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1.0 SUMMARY

An analytical study of the effects of wind tunnel turbulence on turbofan
rotor noise was carried out. A previously established prediction model was
used to evaluate wind tunnel turbulence/rotor interaction noise. The predic-
tion model was first extended to include the effects of turbulence anisotropy
by deriving and incorporating a turbulence spectrum model based on axi-
symmetric turbulence theory. The extended prediction model was verified
through extensive data/theory zomparisons with scale model and full-scale

fan measurements, with various inlet turbulence conditions.

It was found that the classical Ribner/Tucker sudden-contraction theory
does not adequately describe the turbulence free-stream to fan~-face contrac-
tion effects for the wind tunnel environment, and, hence, some uncertainty in
the prediction of wind tunnel turbulence/rotor interaction noise was identi-

y fied, It was estimated that the predicted levels could be at most 6 dB too

low for the highest contractions normally encountered.

l A literature survey of fan inlet turbulence properties was carried out,

and data ranges were identified for anechoic¢ chambers, outdoor test stands,

t wind tunnels, and atmospheric flight environment. Considerable scatter and
variability in turbulence properties was found to exist, and "expected

average' values for the various test site conditions were determined.

! A parametric study of the effects of fan rotor size, blade number, oper-
‘ l ating line, and tip speed on rotor/turbulence noise was carried out. The pre~
dicted noise levels for the NASA-Ames 40x80 wind tunnel environment were
compared with both outdoor test stand levels and altitude flyover levels.

L The extended rotor/turbulence noise prediction model was used to predict

T ; the noise level trends with tip speed, rotor geometry, and environmental

conditions,

Results of the study showed the Ames wind tunnel rotor/turbulence noise
levels to be 15-20 dB lower than outdoor test stand levels for all combinations
of tip speed, rotor diameter, blade number, and operating line investigated.

The wind tunnel levels were also compared with flight levels and found to be
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10-15 dB higher, but still lower than the other sources of fan noise (broad-
band, multiple-pure~tones, rotor/stator, etc.).

Due to the random variability of atmospheric turbulence properties, it
was found that a wide range in rotor/turbulence noise levels can be expected
from different conditions and that the wind-tunnel and flight bands can
overlap.,

It was concluded that wind tunnel turbulence/rotor interaction noise is
sufficiently low such that forward flight effects are adequately simulated as
far as inlet "clean-up" effects are concerned. Although the wind tunnel tur-
bulence characteristics (small-scale, low intensity) are far different from

atmospheric flight turbulence characteristics (very large scale, moderate~to-

high intensity), the net effect on noise is similar.

| It was found that rotor/turbulence noise, for contracting large-scale

@ inlet turbulence, is characterized by strong, narrow peaks at blade passing

L frequency and its harmonics, with no significant contribution to the fan

| broadband noise levels. For axial length scales sufficiently large (greater
» than one diameter), the transverse turbulence intensity and transverse length
scale/blade spacing ratio are the primary parameters which control the rotor/

turbulence noise levels for a given fan.
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2,0 INTRODUCTION

It is now well known that acoustic testing of turbofan engines in an
outdoor test stand facility does not yield the same noise characteristics
as those measured in flight. As discussed in Reference 1, atmospheric
turbulence is drawn into the inlet during ground static t«sting, undergoing
substantial elongation and contraction. Because of the large contraction
of the inflow streamlines, the turbulent eddies convecting with the flow
appear as long "sausages' as they pass through the rotor. Many blades will
successively "chop” the same eddy, producing blade-passing frequency tones
as well as broadband noise. This rotor/turbulence interaction is usually
strong enough to dominate other sources of fan inlet noise during static
testing.

In flight, the fan inlet flow ¢oes not undergo very much contraction
because of the aircraft forward motion. The fan inlet contraction ratio, C,
defined as fan face through-flow velocity divided by flight speed, is not
too different from unity at normal flight approach speeds, At typical
approach altitudes (500-1000 ft or 150-300 meters), the atmospheric turbu-
lence scales or eddy sizes are much larger than on the ground, so that the
eddies do not appear to the rotor as 'sausages" which are successively
"chopped" by the rotor blades, but may have cross sections as large as, or
larger than, the inlet itself. Very little rotor/turbulence interaction
noise is therefore produced in flight, allowing other sources to dominate

the observed noise spectrum,

It is desirable to have a "static" or ground-based test facility for
acoustic evaluation of turbofan engines; ovne which correctly simulates the
flight inlet turbulence conditions. Flight testing is not only costly and
time-consuming, but has severe limits on test conditions, power settings,
etc., and is subject to variability and uncertainty with respect to atmos-
pheric propagation, ground reflections, and aircraft location. For research
and development purposes, extensive hardware .hanges and elaborate instrumen-
tation and data acquisition equipment are often required which cannot be easily

implemented in a flight test., Acoustic testing of full-scale turbofan engines

T Y -k
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in a large wind tunnel is a viable alternative to flight testing. Flight
contraction ratios and aircraft speeds van be simulated in a wind tunnel,
under more contrelled conditions, with {est measurement capability and flex~-
ibility rivaling that of a conventional outdoor test stand.

| The NASA-Ames 40x80 wind tunnel facility at Moffett Field, California,

! has recently been used for acoustic evaluation of turbofan engines under
simulated flight conditions. This wind tunnel facility has turbulence proper-
ties which are different from both the »u.uoor test stand and flight altitude

\ environment, and it is important t> know whether the rotor/turbulence interac~

| tion noise in the tunnel is low enough to provide a true simulation of flight

noise characteristics.

| The primary objective of the present study was to evaluate the degree to
which the NASA-Ames 40x80 wind tunnel simulates flight conditions in terms

of producing sufficiently low levels of rotor/turbulence interaction noise.
Guidelines for the ranges of fan size, blade number, and operating speeds over
which sufficiently low rotor/turbulence noise levels can be expected were to
be established. A previously developed theoretical prediction model was to be
used for performing the analytical study,

The theoretical model, described in References 2 through 4, utilizes an
isotropic model of the inlet turbulence, along with sudden-contraction theory,
Reference 5, to account for inlet flow contraction effects. Experimental
& measurements, however, indicate that the initial turbulence upstream of the
| inlet is not isotropic, e.g., Reference 6. Additionally, it is desirable to

be able to specify independently the axial and transverse turbulence intensity
and length scales, Hence, the theoretical model was to be extended to include
an axisymmetric initial turbulence spectrum, prior to carrying out the wind

tunnel evaluation study. :

The scope of the present study consisted of four primary tasks in support
of achieving the above-stated objective:
Task 1 - Modification of previously-developed General Electric rotor/

turbulence interaction prediction model to include anisotropic
turbulence.

~
-
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Task 2

]

Establishment of representative turbulence properties for three
acoustic test facilities or conditions: (1) Outdoor Test Stand
static facility, (2) NASA-Anes 40x80 £t Wind Tunnel, and

(3) Flight Test. Only existing available data is to be uti-
lizad ’

Task 3

1

Evaluation of rotor/turbulence noise source characteristics of
a typical high speed fan for each of the facilities/conditions
listed in Task 2,

Task 4

1

Evaluation of the degree to which the NASA-Ames 40x80 ft
Wind Tunne)l simulates fiight conditions from the standpoint of
acceptably low rotor/turbulence interaction noise.

The following sections describe in detail the work performed in the above
four tasks. A brief review of the rotor/turbulence noise theory is first
given, followed by a description of the anisotropic turbulence theory modifi-
cations. The survey of inlet turbulence properties is then summarized, fol-

lowed by the parametric study and wind tunnel evaluation.

ORIGINAL PAGE IS
OF POOR QUALITY
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"3.0 REVIEW OF ROTOR; TURBULENCE NOISE THEORY

As discussed in References 2 through 4, there are several mechanisms by
wiich inlet turbulence might produce noise. The turbulence may be regarded
as a pattern of vorticity convecting with the flow whose statistical proper-
ties are known. The nonuniformity of the velocity associated with the tur-
bulence convecting with the flow produces unsteady fluctuations in angle-of-
atta.: on the rotor blades, leading to unsteady blade forces and, hence,
noise radiation. This mechanism is usually referred to as a dipole source

and is analyzed in detail in Reference 2,

Further, when the rotor is loaded, i.e., has some steady lift distribu-
tion, there is a rotor-locked asymmetric flow pattern spinning in the fan
duct having a fundamental period equal to the blade spacing. This asymmetric
pattern itself is an ineffective noise source for subsonic tip speeds, but
its intersction with inflow turbulence leads to a quadrupole source. Insofar
as Mach number dependence alone goes, the ratio of quadrupole to dipole noise
should be as M2, The quadrupole source depends on blade loading, whereas the
dipole source, to first order, does not. The quadrupole mechanism is treated

in detail in Reference 3.

Finally, a third mechanism, postulated in Reference 4, arises when a
zero perpendicular velocity boundary condition is imposed at the blade surface
for the quadrupols model problem. This mechanism is analogous to the noise
increase experienced when a vibrating tuning fork is brought near a solid sur-

face. A detailed analysis of this mechanism can be found in Reference 4.

Based on the above physical picture of noise generation due to turbulence
incident on a blade row, theoretical analyses were developed (References 2
through 4) relating the characteristics of the turbulence, design parameters of
the blade row, and the spectrum of the radiated noise. A spectral representa-
tion of turbulence which treats the turbulence as a superposition of shear
waves was used, The turbulence was assumed to be homogeneous and isotropic.
The effects of inlet contraction were subsequently accounted for (Reference 4)
by utilizing the sudden-contraction theory of Reference 5, as illustrated in

Figure 1,
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Figure 1. Fan Rotor-Turbulence Interaction and Large-Scale
Turbulent Eddy Contraction,
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A two-dimensional ciwcade representation of the blade row was employed,
and the blades were idealized as flat plates. The flow was assumed to enter
the inlet axially with axial Mach number M,, while the cascade translated
with transverse Mach number My, as illustrated in Figure 2. The turbulence
was treated as a superposition of shear waves of varying wavenumber in the

axial (x), transverse (y), and spanwise (z) directions.

The statistical description of the turbulence assumed determines the
amplitude distribution of the velocity shear waves over the wavenumber spec-
trum. The x, y, and z components of the shear wave velocities are resolved
into components normal tc the blade chord to determine the unsteady angle-

of-attack or upwash incident on the rotor blades.

For the unsteady blade force evaluation, the cchpressible, two-
dimensional, isolated airfoil lift response functions given in References 7
and 8 are used. The low-frequency theory of Reference 7 is used for low
reduced frequencies, while the asymptotic high-frequency theory of Reference 8
is used for high reduced frequencies. A correction for airfoil aspect ratio

is also included, as was suggested in Reference 9.

As described in Reference 3, the steady blade-to-blade flow field locked
to the rotor is modeled by representing the blades as a row of translating,
equally~-spaced concentrated point forces, The velocity field due to the
steady blade loading is coupled with the turbulence velocity field to evaluate
the resulting Reynolds stresses which are the quadrupole source strengths,
analogous to the fluctuating Reynolds stresses which form the source strengths
for jet mixing noise. Since the amplitude of the rotor-locked steady velocity
field is proportional to the blade loading or lift coefficient Cy, the quadru-
pole strength is also proportiomal to Cy, and hence so is the associated

acoustic pressure.

The General Electric Company computer code for the prediction of rotor/
turbulence interaction noise is essentially a modified form of the code pre-
sented in Reference 3. The incompressible lift response function (Sears'
function) has been replaced by the compressible response functions described
above, and the contraction effects as d:scussed in Reference 4 have also

been added.
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Figure 2. Rotor/Turbulence Interaction Theory Model Geometry and
\ Nomenclature,




The quadrupole/blade interaction source mechanism (tuning fork amplifi-

cation effect) has not been included, for several reasons. First, diagnostic
calculations have shown this mechanism to exhibit "resonances" in its present
formulation, which do not appear in the experimental data. Second, the ex-
perimental effect of blade loading (Reference 6) was very small on blade-
passing frequency, indicating that the dipole source is dominant. Third, the
formulation in its present form required certain arbitrary modifications in
order to prevent the predicted noise level from becoming either too large

or too small, and it was felt that a degree of rigor was sacrificed compared
to that of the dipole and quadrupole source models. Finally, the computation
time for the quadrupole/blade interaction contribution was an order-of-

magnitude larger than that for both dipole and quadrupole contributions com-

ST TSR T TR R T e T T L ey MR R
~

bined. In view of the uncertainties associated with this portion of the for-

mulation, the additional expense was not considered worthwhile.

The above-described computer code prediction, prior to the present pro-
gram modifications, predicts inlet and exhaust radiated power spectra (PWL)
in proportional bandwidths. Input required is M, Mg, C , rotor solidity
(defined as chord ¢ over blade spacing 8), inlet turbulence intensity, axial
length scale, and inlet contraction ratio. The initial turbulence upstream
of the contraction was assumed to be isotropic. Output includes dipole,

quadrupole, and total PWL spectra for both inlet and exhaust ducts.

A sample prediction of rotor/turbulence noise inlet duct PWL spectrum
and a corresponding measured inlet arc PWL spectrum, taken from Reference 6,
is shown in Figure 3. The predicted spectrum utilizes the measured axial

turbulence intensities and axial length scales reported in Reference 6,

along with a contraction ratio based on the measured ratio of transverse to

axial intensity and the sudden contraction relationships of Reference 5. It ;
ran be seen from this comparison that there is much room for improvement in

the prediction. The basic problem lies in the isotropic turbulence assump-

tion., The measurements of Reference 6 show a ratio of transverse turbulence

intensity ug/Uy to axial turbulence intensity u,/U; of about 2,0. The

; measured ratio of axial length scale L, to transverse length scale % is

about 300. Using isotropic turbulence followed by a sudden contraction, it is

predicted that ug/u, is approximately the same magnitude as 2,/%¢, in strong

contradiction to the measured evidence.
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Figure 3. Comparison of Predicted and Measured Inlet Arc PWL

Spectra, Isotropic Initial Turbulence with Sudden
Contraction Theory.
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Hence, before the proposed study outlined in the introduction could be
carried out, the inlet turbulence model had to be reformulated to allow in~
dependent specification of ug/upy and Ra4/%p. Additionally, the new formula-
tion had to be shown reasonably accurate insofar as ability to predict rotor/
turbulence noise is concerned, so that reasonable confidence could be estab-
lished in the parametric study trends and results of the NASA-Ames 40x80
wind tunnel evaluation. The following section describes the formulation of an

anisotropic turbulence model for rotor/turbulence interaction predictions.

12
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4.0 ANISOTROPIC TURBULENCE SPECTRUM ANALYSIS

Recognizing that the assumption of isotropic turbulence is inadequate for
modeling the turbulence spectra drawn into the fan duct, the next higher order
in complexity is to assume that the turbulence is axisymmetric., Axisymmetric
turbulence is characterized as having one preferred axis of symmetry, whereas
isotropic turbulence has none. The axis of symmetry is assumed to be parallel
to but not necessarily coincident with the main axial flow direction. The
time-averaged velocity fluctuations (and length-scales) normal and parallel to
the axis of symmetry may be different, whereas for isotropic turbulence they
are equal, Adoption of an axisymmetric turbulence model, therefore, provides
the flexibility to independently specify the axial and transverse turbulence
intensities, as well as differing axial and transverse length scales. Be-
cause only one axis of symmetry is assumed, the tangential and radial intensi-
ties are also assumed to be equal, as are the tangential and radial length

scales.

The following development is based on the theory of Axisymmetric Turbu-
lence given in References 10-12. The axial direction (subscript 1) is
assumed to be the axis of symmetry. An effort has been made to develop the
results so that they will reduce to the previously assumed case of isotropic
turbulence when the proper limits are taken. The rotor/turbulence interaction
model treats the rotor as a two-dimensional cascade in the axial-tangential
plane, from which it follows that only the axial and tangential turbulence
quantities are required. Denoting the tangential direction by subscript 2,
the turbulence spectra ¢11, ®12, and $9, are required as functions of wave-
number components ki, kp, and k3. The corresponding velocity correla-
tion functions are Ryj, Rj2, and Rpp, which are functions of spatial sepa-

ration distances x] (axial), x2 (tangential), and x3 (radial).

Chandrasekhar (Reference 11) showed that the general form of a symmetric,
second-order, axisymmetric, solenoidal (divergence~-free) velocity correlation
tensor is as follows:

3a:
9im
€
Ris ™ jtm Txx R
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where

9G; " *k [‘iijl *enk (SR ? "qu)]

x
Q, = 2 - 1 2 Q
X Xy 3%y :
and where Q) and Q) are arbitrary functions of |x1| and x¢ = /xgz + X32. The
symbol ¢jjk is the usual alternating tensor and gj;j is the Kronecker delta

tensor. The above result is a generalization of the isotropic result

f-g
Rij .7 xixj + g Gij (2a)

where f and g are functions of r = /412 + xz2 + x3!

and
g =3 I (D) (2b)

Previously (References 2~4), the isotropic result had been used, with f
assumed to be of the form uZ exp (~-r/y).

From Equations 1-3, expressions for the correlation tensors R}, R]2,

and Rpp can be derived, as follows:

aQ
Ry, = -2Q; - %, a_xc' (3a)
Q
R12 = R21 = x2 ?x—l- (3b)
Ra2 = 729 " "B R T PR R T %3 g
(3c)
2 2 2
3 Q 23 Q 23 Q
- 2x1x3 3%, 3%, 1 x 2 * 3 2
3%, ax,
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Whereas the isotropic turbulence correlation tensors, Equation 2, are charac-
terized by one function f£(r), the axisymmetric turbulence correlation tensors,
Equations 1 and 3, are characterized by two arbitrary functions Q) and Q

of variables |xj| and x.

The turbulence velocity spectra corresponding to the velocity correlation
functions are given by the Fourier transform of the correlations, as follows:

1 3 ke
‘ij“-‘) - .8.'.5 / Rij(:_c) exp (-j kex) dx

>
5~
-’

Thus, if suitable functions Q) and Q) can be found and substituted into Equa-
tion 3, relation 4 can be applied to the result to arrive at velocity spectrum

functions ¢11, 412, and ¢29.

Certain measurable correlation functions can be derived as limiting forms
of Equation 3. For example, the axial cross correlation of the axial turbu~-

ience velocity is given by

Rl]. (xl,O,o) = -2Q1 (xl,O). (Sa)
Also, the transverse (tangential) cross correlation of the tangential turbu-
lence velocity is given by

R22(0,x2,0) = -2Q1(0,x2) -Q2(0,x2) (5b)

It is common practice to curve-fit the measured cross-correlations of Equa-

tions 5a and 5b with functions of the type

R, (x,0,0) = u_? exp (-|x|/2) (6a)

p 2
Rzzxo,xz,o) u,* exp (-|x2[/£t) (6b)

where u, and ug are the axial and transverse intensities, and %, and & are
the axial and transverse length scales, respectively. Equation 6a can also
be written as an autocorrelation by assuming Taylor's Hypothesis of frozen,
convected turbulence. Thus, if the convection velocity in the axial direction

is Uy, Fquation 6a can be written as ua2 exp(-Ug 1/2,), where t is the auto-

correlation time delay.

15
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If expressions for Q) and Q2 can be found which satisfy Equations 5 and 6
in the proper limits, the above-described process for deriving ¢11, ¢12, and
422 can be carried out. Initially, forms for Q] and Q2 were assumed as
follows:

1/2
Q = - -;- 0,2 exp [-(xlzllaz + xtz/:.c2 ) ] (7a)

1/2
Q, - (uaz - ut2>exp [- (xlzuf + %2112 ) ] (7b)

These expressions yield the empirical forms of Equation 6 for Ry3(x),0,0) and
R22(0,x2,0) when substituted into Equation 3 and the appropriate limits are
taken, per Equations 5a and 5b,

Employing the assumptions for Q) and Qy given by Equations 7a and 7b, the
velocity correlation functions given by Equations 3a-c were derived, and the
corresponding turbulence spectra were derived by Fourier transform of the
results, per Equation 4, The details of the derivations are omitted herein

for brevity, but the resulting spectrum expressions are as follows:

2 2
2 U 2
- a’t a 2 2 2
mtT <k2 R T ) (8a)
™ A
21 2 2
u
a“t a
P Sl - (kx‘a)("‘z"c) (8b)
» A )
2 2
48 2. "u 2
’22 76 {[u 1+ 2 ] (k3"t) (8¢)
x A
1 2 3 2 2 2
+t—5 (klza) -3 <k1za) “‘3":) (A=1/2) }
2) A
where
2 2 2 2 2 2 2
A L+k e+ k)"0 " 4 k% (9a)
v e/, | (9b)
u= ut/ua (9C)
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The rotor/turbulence noise prediction requires the integral of the
spectra over the spanwise wave number k3, defined as follows:

-
¥i5(kpoky) = J{ 0i5(k rkyrky) dky (10)

Utilizing Equations 8 and 9, application of Equation 10 yields the following
relations for §1), ¢12 and §22:

Lo u 2

~ - a"t a 2 .2 2

o (“1"‘2) ————5—“' . (3 k2 8, o+ Ao) (l1a)
0

~ altzuaz
1Y) (kl’kz) - - -4—;—;—5- [(klla)(kzlt)] (11b)

2
LR U
~ - _ata | 2,,..2
85, (k1,k2) -Z:—;-g [S(klta) (2-29) (1lc)
o

+ Az (2;;2 - 2+;\2)]
where

IR R LR AL
When expressions 11 were programmed and installed in the rotor/turbulence
noise computer program, problems were encountered when attempting to compute
cases where the axial-to-tangential turbulence length scale ratio ) was
greater than ~3. The source of this difficulty was traced to negative values
of $22, which were physically unrealistic. Examination of the expression
for §22 given in Equation 11 shows that, in order to avoid negative values,

we must have

3(klza)2(2-12) + A§(2u2-2+x2) > 0




e

e
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Now for the range 05(k1%,)< = , the ratio (klza/Ao)2 varies over the range
from 0 to 1. At the lower limit, the above inequality gives

w? -2+12%5 0

which holds for all A as long as ¥?1, At the upper limit, the above inequal~-
ity gives

u2 + 2 - 12 >0

which only holds as long as

lz ¢« 24+ uz

For a typical velocity ratio ¥ = 2, the maximum allowable value nf length
scale ratio is thus A = 2.45. Thus, for A > 2,45, negative values of ;22

should occur, explaining the computational difficulties which were encountered.

The source of this difficulty was found to be the assumed forms for Q)
and Q; given by Equation 7. An additional constraint on the selection of Q)

and Q7 must be enforced which insures non-negative autospectra ¢]1] and ¢77.

An extensive analysis of this problem was carried out to determine the
forms of the spectrum functions which are non-negative for all practical
values of X and ¥, It is shown that (see Reference 12) the spectra can be

expressed in the form
00 = (k2 4 k2 F (k) (12a)
11'= 2 3 =

$,(k) = - Kk k, F (k) (12b)

0,00 = (k2 + D F W +k

2 \
22'% 1 3 6 (k) (12¢)

where F(k) and G(k) are arbitrary functions of ky2 and kg2 = kp? + k32; in

order for ¢]] and 937 to be non-negative, they must satisfy the following
constraints:

F (k) 20 (13a)

F(k) + (k3 + k2) k™2 6(K) > 0 (13b)

18
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Note that 41} and 412 given by Equation 8 can be put in the form given
by Equation 12 and additionally meet the requirement F(k)20. The expres-
sion for ¢77 given by Equation 8 can also be put in the form given by Equa-
tion 12, but does not meet the constraints of Equation 13. Particular func-
tional forms for F(k) and G(k) have been derived which satisfy inequalities
13, and they are as follows:

( 2.'!"(“.4 ulz ) )
F(k) = (l4a
- ’2 Aa

G(k) = F(k) [2»2 -1- 1/x2] (14b)

The above expression for F(k) is identical to that implied for Equation 8,
but the relation above for G(k) is much simpler. If Equations 14 are sub-
stituted into Equation 12, it is easily derived that ¢3; remains non-negative
as long as

L 2 . 2
22> L oo & >l & (15)

- 2 2 -2 2

2u L U,

Since, for the rotor/turbulence interaction problem, ug? < urZ and %; > L, the

above constraint is usually always met.

To obtain the two-dimensional spectra, expressions 12 and 14 are substi-

tuted into 10, integrating over spanwise wavenumber, to obtain the following:

~ Yate “az 2, 2 2
011(k1.k2) - —z;~;—§— (3 k2 Lt + Ao ) (16a)
[o]
~ 3‘t2uaz R
012(k1,k2) = - —z;—z—g (klla)(RZ‘t) (16b)
o
2
| N AT
¢ o0k 1K,) --—‘3-5-4'51- [3 klzzaz (1/2%) (16c)
4n Ao

+ (212 - 1n? AOZ]
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It can be seen that these expressions are the same as those previously de-
rived, Equations 11, with the exception that a term (2-22) in §22 of Equa-
tion 11 is now replaced by (1/a2), The requirement for §27 to be non-
negative is the szme as that given by Equation 15.

It may be noted in passing that the final form for G(k) given herein
(Equation 14) is very similar to one expression suggested by Sreenivasan,
Reference 12, i.e.,

G(k) = F(k} [2,,2 -2].

Expressions 16 were programmed and installed in the rotor/turbulence
interaction program, and diagnostic calculations of narrowband (1 Hz band-
width) PWL were carried out for the same case (Rotor 11 at 54X speed, from
Reference 6) as was shown in Figure 3. Axial and transverse length scales
were parametrically varied, and results of these calculations are shown in
Figures 4 through 8., Figure 4 shows the portion of the spectrum centered
around blade-passing frequency (BPF), for a fixed transverse length scale of
one blade spacing. Figure 5 shows the corresponding results at 2 x BPF.

Note that the spectra &re very peaky for axial scales g53/s > 50, and that

the second-harnonic spectra are broader than the fundamental spectra. The

fall off in peak tone level with harmonic number (n) is shown in Figure 6.

The curves have similar shapes for g,/s > 10. The increase in tone peak level
at BPF with g,5/8 is shown in Figure 7. Above about g5/s > 50-70, the tone peak
increases linearly with g,/s. The effect of transverse length scale varia-
tions, wtih axial scale held fixed, is shown in Figure 8. Smaller p¢/s in-
creases the peak level and makes the spectrum narrower, but the peak appears

to maximize for this case at about g;/s = 0.1.

From the results shown in Figures 4 through 8, it can be expected that,
for typical values of g5/s = 50-100 and /s = 0.5-1.0, the rotor turbu-
lence interaction will produce spectra which are very peaky around blade-
passing frequency and its harmonics, and will have broadband levels which are
substantially below the peaks, by as much as 40-50 dB or more. A complete
spectrum for one combination of %4/s and p¢/s typical of that measured in
Reference 6 is shown in Figure 9. This result confirms that the expectation

is correct.

20




.
130 ; * ' ! T T
@ NASA Rotor 11 Fan Stage
® 54% Np and DV = 0 ‘
120 ° 2./s=1.0 |
S
110
, /s |
g 10 277
E" 10
1'0
g 90 4
& 50
5
H 100 ’
5 80 p
= 200 y
;
70
3
=
' 4 60
1 .
]
]
P 50
; [ 6000 6100 6200 6300 6400 6500 6600
3
%, :, Frequency, Hz
,E | Figure 4. Narrowband Spectrum Around Blade Passing i
Frequency (6300 Hz) - Effect of Axial £
Length Scale with Axisymmetric Turbulence ¥
; Spectrum Prediction, 'k
f A
‘ i
3 ‘ !
i
Li |
21
) - . B
M - PO " A o ™ - " r




22

Narrowband PWL, dB

R i

130

120

110

100

90 ¢t

80

® NASA Rotox 11 Fan Stage

70 e 54% NF and DV = 0
™ Et/s =1,0
60 A 1 1

12,300 12,400 12,500 12,600 12,700 12,800 12,900

Figure 5,

Frequency, Hz

Narrowband Spectrum Around Second Harmonic
of BPF (12,600 Hz) - Effect of Axial length

Scale with Axisymmetric Turbulence Spectrum
Prediction,




130

T T T
e NASA Rotor 11 Fan Stage
® 547 Speed and DV = 0
120 o £¢/S = 1.0

110
=]
b <)
2 100 i
]
[~}
Q
[ )
90 .
80 -
70
0 2 4 6 8 10 12

BPF Harmonic Number

Figure 6., Effect of Axial Length Scale on Tone PWL Vs.
Harmonic Number with Axisymmetric Turbulence
Spectrum Prediction Model.

23

R




A 2 et i ent s b

‘T9POR wna3dadg aduaynqany SrajaumASTXY
103 IMd JUOL 3dg UO ITedS YIBUST TRTXV JO 3I9933F -/ oanSrg

e
S/°7 *a1eds yidua] Terxy pazrremioy

002 08T 09T ov1 0zt 00T 08 09 0% (174 0
- 06
4 <6
¥
—{ 00T
SOT
\ o1t
] _

0'T=8/7 e T STt

0 = AQ pue paadg y4c e

_°8e3g ueg 1T 1030y VSYN @
4 . . 0z1

T T . o D . T
L - T S o g o -

ap ‘7IMd @uo], j49

24

Rty e 5 45 i
e " e e

R s e

BRI T S

|3
i



P

" 120
" 115
o
1 v 110
-]
-]
£
x4
By
= 105
100
0 1 2 3
Normalized Tangential Length Scale, £t/S
120 r T y
e [ /s =100
a
110
. .
o
100
z
o
=
23
2 90
]
H
)
2z
80 1
70 : !
6000 6200 6400 7600
Frequency, Hz
Figure 8. Effect of Tangential Length Scale on BPF Tone PWL
and PWL Spectrum Around BPF (6300 Hz) - Axisymmetric
Turbulence Spectrum Model Predictions.
25
E e " i ! ‘ "wu;“ ' . e T R G e W SRR T L L o . ;:A x w‘vvk‘; @ K

e e e e iR e A b e s

- -




000‘ze

"®STON @duaInqanl/ioloy

(Ind pueqmoxaeyN zj T) 4£31suag Texzoadg I9m0d 2aY 397Ul Jo uorloIpaad ‘g 2an3t g
zH ‘Ad>usnbaxy puegmoiaey
0000z 000°81 00091 ,ooo.QH 000421 000°0T 0008 0009 - 000% 0007 0
Jag x ¢ 4dg X g , dag

Y

¢z = W:\us o
571070 = “n/%n
00E = /% o

e
00T =S/ ¥ e

0 = AQ pue hz %S - @8eag ueg I1 aozoy VSVN L
T2poR wnx3dadg aduaTnqany dTijowuksixy e

T ST

0t

0%

09

08

001

0zt

gp ‘A3rsuaq Te43oadg aamog Jatur

26

b




T T Tre——TT

It was observed that the spectrum peaks at blade-passing frequency be-
came higher but narrower as %,/s increased, Figure 4., It was postulated that
the total tone PWL (integral over a prescribed bandwidth) might become von-
stant above a certain value of %,/8 and remain so with any further increases
in 4,/s. Numerical integrations were performed over a 100 Hz bandwidth
around BPF and its harmonics for the results shown in Figures 4 through 8.
The total PWL in a 100 Hz bandwidth does indeed level off with increasing

2,/8, as the results in Figures 10 and 11 show,

Because the spectra can be so peaked for large length scales (see Fig-
ure 9), it is no longer sufficient to compute 1/3-octave lzvels by evaluating
the center frequency level and multiplying by the appropriate bandwidth, as
had been done in the past (e.g., Figure 3). The 1/3-octave levels must be
evaluated by integrating the narrowband spectrum over the bandwidth. As Fig-
ure 9 shows, this involves computing many points within a given frequency band
in order to obtain an accurate representation of the spectrum shape, since the
spectrum drops off so rapidly on either side of the BPF harmonics, This pro-
cedure can be costly and time-consuming, and so alternate methods for evaluat-

ing 1/3-octave levels accurately were investigated.

A method was finally developed whereby the 1/3-octave levels are computed
by evaluating the narrowband levels at selected points in the 1/3-octave band.
The integration is performed by curve-fitting the computed points with simple
mathematical functions whose integrals are available in closed form. This
procedure is illustrated in Figure 12, where a BPF harmonic exists at some
arbitrary location within the 1/3-octave band. Narrowband levels are computed

at the peak and at both ends of the band, as shown in Figure 12a.

Considering one-half of the spectrum, e.g., £ > nxBPF, as shown in Fig-
ure 12b, the peak level is designated PWLy and sideband value as PWL). These
have corresponding power values of Pgp and P, respectively. The sideband
fréquency is denoted by fj. From the shapes of the curves shown in Figures 4
through 9, a logical choice for a curve shape is

= "a( f-fo)
P Poe
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This can be integrated over the range Af = (f)~f,) to give
‘ P, af v
Pt = mp (1 - P1/P0> (17)

vhera Py is the total power in the interval fo<f<f). Another logical choice
for curve-fitting the spectra is

P = By/[1 + a%(e-£ )]

Again integrating over the interval Af = f}-f, and evaluating the constant
a from the sideband values of P and f-f,, we obtain

P Af
0 -1
P = P -1 18
¢ Fa7iz:i- tan (/60/ I ) (18)

These two expressions were compared with numerical evaluations over 100 Hz
and 1/3-octave bands, and results showed that either of the above approxima=-
tions 17 or 18 gave accurate results for APWL = PWLo~PWL] <20-25 dB., For

| APWL > 20, it appears as though the average of 17 and 18 gives the best com-
|

parison with the precise numerical integrations., This is shown in Figure 13,
where the decibel equivalents of 17 and 18 are plotted and compared with
numerical integraton points. The average curve of Figure 13 is therefore

! used in the present computer code for evaluating 1/3-octave spectra.

| The final formulations discussed above permit evaluation of rotor/
! | turbulence interaction noise when the turbulence properties are known at the
fan face (rotor leading edge plane). The turbulence properties ug, ug, Las

| ( and & can be specified independently, consistent with measured values. How-
; ever, sometimes the properties may only be known upstream of the fan face at

a location where the flow still undergoes a contraction prior to entering the
‘rotor. A method for estimating the turbulence spectra for axisymmetric tur-

bulence passing through a contraction is therefore required. The sudden con-

traction theory of Ribner and Tucker, Reference 5, is utilized herein.
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Let the postcontraction spectra and wave number be given by'oij(i), and
the precontraction spectra and wave number be given by ¢;j(k). Let C denote
the contraction ratio, defined as the ratio of downstream-to-upstream flow
velocity, and define ¢ = 1/C3. Given x = (K}, k2, K3), the corresponding
precontraction wave nimber is given by k = (kj, k2, k3) = (Cx}, k2//C,
«3/¥C). An axisymmetric contraction is assumed, as discussed in Reference 5.

Per Reference 5, the post contraction spectra are given by the following

formulae, in terms of the precontraction spectra 015:

1
(- "2'{ k) + N A

c € kl + kz + k3

(19)

4 4
, ¢),(0) Kk (1-¢) }

2, K 2

(l:k1 2

¢ kgD
[410(8) ky + 93,50k Ky ]k (1-¢)

77 2
1t Ryt Kk,

/C

1
(8 == {012(5) + -

3 2
01 ) k3 K, (1-€)
11 ) } (200

(ck1 2

20,,(k) k k,(1-¢)

o (k) = cle, (k) +
22 { 22 k2 vkl er2

1 2 3

2,2 2
9., (k) k,“ kp“(1-€)
+ L1 12 } (21)
k.2 2 2.2

1 + k2 + k3 )
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The corresponding two-dimensional spectra, defined as the integral over

k3 of the above three-dimensional spectra, are then given by
(]
'ij(kl,kz) =2 /C /"13 (k1% %,) dk, (22)
o

where ¢1j(5) are assumed to be even functions of k3 and the relation dkj =
/C ik was used. The above integrations (Equation 22) are carried out numer-

ically. Let
ks = A tan 0 (23a2)
2 2, 2 2, 2
A, 1L+ 2% %+ 2%, (23b)

then 2.dky = Agsec26d8, and the factor A~6 in the expressions ¢ij{k), Equa-

tions 12 and 14, can be written as

-6 - 2. 2 2. 2 2 2
A (l + La k1 + Lt k2 + zt k3 )

= (A 2,0y 2) = A% gec%
o t 3 o

so that the integrals over k3 can be written in the form

n/2
2,6 [ooooo-.] cosl‘ 040
£ A°
to

[o]

The interval 0%6< %/2 is divided into 18 equal increments (5°), and
Equations 12 and 14 can be

Simpson's Rule is used to evaluate the interval.

[ written in the more general form

| 2 zaztz ua2 6
$.i(k) = = ———— T..  cos @ (24)
ij "2 AOG ij
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where
2, 2 2, 2
' k2 L+ k3 L (25a)
:? 1'12 w = (ky25) (kzﬂt)/?\ (25b)
. 2,2 2,02 1,2
ryy (klla) /A° + (k3zt) (2u“-1/2%) (25¢)

Equations 19 through 25 provide all the necessary relations needed to compute

the postcontraction, axisyumetric turbulence spectra.
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5.0 SURVEY OF INLET TURBULENCE PROPERTIES

A literature survey of published data on fan inlet turbulence properties
was carried out. A summary chart of the data reviewed is given in Table 1.
The table lists the reference, vehicle, environment (test stand, chamber, wind
tunnel, etc.), the approximate values (or range of values) of turbulence
properties measured, and some of the important fan geometric parameters.
a review of the references listed in Table 1, an "expected ensemble average"
set of turbulence properties was deduced for a typical anechoic chamber, a
typical outdoor test stand, and the NASA-Ames 40x80 wind tunnel.
average values for in-flight conditions were derived from the results of

| flight test correlations of atmospheric turbulence summarized by Houbolt in

Reference 25.

4 table of typical expected values of inlet turbulence velocities and

-

mation in Reference 6, since all four quantities were measured, as well as
the fan noise characteristics. Additionally, some of the earlier data was

" associated with peculiar facility configurations and/or had inadequate in-
strumentation and data acquisition equipment for measuring long length scales

[. (see Reference 6). The outdoor test stand expected values in Table 2 are

% viously unpublished da%n taken on a fan engine at the General Electric
r

Company Peebles, Ohio, test facility.

able. However, the atmospheric turbulence properties can be used (Reference
25) along with contraction ratio corrections as outlined in the previous

L section. The contraction ratio is assumed to be equal to the fan face axial

e

velocity divided by flight velocity, i.e., C = U,/V,.

The NASA-Ames 40x80 wind tunnel properties are taken from Reference 20.
The measurements were made 20 feet upstream of the £fan inlet, and no fan face
measurements were available. In order to utilize the upstream measurements,

several steps must be taken. First, both tangential and axial turbulence

36

3
*

..
£
b

scales are given in Table 2. The chamber values rely heavily on the infor-

weighted heavily by the data of Hanson (References 1 and 16), as well as pre-

! For the flight case, no fan inlet measurements of turbulence were avail-
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velocities are given, but only axial length scale was measured. Hence,

the transverse length scale must be deduced from the ratio of tangential

to axial turbulence velocity and the sudden contraction theory of Reference

5. This amounts to assuming that somewhere upstream of the measurement point
the turbulence was isotropic, and that the eddy elongation and cross section
contraction correspond to the measured velocity ratio. Second, the turbulence
at the measuring point is assumed to undergo another "sudden" contraction from
the measuring point to the fan face, and the relations developed in the pre-
vious section are used to compute the fan face spectra from the measuring
point spectra. The contraction ratio in this case is assumed to be the ratio

of fan face velocity to tunnel velocity, i.e., C = Uy/V,.
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5.0 DATA/THEORY COMPARISONS '

Having developed an axisymmetric turbulence spectrum model, extensive
data/theory comparisons were carried out to verify that the new prediction
model gave reasonably accurate predictions of rotor/turbulence interaction
noise. The data of Reference 6 were first compared, since it contained
measurements of both turbulence properties and farfield acoustic spectra.

The fan stage, a 0.508 m (20 in.) diameter fan with 44 rotor blades and 86
stator vanes, was tested with and without a honeycomb/screen turbulence control
structure around the fan inlet. The purpose of the control structure was to
suppress the incoming turbulence and eliminate the rotor/turbulence noise.

For the purpose of this study, however, the control structure produced a
different type of turbuience at the fan face and hence a different rotor/
turbulence interaction. It is of interest to see if the prediction model cor-

rectly predicts the effects of the control structure.

The noise predictions were made using the rotor blade geometric proper-
ties and mean flow conditions at the root-mean-square radius of the inlet an-

nulus, i.e.,, at a "pitchline" radius given by
r, = /(xg + rg)/2

The lift coefficient (used to determine the quadrupole strength) was evaluated
based on incidence angle at the pitchline Tp, rather than from pressure

ratio (Reference 3), since it was felt that leading edge loading was the primary
influence on forward-radiated noise. The quadrupole portion of the prediction

model has a singularity at M, = 1, where M, is the rotor inlet relative Mach

M. = vﬁ% + M

Therefore, predictions had to be limited to those speeds for which M, < 1.

number,

The design tip speed for this fan is Up = 427 m/s (1400 fps), so comparisons
were limited to speeds less than 86% of design. Actually, the quadrupole pre~
diction model is based on linear flow theory which is not valid in the tran-
sonic regime, so accurate results should not be expected for M, > 0.9, which

corresponds to 78-807% speed.

41
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Computed and measured 1/3-octave spectra are shown in Figures 14 through
18 for the NASA Rotor 1l fan stage described above, without the turbulence
control structure (TCS) in place. Corresponding spectra with the control
structure in place are shown in Figures 19 through 22. A summary of the data/
theory comparisons made is listed in Table 3, Only inlet quadrant PWL spectra

are shown.

Considering first Figure l4a, which is the same case shown in Figure 3
(using the isotropic turbulence model), it can be seen that the prediction of
blade-passing frequency tones and harmonics is in good agreement with the data
for the new axisymmetric turbulence formulation, The results are a tremendous
improvement over the isotropic predictions of Figure 3, Note also that the
broadband rotor/turbulence levels are substantially below the measured levels,

as would be expected from the narrowband prediction shown in Figure 9.

The blade-passing frequency for the case shown in Figure l4a is approxi-
mately 6300 Hz, and a BPF harmonic is predicted to occur in every 1/3-octave
band above 20,000 Hz. The predicted levels above 20,000 Hz are in good agree~
ment with the measured levels, although the predictions do not contain air
attenuation effects. This would tend to lower the predictions at the high
frequencies, by as much as 11 dB at 80 KHz. Examination of narrowband measured
spectra (e.g., Figure 48a of Reference 6) shows that the BPF harmonic tones
dominate their 1/3-octave band up to the 5th harmonic. Beyond n=5, the broad-
band noise dominates the 1/3-octave band, and this is consistent with the
predicted curve of Figure l4a if air attenuation effects were to be accounted
for. Similar remarks apply to the other speeds and discharge valve (DV) set-

tings shown in Figures 14 through 18,

It is observed that the theory overpredicts the noise at high frequencies
at 74% speed, where the relative Mach number is rather high, M, * 0.85 at the
pitchline. At 80% speed, the overprediction worsens, and M, > 0.9 for this

speed,

. Considering now the cases with the TCS in place, Figures 19 through 22, a
comparison of the measur:d average fan face turbulence properties with and

without the TCS is shown in Table 4. These values represent approximate

42
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Table 3. NASA Rotor 11 Fan Stage Data/Theory
Comparison Summary Chart.

Case

No. % Np DV TCS (Mp)eip (Mp)pitch | Figure

1 54 0 No 0.736 0.605 l4a

2 54 1.27 No 0.723 0.593 14b

3 60 0 No 0.823 0.676 - 15a

4 60 1.27 No 0.805 0.659 15b

5 69 (] No 0.955 0.785 16a

1 6 69 1.27 No 0.932 0.761, 16b
7 74 (] No 1.028 0.846 17a

| 8 74 1.27 No 1.005 0.820 17b
‘ 9 | 8o o | N | 1.115 0.922 18a
. 10 80 1.27 No 1.093 0.896 18b
f 11 54 0 | Yes 0.736 0.605 19a
§ 12 54 1.27 | Yes |. 0.723 0.593 19b
13 69 0 | Yes 0.955 0.785 20a

14 69 1.27 | Yes 0.932 0.761 20b

15 % 0 | Yes 1.028 0.846 21a

| 16 74 1.27 Yes 1.005 0.820 21b
| 17 80 0 | Yes 1.005 0.922 22a
' 18 80 1.27 Yes 1.093 0.896 22b
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averages of all the data taken in Reference 6. A range of length scale ratios
is shown in Table 4 with the TCS in place, because the tangential J)ength scale
was found to be smaller than was measurable with the instrumentation employed
by the authors of Reference 6. The low limit corresponds to assuming that g,
is the same with the TCS as without, while the high limit corresponds to as-
suming that the scale ratio A = 2,/ is the same with TCS as without. The

actual scale is probably somewhere in between the two limits,

The data/theory comparisons for the cases with TCS are shown in Figures
19 through 22. The shaded band for the predictions corresponds to the range
of length scales assumed, 90 < 8,/8; < 300. 1In general, the case g,/8; = 300
corresponds to the high limit of the shaded band for frequencies below 3 x BPF,
and the case 2,/8¢ = 90 corresponds to the high limit for frequencies above
3 x BPF. The general observation to be made about the results shown in Figures
19 through 22 is that the predicted noise reduction due to addition of the TCS
is at least as much as was measured, if not more. The predicted spectra indi~
cate that residual rotor/turbulence interaction noise still exists at BPF for
the DV = 0 (open throttle) cases, whereas the DV = 1.27 (closed throttle) cases

do not appear to have any appreciable rotor/turbulence noise contribution.

A comparison of measured and predicted BPF tone levels, i.e., the 1/3-
octave band level containing the tone, is shown in Figure 23. The underpre~
diction at 60% speed without TCS (see Figure 15) is due to the BPF being right
at the edge of the band, The agreement is good except at high speeds where

transonic conditions exist and the theory is not really expected to be accurate,

Data/theory comparisons were also carried out for a scale model variable-
pitch fan tested in the same anechoic chamber (General Electric Research and
Development Center, Schenectady, New York) as was the NASA Rotor 11 fan stage
reported in Reference 6, Inlet arc 1/3-octave PWL spectrum comparisons are
shown in Figures 24a-f, the data being taken from Reference 26. This fan has
18 blades and 33 vanes, and has a design tip speed of 306 m/s (1000 fps). It
is a variable-pitch design and consequently has a radially constant solidity
(chord/spacing), as opposed to conventional fixed blade fans which usually
are designed to have radially constant chord and variable solidity. It also
has significantly fewer rotor blades than the NASA Rotor 11 fan stage (18

versus 44), and has a subsonic design tip speed.
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Table 4. Summary of Assumed Turbulence Quantities
for GE Schenectady Anechoic Chamber Fan
Noise Facility.

Parameter No TCS With TCS
ua/U, 0.015 0.0045
ue/u, 2.0 0.75
La, m 2.9 0.86
La/0¢ 300 90-300

Table 5. QCSEE Scale Modei Variable Pitch Fan
Data/Theory Comparison Summary Chart.

E Case No.| % Np DV TC5 | (Mp)yjp (M¥)pitch Figure
f 1 60.2 | 7.75 No 0.620 0.514 24a
2 70.4 | 7.75 No 0.731 0.607 24b
3 80.4 | 7.75 No 0.845 0.706 24¢
| 4 90.5 | 7.75 No 0.968 0.811 24d
E 5 95.5 | 7.75 No 1.063 0.866 24e .
s 6 99.2 | 7.75 No 1.074 0.903 24f
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The predictions shown in Figures 24a-f were done in the same fashion as
was done for the NASA Rotor 11 fan, i.c., section properties at the rms pitch-
line radius were used. - The turbulence properties of Table 4 were used as in-
put, since the same facility was used. The data was taken without a TCS, and
only along the QCSEE engine sea level operating line. The data shown in
Figures 24a-f were taken with a hardwall, low Mach number inlet installed.
Again, input lift coefficients for the predictions were based on pitchline
incidence angles rather than rotor pressure ratio. A summary of comparison

points is given in Table 5.

The same observaticns made previously for the Rotor 11 data/theory com-
parisons apply for the QCSEE Variable Pitch fan also. The PPF tones are pre-
dicted quite well, the rotor/turbulence broadband noise contributes nothing
to the observed brozdband levels, and the theory overpredicts at transonic
relative Mach numbers. A summary of the QCSEE fan stage data/theory compari-

sons for BPF harmonics is shown in Figure 25.

It can be seen from Figures 24 and 25 that the predictions indicate only
a small contribution of rotor/turbulence noise at 3 x BPF and higher, espe-
cially at the lower speeds. The progresively larger contributions at higher
speeds is consistent with the change in measured spectrum shape with speed,
i.e., the BPF higher harmonic peaks progressively stand out more above the
broadband levels as speed increases. It is possible that the input 1lift coef-
ficients based on incidence angle are too low, and this would yield lower pre-
dicted levels at frequencies of 2 x BPF and higher. The few narrowband samples
given in Reference 25 do show, however, that the tones do not contribute
significantly to the 1/3-octave levels above the third harmonic, supporting

the predicted trends of Figure 24,

An attempt was made to predict the blade passing frequency tones for the
Pratt & Whitney JT15D engine, and compare the predictions with the experimen-
tal results recently obtained® in the NASA-Ames 40x80 ft wind tunnel. Tur-
bulence measurements were made previously, reported in Reference 20, approxi-

mately 20 ft upstream of the engine inlet, but no data was available on the

*Contract NAS2-8675 in progress, unpublished data.
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turbulence at the fan face. Linear sudden contraction theory, Reference 5,
wvas therefore employed to infer the turbulence properties at the fan face,
based on the reported mecasurements upstream of the inlet. The measurements
in Reference 20 showed the axial turbulence intensity in the tunnel test
section to be ~0,.2%, independent of tunnel speed. Likewise, the trans-
verse turbulence intensity was found to be ~0.55%, also independent of

tunnel speed.

Using an engine test condition corresponding to a fan tip speed of 1020
fps (the iowest tip speed for which data was taken in this series*), the fan
face velocity is approximately 394 fps., For tunnel speeds of 1l knots and 80
knots, this implies a turbulence contraction ratio (or speed ratio) of 2l and
3, respectively. Applying the theory of Reference 5, the turbulence properties
computed at the fan face are as follows:

Turbulence Component Vo = 11 kts. Vo = 80 kts.
Axial irtensity 0.00084% 0.032%
Transverse intensity D.12% 0.32%

Axial length scale 7.56 ft 3.97 ft
Transverse length scale 0.015 ft 0.15 ft

It can be seen from the above tabulation that the estimated turbulence inten-
sities are extemely small; the corresponding blade passing tone PWL levels

were predicted to be 99.0 dB and 107.3 dB, for 1l knots and 80 knots, respec-
tively. The corresponding measured values were 123.8 dB and 117.5 dB, for 11

knots and 80 knots, respectively,

The above results would seem to imply that rotor/turbulence noise in the
40x80 ft wind tunnel is not a significant contribution. However, the fact
that the measured noise decreases by 6.3 dB from a wind velocity of 11 knots to
80 knots indicates some sort of flight "clean-up" effect is taking place. In
fact, examination of 20 Hz narrowband spectra of the far field microphone
data shows that the 1) knot wind data exhibits skirted peaks at blade passing
frequency typical of a turbulence-modulated tone. The 80 knot data, however,

shows much narrower peaks.

*Ibid.
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One possible explanation for the above inconsistencies is that the
sudden contraction theory may not be an adcquate representation of what
happens to the turbulence in a wind tunnel as it contracts in passing through
the engine inlet. There is some evidence, reported in Reference 24, that the
transverse intensity does not change at all from upstream to the fan face.

*

Further, there is also some cvidence” \hat axial intensity does not change

appreciably from the tunnel test section to the fan face.

Examination of the experimental measurements of wind tunnel contraction
on free stream turbulence made by Uberoi, Reference 27, shows that the reduc-
tion in axial turbulence intensity across a contraction is not nearly as great
as the theory of Reference 5 would predict for large contractions. The
corresponding change in transverse turbulence intensity is overestimated by the
theory, but the error is not nearly as great as that for the axial intensity,
A summary of these trends are shown in Figure 26.

The differences shown in Figure 26 would affect the 11 knot predictions
but would have no significant impact on the 80 knot predictions, since the
contraction ratio U,/V, (fan axial velocity/tunnel velocity) is only about
3:1 for the 80 knot case. The 11 knot condition, however, was experimentally
obtained by turning off the tunnel fans and allowing the engine to pump the
tunnel naturally. This condition could therefore produce turbulence charac~
teristics which are significantly different from those measured in Reference
20 with the tunnel fans in operation. Extrapolating the turbulence data of
Reference 20 to 1l knots (the minimum tunnel speed for which data were taken
was ~40 knots) could therefore yield an incorrect assessment of the turbu-
lence properties for the 11 knot case, contributing to the poor agreement

between experiment and prediction.

Another source of the differences obtained between predicted and measured
BPF tone levels is that the predictions were originally made utilizing only
the dipole source contribution, and the quadrupole source contribution was

omitted. This was done because there was insufficient information available to

*Personal communication, C., Feiler and L. Shaw of NASA Lewis Research Center,
Results obtained in Lewis 9x15 wind tunnel.
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Intensity (From References 5 and 27).
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GE on the aerodynamic characteristics of the JTL5D fan rotor. If, however,
it is assumed that its loading characteristics are similar to current high
speed fan designs in the GE family of engines, a reasonable estimate of the
blade loading (or 1lift) coefficient can be made, and this is required to pre-
dict the quadrupole contribution to the BPF tone level. Assuming a typical
lift coefficient of C; = 0.45, the quadrupole contribution at V, = 80 knots
was found to be equal to the dipole contribution, thus increasing the pre-

dicted level to 110.3 dB, within ~7 dB of the measured level of 117.5 dB.

Another prediction was also made for the 80 knot case where the length
scales were assumed to obey the sudden-contraction theory behavior as far as
elongation of the axial length scale and contraction of the transverse length
scale is concerned. The turbulence intensities, however, were assumed to be
the same at the fan face as was measured upstream, as was observed by Hodder
in Reference 24. This prediction yielded a BPF tone level of 116.0 dB, within
1.5 dB of the measured value of 117.5 dB. It is recognized that Hodder's re-
sults may not apply to the 40x80 wind tunnel/JT15D engine application, since
they were obtained in a much smaller tunnel on a low speed fan. Nevertheless,
the majority of the evidence collected thus far indicates that the sudden~-
contraction theery is inadequate for estimating fan face turbulence inten-
sities from measurements made far upstream of the inlet. The empirical ad-

justments of the sort described above seem warranted and do yield reasonable

gy w—

agreement between measured and predicted noise levels.

To test the ability of the prediction model to evaluate wind tunnel tur-
bulence noise for a fan, predictions were made of the BPF tonme PWL (inlet arc)
: for the 15-blade fan tested in the NASA~Lewis 9x15 wind tunnel, the results of
| which are given in Reference 21. 1In this case, turbulence measurements were
i made inside the fan duct close to the rotor, so the question of the inadequacy
i- of the sudden~contraction theory for predicting turbulence intensity changes
is not an issue., For the static (V,~0) case, the measured transverse and
axial intensities were used to estimate the effective contraction ratio, using
the sudden-contraction theory, and this contraction ratio was used to estimate

the transverse length scale only, based on the measured axial length scale.

For the wind-on case, V, = 80 knots, the actual contraction Ua/V0 was used to

i estimate the transverse length scale.
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The resulting predictions of BPF tone PWL versus fan speed for both
static and wind=on conditions is shown in Figure 27 along with the measured
values. It can be seen that the agreement is, on the average, reasonzbly
good, considering the approximations and assumptions made, lending further
support to the validity of the basic rotor/turbulence interaction predic-

tion model.

Based on the analysis and review of existing data described above, it is
concluded that the current rotor/turbulence interaction noise model is adequate
for predicting wind-tunnel turbulence/rotor interaction noise when the fan face
turbulence properties are known. When only upstream turbulence properties are
given, the sudden-contraction portion of the turbulence prediction may be in-
adequate for large contraction ratios. For tunnel velocities of 80 kts. or

less, this could imply an underprediction of the BPF tone PWL by about 7-8 dB,

T E T T e S———

if the prediction model is used as-is. With the use of an empirical correction

; 1 to maintain constant fan face turbulence intensity independent of tunnel speed
E or fan speed, the prediction will be fairly accurate. Whenever contraction

]
4
:

ratio is close to unity, i.e., V,3U,, either method of prediction will

} T yield adequate results.

,
:
|
g
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7.0 PARAMETRIC STUDY

Having established that the present rotor/turbulence interaction theory
adequately predicts rotor/turbulence noise (for subsonic relative Mach numbers)
over a wide range of fan operating conditions, fan geometries, and inlet tur-
bulence conditions, a parametric study of rotor turbulence noise characteris-
tics was carried out. It was shown in the previous section that rotor/tur-
bulence noise is characterized by strong, narrow peaks at blade passing fre-
quency (BPF) and its harmonics, and contributes an insignificant amount of
broadband noise to the total fan noise spectrum. Therefore in the present
parametric study, predictions are made only at blade-passing frequency and its

harmonics.

When only the BPF tones and harmonics are of interest, a considerable
simplification of the prediction equations can be made when 4#,/S >> 1. This
simplification is described in detail in Appendix A, and permits calculation \
of the total sound power in the vicinity of BPF, and for each harmonic thereof.
This method was found to be quite accurate when compared to 1/3-octave cal-
culations, over a wide range of fan operating conditons, inlet turbulence
conditions, and fan geometries. The parametric study to be described in the

following sections utilizes the simplified theory outlined in Appendix A.

The prediction program requires as input the fan rotor inlet axial and
rotational Mach numbers and rotor total pressure ratio. A composite plot of
these fan parameters was made for several fan stages, including those discussed
in the previous section. Figures 28 and 29 show plots of axial Mach number
M, and fan pressure ratio PR versus tip speed Mach number My, respectively.

It can be seen that many of the fans have a common flow versus speed (M; versus

M) characteristic, and a common work versus speed (PR versus My) charac-

e g ——

teristic.

A common operating characteristic of M, and PR versus M; was therefore
selected for the parametric study, and these are shown as the solid lines in
Figures 28 and 29. This is henceforth referred to as the low-flow (LF) tran-

sonic fan operating line. The QCSEE fan and NASA Rotor 55 fans, however, have
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Figure 28, Axial Mach Number Vs. Tip Speed Mach Number (Ma Vs. Mt)
Characteristics for Several Fan Stages.,
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Figure 29. Pressure Ratio Vs, Tip Speed Mach Number (PR Vs. Mt:)
Characteristics for Several Fan Stages.
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higher M, versus M, characteristics (Figure 28), and this is related to

their design tip speeds, which are subsonic. A limited number of calculations
were therefore performed using the QCSEE flow characteristic (M, versus M¢), and
this operating line is henceforth referred to as the high-flow (HF) subsonic fan

characteristic.

Several fan sizes were selected for study because it is known from theo-
retical considerations that the turbulence scale-to-blade spacing ratio is im-
portant. Hence different fan sizes operating in the same turbulence environ-
ment may give different noise levels when the levels are corrected to a common
fan inlet area. Fan diameters of 2.13 m (84 inches), 1.07 m (42 inches), and
0.53 m (21 inches) were selected for study. They are henceforth referred to

as full-scale (FS), half-scale (HS), and quarter-scale (QS), respectively.

Blade number was also varied, values of Ng = 38, 28, and 18 being selected
for study. These values represent the range of fan types currently in use.
For example the diameter/blade number combination 2.13 m/38 is close to the GE
CF6 engine fan, and the combination 0.53 m/28 is the same as the P&W JT15D

engine fan.

Blade tip solidity was held constant at (C/S)tip = 1.3 for all LF tran-
sonic fan cases and 1.0 for all HF subsonic fan cases, as it is usual design
practice to set rotor tip solidity approximtely equal to design tip relative
Mach number. A list of the fan geometry parametric variations investigated is
shown in Table 6.

Calculations of rotor/turbulence noise were made for each of the configu-
rations listed in Table 6, over the tip speed Mach number range 0.5 < M; < 1.0.

The calculations were performed for several turbulence conditions, as follows:
e  Outdoor Test Stand (OTS)
° AMES 40x80 Wind Tunnel, V, = 80 kts (AWT1)
e  AMES 40x80 Wind Tunnel, V, = 180 kts (AWT2)

° In-Flight, V, = 180 kts (FLT)

68




e o A S

I

|
1
1
|

Table 6. Summary of Fan Geometries for Parametric Study,

Fan Operating | Aspect
Designation D Np (c/8)¢ip Line Ratio
Qs 38 LF 0.53 m 38 1.3 LF 2.3
HS 38 LF 1.07 m 38 1.3 LF 2.3
FS 38 LF 2.13 m 38 1.3 LF 2.3
QS 28 LF 0.53 m 28 1.3 LF 1.7
FS 28 LF 2.13 m 28 1.3 LF 1.7
QS 18 LF 0.53 m 18 1.3 LF 1.1
FS18LF | 2.13m | 18 1.3 LF 1.1
FS 18 HF 2.13 m 18 1.0 HF 1.9

69

s kb



SRR e T R R e . e T Tr T

Additional calculations were made for the quarter-scale fans in the Schenectady
Anechoic Chamber (SAC). Noise levels were obtained at blade-passing harmonics
n=1 through 8 for all cases. Some parametric studies were also made of the

effect of length scale and flight speed.

A question was raised in the preceding section about the adequacy of
using the sudden contraction theory (Referemce 5) for estimating the fan face
turbulence characteristics based on measured turbulence properties far upstream.
In the present study, sudden contraction theory was used without alteration;
however, estimates were made of the range or uncertainty band in predicted
noise levels for the wind tunnel cases, and the uncertainty band was found to
be less than 7 dB for the worst cases. A more detailed discussion of this
topic is covered in the next section, NASA-AMES 40 x 80 WIND TUNNEL EVALUATION,
but it is noted here that the 7 dB uncertainty band is not large at all com-
pared to the uncertainties associated with turbulence variability, tone un-
steadiness and day-to-day weather changes which affect the Outdoor Test Stand

and Flight rotor/turbulence noise levels,

7.1 COMPONENT SOURCE CONTRIBUTIONS

The relative contributions of the dipole (unsteady lift) and quadrupole
(steady loading/turbulence interaction) sources to the total predicted rotor/
turbulence noise was examined first. Figure 30 shows the contributions for
the quarter-scale fans on the Low-Flow operating line, in the Schenectady
Anechoic Chamber (SAC) environment. Note that the dipole source dominates the
BPF tone for the 38-blade rotor, whereas the quadrupole source dominates for
all but the lowest tip speeds (M, > 0.6), for the 18-blade rotor. This is
because the rotor blade aspect ratio is smaller for the 18-blade rotor, and
the unsteady lift response function decreases as aspect ratio is reduced. The
lift coefficient, which determines the quadrupole level, is the same for the
two blade numbers, since rotor solidity was held constant. For this parametric
study, input lift coefficient was C; = 0.45, based on the low-flow operating
line pressure ratio and flow versus speed. For this parametric study, using

leading edge loading or incidence angle for computing C; was not feasible

L]
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since the actual running incidence angle is an unknown function of aerodynamic
design criteria and effectiveness of the design process, and accounting for
this was beyond the scope of the present study.

Figure 31 shows the component source contribution breakdown as a function
of BPF harmonic number for the quarter-scale fans in the SAC turbulence envi-
ronment. These results indicate that the higher harmonics of BPF are domini-
nated by the quadrupole source, even for the high blade number Ny = 38,

The fall-off with harmonic number n is very large for the dipole source compared
to that for the quadrupole source.

Similar trends are shown for the Outdoor Test Stand (OTS) turbulence en-
vironment (Figure 32), the Ames 40 x 80 Wind Tunnel (AWT) environment (Figures
33 and 34), and the Flight (FLT) environment (Figure 35). The above calcula-
tions were repeated for the full-scale fan in the OTS, AWT and FLT turbulence
environment, and these results are shown in Figures 36 through 39. Sample
spectra, i.e., BPF tone PWL versus n, are given for both quarter- and full-

scale fans, for each turbulence environment, in Figures 40 through 43,

It can be seen from the results shown in Figures 30 through 39 that the
trends of BPF tone PWL with Mach number M, are similar for SAC, OTS, and
AWT, but the FLT condition yields a flatter curve. Also, the quadrupole
contribution for the FLT condition is not as great as in the other test site
conditions. Even though the BPF tone levels in the AWT are similar at V, = 80
knots and 180 knots, the higher harmonics of BPf are 2-5 dB lower at 180 knots
relative to levels at B0 knots, the larger differences occurring at the higher

tip speed Mach numbers.

7.2 EFFECT OF BLADE NUMBER

The spectra in Figures 40 through 43 also show that the higher harmonics
of BPF decrease with increasing blade number, even though the effect of blade
number is very small at BPF. The effect of blade number is shown explicitly
in Figures 44 and 45, Figure 44 shows the sensitivity of BPF tone levels to
Ng for the three test conditions, for the full-scale fan with low-flow

operating line. Figure 45 shows the corresponding BPF harmonic spectra.
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Increasing cthe number of blades for a given solidity decreases the blade
spacing and hence increases the tangential length scale-to~blade spacing
parameter £¢/s. This results in a noise reduction, as shown in Figure 11.
However, increasing the number of blades Np also increases rotor blade
aspect ratio h/c, resulting in a higher unsteady lift amplitude. The dipole
noise source will therefore increase, off-setting the decrease due to increas-
ing t¢/s. But the dipole source only dominates at BPF (Figure 31), so the
net result is little or no change in noise with Ng at BPF but decrcasing
noise with increasing Ny at second harmonic (n=2) and higher frequencies.

7.3 EFFECT OF FAN SIZE

To show explicitly the effect of fan size, some of the predictions were
normalized with respect to fan rotor inlet area by subtracting 10 logig (A/Apeg)
from predicted noise levels, where Apof is a reference ares, taken arbitrar-
ily to be 1 m2. The BPF tone PWL results normalized in this fashion are
shown in Figure 46, The corresponding spectra are shown in Figure 47. The
major observation to be made is that size does make a difference, i.e,, rotor/

turbulence noise does not scale with fan area unless the turbulence scales are

changed in proportion to the fan diameter change.

The results shown in Figures 46 and 47 show that the smaller fans yield
less noise than the area reduction effect can account for, by 5-10 dB. This
again is related to the difference in g¢/s which occurs because the turbulence
scales (g} remain the same while the geometric scales (s) decrease with de-

creasing fan size,

7.4 EFFECT OF OPERATING LINE

Comparisons were made of rotor/turbulence noise of full~scale fans with
18 blades for two operating lines: (1) the low~flow (LF) line of Figure 28
for typical high tip speed fans, and (2) the high-flow (HF) operating line of
Figure 28 for typical subsonic tip speed fans such as the QCSEE fan. The BPF
tone PWL comparisons are shown in Figure 48, while the spectral comparisons
are shown in Figur. 49. It is seen from these results that, at a given tip

speed Mach number, the HF fan is noisier than the LF fan.

88




A T * S T - T ———

150
OQutdoor
Test
3 Stand
ﬁ 140
=
™
0
©
~
o 130
0
o
~ Ames
P 40 x 80
¢u Wind
:E 120 80 knots e Tunnel
s 7
o
4
b0
o
L ~
| 3
{ 110
| Flight
i g 180 knots
Q
<}
o
=
: E 100
1/4
920 .
0,5 0.6 0,7 0,8 0.9 1.0

Fan Tip Speed Mach Number, Mt

Figure 46, Effect of Fan Size on BPF Tone PWL for 38-Blade Fans
on Low~-Flow Operating Line,

89




&
:
f

S TR T R

watts

10-13

re

- d e
Tone PWL - 10 loglo (A/A f), Br

90

140

130

120

110

100

90

80

“t = 0,6
AN [
\ | Scale \\\.\ Outdoor
-~ ) Test
" Factor d Seora
1/4 =~ -
Outdoor
Test
Stand
Ames
Wind
Tunnel
180 knots
Ames
Wind
Tunnel
180 knots
{ Flight
180 knots
Flight
180 knots

BPF Harmonic Number, n

Figure 47, Effect of Fan Size on Tone PWL Spectrum for 38-Blade
Fans on Low-Flow Operating Line,




™7

watts

10-13

BPF Tone PWL, dB re

T T e, T

160
/
/
/
//
160
r’//
Outdoor - -
Test Stand -
/
140 -~ /
~
|~ /
/
’/,/’
P
Ames 40 x 80 -
Tunnel -

180 knois
120

110 F—

Flight

180 knotg _ -
—

//

1.0

100 p -1
Low-Flow {Transonic)
= wem e High-Flow (Subsonic)
® @ 4 Equal Thrust Points
90 _l i {
0.5 0.6 0.7 0.8 0.9

Fan Tip Speed Mach Number, mt

Figure 48, Effect of Operating Line on BPF Tone PWL for
Full-Scale 18-Blade Fans.

v

o

91

e e A i e A P A DE WA



160 T b — ' B
Mt = ¢6 ! Mt - 19
Low-Flow
- == High-Flow
\\\\
150 e -
~~~
z~0utdoor
Test Stand—7
\\ Outdoo;
32 \ Test Stand
» .
o
B l
n \
7 130 < N
=} ~—— \\
= ) J
. \~..
. | 17T~
. N A Ames 40 x 80 | |
m -Ames x
° |-7-+ Wind Tunnel
é. 120 Ames 40 x 80 — 180 knots
-+ \ Wind Tunnel
" I\ | 180 knots \
§
H l
\~_\
:l \l\ﬁ‘s,.‘
Flight |
180 knots;7
100

01 2 3 45 6 7 8 0 1 2 3 4 5 6 7 8
BPF Harmonic Number, n

Figure 49, Effect of Operating Line on Tone PWL Spectrum for
Full-Scale 18-Blade Fans,

92




!
|
|
]

The higher inlet relative Mach number for the high-flow fan is respon-
sible for some of the noise differences shown in Figure 48, Assuming the
noise to be proportional to M2, a 3 dB higher noise level would be ex-
pected for the HF fan based on Mach number level differences alone. The
aspect ratio for the HF fan is higher because of the lower tip solidity, sce
Table 6. The unsteady lift is therefore higher for the HF fan., The aspect
ratio effect alone is estimated to be 3.0 - 3,7 dB for this case. These
effects account for most all of the differences shown in Figure 48 for the

Qutdoor Test Stand.

For the Ames Wind Tunnel and Flight conditions, however, the higher axial
Mach number for the HF fan gives a larger contraction ratio at a given tip
speed. This has the effect of reducing the tangential length scale (g,/s), which
increases the noise. However, it is also in the direction of reducing turbu-
lence intensity at the fan face, which decreases the noise. The latter effect
apparently overshadows the decreased-scale effect, since the HF fan and LF fan
noise levels are nearly the same at low tip speeds. The rapid divergence near
My = 0.9 between the two operating-line curves is due to the fact that for
the HF fan the rotor inlet relative Mach number is approaching unity at these
high speeds, causing the quadrupole source contributions to become dispropor=-

tionately high as they approach their singularity point.

The HF fan will produce more propulsive thrust at a given tip speed than
the LF fan, because the flow is higher and the pressure ratio is the same. It
is therefore of interest to compare the HF fan with the LF fan at the same

thrust. For a typical LF fan approach power tip speed Mach number of My = 0.95,

the static gross thrust (based on fan exhaust momentum) is 85,975 N (19,329 1bg).

The corresponding net thrust at 180 knots flight speed (gross thrust minus ram
drag) is 51,735 N (11,631 1lbg). The equivalent thrust tip speeds for the HF
fan occur at My = 0.78 and My = 0.815 for the static and 180 knots cases,
respectively. These equivalent thrust points are indicated on Figure 48 by
closed symbols. It can be seen that the HF fan and LF fan rotor/turbulence

noise levels are approximately the same at the same thrust,
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8.0 NASA-AMES 40x80 FOOT WIND TUNNEL EVALUATION

Based on the results of the parametric study discussed in the preceding
section, an eveluation of the NASA-Ames 40x80 ft Wind Tunnel was carried out
to assess the range of fan geometries, operating speeds, and tuanel speeds
over which the Ames tunnel adequately simulates flight conditions as far as
rotor/ turbulence noise is concerned., The objective was to define the oper-

ational/ geometric boundaries for adequate flight simulation.

Before carrying out the evaluation, an assessment of the wind-tunnel
rotor/turbulence noise prediction level variability was made to establish
an uncertainty band in predicted levels. As discussed in the preceding sec-
tions, there is an uncertainty associated with taking turbulence properties
measured 8-10 fan diameters upstream of the engine and projecting these to
fan rotor inlet values using the sudden-contraction theory of Reference (5).
One extreme is to assume that the sudden~-contraction theory is correct, which

qualitatively gives

(ua/Ug) gan ~ (ua/Vo)yp * €72
and

(ue/Ua) fan ~ (up/Vo)yp *» C1/2

Thus both axial and transverse intensities are lower after the contraction.
This assumption gives the lower bound in noise predictions. The other extreme
is to assume that the intensities do not change at all across the contraction

(e.g., as in Reference 24), so that
(ua/Ua) gan = (ua/Vo)yp and (up/Ugdgan = (ue/Volyp

This gives an upper bound on the noise predictions. Now across a con-
traction, uy will decrease by some amount and u; will increase. In any case,
ug will be substantially larger than u,, and hence the noise level will be
primarily governed by the variations in u; and variations in uy will have
little or no effect. An estimate of the difference between the upper and
lower bound limits can therefore be made by noting (Reference 2) that the

noise varies as the square of the turbulence intensity. Defining APWL as the
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difference between upper and lower bound predictions, where subscripts A and

B refer to precontraction and postcontraction values, we can assume that

APWL = - 20 logjq (:t)A ‘/,g = 20 logyg -f-ga)- (26)

The numerator in Equation 26 represents the lower bound value of transversa
intensity at the fan face given by sudden contraction theory, while the
denominator represents the upper bound value corresponding to no change in
intensity. Equation 26 was used to estimate the difference in calculated
noise levels between the above two assumptions concerning contraction effects.
Also, calculations were made over a range of tunnel speeds using the computer
program directly; first with the sudden-contraction theory, and second with
(ue/Ug)p = (ue/Vy)a. The difference between the two calculated levels was
compared with the estimated difference given by Equation 26 above, and the

agreement was within 0.5 dB.

Equation 26 is shown plotted in Figure 50, along with range of contrac-
tion ratios encountered in this study for typical fan designs. It can be seen
that the uncertainty band due to contraction effects is about 2-6 dB at V, =
80 knots over a range of tip speeds 0.5 < My < 1.0. At 180 knots, the uncer-
tainty band is only 0-2 dB for the tip speed range 0.75 < M < 1.0. For
Mg < 0.75 at V, = 180 knots, the contraction ratio is less than 1.0, i.e.,

Vo > Uy, and the applicability of contraction theory to expanding flows is

questionable.

It is emphasized that the uncertainty band given in Figure 50 is not due
to variability and/or randomness in the tunnel turbulence properties, but is
only due to the uncertainty in the techniques being used to extrapolate that
turbulence information to the fan face values, In fact, the same uncertainty
applies to the flight case, because upstream atmospheric turbulence charac-
teristics are being extrapolated to fan face values with the same techniques.
Also the maximum (6 dB) uncertainty band is less than the tone fluctuation

amplitudes usually observed for rotor/turbulence noise (References Zi and 22).
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The outdoor test stand predictions also have an uncertainty band due to
the variability in turbulence properties which are measured at the fan face.
For ecxample, measured axial length scales varied from 86 to 259 ft (26 to
79 m) at the GE Pecbles, Ohio test facility for one engine test. A parametric
calculation of the influence of &, was made (%4/%¢ held constant) for the
full-scale low-flow fan, and these results are shown in Figure 51. From
these results, it can be concluded that an uncertainty of +1 dB to -4 dB can
exist in predicted Outdoor Test Stand levels due to uncertainty in knowing
axial length scale, recalling that & nominal value of %, = 100 ft (30.5 m)
was used for all OTS calculstions discussed in the previous section. Also,
the measured transverse intensity u./U, varied by a factor of two, implying

an additional ¢3 dB uncertainty due to variability in u¢/U,.

To illustrate the above effects, measurcd values of BPF tone forward-
arc PWL on a CF6-50 engine were compared with predicted rotor/turbulence
noise tone levels using the above uncertainty estimates to define a band
of expected levels, This comparison is shown in Figure 52. Even though
the engine had an acoustic suppression liner in the inlet duct whose effect
on rotor/turbulence interaction tones is quantitatively unknown, the data

is seen to fall within the prediction band.

Finally, the uncertainty in predicted flight rotor/turbulence noise
levels must be considered. Houbolt, Reference 25, quotes many data sources,
and suggests that a rather alarming variability in atmospheric turbulence con-
ditions can prevail, depending upon the proximity of weather fronts, wind
shear, squall lines, thunderstorms, temperature gradients, terrain, etc. Air-
craft wake turbulence in the vicinity of airports will introduce variations
dependent upon traffic patterns, density and duration. Houbolt estimates
the variation in atmospheric turbulence length scales to be 300 to 700 ft (91
to 213 m). A nominal value of 500 ft (152 m) was used in the present study.

A parametric calculation of the effect of lemgth scale (precontraction) is
shown in Figure 53 for a full-scale, high-flow (18 blades) fan. Again it is
seen that the uncertainty in predicted noise levels for the length scale range
of 300 to 700 ft is about %2 dB. Houbolt also states that atmospheric turbu-
lence rms velocities of 3.0 - 3.5 fps are average values, with possible peak

"gust'" values of 20 times as much. Such extremes are rare and are confined
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to severe weather conditions, but nevertheless highlight the variability that
can be expected in rotor/turbutvnce noise in flight, A 4:1 variation in pre~
contraction uy is not unreasonable in flight, which would then yield a %6 dB
variation in noise. Combined with the £2 dB uncertainty due to variations in
length scale, a total uncertainty band on predicted flight rotor/turbulence
noise levels of +8 dB is the best that can be expected, based on atmospheric
turbulence variability from the "expected average" values,

From the results shown in Figures 44 through 49, it is seen that rotor/
turbulence noise levels in the Ames 40x80 Wind Tunnel ave predicted to be
15-20 dB lower, on the average, than the Qutdoor Test Stand levels, but still
about 10-15 dB higher than corresponding Flight levels. The question that
arisus is, are the Wind tunnel levels low enough? To answer this, first
recall that the noise level increases with decreasing blade number, and that
full-scale fans produce more '"noisc-per-upit-area" than do scale model fans.
If we take into account all of the above uncertainty band limits and consider
as the worst case the full-scale 18-blade fanm, the comparison of predictad
BPF tone levels for the various test conditions would look more like Figure 54,
where a band or range of values is shown rather than a single average line,
The point to be learned from this figure is that when variability is taken
into account, the wind tunnel levels can be as low as flight levels, even
though the average line predictions show a 10-15 dB difference. Also, the
uncertainty band associated with variability in turbulence properties for
the Outdoor Test Stand and Flight conditions is considerably larger than the
uncertainty for the Ames 40x80 Wind Tunnel due to extrapolating upstream turb-

ulence characteristics to the fan face conditions.

Another way of assessing the adequacy of the NASA-Ames 40x80 Tunnel for
simulating flight turbulence levels is to see how much tone reduction is
obtained relative to the fan characteristic broadband level. An empirical
method for correlating fan broadband noise was published in Reference 28,
and this method was used to correlate the broadband levels ol several scale
model fan stages, using data with a turbulence control structure in place
(Reference 6). The correlations, given in Reference 29, relate the peak

broadband noise level to votor inlet tip relative Mach number M, and rotor
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tip incidence angle (relative air angle minus blade leading edge camberline
angle). This correlation vas used to estimate the broadband level (1/3 octave)
at the blade-passing frequency, and these results are also shown in Figure 54,
It can be seen that the NASA-Ames 40x80 Wind Tunnel Rotor/Turbulence tones

are well below the predicted broadband levels at all but the highest tip
speeds,

The spectral distribution of the rotor/turbulence tones is shown in
Figure 55, compared with predicted 1/3-octave fan broadband noise spectra.
It is apparent from this comparison that the higher harmonics of BPF rotor/
turbulence tones are well below the fan broadband noise level for the Ames
40x80 Wind Tunnel case, Additional higher harmonic tone sources (i.e.,

rotor-stator interaction noise) will no doubt cdominate the spectrum.

Finally, a check was made on the ability of the NASA-Ames %40x80 wind
tunnel to simulate an aircraft accelerating taxi or "ground roll", where fan
speed is held constant and wind speed or aircraft speed is increased from
zero to some typical approach speed. Predictions were made of tone PWL
for the JTL15D engine (see DATA/THEORY COMPARISONS section) at a fan tip speed
of M¢=0.93, over a range of tunnel velocities from 10 to 200 knots, using the
sudden contraction theory (Reference 5). Taking into account the possibility
that the transverse turbulence int.nsity at the fan face does not follow the
sudden contraction theory but insteud remains constant (Reference 24), addi-

tional calculations were made using Equation 26.

A "ground roll" calculation was alsc made, by specifying an initial
precontraction static turbulence characteristic. This characteristic was
chosen to yield approximate Outdoor Test Stand fan face turbulence at a
very large contraction ratio. The flight speed was then progressively
increased, causing contraction ratio to decrease, all the while holding pre-

contrAaction turbulence properties constant.

The precontraction turbulence properties were selected based on the fol-
lowing reasoning. In an outdoor test stand, the transverse intensity at the
fan face is typically 4%, which, for U; & 400 fps at approach power setting,

gives a fan face turbulence rms velocity of ~16 fps. From the data given by
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Houbolt (Reference 25), atmu'.nheric turbulence levels are about 3 fps on a
normal day. The implied transv>:se velocity ratio is 16/3 or 5,33, and sudden
contraction theory then suggests that, for this velocity ratio, the contrac-
tion ratio is about C = 40. Assuming a typical measured axial length scale
inside the fan duct of ~100 ft, the corresponding transverse scale is ~0.4

ft, and the scale ratio g5/#¢ = 250, about what has been measured in Refer-
ence 6. The implied atmospheric length scale is g = 2.5 ft, not unrealistic
for ground level turbulence. The suddep contraction theory then gives an axial
turbulence intensity at the fan face cf ~0.00053, much lower than the usually
measured 0.005 to 0.010, However, it is the transverse intensity at the fan
face which determines the noise level, so the underestimation of the axial
intensity is of little consequence. It is also possible that these lower
values of axial intensity cannot be properly measured due to instrumentation

noise floors, contamination by acoustic velocity fltctuations, etc.

Figure 56 shows the results of the calculations described above. The
"ground roll" curve shows a rapid decrease in tone level from the static
level, reaching about 17 dB reduction at ~100 knots taxi speed. A similar
effect was measured by Lowrie (Reference 30), his data showing approximately
15 dB reduction in BPF tone level at 80 knots, in an accelerating taxi test of
a VC10-RB211 flying test bed. NASA Ames 40x80 Wind Tunnel test data on the
JT15D engine (Contract NAS2-8675 with GE, unpublished data) is also shown in
Figure 56. Considering the possible variability in atmospheric turbulence
properties and the reasonable agreement between '"ground-roll" predictions
and both predicted and measured wind tunnel levels shown in Figure 56, it
can be concluded that the 40x80 wind tunnel is an adequate simulation of

rotor/turbulence noise forward-speed effects.

In summary, based on all the calculations and parametric studies dis-
cussed herein, it is concluded that the NASA-Ames 40x80 Wind Tunnel provides
adequate suppression (or reduction) of rotor/turbulence noise such that proper
simulation of flight fan source noise characteristics is obtained, for sub-
sonic tip speeds. Near M approaching unity, wind tunnel rotor/turbulence
tones may be as high as or higher than the broadband level, but cut~on of the

rotor-alone noise field at My = 1 will probably mask this effect.
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9.0 CONCLUSIONS

The following conclusions were drawn relative to the results obtained

; from this study:

i 1. The NASA-Ames 40x80 Wind Tunnel adequately simulates forward velocity
; effects on fan noise inlet arc tones produced by rotor/turbulence
interaction, for fans from 0.5 to 2.0 m in diameter, for all subsonic
tip speeds, and for blade numbers from 18 to 38. The simulation
should be adequate for higher and lower values of diameter and blade
number, but the present study was confined to the above ranges. The
wind tunnel rotor-turbulence interaction tones are sufficiently low
in level such that internally generated fan noise sources dominate
the fan noise observed spectrum, and the rotor-turbulence noise has
no contribution to the observed spectrum.

2., The adequacy of utilizing sudden contraction theory to predict fan
inlet turbulence spectra from measured turbulence properties at some
distance (several diameters) upstream of the fan inlet is question-
able.

3. Rotor/turbulence interaction noise produced by ingestion of large-
scale turbulence in a contracting inflow is primarily a narrow-band
tone source, with no significant contribution to the fan broadband
level.

L Lo 4. For large scale inlet turbulence ( ©D¢), the associated noise levels
' are primarily determined by the ratio of transverse turbulence scale
to blade spacing at the fan face, and are not materially affected by
! axial scale if transverse scale is maintained constant. Maximum
; ) noise occurs when £ /s<l.

5. Rotor/turbulence noise in the NASA-Ames 40x80 Wind Tunnel is 15-20
dB below that produced in an outdoor static test stand for wind tun-
nel velocities greater than 40 kts. The reduction is due to the
much smaller turbulence scales and intensities in the wind tunnel
environment.

— TET

6. The Rotor/turbulence noise in the NASA-Ames 40x80 Wind Tunnel is 10=
15 dB higher than that produced in flight at the same flight speed,
but still several dB lower than the other sources of fan noise, e.g.
broadband, rotor-alone multiple-pure-tones, rotor-stator interaction,
etc, Even though the flight atmospheric turbulence intensities are
higher, the turbulence scales are so large at altitude (2;/s>>1) that
the short wavelength components of the turbulence spectra have very
low turbulence energy and so yield correspondingly low noise levels,

7. Under contracting inflow conditions (Ug>V,), the transverse tur-
bulence intensity controls the level of generated rotor/turbulence
noise, and the axial intensity has a relatively small influence.
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A rather wide uncertainty band in expected rotor/turbulence noise
levels exists, +5~8 dB, for outdoor static and flight conditions,
due to the random variability in turbulence conditions. The wind

tunnel turbulence characteristics are, on the other hand, much more
consistent.

crediiay -

L




REFERENCES

1. Hanson, D.B., "Spectrum of Rotor Noise Caused by Atmospheric Turbulence,”
Journal of the Acoustical Society of America, Vol, 6, No, 1, July 1974.

2. Mani, R,, "Noise Due to Interaction of Inlet Turbulence With Isolated
Stators and Rotors," Journal of Sound and Vibration," Vol. 17, No. 2,
1971, pp. 251-260.

3., Mani, R., "Isolated Rotor Noise Due to Inlet Distortion or Turbulence,"
NASA Contractor Report No. 2479, October 1974,

4. Mani, R. and Bekofske, K., "Experimental and Theoretical Studies of Sub-
sonic Fan Noise," NASA Contractor Report No. 2660, March 1976.

5. Ribner, H,S. and Tucker, M., "Spectrum of Turbulence In a Contracting
Stream,’” NACA Report 1113, 1953.

6. Kantola, R.A., and Warren, R.E., "Basic Research in Fan Source Noise -
Inlet Distortion and Turbulence Noise," NASA Contractor Report No.
159451, December 1978.

7. Osborne, C., "Unsteady Thin-Airfoil Theory for Subsonic Flow," AIAA ) v \
Journal, Vol, 11, No. 2, February 1973, pp. 205-209.

8. Amiet, R.K., "High-Frequency Thin-Airfoil Theory for Subsonic Flow,"
AIAA Journal, Vol. 14, No., 8, August 1976, pp. 1076-1082,

9, Goldstein, M.E,, Dittmar, J.H., and Geider, T.F., "Combined Quadrupole-
Dipole Model For Inlet Flow Distortion Noise From a Subsonic Fan," NASA
TN D-7676, May 1974,

10. Batchelor, G.K., "The Theory of Axisymmetric Turbulence,'" Proceedings of
the Royal Society of London, Series A, Vol. 186, 1946, pp. 480-502.

11. Chandrasekhar, S., "The Theory of Axisymmetric Turbulence," Philosophical
Transactions of the Royal Society of London, Series A, Vol. 242, 1950,
pp. 557-577.

12. Sreenivasan, K.,R. and Narasimha, R.N., "Rapid Distortion of Axisymmetric i
Turbulence," Journal of Fluid Mechanics, Vol. 84, Pt. 3, February 13,
1978, pp. 497-516.

13. Chandrashekhara, N., "Tone Radiation From Axial Flow Fans Running In
Turbulent Flow," Journal of Sound and Vibration, Vol. 18, No. 4, 1971,
pp. 533-543.

14. Chandrashekhara, N., "Sound Radiation From Inflow Turbulence In Axial
Flow Fans," Journal of Sound and Vibration, Vol. 19, No. 2, 1971, pp.
133-146.,

109




_L*;

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

27.

110

Robbins, B. and Lakshminarayana, B., "Effect of Inlet Turbulence on Com-
pressor Noise," Journal of Aircraft, Vol, 11, No. 5, 1974, pp. 273-281.

Hanson, D.B., "Mcasurements of Static Inlet Turbulence,” AIAA 2nd Aero-
acoustics Conference, Hampton, Va., March 24-26, 1975, Paper No. 75~467,

Lakshminarayana, B., "Influence of Turbulence on Fan Noise," paper pre-
sented at the workshop on Ventilation System/Cooling Fan Noise, 19-20,
November 1975, Naval Ship R.&D.C., Anapolis, Md.

Moiseev, N,, Lakshminarayana, B., and Thompson, D.E., "Noise Due to
Interaction of Boundary Layer Turbulence With a Compressor or a Propulsor
Rotor," AIAA 3rd Aero-Acoustics Conference, Palo Alto, Calif., July 20-23,
1976, Paper No. 76-568.

Hodder, B.K., "Investigation of the Effect of Inlet Turbulence Length
Scale on Fan Discrete Tone Noise,'" NASA-TM-X-62300, September 1973.

Hodder, B.K., "40~ by 80-Foot Wind Tunnel Freestream Turbulence Measure-
ments," FSA Technical Memorandum No, 17, April 22, 1977.

Shaw, L.M., Woodward, R.P., Glaser, F.W., and Dastoli, B.J., "Inlet Tur-
bulence and Fan Noise Measured In an Anechoic Wind Tunnel and Statically
With an Inlet Flow Control Device," AIAA 4th Aeroacoustics Conf., Atlanta,
Ga., Oct. 3-5, 1977, Paper No. 77-1345.

Woodward, R.P., Wazyniak, J.A., Shaw, L.M., and MacKinnon, M.J., "Effec-
tiveness of an Inlet Flow Turbulence Control Device to Simulate Flight
Fan Noise In an Anechoic Chamber,'" NASA Tech. Memorandum No. TM-73855,
1977.

Bekofske, K.L., Sheer, R.E., and Wang, J.C.F., "Basic Noise Research Pro-
gram - Fan Noigse - Inlet Distortion and Turbulence Noise," Contract No.
NAS3-17853, General Electric Company Contractor Final Report No. NASA
CR-135177, February 1977.

Hodder, B.K., "The Effects of Forward Speed on Fan Inlet Turbulence and
its Relation to Tone Noise Generation,"” NASA TM X-62, 381, August 1974.

Houbolt, J.C., "Atmoébheric Turbulence," AIAA Journal, Vol. 11, No. 4,
April 1973, pp. 421-437,

Bilwakesh, K.R., Clemons, A., and Stimpert, D,L., "Quiet Clean Short-Haul
Experimental Engine (QCSEE) Acoustic Performance of a 50.8 cm (20-inch)
Diameter Variable~Pitch Fan and Inlet, Test Results and Analysis, Vol., I,"
NASA CR-135177, April 1979.

Uberoi, M.S., "Effect of Wind-Tunnel Contraction on Free-Stream Turbu-
lence," Journal of Aeronautical Sciences, Vol. 23, No. 8, August 1956,
pPp. 754-764.

—agEy

Vs s eI e st A e St A et s i B KR 2o oniiainn R T ML b, e e e —hme




A i A M ) o 8

| 28, Ginder, R.B. aud Newby, D.R., "An Improved Correlation for the Broadband
; Noise of High Spced Fans," AIAA Journal of Aircraft, Vol. 14, No. 9, Sep-
| tember 1977, pp. 844~849.

29, Gliebe, P.R., "The Effect of Throttlirg on Forward Radiated Fan Noise,"”
AIAA 5th Aeroacoustics Conference, Scattle, Wask., March 12-14, 1979,
Paper No. 79-0640.

t 30. Lowrie, B.W., "Simulation of Flight Effects on Aero Engine Fan Noise,"
‘ AIAA Paper No. 75-463, 2nd Aeroacoustics Conference, Hampton, Va., March
24-26, 1975.

T T T T

111

.

- B e B O T S R



an

St

APPENDIX A
LONG AXIAL LENGTH SCALE APPROXIMATION

As discussed in Reference 2, the rotor/turbulence noise spectrum theo-
retical model employed in the present study consists of a summation of compo-
nent spectra centered at blade-passing frequency and its harmonics, n =
1,2,3....., etc, The component spectra have shapes which are essentially the
turbulence spectrum shape as axial wave number k; is varied over the range
- » < k) <+ =, with integrals over k; and kq performed at each valu
of kj. This component summation is illustrated qualitatively in Figure 57.

¥

For very large length scales g4/s >> 1, the component spectra 1-1, 2-2,
3-3, etc., shown in Figure 57 become very "peaky" and narrow, and the contri-
butions of component spectra adjacent to a spectrum centered at f=nfp are negli-
gible in the vicinity of f=nf. For example, the 1-1 and 3-3 component
spectra in Figure 57 would contribute a negligible amount to the total spectrum
at and around f=2f,, and the 2-2 component is all that is required to evaluate

the total spectrum level around f=2f},.

When the spectrum around f=nfp, is very narrow, as occurs when g,/8 >> 1,
the total power level contained in the peak can be evaluated by integrating
over f and hence kj. If the turbulence spectrum drops off very rapidly with
ki, compared to variations in either unsteady lift amplitude or quadrupole
source amplitude, these factors can be approximated by their values at k; = 0
and the integral of only the turbulence spectrum over kj need be taken.
Further, the spectrum levels need only be evaluated at harmonics of blade-
vassing frequency f=nf,, where n=1, 2, 3,....etc., and only the component
spectrum centered at f=nfy, i.e., the n-n component, need be calculated. Thus

no summation of component spectra is required.

The integral of the turbulence spectra over ki can be derived in closed

form from equations (16). The resulting expressions are as follows: .
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Thus, in the long length-scale approximation %,/s >> 1, the total sound
power in the vicinity of £ = nf, is calculated by evaluating the unsteady
life dipble and quadrupole source strengths at k;=0 and mulg¢iplying by a
suitably weighted combination of the turbulence spectra given by equations
(27-30) above.

It can be seen from equations (27-30) that the turbulence spectra for
L,/8 >> 1,i.e., integrated over kj, are independent of %,/s. This is con-
sistent with the results shown in Figure 10 which indicate that the noise
level approaches a constant value independent of %,/s for %;/8 >> 1. This
occurs because the peak value at f = nf, (Figures 4 and 7) varies linearly
with 4,/8 for %;/s >> 1, whereas the effective bandwidth decreases inversely
with 2,/s.

When the turbulence undergoes a contraction, the long length-scale
approximation can still be employed. Referring to equations (19-21), the
postcontraction spectra ¢17(k) and ¢75(x) only need to be considered since
for /s >> 1 the integral over kj (or kj) of $12(k) vanishes. Now the

integral over kj of ¢;7 and ¢, involves the expression
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and a similar one for ¢,,. It can be seen from examination of equations
(19-21) that only the leading terms will contribute significantly since they
involve the integrals f¢1; dk; and 499 dkj, whereas the remaining terms
invelve fkY ¢;. dk;, which should be small if #;; drops off rapidly enough
with k1. The postcontraction spectra corresponding to equations (27-29) can
therefore be approximated by the following:

@;1‘ (xp) = /f‘:’ll (k) dkadky =~ !‘—g‘ /f E"zl' 1 (k) dkadkj

or
»
é.. (k,)
* 1 11 2
P11 (ky) =~ — : (31)
Similarly,
* 1 *
4’22 (Kz) = 7%: C 022 (k2) (32)

where ky = Kz//E: as before. Equations (31,32) are used in place of (27,29)

to account for contraction effects for C = Uy/Vy > 1.
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APPENDIX B
SYMBOLS AND ABBREVIATIONS

= Fan rotor inlet annulus area, also turbulence spectrum variable
- Ames wind tunnel, V, = 80 knots

- Ames wind tunnel, V, = 180 knots

Constant

- Blade-passing frequency

- Contraction ratio

~ Rotor bhlade lift coefficient

~ Contraction ratio

- Rotor blade chord

= Discharge valve (throttle) setting

- Fan rotor tip diameter

= Turbulence spectrum function

- Flight, V, = 180 knots

- Frequency, also isotropic turbulence correlation function
- Blade~passing frequency

- Turbulence spectrum function

- Isotropic turbulence correlation function

- High-flow operating line of M, versus Mg

- Half-scale

- Blade height

- Precontraction wavenumber

- ith component of k

- Turbulence integral length scale

- Low flow operating line of M, versus M;

- Isotropic turbulence length scale

- Axisymmetric turbulence axial length scale

- Axisymmetric turbulence transverse length scale

- Fan inlet axial Mach number

- Fan inlet tip speed Mach number !
- Fan inlet relative Mach number /g§+M§
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rotor blade number

fan rotative speed, rpm

blade-passing frequency harmonic number
outdoor test stand

acoustic power, watts

peak acoustic power, watts

acoustic power at band edge, watts

total acoustic power in band, watts
acoustic power level, dB re: 10~13 watts
decibel equivalent of P,

decibel equivalent of P)

decibel equivalent of Py

PWL, - PWL)

axisymmetric turbulence correlation functions
axisymmetric turbulence correlation tensor
quarter-scale

turbulence velocity correlation function
spanwise radial coordinate

rotor inlet hub radius

rotor inlet tip radius

rotor inlet rms pitchline radius
Schenectady anechoic chamber
blade-to-blade spacing 2qr/Ng

turbulence control structure

local mean flow velocity

fan rotor inlet axial velocity

fan rotor inlet tip speed

axial component of rms turbulence velocity
transverse component of rms turbulence velocity
wind tnnnel velocity or flight speed

ith component of separation vector x
transverse separation /&%+x§

turbulence spectrum coefficient

kronecker delta
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cijk - alternating unit tensor |
0 - integration variable

LY - postcontraction wavenumber

ki - ith component of «x

A = length scale ratio Lg/%;

u = turbulence velocity ratio ug/ug

T "= cross~correlation time delay

i - precontraction three-dimensional turbulence spectrum
;ij - precontraction two-dimensional turbulence spectrum
%3 - postcontraction three-dimensional turbulence spectrum
3ij - postcontraction two-dimensional turbulence spectrum

Subscripts

1 - axial direction

| 2 - tangential direction

' 3 - radial direction

Z - free stream

; - axial

- transverse, tangential, tip
blade

- pitchline

- hub
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