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ENGINE ENVIRONMENTAL EFFECTS UN COMPOSITE 6EHAVIOR

by l:. C. Chamis and u. T. Smith

National At^ronauties and Space Ad,^ninistration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Th^^ Lewis Research Center has conducted a series of programs intended to

investigate and develop the application of con^^posite materia:^ to turbojet en-

^	 gives. A significant part of that effort was directed to establishing the im-

,^,	 pact resistance and defect growth characteristics of composite materials over

the wide range of environmental conditions found in commercial turbojet engine

operations, Both analytical and empirical efforts are involved. This paper

summarizes the experimental programs and the analytical meth;sdology develop-

ment as well as an evaluation program for the use of composite materials as

fan exit guide vanes.

1NTR000CTION

The development of implementation technology for more durable, weight ef-

ficient, cost effective engine structures is the objective of a recently ex-

panded engine structures research program at the NASA Lewis Research Center.

Coordinated programs involving in-house, university and industry activities

are being initiated to address difficult engine development problems and to

effectively incorporate new analysis techniques an!i materials developments in-

to currently evolving engine systems. These programs include a substantial

efforc to exploit the unique mechanical and manufacturing characteristics of

newly developed composite material systems. Evaluations of graphite/epoxy

composites and hybrid composites for fan blades, ran exit guide vanes (FEGVs),



engine names, nacelle components, engine ducts and other relatively low tPm-

perature structu^'es art t^^ing or have bean conducted.

N maaor part in these programs is the evaluation of the engine tanvironmen-

tal efft^cts (moisture and temperature) on composite mater^a1 mechanical behav-

ir"^r, the objective of this paper is to summarize research being conducted and

results obtained dealing with engine environmental effects on impact resis-

tance, defect growth and fracture of com^^:a^,ites, and the fatigue resistance of

composite FEGVs.

ri1GH VELOCITY IMPACT

the experimental program on impact resistance has been conducted by Gener-

al Electric under NASN contract NAS3-211)17. It involves evaluation of six

composite systems, seven environmental conditions and three test conditions,

The composite systems consist of graphite--fiber/epoxy (T300/PR28t3) as the base

line material, two graphite-S-glass/epoxy intraply hybrids (different fiber

types within the same ply), one graphite-S-glass/polyimide, and two superhy-

br^ds (combination of metallic foils, and resin and metal matrix fiber compos-

ites adhesively bonded together). The intraply graphite-S-glass/epoxy systems

used PR2d8 and SP313 as the matrix materials. The polyimide selected was

NR15t)^2 and the superhybrids used PR2t3^ and SP313 epoxy as matrix materials.

The test conditions consisted of 70°F dry, wet, and wet spike; and 250°F dry,

wet and wet spike. Mechanical property test data included static flex, short -

beam-shear, and high velocity impact strengths. The "wet spike" specimens

were subjected to an abrupt temperature excursion from room temperature to

300°F followed by cooling to test te.,^perature. The cooling rate was slow rel-

ative to the hearing rate but was sufficiently rapid to prevent a loss of

moisture from the test specimens.
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Thr^ PRlt3ti t^poxy was sr^lected for its ease of processing which is advan-

tageous in making complex engine components such as fan blades. The' SP313 ep-

raxy was chosen be?cause it is the most commonly used epoxy in structural appli-

r,ations and has about 100°F higher temperature capability than PR?.t3t3. The

NR1bOr{d polyimide was selected for its potential use in the hottr^r parts of

the encainc; (parts operating at temperatures from ,300°F to 5t"1U°F'. 	 The two

superhybri^is ware selected for their unique material property characteristics

which provide high impact resistance combined with high strength, high stiff-

ntass and moisture resistance. Both unidirectional and angleply specimens were

tested. Unidirectional specimens were tested for moisture absorption and

moisture-temperature strength degradation. Short beam (interlaminar) shear

and three-point-bend specimens w^ra tested for strength degradation. Degrada-

tion of impact resistance due to moist ►ire any temperature was evaluated using

angleply wedge specimens with multiples of 0/±35 degree plies symmetric about

the mid-plane.

Experimental data on moisture absorption in composites made from the three

different resin systems are shown in figure 1. The saturation moisture (curve

leveling off) is about 2 percent for the composites with the PR2d^ resin,

about 1.2 percent with the SP313 resin and about 0.^ percent far the compos-

ites with the NR15UA2 poiyimide. As expected, the JU degree specimens ab-

sorbed more moisture than the 0 degree specimens due to greater interfacial

surf ace exposure (more fiber ends at the surface). Although the data are net

shown in figure 1, the superh,ybrid specimens absorbed no measureab1e mois-

ture. Experimental data on the moisture-temperature effects (strength reten-

tion) of longitudinal shear specimens are shown in figure 2(a) in bar chart

form. The composite with PR228 resin has the lowest strength retention for

the combined wet and thermal conditions (250°F wet or wet spike) which is

about 25 percent of the room temperature dry strength. The corresponding
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strc?ngt.h retentinn was about 4U percent for the composite made with SP313 and

.^hr^uC 7t) prarCt?nt for the oomposi try with NR15UA^.

FxpGrimr^ntal data for moisture-temps?ratura c^fft^ct on longitudinal flexural

strength are shown in figure ^(b). Thc? longitudinal flexural strength rtriton-

tion for the three resin c,^mposit^^ systerns at the ^5U°F wet and?.5U°F wet

spikr? conditions (severest cases) are as foVows: PR^t3t^ composites about 3Q

pc^rcc?nt of thc^ 7U°F (room temperature dry), about lU percent for the SP313

composites and nearly lUU percent fur the NR150A2 composites.

Fxyerimental data fur transverse interlaminar (short-beam) shear strength

are Shown in figure ^(c) and for transverse flexural st rength in figure ^(d).

the strength retention of the transverse intLrlaminar shear strength at the

^5U°F wet or° 25U°F wet spike condition is about 30 percent of the 7U°F dry

strength for the PR1:t3t3 and SP313 composites, and about 45 percent for the

NR150N1 composites. The corresponding transverse flexural strength retention

is about 30 percent for the PR2t3t3 and SP313 composites and about 70 percent

for the NR150A7, composites.

Taken collectively, the data in figure 2 show that the environment a1 con-

ditions of ^5U°F wet or wet spike reduce substantially (as much as 75 percent)

the shear and flexural strengths in epoxy composites while, the corresponding

reduction in the po1yimide composites is only 3Q percent, except for trans-

verse intralaminar shear which is reduced about 6Q percent. In addition,

these data provide material strength characteristics which can be used in eon-

junction with the high velocity impact analysis to assess the environmental

effects on impact resistance as will be described later.

The high velocity impact test conditions and wedge specimen Configuration

are summarized on figure 3. The experimental data for environmental effects

on impact resistance, as measured by area delamination (determined by C-scan
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m^^asurementh) are sur^unarized in figure ^ for the ^mpact conditions of 1^0

r't/sec and .̂)tlr) ft /seC,	 The principal points esta<vli shed by Ghe data of figure

^ ar^^; (1) the environmental and impact condition^^ investigatea had an insig-^

niftcant affect on the impact resistance of suparhyi^rids, a minor effect on

the polyimide composites and a severe effect on the epoxy composites; (2) the

2b0°F wet spike environmental impact conditions generally cause ►i the gr^°^atest

delamination in the epoxy composites; and (3) the JOU ft/sec velocity impacts

caused much more delamination t h,arl the 100 ft/sec velocity imEra^^s, especially

in the Epoxy composites .

Pertinent information about the high velocity impact analysis (composite

mechanics references 1,2,3 and A,STRAN reference 4) is summarized in figure

!a. Results obtained from this analysis are shown graphically in figure 6 for

stresses near the impact point on the impact surface, and in figure 7 for	 ^

stresses on the back surface. these stresses are for the PR2dt3/T300 wedge

specimen, they are typical of wedge specimen results from the analysis of

other remposite systems (including superhybrids). All systems have approxi-

mately the same stresses early (first 100 microseconds (usec)) in the impact

event. The analysis performed was linear. This linearity implies that the

stresses shown in figures 6 and 1 are correct only prior to the onset of ini-

tial damage. This applies only early in the impact event and is the condition

used for assessing the effects of moisture-temperature condition on impact re-

sistance.

The inplane predicted stresses for initial damage for tour test conditions

70°F dry, 250°F dry, 250°F wet and 250°F wet spike were determined (using the

composite mechanics methods, references 1,2 and 3.) The results are shown as

straight horizontal lines in figures to and 1. The through-the-thickness shear

stress (not shown on figures 6 and 7) is about 10 ksi compared to the short-

beam shear strength of about 15 ksi for 70°F dry and 4 ksi for 250°F wet and
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wet spike conditions. The inplane and through-the-thickness predicted stress-

es for failure indicate that damage will occur very early in the imp^^ct event

and will be at considerably lower transverse and inter1aminar shear stresses

about ,3U percent) for the: 1aU°f^ wet compared to the lU°F dry case. However,

the superhybrids will sustain only localized damage in the form of indentation

since the moisture-t^:mperature test condition does not seriously degrade the

superhybrid mechanical properties. Une conclusion from the foregaing discuss-

ion is that the impact damage of fiber-resin composites in moisture-tempera-

ture environments can be assessed using available finite element analysis

methods antl composite mechanics.

DEFFGT GRUWTH ANU FRAGTUftE

The experimental program for environmental effects on defect growth in

composites is being conducted by Boeing Aerospace under NASA contract

NAS3-2U4U5. This program consists of the evaluation of (1) graphite-fiber/

epoxy angleplied 1arninates with three different laminate configurations; (2)

four environmental conditions; (3) three defect types; and (4) three test

loading conditions. The graphite/epoxy angleplied laminates are made from

T300/934 as follows: (1) baseline laminate, L^, (,U/45-45/U/9U/9U/U/-45/45/U^s;

(2) pressure vessel type laminate, L 1 , ^(U3 /+ 8U^);J s ; and ,3) fan blade

type laminate, L 3 , [0/3U/US /-30/0/3U/O S/-3U/U] s where the US Denotes S-glass/

epoxy plies. The environmental conditions investigated consist of: (1) room

temperature dry and wet; and (2) 30U°F-dry, wet and wet spike. The defect

types are: (1) full and half penetration holes; (2) full and half penetration

slits; and (3) embedded delaminations. The test conditions are: 	 (1) mono-

tonic load to fracture (static); (2) cyclic load to fracture; and (3) cyclic

load to fracture following pre loading to 90 percent of the monotonic fracture

load. Visual and ultrasonic methods and continuous crack opening displacement

6
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tn g trumt^nat ton ar^^ u ged tot morn Gor' thk^ defect growth. The ro©on temperature

^ir;Y faGtque an^1 fracture data +^r thts pr©gram have bc;^^r previously reported in

^ic^t^^i 1 to rc^r'erence b. testing of the high moisture, high temperature speci-

mens is currt^nt1y in progress. ine t'f1^eCt of applying pre1oads up to MrJ per-

cent 4tf tna monotonic fracture loan on the subsequent moisture absorption of

th^^ an^^l^^ply composite specimens i5 shown in figure t3. After eight weeks of

exposure eonsisting of eomplate immersion in lUt^°F water, the percentage

wk^ight gain for the pre1oaded specimens showed no definite correlation with

prk^luari lctvel for any of the three laminate configurations investigated.

The environrnantal and preload affects on the fracture of the baseline lam-

inate with slits are shown in figure ^. The results are essentially the same

for the other two laminates. Also, these results are about the same for all

tnraa laminates with equal size holes, and may be considered to be representa-

tive of laminates with equal size, full penetration defects. 	 It can be seen

in figure ^^ that: (1) elevated temperature (3^0°F), moisture (l. y percent oy

weight) and preload (about y0 percent of fracture) have no effect on the frac-

ture load of laminates with defects and (2) elevated temperature decreases the

fracture load (about 3Q percent) of specimens without defects The conclu-

sion,therefore, is that moisture-temperature environments investigated have no

significant effect on the fracture load of graphite/epox ,y composites with de-

fects.

A concurrent LERC in-house research effort is directed to<<^ards the devel-

opment of the methodology required to predict the defect growth and propaga-

tion to fracture in composite structures subjected to environmental and me-

chanical loads. The objective of this in-house program is the development c;f

an integrated computer program which is presently identified as CODSTRAN (COm-

posite OUrability STRuctural ANalysis). The composition and scope of CUOSTRAN

is illustrated schematically in figure 10 and its initial form is described in
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some detail in ref^erwnet' v. c,UUSTitAN was used to analyze Spe c i men5 t^.^sttd and

data gt?nerat^^d under the f^deing eantraet.

Typieat results obtained using GUUSTkIiN arc i1lustratt;d ^n fiigurc 11. The

pr^^dir.:ted prr^grtssive damage rn the slotted laminate is erJnrpared wittr an uln

tra^onie U-scan rcc©rd. It can be seen from figure It that GUUST(tiiN predicta

a damagt^ pattern which i5 in esserrtia1 agreement with that shown by the t,^xper©

imcntal t-scan data. This comparison is based on the 7U °F" dry 5p^:einren test

data and LnE> corresponding IU°F dry, composite mechanical prdpUrty data firar

the GUUSTiIr ► N program. Modification of the GUUSTitAN program by utiiixati. of

the matrix and tiber rncchanieal property data for the high temperature:, wet

conditions is currently being accomplished and comparisons such as presented

in figure 11 arc planned to be made for the ,sUU°(^, fully wet conditions.

FN11GU^ Uh FAN f+XIT t^U1DE VANtS

The engine environmental effects on cornC^ositc fan exit guide vanes (Ft;GVs)

were investigated by Pratt and Whitney under NASA contract NAS.i-21Q37. The

engine application for the hf:GVs is illustrated in figure 1^ which shows com-

posite FEGVs installed in a JT y U engine. Four different designs were cvalu-

atcd involving two different fabrication procedures, pultrusion and hand-

lay-up (references 7 and £i).

All four designs contained a high modulus graphite fiber core (Fortafil

bA) to provide adequate bending stiffness. Each fabrication process involved

one all-graphite fiber vane design and one graphite core-fiberglass shell de-

sign.	 The pultrusion all-graphite vane used high modulus, ^l8 msi, Fortafil 5A

fibers for both the core and shell. ThP hand-lay-up all•^graphite vane used

the high modulus Fortafil 5A fibers for the core and a lower modulus, 3t msi,

AS-2 graphite fiber shell. The shell for the pu'ltrudea core was made from

G581 style S-glass cloth and the hand-lay-up vane shell was made from S-^
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4,?las5 r^^ving, the laminate conf iguratiorr for the glass shwa^lls consisted of

^ db df^gr€^^^^ pliEts, For the graphite sho p s the configuration was ^ ^b degrees

fior pultrusiQn vane and ^ ^U degrees fior the hand^lay©u{^ vane.

The t°klaVs were testew:l irr simulat+^d engine en vironmr^nts ofi moisture, ten^^

peraturt.^ and i°^itigue loading in addition to other mechanical tests required to

quality the Fk;GVs fur a flight readincjss test program. The results from the

environmental fatigue testing effort aria summarized in fiigure l^s. The fatigue

data ot^tainEd exceed the operational engine strx^in fatigue design requirement

(about ^UU ue for 1U^ cycles) by at least a factor ofi two. It can be soon

in figure 1^ that all fatigue fiailures, except one, occurred at strain levels

about three times the design requirement, Nlso these failures oecurreu after

several repetitions of lU J cycles at lower strain levels, Th^^ data also

show that the environmental conditions imposed (U.^ percent mrJisturc and 14U°F

temperature) had no discernible adverse effect on the fatif^^.^ life of thg

FEGVs. The conclusion, therefore, is that composite FEGVs; can be designed and

fabricated to meet the anticipated engine operation environmental conditions.

LUNGLUSiUNS

The effects of engine environmental conditions of saturation moisture, and

elevated temperattare (25U°F and 3UU°F) on composite structural performance

were investigated in several programs conducted by the NNSN Lewis kesearch

Center. These programs were concerned with the effects on mechanical prop-

erties determined by flexural type specimens, impact resistance of anglep1y

wedge specimens, defect growth and fracture of angle ply flat specimens, and

fatigue resistance of fan exit guic►e vanes (FEGVs). Important conclusions

from these programs are the following:

1. The moisture absorbed in fiber composites depends on the resin systems,

9



and amount of fiib^,} r entls t,^xpt^sed. epoxy resin c prnposite5 absr^rbr^^d the m^,,t

rrroi^ture tabaut ^ percent by we?ghtj while polyimide resin composites absorbed

u3wilt u. percent antl superhybritl composites absQrt^^°^^ no noisture.

^, t3oeh high mois ture Csaturation) and elevated temperature (dbtl°F) ryontli^

bens hav+^ severe ^^^t^icts Qn ttre f lexural and interlaminar shear properties of

unidirectional composites. Strength degradation ranges firom about 3U percent

for the polyimide composites t4 ^I1 percent for those made from the processible

epoxy ^f^R2^^j. The ebU°F wet environment was the most Severe condition.

^. The environmental and impact conditions (9UU ft/sec., 1 in diameter U.3 oz

gelatin ball, l5 degree incidence angle) produced insignificant damage to the

superhybritl specimens (measured by de1aminated area) and miner damage to the

polyimide composites but severe tlarnage to the epoxy composites. The 25U°F wet

spike impact condition caused the greatest delamination in the epoxy com pos-

ites.

Q. The impact damage to fiber composites in moisture-temperature environments

can be assessed using available finite element analysis methods (such as

NASTRAN) and composite mechanics analysis. The stress magnitudes near the im-

pact region are very high relative to material allowables at early times of

the impact event (about the first 1UU u seconds) and will induce significant

dama^^e in the resin composites. During this time interval, the stress magni-

tudes do not depend on the environmental conditions. However, the material

allowables and the corresponding stresses at which initial damage occurs will

depend on the environmental conditions, with the 25U°F wet condition sustain-

ing initial damage at lowest stress levels,

5. Preload, 1.9 percent moisture and 300°F'tempPrature environmental condi-

bons had no effect on the fracture load of composites with slit type de-

fects. GUDSTRA	 (an integrated computer program for Lomposite Uurabiity

STRuctural ANa1 `s), predicts defect growth which is in reasonably good

10



agrc^enent with ultra5onie G.^aean records for the 7U ` dry test contlitinns antl

v^i11 he util izar?ci fior similar preditions at high moisture, high temperature

conditions.

b, kr► gine operation environmental con^lit^r3ns of U.$ percent a^oisture antl

14^r °F temperature trail no uiscernible effect on the fatigue resistance of raom^

Resits flan exit guide vanes (FklaVs), and composite Fkt^Vs can be designed to

exceed engine operational requirements.
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Flguro 7. -Stresses near Impact point, back surface.

2, 0

1.9

^ 1.8
a
co

^ 1.7w
w

20

U

1.9

1.8

1.70

- LAMINATE L 2	
z 2	 LAMINATE L 3

®s	
a>s

_ -	 ^—^ ^ -- 2.t

•	 ^

^	 O
-	 ♦ 	 2.0	

O	
^ O^ ^	 - moo- -o-^-- --
0	 0

0	 20	 30	 A01' 90	 l0	 20 ^30 A
PRELOAD, kip

Figure 8. -Influence of preload on weight gain after e(ght weeks of exposure.
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Flgure 9. -Slit specimen static fracture data for laminate L1.
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Figure 10. - CODSTRAN Composite Durablllty STRuctural Atv..^ysls.
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Flgura 12. - Lightweight, composite fan-exit guide vanes for high-bypass-

ratlo turbofan engines.

Figure 11. - C-scan/CODSTRAN detect growth comparisons, 50 porcont
fracturo load.
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Figure 13. - Composite fan exit guide vane fatigue tnst sequonce.

Wt


	1980014881.pdf
	0022A02.jpg
	0022A02.tif
	0022A03.tif
	0022A04.tif
	0022A05.tif
	0022A06.tif
	0022A07.tif
	0022A08.tif
	0022A09.tif
	0022A10.tif
	0022A11.tif
	0022A12.tif
	0022A13.tif
	0022A14.tif
	0022B01.tif
	0022B02.tif
	0022B03.tif
	0022B04.tif
	0022B05.tif
	0022B06.tif




