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ABSTRACT

The cosmic X-ray experiment carried out with the A2 Instrument* on HEAD-1 was

especially developed to make systematics-free measurements of the extragalactic

X-ray sky and has yielded the broadband spectral characteristics for two extreme

aspects of this radiation. For the apparently isotropic radiation of cosmological

origin that dominatesthe extragalactic X-ray flux (> 3 keV), the spectrum over

the energy band of maximum intensity is remarkably well described by a thermal

model with a temperature of a half-billion degrees (i,e. kT r 40 keV). At the

other extreme, broadband observations of individual extragalactic X-ray sources

with HEAO-1 are restricted to objects within the present epoch. These X-ray sources

include a large sample of active galaxies studied in some detail over a broad

bandwidth for the first time. While the non-thermal hard spectral components

associated with unevolved X-ray emitting active galaxies could account for most

of the gamma-ray background, the contribution of such sources to the X-ray background

must be relatively small. In contrast, the "deep-space" sources detected in soft

X-rays with the Einstein Observatory (HEAO-2) telescop y probably represent a major

portion of the extragalactic soft X-ray (< 3 keV) bacla;; •,ound, the characteristics

of which are not yet firmly established, The contribution of these very remote sources

to the well determined hard X-ray background, however, depends most critically on

The HEAD-1 A2 experiment is a collaborative effort led by C. Boldt of Goddard Space

Flight Center and G. Garmire of the California Institute of Technology.
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their broadband spectra, which are inaccessible with current experiments, If their

spectra are similar to those measured for nearby active galaxies, then their contribution

to the background can not be large enough to significantly affect the overall thermal

type spectrum observed. In such a situation, we have to consider new sources of

emission peculiar to an earlier epoch and/or diffuse intergalactic emission. Small

deviations from isotropy n the cosmic X-ray background are being studied and the

status of results is presented in terms of the geometries associated with the galaxy,

the local supercluster and the microwave background.
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t`	 Our view of the X-ray sky is very different in the soft and hard X-ray bands.

For photon energies less than l keV or so the Einstein Observatory (HEAL-2) is informing

us that stars of every type are X-ray sources. Yet, the surface brightness maps

constructed from the all-sky surveys carried out with the broad-band A2 instrument

on HIZAO-1 show that by far most of the soft X-ray flux is due to large-scale background

features associated with our galaxy. This all-sky experiment, especially developed

for broad-band studies of the X-ray background (Boldt et al. 1979a; Rothschild et

al. 1979), is a collaboration between our group at Goddard and several investigators

here in California associated with Gordon Garmire, who will report elsewhere on

soft X-ray maps of the entire sky. A particularly interesting large-scale feature

in soft X-rays recently discovered with this all-sky survey is called the "X-ray

Suprrbubble in Cygnus", as discussed in this meeting by Cash (1979).

Above a few keV, the situation changes drastically in that most of the flux

is associated with an extragalactic background and that any galactic effects away

from the galactic plane become a relatively minor perturbation (see Appendix A).

This situation of obtaining such an unobscured view of the composite emission of

the universe is practically unique in astronomy, the only other example that I

know of being the microwave '-ackground. This composite extragalactic flux (or "cosmic

background") of hard X-rays is the topic of this lecture.

Figure l gives an overall view of the sky in hard X-rays; this is an all-sky

map of surface brightness, with all sources included, and was constructed by DeAnn

Iwan from the 2-60 keV all-sky data base of our A2 experiment. Since the map is

in galactic coordinates, the equator and center of the galaxy are gvite evident.

The data are from High Energy Detector (.HED) #1, where the dual fields of view

are 60 x 30 and 30 x 30 . The counts recorded were simply assigned to 3 0 x 30 pixels.

The resulting intensities for these pixels are color coded. Those intensities within

3% of a constant background are blue. Intensities lower than this are shown as
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black, higher are shown as red. Within each color code, the lines per pixel provide

a vernier on the numerical intensity. This particular map saturates at a surface

brightness about 40% above that of the diffuse background. In terms of source intensity

itit is equivalent to the brightest isolated galaxy, which is Cen A. A few clusters

of galaxies exceed this saturation limit; many galactic sources do, of course.

For the present discussion, the main thing to notice is that most of this map is

blue, indicating that the cosmic X-ray background is a well-defined dominant aspect

of the sky.

The spectrum of the cosmic X-ray background is remarkably simple. Figure

2 shows the results of a spectral analysis by Marshall et al. (1980) of the X-ray

flux as observed at high galactic latitudes away from resolved hard X -ray sources.

What is plotted here is the ratio ( R) of the observed flux to that predicted for

three different thermal models as a function of photon energy. There are many dif-

ferent symbols used for these plots, corresponding to the fact that the A2 instrument

examined this flux in many different ways in order to minimize any systematic bias.

What we see here is that the correct temperature is about a half-billion degrees

(i.e. kT ti 40 keV). From about 3 to 20 keV the statistical error bars are smaller

than the size of the symbolsused and deviations from unity for the best fit are

generally less than 0%. In fact, given the large bandwidth, high statistical significance,

and goodness of fit involved, I conclude that this is one of the best known spectra

in X-ray astronomy, certainly better known than that of any single extragalactic

source. It's important to remember, though, that our knowledge of the extragalactic

background in soft X-rays and gamma -rays is still relatively imprecise.

Now that we know the propert ies of the integral extragalactic flux of hard

X-rays we are ready to examine models; For evaluating the contribution of discrete

sources we need source counts up to high redshifts and broad -band spectra for

several sources representing all classes of emitters. Ontil HEAO-1 and HEAO-2

such information was essentially absent. Now, HEAO-2 is beginning to give us the

source counts we need, but in the soft X-ray band. HEAD-1 gives us source spectra

wd

in the hard X-ray band needed, but only for objects in the present epoch. With
k'

w

=mot t ..^,
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the obvious and crucial observational gap still with us, there is room for discussion

and we proceed to examine what we know and what we think we know.

In searching for sources that are thermal we must first consider clusters

of galaxies. The Perseus cluster is the brightest extragalactic source and Figure

3 shows its spectrum in terms of photon flux versus photon energy. This is the

characteristic spectrum of 'a plasma at a temperature of about 80 million degrees,

quite typical of known clusters. It shows the well resolved K lines of collisionally

excited helium type iron ions at 6.7 keV and at 7.9 keV and unresolved lines of

Si, S, Ca and Ar between w 2 and 4 keV. The luminosity of . 1045 ergs s-1 is among

the highest for clusters. As far as their contribution to the background, the observed

spectrum of the background itself provides us with two important constraints. First

of all, since the temperature of the background is an order of magnitude higher

than that of the 30 or so clusters examined, their contribution to the background

must be restricted to the lower energy end (unless there is an unexpected severe

evolution in temperature). Secondly, since there is no detectable discontinuity

w	 in the background spectrum above and below N 7 keV, the contribution of iron line

emission is definitely limited; this implies that the contribution of clusters

at N 7 keV is at most a few percent. The all-sky survey provided by HEAD-1 has

also been used to estimate a luminosity function for clusters, In order to work

with a complete sample, McKee et al. (1980) have recently used the Abell clusters

of distance classup through 4 in the Leir-van den Bergh catalog (1977) to search

for X-ray sources. This most recent work yields that the contribution of clusters

is probably only about 4% at the lowest energies of the measured background.

Isolated galaxies are also X-ray sources; our own galaxy has a luminosity

of a few x 1039 erg s
-1 0 

Worrall et al. (1979) have used the all-sky data base

of the A2 experiment on HEAO-1 to search for the average hard X-ray emission from

78 well isolated galaxies within 20 Mpc and conclude that our galaxy is not underluminous

in X-rays relative to other normal galaxies and that, ignoring possible evolutionary

effects, their contribution to the background would be less than one percent.

Ll	 --
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Some BL Lac type objects exhibit X-ray luminosities comparable to clusters

and even higher. We now have broad-band spectra for five of them from HEAO-1.

Figure 4 shows one such spectrum (Riegler, Agrawal and Mushotzky 1979). Unlike

the spectra for typical clusters which are relatively flat at low energies and then

fall off above a few keV, this one is steep at the lowest energies and flattens

above a few keV. A typical BL Lac type speou'-;;oI Is hard to define; sometimes there

are two components as in this case and sometimes oviiy^the soft component is present.

This sort of variation holds from one source to another and also for a given source

from one time of observation to another. In any event, their spectra seem never

to be similar to that of the X-ray background. Since sources such as these might

be closely related to quasars, however, one of the things we should learn from these

spectra is how we could be misled in extrapolating HEAO-2 soft X-ray flux measurements

to the hard X-ray region of the spectrum.

Apart from BL Lac type objects and possibly quasars, where our spectral

knowledge is still meagre, active galaxies exhibit X-ray spectra that are quite

uniform. First of all we consider the spectrum of the brightest X-ray galaxy,

Centaurus A; this is shown in Figure 5. Cen A is bright mainly because it is

relatively nearby; although its X-ray luminosity is about. a thousand times that

of our galaxy, it is much less luminous than most active galaxies. The spectrum

is clearly non-thermal. Below a few keV it shows the pronounced effect of absorption

by a large amount of matter. This source has been measured at higher energies than

shown in Figure 5 with the A4 instrument on HEAO-l; Baity (1980, private communi-

cation) indicates that this power-law spectrum of photon number index 1.6 - 1.7

extends to a few hundred keV and that Cen A is still detectable out to about an

MeV.
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In addition to the spectrum for Cen A the A2 experiment has already provided

us with broad-band spectra for 12 Seyfert-I galaxies, 4 narrow emission line galaxies,

3 N galaxies and 2 quasars out of a total of over 50 isolated galaxies clearly detected

in hard X-rays. Five spectra representative of the sample of Seyferts are shown

in Figure 6 (Mushotzky et al. 1980). The Seyfert-I galaxies rypresented here range

in luminosity from a few times that of Cen A for NGC 6814 to about a hundred times

that of Cen A for MCG 8-11-11. Except for the lowest luminosity galaxy, none of

these show anything close to the pronounced absorption exhibited by Cen A. Since

the brightest X-ray Seyfert (NGC 4151) shows absorption comparable to Cen A, this

initial sample of two gave us the impression that all X-ray spectra from active

galaxies would exhibit this effect. In fact, our HEAO data now indicate that only

the very lowest luminosity Seyferts, such as NGC4151, share this feature. As far

as we can tell, at energies above 3 keV or so, most of the X-ray emitting active

galaxies have simple power-law spectra with photon number indices that are typically

in the vicinity of 1.6 - 1.7.

Excluding BL Lac type objects, a histogram of X-ray spectral indices

for active galaxies (see Table 3) obtained with the A2 instrument is shown

in Figure 7. This histogram of spectral index values is presented here in

terms of the energy index a, offset by one unit from the photon number index r

discussed before. For the collection of individually measured spectra,

"Sample A", a ranges from 0.41 to 0.97. These spectra, for the most part,

. .
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were obtained from extended exposures during tines when the

ttEAO-1 spacecraft was pointed * tie have also considered sources

detected during the normal all-sky scans performed with 11EAO-1.

In these scans, there were !19 well isolated galaxies detected

which are at high galactic latitudes (see Table 3). Considering

the composite spectrum for these 29 galaxies, without excluding

RL Lac type objects or normal galaxies, StottleMyer and I find a

best-fit a N0.6, We call the collection of sources in this

composite spectrum "Sample R" and the range of acceptable Oj o s for

90% confidence is here indicated as (4a ) 6 . Samples A and R are

clearly consistent. We conclude that one can define an effective

typical spectrum for an X-ray emitting galaxy in the present

epoch and that, at least for the band 3-50 keV, this spectrum is

a power-law of energy index in the vicinity of 0.6 - 0.7.

Can power-law sources such as those just discussed make much

of a contribution to the X-ray background? To examine this, we

have tried power-law fits to the observed X-ray background

spectrum, and two such are shown in Figure 6 (Marshall et al.

1960). As before, we have here plotted the ratio (R) of the

observed flux to that predicted by the model considered, as a

function of photon energy. Ve consider two photon number spectral

indices. For a thermal spectrum of 40 keV, the Gaunt factor

implies that a power-law model of index r - 1.4 should provide a

fairly decent fit at the lowest energies and that the ratio plot-

ted here should fall off exponentially at energies that approach

kT. This behavior is quite evident in the figure. On the other

hand, if we consider a power-law with r - 1.7, more represent-

.
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stive of presort epoch active galaxies, we see that the

corresponding ratio plotted is unacceptable. Stottlemyer and I

have also considered models made up of a thermal spectrum with a

contamination corresponding to a power-law of t n 1.79 Referred

to the spectral densities at the lowest energy (3 keV), we find

that the 99% confidence upper limit to such a contamination is

267.. This limit is relaxed somewhat if a spread of indices

comparable to that exhibited in Figure 7 is taken into account.

neZotti (1979, private communication) has clone this analysis with

the A2 data and finds that he can account for the background if

these sources have a rather sharp characteristic spectral break

at about 40 - 60 keV. So far, there is no evidence for such a

general feature.

Table 1 summarizes what we know about the population of

brightest X-ray emitting galaxies in the present epoch. Item I

gives some rerults from the 11HA0-1 A2. all-sky survey for a

detection threshold where our sample should be complete. For

this complete sample, we have restricted ourselves to those 23

sources at high galactic latitude (i.e. I b) > 20 0 ) exceeding the

threshold indicated and renormalized for the excluded solid

angle.

Item LI gives our formal results as far as the local

luminosity function is concerned (see Appendix B). In fact the
M

density of over 10 -4	1lpc -3 shown here could be an overestimate

due to the local supercluster (deVaucouleurs 1958); Piccinotti

(1980, private communication) is looking into this problem

,further. Estimates of the density of active galaxies -4ithin the

I
k
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prement epoch derived from observations outside the X-ray band

(Schmidt 1970) are gene-w ally lower titan our number by at least a

factor of 2.

Item III gives the composite flux of active galaxies (for

Z <1) assuming that the luminosity function of item 1I is

correct, that there is no evolution and that the deceleration

parameter q o is zero. Referred to 3 keV, under the ,assumption of

a power-law spectrum of energy index a n 0.7, the contribution to

the background is about 23%. As already indicated, though, this

could he an overestinate due to a possible systematic bias intro-

duced by the local supereluster (see Appendix).

The Einstein Observatory in now providing us with informa-

tion on X-ray sources at earlier epochs. peep exposures over

small angular regions of the sky give us soft X-ray source counts

from remote regions of the universe where the hard X -ray back-

ground is likely to originate. These results are summarized in

Table 2.

Item I reviews the recently published work. by Viacconi et

al. (1979). 11hen scaled up to the full sky, their sanple cor-

responds to about a million objects, comparable to conservative

estimates of the number of quasars (Wills 1978).

Item II translates the results given in item I into a cor-

responding composite flux at 3 keV, where we can make contact

with the measured background. To do this we need to know the

log 11-log S relation at intensities at and above the threshold

indicated for a complete sample and the typical spectrum over the

band from about 1 keV up to about 3 keV. We asstim p an energy
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spectral index of 0.7 and express our answer in terms of the

slope (a) of the log N-log S relation. The percent of the back

ground at 3 keV due to these sources observed with HERO-2 is then

about 7% times a factor that can range between the extremes of

unity for high values of (a) to a value of 3 for a - 1.5. In the

sub.sequent discussion we use the maximum value, per Giacconi et

al. (1979). if we were to use a k 1.9, as discussed at this

meeting by tiurray (1979) for strongly evolved sources, the coef-

ficient would be N 2 instead of 3.

Item III reviews what earl be stated about the contribution

of assumed power-law sources to the X-ray background based only

on an analysis of the spectrum of the background itself. The

thing to note here is that the 26% upper limit at 3 keV discussed

before is consistent with the percentage expressed in item II,

based on IIEAO-2 source counts.

From HEAO-1 and 11EAO-2 we can now piece together what we

think we know about the extragalactic X-ray sky as a whole; this

is shown in Fiatire 9. The surface brightness of the e,ctra-

galactic X-ray sky is plotted here as a function of photon

energy. The curve labelled "total flux" is the best-fit thermal

spectrum for the background measured with the A2 instrument on

HEAO-l. The power-law "A" representfi the compositeflux due to

sources corresponding to those detected in the deep exposures

with 11EAO-2, as summarized in Table 2. The power-law "B" repre-

sents the composite flux from active galaxies such as those

measured with HEAO-1, assuming no evolution. As already

indicated, curve "B" might be an overestimate by a factor of 2 or

LY,



WINVI

- 14 -

so, for this particular unevolved component. If we assume that

the power -law is strict then curve "p" may be extrapolated to

higher energies; this is indicated as a dashed line from 50 to

100 keV. On the basis of what we already know for Cen A, such an

extrapolation makes some sense.

Now we are in a position to make contact with the gamma-ray

regime. As discussed in this session by "atteson et al. (1979),

the A-4 experiment on HFAO -1 has measured the extragalactic back-

ground at about 100 keV and somewhat above. Balloon-borne

experiments (Kinzer et al. 1978) indicate that the X-ray background

spectrum shown (Fig. 9) continues to fall sharply with energy up to

100 keV or so. However, higher energy observations up thru the

MeV region, as carried out from various space platforms, suggest

that an underlying gamma-ray component emerges above a few

hundred keV; this situation is summarized in Figure 10.

Figure 10 exhibits representative data on the extragalactic

gamma-ray background over the band 100 keV to 100 MeV. The data

points show recent results from the A4 instrument on 11EA0-1, for

the band from 100 keV to 300 keV, as well as higher energy

results obtained by Trombka et al. (1978), based on their Apollo

experiments. The dash-dot line above 35 MeV is <a power-law fit

obtained by Fichtel et al. (1978) for their SAS-2 spark-chamber

data. lie now compare all these data with an extrapolation of our

X-ray results below 50 keV. The dashed line starting at 100 keV

is a continuation of power-law "B", as shown previously in Figure

9 and corresponds to our estimate of the contribution of active

galaxies to the gamma-ray background. If we add to that a strict
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continuation of the best-fit thermal function obtained for the X-

ray background, we obtain the solid curve shown in this figure.

As exhibited, the resultant extrapolation tracks the data up to a

few hundred keV remarkably well, especially if we consider what

an unduly severe demand we are making of our thermal fit. It's

probably more significant to notice that, when the thermal

contribution vanishes, the remaining power -law indicative of

active galaxies tends to exceed the gamma-ray background. Ulti-

mately, the gamma-tay background breaks in the MeV region,

perhaps reflecting a break in the spectra of active galaxies. We

conclude that unevolved active galaxies could readily account for

all of the gamma ray background (see also Bignami at al. 1979).

Furthermore, the flux level of the f,amma-ray background seems to

impose a limit to the local X-ray luminosity function of active

galaxies, enforcing that it be somewhat smaller than our formal

estimate.

Returning to the X-ray regime, our tentative conclusion is

that those hard X-ray sources which dominate the gamma-ray regime

contribute a relatively small portion of the X-ray background

(Boldt at al. 1978). If we attribute the X-ray background to a

fairly uniform hot intergalacatic plasma, however, the amount of

energy needed for heating could be prohibitive, even for quasars

(Field and Perrenod 1977). At this stage, I think it is useful to

pursue an alternate working hypothesis that the background arises

from individual thermal sources and that such sources are not in

general to be found at low redshift. Whether many quasars are

sources such as this is an open question. Other possible objects

4
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peculiar to an earlier epoch should be considered. For example,

Bookbinder et al. X1979) looked into the possibility that young

galaxies are the sources of the '.X-ray background and find that

appropriate thermal X-ray emission mig%t result from the galactic

wind expected during the enhanced super.novs activity early in the

life of a galaxy. In general, we need to search for young

sources with suitable spectra. If they are not to be found, we

may be forced to learn something new about heating an

intergalactic plasma. Or perhaps we are seeing a pronounced

cosmological effect yet to be understood.

4
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APPENDIX A

ANISOTROPY OF COSMIC X-RAY BACKGROUND

Deviations from isotropy for the extragalactic hard X-ray

background could be crucial in our understanding of origins for

this radiation. Using data from the A2 instrument on 11HAO-1,

Pravdo and Iwan (1979 0 private communication) find that large-

scal.f, galactic effe,_, ts, although relatively weak in hard X-rays,

do extend to fairly high galactic latitudes. Iwan is now

attempting to model this unresolved galactic emission of hard X-

rays, but the situation is not as simple as we would like.

Since the-11EAO-1 observatory surveyed the sky with scan

paths that follow great circles which always traverse the

ecliptic poles, the most straightforward 	 and reliable way to

investigate possible weak global anisotropies of the cosmic back-

ground involves referring data to ecliptic coordinates. Figure

11 shows the geometry to be considered, expressed in ecliptic

coordinates; latitude is 0-, longitude is a . Great circle scan

paths correspond to vertical lines in this representation. The

ecliptic longitudes for the dual hal€s of such great circles are

given as W and X r . The locus of galactic equator crossings is

shown by the solid curves. Some interesting directions indicated

are as follows:

111 is our velocity direction relative to distant galaxies,

as discussed by Rubin et al. (1976); it's at longitude 490

k; 114,
	

J
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d2 is the direction of the Virgo cluster, at longitude

184°.

0
#3 is at longitude 185` and gives the direction for our

velocity relative to the microwave background, as measured by

Cheng et al. (1979).

#4 is at longitude 164 0 and gives the direction for the

microwave related velocity as measured by Smoot et al. (1977).

The preferred direction to be associated with the microwave

background is clearly very close to the ecliptic equator, which

makes it particularly well suited to studies carried out with the

IIRAO-1 observatory. To minimize galactic effects near this

preferred direction, we isolate those data corresponding to the

band within 24° of the ecliptic planed this band is outlined with

dashed lines in Figure 12. Even so, galactic effects do become

important when we consider longitudes close to where the galactic

equator crosses the ecliptic plane (i.e. at longitudes 890 and

269 0 ). Fliminatinp the contribution of resolved sources, we have

determined the average surface brightness for the band within 240'

latitude of the ecliptic as a function of ecliptic longitude.

Deviations from isotropy so obtained are represented in Figure

12.

The circle shown in Figure 12 represents isotropy. Percent-

age deviations up to about 1% are here plotted as a function of

ecliptic longitude (X ). Each interval corresponds to a region

of almost 10 3 square degrees for which the surface brightness is

determined to a statistical precision of '1, 0.1 -0.2%.	 Recall

that the galactic plane crosses the ecliptic equator at longi-

t
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tulles 89
0
 and 269 0 . To visually separate effects due to this,

those deviations in isotropy expected to be influenced most by

the proximity of the galactic plane are shown as dashed lines.

In this representation, the preferred directions of interest are:

a) our velocity as determined by Smoot et al. (1977),

b) our velocity as determined by Cheng et al. (1979),

c) the longitude where the 16cal supercluster

(deVaucouleurs 1958) crosses the ecliptic equator.

Considering only the solid portion of this plot where

galactic effects should be minimal, the left-right asymmetry is

(0.50 f 0.09)% and repeats for independent surveys separated by

sfx months. If due to the Compton-Getting effect, our velocity

relative to the proper frame of the X-ray background is consist-

ent with that relative to the microwave background. However, if

there is indeed a concentration of X-ray emitting sources in the

local supercluster this might account for much of the observed

asymmetry and is being investigated further. If due to our

galaxy, we remain confused.

i
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APPENDIX R

LUMINOSITY FUNCTION

We have approached the determination of the luminosity

function from two points of view. 11cKee et al. (1980) have used

the list of all Abell clusters through Oistance class 4 in the

Leir - van Glen Bergh (1977) catalog to search the 11CAO -1 A2 all-

sky survey data for X-ray emitting clusters of galaxies and

determine an X-ray luminosity function. For comparison, we

started with the smaller sample of relatively bright X-ray

sources detected at high galactic latitudes which were subse-

quently Identified as clusters. For this collection of objects

exceeding 1.5 R15 flux units for the A2 instrument (for defini-

tions, see Marshall et al. 1979), it was found (Doldt et al.

1979b) that the luminosity function is consistent with that

obtained by McKee et al. (19130) starting with a "complete" opti-

cally identified sample.	 04r sample satisfies the V/Vm test of

Schmidt (1968,1977); viz: <V/Vm>	 0.44 t 0.06. Although the 23

clusters involved are clearly within the present epoch (i.e. z <

-0.09), only Virgo is associated with the local s-upercluster.

Considering high-latitude bright X-ray sources identified

with isolatedgalaxies, we find that almost half are at redshifts

less than z - 0.01. As pointed out by Piceinotti and Mushotzky

(1980, private communir.ation), the local supercluster could

thereby introduce a significant bias in this sample. By lowering

^q
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the selection threshold to 1 R15 flux unit the relative pro-

portion of more distant sources increases, and we obtain <V/Vm)

0.49 t 0.05. This larger sample was used for constructing the

luminosity function presented in Figure 13, although the indi-

cated normalization (K E NS 1.5 ) is that obtained for S	 1.5

R15 units (i.e. K a 5.4). We exclude objects such as the quasar

3C273 at the high luminosity end and the normal galaxy M31 at the

low end to obtain a sample that might properly be called active

galaxies (see Table 3).

The luminosities used for Figure 13 are for the band 2 - 20

keV. For an energy index a - 0.7, one R15 unit corresponds to 3.5

x 10-11 ergs cm-2 s-1 for 2 - 20 keV and 5.3 x 10-11 ergs cm-2 s -1

for	 3 - 50 keV, the band used for our comparison with the X-ray

background. The luminosity function is presented in integral

form and is a power law over about three decades of luminosity. A

power-law index of 1.5, as used by Pye and Warwick. (1979),

f

	

	 appears to be consistent with the data and is shown in Figure 13

for reference. A more critical evaluation of the luminosity

function for active galaxies, based on IIRA0-1 A2 data, is now

underway by Piccinotti (1980, private communication).



TABLE 3: ISOLATED X-RAY EMITTING GALAXIES*
Used for this Study

1^

M31 (B) NGC526a (A,B,C) ESO 103-G35 (A)

M82 (B) NGC0918 (B,C) ESO 140-G43 (B,C)

Mknl42 (B) NCC2910 (A) ESO 141-G55 (A,B,C)

Mkn590 (B,C) NGC2992 (A,B,C) MCG 2-58-22 (A,B,C)

Mkn335 (B) NGC3227 (C) MCG 8-11-11 (A)

Mkn372 (B,C) NGC3783 (A,B,C)

Mkn421 (A) NGC4151 (A,C) PKS0548-322 (A,C)

Mkn464 (C) NGC4593 (B)

Mkn50l (A,B,C) NGC5033 (C) PKS2155-304 (A)

Mkn509 ( A,B,C) NGC5128 ( A) III Zw2 (B,C)

Mkn876 (B) NGC5506 (C) Fairall	 9 (B,C)

30111 (A) NGC5548 (A,B,C) 4U 0241+62 (A)

3C120 (A,B,C) NGC6814 (A) H 0642+534** (B)

3C273 (A) NGC7172 (B,C) 4U 0945-30 (A)

30371 (B) NGC7213 (A,B,C) 2Al219+305 (A,B)

3082 (A) NGC7469 (A,B,C) 2A1347-300*** (A,C)

30445 (B,C) 14GC7582 (A,C) H1824+644 (B)

Sample A used for histogram of spectral	 indices (Fig.	 7).

Sample B used for composite spectrum (see text, Fig.	 9).

Sample C used for luminosity function (see Appendix B, Fig. 13).

*
Includes BL Lac type objects and quasars.

**
ANON 0636+53

***
IC4329A
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FIGURE CAPTIONS

Figure I - The surface brightness of the entire X-ray sky (in 30 x 30

pixels) as obtained with the combined 30 x 30 and 60 x 30 col-

limator sections of a high energy detector (HED-1 of HEAO-A2)

over the band 2-60 keV. The map is presented in galactic

coordinates. Intensity gradations are color-coded in the order

black, blue and red (highest). Color print on request.

Figure 2 - The ratio (R) as a function of X-ray energy of the counts

observed for the X-ray background to that predicted by con-

volving with the detector response function thermal bremsstrah-

lung incident spectra (characterized by kT - 25, 40, 60 keV).

Different symbols are used to represent the first layer of the

MED (medium energy detector) aril both layers of HED 1 and HED 3.

Statistical errors are shown when larger than the size of the

symbols.

Figure 3 - Incident thermal spectrum (kT 6.8 keV) for the Perseus

cluster as inferred from data obtained with argon (MED) and

xenon (HED) proportional counters of HEAO A2. Prominent lines

in the 5-10 keV band correspond to Ka and Kp transitions in

iron ions having only K shell electrons.

Figure 4 - The X-ray spectrum for the BL Lac type object PKS 0548-322

as inferred from data obtained by a low energy detector (LED

results from JPL indicated by crosses) and a medium energy

detector (MED results from GSFC indicated by diamonds).

Figure 5	 The X-ray spectrum for Cen A as inferred from data obtained with

a xenon proportional counter (HED), using the model of a
	 . 1

power-law spectrum at the source absorbed by surrounding non-

ionized matter exhibiting iron K fluorescence.

a
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Figure 6	 The X-ray spectra for 5 Seyfert -1 type galaxies as inferred

from data obtained with a xenon proportional counter (HED),

using the model of a power-law spectrum at the source absorbed

by surrounding non- ionized matter. Except for MCG8-11-11, all

spectra shown are from pointed data. All are consistent with a

power-law spectrum of photon number index ti 1.7; only NGC6814

requires significant absorption to fit the data.

Figure 7	 Histogram of energy spectral index (a) for X-ray emitting isolated

galaxies listed in Table 3 as Sample A. For comparison, (ea)B

gives the 90% confidence limits on a for the composite spectrum

of Sample B (see Table 3).

Figure 8	 The ratio (R) as a function of X-ray energy of the counts observed

for the X-ray background to that predicted by convolving with the

detector response function power-law spectra (characterized by

r .s 1.4, r = 1.7). Different symbols are used to represent the

first layer of the MbD and both layers of HED 1 and HED 3.

Statistical errors are shown when larger than the size of the symbols.

Figure 9 - Surface brightness of the extragalactic X-ray sky as a function

of photon energy. The curve labelled "total flux" is the best-fit

thermal spectrum (kT = 40 keV) for the background measured by

Marshall et al. (1980). The power-law "A" represents the composite

flux due to sources corresponding to those detected in the HFAO-2

deep exposures by Giacconi et al. (1979); see Table 2. The power-law

"B" represents the composite flux from active galaxies for z < 1,

based on the luminosity function determined with HEAD-1 A2 (Appendix

B) and assuming no evolution. The dasi ►ed lines are extrapolations.
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Figure 10 - Extragalactic gamma-ray background. Solid circles show data from

the HEAO-1 A4 experiment (Matteson et al. 1979) and open circles

summarize results obtained by Trombka et al. (1978). The dash-dot

line is a power-law fit to data above 35 MeV (Fichtel et al. 1978).

The dashed line starting at 100 keV is an extrapolation of power-law

"B" of Figure 9. The solid curve gives the expected gamma-ray

background as estimated from X-ray data at energies below 50 keV

(see text).

Figure 11 - Special directions on the celestial sphere, expressed in ecliptic

coordinates (Latitude is s, Longitude is x). Great circle scan

paths for HEAO-1 correspond to vertical lines. The ecliptic

longitudes for the dual halfs of such great circles are designated

A and a'. The locus of galactic equator crossings is shown by

the solid curves. The galactic center is indicated as n = 0. 	 1

The dashed lines outline the band within 240 of the ecliptic plane

used for evaluating anisotropies (see text). Special directions

noted are #1) Longitude 490 (Rubin et al. 1976), #2) Longitude

1840 (Virgo cluster), #3) Longitude 1850	(Cheng et al. 1979) and

#4) Longitude 1640 (Smoot et al. 1977).

Figure 12 - Percentage deviations -i`y,om isotropy (represented by the circle)

for the average surface brightness near the ecliptic plane (s =

-240 -► +240 ) as a function of ecliptic longitude (a). Data obtained

with HED unit's in all-sky survey. Error bar shown is statistical.

Special directions indicated are: a. Smoot et al. (1977), b.

Cheng et al. (1979) and c,. longitude where, local supercluster

crosses ecliptic equator. Surface brightness deviations for those

longitudes close to the galactic equator (i.e. near ecliptic

longitudes 890 and 269 0)are indicated with dashed lines.

Figure 13 - The luminosity function for active galaxies is here presented as

the number of sources, n(Mpc -3), exceeding the indicated luminosity(L)
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for the band 2-20 keV. Sm is the apparent luminosity threshold

for this sample (i.e. Sm = l R15 unit), Vm is the volume in space

accessible with such a threshold and evaluated separately for the

luminosity of each source detected, N is the number of sources

in the sample and K is the coefficient (K = NS 1 ' 5) that normalizes

the result to 0 coverage. Ho = 50 km s-1 Mpc-1 is used throughout.



R

DIFFUSE BACKGROUND
10.0
	 THERMAL BREMSSTRAHLUNG MODEL

• HED I MI
o HED 3 M I

	EAO-A2	 25 keV

• HED I M2
o HED 3 M2
* MED MI

1.0

0.5
2.0 
^r	40 keV

R 1.0

L

0.5
2.0

1. F'

kk

!G!

F

f

f

60 keV

ddpir°

0.5
I
	

10

ENERGY NOV)
Fi gure 2

100

as



!V
Q

Q

W

f

V

W

W

. ++

• It

11

11

{^1

O ^r M

L

W

.Y

ff

I

t

l

y

E

Q O ^O OO
in

 O

A94-03S-t WJ/ SN010Hd

^O



e
0

a

72

1

W

7m

Y }^

r



F	 ^

CEN A NEAO A-2
ICE-1

1011-2

JOE-9

(A

p
N 

70l-lot-it

O

CL

1oLLS

1011.6

2	 6	 Y S e	 • 10	 1S 20 2S 30 35 40 So 60

ENERGY (KEV)

Figure 5

g



v

s
+** 1^

T^

O

9

Q

O

^ W
W

.i^O "'

W

JP M'

M

8

S

O N

yt
S

^'f ZW

rQ O O_ 1O O ^O O

CMD	 #	 ^
M	 }	 Ail-33S-zWD/SNOlOHd.

in	 40	 t-

^O ^O O t0 O Q O

A11-03S iWD/ SNOlOHd



I.

N
Z ao-^..., 1ao-- Oct
o w
a =

^ z

-

a^

r	 Y ^
w

LO

M w

m
o OL..

(nX
WW
XZ QJ
QJ

Oct
w

V -
w F-
CL C.)
cn <t

O

co

con

0

co

0

111

O

N
O

0
00	 c0	 ^!'	 N

NI8/ SNwos J0 838INnN

T



O M O	 O	 Lq
O N
	

O

F_

N
i

Oct

o Ia I -a'•'
liJ
_ I 00

I
0
00

I as
I^
i^to
e
a
0
0

d- I -- MI
o0

^^ I W W

I • O

o ^
^ WQ
C> C>
c

YV?
Q

M

L.LJM
Cn, W

U.
U. CL
cm

ON

3
I
I
I

I. _0-

^I
.I

1

00 I
to.
bl
^I
0

I0

lo

I

I

ti I

- - i '7"

r-•

00

O

w
W



o	 0
(^ 31S T S Z W^^ SS3NIH91 a8 33VJ8ns

^N J

Q H W

o^C

V_

HUa
J
Q

Q

x
W

iiii
as

Wv .E

O --
cn

H Oz^a=
_ CC
Z
t9 Z
O^ V

m

a

I

f

d

O ^ ^,^ W

WL

ZO
O
CL.

F
K



g

EXTRAGALACTIC
GAMMA-RAY BACKGROUND

10
cn
is

`	 N
I`	 1

U	 -2
10

W
1-
k^

-3
m 10

U
E	 cC

cn	 -4
10	

— EXTRAPOLATION OF FIT TO
X-RAY DATA : HEAO- I A2

----- EXTRAPOLATION OF E-o.T
X-RAY SPECTRUM
FOR ACTIVE GALAXIES:
HEAD- I A2

-1.85
--- E	 SPECTRAL FIT: SAS-2

HEAOI A4 DATA

APOLLO 16,17 DATA

1	 10
PHOTON ENERGY : E ( MeV )

Figure 10

a..



1

W
^

C

LAJ

1-

OJ
V
1-
a

J ^

W

W
D

W

l--

O ^
J °'

U
F-

J

W

('930)	 3ani i idl 0I 1d 1103



0

Pn	 ^	 fM

D
2
4
m

Q
ac

1^

acc

1-+ p
a

ac
Q

t^
W

p4
C2

.mj
W
V

LLQ. Q

4N
N'!

W
J.
Q
C^ N
cn a

CW' 1

a
uj

0

N
t1a

O

,

i
0	 0	 0

Coo

W

W^
0

M'Qo

Co

o Cn
0 dm V ^;

a ^- 7

W V
0 W

o

W
N C-) U J

W
IZ

^	 ,I



-10 9

 .42
14

IU L

1043
	 1044	 1045 1446

LUMINOSITY FUNCTION FOR ACTIVE GALAXIES

IO3
L6

n>L .Y= (k̂' Ic ^ N 	 V̂

I.Ix16 , (L/2.5xI0 x ) I'

I^6
%I
C

10 T

HEAO—A2
108

n w

to

Io,



BIBLIOGRAPHIC DATA SHEET

C

1. Report No, 2, Government Accession No. 3. Recipient's Catalog No,
TM 80659

4. Title and Subtitle 5. Report Date

The Cosmic X-Ray Background
March 1980

6. Performing Organization Code

ffl-
7, Author(s) 8. Performing Organization Report No,

Eiihu Boldt

9. Performing Organization Name and Address 10. Work Unit No.
Cosmic Radiations Branch
Laboratory for High Energy Astrophysics 11, contract or Grant No.
NASA/Goddard Space Flight Center
Greenbelt, MD	 20771

13, Type of Report and Period Coveted
12. Sponsoring Agency Name and Address

14. Sponsoring Agency Code

15. Supplementary Notes

Invited Lecture at the 155th Meeting, American Astronomical Society,
San Francisco, California, January 15, 1980

16. Abstract

The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1
was especially developed to make systematics-free measurements of the extra-
galactic X-ra % 	sky and has yielded the broadband spectral characteristics f
two extreme aspects of this radiation.	 For the apparently isotropic radi-
at ,)n of cosmological origin that dominates the extragalactic X-ray flux
(> 3 keV), the spectrum over the energy band of maximum intensity is remark-
ably well described by a thermal model with a temperature of a half-billion
degrees (i.e.	 kT ti 40 keV). At the other extreme, broadband observations of
individual extragalactic X-ray sources with HEAD-1 are restricted to object
within the present epoch.	 These X-ray sources include a large sample of
active galaxies studied in some detail over a broad bandwidth for the first
time.	 While the non-thermal 	 hard spectral	 components associated with unevo
X-ray emitting active galaxies could account for most of the gamma-ray back-
ground, the contribution of such sources to the X-ray background must be
relatively small.	 In contrast, the "deep-space" sources detected in soft
X-rays with the Einstein Observatory (HEAD-2) telescope probably represent
a major portion of the extragalactic soft X-ray (< 3 keV) background, the
characteristics of which are not yet firmly established.

17. Key Words (Selected by Author(s)) 18. Distribution Statement

19. Security Classif. (of this report) 20, Security Classif. (of this page) 21. No. of Pages 22. Price"

U U 40

led

'For sale by the National Technical Information Service, Springfield, Virginia 221b1,	 GSFG 2b •44 (10177'


	1980014758.pdf
	0003A01.tif
	0003A02.tif
	0003A03.tif
	0003A04.tif
	0003A05.tif
	0003A06.tif
	0003A07.tif
	0003A08.tif
	0003A09.tif
	0003A10.tif
	0003A11.tif
	0003A12.tif
	0003A13.tif
	0003B01.tif
	0003B02.tif
	0003B03.tif
	0003B04.tif
	0003B05.tif
	0003B06.tif
	0003B07.tif
	0003B08.tif
	0003B09.tif
	0003B10.tif
	0003B11.tif
	0003B12.tif
	0003B13.tif
	0003B14.tif
	0003C01.tif
	0003C02.tif
	0003C03.tif
	0003C04.tif
	0003C05.tif
	0003C06.tif
	0003C07.tif
	0003C08.tif
	0003C09.tif
	0003C10.tif
	0003C11.tif
	0003C12.tif
	0003C13.tif
	0003C14.tif
	0003D01.tif




