (1. 167)

This equation Is equivalent to the expression for the degree variance of the
periodic function. But here we have used windowed daia and the estimate above
L is an average for a band centered at 'k" rather than a discrete estimate at k ,

We see that é(k) contains (N/2) full bands and covers the same range
of frequencies from zero to fy (Nyquist frequency) as S(r), which  ontaips
m full bands. So we can make 5(k) equivalentto S(r) by surminyg over
(N/2m) bands.

Now we can give the steps for the estimation of the power spectrum from
a set of observations, x(t), as follows:

(1) Remove mean and trends.
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(2) Apply the window function w(t), e.g. use a cosine-tapered rectangular
window given by eqn, (1.142,a), thus

k(t)y = x(tyw(t) (1, 168)

(3) Compute the Fourier coefficients a(!) , 6(!) through eqns. (1.110) and
(1. 111) or the coefficlents 4(x), B(k) by eqns. (1.56.a-b), which are related
to a(f) and 6(!) through eqns. (1.114,a-b), using FFT in the calculations,
(4) Calculate the power spectrum S (k) by eqn. (1.167) and sum over blocks,
say 5 to 50 (Rayner, 1971, p. 83), to obtain S(r). If we assume N I8 even
such that N/2m = 2z +1, then

A s

(31)‘,, ki., [8%(k) + b3 (K)1/2

§0) = (3
- r(ﬂ 1)sz ra Ag
8(r) =k_r}am)_=[a (ky+b"(k)l/2, O0<r<m (1.169)
—. - a
S(m) = N’;: (82(k) +b%(k))/2 + (52‘1)
k= -2

frequency bands are centered at

0, 1/2m‘t, Z/Zm't,.... l'/’2m‘t...., l/zt

(c) Using the Filtering Method

This method will not be discussed here. In this method data are passed
through a band-pass filter, squared, and then summed with a final normalization,
For this method, readers are referred to Otnes (1972, pp. 311-315),

1.7.5 The Confidence Intervals

The chi-square distribution is given by the formula below,
3)0/3-1 ce" xYa

£0y?) = (1. 170)
(%) 2% 1 (v/2)

where I'(v/2) is the gamma function, and v = degrees of freedom,

It is well known that
DF * sample va rlance>
( true variance

has xa distribution, DF being degrees of freedom, i.e. in other words,

ved*¥e® = x3(v) (1.171)

By rearranging «his egquation we can write
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Ao Aa
V0 - B, VO

] o .:;
? {v, smaller probability level) x* (v, larger probability level) (

Now let us see the application of the x? distribution in case of spectral
analysis, by golng back to the spectrum of the sample variance
r(8z41)+:

8%ry= 8(r) = ; (4%(k) + B®(k)1/2 (1.173)

kmNd 241)=2

1.172)

Since a(k) and f)(k) are defined from an orthogonal transformation and are
generally assumed to be normally distributed, & (r) of eqn, (1.173) has

2(2z + 1) degrees of freedom in the Interval 0< r< m, and 2(z +1) degrees
of freedomat r=0, m.

But using a window reduces the degrees of freedom (Tukey, 1967) and
must be considered in computations, €.g. if we use a cosine-tapered rectan-
gular window, then

DF = v = 2(22+1)(N-G)/N (1.174)

where G is the percentage of tapering, and N is the number of total observations.

1.7.6 Cross Spectral Analysis and Coherence

1.7.6.1 Cross Spectral Analysis

Consider the following linear regression,
y =ax+b

where y, a, b, x are functions of "t", Iet y also be a function of all the
x's in the region, then we can write

w

y(t) = b(t)+ Ima(q)-x(t-q) dq (1. 175)
If x(t) and b(t) are uncorrelated, then by eqn. (1.175) we obtain

Cut¥) = [ a(a)Cu(v-q)da (1.176)

with the frequency domain representaiion

Sy (f) = A(f)* Su(f) (1.177)
and

A(f) = Su(f)/Su(f) (1.178)
A (f) is known as the response function of the system.

Recall the definition of the correlation in the time domain, i.e.
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Py = (Zxy/N)/[(Z x'/N)i(Z y'/N)il (1.179)
The corresponding correlation in the frequency domain is defined as

Ry (1) = 8y (/[ (8ue (1) (8, (1)) (1. 180)
which is called ""the coherence or coherency' and varies between (-1,1). In the

equation above, Sy (f) Is the Fourler transform of the cross-correlation function
Cxy (¥) and defined as follows

-]
Sw(f) = [ Co(d)re™™Vay, -octce (1.181)
or equivalently,
1
SXU(‘) = Tl‘-,vg T Y(t)' x*(f) (10 182.3)

and for one-sided spectrum we have

Suy(f) = 2f Cu (0)° ™™ Vqy = ,“'2 -’,i,- Y(f) X*( 1) (1,182.b)
where Y (f) and X(f) are defined as in eqn, (1.108),

For discrete and finite data the eqn, (1.182, a-b) can be written (Rayner,
1971, p. 82)

S (1) = -;,‘- (D)) = F YD FHOUXD * HOI* (1.183)
-® & f < ®
and for the one-sided cross spectrum we write
§ () = -I%Q(f)-i*m = 2Y'() * H(H X' * H(D) (1.184)

If cross-covariance density estimates are converted into average cross spectral
density (CSD) per frequency band, then we have

So () = {23 &0 - 13 b o0 ][ Tk + 1360 ]}
= 318, (k) - 1B, (k)] [8x(k) + 1By (K)] (1.185)

The real parts of eqns, (1.183) and (1. 185) are called cospectra, and
imaginary parts of those are called quadrature spectra, that is to say

A A
Su (£) = Ru(f) = 1Qu (f)

or equivalently, (1. 186)
gxy(k) = ﬁxy(k) - iéxv(k)
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where ﬁ.,(l) and ﬁ.,(k) are cospectra, and bq(f) and Q.,(k) are quad-
rature spectra,

We can express the cross-covariances between x and y (assuming means
are zero)
(a) Incontinuous case:

1 r° .
Cur(®) = ggr:’?,[_,y(t) X(t+y) dt (1.187)
(b) in discrete case: |
Ne |p
Ch(¥) = 'NTrT SRR |V(t)°x(t+w) v=rag (1.188)

i€<m
Notice that eqns. (1.187) and (1. 188) are not even, therefore, we break them into
even and odd series defined as follows;

Carg () = B [Cxy(¥) + Cuy(=¥)] (1.189)

Carg(¥) = B [Coy(¥) = C(-¥)] (1.190)
Eqn. (1.189) I8 transformed into frequency domain through eqn. (1.160) and (1. 162)
to get 8'y, (r) which is known as "the cospectrum of y(t) and x(t)", and de-

ﬂnedby -k
,y (r)y =24y [C,q (0)+ 2 2 ny( r) COB 7y +C§y£(m) cos mr] (1,191.a)

The power of the eqn. (1.190) is computed similarly,
a~l
S;yo( r) = Z nyo(l‘) sin r¢/m 0 -r<m
a=-l

zAw [Clro(0) +2 L Ciy (k) sinnrk/m] (1.191.b)

il

wo(T) 18 known as "the quadrature spectrumof y(t) and x(t)". Eqns. (1,191,
-b) must be smoothed for the finite length to yield 'S,, (r) and S,, (r) . Finally
we can write for the cross-covariance

18w ()] = [E‘?f';s(r')+§fyo<r)lé (1.192)
and for the phase
Ty(r) = tan™ [§,, (r)/Sy (1)) (1.193)

Now, we may summarize the main steps for the calculation of the cross
spectrum:

(1) Remove mean and trends.
(2) Apply window functlon so that x(t) =x'(t)e h(t) , y(t) =y'(t)ych(t) with
the Fourier transforms X(f) }s'(f)* H(f), Y(f) = ‘Q'(f)
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[ A
(3) Compute the Fourler coefficients a,(f), bs(f), : f), l‘;,(f) from eqns.
(1.110) and (1. 111), or better the coefficients i.(k). 8.(!(). & (x), B,(k))
from eqns. (1.55.a-b) using FFT,

(4) Compute the cospectrum and quad-spectrum by rearranging eqn. (1.183) into
real and imaginary parts to get

A A A A A
sl¥¢(k) = [a,(k) 8(k) +b(k) b(k)]/2

(1.194)
Buy, (k) = [x(k) By(k) - &, (k) be(k)1/2
(5) Sum the results akove ovir (22 + 1) elementary bands to obtain
r(8z4l)e2
- A A A A
Brg (T) =, .0, [8x(K) 8y(K) + by(k) b, (k)1/2
and o g v ) (1.195)
Sxyo( r) = i [ax(k) by(k) - a,(k) ﬁ‘(k)]/z
kmr{3t1) =2

(6) Compute the cross spectrum |§,(r)| and the phase ¥, (r) from eqns.
(1.192) and (1., 193) respectively.

1.7.6.2 Cohcrence

The following expression

arc tan h [ [Sy(r)]] = 2 [—E—,%ﬁ-:-)iﬂ (1.196)

is normally distributed with a variance approximately equal to (1/DF) (Rayner,
1971, p. 98). Then the approximate limits of eqn. (1.196) are given by

‘ - &
arc tanh [ |Sy(r)]] £ wg (Tl;) (1.197)

where & = significance level, and Wy = the expected limit, and v = degrees of
freedom.

1.8, Summary

The computation of a spectrum from continuous and discrete data and
spectral analysis has been explained in this chapter. In geodetic applications
we generally have discrete and finite-length data. The selection of finite-length
data causes undesirable effects on the spectrum known as the spectral
leakage (Harris, 1978, pp. 51-52). In order to minimize the spectral leakage
windows are applied as explained in this chapter. We belleve that this chapter
is a good reference for geodesists, who use discrete and finite-length data,
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2. Spectral Analysis of GEOS-3 Altimeter Dats

2.1 Satellite Altimetry

The determination of the gravity field and the shape of the earth has been
the main goal of Geodesy for conturies. U we were able to measure gravity over
the entire earth, then a considerable number of geodetic problems could be solved,
However, In practice, we do not have enough observations in many parts of the
earth, mainly in ocean areas,

Recently ihe Geodynamics Experimental Ocean Satellite (GEOS-3) obser-
vations have made it possible to determine gravity anomalies from altimeter
height observations. By satellite altimetry we hope to measure the spectrum
of the sea surface to a very high frequency [A (wavélength) < 1000km ] so that
we can determine small scale changes in addition to the Earth's gravity field,
luni-solar effects, atmospheric tides etc. In fact, oceanographers would 1ike
to know sea topography at the 10 cm level from the mean sea level in order to
detect ocean currents,

The geometry of an altimeter borne satellite with respect to the earth's
center is illustrated in Figure 2.1, Here we simply assume that the line OA
connecting the geocenter and the satellite is perpendicular to the instantaneous
sea surface (ISS) and the mean sea surface (MSS). The altimeter measures the
distance (h' = AP') between the satellite and the satellite's footprint of ISS,
We can compute the coordinates of the satellite through the obaervations made
at the tracking stations distributed in a world-wide network. Hence we can
derive the geodetic (¢,) or Cartesian (X, Y, Z) coordinates of the satellite's
footprint with respect to a reference ellipsoid as well as its distance (r'= OA)
from the center of this ellipsoid, and consequently the height (h = AQ) of the
altimeter above the ellipsoid. The sea surface height (SSH), which is the
separation between the reference ellipsoid and ISS, is computed as follows
(Rapp, 1977, p. 2)

SSH = h-(h'-R+b) (2.1)

where R is the refraction correction
b is the a priori altimeter bias (if any)
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A (Satellite)

SSH=N +4H
r' = 0A
h=AQ =r'-r

Reference ellipsoid

0 (Geocenter)

Figure 2.1. The Geometry of Satellite Altimetry.

The geold is usually defined as the equipotential surface coinciding with
MSS, The distance (N) between the reference ellipsoid and MSS is known as the
geoid height or undulation. There exists a separation (AH) between ISS and MSS
due mainly to tides, winds, storms, currents, etc. Therefore, SSH should be
corrected for the factors mentioned above in order to obtain the geoid height (N)
Hence we have

N =h-(h'-R+Db) -AH (2. 2)
Eqn, (2.2) is nothing else but an observation equation, the undulation N being

considered as the observation. For one or more arcs Rapp (Ibid, p. 12) uses
the following mathematical model for the adjustment of geold heights:

N+BAd = Nu+V (2.3)
where N ; column vector of geoid heights implied by altimeter datz
B 1 the design matrix of error model parameters
A 3 column vector of parameters of the error model
Na ; column vector of geoid heights implied by the reference surface
(In our cuse GEM 9 surface to degree 20)
V ; column vector of residuals,

For the adjustment purpose a data set of 419294 geoid heights implied by
GEOQOS-3 altimeter data, in 2003 arc segments, was considered. First a primary
adjustment was carried out, followed by regional adjustments. The details of the
adjustment are described in Rapp (Ibid, pp. 1-24).
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2.2 Gravity Anomaly Recovery

As we mentioned at the beginning of this chapter, we are mainly interested
in the determination of point and mean gravity anomalies from the GEOS-3 altim-
etor data, There are various techniques for the anomaly recovery, Rummel,
Sjoberg and Rapp (1977) have used (1) the inversoc Stokes' equation or the
Molodenskii equation (by Rummel); (2) the spectral analysis approach (by
8joberg) ; (3) the least-squares collocaticn (by Rapp). In addition to these
techniques, two new methods will be introduced In this paper (1) the least-
squares collocation using Toeplitz matrices; (2) the frequency domain least-
squares collocation, in the third and fourth chapter respectively,

In the next sections we will examine the power spectrum of the adjusted
GEOBS-3 altimeter data and predicted point anomalies along various arc segments,
Point anomalies have been computed from altimeter data by using least-squares
collocation (Moritz, 1978) as follows:

8 = Cpen (Cw + D) N (2. 4)

predicted point anomalies

vector of given geoid heights

row-vector of the covariance between the anomaly predicted and
the geoid heights

square and symmetric covariance matrix of the given geold heights
the noise matrix of the given geold heights (taken diagonal).

where Ag
N
Caen

Cow
D

"o we

The point anomalies predicted as described above do not reflect the contri-
butions of the high-frequency components to the variance (total average power)
due to the following facts:

(1) Altimeter observations used in the adjustment procedure described
above represent averages of two seconds in the low data rate, imposing a 28-
km limit on the shortest warelength of information,

(2) We use a global covariance model (C,v and Cw above), which
acts like a low-pass filter, in the least-squares collocation,

The spectral analysis approach will enable us to point out the contribution
of every existing frequency or wavelength component to the variance (total average
power). Then we can make a reasonable conclusion about the resolution of altim-
eter data and predicted anomalies,

2.3 Power Spectrum from Geold Heights

In this and following sections we will examine the breakdown of variance

with respect to the frequencies (or wavelengths) and the contribution of each fre-
quency component to the total average power. The power spectra of some ten
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profiles (numbered one to ten) shown in Figure 2.2 have been considered in this
section. From the adjusted GEOB-3 altimeter data we have computed geoid
heights along these profiles at the intersections of a latitude-longitude graticule
of one degree or arc (Rapp, 1970). Each profile has been considered indepen-
dently for the removal of the mean value along the particular profile from com-
puted undulations and for the computation of the Fourier transform, which was
carried out by FFT algorithms of IMSL libraries at OSU, by eqn. (1,62), l.e.
Noy
X, = & T x(keat) 13 "0A =0, 1,000 (2.5)
N uzo Ny= {(NP{/lz;/z B‘g :xvic.i“

whe X, 1 the complex Fourier coefficients

x(keAt) ; the geold height at the (keAt)th point after the removal of the

mean value along the profile
N ; the number of undulations along the profile.

In section 1,6 we have defined the total average power (variance) of a
function x(keat) ; k=0, 1,,.., (N-1) as

Ny

a . 1 . )
Puve ngol x(keat)) (2. 6)
in the time domain and by Parseval's theorem as
H”
P’ = L P’ 2.7
where
Xo for n=0
2 2|x,,Ja for n=1,2,...,(Nu-1)
Po = Xy, _for n=%Ny and N even (2.8)

2|X,|° for b =N, and N odd

in the frequency domain, P?, n=0,1,..., N. I8 known as the nth degree
power of the periodic function x(k*At). Po = Xo Is the average value (also
called dc value) of the function x(k+At). Since we have removed mean values
before transformations, they are equal to zero in all our computations. Even
if there exists a mean value during the transformation, the power of zeroth
degree is excluded from the variance to obtain

Ny
A
Pua® = Pyc - Py = “El P’ (2.9)
The contribution of the nth degree power to the variance is given by
Co = P/Bya (2.10)

and the power implied by frequencies up to M < N, (from now on we will call
M® cumulative power) is given by
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N

8 = L P (2.11.8)
finally, the contributio.. of the M*-cumulative power is given by

Ry = Su/BJh (2.11,b)

We know that the frequency {, is defined as

f. = u/8 (2.12,8)
where S is the length of the profile, and the wavelength is defined as

Ay = 8/n (2.12.b)

Hence P,a can also be called the power of nth-wavelength component, and we
can consider the wavelength as the variable of the power.

The ten profiles shown in Figure 2.1 have been transformed into the fre-
quency domain in order to obtain the degree power P,,a. its contribution c, to
the variance, the M%“-cumulative power to the variance. The profiles and the
computation results are described in Table 2,1,

Table 2,1, The Breakdown of Variance According to Wavelengths,

Profile
No.

Wavelength

2
Gy [ Msde [LengtY Pyo oot 000 % 2000] A5 1500] %> 1000 X>500[ A >200
(Deg.) | (Deg.) | (km) | (m? S, cumulative power in m®

QW O =T UG i O DN =

Mean

-15,-15| 40,120| 84865 342,8) 294,8 | 318.1 | 328,3 | 331,9 | 337,5 | 339, 7] 342,8
-37,-37 1320,110| 13232 | 367,6| 330.4 | 357.1 | 359.4 | 361.1 | 363.8 | 365.9| 367.4
-48,-48 | 10,208| 14658 | 619,2| 577.9 | 601.4 | 608.4 | 610.3 | 614.0 | 616,3| 618.6
-60, 60 {165,165 13232 | 678,2{ 603.4 | 641,4 | 652.3 | 658.7 | 665.8 | 673.5| 678,2
-60, 65 190,190 13899 | 269.9f 160.8 | 236,8 | 245.6 | 254,1 | 258.0 | 265.1} 269.4
-65, 65]335,335| 14344 521,8| 437.3 | 487.5 | 500.3 | 504.7 | 508.8 | 516.2] 621.8
-60, 20| 60, 60| 878411520,6/1295.8 [1399.3 |1451.4 |1463.7 |1485.6 |1505.4 fl520. 6

20, 20|120,250( 13479 841,3| 756.2 | 801.5 | 816.8 | 827.9 | 830.1 | 836.3| 841.3
-60, 65 (180,180| 13899 ( 562, 7| 458.9 | 520.2 | 534,2 | 544.4 | 550.9 | 558,0{ 6562, 7

25, 251265,341} 7760) 713,2] 605.8 | 618.8 | 642,9 | 669.6 | 682,0 | 700,1) 713,2
643,7| 5562.1 | 598,2 | 614,0 | 621.1 | 629.7 | 837.7| 643.7

ik T A

i ]

k;.,ih,

From the table above we see that the long-wavelength components of undula-
tions contribute the greater part of the variance (power) Pf,,, y €.8. A>6000,
A>3000, A>2000, A>1000, A>500, contribute 86%, 93%, 95%, 98%, 99%, of
the variance respectively.
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2.4 Power Spectrum of Geoid Heights with Respect to the GEM 9 Reference Surface

In the adjustment of GEOS-3 altimeter data a reference surface implied by
GEM 9 potential coefficients to degree and order 20 has been used. Therefore,
we have decided to examine the powe r spectrum of geoid heights with respect to
the GEM 9 reference surface, say AN. Inorder to compute AN first we have
to compute reference surface, {.e, GEM 9 surface, undulations and then subtract
it from adjusted altimeter undulation at the same point. The GEM 9 surface un-
dulations are computed as follows (Rapp, 1977):

i L
N = -;/Q;‘M- lga (%) "Z.:o (Cgacos m\ + 5y, sin mr) By, (8in &) (2,13)

where GM ; the geocentric gravitat! 'al constant

r ; the geocentric distance .. the computation point
a ; an equatorial radius
Cy2s§a + fully normalized potentinl coefficients
s 3 fully normalized Legendre functions
@,A ; the geocentric latitude and longitude
; the normal gravity at ¢ .

Thus we can write for the undulations with respect to the GEM 9 surface
AN = N« N, (2. 14)
where N is the adjusted GEOS-3 geold height at which N; is being computed.

Seven arcs of about 13000 km length have been selected for the spectral
analysis, These arcs are described in Table 2. 2.

Table 2,2, Arcs 2, 3, 4, 5, 6, 8, 9 and Statistics,

Arc No. Latitude Longitude | Length | Mean (AN)| RMS
(See Fig, 2.2) | 0,,0,(Deg.)| A1,A;(Deg.)| (km) (m)
2 -37, -37 320,107 13054 0.3 1.6
3 -48’ -48 10' 186 13021 "'0. 6 2. 3
5 -60, 57 190, 190 13010 -0.6 1.9
6 -65, 52 335, 335 13010 0.7 2.6
8 20, 20 120, 245 13061 0.9 2.9
9 -80, 57 180,180 13010 -0.4 2,6
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2,4,1 Power Spectrum when Data are Assumed to be Perlodic

If we assume data are periodic, l.e. data repeat themselves indefinitely,
then we will have a discrete spectrum made up of a finite number of frequencies.
The geold heights given with respect to the GEM 9 reference surface, which are
defined in eqn. (2. 14), have been transformed into the frequency domain using
FFT algorithms mentioned before. Finally the breakdown of variance, l.e.
the degree power, has been computed by eqn. (2.8). The results are described
in Table 2,3,

Table 2,3. The Breakdown of Variance and Degree Powers with Reference to
GEM 9 Surface from Perjodic Data.

Wavenumber| Corres- |Wavelength Arc No,
or ponding 2 3 4 5 6 8 9 |Mean
Frequency | Global (km) Degree Power
Degree (m **2)
-
1 (3 13020 0.17/0.99/0.20{ 0,13{0,656/0,18{0,11/0,33
2 ( 6) 6510 0.44{0,2210,03{ 0,76{0,44(1,86{0,54!0,61
3 (9) 4340 0.17{0,30]0.90| 0.54{0.80{1.31(0.19 0,60
4 (12) 3255 0.19{0,52(0,24{ ..16(1,46{0.54{0.95(0,58
5 (15) 2604 0.33{1,7810,.51{0.10{0,41{0.14/0.15(0.49
6 (18) 2170 0.08{0,15(0.05{ 0.06{0,03{0,48{0.18(0.15
7 (21) 1860 0.29(0,01{0.49| 0.00|0,69({0.01{0.52{0.29
. . + + + + + + + +
. . 1.67|3.97(2,42| 1.75(4.38]4,52|2,64|3,05
e 2.70}65.21/4.49) 3.7116.76{8,48|6.81|5,52

IR L sidain odbia S Aasaed

E{ -
sy u #

From Table 2,3 we see that the mean of variances of geoid heights is 5,52
m®. But there is an uncertainty on each given geoid height, which is about £1
m n our case., Then under the assumption of white noise, i.e. no correlation,
we can compute the reduced power as follows (Wagner, 1977, p. 14)

P a(reduced) = P 2 (measured) - p* (noise) (2. 15)
P ? (reduced) = 5.52 - 1.00 = 4,42

and finally P =2,1m,

So we have recovered about 2,1 m undulation information in addition to the
GEM 9 undulations, From Table 2.3 we also see that \>2000km contribute about
1.6m, and A<2000km contribute about 1.3 m of this extra 2,1 m undulation
information.

The results given in Table 2.3 also yield a global power for harmonic degrees
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L=3,6,9,... . However, we have to keep in mind that we assumed periodicity
of data and used only seven profiles, which are about 1/3 of a great circle around
the earth. So in the next section we will consider non-periodic data and derive

a global power spectrum,

2.4.2 Power Spectrum from Non-Periodic Data

In this section we are after a global degree power using GEOS-3 altimeter
data. However, we do not have any complete altimeter data around the earth.
So we assume that the power spectrum of each profile, which is a part of a great
circle around the earth, Is an estimate of the global power spectrum after scaling
the frequencies and power. Since the variance of a sub-profile is a good estimate
for the global variance, the degree power of each sub-profile contains about
(Wagner 1977, pp. 89-93)

C; = S (length of great circle)/S; (length of sub-profile) (2. 15)
times the global degree power of the equivalent global frequency.
Since the data of a great circle around the earth are periodic we can use
a window to obtain a periodic function, say y(n), n=1,2,...,Nux, from
a non-periodic function, x(n), n=1,2,..,, N < Nyux . We can explain the
above procedure by considering the example above. We are given 120 observa-
tions defined as
x(k.Ad)), k=0.1,...,119
and
Ay = 1°
Now let y(n*Ay) be defined as
y(nec4y) = w(n) * x(n-4¢), (2.16)

n="120. "119..0., o..... 119’ 120,.0.. 240
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such that 1 for 0 s n<119

1 0 otherwise

then, y(n+AY) is defined along the whole great circle. So y(n*AY) is periodic
and it can be transformed into the frequency domain and interpreted as global,
However, in order to maintain the variance (or average power) of y(n+ay)
equal to the variance of x(ke*Ay), the degree powers of y(n-Ay¥) should be
multiplied by C, defined by eqn. (2.15), which will be explained later,

w(n) =

In order to compute a global power spectrum we have selected some four
sub-profiles with observations one degree apart, described in Table 2. 4.

Table 2.4, Arcs 4, 5, 6, 9 and Statistics,

Arc No. Latitude Longitude | Length| Mean (AN) RMS
(See Fig. 2.2) | ®y,05(Deg.)| Xy,A5(Deg.)| (km) (m)
4 -60, 60 165,165 13343 -0.5 2.0
5 -60, 65 190, 190 13899 -0.4 2,1
6 -85, 65 335, 335 14455 0.6 2.5
9 -60, 66 180,180 13899 -0.3 2.5

The global power spectrum of each sub-profile of Table 2,4 has been com-
puted as follows:

(1) The mean of each arc was removed from the given data to obtain
Nl
%(kedy) = x(kead) - & L xkes0), k=0,1,...,(N-1)
where N is the iuiai number of observations along the particular arc and Ay = 1°
in our examples,

(2) :“{(koA;b) has been multiplied by a cosine-tapered window, which is
explained in section 1.7.3.1.5, to obtain

y (ko) = (ko) x(keap), -(S2 Nk s(C—ZﬂN> (2.17)
where #[1-cos (25 k/N)] if 0 sks N/25
1 if N/25 < kS 24N/25 18)
c(k*a¥) = | i1 cos (25n(N-k)/N)] if 26N/25<k s(N-1) (**
0 otherwise
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and C =8 (the length of great circle)/s (the length of sub-profile). ‘

(8) The variance of X(n°ad), n=0,1,..., (N-1) is defined by eqn. (2. 6)
as Nl

1
Pue® = X kzolx(k-At)la (2. 19)
or equivalently
- kea¥))? here Nyux=C*N 2,20
L A where ax = . R
PAVG -ﬁ.—.: kZO(Y( )] 1 | ] ( )

if we neglect the effect of the tapering of the cosine-tapered window. The Fourier
transform of y(k*Ay) has been computed by eqn, (1.62), l.e,

X y(kko) e-l?'ﬂkn/N." (2. 21)

N..x k=m0

where Y, ; the global complex Fourier coefficients (unscaled)
Naax ¢ the dimension of periodic data vector y(k+4y)

C ; the coefficient as defined above,

Yo =

Equation (2.21) is multiplied by /€ in order to maintain the average power
defined by eqn. (2.19) or (2.20).

(4) The breakdown of the variance according to wavenumber (or frequency)
has been computed by eqn. (2.8), namely

YO‘Q for n=0
3 2|Yn for n= 1'2’0000 (Nl-l) (2.22)

Ps Yvy _ for n=N,and N, even
2|Yy,|® for n=N,and N,,. odd

where Nux/2  If Nyux even

Ny = { (Npax=1)/2 If Ngou odd

and finally the variance (total average power) has been computed,

N
Pac = f P,? (2. 23)
n=0

The results are described in Table 2.5 for the sub-profile given in Table 2,4,
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»r Table 2,5. The Breakdown of Variance and Degree Powers with Reference to
GEM 9 Surface from Non-Periodic Data,
Wavemumber | Wavelength Arc No.
or 4 6 6 9 Mean
Frequency (km) wer
(m L] ] 2)
1 40 000 0.01] 0,12 ' 0.15 | 0,12 | 0.10
2 20 000 0.03]| 0.21, 0.32 | 0,19 | 0,19
3 13 333 0,04 0,12 ) 0.18 | 0,04 ] 0.10
4 10 000 i 0.03} 0,16 | 0.03 ] 0,06 | 0.07
5 8 000 0.01] 0,39 | 0.16 | 0,41 | 0,24
e 6 667 0.01) 0.34 | 0.19 | 0.67 | 0,30
17 5 714 0.06| 0,05 | 0.03 | 0,62 | 0.19
8 5 000 0,17 | 0.06 § 0.11 | 0,48 | 0,18
! 9 4 444 0.23§ 0,27 | 0.29 | 0,41 | 0.30
10 4 000 0,14 0,19 { 0.11 { 0,35 { 0.20 |
11 3 636 0,04} 0,01 | 0.04 | 0,24 | 0.08
12 3 333 0.05 | 0,09 | 0.42 | 0,13 | 0.17 |
13 307 0.09 | 0,20 | 0.563 | 0,06 | 0,22 i
14 2 8567 0.10] 0,12 | 0.18 | 0,05 | 0.11
15 2 667 0.12 | 0,04 | 0.12 | 0,08 | 0.09
16 2 500 0.14 ] 0,02 | 0,31 | 0,10 | 0.14
17 2 363 0.10 | 0,00 { 0.20 | 0.16 | 0.11
! 18 2 222 0.04 ) 0,04 ]| 0,01 |0,16 | 0,06
i 19 2 106 0.02 | 0,11 { 0.09 | 0,09 | 0.08
| 20 2 000 0.03 10,08 ]| 0,18 | 0,00 |0.07
21 1 905 0.10 ] 0,01 | 0,19 | 0,05 | 0,09
22 1 818 +0,.14 [+0.03 {+0.21 |+0.16 [0.13
} . 1.70 | 2.64 | 4,05 | 4,61 | 3,25
F By 3.99 | 4.31 | 6.27 | 8.07 | 5.66

As we see from Table 2,5, the mean of variances (average powers) of
undulations with reference to the GEM 9 surface is about 5.66 m®, If we con-
sider a 1 m uncertainty on each given data point, then with the assumption of white
noise for the data, we can compute the reduced power as follows:

P 2 (reduced)

P ? (measured) - P°(noise)
P ? (reduced)

5.66 - 1,00 = 4,66 m° (2.24)

imon

and further P = 2,16 m,

Thus we have recovered about 2,16 m undulation information in addition
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to the GEM 9 undulations. From Table 2,5 we also see that A2 2000km con-
tribute about 1.7 m , and A\ < 2000km contribute about 1.3 m of this extra
2.16 m undulation information. Notice the almost identical results given in
Table 2.3, where we had assumed periodicity, for reduced, measured powers
and extra undulation information,

2,5 Power Spectrum of Gravity Anomalies

As we mentioned before the main goal of Geodesy is the determination of
the gravity field and the shape of the earth, In sections 2,1 and 2.2 we have
explained how to obtain geoid heights from satellite altimeter data and how to
recover gravity anomalies from these geoid heights, In this section we will
examine the power spectrum of these recovered anomalies, We are mainly
interestrd in pointing out the resolution of these anomalies, In other words,
we will try to point out the minimum anomaly wavelength recoverable from
these anomalies,

In our computations throughout this section the N-data vector has been
transformed into the frequency domain by eqn, (1.62) after the removal of mean
and discontinuities at the ends. Discontinuities at the ends have been removed
by a cosine-tapered window, Degree powers P,” and the total average power
P.e have been computed from eqns, (1.80) and (1.81) respectively., Frequencies
and wavelengths have been computed from eqns. (2, 12,a) and (2,12, b),

2,5.1 Power Spectrum from Recovered Anomalies Only

Two GEOS-3 arcs, one in the Caljbration area and the other in the Philip-
pines area, have been selected, These arcs are shown in Figure 2,2, Along
these arcs point anomalies have been computed from adjusted undulations at
the data points using least-squares collocation. The data vectors of point anom-
alies have been transformed into the frequency domain in order to obtain degree
powers, their contribution to the variance, and finally the cumulative contrfbution
by eqns. (2.8), (2.10) and (2,11,b) respectively, The results are described in
Table 2, 6.

The altimeter data used in the adjustment are approximately 2-second
averages. So the shortest wavelength of information recoverable from the ad-
justed GEOS-3 altimeter data of OSU is roughly 28 km if we assume the data are
noise-free, In fact we know that they are not noise free. These undulations
have about 1 m standard deviations.
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From the results given in Table 2,6 we can point out the shortest anomaly
wavelength recoverable from point anomalies implied by GEO8-3 altimeter data,
: First we will assume the standard deviations of point anomalies to be about 27
; mgals, this having been found in the solution of least-squares collocation, Sccond-
ly we will also assume that the noise spectrum is equally distributed on each degree,
Then we have, with (1.97)

729 mgal®/268 = 2.72 mgal®for the 11* arc

729 mgal’/300 = 2,43 mgal*for the 12" arc (22D

var (P,) = 0°/N = {

We see from Table 2.6 that the signal-to-noise ratio is greater than one
above the 264km wavelength for the 11" arc and above the 115km wavelength
for the 12% arc.

2,5.2 Power Spectrum from Measured (by Ship) and Recovered Point Anomalies

In the previous section we have examined the power spectrum of computed
point anomalies along two arcs separately. In this section we will examine the
power spectrum of anomalies using predicted point anomalies and measured point
anomalies, which were kindly provided to us by Mr. W, H, Chapman, U,S, Geological
Survey. The anomalijes are along the sub-profiles 13, 14, and 15, which are de-
scribed in Table 2,7 and shown in Figure 2,3,

* Table 2,7, Statistics of Recovered (Predicted) and Measured Point Gravity
? Anomalies Along the Arcs 13, 14, 15,

Arc N Length| Latitude Longitude Mean Variance | Mean Diff. | RMS
No, - DY A1,Az | _(mgals) | (mgal**2) | (mgals) Diff.
(km) (Deg.) (Deg.) Pred.|Meas.|Pred.| Meas.Meas-Pred)| (mgals)

DR — ooam e v o

|

F PRSI I o T - ..

E 13 1132| 383 |26.06, 22,36{122,11, 124,45{ -43,8]-45,4|3782, |5776. -1.6 39.9
i 14| 78| 203 |22,54, 24,39|124,53, 124, 71| -58,5]-49, 2 {4629, (4109, 9.3 23.4
15 |168| 473 [18.08, 13.88{127,.156, 126.28] 17.1| 13,9| 372.| 303, -3.2 13.0

have been transformed into the frequency domain separately along each sub-profile,
| given in Table 2,7, in order to compute degree powers, their contribution to the
| variance, and finally the cumulative contribution by eqns. (2.8), (2.10), and (2,11.b)
' respectively, The results are described in Table 2. 8.

} The data vectors of predicted point anomaljes and measured point anomalies

=57~




o1 U [ 3 (s00°1) 000 a-e
«e’l 's L) s " L 0000 (3] 8 %)
U 3% oes-0 L d tese 1) @oe o e (soe°D) weee e
LU "o e s b et ] e zs [ 001 0000 (Y "L os
o9 L X o0 tess-® a0 c-e (650} 0ee°e) )
.l we’e e L Lo st e c (30 .S st -1 ose°e o0 ¢ o
ges® os09® @0 (ess°® to000 L 3 (5660} (ece-0) 0
w1 wee oo st « et e’ oo € = 0091 000°0 oo 3 1 €
foss Qe L 3 080 ose°0 U3 866°0) Wese) ("3 1
b .t e’ 0. sz = s’ ) L) ze1 = 5o 0000 e 161 ]
e L [} 87 (™ (™ Y 3] (ess°9) (0ee0) (o°1)
et ) (X (313 o ”wse 00 < e ol 656°8 000°0 e z°st ot
9 [ 3 we oss® o0 9 e (0660 (100°0) (¢°c)
[ N § ")) e TS s 265°0 see-e c°e T [ 6550 008°0 s sy 6
on @ e U 3] 9089 Qoo -] (a60) 0oe-e) [+ 3 U]
onss 100°0 T°e 1°08 ] Y Y e sz 8 8660 000°0 z'e s s
% e @ -2 (Y 3 o9 ("% 1] (w6 9 9oe-e ¢z
0se os0e X 19 L 6879 10e°e s e L 9660 100°0 €0 29S L
e Gaze-® Q- (tee -9 sos® o) 2960 se0°9} (10 1
080 e z°® (51 ] 16679 08 (Y (33 ) 9669 008°0 ce L°e9 ) [
e s e <9 e Zos°® €0 e6°0) Cse o (o-z61) :.u
) "we°e ce % s 206°9 100°0 21 LN 3 s 966°0 zoe'e 8°s S 9L s
Qo0 - e s as-e e e @ ize'® o) t¢-szn)
108 e°e e s » ses°e ze8°0 "z 9°es » 2%6°0 000 e 9°ss v
o9 e @1 -9 So1-9 (1°so1) Ges‘e) Gsee) (s-g1¢)
ese [ ) 2z YTy 3 o5 oo ¢ L29 € $66°9 cie°e 82 121 €
| (3 st o ww e [ ] Uy (9069 Q09 ¢
2089 acne ' s%¢L z 060 900 s s 101 z 9860 %00 g0l z°161 z
900 e a- oes 0 " 3] % 150 gzL°0 gzL°0 @ 2292)
;e 2ee ”” ' 3 71 1 ¢ nE'D sic°e °L96 Tt 1 ”ne'e rL6°0 sreel L 3 1
[-ompe® 3 [(‘sesgn) 3 | ("veemd) 2 (‘ouegg) °g; (“esam) (~suem) -2 (sen) ZjCswom) -g| (‘sweddd 2
pad 1 | ‘pead 1 g 1 poxd ‘Y| pud - ad ‘1 g 1| paxd ‘1 pard 1
‘a -y (w) u tuy (w) “u (my (w)
2 cd i { *2 3 Y jroqumm b+ ‘d *y  jasqume
sappupu_—) 1!1‘-‘ sanm %ﬂlus—g aanm —“ﬂ“.”%T!ﬂ-oT-’wuol‘—ﬂ'lé Py
W ST ‘ON D9V ¥1 ON D¥V €I *ON Ouv

"ST %1 ‘t1 saay Juojy sayemony jumod Jo siamod 3a13a(] pue aoUELIEA JO Umopyeald aq], °g°Z 9Iqel




If we assume the standard deviations of predicted anomalies to be 27 mgals
as in section 2, 8.1, then we can calculate the uncertainties on each degree power
to be

ol 720/132 = 8,52 mpn’ for the 13" arc
var(Polorat =~y = [ 729/ 78 = 9.35 mpl for the 14 arc (2. 26)
729/148 = 4,92 mgal® for the 16" arc

We see from Table 2, 8 that for predicted anomalies the signal-to-noise
ratio Is greater than one above the 127km wavelength for the 13% arc and above
the 68km wavelength for the 14* arc, and finally above the 208km wavelength
for the 15" arc. The 208 km shortest recoverable wavelength of the 15'" arc Is
much higher than 127 and 68 km of the 13* and 14'" arcs respectively. Assuming
the same precision for predicted anomalies along cach arc we can state that the
big difference above is most likely due to Lnooth ocean bottom topography along
the 15' arc and rough ocean bottom topographies along the 13* and 14* arcs.

Thus, after all these analyses, we can conclude that the shortest point
anomaly wavelength implied by GEOS-2 altimeter data is about 70 km when the
standard deviation of predicted anomalies is about 27 mgals,

Now consider the standard deviation of each measured point anomaly to be
5mgals. Then we can compute uncertainties on each degree power as follows:

0 25/132 = 0.19 mgnl for the 13* arc
var (Pa)veas = -ﬁu 25/ 78 = 0,32 mgal for the 14" arc (2.27)
25/148 = 0,17 mgal® for the 15* arc

We see from Table 2,8 that for measured point anomalies, the signal-to-
noise ratio is greater than one above the 12, 3km wavelength for the 13*" arc
and above the 6.3km wavelength for the 14** arc and finally above the 21.5km
wavelength for the 15** arc, We conclude from the results above that the meas-
urements (ship) have a much greater high-frequency contribution to the power
than predicted point anomalies; this we had anticipated beforehand.

2.5.3 Power Spectrum from Measured (by Ship) and Recovered Point Anomalies,

Bathymetry, and Filtering

In previous sentions we have examined the power spectrum from predicted
anomalies, as well as measured (by ship) and predicted anomalies. In this section
we have selected three more profiles, numbered 16, 17, and 18, which are shown
in Figure 2.3. Along these, measured point anomalies and bathymetry were
provided to us by A, B. Watts of Columbia University. On these profiles we have
computed point anomalies using least-squares collocation from CEQOS-3 altimeter
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Figure 2,3, GEOS-3 Ground Tracks and Some Selected Sub-Profiles.
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data. Predictions have been made at those points where measured anomaljes have
their local maxima or minima and are still not further than 30km from neighboring
prediction points, These three profiles are described in Table 2,9,

Table 2.9, Statistics of Recovered (Predicted) and Measured Point Gravity
Anomalies Along the Ares 16, 17, 18,

A re 'Lcngth Latitude Longitude Mean Varlance Mean RMS ]

No. | N (km) 01,9, AyAg _(mgals) 1 (mgul ) Dift, hiff, |

Pred. Mcas, (Deg.) (Deg.) |Pred.|Meas.| Pred.| Meas, |(Meas-Pred) (mguls)

-+ !

16 62 | 390 [1202, |- 3.19,- 4.00(85,12,93,.52{-19.5(-18,3| 689,]| 707,5 -1.2 11,5

17 54 178 (1012, {-16.76,-17.61183,23,91.87{-24.56{-31,0(1240.11791. ) J.‘l i
18 66 210 {1013, -20.53.-20.64183.27.92.14 - 8,1(-22,2| 1563.] 760, 14 T

1

n .

! We have also computed geoid undulations by least-squares collocation at
those points where point anomalies are predicted along the profiles 16, 17, and
18, All these, the bathymetry, measured anomaly, predicted anomaly, and
geold undulation profiles (corresponding to the profiles 16, 17, and 18) are plotted
in Figures 2,4, 2.5, and 2,6 respectively,

The data vectors of predicted point anomulies and measured point anomalics
| have been transformed into the frequency domain along each sub-profile, given in
, Table 2.9, in order to obtain degree powers, their contribution to the variance,
; and finally the cumulative contribution by eqns, (2.8), (2.10), and (2.11,b)
| respectively, The results are described in Table 2,10,
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Figure 2.4. Altimeter Anomaly, Measured Anomaly, Undulation and Bathymetry,
o Along Arc 16,
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Figure 2,5. Altimeter Anomaly, Measured Anomaly, Undulation and Bathymetry.
Along Arc 17,
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7 Figure 2.6. Altimeter Anomaly, Measured Anomaly, Undulation and Bathymetry,
Along Arc 18,
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As we did in previous sections let us assume that the standard deviations of
predictad anomalies are 27 mgals each, Then we can compute uncertainties on
each degree power:

729/62= 11,75 mgal for the 16'tarc
Var(Pa)wa = Osre/N {729/54- 13,50 mgal for the 17*arc (2.28)
729/66 = 11,05 mgal® for the 18*arc

We see from Table 2,10 that for predicted anomalies the signal-to-noise ratio
is greater than one above the 200. 3km wavelength for the 16" arc and above the
126.9km wavelength for the 17" arc and finally above the 2561.0 km wavelength
for the 18% arc.

Let us again consider, as we did in previous sections, the standard deviation
of each measured point anomaly to be roughly 5 mgals. Then we can compute
uncertainties on each degree power as follows:

25/390 = 0,086 mgal for the 16%*"arc
var(P,)was = Owas/N = {25/178 0.14 mgal for the 17*"arc (2.29)
25/210 = 0,12 mgal® for the 18t"arc

We see from Table 2, 10 that for measured anomalies, the signal-to-noise
ratio is greater than one above the 22.3km wavelength for the 16" arc and
above the 11,4km wavelength for the 17" arc and finally above the 17.6km
wavelength for the 18* arc,

We see again that measurements reflect greater high-frequency contribution
to the total power than predicted anomalies.

. Since measurements reflect the shorter wavelength features of anomalies,
the RMS difference between predictions and observations along a particular profile
should get smaller when we use a low-pass filter for:

(1) measurements
’ (2) both measurements and predictions,

The low-pass filter used here can be described as follows: The data vector
of the sp-tial (or time) domain representation along a particular arc has been
transfcried into the frequency domain. Then the Fourier coefficients have been
truncated above M < N4, where N, is the Nyquist frequency and M is the cut-
off frequency in the basic interval, i.e. the length of the arc in question., Trun-
cating the frequency domain series above the frequency M corresponds to low-
pass filtering. After having generated the complex Fourier coefficients X,
applying a filter only involves the truncation of the coefficients above M s Nu.
Then by an inverse Fourier transform we can regenerate the spatial domain
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representation. In order to make our approach more understandable let us give
an example; Suppose we have an arc of 1000 km length with 100 equally spaced
obsesvations (N = 100) on it. Then the Nyquist frequency is:

N« = N/2 = 50 (in the interval of 1000 km )
and the frequency, with aqn, (2.12.a), is

f. =~ n (in the interval of 1000km), n=0,1,..., 50
and finally the wavelength, with eqn. (2.12.b), is

Ap = 1/f, = 1000km/n, n=1,2,,.., 650

Thus we can compute the shortest wavelength recoverable, which corres-
ponds to the Nyquist frequency, for this particular example,

An,= 1000km/50 = 20km

The data vector of observations, say x(t), t=0,1,...,99, is transformed into

the frequency domain by eqn. (2.5), I.e.
( ] ]
xn:l—;-ak-o x(k)e'mﬂ“ﬂ/N n=0.1u-oo'50

The inverse Fourier transform (c.f. eqn. (1.71) ) yields

x(k) = x (k) +x*k), k= 0,1,...,99
[ 1]

where = 13amkn 40O
xi(k) nzoz,,e , Such that (X, for 0S n S 50

Zy = 0 otherwise

M =50 km = 1000 km/M =~ M =20

Now suppose we want to filter the power contribution of any wavelength
smaller than 50km. Then we have

50km = 1000km/M - M =20

Ay
Now the truncated complex Fourier coefficients, say Y,, are defined as

= { X, for n=0,1,...,19,20

Yo 0 otherwise

Then, finally, we can regenerate the spatial domain rep:eesentation, say y(t),
corresponding to the frequency domain representation Y.. The function y(t)
does not have any high-frequency components above 20. The definition of y(t)
is as follows:
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y(t) = y(t) +n%t)

where ”
y(t) = Z Y, et3Mkn/100
nmO

By using low-pass filtering as described above we have filtered out any
power contributions from wavelengths below 50 km, 100km, and 200 km for the
data vectors of measured anomalies and bathymetry along the sub-arcs 16, 17
and 18 shown in Figure 2,3, The regenerated spatial domain representations
are shown in Figures 2.7, 2.8, 2,9 for A < 50km, A < 100km, A £ 200 km,
respectively. In addition to the three sub-profiles above we applied low-pass
tiltering to the data vector of measured anomalies along the sub-profiles 13,
14, 15 of Figure 2,3 for A € 50km, A s 100km, and X < 200km., The
results are described in Table 2,11,

In the procedures above we have only filtered out the high-frequency com-
ponents of the power of measured anomalies., In addition we also filtered out the
high-frequency components of the predicted anomalies. The previously defined
low-pass filter has been applied for the data vector of measured anomalies,
bathymetry, as well as predicted anomalies along the profiles 16, 17, and 18,

The regenerated spatial domain representations are shown in Figure 2,10,

2.11, and 2,12 for A < 50km, A < 100km, A < 200km respectively, We

also applied the low-pass filter to the data vector of measured anomalies and
predicted anomalies along the sub-profiles 13, 14, 15, of Figure 2,3 for A<50km,
A < 100km, and A < 200km. The results are described in Table 2,11,

Table 2,11, RMS Differences when Low-Pass Flltering is Applied to Point
Anomaljes Along the Arcs 13, 14, 15, 16, 17, 18,

Arc | Mean DIiff. RMS | RMS when A< 50 km |RMS when A<100km| RMS when A<200km

No, {(Pred~Meas)| Diff. filtered filtered filtered

(mgals) (mgals) Both Both Both
Meas.|Pred & Meas, | Meas,|Pred & Meas. | Meas,.|Pred & Meas,

13 6.5 41.7 | 40.4 40,3 32.0 31.5 18.9 18.9
14 0.0 26.6 | 23.5 23.2 17.17 17.4 17.5 12,7
15 0.9 13.6 | 12,6 12,7 11.8 11.7 8.6 8.4
16 -1.2 11,5 | 11.7 11.3 11.9 10.9 10.3 8,2
17 6.5 18.6 | 15.3 15.1 13,0 12,5 13.2 12,0
18 14,1 14.4 | 13.1 13.1 11.1 11.1 8.6 8.2
Mean 4.5 21.1 | 19.4 19.3 16.3 15.9 12,9 11.4

We see from Table 2,11 that the RMS differences between the cases (i)
when only the data vector of measured anomalies are filtered and (ii) when
both data vectors of measured anomalies and predicted anomalies are filtered,
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are very small. The differences are amall because the data vector of predictions
reflects very little power contributions of high frequencies. We also sce from
Table 2,11 that tho mean of RMS differences between predicted and measurcd
anomalies is 31.1 mgals out of 6 sub-profiles 13, 14, 18, 16, 17, and 18, It is
about 11,4 mgals when the power contributions from wavelengths Lelow 200km
are filtered out,
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3. _Simple and Block Toeplitz Matrices

3.1 Simple Toeplitz Matrices

A Toeplitz matrix is an (N+1, N+1) matr'x Tw = t,,, where t, ;= t,.,
k,j=0,1,...,N, thatis to say that t,, is a function of (k-j) rather than of
(k,j) separately, So Ty is a matrix of the ~llowing form
o tey tog ou. toy

i to tay oootopnar
Ty = v . :( )

3.1)

_'« thati-s o

Covariance matrices of weakly stationary stochastic time series, and matrix
representations of linear time-invariunt discrete time filters are of Toeplitz
form (Gray, 1977).

The very speclal structure of the Ty, matrix can be exploited during the
process of inversion, which yields significant savings in computational time and
storage. In the past, several authors [ (Levinson, 1947), (Trench, 1984), (Kutikov,
1967), (Zohar, 1969), etc.] have approached this problem and given algorithms to
carry out the inversion of general Toeplitz matrices,

Since we generally deal with 'positive definite and symmetric normal equations'
in least-squares adjustment and/or collocation, only the inversion of symmetric and
positive definite Toeplitz matrices will be considered here.

Let us now consider the least-squares collocation model

X = AX+8'+n (3.2.8)
which yields the following expression for the s-signal vector (Moritz, 1975, p. 15)

8 = CaxC (x-AX), € = Cpat +Chpa (3.2.h)
or equivalently, when the trend is removed before hand

8 = C.x C X (30 2. C)
where s is the p-signal vector, x is the (N+1)-measurement vector, X is the
u-parameter vector with the design matrix A, C,x is the [p, (N+1)]-crosscovari-
ance matrix between 8 and x, Cs« Is the covariance matrix between s' signais,
Cun is the covariance matrix of the noise, and T is the [(N+1), (N+1)] covariance
matrix of the measurements x. If the number of observations is large, then the

ciassical inversion of C in eqn. (3.2) causes the greatest problem, The C matrix
is uf Toeplitz form if we assume:
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- observations are at equally spaced points along a profile

- noises are equal

- the covariance function used in the computation of T has the property
(Cotat ) = (Cos' )=k s this implies the stationarity of the covariance
function,

With the assumptions above, it follows that:

(1) T™w = C is non-singular

(2) Tw I8 symmetric, l.e, & = t;,

(3) ?‘ a,.tua, >0, n=0,1,,,., N foranyset a,, m=0,1,..., 0
¥34%9 " puch that at least one of the a; is not zaro and finite,

A recursive procedure for the inversion of symmetric and positive definite
Ty will be given here. 'This recursive {nversion requires numerical computations
proportional to (N+1) compared to (N+1)° of classical bordering methods and
the storing of only one row ot ihe input Tv and the output T,™.

3.2 Inversion of Simple Toeplitz Matrices

It is well known that the inversie of a symmetric and positive definite matrix
is also symmetric and positive definite, Then it is possible to express the inverse
T of Tv as (Faddeyev, 1963)

Tv' = B AB (3.3)
Whe).'e —1 0 0 ......0 rwo ......0
blo 1 0 -.....0 811.....0

B= bm ba; 1 .000ee0 A= . (3'4)

2{0 bﬂ, blaloooool

0 nc-coo&‘?}{

’o..o-

In complete agreement with the equality above we can write (Kutikov, 1966)

A7 =BTE (3.5)
or equivalently, n
zblk.tk.’ = o’ j—o 1,...;(!1-1). n -1, N (3.6.&)
k=0
A bnn = 1' n-ojljn-o.N (3.6.b)
}‘ bﬂk.tkn = a:ua! n=0’1.--o.N (3.6.0)
ke

If we substtiute the following condition
tey = teg s k,j=0,1,..4y N

in the above equations, we obtain
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Zb.k.tkq = 0. j-o.l'aoo.(n‘l). n-l.ooo.N (3.7..)
kmo

bg' Ld 1. n-o.l..... N (3070b)
ybnk°tk-u = any, n=0,1,,..,N (3. 8)
K=o

Since Ty Is non-degencrate by definition, b,, values are uniquely defined by
the relations above. We will show that (Ibid, p. 63) under conditions (1), (2), (3)
we have the following recurrence relations:

bra = 1, n=0,1,...,N (3.9.a)
€y * buc*tisy, n=0,1,,..,(N-1) (3.9.b)
B = byt n=0,1,...,N (3.9.c)
bu1,0 = -€n'Bin, n=0,1,...,(N-1) (3.9.d)

b"“‘o“ = b"'k-l + b""'loo.b“.“'k’ n=1,2,,,,,(N-1), k=1,,..,(n-1) (3,9,¢)

In oxder to show this relation let us write the left hand sides of eqn. (3,7.a) replacing
n by (n+l);

nel

& -an+1.k.i4k_l' B-’-‘O.l...-.n (3.10)

k'wo
and let us also assume that for the by, k,m =0,...,n defined by conditions (3.9)
the relations (3.7)~(3.8) are satisfied. Using eqn. (3.9) we can writ>

n

X = bpyy,o0ttes + ‘z] Drsy,k® tems + brogni by as

n
= bnu.o't-- + bn.k-1 *tins +bn+1,o z bn.n-k'tk-n +bn+1,u+1'tn+1.l
k'] k=1

i}
= byy,0[te, + ? bpynok  tias 1 + [Z‘ bn, u-1"tes + briyng tthy-e]
$1 n=1

k' =
using the equality (3.9.a) and substituting m =k + 1, we obtain

n n=1
Xs = bnpi,0 [boot-s + Z bugnk *ti-s] + [) by tiespy + by, thyr=s)
n k=1 n K=o
X% = bua,o an,n_k-tk_, +2 by 'ticens 8=0,1,...,10 (8. 11)
k= k=0

By virtue of eqn, (3.7.2), the right-hand sides of the above equalities are equal
to zero for s =1,...,n and by (3.9.b)-(3.9.d) for s =0 also.

Thus when we consider eqn. (3.7.a), then the eqns. (3.7) - (3. 8) follow frcm
the conditions (2.9) by induction. Since b, n=0,1,... yN a~d k=0,...,n are
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unique, we conclude that eqns. (3.7) and (3. 8) are equivalent to eqn. (3.9).

Let r}y k,j=0,1,...,N denote the elements of the inverse Ty ! such that

l‘go roN1 200000 rm
N rinu r{‘I sensen r{‘u
™= | . (3.12)
L,r:o t;:‘l ssvs e &N

then the following equalities hold (Kutikov, p. 66)

N+l N
r(kJ ) = rk] + bn# 1ok az#lﬂ*l b‘#ld k.j = 0' 1' X .(N"‘l) (3' 13)

This follows from eqn. (3.3), where o, ,¢ 18 taken to be equal to zero.

Since the Toeplitz matrix T, satisfying the conditionus (1), (2) and (3) is
symmetric and persymmetric (i.e, it has symmetry both its diagonal and cross-
diagonal), in other words

tey = tyk o by = oy

we can show that the inverse 'I‘N"1 is also symmetric and persymmetric (Zohar,

1969). The symmetricity of the inverse is apparent, so, we will only show that
f T is persymmetric. For the proof let us introduce the Exchange matrix E
| defined as a square matrix with units along the cross-diagonal, and zeros else-
where, Now suppose A is an arbitrary (NxN) matrix. If we examine the
matrix product (E A'E ), we see that the overall effect is to exchange elements
of A which are located symmetrically with repsect to the cross-diagonal. So
a persymmetric matrix is a matrix H satisfying E H'E =H. Now from this
formulation it is easy to show that T Is persymmetric, Letus start with

(TVH (TV) = 1

and note that E E = | to obtain

E(Tv) '(EE)(Ty)E = EE = I

[E(Ty)"*E][ETy E] =1

T, =1

T
but ETy E = Ty. Hence [E(Ty) 'E] =Ty and Ty is persymmetric,

Toeplitz inverses have a very useful property: If the last row of the inverse,
say rN“'J.j =0,1,...,N, Is known, then all other elements of the inverse can be
computed iteratively from ryy. First let us compute v, by writing from eqn. |
(3.13) _ |

Ty = rg Y + by am by,
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and letting k = N and also noting nf:‘,")-o, j=0,1,,..,0, by =1, we obtain

r:,s = ."O.de,s j =0,1,...,N (3.14)
In order to compute the remaining elements of the inverse we have from eqn.
(3.13) " Mot .
Py=1,s~1 ™ Pyepyyertbyer i by j (3. 16)
and also considering persymmetry
N N N=1
Peg ™ DogNak ™ Dhogn ok +bupnoy B by v -k
N=1
= Pyayyger + byp-g am by -k (3.16)
Substitute the equality of r:.;: j..; from eqn. (3.16) in eqn. (3.16) to obtain
N N 2 a3
Pyaps=1 = Tyy = bu,nog 8w by,nek + by,y-y 8w by, ge (3.17)

By considering symmetry and persymmetry, the algorithm can be summarized
as follows:

(1) Compute the last row of the B matrix and a,.; through the recursive
procedure defined by eqn. (3.9);

by = 1, ] n=0,1,...,N
e, -;Zob,ytk“, n=0,1,...,(N-1)
e =kz:>“'t,,-g. n=0,1,...,N (3.18)
Drat,0 = ~€n® Bpns n=0,1,...,(N-1)
Bastss = Bayyy #Pritobuyna n=1,2,...,(N-1)
brpynasa = oy + Pnar,oPnge-1s } I =L 2.0 (01)/2)

By the formulae above the reduction in computer storage is considerable, because
bry1,4s bnsip_ger following the calculation can be stored in the place of b, ,._,,
by n-k» Which are not used in any further calculation.

(2) Compute ryy, j=0,1,...,Nandthe remaining elements of the inverse
by eqns. (3.14) and (3.17);
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X

N ? |
vy ™ &t by :
N N N N j=0,1,...,N (3.19) "
TN ™ Dieyo ™ Fop-y ™ Ny from symmetry and '

persymmetry

rkN-l,J-l - ":.1" b‘.ﬂ-k"am'b"w-s"'m.k-l'“?ﬂ‘bhl-l y K= (Ny+1)000yN, J=(N=K).0uk ‘
where N, = {(NH\,/Z if N odd |
" N/2 if Neven ‘
finally ri_.yon = W'ejary kst ™ Noksan-ja1 = Tia,s-1 from symmetry and per-
symmetry.

As we see from the¢ expressions above, we do not have to store all the
elements of the inverse at orce. As soon as an element of the inverse is com-
puted it is multiplied by the corresponding element in x-vector of our model
(3.2.2). 8o we only have to store one row of the inverse in order to solve the
recursive equation (3,17). A computer program written in FORTRAN language
is given in Appendix 3. A,

Using this algorithm some test runs have beeu made in double precision
arithmetic on Amdahl-470 computer. The results are given in Table 3. 1.for the
solution of the linear equality

TWF = X (3. 20)

where T, isa [(N+1),(N+1)] Toeplitz matrix whose inverse has been computed
row by mow, X Is the data vector of length (N+1) and F is the solution vector
of length (N+1) we desire,

Table 3.1. CPU Time and Core Storage for the Inversion
of Simple Toeplitz Matrices.

Dimensjon | C PU Time | Storage
(N+1) (sec.) (K)
100 0.12 3.2
200 0.48 6.4
400 2,86 12,8
1000 18,21 32,0

From the Table 3.1 we see that the simple Toeplitz inversion is very efficient
as far as time and storage are concerned. If we have equally spaced data with
equal noises, then the covariance matrix of the data is of Toeplitz form and we
obtain identical solutions with the classical inversion algorithms. But if the ob-
servations are not equally spaced and do not have equal noises, then we have to
use interpolated data and give equal noises to the observations in order to use
the algorithm above, Thus we introduce some approximations to our solution.

We can proceed and use this algorithm if we can show that the degree of approx-
imation has negligible effect on the solution vector. To demonstrate the efficiency
of this algorithm and to see the effect of approximation on the solution, two arcs
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of altimetry described in Table 3.2 and shown in Figure 2.2 from GEOS-3 have
been examined.

Table 3.2, The Description of Arcs 11 and 12,

Arc| Area |Latitudes (Deg.) (Lougitudes (Deg.) |Length(No. of Observations
No. -] @ Al M (km)

11 [Calibration|12.8480|30.9526 [309,9578{201, 0051| 3540 256

12 Ighlllpptml -0.0241]32,46565 [146, 5301|126, 8229| 4162 300

As the first step, the point gravity anomalies have been predicted at observation
points by equ. (3. 2.c) using the original observations and their uncertainties. As
the second step, equally spaced data have been created from the original obser-
vations and the mean uncertainty of the original observations along the particular
arc has been given to each predicted data point as the uncertainty. As the third
step the point gravity anomalies have been computed at the original observation
points by eqn. (3. 2.c), but using the simple Toeplitz inversion algorithm to
invert T. The statistics of this study are given in Table 3,3 and anomalies

are plotted in Figures 3.1 and 3.2 for the 11*" and 12'"arc respectively.

Table 3.3. The Statistics of Arcs 11 and 12,

Arc No. RMS Max. Diff, Mean Diff,
(mgals) (mgals) (mgals)
11 1. 1 50 5 -00 1
12 4. 8 320 4 -00 3

‘The average standard deviation of the predicted point anomalies is about
27 mgals., The RMS differences of 1.1 mgals for the eleventh arc, and 4.8 mgals
for the twelfth arc above are much small- than the standard deviations of the
predictions, So it would not be unfair to say that the approximations introduced
in the examples above have negligible effects on the computed point anomalies,

The twelfth arc of the Table 3. 2 was also used for (1°x 1°) mean anomaly
recovery of some 25 blocks, which are located in a (5°x 5°) block whose co-
ordinates are:

Oy =10°, s =5°, Ae =137° X, =132°

The RMS difference between a rigorous least-squares collocation solution and
Toeplitz solution has been found to be only 0.1 mgals with a maximum difference
0.2mgals. The difference between the two solutions is negligible should we
consider the standard deviations to the predictions, which is about 15 mgals.
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3,3 Block-T itz Matrices

We have defined the simple Toeplitz matrix as a matrix Ty whose (k,j)th
element t,, is a function of (k-j). When ¢, itself is a matrix, then Ty is
called a block-Toeplitz matrix. In this section our attention will be restricted
to the case when the block-Toeplitz is real, symmetric, persymmetric and posi-
tive definite. The derivations are very similar with the simple Toeplitz case,
the only difference being the replacement of scalars by matrices. Thus we
generalize the algorithm derived in the previous section. A complete derivation
for the inversion of positive definite block-Toeplitz matrices can be found in
Kutikov (1966).

Block-Toeplitz matrices appear quite often in time series analysis. The
simple Toeplitz forms usually arise in one-dimensional Wiener filtering, where-
as block-Toeplitz forms arise in two-dimensional filtering. Suppose xs, s =
0,1,...,p are random vectors, each vector having length of (q+1), then
the autocovariance matrix (stationarity also assumed) is of block-Toeplitz form
with dimensionality [(p+1) (q+1),(p+1) (q+1)] . We can see that (q+1) is
the dimension of the square subblocks and (p+1) is the number of random
vectors,

3.4 Inversiou of Block-Toeplitz Matrices
Development of the Algorithm

The algorithm given for the simple Toeplitz case is generalized here as
follows:

Simple Toeplitz Case Block Toeplitz Case
T T™
ty = %oy kKyj = 0,1,0.4,N Tee = To_ty Byt = 0,1,...4p
B B®
-ab"”a k,j = 0,1,...,N -aB‘“ . s,t = 0,1,...,p
8,9+85 » b =0,1,,..,N Aw"y Ap 8 = 0,1,...,p
e » n o= 0,1,...,(N-1) E,, 8 = 0,1,...,(p-1)
ry k,j = 0,1,...,N Ree 8yt = 0,1,.4.,p

Now we can write the iterative solution algorithm for the inversion of the
block Toeplitz matrices corresponding to the eqns. (3.18) and (3. 19) of simple
Toeplitz Inversion,
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‘1) B.. - ] I'O.I.....D
| ‘ionn Tc.ﬂo 8=0,1y...9(p-1)

A:l'- Q:OB“ To.-n 8=0,1,...yp

(3.21)
B“l.o - -E. Al.l .-001|000.(p'1)
B“‘[.. - B..'-l * B'".on...-‘ s=1]1, 20 se 0 .(P'l)/2
Bl#l,'-"l - &..-' +&’I.OB..Q-‘ t = 1.20000;(.-1)
(2) Re = Ap By  t=0,1,...,p
Ry = R:e
R-t,0 = Ryt [ from symmetry and persymmetry)
Rop-t = Roe (3.22)
Re-3ptet ™ Re - Bry-s Asp Brypor+ Bn'u-l Ay Bpay
p+1)/2 if p odd

(
g = (nﬁ-l).....p. t-‘p-.)'oct.' where p‘-‘ p/z upeven
Ryt = Rouip-enr = Rl'-t.t-l
[from symmetry and persyminetry ]
Rosryp-ter = Reayja

Similar to the simple Toeplitz case the saving in computational time and in
computer storage is very significant. We need only store one block-row of the
TV and one block-row of the inverse (Ty) ' in cases where we are not interested
in the inverse itself but rather in the solution. A computer program for the solution
of (3.28) written in FORTRAN language is given in Appendix 3. B.

The computational time by this algorithm is proportional to p’(q+1)° com-
pared to the p?(q+1)® of the classical method of bordering. Some test calcula-
tions on the Amdahl-470 yielded the results :"iven in Table 3.4 in the solution of
the linear equation

TYF = X, N+1 = (q+l)*{p+1) 3. 23)
where TR Is the block-Toeplitz matrix of dimensionality [(n+l),(N+1)] consisting
of [(q+l1),(q+1l)] subblocks, F s the solution vector of length (N+1) and X is
the data vector of length (N+1). Thus for the solution vector we have,
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Table 3.4. CPU Time and Core Storags for the mversion

F=(M)'X

of Block-Toeplitz Matrices.

Dimension CPU Time | Storage
P+1 | Q+1 | N+1 (se0.) (K)
25 2 50 0.24 3
100 2 | 200 4.42 10
200 2 | 400 13.28 20
80 5 | 400 16.80 40
20 | 20 | 400 48.88 93
400 2 | 800 49. 68 40

(3.34)

We will now show that the covariance matrix of equally spaced gridded data
is of block-Toeplitz form, If data are gridded and observations on each profile are
equally spaced, then distances between profiles do not have to be equal to each
other in order to obtain a block-Toeplitz form. As an example let us consider the
three profiles shown in Figure 3.3. The covariance matrix of this model is of
block-Toeplitz form and is given below.

""" 3

i

11

8 10

Figure 3. 3.

Three Parallel Profiles with Equally Spaced

and Gridded Observations,

T
Ty
To
T

Ta
Ty
T,
To
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whe e

- -
C(0) C(sy) C(8 +8)

To = c(0) C(8)
Eymmctrlo C(0) _
- -
C(s) C(M'*:') C(/,,_L!,b"* +oe)")

T, = C{(s) C(e +8y5 )
{symmetric C(s) _

C(2s) C(/Tc'+|,') C(/“'qq -n,)’.;l'
Ty = C(2s) C(/4s" + 85 )
[symmetrio C(2s)

C(3s) CVQ? -u") C(/Ol' *‘% 4--,)’1')
Ty = C(3s) C(/98" +85)
Eymmetrb C(3s)

In order to elaborate the applicability of the block-Teoplitz inversion in
practice, it was used in the recovery of point and (1°x 19 mean anomalies from
geoid heights. Point anomalies predicted from gridded geoid heights, which are
created from the adjusted satellite altimeter data, are shown in Tables 3.5 and
3.6. The computation points of Table 3.5 are located on 90-E Ridge, and those
of Table 3.6 are located in the Bovin Trench Area, These locations have been
selected due to their large anomaly variations. (1°x 1°) mean anomalies predicted
from gridded geoid heights are shown in Tables 3.7, 3.8, and 3,9, The (1°x 1°)
computation blocks of the Tables 3.7 and 3.8 are located in the Philippines Trench,
and those of Table 3.9 are located in the Calibration area,

GANOM and CANOM are common in all the Tables and have the following
meanings;

GANOM: Gravity anomaly computed from GEM 9 potential coefficients,

CANOM: Gravity anomaly computed from original adjusted satellite
altimeter data using the rigorous least-squares collocation,
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We see from Table 3.5 that the RMS differences between the gravity anomalies
computed from the original adjusted alitmeter data and those from the gridded data

(predicted) are 8,0 and 3.0 mgals respectively, when using (6 x 65) and (10 x 40)

grids, These RMS differences are well below the standard deviations of the pre-

diotions themselves if we consider the standard deviations of predictions to be

27 mgals as before. However, the RMB differences in Table 3,6 are 27.8, 16,9,

and 17,8 mgals in the case of (6 x 72), (10 x 36), and (18 x 20) gridded data,

respectively. Ounly one of the RMS differences is slightly higher than the 27 mgals

standard deviation of predictions considered before,

We also computed (1°x 1°) mean anomalies of blocks 710,711, and 343
given in Tab'es 3.7, 3.8, and 3.9 respectively. The RMB differences between
mean anomalies computed from original altimeter data and (10 x 40) gridded
data are 6.9, 6.2, 2.6 mgals respectively. The standard deviation of (1°x 1°)
mean anomaly prediction is about 7 mgala, BSo the RMS differences above are
smaller than the standard deviation,

From the results above, we can conclude that, in the case of altimeter
data, the RMS differences between predictions from original data and gridded
data are generally less than the standard deviation of predictions. Thus, we
can create a gridded data and predict signals by the fast Toeplitz algorithms
described in this chapter.
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Table 3.6. Point Anomalies from GEM 9 Coefficients, Original Geoid Heights and Gridded

Geoid Heights. f
LAT LON CANOM TANOMI TANOMX TANOMB CANOM CANON-TANOMI CANOM-TANONM2 CANON-TANOMB
28.00 141.00 13.7 -14.7 -12.8 -B.4 0.5 15.2 13.8 5.9
28.60 141.10 13.6 -22.83 -13.7 -5.0 6.7 32.2 23.4 14.7
28.06 141.20 13.6 -24.0 -5.3 1.4 25.2 49.2 30.7 23.8
21,00 141.30 13.6 -14.1 14.0 16.8 45.6 59.7 81.6 28.8
28.00 141.40 13.6 11.5 45.3 .3 7e.2 58.7 24.9 20.9
23.00 141.30 13.5 54.1 87.1 92.9 98.9 44.8 11.8 6.0
23.(0 141.66 1°.3 109.7 134.5 188.8 131.8 21.6 -3.2 -7.8
23.00 141.70 13.5 170.0 181.0 1383.4 167.0 -2.9 -14.0 -16.4
28.00 141.80 3.4 225.6 221.8 223.6 204.5 - 1 -17.3 -19.1
28.00 141.90 13.4 269.8 254.1 237.1 241.0 4.8 -18.1 -16. 1
23.00 142.00 13.4 298.7 274.6 2?7.3 272.2 -26.5 -2.4 -5.1
23.00 142.10 13.3 308.1 281.6 281.9 290.6 -17.5 9.0 8.7
23.00 142.20 13.3 298.5 273.6 273.2 289.4 -9.1 15.8 14.2
23.00 142.30 13.2 265.7 231.2 234.3 272.4 6.7 21.2 18. 1
23.00 142.40 (3.2 212.4 216.1 213.9 2438.3 30.9 27.2 29.4
23.90 142.50 13.2 131.6 172.3 164.4 203.7 52.1 3.9 39.3
23.60 144.60 13.1 103.1 124.0 113.5 155.1 £2.0 31.1 41.6
23.00 142.76 13.1 68.3 73.6 73.5 100.0 31.7 24.4 26.5
. 23.00 142.80 13.0 34.3 27.2 35.7  41.7 7.4 14.5 6.0
23.00 142.90 13.0 -5.7 -20.7 -3.4 =-15.7 -10.0 5.0 -12.3
23.60 142.00 12.9 -55.7 -66.0 -48.7 -67.2 -11.5 -1.2 -18.5
27.00 143.10 (2.8 -103.0 -193.4 -91.2 =109.0 -6.0 -5.6 -17.8
25.60 1473.20 12.8 -133.9 -129.2 -124.1 -138.2 -4, 3 -9.0 -14.1
27,60 i43.30 2.7 -148.0 -141.9 -139.9 -152.7 -7 -10.8 -12.8
23.C0 143.48 2.6 -149.9 -143.0 -142.9 -151.7 -i.8 -8.7 -8.8
23.00 143.50 12.6 -141.4 -134.3 -136.2 -148.4 3.0 -4.1 -2.2
23.¢0 143.60 12.5 -123.9 -118.0 -120.3 -117.7 6.2 €.3 2.6
28.00 143.70 12.4 -99.1 -95.8 -97.4 -94.5 4.6 1.3 2.9
23.60 i43.86 2.4 -68.8 -0.4 -72.4 -71.2 -2.4 -0.8 1.2
29.00 143.90 12.3 -36.6 -44.8 -47.7 =-49.1 -12.5 -4.3 -i.4
23.00 144.00 i2.2 -8.8 -22.2 -25.0 -29.2 -20.4 -7.0 -4.2
! RMS Difference Between CANOM and TANOM1 is 27. 8 mgals

RMS Difference Betweer CANOM and TANOMZ is 16.9 mgals
RMS Difference Between CANOM and TANOMS is 17.8 mgals

; where, TANOMI : the point anomaly computed from (5 x 72) gridded geoid
| heights,

TANOM2 : the point anomaly computed from (10 x 36) gridded geoid
heights.

[_A TANOM3 : the point anomaly computed from (18 x 20) gridded geoid
heights.

The grid limits for prediction described in this table are:

oy = 30°% s =26° X\ = 145°75, A\, = 139°75
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Table 3.7. (1°x 1°) Mean Anomalies from GEM 9 Coefficients, Original Geold Heights and Gridded

Geoid Heights,

BLGCK LATN

T 1d.60
1..7)
1oy, G
17,
1. ¢
t. - ‘-'
L3 I
LA )

PRSEUMLS EAE DI RS L R
121"
Lol LCOeCO T .o

-
Pl

LA

<
14
[ 4

LATS

9.60
9.69
LG9
Y
L0
3.0
canied

LONE

123.0
129.00
13.2.00
131.00
132.30
124,00
125.¢9
130.v0
13'.¢)
142 50
120009
129,09
132.¢0
13:.G9
13...¢60
124.09
129.00
139.69
131.00
13.2.00
124,89
125,02
183". 350
)
183.2.00

LORW

127.00
124.¢0
127.60
199.3°.
131,22
27,00
125,09
127,69
1Ov.LD)
131.09
12.7.¢00
123,69
12).69
132,450
131.00
127.00
124.00
129.00
130. 00
131.G0
127,09
123.00
125,00
130,09
131.00

RMS DIFFEREHCE BETWEET CANOM AND TAFIM IS

3.9 MGALS

GEM

29.1
.2
26.4

207

CANOM

-19.6
5t.7
2.3

a4 v«
$o.2

v.
-00.9
601.3
20.3
:“‘ll
iv. 1
-07.%
9.2
32,0
21.6
20.0
~141.6
65.4
ol.4
27.4
| DO
-159.2
©).2
(V10 0
30.3
10.3

TAI:ON

-30.4
50.4
1G. %
28.0

~39.0
9U.4
ey oy

iv.9
13,9
—-30.9
w39
Gesew

¢ 6y 12
ot

9.1
-162.3
78.5
58.8
28.4
15, %
=-153.2
<l
9. %
al.?7
't.G

CANGH-TANO:1

10.0

1.3
-3.1
~U.%
L RN
-1.9
e
~-3.9
3.3
-4
-1,
wed
-J.%
Rl

-Jd

“ 23
LR

-13.1

2.6
~-1.0
~-J.0
-1.C
-1.9

e
LA P

~0.7

where¢, TANOM: the (1°x 1°) mean anomaly computed from (i x §0) gridded
gr:old heights.

The grid limits for prediction described in this table are:

Oy =

11°, @s =4°% X =128° A4=121°

e
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Table 3.8. (1°x 1°) Mean Anomalies from GEM 9 Coefticients, Original Geoid Heights and Gridded

Geoid Heights,

BLOCK LATN

711 10.00
10.060

10.00

19,20

1.,. 20

9.00

9,90

RIS

DU
l\.','

.
B
AN
-

~
¢

. e
P Qw0

LATS

9,09
$.00
0.0
2.60
.09
.00
5,00
3.60
1 1.00

SN

LONE

133.00
13%.00
133.60
136.090
137.¢9
133.00
134,00
182.60
133.¢C0
157.60
135,60
15 «.00
io .09
132000
167,99V
133.C
13~. 0V
133.6)
1305.00
i3V Q0
133.00
164,09
{3,5.00
130.0v
13/.0v

LONW

132.60
133. 09
134.00
153.060
13v.CO
132,09
133.9)
132,69
135.00
1335.69
13.2. 00
133,09
| ORI AN
13..00
130.¢9
| R0
1 ..l
| FUSNI N
10u. 00
180,05
13 2.0
13,.060
13 .00
13.3.00
13.,.00

RMS DIFFERENT.. BETWEE.W CANOM AN) TANOM IS

GEM CANOM
20.06 T.%
19.2 15.1
17.8 7.6
16.0 23.9
16.1 6.6
22.3 23.0
20.9 13.1
19.5 47.2
18.1 -19.3
16.0 3.9
23.6 350.2
@2 27.3
L0.8 36.9
19.86 -31.0
8.0 36.0
24.2 30.v
3.1 7.1
21.9 gt T |
M ) 7.9
0.0 4.3
NI 40,0
8.0 $0.8
PSR ¢ 1.8
o100 [t g
208 283.0

6.2 MGALS

TANOM CANOM-TANOM
7.9 -0.5
17.1 -2.9
3.9 3.7
32.0 -3J.9
7.0 -1.2
21.08 1.8
13.%¢ -0.0
‘:‘l.ﬂ U.H

-10.2 Q0.9
wd.d 9.2
0.0 32
RO I
438.7 LU

~16.1 i SRRV
HAE 13.9
29.7 .
“f.1 0.0

-3, 1 -11.0
30-5 "’-'i‘
1.4 R
FHHEA) A
31.0 -0
-3.1 1.9
“).'(’ ".'.0
ul.0 LAY

where, TANOM: the (1°x 1°) mean anomaly computed from (10 x 40) gridded
geoid heights.

The grid limits for prediction described in this table are:

©n = 110, Vs = 40! AE = 1380, A = 131°
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Table 3.9. (1°x 1°) Mean Anomalies
Geoid Heights.

BLICK
843

LATN LATS
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8. 00
40,09
800 G3.00

ERI ¢ 3. 00
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[ Y 800
G .e0 Voo
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Ll FV Y 4 ]
y 3. .00
.00
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sSL.CO 85,60
A RN O
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SRORSRO]
sona
[
(o7

SG 6
LOCLOC

LICNCILICIOIAOLILaLs¢l:

.00
N 83,00
J.u FRRIIY |

where, TANOM: the (1°x 1°) mean anomaly predicted from (10 x 40) gridded

RM3 DIFFER:CL BETWEL'! CANOM

LONE

292.00
293,00
294.C9
£O3.C0
BVH,0)
207.¢C0
20.2.C0
Q95,00
SYEO0
IV
200,00
290N
202,¢0
26.3.09
2N 5,.C0
20000
29,.09
RO PR
29...00
291,00
Sva.00
2960
290,00
297,09
292, C0
293.69
FOUNE IR
293,00
295,00
39¢.09

AND TANOM IS

From GEM 9 Coefficients, Original Geoid Heights and Gridded

LONW

291.00
292,00
293.00
294.69
293.00
295,00
291.00
292,00
294.00
294.00
293.00
190,00
291.00
202,00
253.00
3y, OO
295.02
200,90
201,00
29.2.69
19.3.060
204,69
DRI
2y 0.09
291,C
D SR Y
285,00
29:0.C9
2v.3.00
=20.00

2.6 MGALS

geold heights.,

GENM

-15.4
~15.4
-15.8
-14.9
-14.4
-13.0
~lo.6
-i6.06
-lu. 4
=-10.0
-1U.4
-1,
-18.0
-18.0
-1v.%7
-.7.0

-1¢:.0
-05.8
-19,8
-19,%
-19.3
=-1U.¢

~-17.9
=1c¢.0
-7
-1.0
T I |
-20.8
=19,

R H IR

CANOM

-32.4
=35 .
=31.1

-t Y
e b

-»3.0
-33.8
=291
-ud. ¢
-uV.0

-! ‘Jo?

The grid limits for prediction described in this table are:

©n = 4005, @s = 3495, X = 297°5, )\, = 291°5

R 7 R
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4, Fourier Transforms and Frequency Domain Collocation

Satellite altimeters such as those on Geos-3 and Seasat-1 satellites intro-
duced In the last several years have provided muititudes of mearurements of
guoid heights, In Chapter 2 we analyzed some of this Geos-3 altimeter data. In
the near future other measurements such as gravity gradients by satellite borne
gradiometers, range and/or range-rate measurements by satellite-to-satellite
tracking (SST) techniques may be available in large quantities. The processing
and interpretation of this data by conventional methods is very costly and time
consuming, even sometimes being impossible, The analysis of such data usually
involves convolutiown in the space domain, e.g. conventional colloc..tion, but only
simple multiplications in the frequency domain (see sections 1.7.2.1and 1.7.2,2
for convolution) as we will show later in this chapter. Thus, frequency domain
methods can be considered as efficient tools in our computations and analyses,
We compute frequency domain representations via Fourier transforms of space
domain representations,

Fourier transforms can be used for many different purposes. Jordan (1978)
shows how to use Fourier transforms for upward contiomation, for computing
anomalies from geoid heights and for solving Stokes' integral, etc. as an appli-
cation of Wiener filtering (Moritz, 1967), which is a special case of our approach
to be explained in this chapter. Fourier transforms will be applied on the expres-
sions in the space domain. Therefore, the theory of ieasi~-squares coilocation in
the space domain will be briefly explained below just for the purpose of complete-
ness. For details readers are referred to Moritz (1975).

4.1 Least-Squares Collocation

Least-squares collocation is a method utilizing minimum variance estimation
for a model of the form (Moritz, 1975, p. 7)

X = AX+s8'+n (4.1)

: the N-vector of observations (measurements)
: the u-vector of parameters or unknowns

: the N-vector of the measuring errors (noise)
: the design matrix of dimension (N xu)

: the N-vector of signals measured

where

> KN

The vectors s' and n are purely random and they have zero expectation (average
or mean value), i.e.

E{s'} = E{n} = 0 (4. 2)

Let "s" denote the signal vector of length P to be predicted defined as
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8 = [.l' ’..o" .'lr (4'3)

and let us assume zero expectation for signel s and no correlation betwecn the
signal measured or the signal to be predicted and the noise, i.e.

E{s} =0, E{s'*u'} =0, E{s*n'}1=0 (4.4)
“‘ben we can proceed as follows.
Eqn. (4.1) can be written in the following way
x = AX+ [0 n[:,”] (4. 5

where 0 denotes (N x P) zero matrix and I denotes (N x N) unit matrix.
It is convenient to substitute

=8 4.6
v [a' + n] (%9
playing the role of "residuals", and

B =[01]} (4.7
so that eqn. (4.5) can be written us ;
x =AX+Bv (4. 8)
Eqn. (4. 8) has the form of condition equations with parameters (Uotila, 1967).

Here, for leas’-squares adjustment, we minimize

v'Q? v = minimum (4.9)
where Q is the covariance matrix of the v-vector and may be defined as a J
} partitioned matrix
Q - Ces Cus! (4. 10)

Cet's Catst +Cyy
) where Cgq =cov (8,8), Csg¢ =covV (8,8")
) C,, =cov (8',8), Cy, =cov (m,n)
C,t'=cov (8',8')

4 The covariance between two functions, say f and g, is defined as

e e e

" cov (f,g) = E{[f-E(f)) [g-E(g)]"} (4.11)

Thus using the definition above and recalling the assumptions given by eqns. (4.2)
and (4. 4), we obtain
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Ce = E{88'}, Cg¢ = E{s'8'"}, C, = E{nn'}
Cest = E{88'"}, Co¢ = E{s'8"} (4.12)
The minimization of eqn (4.9) is equivalent to

¢ = 2v QP v-K' (AX+Bv-x) (4.13)

where K is the column vactor of correlates or Lagrange multipliers. I order to
minimjize eqn (4.13) we proceed as follows:

..a_.! = vOo?! -k’ =

3v v Q K' B 0

Q¢ v

— 2 - A = ( .
= K (4.14)

AX+"n -x

0

The solution of the equations above : jeid;

X = [A(BQB) AP AY(BQB') ! x
v = QBY(BQR")™ (x-AX)

Substitute eqns. (4.7) and (4.10) above for B and Q respectively to obtain

X = (A'C'A)? ATC x (4.15)
8 Co' CH(x-AX)
v —Ls'-o-n] x-AX (4.16)
where C = Coy +Cpa (4.17)

By using the definition (4.11), with eqns. (4.2) and (4. 4), it can be easily seen

Cxx = C = Cl’;' +Cnn
(4.18)
Cax = Cont Cu = Cots
so we can write for 8 given by eqn. (4.16)
8 = Cix O (x-AX) (4.19)
The errors of estimations are (Moritz, 1975, pp. 32-33)
Exx = (ATCxr A)? (4. 20)
Euw = Cos ~Cox Crx Cxs + HAE A'H' (4.21)
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where H=C, C3'

If we assume there are no parameters (i.e. X =0) in the adjustment, as
we assumed in the second and third chapters in the determination of gravity
anomalies and undulations from Geos-3 altimeter dzta, then we can write (c. f.
© m. (2.4)) for the signal

8 = Coy Crx* X (4.22)
and for the errors on signal
Ese = Coo~Cux Cia Cu (4. 23)
The equations given in this section solve our problem in the space domain.
The inversion of the covariance matrix of observations C,,, which has a dimen-
sion equal to the number of observations (N), is very costly and time consuming
for large N. Therefore, we seek another solution, which is faster and ¢ ‘eaper

than the space domain solution, i.e. the frequency-domain solution. It i» this
alternative which is to be discussed in the next sections.

4.2 Frequency Domain Collocation

In the previous section we derived the space domain equations of least-
squares collocation. M what follows, we will derive the corresponding equations
in the frequency domain. Thus the least-squares collocation is carried out in the
frequency domain and solved for the desired quantities. The application of the
inverse transform (Fourier) ylelds the corresponding desired quantities in the
space domain. All the required transforms are carried out by the fast Fourier
transform (FFT) to facilitate and speed up the computations.

We have defined the discrete Fourier transform (DFT) pairs by eqns. (1. 65)
and (1.66) in section 1.5. Here we use a slightly different definition for the DFT
pairs expressed as follows:

Nl
X, = =% ), x(k) exp(-i2nkn/N), (direct Fourier transform) (4.24)
k=0 n=0,1,...,(N-1)
N—1
x(k) = /—;‘T— 2 X, exp (i2nkn/N), (inverse Fourier transform) (4.25)
k=0 k=0,1,...,(N-1)
The equations above are derived from eqns. (1.65) and (1.66), first by multiplying
both sides of (1.65) by /N in order to obtain
N~=1

_ Do L _
Y, = /NX, i Xox(k) exp (-12mkn/N) (4. 26)
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and then substituting X,' = Y,//N in eqn. (1.68) to obtain

N )
x(k) = 71N.Z° Y, exp(i2nkn/N) (4. 27)

Eqns. (4.26) and (4. 27) are equivalent to (4.24) and (4. 25) respectively, and can be
soen followiug the replacement of Y, by X, above.

Eqn. (4.24) can be written in a matrix form as
X = A X (4. 28)

where X = [Xo» XyseorsXuml's X = [X(0), X(1)y...r x(N-D) ]

e Moo b-:ﬂi].O/d“.“.” e-am(N-z)o/n
1 |emioaM g-3mu/ o3 Ti(N=1)1/
A1= ! 5 LRC A B I B A ) § (4‘29)
FMON-YN SITAG-UYAN 3T y(v=1)(n=1)/ N
Here A, is the transform matrix and equal to the Fourier matrix defined by
F = [Fal = —= [exp(-2n kn/N)l, 0 sk,n < (N-1) (4. 30)
/N
30 we can write Ay, = F (4.31)

As we mentioned beforz, we used the space domain equations (4.22) and (4.23) for
the determination of gravity anomalies and their errors from geoid heights. Now
we can derive the corresponding equations in the frequency domain. The Fourier
transform pairs for observations, signals and covariance matrices will be denoted
as follows.

(4.32)
Clx"‘"’ CSX! Cxx «—> Cxx, Eu > ESS

The vector of measurements (x) ard the vector if signals (s) are trans-
formed into the frequency domain through

X =Ax, S =A, 8 (4. 33)
where the transform matrix A, is defined by eqn. (4.29) being equal to the
Fourier matrix defined by (4.30). In order to obtain the frequency representations

of the covariance and cross-covariance matrices Cyx, Css , Coex, We recall the
definition of covariances and cross-covariances given by eqn. (4.11)

Cu = E{[X-E(X)] [X-E(x)T (4. 34)
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where (t) denotes the complex conjugate and transpose operation. Substitute
eqn, (4.28) for X in (4.34) to obtain

Cxx = E{[Ay% - E(Ax)] [A;x - E(Ax)]T)

= A Ef{x-E(x)][x-E(x)] ] A{"

Since the expectation of the terms inside the braces is equal to Cxx, the
covariance matrix ¢f observations, we can write

S L

Cxx = Ay Cxx A1+ (4. 35)
Similarly, we can prove that

Csx = A; Cuy A1+ (4. 36)

Cw = A Cu AT (4.37)

Css = A, Cus AT (4.38)

Ess = Ay K, A1+ {4.39)

Having transformed the space domain quantities into the frequency domain,
we can write the frequency domain collocation solutions corresponding to eqns.
] (4.22) and (4.23) of the space domain solutions

S = CsxCuk X (4. 40)

Ess = Css -~ Csx Cxx Cxs (4. 41)

frequency domain, we can find the signal veztor s and its error E,s in the space
domain by applying the inverse transform as explained below. From eqn. (4.33),

Following the computation of the signal vector & and its error Eg in the
FL we can write

\ 8 = AT'S
. Since A, = F is an orthogonal matrix (recall the orthogonality relations of ex-
ponential functions as explained in the first chapter), we have for the signal

- s = Als (4.42)
v and similarly for the error matrix
| _ ¥

E, = A1 Ess A1 (4.43)
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We see from eqns. (4.40) and (4.41) that we still have to invert the matrix
Cxx» Which has dimension (N x N), N being equal to the total number of obser-
vations. We transformed everything into the frequency domain to avoid the
inversion of the covariance matrix Cx,, which also has dimensior (N x N). The
computations of C,, Csx, and C,s from eqns. (4.35), (4.36) and (4.37) respec-
tively, require the product of three (N x N) full matrices in each case, So if we
go blindly, we will have to perform many more computations compared to the
direct collocation solution in the space domain. However, we will show later
that a frequency domain matrix (FDM) is diagonal if the corresponding space
domain matrix (SDM) is circular, and asymptotically diagonsl if the 3DM is
of the Toeplitz form. In addition, we will show that u.. ulagonual <..ements of
the FDM is the Fourier transform of the first columun of th corresponding SDM.
Hence, we do not have to compute the FDM by the dixroct transfo.nation of the
corresponding SDM, for example, as in eqn, (4.35), which requires the product
of three (N x N) matrices,

4.3 Diagonalization of Toeplitz and Circulant Matrices

Suppose we have a stationary covariance function and equally spaced (or
sampled) observations along a profile, then, as we explained in the third chapter,
the covariance matrix of observations are of the Toepiitz form. In addition, if
this profile forms a complete circle, then the resulting covariance matrix is

circular. /. circulant matrix, say T., i8 one having the form
S T .
tN_l to tll . . L] tN_.a
Tc = Eﬂ_a tﬂ_i t.o o« 8 s tN_a (4. 44)
L'H ta ts . L . % B

The circulant matrix T. is a special type of the simple Toeplitz matrix Ty_,
given by eqn. (3.1) such that t_, = t_,, k=1,...,(N-1). The diagonaljzation
of T. and Ty_, will be given in order to see that the eigenvalues of T, and T,

(asymptotically) are the diagonal elemenis of their frequency domain repiesentaticus.

4,3.1 Diagonalization of Toeplitz Matrices

As in the third chapter, we denote a simple Toeplitz matrix by Ty_.,. The
dimension of Ty_, is (N x N) and defined as in eqn. (3. 1) such that its elements

on symmetric diagonals are identical and its diagonal elements are equal. Asrfume
the covariance function t, of Ty_; is absolutely summable, i.e.,

[e=]

L Il <= (4. 45)

k==

then, for large N, Fuller (1976, pp. 133-138) proves that
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FI ooy F & Diag (Mo Aveees Avm) (4. 46)

where F is defined by eqn. (4.30) and ), are the eigenvalues of T,. The
eigervalues (1,) are defined as follow::

Ay = 20 t(w,), w, = 2nn/N, n=0,1,...,(N-1)

where t(w,) is the spectral density of the t, expressed as

@©

t(w,) = ‘21;k Ew t, exp (-iwyk), n=0,1,...,(N-1) (4. 47)

‘Thus, we can write for eigenvalues

=]
p
A, = .):_:“ W e= TN 0 1L (N (4.48)

Since we cannot carry the summation in eqn, (4.48) to infinity, and becasue

t, is absolutely summable, i.e. t, gets smaller with increasing |k|, we will
assume:

1) t, =0 for k> ~Nl: we can write for the eigenvalues of Ty-,

Nl
An o~ k=-%_;:-1)t* e—taﬂin/ﬁ = to + kL"l (tk "'i’N-k) e-izﬂkn/‘V
Hence A= \/'N'-Ftt_' (4. 49)

where A = [Ao,A1,.eesdal’y t° = [to, (4 +thod)y (tatthoz)y ...y (tvoy+ty)], and
F Is the Fourier matrix defined by eqn. (4.30).

In the following sections, we will come across products such as FTy-, rt
instead of F"'TN-I F as given in eqn. (4.46). Therefore, we will define the

vector of the eigenvalues of FTy_, Ft as follows:

A =/Nrte (4. 50)

(2) t, =0 for k> m, where m < N/2: with this assumption, Ty_, becomes
(to be denoted as Ty_,)

Ty ceneety totoge.estoy (4.51)
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If we fill the zero elements of Ty., in such a way that the resulting matrix,
say T., is circulant, l.e,

’_to t_llcuoot_. 00. t..qootl‘ —CQ c\_o-a.cﬁ_ﬂ
h to t-..'Q:cc.tg 9“'1 cO""cN-Q

TC= E‘con.-onootto t_lao.ooo::o = : (4.52)
p.,:-oococct‘l tO oc-o‘noct_n :
Li_loonc..::..'o t‘........‘tod Lél Cg.-..co—

Where t_k fO!‘ k = 0, 1’0 L] ’m
Ck = tN_k fOI‘ k=(N-m),uo¢’(N—1) (4.53)
lc otherwise

then Ty_, and T: are asymptotically equivalent which can be proven as follows

LR UI]® + el

1

N «
< lim B 24 Jto]®)] =0
tim T 0 Ctl® 4 Jed®)

N = =0

lim [Ty, -Tc]” = lim
N - N

- 00

from the sumnisbil .ty of covariance functions. Thus

lim I;I“J-l -Tc' = 0, 1.e 1im ;l-‘u = Tc (4.54)
N=

N =son

In what follows, we will see that the diagonalization of a cirmtlar matr:x is
gimple and its eigenvalues can be found easily. Since T, is asy:aptotically
equivalent to the circular matrix T¢, the eigenva.ues of TN-1 are equal to those
of Tc and T\_., con be diagonalized similar to T..

4,3.2 Diagonalization of Circular Matrices

We defined a circulant matrix T. by eqn. (4.44). The eigenvalues, A
and eigenvectors, Y,, of T, satisfy the following equation,

ny

Te* Yy = A* Yoo n=0,1,...,(N-1) (4.55)
where Y, = [¥i5y Vagseeo » Y(N-1) 1 ] . Let r, be a root of the equation =1 such
that

r, = e‘”““/“, n=0,1,...,(N-1) (4.56.2)
and let us set

Y = T, jom =0,1... ., (N-1) (1. 5000
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then eqn. (4.55) can be written

[o] [0}
) I'n
1
ry r, ~
T.| = Al (4.57)
I‘nN =1 rnN it

Now gubstitute eqn. (4.44) for T; to obtain

-1 0o
co rn°+c1rn1+anaon-- +Cn_.1rn~ =Anrn

1, Nel 1
CNoqXn® + CATy F eeeess + Oy Ty = ATy

(4. 58)

o 1 T N1 _ T oN=1
C; Iy +CaTp + cecvee. +Co Ty = Ay Py

and multiply the firs£ equation of (4.58) by r: , the second by r,',' -1, and s¢ forth.
Thenuse r¥** = r,’ in order to see the equality for each equation if

i A = gi‘: ck® I (4.59)

The substitution of eqn. (4.56.a) in (4. 59) yields:
Ne=l

A, = kZO oy e-13Mn/i n=0,1,...,(N-1) (4. 60)

Hence, the characteristic vectors are given as

Yo = [1,27 2T e M-y n=0,1,...,(N-1) (4. 61)

and the orthonormal matrix, which also diagonalizes the original mairix T¢, of 1
} eigenvectors is 5. "n as :
¢

} F = 'fl'ﬁ*[Yo, Yyseeos Yol (4.62)

Eqn. (4.62) is equivalent to eqn. (4.30) defined previously, i.e. the Fourier matrix.
Since F is the orthonormal matrix of eigenvectors, we can write (Byron et. al.,
1969, pp. 120-124)

! F+TCF = Diag (AO’ Al,-ou, AN_.]_) (4.63-a)
; Hence,
I‘, &= [ko, Al,coo’ AN-J;]T = /F.F.E (4‘..63.b)
” Here F+ denotes the complex conjugate transpose of F as usual and ¢ is the first
row (or column) of T.. Similarly, the diagonal elements of F T, Ft are expressed

\ as follows

A =/Nrte (4.63.¢)
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Thus we have proved that the Fourier matrix (F) given by eqn. (4.30) is
the orthonormal diagonalizing matrix formed by the eigenvectors of eit' «r a
Toeplitz matrix or a circular matrix, The eigenvalues can be computed simply
by eqn. (4.50) for Toeplitz matrices and by eqn. (4.60) for circular matrices.

4.4 Frequency Domain Collocation on Onne-Dimensional Region

4.4.1 Large N and the Classical Wiener Filtering

In section 4.2 we derived the least-squares collocation expressions in the
‘ frequency domain, and in the previous section we showed that the transform
matrix A, = F defined by eqn, (4.29) is, in fact, the diagonalizing matrix of
the covariance matrix Cx, Cxs» Cax. Therefore, we can write for the frequency
domain collocation covariance matrices Cy, Cxs, Csx, and Css.

XX XX Xx
Cuxx Diag (Ao s Ay seeer Avoy)

Diag()\xz,, A:')---o M”—l)

G
)
It

(4.64)

Q

o

>
I

Diag Aoy A7yeres Ama)

= Diag(l‘o‘, A;‘,.-o, ;\‘;_.1)

c
a
!

where )\:x, A,,", /\:,x, )\;’, n=0,1,...,(N-1) are the eigenvalues of Cix, Cxs» Cux;

and C,, respectively. Thus, we can write for the frequency domain collocation
solutions (expressed by eqns. (4.40) and (4. 41)) {

Sa = A X, /A (4. 65)
n=0,1,...,(N-1)
(Ess)n = Ay = Ap An /A, (4. 66)

where S, is the n-th signal of S vector and (Ess), is the corresponding error, and :
X, is the n-th value of X vector, l.e. S =[S0,5;,.0.,Sv_al'y X =[Xo»XyyeoerXnyl"

The eigenvalues in eqn. (4.64) are computed from eqn. (4.50) when the cor-
responding space domain matrix is of the Toeplitz form and from eqn. (4.63.c) |
when it is a circular matrix, The equations given by (4. 65) and (4. 66) lead us to |
the very well known '"the classiocal Wiener Kolmogorov filter",

-

Having found S in the frequency domain we can easily obtain the corresponding
s-signal vector in the space domain applying the inverse transform as expressed by

L, eqn. (4.42). The computation of the error matrix Ess from Ess through eqn. (4.43)
is also very simple: Consider the diagonalization of the circular matrix Tc¢ by
- eqn. (4.63.a). Now suppose the dirgonal elements of F*Tc F, i.e. the eigenvalues

X,, are given and the circular matrix T, is asked. Then the first row ¢ of T
» is found from (4.63.b) by multiplying both sides of the equation from left side by

Ft to obtain
~104-
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Since Ess = FEss FT has a similar form with (FTFt) in addition to its
diagonality, the error covariance matrix of signals (Ess) i8 circulant and its
first row S, is computed as follows

3

S, ='7%§ Fa (4.67)
where d% = [do, d; ,,.., &~ ] are the diagonal elements of Ess. The com-

putation of the remaining elements of E,, is straightforward by recalling the
definition of circular matrices given by eqn. (4. 44).

Thomas et, al. (1976, pp. 3-4) relates the overall estimation error to a
single quantity, namely to the rms estimation error, 0o, defined by

N .
os“%mss’? “LNKZI E{(sr-85)"] (4. 68)

where N is the length of the s-signal vector to be predicted
St is the vector of true signals.

Eqn. (4.68) is equivalent to

O's"i = %f Trace ( Es5) (4.69.2)
br by the Parsenval's theorem mentioned in section 1. 3.4, it is equivalent to
3 1 Py
o’ = < Trace (Ess) = ) X (4. 69.b)
k=0

Thus we have completed the solution of the s-signal vector and its error. The
total number of computations for the frequency domain least-squares collocation
explained above is proportional to N log ;, N multiplications and additions compared
to N° in the case of the space domain least-squares collocation.

Moritz (1967) imtroduced the frequency domain method explained above as
""the least-squares filtering'", and Sjoberg et al. (1977) applied it for the prediction
of mean free-air gravity anomalies from altimeter data along one arc at a time.
In his computations, Sjoberg assumed the covariance orcrnss-covariance t, to be
equal to zero for k> M (M = 70) compared to t, =0 for k> N in our solutions.

Following the derivation of the frequency-domain algorithm, it was necessary
to test it. In order to do so, we selected two arcs, which are the 11-th and 12-th
arcs of Figure 2.2, Our aim was to determine free-air point gravity anomalies
from altimeter data at data points along one arc at a time, We followed the com-
putational steps as outlined below:
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(1) The data vector of geoid heights, say x(k), k=0,1,...,N-1, was
transformed into the frequency domain by eqn. (4.33).

(2) The covariance matrix Cy. of geoid heights and the cross-covariance
matrix C,x between observations (geoid heights) which were computed by using
the empirical covariance functions given by the subroutine COVA of Tscherning
and Rapp (1974) and signals were transformed into the frequency domain by
eqn. (4.50).

(3) The frequency domain representation of the signal vector was computed
by eqn. (4.65).

(4) Finally, the desired s-signa: -
by eqn. (4.42).

. ‘n the space-domain was compated

For our examinations, we first considered a 682 km long segment of the
11-th arc and denoted it ARC 11-A, and a 1380 km long segment of the 12-th arc
and denoted it ARC 12-A. Secondly, we considered Arcs 11 and 12 in their total
lengths. These arcs and the statistics between the space domain collocation
solution (SDCS) and the frequency domain collocation solution (FDCS) are described
in Table 4,1, The free-air point anomalies determined by the SDCS and FDCS
are shown in Figures 4.1, 4.2, 4.3, and 4.4 for the arcs 11-A, 12-A, 11, and
12 respectively, Table 4.1 and Figures 4.1 to 4.4 do not include about 1, 5% of
predictions made at the beginning and at the end of each arc. We deleted them due
to their large differences from those of SDCS. This big difference is caused by
the negligence of off-diagonal terms in FDCS known as "edge effects' (Thomas et.
al., 1976).

Table 4.1. The Statistics Between SDCS and FDCS Along
The Arcs 11-A, 12-A, 11, and 12.

ARC Latitude Longitude Length{No. of | RMS Mean Max.
No. Obsns. | Diff. Diff. Diff.
®,, ¥ 5 (Deg.) A Ay (Deg.) (km) (mgals) | (FDCS- | (FDCS-
SDCS)| SDCS)
11-A {12,848, 18.197(309.957, 306.844| 681.9| 50 1.8 0.1 - 4.3
12-A [-0.024, 10.8811146.530, 140.565]1380,2| 100 11.7 -0.3 -42.3
11 (12,848, 39.751 !309.957, 291.1943511.2} 254 2.6 -0.2 8.4 |
12 |-0.024, 32.466 {148,530, 126,82314162.3! 300 5.3 -0.6 -33.6 ;
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4,4,2 Small N and the Windowed Frequency Domain Solution

In the preceeding section, we as. .ned a long data length (large N) over
an interval longer than correlation distances and used asymptotically equivalent
expressions for the eigenvalues of the space domain covariance and cross-co-
variance matrices in order to compute the corresponding asymptotically diagonal
frequency domafn covariance and cross-covariance matrices. In the case of a
short data length and small N the asymptotic equalities mentioned above are
no longer valid. Therefore, in this section, we will introduce the windowed
frequency domain collocation algorithm. This algorithm retatns the necessary
computational speed to solve large problems but uses data given over an interval
shorter than correlation distances. The frequency domain representations of
covariance and cross~covariance matrices become band-diagonal here and
diagonal in the limit as N gets larger and larger. By 'windows' we try to
minimize the number of super-diagonal bands, which is proportional to the side
lobe energy (for the frequency domain representations of windows see section
1.7.3.1) of the data spectrum(Heller et al., 1977, p. 13). In what follows, we
transform the "windowed data' into the frequency domain and perform our
solutions there in order to compute the s-signal vector and the E,,-error

covariance matrix, The solution of the s-signal vector given by eqn. (4.22) is
achieved in two steps:

- the solution of y =Crrx
- the solution of 8 =Cux Cir X = Cax ¥

4.4.2.1. The Computation of y = Cxr X

We want to solve a system of equations

Cxx*y = X (4.70)
for the y-vector. Since Cy, is usually a full matrix, this solution would require
approximately N°® computer operations. In order to reduce the number of com-
puter operations, we first multiply the data vector, x, by an appropriate window

matrix to control the sidelobe energy of the spectrum of the data vector, then
transform it into the frequency domain, i.e.

X =A,"x (4.71.a)
and for the frequency domain representation, Y, of the solution vector, y

Y = (AT oy (4.71.b)
where As is the transform matrix defined as

Aa = Fw (4.72)
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Here F is defined in eqn. (4.30) and w is a window matrix (usually diagonal).
For the covariance matrix of X (analogous to thc derivatiun of eqn. (4. 35)) we
can write

Cxx = A? C;x AI

Fw Cxw F+ (4. 73)

Hence eqn. (4. 70) takes the following form in the frequency domain
Cx Y = X (4.74)

We solve the system of linear equation above for Y, and we compute the y-vector
in the space domain from eqn. (4.71.b),

y = Al v (4. 75)

w Fty

Why solve the system of linear equations in the frequency domain such as
defined by eqn. (4.74) instead of solving the corresponding equations in the space
domain such as cefined by eqn. (4.70)? The reason is that Cyxx is nearly band-
diagonal and the solution of eqn. (4.74) can be carried out inexpensively by an
efficient algorithm such as the banded-Cholesky decomposition (Forsythe et al.,
1967).

In order to show the almost band-diagonal form of Cxx we write eqn. (4.73)
in the following form (Heller et al., 1977, po. 55-59)

A A A 1' T
Cxx = 2K Fay W Cyx W Foy K (4. 76)

where: K is the sampling matrix defined as

1 0 0'.00000 0 0

0 0 leeessd0 0 0
K =|: (4.77.2)
0

0 0-0-..-0 1 O (Nsz)
Fyy is (EN x 2N) Fourier matrix defined as

Fan = {(Fan)a } = ﬁlN [e™13Mkn/38) g <k s (2N-1) (4.77.D)

w is the (2N x 2N) extended version of the w window matrix and defined as

A W (il
w = - (4.77.¢)
& 2 2N x 2Ny

Here, w is a diagonal matrix with diagonal elements (wg, Wy,s..y Wn_y)
defined by the window function, and 0 is (N x N) zero matrix,
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é,‘, is a (2N x 2N) circular matrix defined as
|
A CXX CXX
= 4,77.d
Cr [c,', cx,J (4.77.4)
Here Cix 18 a Toeplitz matrix with elements

Cxx[(£-N)*At] for £> 0
Cxx(L°At) ={ 0 for £=0
Cxx[(£+N)*At] for £<0

By substituting the definitions of K, Fa, w, and éxx above in eqn. (4.76),
we can see that eqn. (4.73) and (4.76) are equivalent. Eqn. (4.76) can also be
expressed as

A A A
Cux = 2K gy W Fa.'r.« Fan Cxx F;'; Favn W Fg: K'
AA Ao
= 2KWCux W K (4.78)
where A A A A +
W = FanWPFan, “xx = FayCxx Fan (4. 79)

We have shown in section 4.3. 2 that the frequency domain re
a circular matrix is diagonal as given, for example, by eans. (4.6
From eqn. (4.63.a) we can write for the circular matrix T

T. = F*Diag (AosAyseseslya) FT (4. 80)

If welet N goto 2N, then T: of eqn. (4.80) and \%’ of eqn. (4.79) have similar
forms. Therefore, W is also circulant with the elements

[V'{'].m = Qyon 0 < k,n s (2N-1) (4.81.2)

we can write for the first row, say {2, of \l’\V
—

Q = (00,01,.0.,y) =/§%Fat (-‘(’)—"-\ (4.81.b)

ag can be derived from eqn. (4.63.b), where (_vg) is the vector of the diagonal
elements of % given by eqn. (4.77.c). It also = follows directly from eqns.
(4.63.a-c) that Cy given by eqn. (4.79) (recall that Cy Is circulant) is
diagonal as expressed below

A
CXX = Diag (%,u&,-..,wa&{_l) (4.82.3)

Actualiy, the w,'s are the eigenvalues of éxx given in eqn. (4.77.d) and they can be
computed using eqn. (4.63.c)

w = /IN Fh c (4.82.b)
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4 A
W= (WoyWyees,wynar) 18 the power spectrum of Cixxy and
¢ Is the first column of the circular matrix
Now substitute eqns. (4.77.a), (4.81.a), and (4. 82,a) for K, \3\V, and
Cxx respectively, in eqn, (4.78) and use some simplifications tv obtain
AN~ .
o < j,k 5(N-1)
) = 2!‘;0 g oy Qpoge @y .y = Oun-t (4.83)

where Q and w, are defined by eqns. (4.81.b) and (4. 82.b), respectively, and
Q 4 represente the complex conjugate of Q ¢+ The equation (4.78) is now a very
efficient formula for the calculation of Cy . This comes about because when we
select a window which has a mainlobe and a series of very small sidelobes, then
Cyxx has an almost band-diagonal structure with some elements in the upper right
and lower left corners. Hence, the solution of eqn. (4.74) can be carried out by
the band-diagonal and corner implementation of the Cholesky decomposition, which
requires numerical operations proportional to (Ns * N), where N; is the width
of the band, compared to N° for conventional solutions.

The out-of-band elements of Cxx can be made very small by selecting an
appropriate window and matrix bandwidth (usually less than 10) so that we can
neglect the out-of-band elements in our solutions. If Cxx with zero out-of-band
eclements {s denoted by C., then we can state that Cg I8 an approximation to
the exactly transformed mairix Cyx. This approximation affecis the solution
vector y of eqn. (4.70). The magnitude of the error on y can be controlled by
the choice of window and matrix bandwidth as mentioned above. The approximation
above is the only error introduced in the calculation of the y-vector.

There are many windows one can use for the purpose of minimizing the apj rox-
imation affects. Here we will only examine the Kaiser window which has proved to
be very useful in signal processing applications. The Kaiser window is expressed
in the space domain as follows:

we(n) = I (8/1-(n/N)®)/1c (B), Ny S0 S N (4. 84)
N-1)/2 if N odd xjk
h - , -
where Ny N/2 if N even lo(x) Z W(
and 8 is a constant that specifies a frequency response trade-off between the
peak height of the sidelobe ripples and the width or the energy of the
mainlobe,

The space domain and frequency domain representations of the Kaiser window for
B =2,4,6, and 8 are shown in Figure 4.5,

Having examined the Kaiser window, we return to the e’ements of Cyxx defined

oy eqn. (4.83). The right-hand side of this equation is the convolution of w«y with

the weighting function

~112-~




PN —T— T ——w e

RLONTY W1ED
[ a0 S I SN U 00°0,

[ [ ] -
9°8 *win // 0°8 =¥136 \-
s
l» l®
3 E
» >
=3 Wz
-m =
g
= |-
F H
; ;
i €
AOOUIN ¥ICINN 8 ICNBIEN LIMIGNLI 4 MOONIM ¥3SIUN rm ROONIN VISINN IO FSRDISW LININ0S t MDONIM H3SIHX rm
‘g puR ‘9‘p‘g =g JOJ MOpUIM Iasie o7} JO suoljBussaidsa urwwop Aouonbax}] pue urewicp eoeds oyJ, °g°§ oandid
Sacagl eeceat ek -u.....uumcw.:ld- [ X J 3, 0SS 90°35c 09 .:-wmmm. -._“ml. 2008 ¥
3 02 =M1l s
H /
e T
s 3
; t ;
;! s
s H
i [
= Lo
T :
™ >
3 s
2 T
ROOKIR ¥ISINN 40 PPMGSEN ANONONS : MOONIM MISIUX S FOONIN HISIVY 40 FSNOJSIN AONINOMI H MOONIM H3S1E¥ W
s Ml \blb» " i o P B 1'%

-113-

iasatarh oia Nafl ke kg

Ja da o

ik o]




et
I

P, (k) = (4. 85)

-3y nl,—ak
This welghting function is very small and consequently negligible when |k-j|> Ny
and |k-j|< (N-Ns) which correspond to the product of a mainlobe and sidelobe or
two sidelobes, Tt is for this reason that we have tried to find a window function
with very small sidelobes, As a result, we only compute the band-diagonal and
upper right and lower left corner elements of Cyxx shown in Figure 4.6, Hence,
we have for the super-diagonal elements

aN=1
- A 0 <k 5 (N-m-1)
[Caxlk Jen 2 !’:ZO Ql/-aknll-e(kﬂ) Wy 0 “m= N (4. 86. a)
and for the upper right corner elements
= 0 ks Ng
[Cxdi,y = 2 L Q. By @y {(N-Ng+k)5j - N (4.86.b)

The lower diagonal elements of C;, are just the complex conjugates of the corres-
ponding symmetrical elements of the upper diagonal elements.

If we let w (window matrix) go to I (identity matrix) and Nz go to zero, i.e.
only the elemer ‘s of the main diagonal are retained, then the algorithm presen‘ed
above reduces t. ''the Generalized Wiener Filtering' described in section 4.4.1,

Np+ 1 Ns +1

Figure 4,6, The structure of C,x under Fourier transformation.
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4,4,2,2 The Computation of 8 - (*y

For the computation of (Cex* y) we will utilize the fast Toeplitz matrix
multiplication. Thus, the y-vector will be multiplied by the Toeplitz matrix
(.x such that this algorithm will take many less operations than the standard way
of multiplying the y-vector by C.x. Suppose the cross-covariance matrix iy
has dimension (M x M), then the matrix-vector multiplication requires roughly
(M+ N) multiplications and additions. If M is very small compared to N then
any classical matrix-vector muitiplication can be used. However, if M is large
then the fast algorithm presented below would be more efficient.

In the preceeding sections we assumed M = N so that C,. is a Toeplitz
matrix. If M < N, then C,, is a partition of a Toeplitz matrix, In the case of
M < N we extend C,x in such a way that the resulting matrix, to be denoted as
C.x, i8 a square Toeplitz matrix. The first M elements of the product (Eux' v)
contains the desired product (Csx*y).

In order to achieve a fast multiplication of (Csx*y) , we imbed Cs ina
(2N x 2N) circulant matrix, say Tc, as explained below. The cross-covariance
function ¥s(k*AY) between signals and measurements is extended to the range
-(2N-1) = k S (2N-1) by the definition
Yax (ke AY) for 0 < k s (N-1)
Eax (keA¥) ={ 0 for k=N (4.87)
Yax [(k-2N)*A¢] jor (N+1) <k < (2N-1)
and Esx(-K*AQ)=E4x [(2N-k)*A¥ ] for 1 < k < (2N-1)
where Ay is the spacing between s and x. The matrix T, with the elements
(T = Eax [((K=j)AY] (4. 88)

is circulant with the property.
n () - (%)

For the fast matrix-vector multiplication, we transform the vector ( %’) and
T; into the frequenc; domain as explained in section 4.2 (analogous to eqn. (4.33)
and eqn. (4.63) for(0 yand 1. respectively) to obtain

Y = [YO’Yltc--,YBN-llT = F2N<g> (4.90)
and ]
Tc = Fon T FJ‘N = DIag (AoyAyseeersAan1)
(4.91)

A= [)\Oo)uv“-’ABN-l]T = V2N F;N c
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where Fyy I8 defined In eqn, (4.77.Dh) and C is the first column of Tc. Hence,
we can write —

T Y = qu(c'xdy) = [YoAos YiAyse ooy Yan-1 Agn—a] (4.92)

Finally, we apply the inverse Fourier transform to cbtain

Ao Yo
(c"(‘l y) = vl kngl (4.93)
Kar:—1Ya~-1_

The first M elements of the product (C,,*y) is the desired product (Csx*y),
so multiplication is completed. The number of operatiors of the entire procedure
amounts ot three FFT applications, therefore, it is proportional to (N log; N).

i 4,4,2,3 An Application of the Windowed Freguency Domain Collocation

In order to demonstrate the efficiency of the windowed frequency domain
L collocation algorithm described above, we selected an arc of altimetry (12 th
' arc of Figure 2,2), which is 4162 km long and has 300 observations (N = 300),
and computed the (5°x 5°) free-air mean gravity anomaly of block 711 oy = 10°,
©s = 5% X = 137°, A= 132°) shown in Figure 4.5. We also computed the (1° x 1°)

[ anomalies inside 711 from the geoid heights along Arc 12 by the following techniques.
i
t
:

180

] Figure 4,5. The locations of Block 711 and Arc 12,
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Here mean anomaljes were computed from eqn. (4.22) as explained in
section 4.1,

The y-vector and C,, matrix of eqn. (4.22) were transformed into the
frequency Jdomain by eqns. (4.33) and (4.50) respectively, to obtain

[Dia-g (AO!A]_ s--osM-l)l-l X

1]

Y = Cu X

1/A.o 0 e ss oo 0
0 1/A.e00vee. O

X (4.94)
0 0 .eeeeene /2

then an inverse fast Fourier transform was applied to Y to yield -

y=Cix=Fy (4. 95)

' (R

Finally, we computed the s-signal vector by
8 = Csx ¥y

where s represents the signal vector of mean anomalies and C,, represents the
cross-covariance hetween mean anomalies and observations (geoid heights).

The x-vector and Cy, matrix of eqn. (4.22) was transformed into the frequency
domain by eqns. (4.71.a) and (4. 73) respectively, to form the following system of
iinear equations

!
Cx Y =X (4.96) i‘
We solved the linear equations above for Y using the Cholesky's decomposition as «
explained in section 4.4.2, then we computed y = Cxx_ *x vector by an inverse
transform defined by eqn. (4.75), i.e.
y = Ww F+ Y

Finally, we computed the s-signal vector of mean anomalies by

8 = Cex ¥
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Table 4.2. Mean Anomalies (1°x 1%) from the GEM-9 Coefticients, from Least

The results of the three solutions explained above are described in Table

Squares Collocation, Wiener Filtering, and Windowed Frequency

Domain Collocation by Using Undulations Along Arc 12,

BLOCK No. =711
Size | LAT (NW)| LON(NW){ Ag(mgals)| Ag(mgals) | Ag(mgals)| Ag(mgals)
(Deg.) (Deg.) (Deg.) Wiener | Windowed
GEM-9 |Collocation | Filtering | Freq. Dom.
Collocation
5x5 10 132 20.5 17.3 16.9 17.2
1x1 10 132 20.6 17.7 17.7 17.5
133 19.2 15.4 15.1 15.5
134 17.8 13.2 12,1 13.5
135 16.5 11.1 10,5 11.4
136 15.1 8.9 8.3 8.8
9 132 22,3 20.0 19.1 19,7
133 20.9 17.6 15.9 17.5
134 19.5 15.2 13.9 15.2
135 18.1 13.0 12.3 13.0
136 16.6 11.0 10.8 10.8
8 132 23.5 22.0 21.8 21.7
133 22,2 19.6 19.4 19.4
134 20.8 17.3 17.2 17.2
135 19.5 15.3 15.1 15.2
136 18.0 13.7 13.5 13.6
7 132 24,2 23.5 21.0 23.3
133 23.1 21.3 20.7 21.1
134 21.9 19.2 18.9 19.1
135 20.6 17.3 17.7 17.3
136 19.3 16.0 17.3 16.1
6 132 24.5 24,4 23.8 24,3
133 23.6 22.5 22.3 22.5
134 22,6 20.7 21.0 20.6
135 21.5 19.0 20.0 19.0
136 20.3 17.8 19.7 17.8
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The RMS difference of 25 (1°x 1°) mean anomalies between least-squares
collocation and Wiener filtering is 0.87 mgals compared to 0.16 mgals between
least-squares collocation and windowed frequency domain collocation. However,
both RMS differences can be considered small con pared to the 15 mgals standard
deviation of the (1°x 1°) anomaly predictions. Here we have recovered about 3.5
mgal anomaly information with respect to the GEM ¢ surface. The small magni-~
tude of the recovered anomaly masks the efficiency of the algorithm. To achieve
a considerably higher magnitude we considered block 614 (¢y = 15°, ¢, = 10°,

A =139°% Ay =134°%), through which the 12th arc passes. Unfortunately we
recovered only 5.2 mgals with respect to the GEM 9 surface, so it did not help
us much to check the efficiency of the algorithm,

4.5 Windowed Frequency Domain Collocation with Sine-cosine Coefficients

In section 4. 4.2 we have seen that the frequency domain covariance matrix
Cxx of windowed observations has a bnad-diagonal shape with some elements in
the upper-right and lower-left corners. In addition, the elements of Cyx are
complex valued. In order to use the standard banded Cholesky alg :rithm for the
solution of the system of linear equations given by eqn. (4.76), we have to elimi-
nate the upper-right and lower-left corner elements of Cyx in addition to real-
valued band-diagonal elements. If we use a sine-cosine transform (Fuller, 1976,
pp. 135-137) instead of a Fourier transform, then the resulting new covariance

matrix Cxx is real-valued and band-diagonal (Heller et. al., 1977, pp. 38-39).

The sine-cosine transform enables us to delete redundant components from
the real-valued data at negative frequencies.

Consider a circular symmetric matrix, Ts, defined as follows:
[c(0) e(1)ernnenn.c(2) c(l)]

c(l) c(@...vieoe.C(3) c(2)
: (4.97)

c(l) ¢(2)eeen..n.c(l) c(0)
The circulant matrix Ts given above can be derived from T. defined by eqn.
(4. 44) by substituting C (N-1) =C (1), C(N-2) =C(2),.... The characteristic
roots of Ts are (Fuller, 1976, pp. 135-137)

(v-1)/2
c(n) cos 27nj/N for N odd
n=—(N—1)/2
A = .o §=0,1,...,(N-1) (4.98)
), c(mcos2mwnj/N for N even
B == R4

The equation above %1s a root for j =0 and (N-1)/2 repeated roots for
i=1,2,...,(N-1)/2, and finally another root for j = N/2 when N is even. We
can find two orthogonal vectors for each of these repeated roots. These vectors are
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= T]i‘?[l' 1,000y 1] for j=0

JE 2 (N-1)j
aJ = m[lpCOBZTI"IJ\I-'coszﬂﬁl,...,(’oszn N ]’ j=1’2".',N"(4.99.a)

a, = As(L,-41,-1,...,-1]  j=N/2and N even
/2 2 (N-1)j
bJ =m‘[0’sk12ﬂ'%, BIHZﬂT\Il....,SinZTT N ],j=1.2,.oo,N4 (4.99.b)

Ny = {(N—l)/z for N odd

h
where N/2 -1 for N even

Hence we can form an orthogonal matrix Q as given below
/2 A

where . rao//?'—
: if N odd

. if N even

and

M

S -

Since QT is composed of the N characteristic vectors given by eqns. (4.99.a)
and (4.99.b) we can write

Q TS‘QT = Diag()\O’A19'°-’AN-1) (4.101)
where A, is defined by eqn. (4.98).
There exists a linear relation between the characteristic vectors of Q and

the characteristic vectors of the F matrix defined previously. The F-matrix
given by eqn. (4.30) can be written as follows

fsao.o._’.'” 5”

-1

where f, = ‘F; [1, e"BTN g=Bm2IN  o=12T(N=1) /N |
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From eqns. (4.99.a-b) and (4.101) it is possible to write

a, = 715 [f; + &l
) i=1,2,.0.0, M (4.102)
by = 75 [f; - &yl
Using the relation given by eqn. (4.102), the Q matrix is written
Q=HF (4.103)
(N-1)/2 (N-1)/2
where Pk R ——
I | 1 N = odd
1 i Co . z(N—l)/Z
V2 I o S S (4.104. a)
. ! -
Pt : . g(N-l)/z
H = b = .l : "i" -
EE— I — ]
1 1. ro .l
/‘2 . . : : . . * s (N/z)"l
N . 1_i___ _i 1 N = even
N S J-@i ________ (4.104. b
i P 5
.. ] | .
L 0 f(N/z)-1
- ‘i i -
(N/2)-1 (N/2)-1

Now we can write down the frequency domain equations (windowed) when
the sine-cosine transform (Q) instead of the Fourier transform (F) is used
for the computation of y = Cy, x. The x-data vector is transformed into the

frequency domain by

X = Az x (4.105)
and the y-solution vector (unknown) by

Y = (Abyty (4.106)
where A, ie the transform matrix defined as

A, = HFw 4 107)

For the covariance matrix of X given by eqn. (4.105) we have (analogous to the
derivation of eqn, (4. 35))

Cxx

~xdh oLl

i

A, Cxx AT
HFWCxw FTHT
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or equivalently
Cxe = 2 K Hay Fan W Cux W Fab HE KT (4.109.a)

where K, Fgy» ev, and (“Ju are defined by eqns. (4.77,a-d) respectively, and Hx
is defined by eqn. (4.104,b) after letting N - 2N. Eqn. (4.109.2) can also be
written as

A T
2 K Han Fan W Fatq Fay Cxx Fat: Fay W FJN F;"N K

2KI‘IQNW(A:xwa:érNKT

I

Cxx
(4.109.b)

A

A A A +
where W = Fay W FZ-N. Cxx = Fanv Cxx Fan (4.109.c¢)

If we denote

! Wy = Hy W (4.110)

then we can write R
Cxx = 2K Wy Cax Wi K (4.111.3)

Eqn, (4.111.3) is similar, to eqn. (4.78), the only difference being the replacement

of W of eqn. (4. 7§) by W, in eqn. (4.111,a). Although W of eqn. (4.78) is a
circular matrix, W, of eqn. (4.111.a) is not. Therefore, we will use eqn. (4.109.b)
to determine the elemeats of C,,. Through the substitution of the definitions for

K, Hy, and Hay it is easy to see that

K Hon = Hv K
Thus we can write eqn. (4.109.b) as follows
A A A Tt
Cx = 2 Hy KW Cxx WK Hy (4.112)

Now substitute eqns. (4.104.b) and (4.77.2) for Hy and K respectively and eqn.
(4.109.c) for W and Cy, in eqn. (4.112), After some simplifications, we obtain

B ad

2N 1

( —— — 3
z_zéﬂi—aa + QL—2~+2.1)(QZ-—ak+ yansan) 0y for 0<j,k < N/2
a1 0 <j<SN/2
J;Zlg%—‘aj + Qo ay) @gany o Qgan-ay for {N/2<RS(N’1)

' [Cudyx = 0 sken/2 (4113)

3N=1 — —
&EQ"“N-% = oy —an -zt Yaniay gy fOT i/ <j s(N-1)

e N,

N=1 —_ —
L IZ(%M_M —Qf;eaj-sN)(sz_aF g,+au-aw)wl, for N/2<j!kS(N’1)
)= 0

where ), and w, are given by eqns. (4.81.b) and (4. 82,b) respectively and

" Q. = Qzynon s =0,1,2,.... Since Cy given by eqn. (4.113) is approximately
band-diagonal, as shown in Figure 4.7 (Heller et, al., 1977, p. 41), we only
compute the elen.ents of the band-diagonal, so we can write
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3N
1,—_20(%—81 + QL-aNma)(ﬁl,- ap+n) * Q- anie (.1+.)) )
for 0 s j < N/2, 0 s m <N such that m+j < N/2

[Cxxluu =

(4.114)
3N=~1

L);gnhn-aa' Ql/h:a -sN)(ﬁ!M-a(Jn )~ Qlfm(n. )=an ) Wy
for N/2 <js(N-1), 0 < m s N, such that m+ s (N-1)
where Ns is the width of the band.

Ne +1

o

Ng+1

Figure 4.7, Structure of Cyx under sine-cosine
transformation (N = even).

Having computed Cyx we can go back to the solution of the system of linear
equations

Cx Y = X (4.115)
where X, Y, and Cyx are given in eqns. (4.105), (4.106), and (4.114), respectively.
The equation above can be solved for Y by using the standard band-diagonal Cholesky

decomposition which numerical computations are proportional to (Nez N). Finally,
we can compute the space domain solution vector (y) from eqn. (4.106) to obtain

y =Cat x=wFtutY (4.116)

Thus, the windowed frequency domain solution using sine~cosine coefficients, in
order to compute the s-signal vector, is completed.

Since we use a highly tapered window, such as the Kaiser window, in order
to minimize the width of the band, Cxx will have very small eigenvalues., In
other words, Cyx is almost ill-conditioned (Heller et. al., 1977, p. 42). Con-
sequently, Cxx has to be modified before solving eqn. (4.115). This modification

-123-

N O, L e el it




o -

A Y

can be done by adding a small amount, say 8, to the diagonal elements of C,y
to obtain

axx = CXX + 61 (4. 117)

Thus, Cyx cannot have any eigenvalues smaller than 6, therefore, C,x i8
well-conditioned,

The addition of (06 1) to Cx actually corresponds to the addition of
D = 8¢ Diag (Wo, Wiy eeey Wr’) (4.118)
where w, are the window coefficients, to the space domain covariance matrix,

Cxx, (Ibid., p. 43). A detailed study on the introduction of 6 and its consequences
can be found in Heller et. al. (1977, pp. 42-47).

4.6 Frequency Domain Collocation on a Two-Dimensional Region

4,6.1 Large N and Two-Dimensional Wiener Filtering

In previous sections, we have considered equally spaced observations along
a gingle profile exclusively for the determination of the s-signal vector. In this
us to the two~dimensional frequency domain collocation, In order to obtain
covariance matrices (for observations) of block-Toeplitz form, we will select
the profiles in such a way that observations form a grid as well as they are
equally spaced along every individual profile.

Let us denote that:

M is the number of parallel profiles with N observations along each
X is the data vector of (M N) observations

Cxyx, I8 the covariance matrix of observations (it has block-Toeplitz form)
So is the signal vector desired

Csyx, 18 the cross-covariance matrix between signals and observations.

We can transform x into the frequency domain as follows

X = b Xp (4.119)

where F 0.....0
FD: ? FO....O (4.120)

0 0.ovue F

(MN) x (MN)]
here F is (NxN) Fourier matrix given by eqn. (4.30).
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Hence the covariance matrix of X, can be expressed as (analogous to the
derivation of eqn. (4. 35))

X FJ (4.121)

al = '
Cxpxy Fo Cxpxg

Since C,(D X, has a block-Toeplitz form, we can write

Tll Tla T130""°T1“
'I:QI'B‘-E Tmu.----TQM

Cepry ™ | (4.122)
TM'l TMQ TMa-----o Tm
where T,, are (N x N) square blocks of Toeplitz form so that eqn. (4.121)
becomes
FTuF FT,Fl....FTy, F
FTa1F' FTasFle... FTau F
Cxpxp = : (4.123)

FTuyFT FTugFl.... FTuy F'

We demonstrated before that the elements of (F Ty, F+) converge to the elements
of the diagonal matrix

Dyy = 2m Diag [ tiy(wb)s tig (W1)ye ooy tis (Wna)] (4.124)

where ty((w,) is the spectral density of T,,, and it is given by eqn. (4.47) evaluated
P at n=0,1,...,N"1.

Fuller (1974, pp. 308-310) shows that the elements of (F Ty F1), ) # k ,
also converge to the elements of the diagonal matrix

Dy = 2m Diag [ty (Wo)s t (Wi)seves ty(Wn-1)]y § # K (4.125)

where ty(w,) is the spectral density of Ty, and is given by eqn. (4.47) evaluated
at n=0,1,...,N-1. Thus, we can write eqn. (4.120) approximately as

T v——

Dll D]_ao-.nco D]_M

D D L A B Da
Caprp= | & " (4.126)

}).41 DMaocucoo Dﬂ

- -—

mEESEE N

where Dy, j,k=1,2,...,M, which are square sub-matrices of C"o X, are

; diagonal.
o
The solution of the s,-signal vector from two dimensional data can be
" written (in the space domain) from eqn. (4.22)
& = Cix Ciox, %o (4.127)
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In the determination of & above, the costly and time consuming part is the
inversion of (,,,D x, OF equivalently the computation of (C‘x x X ). Letus denote

Yo = Cx-oxo % (4.128)
and define the frequency domain representation of y, (c.f. to eqn. (4.119)) as

Yo = Fo W (4. 129)
then we can write

Yo = cx'olxo X (4.130)
Since Cx,x, defined by eqn. (4.126) is formed by (N x N) dlagonal sub-matrices,

we can easily and cheaply invert and compute the product (Cx X Xp). Then, by an
inverse Fourier transform, we obtain

% = B Yo (4.131)
Finally, we compute the S,-signal vector
S = Csx W (4. 132)
0D
The algorithm described above is equivalent to the '"two-dimensional Wiener filtering'.

4,6.2 Small N and Two-Dimensional Windowed Frequency omain
Collocation with Sine-Cosine Coefficients

If N, the number of observations along a single profile, is small then the
(F Ty F"') submatrices of eqn. (4.123) do not converge to a diagonal matrix.
Therefore, in the case of small N, we will use the windowed frequency domain
collocation in a two dimensijonal region as explained below. In order to obtain
real-valued and band-diagonal submatrices for Cy x, the orthogonal matrix Q
of sine-cosine coefficients given by eqn. (4.103) will be used instead of the imagi-
nary matrix F given by eqn. (4.30) in the transformation from the space domain
into the frequency domain.

Consider the definitions M, X, Cxprp o Sp, Cs x,s A given in the pre-
ceeding section., Here the transformations are apphec? as follows. The x,-data
vector is transformed into the frequency domain by

X% = Q@ Wo X (4.133)
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where

0 ...... 0
® =B B = HF...... 0 (4.134.2)
0 ......HF [(MN) x {MN)]
W 0eeeeea O
W = WieaasoO (4.134.D)

e D

0ueveee Wl (MN) x (MN)]

here w is the window matrix (diagonal with diagonal elements
(WosWyy...,Wy_y) defined by the window function).

and y,-solution vector is transformed by
Yo = [(Q> wo ).,‘]-1 yo (4.135)
and finally, the covariance matrix Cxp xp by

Cxpxy = @ Wo Cypx, Wo' Qo+ (4. 136)

Substitute eqn. (4.134.a) for @, eqn. (4.134.b) for wo, and eqn. (4.122) for
Cxp x, to Obtain

- -
HFwT,, wFTHT HFwT,wrTat........HFWTuwFTH

CXDXD = H (4. 137)
I‘IFWTM1WF+I'I+ HFWTHQWF+H+- ceness .HFWTMMWF+H+

We can write for each square (N x N) sub-matrix of Cxx,
A
By = HFwTywFTHT = 2K By B W WTyw FRERK', 1sj,ksMm (4.138)
where K, Hgy, Fan» vf‘z are defined as in section 4.4, and
x i8 a circular matrix (2N x 2N) extended from Ty as explained in

section 4.4. 2.

Eqn. (4.138) is band-diagonal as shown in section 4,5, The elements of the (N x N)
band-diagonal matrix By can be computed as in eqn. (4.116).

As before, we are here interested in solving the system of linear equations
Cxpx, Yo = X (4.139)

Since Cup x b consists of sub-matrices which are band-diagonal, eqn. (4.139) can
be solved by a modified Cholesky's decomposition which requires (M3 No 1My
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operations compared to (M“ N?) In the space domain solution for y. Following
the computation of Y, from eqn. (4.139)we can find the y,-solution vector from
eqn. (4.135)

Yo = Wo Qo+ Yo (4. 140)
Finally, we can wrtle for the S;-signal vector
S = CSD X Yo (4' 141)

Thus, the windowed frequency domain collocation In two-dimensional region is
completed. Due to extensive programming needed for this technique we did not
apply this algorithm.

4,7, Summary

In this chapter we have covered one- and two-dimensional frequency demain
least-squares collocation. For a fast solution we have introduced an approximation
and neglected off-band diagonal (off-dis gonal in the case of Wiener filtering) terms
of the frequency domain representation Cyx, of the covariance matrix, cxx, of
observations. These neglected terms cause an error in the prediction of signzls,
In order to minimize this error, and yet preserve the speed of the algorithm,

effective. wi are used so that the off-band diagonal terms of Cxx , the frequency
domain cc i - natrix of ti. windowed data, are as small as possihle. Designing
an optimar: or a rarticular purpose and the error analysis due to the approx-
imatior mes oove are open for future studies.
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5. C.onclusions

As we stated before, the modern instrumentation enabled us to collect a
large amount of geodetic data, In order to process and interpret this data
efficiently we Introduced the frequency methods and the fast inversion of
Teoplitz matrices,

In Chapter 2 we reduced the complicated function of geoid heights along a
single profile to a series of simple trigonometric functions in order to inveeti-
gate the resolution (or cut-off frequency) of the GEOS-3 altimeter data us a
function of wavelengths or frequencics. The minimum full wavelength recoverable
from GEOS~3 altimeter data has been found to be about 100 km with the assumption
of 27 mgals standard deviation on predicted point gravity anomalies., We also
computed the t.tal power in the sea surface topography at and above 20 cycles/
revolution, which is equivalent to the total power with respect to the GEM-9

surface. This power is about 2.1 meters from some 9 profiles described in
Table 2, 3.

In Chapter 3 we introduced a rigorous fast inversion algovrithm for matrices
of simple or block Toeplitz forms. In least-squares collocation solutions we have
to invert the covariance matrix of observations (denoted by C = Cy, throughout
the paper). This covariance matrix has a dimension, say N, equal to the number
of obgervations. In the case of equally weighted and spaced observations along
a single profile and an isotropic and global (stationary) covariance function used in
the computation of €, the resulting covariance matrix, C, is of simple Toeplitz
form. The inversion of such a covariance matrix requires a numerical operation
proportional to N° compared to N® in case of conventional inversions. If we
have observations forming a Cartesian grid with the properties explained above,
then € is of block-Toeplitz form. The inversion of such a block Toeplitz matrix
requires roughly (Na Pa) numerical operations, where N in equal to the number
of observations along a single profile and P is equal to the number of profiles,
compared to (N° Pa) in the case of classical inversions. Another advantage of
Toeplitz inversion algorithms over classical inversion algorithms are that we only
have to store one row in the case of simple Toeplitz matrices and one~block row in
the case of block Toeplitz matrices, The only disadvantages in the application of
Toeplitz algorithms are the following;

a) The requirement of gridded data consisting of equally weighted and spaced
obgervations along, at least, a certain direction.

b) The requirement of an isotropic and global (stationary) covariance function
in the computation of C. This is also assumed in regular collocation.

In our computations of gravity anomalies from geoid heights we used the theoretical
covariance function given by the subroutine COVA of Tscherning and Rapp (1974).
This function satisfies the second requirement. In order to satisfy the first
requirement we created gridded data from GEOS-3 altimoter data using the
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subroutine PREDICT of the Geodetic Science Plotting Package (GSPP) written by
Stinkel (1979). By using the subroutine PREDICT, it took roughly 1 second CPU
time on Amdahl 470 of OSU for the prediction of 1000 points. The mean variance
of original observations was assigned to each of the predicted data. These are
the only approximations introduced when we compare Toeplicz solutions and
rigorous least-squares solutions. So it is up to the user to decide heiween the
gain in computer time, storage and approximations. In our cases, as we showed
in Chapter 3, the approximations are negligible.

classical inversion algorithms, but for very large N, say greater than 1000,
they are time consuming and become inefficient as well, Yet another faster
method is the frequency domain collocation discussed in Chapter 4. Here every
quantity in the space domain is transformed into the frequency domain and the
solution in performed there. For a fast solution we take advantage of the simple
structure of the frequency domain covariance and cross-covariance matrices. In
the limit as N -~ ® these matrices become diagonal and the method reduces to
the generalized Wiener filtering., By the use of the frequency domain least-squares
collocation, a considerable gain in computer time and storage is obtained in com-
parison with conventional least-squares collocation or least-squares collocation
with Toeplitz inversion. However this method has disadvantages as vsell, such
as the aforementioned disadvantages in the application of Toeplitz inversion al-
gorithms and the errors due to edge effects,

l
"' The simple and block Toeplitz algorithms are much more efficient than the

The methods presented in Chapters 3 and 4 show that they are effective tools
for a fast calcnlation of desired signals from large amounts of gravimetric data. In
| previous chapters these methods have been demonstrated for obtaining gravity
anomalies from geoid heights. 1

- -
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Appendix 1.A

Fourier Series Representation of Periodic Functions and Parseval's Theorem

A periodic function x(t) with period T, i.e. x(t) =x(t+T) canbe
arbitrarily closely approximated by a harmonic polynomial of degree N and
period T such that

~=

».

-

w(t) =<2 +

2 44, (80 CO8 nwet + b, 8in nwyt) (1.A.1)

The closeness of x(t) to x(t) isusually computed by least-squares approxi-
mation over the interval (0,T) defined by

V(t) = ‘[T[x(t) - x(t)]? dt (1.A.2)

v?(t), whose parameters are ao, a,, by;..., 2, by, is to be minimized. So
let us substitute eqn. (1.A.1) in (1.A.2) to obtain
\ N
v3(t) = Jr[x(t) - izﬂ-- Z (an cO8 N wot + b, 8in nwet)]® dt (1.A.3)
1

n=

Now let us take the derivatives of eqn. (1.A.3; with respect to the parameters:

N
a_a"%ii = 2 fr[x(t) —%ﬁ- 21(a" coS D Uyt + b, sin nwet)lcos m wyt dt (1.A.4.3)
a n=

r N
8_?59 = 2 Jr[x(t) —%Q— Z (a, cos nwet + b, sin nwet)] 8in m wet dt (1.A.4.b)
a =]

The solutions to ava(t)/aa. = av¥(t)/3b, = 0 give the desired parameters.

Recall the orthogonality relations defined by eqns. (1.2.a-b) in order to solve
eqns. (1.A. 4.a-b) for the parameters

a, 2? L x(t)ycos nwetdt, n=0,1,...,N (1.A.5.2)

b,

2 . .
T L x(t) sin nwoet dt n=1,2,...,N (1.A.5.b)

How close does eqn. (1.A.1) approximate the true function x(t) ? In order to
answer this question open the parenthesis of eqn. (1.A.2) to get

v(t) = L x(t) dt+jT x2(t) dt - zjrx(t) xw(t) dt (1. A. 6)

Using the orthogonality relations mentioned above we can easily derive thi:

1 1[ [a 2% N
T L x%2(t) dt= ?L [‘2-9 + nf: (2, cos nwgt + b,,sinnwot)Tdt = \39) +3 ) (a0 +b°)

=1 n=1
(1.A.7)
(Eqn. (1.A.7) is called Parseval's Theorem) and
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Lx(t)xN(t)dt = T(2> I Z(a + b2 (1.A.8)

n=1

Therefore eqn. (1.A. 6) can be written as
N

V(t) = I ®(t) dt - [T/J) %Z, @2 +b2)] =0 (1.A.9)
or
=< %erg(t) dt =2 [(%Q>a+ nNg:L(ana-'-b"a,] (1.4.10)

Eqn. (1.A.10) is known as Bessel's inequality. From this Inequality we can read
that

lim a, = lim b, = 0

N e R 00

Now let y(t) be equal to xy(t) in the limit as N~ =, ij.e,
y(t) = lim xy(t) = —Q + Z (apcosnuypt + by sinnuwpt) (1.A.11)
N - n=1

where a, and b, are Fourier coefficients of square integrable function x(t),
By Bessel's inequality the partial sum of squares of the Fourier coefficients

Pty e cnm —
converges for any square integrable function. Therefore the function y(t) is

square integrable on (0,T). Now consider

d(t) = x(t)-y(t) (1.A.12)

then, d(t) is also square integrable on (0,T). By Shwarz' inequality we can write
write

0 s le(t)ladt < L [d(t)] dt (1.A.13)

This expression is equal to zero by the "theorem of uniqueness of integrable
functions', That is to say

d(ty =0, x(t) = y(t) (1. A.14)

Thus all the Fourier coefficients in the Fourier expansion of d(t) are zero

according to the "theorem of uniqueness of continuous functions'. Hence we can
conclude that

a ® .
x(t) = lim x(t) = —22 + Z (a, cos nuwpt + b,sin nwet) (1.A.15)
n=1

N — 0
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Appendix 1.B

Fejer Kernel and the Derivation

Substitute eqns. (1.3.2a-b) in (1.44) to obtain

2_ o LFxa)dx
T, n);‘x(- )x()\)[cos NWHACOS iyt + slnnwo)\smnwot]}d)HT‘Lx( )
%I{ f:(1-N+l)x(x)cos[nwo(A t)]1 dA+ — f x(A) dA (1.B. 1)
Now let z = wy(A-t) to have
2
X(t) = -’FI [n=1 ( N+1)x()\)cos nz] dA+—jx(A)dA (1.B. 2)
- 1r
X(t) = 7T JT FN+1(z) X(X) dA (1.B. 3)

where Fy,q,(z)=1+2 E ,(1-n/(N+1))):cos nz is called the Fejer kernel. The
Fejer kernel consists of coslne functions as we can see from the definition above.
Thus it is possible to express the Fejer kernel as a sum of cosine functions as
follows: N

Fu(z) =1+ 2(1 --I\I-tl_;l>cosz+2<1--ﬁ%—l>cos%+ +2< -sap)cos Nz (LB.4)

Multiplying eqn. (1.B.4) by sin z/2 from both sides we obtain,
2 = sinZ B TV - AV
sin Y Fve(2Z) = sln + 2(1 N+1>Sln CoS Z + ... + 2(1 N+]>Bm2 cos Nz (1.B.5)
] Using the trigonometric identity
2 8inx cosy = sin(y + x) - sin (y-x) (1.B. 6)

we can easily prove that

sin% Fv+1(2) = sin5+< --1—>(sln%z -sin%z) ( -—2—><81an n-sln%Z) + ..

t 2 N+1 N+1 5
}\ +(1-fﬁ%)[ﬂiﬂ(N"%)Z—Sin(N—‘%)z]
= N}_lsm5+Nilsm3 Z4+.., .+ N-Tlsin(N*'é)z
E - nio sin (0 +3) 2 (1.B.7)

Thus the Fejer kernel can be expressed as

" 1 )”: sin (n+3z)

; Fyni(z) = N+l &, sin%z (1.B.8)

The expression for the Fejer kernel is not used in its present form. It can be
' simplified further, first by writing
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Pus(®) = o7 sET L, oL s (as B2 (1.B.9)

then, opening the sum of the expression above to get

sin @ 3
Fva(z) = m[Zsmirz sinkz + 2sinkz singz+...+2sinkz sin(N+%)z]  (1.B.10)

finally using the trigonometric identity

28inx siny = cos(x~-y) -cos(x+y) (1. B.11)
we obtain
gin? %z 3
Fua(z) = Z_(-N-Ii-) [2 - 2cos’4z +co8 z - cO8 22 + COS 2Z + .., +COS (N-1)z-cos (N+1)z ]
=§l_L[2_2005 2 +¢co8 z - cos (N+1)z]
2(N+1) 2
sin é 2 4 2 Z
= 1 - co8®(N+1)= + 8in®“( N+1)— 1.B.12
2(NH)[ cos® (N+1)> + sin( N+1) =] ( )

The equation above is equivalent to

sin (N+1) (z/2) T
Foe(z) = T [ sin(2/2) (1.B.13)
|
i
|
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Appendix 1.C

Variances of Fourier Coefficients

Let us suppose that the function x(keAt) is independent and normally
distributed N (u .aa) , and has the Fouricr coefficients defined by eqn. (1.93),

l.e, N=1

&, = 2— keAt Cco8 2ﬂkn/ =
bn} N u);o x( ){ sin2nkn/Ny ' 0 Orleeeco B (1.C.1)
where Ny = { ( N/2) if N even

(N-1)/2 if N odd
So if we denote

Y = [ao’ al"""’ aNHl:T! X = [x(o).x(At)'Oooocc.x((N"l)At)]r

1 1 100I0l00000000. 1

1 cosg-n—l- cosﬁ‘-ﬂ'—l".......cox~3""a-‘-N;l')-H-i
21, N N . N Le.2
G =R : : : : (1.C. 2)

) 2Ny 41 Ny 2(N-1) N

8 8 |

j co N co N teseslCOB N

then we can write

Y =GX (1.C.3)

The variance-covariance matrix of the function Y can be expressed as
follows (Uotila, 1967):

- T
ZY =G) G (1.C.4)

where Iy is the variance-covariance matrix of the Fourier coefficients (a,,
214..., a,) and ¥, Is the variance-covariance matrix of x(k-At), k=0,

1,..., (N-1), which is diagonal with diagonal elements equal to 0° by assump-
tion, i.e.

Zx = diag (0%, 0%,..., 0%) (1.C.5)

Therefore, we have,

O’.o 0 LN N A ) O
0 mla *00 000 0 3 T
L=1: : |=0?Ga (1.C. 6)
0 0 Sessca 2
O.NH
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0..-...0
1....'09

0
(N/2).coeuenn (1.C.7

e O O

2
N

Qe O o

Q) soes

0 veveeen (N/2)

Thus eqn. (1.C.4) can be written as

%oz for n=1,2,...,(Nu-1)
cfn = var(a,) = % o? for n=0, orn=Ny and N even (1.C.8)
-Zﬁ o2 for n= Ny and N even

Similarly we can prove that

2
"NTOB fOI‘ n=1’2,ooo,(NH_1)
o2 =var(b) = {0 for n=Ny and N even (1.C.9)
_Zﬁ o3 for n=Ny and N odd
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Appendix 1.D

The Fast Fourier Transform (FFT)

The number of operations required by the conventiona: Fourier transform
method is proportional to N°, N being the number of data points. On the other
hand, the FFT algorithm requires a number of operations, which is proportional
to (Nlogg N). The FFT is an algorithm by which the discrete Fourler trans-
form (DFT) can be computed much more rapidly than by other available algorithms.

Let DFT be defined as in eqns. (1.:,56) and (1. 66), namely,

1 " KeAty o~t3Mea/N 1.D.1
= = x(ke e .D.
X == k};g (k*at) (1.D.1)
=1
x(keAt) = Z X, e*tama/ (1.D.2)
na O

When N is a product, say N = r*s, then the Fourier transform can be calculated
in a two-stage process. That is to say, as if X, and x(k-At) were defined on
two dimensional (rxs) arrays with array indices (k,, ko) and (mn,, np) such that
k ————> (ky,ko) (1.D.3)
k =k-*'r+ky forkys=0,1,...,(r-1) and k, =0,1,...,(8-1)
n ————> (n,,00) (1.D.4)
n =mn*s+n, for ng=0,1,...,(8-1) and n; =0,1,...,(r-1)
If we define Wy = exp (27i/N) (1. D. 5)
and use eqns. (1.D.3) and (1.D. 4), then we can write
W = w1t e g, ot Wy 170" o kom0
= 1+ Wkt . w,k1%0 . wkomo (1. D. 6)

Thus eqn. (1.D.2) bgcomes

s=] Fel
x(k+At) = x[(ky,ko)* At] = 20 zo X(,,l,,,o)'w,k°“1-w.k1“°-w,f°°° (1.D.7)
n°= nlz
If we denote
rel
L _ k ng . k.n
Hrormo) = ™ "lgo Kiny y20) wr 07 (1.D.8)
then,
s=1
x[(ky,ko)* At] = . Zo Xfuo,no)' wil"o (1.D.9)
oﬂ
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Notice that first we sum over n; in eqn, (1.D.8) to form an intermediate
array X% ,,, andthensum over n,. Hence Xl(ko,.o) I8 w0 " times
a set of r-term Fourier transforms. Finally eqn. (1.D.9) is a set of s-term
Fourler series with X* as coefficients. The total computation amounts

to (%o? 1)

r*8 + 8% r = N(r+s8) (1.D. 10)
for this particular two-stage process.
Similarly, it canbe shown thatif N=r,xr;x... xr,, then the number
of operations is equal to

NXx(ry+r,+..4 1)

If we further assume that r, = r; = ... = r,, then N = r® and the number of
operations is equal to

Nemer = N(log,N)r = N(log, N)r/log,r (1.D.11)

when r is equal to three, we obtain the lowest number of calculations. This can
be proven by minimizing the above equation, i.e.

v(r) = N(log;N) r/log_r to he minimized {(1.D.12)

The solution to y'(r) =0 gives the optimum factor r.
)
y'(r) = N(log,N) [log,r - r 37 (log; 1) 1/(log,1)° = ¢ (1.D. 13)
This is equivalent to
o) 1

loggr - r 37 (loggr) = log,r -5 =0
The solution of the above equation is;

r =24 3 (nearest integer) (1.D. 14)

However for r =2, 4, 8,... we can further reduce calculations by avoiding
multiplications when the powers of wy are simple numbers like +1, *i. There-
fore the most commonly used FFT algorithms use r=2, i.e. N=2", Genernlly
a seperate derivation is given for this case, Let

x(k*At) «—> X, ko = 0,1,...,(N-1) (1.D. 15)

X(2k'sAt) €«—> XL

X[(2k'+1)* At] «—->  Xn k'n'=0,1,...,((N/2)-1)  (1.D.16)

then the discrete Fourier transform (DFT) X, can be written as

1 'a -kn!
X =% kgo x(keAt) wy"*" (1.D.17)

using eqn. (1.D.16) we have
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(N -1 ' - [} n'
X} = —;7{ /%o [x(2k' atyewir 3% 4 x(( 2k +1)eat) wy P +2) ]} (1.D. 18)
k'=

But we know that w® = wy / » therefore
1 (Nbi-l , = k! 1 (N/ﬁ—l 2k '+1)+At] ~x'! v;n'}
—_ . ° n— . W .
X = %{M) k':OX(Zk Bty e (N/2) =0 *U ) Ve ™ (1.D-19)
which can be written as
X' = B(Xs + X4 wi'] (1. D. 20)

and
R | " -
Xtv/a) = B[ Xat - Xg Wo ) (1.D.21)

Notice that X'y, and X', inequ. (1.D.21) are also calculated through
"doubling', So this successive doubling continues until it is no longer a multiple
integer of 2,

When the FFT algorithm is used, we avoid computations by a factor pro-

portional to ay, where @y is a constant times the ratio of the number of opera-
tions in the conventional method over that of FFT, i.e.

o, £ ¢ N°/(Nlog,N) = ¢ N/log, N (1. D. 22)

where c is a constant greater than one. The computational reduction by a factor
oy (assuming c = 1) for various N are tabulated below:

N Oy
2 2
16 4
256 32
1024 341
4096 341
8192 630
16384 1170

Since less operations are required in FFT computations, the truncation
error is considerably smaller than that of conventicnal computations, Thus FFT
gives more accurate results.

In order to demonstrate a simple application of the FFT algorithm, the
discrete data given at N points were transformed by the "FFTR" subroutine
of the IMSL library and by the conventional algorithm. The results are given
below: J
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N Conventional Method (sec.) FFT Method (Bec.)
256 2,52 0.06
512 9.92 0.13

The time required for computing Fourier transform by conventional al
gorithms and by the Fi'T algorithm s llustrated in Figure 1.D.1 below (ex-
tracted from Cooley, 1969).

23

Lor Conventional
Mathod

LSk

Time in Minules

Lor

A L
1024 2043 40% [/
N * No Real Dats Points

Figure 1.D.1. Time required for calcuiation of Fourier transform
of real data on IBM 7094 using FORTRAN with con-
ventional and fast methods,

We have tried to introduce the FFT algorithm as a computational tool here,
For detailed discussions see Brigham (1974) and Rath (1974).
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Appendix 3.A. A FORTRAN Program for ihe Inversion of Simple Toeplitz Matrices.

pivivivlvivlololvlvlvl ottt

11

12
13

14

15

o0

16
17

SUBROUTINE TOEPL(B,C,X,F,MAX)

FUNCTION - TO COMPUTE. THE. TOEPLITZ INVERSE OF 'T’
%chprLT.lgl',Y IT BY THE DATA VECTOR °'X’
PARAMETERS B ~ THE INTERMEDIATE VECTOR OF LENGTH -MAX-
TO GET THE INVERSE
C ~ VECTOR Of LENGTH —MAX~-.CONTAINS THE FIRST

'T' ON INPUT AND REVLACED LY BY INVERSE
ROW OF 'T' ON INPUT AND REPLACED BY THE
INVERSE LATER

X ~ DATA VECTOR OF LENGTH -MAX-
F - ﬁg‘lf'm;l ;){F LENGTH -MAX~ AND i3 PRODUCT OF

MAX - THE DIMENSION OF THE TOEPLITZ MATRIX T’

SUBROUTINE TCZPL (B,C,X,F,MAX)
IMPLICIT REAL*8(A-I,0~Z)
DIMENSION B(1), C(1), X(1), F(D)
B(MAX)=1.D0
COMPUTE °*AA' AND 'E’ VARIABLES OF THE ALGORITHM

AA=0. DO
DO {1 L=1,K
NA= "AX-L+1
AA= AA+B( NA) ¥C(L)
E=E+B( NA) %C( K~L+2)
CONTINUE
AA=1.D6/AA
IF(K.EQ. MAX) GO TO 13
COMPUTE ~ 'B® VECTOR USING RECURSIVE ALCORITHM
EAA=~EXAA
NB= MAX-K
B(ND) =EAA
IF(X.EQ. 1) GO TO 13
KHALF=I 2
KR=MOD( 12, 2)
DO 12 LL:1,KHALF
NB1=NB+LL
NB2: MAX- LL.
T1=B(NEL)
B(NB1) =B( NB1) +EAA*B( NB2) ,
IF(KR. EC. 8. AND. LL. EQ. KHALF) GO TO 12
B(Ni32) =B( NB2) +EAA*T1
CONTINUE
CONTINUE
... COMPUTE THE LAST ROW OF THE INVERSE
DO 14 I=1,MAX
CCI)=AA*B( 1)
... MULTIPLY THE COMPUTED ELEMENTS OF THE INVERSE BY THE COPR.PART
OF X-VECTOR
NI=MAX
DO 15 NJ=1,MAX
CALL TMULT (C,X,F,NI,NJ,MAX)
... COMPUTE THE REMAINING ELEMENTS OF THE INVERSE AND MULTIPLY BY
THE CORRESPONDING ELEMENTS OF THE X-VECTOR
NN=MAX
M= MAX- 1
MHALF=MAX/2+ 1
MM= [+ MHALF
DO 17 I=IMHALF,M
11=MM-I
g;N-i-l i
=NN-1 BTN e,
oL o e
= AAXB( Qi KW e O Jig o
T2=AA%B(11) UL
DO 16 J=N,NN
NB1=M-J+ i
T3=B(NB1) *T1
T4=B(J) % T2
C(J)=C(J+1)-T3+T4
CALL TMULT (C,%,F,II,J,MAXY
CONTINUE
RETURN
v
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339
34ty
356
360
370
389
359
400
410
420
430
440
450
460
470
489
490
500
510
520
530
649
550
560
570
589
599
600
610
620
630
640
659
660
670
6&9
690
769

720
730
749
260
760
77@
7806
799
800
810
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SUBROUTINE TMULT (<,X,F,NI,NJ,MAX)

Th g‘gégug'llJ‘BRDUTINE CONSIDERS SYMMETRY, PERSYMMETRY AND COMPUTES
.. C(NJ) IS THE (NI,NJ)TH,(NJ,NDTH,(NII,NJJI)TH,(NJJ,NII)TH ELE

OF THE INVERSE

... NI = ROW NUMBER OF THE INVERSE

NJ = COLUMN NUMBER OF THE INVERSE MATRIX

IMPLICIT REAL¥3(A-H,0-Z)

DIMENSIOR C(i., X(1), F(1)

NII=MAX-NJ+1

NJJ=1 i X~N1+1

VAT =F(NI)+C{RNJ) *X(NJ)

iF(NI.EQ.NJ.AYD.NI.EQ.NII) RETURN

IF(NI.EQ.NJ) GO TO 1

F{(NJ)=F(NJ)+C(NJ) *X(NI)

IF(NI.C@.NII) RETURN

F(NJJ)=F(NJJ) +C(NJ)Y®=X(NII)

ivlvlvivlololele]

LT TEERErUSsT I EEEE
-t
-
[

—
-}

1 F(NITI)=F(NII)+C(NJ)®=X(NJJ) 2006
RETURN 210
END 22¢

T e W T e T
‘

% .

e
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Appendix 3. B,

(‘
G
(J

[$Tw]

ivIelivioioivivieloloiolololy]

12

14

El!}‘II)lROU’l‘INE BTOEPL( B, DUMMY, C, F, AA, EAA, Tt , TEMP, T2, BG, T3, T4, AINV, IR,
I"UN("I‘I()N - TO COMPUTE THE INVERSE OF BLOCK TOEPLI'TZ
:}’(: Ale) }‘I}‘{!l“'l‘ll’%.\’ IT B THE DATA VECTOR
PARAMETERS T = THE BLOC!(' TOEPLITZ MATRIX TO BE INVERTED
n - THE INTERMEDIATE MATRIX OF DIMEN. (IR, IC)
TO OBTAINl THE INVERSE
c = FIRST BLOCK ROW MATRIX OF *T* MATRIX ON

LATER REPLACED BY THE BLOCK INVERSE ROWS
‘l‘g{;gl‘. LATER REPLACED BY BLOCK INVERSE

X - DATA VECTOR OF LENGTH -MAX-

¥ - VECTOR 0i* LENGTH -NAX- AND IS PRODUCT OF
TINV % X

IR~ NO.UY {IMUM ROWS FOSSIBLE

ic - NO.OF MAXIMUM COLUMNS POSSIBLE

IMAX ~ DIMUNSION OF THE SQUARE SUBBLOCKS OF 'T'

JMAX - DIMENSION OF  °T' MATRIX

MAX ~ RATIO OF JMAX OVER aX, MAX=JMAN/IMAX

¢ B & DUMMY ) CAN SHARE THE SAME LOCATIONS , . CALLING PROGRAM 18
CALL DTOEPL(B,B,C, L, AA,BAA,TI, TEMP?, T2, 3G, T3, T4, AINV, IR, 10)

e e o o o 4 ey e e o e e o e S e A A et e S e L P T e A et ol T A s W e e S A A S - S S . — S S S ot

ITImrlomlnm BTOEPL 1t B,DUMMY,C,E, AA,EAA, T1, TLMP, T2, BG, T3, T4, AINV, IR,
W)

IMPLICIT REBAL*G(A-Y,0-7)

DIMINSTOM BC IR, I1C). DUMMY(IR.IC), CCIR,IC)

DIMENSION ECIN, IR), AACIR, IR), BAACIR, IR), TiCIR, IR), T2(IR, IR)
DIMENSTON TSCIR, IR, T4 IR, IR, BG(IR,1R), TEMPCIR, IR), AINVC(D)
CONION “OIMEN. IMAX, JMAX, MAX

LOGICAL, PICK

... INITIALIZE -B- MATRIX TO ZERO

CALL, DZERO (B, IR%TO)

IMS=- TR ) 1

NHM= ( MAX- 1) % IMAX

DO t1 I-1, IMAY

JJ=NBM |

BCI.JD=1.DO

.. COMPUTE 'AA' AND ‘L'  MATRICES OF THE ALGORITHM

PO 16 K=i,MAX

DO 12 1=, INAX

DO 12 J=1. IMAX

ECL. V=0, Do

AALi,J)=0.DO

DO 13 L=t,K

NBC= (L~ 1) = [MAX

Ngm‘ (MANX-L) * TMAX

1D=2

CALL ™ILT (B,C,TENP, TEMP,BG, IR, IC,NBA, NBC, ID)

CALL ABS (AA,BG,AA, IR, IC)

IF(K.EQ.MAX) GO TO 13

NBC= (K-L+ 1) % [TIAX

CALL MULT (B,<.TEM®, TEM?,BG, IR, IC,NBA, NBC, ID)

CALL ABS (E,BC.E, IR, 1€)

CONTINUE

‘e INVERT THE SQUARE MATRIX ‘AA°

CALL AAIWNV (A2 AINY, IR)

IF(K.EQ. NAX) GO TO 16

... COMPUTE *'B' MATRIX UMING RECURSIVE ALGORITHM

e T IS THE THE SQUARE MATRIX TO BE ADDED TO THE PRODUCT
TR TIMES "EAA* LWHERE EAA=EX AA

D=t

CAL1, MULT (DUMMY, DUMMY, Z, AA, EAA, IR, IC, WX, NX, ID)
P1CKF . FALSE,

DO 14 1- . IMAX

DO 14 J= 1, IMAX

EFAACL, D) “—EAAUL, D)

NB= ¢ MAX-K— 1) [MAX

CALi. PUTIN (B,FAA, IR, [C.NB,PICK)

Ir(LEG. 1) GO 10 16

KHALF= K. Oc.
PICK= . TIIE. e,
KR= MODC KL 2) ~
DO 15 LI 1, KHALF D
NB 1= NB+LLE [MAX Tl
CALL PUTN (B,T1,IR, IC,NBL,PICK g
NGE: NBM - LY ENAX W
CALJ, PUT'N (B.T2, IR, IC,NR2,PICK)
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18
16

17

18

ac

19
20

D=1

CALL MUL™ (DUMMY, DUMMY, EAL, T2, T3, IR, IC, NX, NX, m
CALL AABS (B,T1,T3.IR, IC,NP1)

IF(KR. EQ. 0. AND, LL. EQ. KHALF) 6o 1o is

CALL MULT (DUMMY, DUMMY,EAA,T1,T", IK, IC,NX,NX, /"
CALL AABS (B,'I2,T3, IR, IC, NB2)

CONTIRUE

CONTINUE

e (COMPUTE THE LAST BLOCK ROW OF THE IKVFTLE
BO 17 I=1,MAX

NL=+ I-1):IMAX ,

CALL MULT (B,C,AA,TEMP,TEMP, IR, IC,NL,NL, ID)
CONTINUE

PICK= , TRUE.

DO 18 J=1,MAX

NI=({ MAK~1) * IMAX

NJ= ¢ J- 1) ¥ IMAX

CALL PUTIN (C,TI1, IR, IC,NJ,PICKs

CALL BMULT (T1,X,F,NI,NJ, IR, IC)

N=1

NN=IMAX

M=DMAX-1
MHALF=MAX- 2+1
MP=M+ MBALF

DO 20 I=MHALF,M
I1=MP-1

N=N~1
NN=NN-1
. e COHPUTE * Tt = B(N,N-S)TRANSP % A% '
ID=3

NL=(M-11**XIMAX

CALL. MULT (B,DUMMY, AA, TEMP,TI, (R, }C,NL,NL, ID)

.. COMPUTE ' T2 = B(N,S~-1)TRANSPOSE * AA ’
NL=( II-1):*IMAX

€ALL MULT (B,DUMMY, AA, TEMP, T2, IR, IC,NL,NL, IIM)

... COMCITE THE REMAINIRG SUBBLOCKS OF THE iNVFRSE anNd MULTIPLY BY

#~-VECTOR
10=%
DO 19 J=11,NN
NB1=(M-T) % IMAY
NB2= (J-1):x IMAX
CALL MULT (B.DUMMY,TI1,T1EMP,T3, IR, IC,NB1,NB1, ID)
CAL:.. MULT (B, DUMMY, T2 TLMP.14.!R IC,NB2, NB2, ID)
CALL ZZTy (C,T3,T4, IR.IG NB2, TEMP)
CALL BMULT (TLNP X, ¥, NL,RBZ IR, IC)
CONTINUE
RETURN
END

OR’H!IN% f)r Y
rwrikxﬁw
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SUBROUTINE AAINV (AA,AINV, IR)

THIS SUBROUTINE COMPUTES THE INVERSE OF AA-MATRIX
... AA IS THE MATRIX TO BE INVERTED ON INPUT AND INVERSE ON OUTPUT

IMPLICIT BEAL#8(A-H,0-2)
DIMENSION AACIR, IR), AINV(1)

Q000

COMMON /DIMEN/ IMAX, JMAX, MAX 80
INCD=(IxI=-1) /2 %90
N=0 169
DO | I=1, IMAX 110
Dot J=1,1 120
N=N+1 139

1 AINVIN) =AACL, D)
CALL DSINV (AINV, IMAX,!.D-14, IER)
IF(IZR.EQ.0) GO TO 2
WRITE (6.7) IER
STO? 10
2 CONTINUE
DO 6 I=1, [MAX
LO 6 J=1, IMNAX
IFCJ-1) 3.4,4

3 N=INM(I) . 239
GO TO & 349

4 N=IN(J)+] 26v
5 CONTINUE 200
6 AACT,J)=AINV(N) 27¢
RETURN 2660

c 240
C 309

7 gOR“L’LT (10X, ’ INVERSION ERROR IER =',14)
ND

UL Srrnrrorrttcoorxooe
p—
=2
<

c SUBROUTINE PUTIN (A.B.IR,IC.NA.PICK) g 19
—— 20
C -B- IS THE MATRIX TO BE INSERTED FOLLOWING (NA)TH COLUMN OF C 3o
! C A-HAIRIX IF PICK=.FALSE.,OR ELSE TO PICK FROM 'A’ IF PICK-.TRUE. C go
¢ 0
IMPLICIT REAL¥8(A-H,0-Z) C 60
DIMENSIGN ACIR,ICy, BCIR,IR) ¢ 70
COMMON /DIMER, N,M C 80
] LOGICAL ?ICK C 90
IF(PICK) GO TO 2 € 100
DO 1 I=1,N C 110
DO { J=1,N c 129
NN=NA+J ¢ 130
1 ACI.RID=B(I,J) C 140
i RETURN & 15¢
2 DO 3 I=1,K C 166
DO 3 J=1,N C 170
NN=NA+J C 189
] 3 B(I,J)=ACI,ND) 190
\ RETURN € 200
END C 210
‘, i SUBROUTINE ABS (A,B,R, IR, IC) D 10
¢ — D 20
i € .. SUMS UP 'A’ AND °'B* MATRICES TO GET ‘'R’ MATRIX D 3o
D 49
\ IMPLICTT REAL#8(A-H, 0-Z) D 50
. "WSI0G{ ACIR, IR), BCIR,IR), RCIR,IR) B 60 i
Cfiie:.  VIMEN N M D 70
) i LI D 80 <
- N | fy D 02 |
i Ry, V=40, T™+L . D D 106
ETURN D 110
ERD D 129

\
*
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(5]

10

SUBROUTINE AABS (A,T,TT, IR, IG,NB)
.. SUMS UP T AND TT-MATRICES AND INSERTS IN A-MATRIX FOLLOWING
NB) TH COLUMN

(

IMPLICIT REAL*8(A-H,0-2)

DIMENSION TCIR, IR), ACIR,IC), TTC(IR,IR)
COMMON ~DIMEN/ RN, M, MAX

DG 1 I=1.N

DO L J=1,N

KN= NB+J

ACI,NN)=TCI,D+TTC(I, )

RETURN

END

SUBROUTINE MULT (A,C,D,E,R, IR, IC,NJ1,NJ2, ID)

IMPLICIT REALX8(A-H,0-Z)

DIMENSION ACIR,IC), CCIR,IC), DC(IR,IR), E(IR,IR), RCIR,IR)
COIMMON /DIMEN- N, M

00'1‘0(13579). 1D

CONTINUE

1,N
1,N
0.Do
1,N
=RCI,J)+DCI,K)*ECK, J)
WN

DO 4 J=1.N

R(I,J)=0.D0

NC=NJ2+J

DO 4 K=:,N

NA=NJ1+K

RCY,. ) =R(I,J)+ACT, NA)*C(K, NC)
RETURN

no 6 I=1,N

DO 6 J=1,N

JJI=NJ1+J

C(1,JJ)=0.D0

DO 6 K=1t,N
CCI.JN=CCI,JJ+D(I,K)*A(K,JJI)
RETURN

Do & I1=1,N

PO & J=1.N

JJI=NJ1+J

Ru1,J)=0.D0

DO 8 K=1,N

RCI,N=RCT, I +DCT, K *AK, JJ)
RETURN

Do 1¢ !={,N

JJ=NJ1+1

DO 1@ J=1,N

RCT1,J)=0.D0

DO 10 K=1I,N
R(1,J)=Rt1,J)+A(K,JJ)*D(K, )
RET/HRN

END

SUBROUTINE ZZTT (Z,T3,T4, IR, IC,NB,T5)

IMPLICIT REAL%8(A-H,0-2)

DIMENSION ZC(IR, IC), T3CIR,IR), T4(IR, IR), TSCIR, IR)
COMYMON /DIMEN- N, M

M1=NB+N
DO t 1=1,N
DO 1 J=1,NI
MM=Mi1+J
NN=NB+J
ZCIL RN =ZC I, MM -T3C1, N+T4(1,J)
THCL,J)=Z(1,NN)
RETURN
END
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c SUBROUTIRE BMULT (C,X,F,NI,NJ, IR, IC) g ég
C .+ COMPUTE PRODUCT OF 'T' AND PROPER PART OF 'X’ TO GET 'F°’ H 30
IMPLICIT REAL:x8CA-H,0-2Z) H 49
DIMENSICN X(1), F(1), CCIR,IR) H b6
COMMON /DIMEN- IMAX,JMAX, MAX i 60
II=NI/IMAX+1 H 70
JJ=NJ/ IMAX+ 1 H 80
MM=MAX~JJ+1 H 90
NII=(MAX~1)*IMAX-NJ H 109
NJJ=(MAX-1)*IMAX-N]I o 119

CALL AB (C,X,F,NI,NJ, IR, IC) i 120
IFCII.EQR.JJ.AND. I1.EQ. M) RETURN H 130
JFCII.EQ.JJ) GO TO 1 H 149

CALL ABTR (C,X,F,NJ,NI, IR, IOQ) o 150
IFCIT.EQ. M) RETURN a4 16w

CALL AB (C,X,F,NJJ,NII, IR, IC) o 170

1 CALL ABTR (C,X,F,NII,NJJ, IR, IC) H 189
RETURN i 190

END H 200

SUBROUTINE AK (T,X,F,NI,NJ, IR, IC) I 10
IMPLICIT REAL*8(A-H,0-2) 1 20
DIMENSION TC(IR,IR). X(1), F(1) I 30
c COMMON ~/DIMEN/ IMAX,JMAX,MAX } g«g
C .. COMPUTES THE PRODUCT OF °'T®' AND PROPRE PART OFf X AND I 60
C ADDS TO 'F° 1 79
DO 1 I=1, IMAX I 89
TI=NI+1 I 29
DO 1 J=1,IMAX I 10606
JJI=NJ+J I 119
1 FCIN=F(ID+T(I,J)%xX(JI} I 120
RETURN I 130
END i 1490
]
]
‘ SUBROUTIFE ABTR (T,X,F,NI,NJ, IR, IQ) J 10
IMPLICIT REAL*8¢A-H, 0~-2Z) J 29 :
DIMENSION T(IR,IR), X(1), F(1) J 30
c COMMON /DIMEN/ IMAX,JMAX, MAX é gg
DO 1 I=1, IMAX J 60
II=NI+1 J 70
DO 1 J=1, IMAX J 89
JJI=NJ+J J 99
1 FCID=FCID+T(S, 1) %X(JJ) J 109
RETURN J 119
END J 120
)
)
\
# HMG"MAL PA
POOR gar. !
R Qu
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