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t4 fan inlet d=aritgt static testing are responsi-
ble for the increased fuadsmcrial blade passing
tome noise exbserwd in these tests. Thais, it is
'tecessarie to control tnrbuleacc air! other inflow
disturbances a.i static turbotan noise studies to
rerveal noise generating, tarchanises which 'would
otherwise be tusked by frtflow disturbance induced
aaoise_ A number of znt low control .ievices, watch
have been tested and reported in the iiteraturr.

showed varvigr success in reducing the tan blade

rassiog [sine levels (e.g., see Ref. + to 7).

In the present stud y , the inflow control de-
vice tltm) of Re!. . and two aodi tics( iona ct it

were tested on a tan a+dei in the Lewis an. - cltoic
chamber. These inflow control studies were per-
tareed as part of a larger acous(.c evaluation of

this fan.

The fan did not have a suttictrnt number of

stator vanes to cut ott the rotor-stator interac-

tion tone at blade passing frequenc y . Although a
cut-otf .resign would have been more desirable for
isolating blade pas<ing tone notsr mechanisms in

an intlow controt study, earlier results trom the

Lewis anechoic chamber showed that rotor-inflow

interaction could control tone generation even for

a cut-. •n fan it the rotor-stator spacing is large
enough. In the earlier study tser Ret. S), the

basic configuration of the ICL) was tested in both

cut-on and cut-ott conligurations. Tht • minimum
rotor-stator spacing on this tan was I - ti mean

rotor chords. These earlier tt• stw showed the
blade passing tone level to be controlled by in-

flow disturbances interacting with the rotor,

rather than rotor-stator interaction, even with

the cut-on configuration, suggesting that inlet

fan noise in static testing is largely due tit+ na-
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Research Fan

Thr test tan used in this stud y was designee!
and fabracatcd b y AiAesearch ?tauutactur1rg 63apany
.. A-izana as a 5( l .8 cm t'0 in.) tie it
scale model of a 73.0 ca (2.6-7 in.) tan which they
had built and tested earlie. under contract to

aAiA-Lewis_ Itetaiis of this far. stage design may

be found in Ref. 9. Reterence Ili presents Acre-
dynactc and -tc ustic pertormancr of the model  tan
stage in the Lewis anechotc chamber. The design
rotor tip speed of this fan of 488 sisec .1000
ttisec) results in a blade relative Mach number

equal to one at slightl y greater than bbl: design
tan speed. ne design stage pressure ratio was

1.5. The rotor-stator separatior was 1.0 mean

ro tor chords.

The research tan had sufficient aerodynamic

instrumentation to establish the operating point

in terms of pressure ratio and mass flow. This

instrureentation ir'luded inlet therm couples and

.static pressure sensors for inlet mass flow cal-

culations, and total temperature and pressure rise

mvLsurements across the stage. These measurements

were processed through a pressure multiplexing

network and computer s y stem to calculate aero -
dynamic parameters. The tan operating line was

controlled by downstream valves at the collector
exit. Pertormance parameters were corrected to

atandard day .onditions of a temperature of 288.15

K 1518.(,71) Rim and an :atmospheric pressure of 101
kPa 1760 mm Hg.).

Figure 3 shows a cross-sectional sketch of

the fan stage as installed in the anechotc cham-

her. Also shown on Fig. 3 are some design parame-



Cars for pie famu na islet wet► tatersal castsars
tyt cal of flight inlets. but with a tides lip
to facilitate static testamg was mud far [hest
tests. an acoustically-treated m m la p fiw
spiitter With radial support vacs teas installed
hsstream of the fan to guide and stabilize the
flow as it espam" rmdulls into the exboust
collector. and to atterwte any aft fa rue
mbieh migbe be reflected back twnd the fan from
the collector- The fns stage was externally
drive& by am tsectric nor. g photograph of the
part Tally-assembled fa rotor is sborm in Fig. 4.

Idlow Control Device

Figure S shwas a cress-sectional sketch of
the three variat isas of t(.e ::SA-Lewis inflow coa-
trol device (ICD). The basi- coafigmratir- !e-
scribed is Ref. 4. caasiste4 of S cm (2	 thick
honeycomb ower a 40: open area screen ar	 T
ported Ir a strofter. 70Z area area s-r+c.a. the
second ICD configuration consisted of the addition
of a Ma ores area screen supported 10 Ce (4 in.)
inside of the basic structure. The study reported
is Ref. 11 f,-,ad such a downstream screen useful
is combination with bomeycomb/screen flow masipe-
lators in reiscing the turbulence intensities.
Reference 7 reports the results of an experimental
fan noise study for a similar ICD with a down-
stream screen supported S ca (2 in.) inside the
basic structur_. The Ref. 7 LCD was not tested
without the inner screen in place.

The third ICD configuration adapted another
experiments( inflow control concept to the current
ICD tests. This other inflow control concept con-
sisted of an annular duct with a concentric bell-
mouth located at the flight inlet lip. Suction
was applied to the annular duct in an attempt to
simulate a forward flight condition. The suction
was intended to Modify the fan inflow in the a-ea
of the inlet lip to be more representative of flow
with a low fan forward velocity, with an expected
reduction of the rotor-inflow noise.

The third ICU c,afiguration reported in this
study and illustrated in Fig. 5 was formed by sat-
ing a portion of ti.e annular flow duct to the back
of the basic ICD with the inner screen liner in
place. In this configuration it was possible to
use aft suction to remove airflow which night
otherwise enter the fan inlet from behind the
highlight. It was thought that disturbances in
the forward flow on the outside of the fan inlet
or disturbances generated in negotiating the turn
around the inlet lip would be superimposed on the
inlet boundary layer, degrading the inlet flow
rear the fan tip, and possibly increasing the
rotor-inflow noise. There was also concern that
small irregularities in the attachment of the ICD
to the fan inlet might induce inlet disturbances.
Aft suction should eliminate this potential
problem.

In the ICD study of Ref. 7, suction was
applied to the inner surface of the inlet duct.
The results of this study suggested that suction
was effective in further reducing the blade pass-
ing tone with the ICD in place on the inlet.

Figure 6 is a photograph showing the ICD in-
stalled on the test fan in the anechoic chamber.

scows¢ is imst CIamdaat ion

Far field scamstic data Were squired w a
7-6 m ( 25 f t ! radius from 40 to W from the
fa inlet aais (u too imcrenesesi. Signals
from the 0-" cm (0.25 im.) aaicrepiames were re-
corded am magnetic tape for later narrow
spectral analysis. The output of this as row
bandwidth sound pressure level analysis ma; digit-
ixd and tramomitted to a computer for further
analysis- ruing a computer reduction program.
narrow bamdw►dch sound power level spectra were
teneratd for the forward arc (do to W from
the fee islet lQls).

7be b-9a microphone (seen is Fig_ 1) was used
to obtain continuous directivit y results at a
6-1 a (20 ft) .adios centered is the plane of the
fas inlet highlight_ The narrow badwidt ► spec-
tral analyzer was used to monitor the furdanestal
and first overtone iewe's for these boom
(80 de bandwidth)_

III. Results and Discussion

Aerodynamic Results

The fan operating Map (Fig- 7) shows the
aerodynamic performance of the research fan as
tested in the anecboic chawWr. 10 Most of the
acoustic results presented in this paper are for
the fan operation on the standard operating line.

Acoustic Results

because of the high design speed of this re-
search fan, most of the acoustic results discussed
in this section will be for 60 and 701 of design
fan speed. Above 70: design speed the rotor rela-
tive velocity is well into the supersonic region
where inflow control has little effect on strong
multiple pure tone generation associated with
rotor blade leading edge shock waves. Since the
research fan in this study was a cut-on design,
inflow control was not expected to substantially
reduce the fundamental blade passing tone levels
if they were due to rotor-stator interaction.
Powever, as the following results will show,
rotor-inflow interaction noise still appears to be
the dominant fundamental tone generation uechanism
- even for the cut-on fan design.

Tests of the original aft suction concept
shoved little tone reduction without the addition
of an ICD to condition the bulk of the inflow.
The results implied that disturbed flow at the
inlet lip and inlet duct boundary layer is not the
major source for the rotor-inflow tone noise gen-
eration.

Sound power level spectral. Sound power
level (PWL) spectra were calculated for the for-
ward arc. Figure 8 shows PWL spectra for 60 and
701 design fan speed. Figure 8(a) compares PWL
rpectra at 60% design fan speed for the baseline
fan stage without inflow control to spectra for
the stage with the basic 1"D, and to spectra for
the configuration with the inner screen liner and
aft suction. The basic ICD is seen to reduce the
fundamental tone power level by about 8 dB. A
further 4 de reduction of the fundamental tone was
realized by the addition of the inner screen liner

r-



and aft sarcoma. The first overtone levels
(designated 2 a MV on Fit- U a)) sbowed a small
redattiam with the basic IO, but were reduced as
additional 3 dd with the additional inflow con-
tral_ The results for the basic ICb with the
liner screen in place, but no aft suction were
essentially the same as those for the basic Im,
and are not Shaun on this figure.

Figure g(b) shows the sane comparison for the
fan eperatigg at 703 of design sped. These re-
sults are similar to those of Fig. Ca). sba ing
romsiderabie redaction of the fundamental tone
level with the basic ICD, and further tone reduc-
tion with the addition of the inner screen and aft
suction. !bus in the presence of the basic IM to
condition the bulk of the inflow, there is evi-
dence that disturbances associated with forward
flow oa the Outside of the fan inlet or with flow
around the inlet lip are present to generate tone
noise. This contrasts with the case cited above
where without the ICD there was no effect of aft
suction.

The rotor relative velocity is in the super-
sonic region at 70: design speed for this fan. In
Fig. t(b) there is evidence of the initial stages
of multiple pure tote generation in the baseline
(no inflow control) spectra at about 4 kRz and
again between t".e fundamental and first overtone.
These HPTs were essentially reduced to broadband
levels in the spectra with inflow control. At 80:
design fan speed the multiple pure tones were well
established and essential:_v no difference was seen
between the MPT levels for the baseline and inflow
control cases. A similar observation on the ef-
fect of inflow control on suppressing NPT genera-
tion in the trans-sonic rotor tip speed range was
reported in Ref. 4.

Sound pressure level directivity. Directiv-
it) results for the baseline fan and for the fan
with inflow control are shown in Figs. 9 to 11.
These tone levels were obtained from narrow band-
width SPL spectra (80 Hz bandwidth) from the
fixed, far field microphone signals and from the
microphone boom signal.

The fixed-position directivity plot for the
blade passing tone at 602 design fan speed is
shown in Fig. 9(a). The baseline _exults show a
directivity pattern that is typical for rotor-
inflow interaction in which the energies of many
acoustic radiation modes are combined with no
particular modal ^attern dominating the directiv-
ity. (See Ref. 12 for a discussion of the addi-
tion of acoustic modes.)

Essentially similar results are seen with the
ICD with and without the inner screen liner.
A lobed pattern begins to appear in the directiv-
ity with this level of inflow control, suggesting
that a limited number of driving modes now control
the directivity. However, with the addition of
aft suction a different lobed pattern emerges at a
somewhat further reduced level. As was previously
discussed, the alt suction was expected to greatly
reduce inflow disturbances originating from any
disturbances introduced by the ICD--fan inlet
interface as well as disturbances from forward
flow on the outside of the inlet merging with the
inflow boundary layer. This change in the lobed
patter with the addition of aft suction gives evi-
dence for the existence of such local flow prob-
lems with the other ICD configurations.

The directtvit y with maxtmen inflow control
(ICD with aft svctioni does Mt sbow a strongly-
lobed structure_ This suggests thit the residual
faun fundamental tome is not controlled b y a few
rotor-stator interaction gemerJted nodes for this

fan speed and rotor-stator spacing il.i rotor
chords).

The coattumous-swtetp SPL 4 irectivity results
from t}a microphone coon signs: corresponding to
the fired point results of Fig. 9ta) are shown in
Fig. 9(b). The results for the PM with screen
liner were omitted for clarity. Distinct lobes in
the directivity structure for the base ICD results
are quite evident in this figure.

The blade passing tone SFL directivit y re-
suits at 70: design_ fan speed iFigs. 10(a) and
(b)) show essentially the same treads as were ob-
served for 60: design fan speed. The remaining
lobed structure in the directivity with maximum
inflow control suggests a tone contribution from
rotor-stator =nterr^:tion modes.

Directivit y plots for the first overtone
(Figs. 11(a) and (b) ) show a modest tone reduction
at all angles with the maximum inflow control con-
fig-aration. The reduction of the first overtone
with inflow control is considerabl y less than that
observed for the fundamental tone. The results
for the intermediate inflow control configurations
fell between these two curves.

Tone sound power level. l i.z fan blade pass-
ing tone sound power level is shown as a ic^ tion
of fan speed in Fig. 12. Inflow control is seen
to be very effective in reducing this tone level
at 60 and 70Z design fan speed. The effectiveness
of inflow control is greatly reduced at 802 design
speed and above, where the rotor relative velocity
is well into the supersonic range. Again, the
Addition of the inner screen to the ICD did not
appreciably reduce the tone level.

The approximately 3 dB reduction of the tone
level with inflow control at higher fan speeds is
due to a reduction in the rotor-inflow interaction
noise at angles nearer the fan axis. For example,
Fig. 13 compares the blade passing tone SPL direc-
tivities for the baseline and maximum inflow con-
trol configurations at 90. design fan speed. The
directivity pattern associated with the rotor-
alone tone generation at supersonic tip speeds
peaks near 600 from the fan inlet. No tone re-
duction was observed with ; nflow control at 600
to 900 from the inlet axis, where the levels
were controlled by the rotor-alone field. How-
ever, inflow control does reduce the tone level at
forward angles where rotor-inflow dominates. The
net results are the small tone power reductions
observed with inflow control at supersonic blade
tip speeds.

The choke operating line results of Fig. 14
suggest that the moderate inflow control afforded
by the basic ICU is more effective in reducing the
blade passing tone for fan operation on the choke
line than for operation on the standard line at 70
and 80% design fan speed. Fan operation on the
choke operating line results in a higher axial
velocity for a given fan speed, thus slightly re-
ducing the rotor-inflow incidence angle and rotor
loading. These results suggest that such changes
in the rotor operating condition may influence the

SM -^



sonsitivity of the blade passing tone level to
inflow conditions.

Fiprre 15 .chows the first overtaae PWL as a
fusectisn of fas speed for the baseline and manias
istlow control configurations. Inflow control
resulted in a►awt a 5 dt reduction is the owe Roue
at 602 design fan speed, with decreasing effect
with increasing fan speed. Thus, [he first over-
tone is costroliee by rotor-inflow interaction at
lower fan speeds, with rotor alone tome generation
becoming more significant with increasing fan
speed.

Iv- Swan of Results

1. Rotor-inflow interaction appears to be a
stronger source trsa rotor-stator interaction for
the forward radiated blade passing tone as evi-
denced by the effectiveness of inflow control with
this cut-on fan at a 1.6 rotor chord rotor-stator
spacing.

2. Aft suction used in conjusctioa With an
inflow control device was beneficial in further
reducing forward-radiated blade passing tone
levels. This suggests that disturbances either in
the forward flow or the outside of the fan inlet
or associated with flow amend the inlet lip may
be an important noise generating mechanism. The
disturbances could ads, .ome from irregilarities
at the mating su r aces between the ICD and the
inlet outer wall.

3. The sensitivity of the fan blade passing
tone level to inflow conditions is reduced when
the rotor incidence angle is decreased by opera-
tion on the choke operating fine.
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standard operating line.
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Figure 13. - Blade passing tone SPL directivity at 7.6 m (25 ft)
radius. 90% design fan speed, standard operating line.

OPEN	 CHOKE OPERATING
SYMBOLS	 LINE

SOLID	 STANDARD OPERATING
SYMBOLS	 LINE

O BASELINE, NO INFLOW CONTROL
O WITH INFLOW CONTROL

DEVICE IICDI

0CL
0Z
O
3)N

d
^ m
w ^
0_2Z w
^LH
a
CL
w05
m

60	 70	 80	 90

% DESIGN FAN SPEED

Figure 14. - Narrowband blade pass-
ing tone sound power level as a
function of fan speed, 80 Hz band-
width.
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Figure 15. - Narrowband 1st overtone
sound power level as a function of
fan speed. Standard operating line,
80 Hz bandwidth,
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