NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA Technical Memorandum 81481

HIGHER ORDER MODE PROPAGATION
 in NONUNIFORM CIRCULAR DUCTS

Y. C. Cho
Lewis Research Center
Cleveland, Ohio
and
K. U. Ingard
Massachusetts Institute of Technology
Cambridge, Massachusetts

Prepared for the
Sixth Aeroacoustics Conference
sponsored by the American Institute of Aeronautics and Astronautics
Hartford, Connecticut, June 4-6, 1980

HICHER ORDER MODE PROPAGATLON IN NONINIFORM CIRCULAF DUCTS*

NASA Lewis Research Center Clersiand, Ohio 44135°

K. U. Ingard ${ }^{\dagger}$

Massachusetts Institute of Technclogy
Cambridge, Massachusetts 02139

Abstract

This paper presents an analytical investigntion of higher order mode propagation in a nonuniform circular duct without mean flow. An approximate wave equation is derfved on the assumptions that the duct crose section varies slowly and that mode conversion is negligible. Exact closed form solutions are obtained for a particular class of convergingdiverging circular duct which is here referred to as "circular cosh duct." Numerical results are presented in terms of the transmission loss for the various duct shapes and frequencies. The results are applicable to studies of multimodal propagation $a s$ well as aingle mode propagation. The results are also applicabje to studies of sound radiation from certain types of contoured inlet ducts, or of sound propagation in a converging-diverging duct of somewhat different shape from a cosh duct.

List of Symbols

effective lents of converging-diverging section of duct
bo duct radius at throat ($x=0$)
$b(x)$ duct radius
b. constant radius of lefthand side uniform duct e^{1} ement
b_{+}constant radius of righthand side uniform duct element
c
F hypergeometric function
J_{m} Bessel function of first kind of order m
$k \quad$ free space wave constant, ω / c
k _ propagation constant of a mode in lefthand side uniform duct element,
$k_{+} \quad$ propagation constant of a mode in righthand side uniform duct element,
m circumferential mode number, or separation constant
N normalization constant, see Eq. (22)
$n \quad$ integer used as radial mode number
q a dimensionless parameter, see Eq. (19)
R power reflection coefficient
$r \quad$ radial variable in spherical coordinate system
T power transmission coefficient

[^0]- time variable

TL transmission loss (dB)
$V_{0} \quad a$ dimensionless parameter, sec Eq. (19)
x axial coordinate, see Fig, 1
a separation constant or eigenvalue
$a_{m n}$ efgenvalue, n-th zero of $J_{m}^{\prime}(\alpha)$
$\beta \quad$ contraction ratio, b_{-} / b_{0}
Γ Gamma function
γ ct:toff ratio of mode referenced to inlet kb / l
ζ dimensionless frequency parameter, $k b_{o}(1-\beta / \gamma)$
η normalized variable, see Eqs. (9) and (9a)
θ polar angle in local spherical coordinate system, see Fig. 3
$\theta_{0} \quad$ half-cone angle corresponding to a duct segment, see Fig : 3
$\mu \quad$ asymmetry paraneter, $1 / 4 \ln \left[\left(\beta^{2}-1 / \tau^{2}\right) /\right.$ $\left.\left(\rho^{2}-1\right)\right]$
v converging-diverging section length parameter, a / b
\$ dimensionless axial coordinate variable, see Eq. (19)
$\rho \quad$ radial variable in cylindrical coordinate system
a constant parameter, see Eq. (20) and the following paragraph
ratio between inlet and exit radif, b_{+} / b_{-} function, see Eq. (17)
azimuthal angle around duct axis
acoustic velocity potential
angular frequency

1. Introduction

One of the unique features of the noise field produced by axial flow fans or compressors is the domingise of spinning modes in the fan duct. An additional feature in aircraft applications is that the e ons section of a fan duct varies along the duct axis. Consequently, in order to understand the overall acoustic characteristics of a fan duct system, it is imperative to examine the propagation of spinning modes (or higher order modes) in nonuniform ducts.

The higher order mode propagation in nonuniform ducts has been previously investigated by a number of authors. The widely used methods are numerical methods, ${ }^{1-3}$ semi-numerical methods, 4 various perturbation methods such as the WKB method or multiple scale variable methods 5 and the Born ap-
proximation. ${ }^{5}$ One of the drawhacks of numerical methods is the failure to provide compact expresm sions for the various quantities of interest and a corresponding lack of physical insight into the problem. Furthermore, in numerical mathods the boundary conditions are satisfied only approximately and the resulting error is not always aasy to absess. Perturbation methods have been used to find approximate solutions, but they atill require extensive computation to yield numerical results for quantities of practical interest, such as the transmission coefficients. Furthermore, most ap" proximations used so far have been limited to first order perturbations with related limitations in the range of validity of the results, such 4^{*} the limitation that the relative constriction be mall. Also, it should be mentioned that the firas crder perturbations predict no attenuation above the cutoff frequency at the throat. Although on extension to higher order perturbations can be made formally, it is quite cumbersome to carry out, and it has rarely been done.

In the present paper, we develep a new approach with less limitation. The basic ided involved is to recognize that higher order mode propagation in a nonuniform duct is analogus to problems in quantum mechanics dealing with mateer wave propagation in a system with spatially varying potential energy, In the latter case, exact solutions are known for certain barrier types of potential. 7 These solutions are used here to solve the acoustic problem for a class of converging-diverging circular ducts, which are equivalent to the potential barriers. The duct: shapes can be varied by means of three independent duct parameters, and cover a wide range of ducts of practical interest. The final results include wave functions and transmission and reflection coefficients, all in a closed form.

2. Circular Cosh Duct:

A typical nonuniform circular duct under consideration, which will be referred to as "circular cosh duct," is composed of two asymptotically uniform circular duct elements which are smoothly coupled through a converging-diverging section, as illustrated in Fig. 1. The shape is completely determined in terms of the radius, $b(x)$, which is given by

$$
\begin{align*}
& \left(\frac{b-}{b(x)}\right)^{2}=\beta^{2}-\left(\beta^{2}-1\right) e^{2 \mu} \cdot \cosh (2 \mu)+\left(\beta^{2}-1\right) e^{2 \mu} \\
& \times\left[\cosh ^{2} \mu \cdot \operatorname{sech}^{2}\left(\frac{x-\mu a}{a}\right)-\sinh (2 \mu) \cdot \tanh \left(\frac{x-\mu a}{a}\right)\right], \tag{1}
\end{align*}
$$

where the parameters are defined in the symbol list. For a symmetric circular cosh duct ($\tau=1, \mu=0$), this equation reduces to

$$
\begin{equation*}
\left(\frac{b-}{b(x)}\right)^{2}=1+\left(\beta^{2}-1\right) \operatorname{sech}^{2}\left(\frac{x}{a}\right) \tag{la}
\end{equation*}
$$

The duct shape given by Eq. (1) can be adjusted by means of the three dimensionless parameters β, ν, τ, allowing one to vary (i) the contraction ratio, β, (ii) the effective length of the converging-
diverging section, ν, and (iii) the ratio between the inlet and exit radii, τ. Equation (1) should covar a wide range of converging-divarging circular ducts of practical intorest. Various circular cosh duct shapes with fixed β and v are displayed in Fig. 2.

It should be mentioned here that the results of the present investigation can be used to study the acoustic characteristics of a variety of convarging-diverging ducts with slowly varying cross section, which may alightly differ in shape from the circular cosh ducts. The supporting argu* ment for this statement is as follows: The fre" quency range where our understanding of acoustic properties of converging-diverging ducts is lackIng, is near the cutoff frequency of a relevant duct mode. In this frequency range, the axial variation of wave phase is slow, and the propagation characteristics are hardly affected by comparatively small scale changes of the duct shape, as long as the cross section varies alowly.

3. Wave Equation in a Non-uniform Circular Duct

In this section, a horn equation will be derived for higher order mode propagation in a nonuniform circular duct under the following assumptions: (i) The slope, b^{\prime}, of the duct wall remains small, and (ii) The mude converaion (from one mode to another) is negligible. In addition, modes for such a non-uniform circular duct will be defined.

The equation is derived first for a small segment of the duct using locally suitable spherical coordinates, and is then transformed into a form which involves the duct parameters and the axial coordinate x. Let us consider a small segment of the duct and local spherical coordinates (r, θ, φ) as illustrated in Fig. 3, The duct segment is so short that is may be regarded conical, that is, b^{\prime} hardly changes within the duct segment. The origin of the spherical coordinate system is chosen some. where on the axis such that a coordinate surface $\theta=\theta_{0}$ (cone) tangentially contacts the wall of the duct segment. The half cone angle θ_{0}, is equal to b^{\prime} to second order approximation.

With the assumption of harmonic time dependence $e^{-i \omega t}$ the wave equation for spherical coordinates is

$$
\begin{align*}
& \frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(x^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)\right. \\
& \tag{2}\\
& \left.+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \varphi^{2}}\right]+k^{2} \Psi=0
\end{align*}
$$

where Ψ is the acoustic velocity potential and $k=\omega / c$. With the substitution

$$
\begin{equation*}
\Psi=H(r) Y(\theta) Q(\varphi), \tag{3}
\end{equation*}
$$

Equation (2) is separated as follows;

$$
\begin{gather*}
\frac{d^{2} H}{d r^{2}}+\frac{2}{r} \frac{d H}{d r}+\left[k^{2}+\left(\frac{a}{r \theta_{0}}\right)^{2}\right] H=0, \tag{4}\\
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d Y}{d \theta}\right)+\left[\left(\frac{\alpha}{\theta_{0}}\right)^{2}-\left(\frac{m}{\sin \theta}\right)^{2}\right] Y=0, \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
\frac{d^{2} Q}{d \varphi^{2}}+m^{2} Q=0, \tag{6}
\end{equation*}
$$

Hare α and m are the separation constants, and θ_{0} has been inserted for convenience.

We consider Eq. (6) first, the solution to which is

$$
\begin{equation*}
y=e^{\operatorname{imp} \varphi} \tag{7}
\end{equation*}
$$

llare m must be an integer for Q to be a single valued function, and is known as the circumferential mode number. It is obvious that this solution is valid throughout the duct as long as the cylindrical aymetry is maintained.

Equation (5) is an equation for the associated Legendre functions. These are not, however, convenient for the present problem. The main difficulty arisa? in determining eigenvalues and in trans forming i,hmm from the local coordinates to the duct coordinates. Therefore, a simplified form of Eq. (5) will be used here. In the region of interest $0 \leqq \theta \leqq \theta_{0}$, one can replace sin θ by θ to the second order approximation in b^{\prime}. Equation (5) can then be written as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{Y}}{\mathrm{~d} \theta^{2}}+\frac{1}{\theta} \frac{\mathrm{dY}}{\mathrm{~d} \theta}+\left[\left(\frac{\alpha}{\theta_{0}}\right)^{2}-\left(\frac{m}{\theta}\right)^{2}\right] \mathrm{Y}=0 \tag{8}
\end{equation*}
$$

This is the Bessel equation.
It is convenient to introduce a normalized variable η defined as

$$
\begin{equation*}
\eta=\frac{\theta}{\theta_{0}} \tag{9}
\end{equation*}
$$

where $0 \leqq \pi \leqq 1$. Note that, in the limit $\theta_{0} \rightarrow 0$, the duct segment becomes cylindrical, and Eq. (9) is replaced by

$$
\begin{equation*}
\eta=\frac{p}{b} \tag{9a}
\end{equation*}
$$

where ρ is tie radial coordinate in the cylindrical coordinate system.

With the substitution of Eq. (9), Eq. (8) is transformed into

$$
\begin{equation*}
\frac{d^{2} Y}{d_{\eta}^{2}}+\frac{1}{\eta} \frac{d Y}{d \eta}+\left[\alpha^{2}-\left(\frac{m}{\eta}\right)^{2}\right] Y=0 . \tag{10}
\end{equation*}
$$

Hote that η is not a local coordinate variable, and unlike Eq. (8), Eq. (10) is valid throughout the duct as long as the assump tions (i) and (ii) remain valid. The physically acceptable solution to Eq. (10) is the Bessel function of the first kind. Thus we have

$$
\begin{equation*}
Y=J_{m}(\alpha \eta) \tag{11}
\end{equation*}
$$

From the boundary condition at the duct wall, eigenvalues are determined as follows

$$
\begin{equation*}
\alpha=\alpha_{\operatorname{mn}}, n=0,1,2 \ldots \tag{1.2}
\end{equation*}
$$

$\alpha_{m n}$ being the n-ch zero of $J_{m}^{\prime}(\alpha)$.

Corrosponding to anch combination of m and $a_{\text {nnn }}$, the solution is uniquely defined in terms of the product

$$
e^{1 \pi \eta I_{m}\left(\alpha_{m n} \eta\right) .}
$$

This eigenfunction is defined throughout the duct, η being given by Eq. (9) for a conical eegment or by Eq. (9a) for a cylindrical segment. Consequently, a mode, which is in one-to-one correspondence with an elgenfunction, has been defined for a nonuniform duct.

We now return to Eq. (4). This equetion, when transformed to the duct coordinates, is the one which governs propagation of a mode in the duct. The necessary transformation is accomplishad by replacing the local coordinate r with the duct parameters and the axial coordinate x. To this end, we use the following relations:

$$
\begin{align*}
& \theta_{o} \approx b^{\prime} \tag{13}\\
& \frac{d}{d r} \approx \frac{d}{d x} \tag{14}\\
& r=\frac{b}{b^{\prime}} \tag{15}
\end{align*}
$$

These equations are valid for a point within the duct segment, and are accurate to the order of $\left(b^{\prime}\right)^{2}$.

On inserting Eqs. (13) to (15) into Eq. (4), we obtain

$$
\begin{equation*}
\frac{d^{2} H}{d x^{2}}+\frac{2 b^{\prime}}{b} \frac{d H}{d x}+\left[k^{2}-\left(\frac{\mathfrak{c}}{b}\right)^{2}\right] H=0 \tag{16}
\end{equation*}
$$

This is the equation for higher order mode propagation in a nonuniform circular duct. Its solutions will be sought in the following section.

4. Higher Order Mode Propagation In a

Circular Cosh Duct

In this section, we seek solutions to Eq. (16) for the circular cosh ducts described in Section 2.

It is convenient to introduce a new function $\Phi(x)$, which is defined by

$$
\begin{equation*}
H(x)=\frac{\Phi(x)}{b} . \tag{17}
\end{equation*}
$$

On inserting this into Eq. (16), we obtain

$$
\begin{equation*}
\frac{d^{2} \Phi}{d x^{2}}+\left[k^{2}-\left(\frac{a}{b}\right)^{2}\right] \Phi=0 \tag{18}
\end{equation*}
$$

where $b^{\prime \prime} / a$ has been discarded on the assumption that it is negligible compared with unity. It can be readily shown that this equation is also valid for the fundamental mode propagation ($\alpha=0$).

Equation (18) is similar, in form, to the one dimensional Schroedinger equation, with k^{2} and ($a / b)^{2}$ corresponding to the total energy and the potential energy respectively. 7 With the substitution of Eq. (1), Eq. (18) is written as

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{align*}
& \frac{d^{2} \Phi}{d \xi^{2}}+\left[q^{2}-v_{0}\left(\cosh ^{2} \mu \cdot \operatorname{sech}^{2} \xi\right.\right. \\
&-\sinh (2 \mu) \cdot \tanh \xi)] \theta=0 \tag{19}
\end{align*}
$$

whers

$$
\begin{gathered}
\xi=\frac{x-\mu a}{a} \\
q^{2}=(k a)^{2}+v_{0} \cosh (2 \mu)-(\alpha \beta v)^{2} \\
v_{0}-a^{2 \mu}\left(\beta^{2} \gamma 1\right) \cdot(c v)^{2}
\end{gathered}
$$

Equation (19) can be solved exactly in accordance with the procedure given in section 12.3 of Ref. 7. With the incident waye coming from $x=-\infty$, the solution is given by

$$
\begin{align*}
& \Phi=N e^{\frac{1}{2}\left(k_{+}-k_{-}\right) a \xi}(2 \cosh \xi)^{\frac{1}{2}\left(k_{+}+k_{-}\right) a} \\
& \times F\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a-\sigma\right), \frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a+\sigma\right)\right. \\
& \left.1-1 k_{+} a^{\prime} ; \frac{1}{e^{2 \xi}+1}\right) . \tag{20}
\end{align*}
$$

Here F is the hypergeometric function, N a constant to be determined, and

$$
\begin{aligned}
& k_{ \pm}=\sqrt{k^{2}-\left(\frac{a}{b_{ \pm}}\right)^{2}} \\
& \sigma=\sqrt{4 v_{0} \cosh ^{2} \mu-1}
\end{aligned}
$$

This solution, ξ being replaced by x, can be written asymptotically at $x= \pm \infty$ as follows

$$
\begin{array}{r}
\Phi \xrightarrow{x \rightarrow \infty} N e^{-i k_{+} H a} e^{i k_{+} x}, \\
\Phi \xrightarrow{(21 a)} \\
\Gamma\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a+\sigma\right)\right) \cdot \Gamma\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a-\sigma\right)\right) \tag{21b}\\
+\frac{N \cdot \Gamma\left(1-i k_{+} a\right) \cdot \Gamma\left(1 k_{-} a\right) \cdot e^{i k_{-} \mu a} e^{-i k_{-} x}}{\Gamma\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a-k_{-} a+\sigma\right)\right) \cdot \Gamma\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a-k_{-} a-\sigma\right)\right)},
\end{array}
$$

where Γ is the gamma function. The asymptotic solution in Eq. (21a) corresponds to the transmitted wave, and the first and the second tems of . Eq. (21b) correspond to the incident and the reflected waves respectively. Requiring the incident wave to have unit amplitude, we have

$$
\begin{equation*}
N=\frac{b_{-} \Gamma\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a+\sigma\right)\right) \cdot \Gamma\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a-\sigma\right)\right)}{\Gamma\left(1-i k_{+} a\right) \cdot \Gamma\left(-i k_{-} a\right) e^{-i k_{-} \mu a}} \tag{22}
\end{equation*}
$$

In deriving these equations, we have used the following properties of the Γ function.

$$
\begin{aligned}
& |\Gamma(1+1 z)|^{2}=\frac{\pi z}{\sinh (\pi z)} \\
& \left|\Gamma\left(\frac{1}{2}+1 z\right)\right|^{2}=\frac{\pi}{\cosh (\pi z)}
\end{aligned}
$$

or the wave aisilitude can be readily computed from Eqs. (2la and b). In the case of no mean flow, the reflection and transmisaion coefficients for the acoustic power are obtained as the absolute squares of the respective amplitude coefficients. In the followitag diecusbions, we will use the acoustic power reflection and transmission coefficients, which are given by

$$
\begin{align*}
& R=\frac{\cosh \left[\pi a\left(k_{+}-k_{-}\right)\right]+\cosh (\pi \sigma)}{\left.\cosh l \pi a\left(k_{+}+k_{-}\right)\right]+\cosh (\pi \sigma)} \tag{25}\\
& T=\frac{2 \sinh \left(\pi k_{+} a\right) \cdot \sinh \left(\pi k_{-} a\right)}{\cosh \left[\pi a\left(k_{+}+k_{-}\right)\right]+\cosh (\pi \sigma)} . \tag{26}
\end{align*}
$$

$$
\begin{align*}
\Psi= & N e^{i m \varphi_{J_{m}}\left(a_{m n} \eta\right) \cdot \frac{1}{b} a^{\frac{1}{2}\left(k_{+}-k_{-}\right)(x-\mu a)}} \\
& \times\left[e^{\frac{x}{a}-\mu}+e^{-\left(\frac{x}{a}-\mu\right)}\right]^{\frac{1}{2}\left(k_{+}+k_{-}\right) a} \\
& \times F\left(\frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a-\sigma\right), \frac{1}{2}-\frac{1}{2}\left(k_{+} a+k_{-} a+\sigma\right),\right. \\
& 1-i k_{+} a ; \frac{1}{\left.e^{2\left(\frac{x}{a}-\mu\right)_{+}}\right)} \tag{24}
\end{align*}
$$

The refletition and transmission coefficients rom -

Note that the results given in Eqs. (25) and (26) satisfy energy conserration, that is

$$
\begin{equation*}
R+T=1 \tag{27}
\end{equation*}
$$

5. Numerical Results and Discussions

Some numerical results are presented in Figs. 4 to 7. Displayed in the figures is the acoustic power transmission loss (TL) for various values of the duct parameters and a frequency parameter (γ or ζ). The TL is defined as

$$
\begin{equation*}
T L(\mathrm{~dB})=-10 \log _{10}(\mathrm{~T}) \tag{28}
\end{equation*}
$$

In Fig. 4, the TL of the (1,0) mode is plotted as a function of γ, the cutoff ratio of the mode at the duct inlet, defined as

$$
\begin{equation*}
\gamma=\frac{k b}{a} \tag{29}
\end{equation*}
$$

Note that the value of γ is not less than unity for propagating incident wave mode. The duct parameters included in the figure are various values of β and $\nu=\tau=1$. As expected, the $T L_{\text {de- }}$ creases with increasing frequency, in a similar way for different values of β. The rate of the TL change (d 'rL/dy) is the greatest in the vicinity of $\gamma=B$, which corresponds to the cutoff frequency of the mode at the throat, Note that, at $\gamma=\beta$, the TL is nonzero with a value of about 2.5 to 3 dB . This result is in contrast to that of the first order perturbation solutions, which predict no attenuation for $Y \geq \beta, 4,5$

In Figs, 5 and 6, the TL of various modes is plotted as a function of for various values of the duct parameters. Here is a frequency parameter which is defined as

$$
\begin{equation*}
\zeta=k b_{0}\left(1-\frac{\beta}{\gamma}\right) \tag{3Q}
\end{equation*}
$$

Note that β / y is the inverse of the cutoff ratio at the throat, and that $\xi_{5}=0$ corresponds to the cutoff frequency at the throat.

Each curve (narrow stripe) in these figures includes the TL of ten randomly selected modes ranging from the $(2,0)$ mode to the $(8,5)$ mode. This shows that the $?_{?}$ - dependence of the TL is almost the ame for all the higher order modes. This zo= sult is remarkable, and is useful especially for studies of multimodal propagation in a convergingdiverging duct. In some cases, one may not need to identify individual modes. An example of such cases can be found in conjunction with a study of multimodal radiation from a uniform duct. 8 The acoustic power distribution vs. γ in the duct can often be inferred from the measured radiation pattern. For a known γ-distribution of the acoustic power, the present result can be immediately applied to determine the effect of the convergingdiverging section on the multimodal propagation. Recall that the parameter ζ contains γ explicitly, not the eigenvalues of modes.

Figure 5 includes calculations for $\beta=1.05$, 1.25, 1.5 with $\nu=\tau=1$. Tbe result shows that, for $\zeta<0$, the $T L$ is more sensitive to the frequency for the smaller value of β. We also notice that the calculations for different modes collapse better as β increases.

Figure 6 includes calculations for different values of v and τ, with $\beta=1.25$. We first compare the curves (narrow stripes) for ($\nu=1, \tau=1$) and for ($\nu=1, \tau=1.5$) in order to see the effect of τ. For $\zeta<-0.15$, the TL for $\tau=1.5$ is smaller than that for $\tau=1$. This result is due to the fact that the duct segment in which the modes are cutoff, is shorter for $\tau=1.5$ than that for $\tau=1$. (See Fig. 2). However, the two curves do not show much difference for $\zeta>-0.15$. This point will be further discussed later.

We now compare the curves for ($\nu=1, \tau=1.5$) and for ($\nu=1.5, \tau=1.5$) in Fig, 6 in order to see the effect of v. For $\zeta<0$, the TL is larger for $v=1.5$ than that for $v=1$. This result is the direct consequence of the fact that the larger

original pace Is OF POOR QUALITY

values of v repregents the longer convergingdivarging section. The length of the duct gegment in which the modes are cutoff, increases with increasing value of ν,

In Fig. 7, the TL of the (1,0) mode in plotted as a function of τ for the various values of γ, ν, and β. For $\gamma>\beta$, the Th hardly depends on τ. For $\gamma<\beta$, the TL Blightiy decreases Eirst with increasing values of τ, and asymptotically reaches a constant value near $\tau=1.5$. It remaina unchanged for further increase of the value of T. This finding suggests that the results of the present investigation can be used for atudies of higher order mode transmission from a contoured inlet duct.

To account for the last statement, we consider a contoured inlet duct as illustrated in Fig. 9. The inlet duct is produced from a circular cosh duct with a large value of τ. The circular cosh duct is terminated at a distance where the duct radius is 1.4 b . The cutoff frequency at the termination, is smaller than that of the lefthand side uniform duct: e? ement by the factor of 1.4 . Thus, for a propagating incident wave mode $(\gamma>1)$, the reflection due to the duct termination is negilgible, ${ }^{9}$ It follows then that the TL for the contoured inlet duct is expected to be the same as that for the fuli eircular cosh duct.

It should probably be mentioned that the slope b^{\prime} can be fairly large for a large value of τ in a portion of the diverging section. Although it seems to violate the assumptions used in the analysis, the numerical resulte remain valid. The aupporting argument is that, in the first place, the slope remains small within some distance downstream from the turning point where the mode changes from cutoff to cuton. In the second place, the sound attenuation takes place mostly in the duct segment shere the mode is cutoff, whereas the diverging section, like a loud-speaker horn, 10 helps the unattenuated portion of the sound to be radiated, The radiation efficiency is not sensitive to the slope as long as the duct divergence is smooth and the frequency is not close to the cutoff frequency at the termination. ${ }^{9}$ Lastly, even a fairly large slope, e.g., $b^{\prime}=1$, is not so large as to invalidate the approximations made in the analysis. For instance, for $b^{\prime}=1, \theta_{0}=\pi / 4$ and $\sin \theta_{0}=0.707$; thus, the error involved in replacing $\sin \theta_{0}$ by θ_{0} is about 11%.

6. Concluding Remarks

In an attempt to improve the understanding of the acoustic characteristics of a fan duct system, we have investigated higher order mode propagation in a particular class of converging-diverging circular duct, called "the circular cosh duct." The duct shape can be adjusted by means of three duct parameters, covering a wide range of convergingdiverging ducts of practical interest.

An approximate wave equation has been derived and exact closed form solutions have been obtained. No mean flow effects have been included. The expressions for the reflection and transmission coefficients of a mode are simple. With an appropriate choice (ζ) of frequency parameter, the results have been shown to be nearly independent of individual
modes, and can, tharefore, be immediately used for studies of multimodal propagation. The resulte are also applicable to studies of sound radiation from certain types of contoured inlat ducts, or of sound propagation in a convergingediverging duct which differs somewhat from a cosh duct in shape.

References

1. Alfredson, R. J., "The propagation of Sound in a Circular Duct of Continuously Varying CrossSectional Axea," Journal of Sound and Vibiation, Vol. 23, Aug. 1972, pp. 433-442.
2. Astley, R. J, and Evezsman, H., " A Finits Eloment Method for Transmission in Nonunitiora Ducts Without Flow," Journal of Sound and Vibration, Vol. 57, Apr. 1978, pp. 367-388.
3. Kaiser, J. E. and Nayfeh, A. Ih., "A Wave Envelop Technique for Wave Propagation in Nonuniform Ducts," AIAA paper 76-496, July 1976.
4. Hogge, H. D. and Ritzi, E. W., "Theoratical Studies of Sound Emission from Aircraft Ducte;" AIAA Paper 73-1012, Oct. 1973.
5. Nayfeh, A. H. and Telionin, D. P., "Acoustic Propagation in Ducts with Varying Crose Section," Journal of the Acoustical Society of America, Vol. 54, Dec. 1973, pp. 1654-1661.
6. Tam, C. K. W., "Transmission of Spinning Acoustic Modes in a Slightly Nonuniform Duct," Journal of Sound and Vibration, Vol. 18, oct. 1971, Pp. 339-351.
7, Morse, P. M. and Feshbach, H., Methods of Theoretical Phyaics, McGraw-lifll Book Co., New York, 1953, ch. 12.
7. Rice, E. J., "Multimodal Far-meld Acoustic Radiation Pattern using Mode Cutoff Ratio," AIAA Journal, Vo1. 16, Sept. 1978, pp. 906911.
8. Cho, Y. C., "Sound Radiation From Hyperbololdal Inlet Ducts," AIAA Paper 79-0677, Mar, 1979.
9. Morse, P. M., Vibration and Sound, McGraw-Hill Book Co., New York, 1948.

Figure 1. - Circular cosh duct, $(\beta=v=\tau=1,5)$.

Figure 2. - Various shapes of circular cosh duct.

Figure 3. - Duct segment and local spherical coordinate system.

Figure 4. - Power transmission loss of (1,0) mode versus frequency parameter for various values of β, with $V=\tau=1$,

Figure 5. - Transmission loss versus ζ, for $\beta=1.05$, 1.25, and 1,5 , for $v=\tau=1$. Each curve (stripe) includes 10 modes ranging from $(2,0)$ mode to $(8,5)$ mode.

Figure 6. - Transmission loss versus ζ, for $\nu=1, \tau=1$; $\nu=1, \tau=1.5 ; \nu=1.5, \tau=1.5$ with $\beta=1.25$. Each curve (stripe) includes 10 modes ranging $(2,0)$ mode to $(8,5)$ mode.

Figure 7. - Power transmission loss of $(1,0)$ mode versus τ.

Figure 8. - Inlet duct, produced by terminating circular cosh duct with $\nu=\beta=1.5, \tau=30$.

17. Key Words (Suggested by Author(s))
Duct acoustics; Radiation; Mode; Converging-
diverging circular duct; Exact solution; Cosh
duct
19. Distribution Statement

Unclassified - unlimited
STAR Category 71

19. Security Classif, (of this report) Unclassified	20, Securlty Classif. (of thils page) Unclassified	21. No. of Pages	22. Price

*For sale by the National Technical Information Service, Springfield, Virginia 22161

[^0]: *Based on Consulting Reports submitted to Pratt \& Whitney Alrcraft (November 25, 1973 and February 28, 1974).
 ${ }^{* *}$ Aerospace engineer; member AIAA.
 $\dagger_{\text {Professor of }}$ Physics and of Aeronautics and Astronautics.

