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TECHNIQUES FOR DIGITAL RADIOMETER DESIGN

By

William D. Stanley!

INTRODUCTION

This report describes the development, format, and statistical verifi-
cation of a number of computer programs which simulate various classes of
microwave radiometers. These programs should provide valuable assistance in
developing new systems and in evaluating the performance of existing systems.
All of the programs are dynamic in nature, and most employ random signals
in the simulation. In this manner, the actual random processes encountered
in radiometers are closely represented, and the resulting responses can be
made to correspond closely with 'real-life" situations in a statistical

sense.

In addition to this report, two other publications have resulted from
the present grant: a conference paper which has been presented and a
journal paper which has been accepted for publication. Bibliographical data
for these publications are given at the end of the "References'" section.
Another report based on work initiated under this grant but continued under a

separate contract is expected to be completed in the near future.

Since the present report is primarily concerned with the development and
verification of simulation models, only those details of radiometer performance
relevant to that objective are discussed. Results are drawn freely from
the literature as needed. The future report mentioned in the preceding para-
graph will deal specifically with the detailed derivation of many of the per-
formance characteristics not widely available elsewhere, and some of these

results are included in the present report when required.

All of the programs developed are available to apprupriate engineering

personnel at NASA/Langley Research Center (LaRC) through the cooperative

1 Professor and Graduate Program Director, Department of Electrical Engineering,

01d Dominion University, Norfolk, Virginia 23508.



activities between that organization and Old Dominion University (ODU). How-
ever because of recent policies of the For Early Domestic Dissemi ation

(FEDD) program and the unwieldy nature of the actual programs, detailed in-
structions are not provided in tiis report. Thus, the major emphasis in

the report is devoted to the general approach used in developing the programs,
a discussion of the major problem. that had to be circumented, the means by
which the problems were resolved, and a general verification of the validity

of the simulations.



GENERAL APPROACH

As a starting point for this development, consider the simplified total
power radiometer block diagram shown in figure 1. The function representing
the desired signal whose statistical variance is to be measured is XA(t),
which is a random process with an effective noise temperature TA. Added to
this signal is the noise XR(t) generated by the receiver, which has an

effective noise temperature TR.

Following some possible amplification, the signal is filtered by a
wide-band input filter which limits the bandwidth to the range over which the
, effective temperature is to be measured. This filtered noise is then de-
tected by a square-law detector, and the mean value of the output is pro-
portional to the noise temperature at the input. A narrow-band output filter

then smoothes the signal and provides an output signal V(t).

The output signal V(t) of the low-pass filter is a statistical estimate
of the total system input temperature. The mean value V contains the
desired measurement (as well as a bias component), but there are two signifi-
cant factors that contribute to fluctuations in the output: (1) Since both
XA(t) and XR(t) are random processes, there will always be fluctuations
due to the noiselike nature of these processes. Such effects will be referred

to as ''noise fluctuations,' and the standard deviation of V(t) due to these

fluctuations will be denoted as ”cvn." (2) Small variations in the gains of
the various amplifier stages are usually present, and they contribute to fluc-
tuations in the output. The standard deviation of V(t) due to these varia-

tions will be denoted as ”ovg.”

A computer simulation model for a microwave radiometer must meet a number
of specific requirements: (1) The program must contain a number of statisti-
cally independent, random Gaussian noise sources, each with precisely control-
lable mean and variance. (2) The program should have the capability of simula-
ting transfer functions of reasonably high order to properly represent the
effects of both predetection and postdetection filtering. (3) Precision nu-
merical integration routines should be available for simulating the continuous-
time operations involved. (4) As digital processing methods are investigated,
the program should be directly adaptable for discrete-time operation. (5) On

the Dicke radiometer, modulation operations at both the input and output are
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required. (6) Means should be available for verifying the validity of the

simulations to a high degree of statistical accuracy.

While it is possible to develop programs '"from scratch' that will achieve
the required goals, a more sensible approach seemed to be the use of one of
the standard system simulation programs. Specifically, the modeling process
was initiated with the Continuous System Modeling Program (CSMP, System 360).
This program was developed by IBM and was readily available in the software
library of the DEC-10 systém at ODU.

CSMP is a system-oriented program that allows direct simulation of a
system from either the various block diagrams or from the system differential
equations. Both linear and nonlinear components may be simulated, and both
time-varying and time-invariant systems may be represented. The numerous
properties of CSMP are discussed in detail in references 1, 2, and 3 and will
not be discussed here except as they relate to the simulation of radiometers.

Use of the system blocks is made freely in the developments that follow.

After the development work on the simulation models was well under way,
it appeared desirable to transfer the various programs to NASA/LaRC so that
they could be available to personnel there and because only limited finances
were available in the contract for continued development at ODU. After some
investigation, it appeared that a comparable version of CSMP was not readily
available at NASA/LaRC; however, the Advanced Continuous Simulaticn Language
(ACSL) (ref. 4) was readily available, so the work was converted to that
language. Although there are minor programming differences in some of the
details, both languages have displayed approximately equal capabilities as far

as radiometer simulation is concerned.

As simulation details were developed, it was noted that two boundary
conditions on the simulation capability were the widest bandwidth in the
system (momentarily denoted as B) and the simulated time (momentarily denoted
as T) of the measurement. The number of total computations is proportional
to the product BT, and the computational time increases approximately lin-

early with BT after some time is allowed for initialization and sorting.

In actual radiometer systems, B varies from perhaps 10 MHz to 2 GHz or

more, while T varies from perhaps 100 ms to 10 s or more. Consequently,



BT might vary from 10® to greater than 2 x 1010, It was found that actual
simulation runs with realistic BT products could cost several hundred dollars
per run. While such a run might be economically feasible in investigating

a new design or concept, it is not usually feasible for routine simulation
checks or, as in the case at hand, in the development of the simulation pro-

grams themselves, which necessitates many routine runs and checks.

The problem was alleviated by normalizing the BT products used to
much smaller values for simulation purposes. It can be shown that the fluc-
tuation of the output estimate is proportional to 1//BT. This means that
the fluctuations are much greater than those of the real systems being simu-
lated. However, provided that a proper mechanism for statistical verification
is used, and provided that the user expects to deal with larger fluctuations

than would be present in the real system, this effect can be tolerated.



TOTAL POWER RADIOMETER MODELS

The earliest and simplest form of a radiometer measurement system is the
total power radiometer. While the total power radiometer has been largely
superseded by more sophisticated systems for most current applications, a
considerable portion of time was spent in developing and refining simula-
tion models for this basic system, and a large portion of this report deals
with this phase of the development. Operation and performance of the total
power radiometer are understood much better than those of other s)stems, and
the validity of the simulation programs can be more readily verified. I~ addi-
tion, the various functions developed for the total power radiometer can be
readily incorporated in the more elaborate systems. Thus, most of the
detailed discussions concerning total power component operaticn provided in

this section are directly applicable to other classes of radiometers.

Consider again the block diagram of the total power simulation model
shown in figure 1. The antenna input signal XA(t) is a Gaussian random

variable having zero mean and a variance whose normalized form will be

Ops
discussed shortly. The noise contributed b? the receiver XR(t) is also a
Gaussian variable with zero mean, and it has a variance Op- These functions
are generated by the Gaussian random number generatcr routines available in
both CSMP and ACSL. It is absolutely necessary that these noise sources (as
well as others that arise later) be statistizally independent of each other,
and this can be achieved by starting the processes with different 'seed"

numbers for the number-generator algorithms.

The available noise power from the antenna in an actual radiometer is
KTAB, and the noise from the receiver referred to the input is KTRB, where
TA and TR are the antenna and receiver effective noise temperatures re-
ferred to the input, K = Boltzmann's constant = 1.38 x 10~ 23 joules/kelvin,
and B 1is the equivalent noise bandwidth. For typical values of T,, TR’
and B, the actual power level is quite small at the input. However, large
gains for predetector and postdetector amplifier stages result in a final

output signal that might be of the order of several volts.

From a simulation point of view, it was decided early in the development
to employ a normalized level for the signals so that the output values could

be read directly in temperature for the total power models. This process was



continued for the Dicke models as well. However, when the closed-loop models
were developed, it was found more desirable to return to absolute level
simulation. Either approach is valid provided that all the gains and gain

fluctuations have been appropriately normalized and adjusted.

A basic question that must be raised at the outset is that of defining
the equivalent noise bandwidth for the noise generators at the input. 'In
effect, the noise generator is "white," but since the signal is now a
sampled signal, the bandwidth is not infinite, but instead is one-half the
sampling frequency. Thus, "white noise' in a sampled system is noise defined
over the bandwidth representing the highest unambiguous frequency. Actually,
one could define a ''two-sided'" bandwidth which would be the sampling fre-
quency itself, but it seemed more logical to remain within the context of a
one-sided bandwidth since all subsequent system bandwidths are defined the

same way.

The bandwidth Bp over which the noise power levels of the noise genera-

tors are defined is then given by

_ s _ 1
B =7 = 77 (1)

where fS = sampling frequency of the process and AT = l/fS = time between
successive samples. (The frequency Bp is referred to in a sampling context
as the ''folding frequency.') Because the noise power is divided over a band-

width which is a function of the sampling race, it is absolutely essential

that fixed interval sampling be employed in the simulation of such random proc-
esses. This precludes the possibility of using any of the variable step inte-

gration methods in the simulation of random process phenomena.

Having established the bandwidth over which the input noise is defined,
the noise spectral density may then be computed. Assuming a flat noise spectrum
over the bandwidth, the antenna noise spectral density function GA(f) and

the receiver noise spectral density function GR(f) may be determined as

follows:

P 2p
A A

GA(f) = K'I’A 5 T F - 2A'I‘PA (2)
P S
P 2

G.(f) = KT =—R=i=zmp (3)

R R Bp fS R



where PA and PR represent the total required antenna power and receiver

power, respectively. It is interesting to observe that PA and PR are
specified directly to the noise generators and these values are independent
of the sampling rate. However, the manner in which the power distributes
itself over the bandwidth is a function of the sampling rate. Thus, f .

a given specified power, the noise spectral density is inversely prop -tional

to the sampling rate.

Assume that the equivalent noise bandwidth of the input wide-band filt:r

(t: be discussed later) is Bni' In order for the output estimate to be a

direct reading of temperature, it is necessary to define a '"'normalized form
of Boltzmann's constant' in the various power expressions. This quantity

is denoted as Kn and is computed as

1
Kn "B . (4)
ni
From equations (2) and (3) with Kn replacing K, the quantities PA and

PR are determined to bhe

2
A= 92 KnTABp (5)

]
-~
-3
>

(6)

=

nRp

where it is recognized that Pp = oi is the variance of Gaussian process A,

and Pp = cﬁ is the variance of Gaussian process R.

In calling the Gaussian functions in either CSMP or ACSL, o

p =VPy = RMS
value (or standard deviation) of source A and % =/PR = RMS value of

source R are the quantities that are employed in the arguments of the Gaussian
number generators. It will be shown shortly that this seemingly odd choice

of Kn will produce the desired normalized output.

The input wide-band filter is discussed next. This filter represents in
an actual radiometer the bandwidth over which the total noise power measurement
is made. As the bandwidth is increased, both the number of equivalent statisti-
cally independent samples per unit time appearing at the detector input and the

total detector input power increase. The variance of the output estimate




decreases as a result, but the frequency resolution of the estimate decreases.
Thus, there is a direct tradeoff between the variance of the uvutput estimate
and the frequency resolution over which the measurement is desired. The only
way in which both may be increased is by means of a longer integration time.
Typical values of input bandwidth range from 10 MHz or less to 2 GHz or more.
As previously noted, it is very difficult to simulate «tual bandwidths with-
out consuming excessive computer time, and so some frequency scaling is

normally required.

At the beginning of the simulation effort, a decision was made to employ
a 10-pole Butterworth filter as the input wide-band filter with the 3-dB
bandwidth BCIN selectable as a program input. The reasons for this filter
choice were as follows: (1) The Butterworth function is a good '"middle of
the road" characteristic which is representative of filter types employed in
many radiometer receivers. Although not quite as sharp as the Chebyshev and
elliptic function types, it is simpler in form and easier to manage both
mathematically and in simulation form than the other types mentioned. (2)
The choice of 10 poles provides a slope of -60 dB/c.tave or -200 dB/decade
in the stopband, and the result is a good approximation to an ideal block
characteristic. This provides some safeguard on possible aliasing errors thet
might have to be considered if the sampling rate were not much higher tha-
twice the actual filter bandwidth.

As a result of this choice, a number of simulation results was developed
around the 10-pole Butterworth filter, and much of the data tabulated later
in the report were obtained from that form. However, some difficulties were
encountered in the Dicke model for reasons that will be discussed in the next
section. These were difficulties that would be readily circumvented if
enough computer time were available, but due to computer time limitacions it

was decided to investigate the use of a lower order filter.

For studies made with a lower order filter, the three-pole Butterworth was
selected. This filter provides an 18 dB/octave or a 60 dB/decade rolloff rate,
which is significantly less than that of the 10-pole filter but is manageable
provided that several precautions are observed: (1) More attention should be
paid to possible aliasing errors; hence it may be necessary to ensure that the
sampling rate be well above the minimum possible value for most applications.



(2) The equivalent noise bandwidth is nearly 5 percent greater than the 3-dB
bandwidth; specifically Bni = 1,047 x (3-dB bandwidth), and this fact mus:

be noted in the fluctuation analysis.

The realizations of both filters were achieved through the use ol CSMP
and ACSL system macros. Both languages provide separate one-pole and two-
pcle transfer function blocks. The 10-pole Butterworth filter was implemented
4ith 5 2-pole sections, and the 3-pole Butterworth filter was implemented

with 1 2-pole section and 1 l-pole se tion.

Following the filter is the square-law detector, which produces an out-
put voltage proportional to the square of th. input voltage. This is equiva-
lent to the fact that the output voltage is directly proportional to the input
power. Not all radiometer detectors are square-law detectors, but they arc by

far the most common and have been determined to be as good as any other form.

It can be shown that when the input voltage to a square-law device has
a Gaussian distribution, the output has a chi-square distribution with one
degrze of freedom. In the frequency domain, the flat power spectrum at the
input is converted to a triangular power spectrum plus an inpulse at dc. The
impulse represents the square of the mean-value of the detector output voltage
which results from the squaring operation of the detector, and the triangular
spectrum represencs the unriltered fluctuations of the output estimate. The
signal is then applied to a very narrow band low-pass filter, which passes
the inpulse without alteration, but in which the variance of the estimate is

reduced drastically.

Assuming a reference normalized gain level of unity throughout the system,

the expected value V of the output estimate is

PA . PR ;
B ni

v

(7)

"
=
=]
3
>
+
-3
=
N’
w
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[
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The definition of Kn given by equation (4) yields an expected value V

of the normalized output estimate of
V=T, +T (8)

Thus, the desired goal of having a direct reading of temperature for the

expected value of the output is achieved.

Some discussion of the postdetector output filter is required. Many ref-
erences use the "running integrator'" filter as the basis fur analysis of
the measurement process. Ideally this circuit integrates the signal for an
interval T, divides by the interval time, and provides an output V(T) given
by

T
V(T) = %f v, (t) dt (9)

o}

where Vi(t) is the input signal. The steady-state transfer function H(f)

of this filter can be shown to be

sin wfT
nfT (10)

I(f) =
and the dc gain is simply H(o) = 1. The equivalent noise bandwidth Bno for

the running integrator is

_0s
Bno =7 (i1)

There are several advantages of the running integrator as an estimator for
the mean value of the process: (1) The actual time of integration T is exactly
the same as the specified "integration time," with the latter term being a
widely employed but potentially ambiguous and misleading term for other filter
types. (2) The settling time of the filter is short compared to many (but not
necessarily all) common filters, resulting in a relatively short time in obtaining
an estimate. (3) The ratio of the variance of the output estimate to the mean

value decreases as 1//T, meaning that the accuracy of the estimate continues

11



to improve with integration time. With a large number of filters, the variance
is reduced during the settling time, but a point is reached in which no fur-

ther reduction occurs as time continued to increase.

In spite of these advantages, the running integrator suffers from one
disadvantage when applied to a Dicke switching radiometer. The problem con-
cerns the fact that harmonics at multiples of the switching frequency are not
attenuated very well and may appear in significant size at the output. This
problem will be discussed at greater length in the next section and is, of

course, not relevant to the total power radiometer.

A second and less significant disadvantage is that a running integrator
requires an active realization, which results in the possibility of stability
and offset difficulties, while many other filter types can be achieved with

simple passive networks.

Two final points concerning the total power simulation shown in figure
1 deserve mention. Random gain fluctuations may be produced by the block
with the parameter AVDEL. This quantity represents the standard deviation of
a random variable representing a per unit voltage gain fluctuation to the
right of the square-law detector. Through the squaring relationship of the
detector, a gain fluctuation on either side may be represented at this point
provided that the appropriate level is used. Since rapid variations in gain
fluctuations are partially suppressed by the output filter, the strategy used
is to select a worst-case condition of a fixed change in gain which remains

at the new value until changed by the program.

The final parameter to be discussed in KFVG, which represents a ''forward
voltage gain constant." This parameter can be used to establish any arbi-
trarily desired level for the overall gain. In many of the simulation runs

using the normalizing process discussed earlier, KFVG was set to unity.



DICKE SWITCHING RADIOMETER MODELS

A block diagram of the basic Dicke switching radiometer model is shown
in figure 2. This particular model utilizes the widely employed square-wave
correlation principle. Although a few systems employ sine-wave correlation
and it is felt that the square-wave model could be readily adapted to such a

strategy, only square-wave correlated sysiems have been simulated thus far.

In the Dicke system, the input to the wide-band predetection filter is
alternately switched between the input antenna signal XA(t) and a reference

signal XB(t) whose effective noise temperature T, 1s known to a high

B
degree of accuracy. The receiver noise XR(t) appears as sort of a "common-
mode" signal and is added to the noise at the Dicke switch on both halves of
the switching cycle., The signal is then filtered by a wide-band predetec-

tion filter ond processed by a square-law detector.

At the output of the square-law detector, a second synchronous Dicke
switch alternately switches the signal between paths having gains of +1 and
-1. The inversion causes a cancellation of the mean value of the receiver
temperature. The result is that the mean value V of the output estimate is
not a function of the receiver temperature, thus eliminating a significant
source of uncertainty present in the total power radiometer. However, since
the actual signal XA(t) is only observed for half of the total time in the
Dicke radiometer, a subsequent loss in sensitivity results. In addition, gain
fluctuations arc not completely eliminated by the Dicke process, although

they are generally reduced in intensity.

In the case of the open-loop Dicke simulations, the normalized form of

Boltzmann's constant was chosen to be

The factor of two was used because of the fact that the Dicke switching opera-
tion introduces a factor of one-half in the effective gain of the mean of the

process. The result is that the mcan value of the output turns out to be simply

V=T, - T, (13)

so that a direct reading of temperaturec can be obtained.
13



Some difficulty was encountered with the 10-pole Butterworth filter
with Dicke systems. The problem arose because of tha BT reduction necessary
for the simulation as has already been discussed. A 10-pole Butterworth
filter has a rather long settling time and a significant amount of delay
time, both of which are on the order of several times the reciprocal of the
bandwidth. To provide appropriate output correlation with the Dicke switch,
it is necessary that the delay be insignificant compared with the time dura-
tion of half a cycle of the Dicke frequency. The error arising from the
delay and settling time with the 10-pole Butterworth was judged to be too
severe for the BT products employed. Subsequently, a three-pole Butterworth
filter was found to be adequate provided that allowance for the additional
bandwidth was made in noise power computations and provided that the BT

product was increased to about 100 times the Dicke switching frequency.

Another problem that arose in the Dicke simulation was that of ripple in
the output. Because of the switching nature of the input to the receiver,
Fourier components appear in the output at the switching €requency and its
harmonics. This disturbance represents a deterministic fluctuation which
adds to the noise fluctuations which are random in form. An analysis was made
to predict the level of the ripple, and measurements verified the level pre-
dicted. Since this phenomenon is also a problem in real Dicke radiometers,
any means employed to reduce its intensity can be adapted to an actual

radiometer system.

14



FEEDBACK RADIOMETER MODELS

The largest single effort in this study has been the analysis and devel-
>pment of a series of models for closed-loop, noise-injection radiometers.
In fact, because of the formidable nature of this chore, the lack of good
supporting analytical efforts, and the fact that this development is still
continuing under a different contract, only a minimal amount of actual simula-
tion data concerning these models is presented in this report. However, it
should be strongly emphasized at the outset that successful programs have
indeed been developed, and the partial redesign of an existing tracking loop
has already been achieved as a result of a feedback simulation study. Simula-
tion runs of a closed-loop model are relatively expensive, and since there is
a degree of uncertainty in the theoretical anolysis needed to fully support
these simulation results, the data obtained does not lend itself to the same

degree of verification utilized in the open-loop models.

Two particular forms of models have been developed for the feedback
systems. The first class is comparable to the types already discussed for
open-loop systems and will be denoted as a '"statistical" form. The statis-
tical form employs random processes throughout and is used to study the

statistical estimation process.

The second class will be denoted as a 'deterministic'" form and is used to
study the actual control mechanism of the loop and its relative stability (or
instability). In this form, the random processes are replaced by their equiva-
lent temperature values on a power basis, and the basic dynamic behavior of
th2 loop is exhibited without the additional complication of the noise processes
being prese. t. Both forms have been found useful in the modeling of closed-

loop <v..ems,

The basic form of the statistical closed-loop radiometer model is shown
in figure 3. The signal XA(t) represents the input signal from the antenna
whose effective brightness temperature TA is to be determined. In a typical
closed-loor radiometer, the feedback sygnal is added to the input signal in a
directional coupler. The constant 1-KDIRCP represents the fractional power of
vhe input signal contributing to the forward output power and is typically 0.99.
The injected noise signal is added through the auxiliary arm and has a power

gain constant KDIRCP, which is typically 0.01 (-20 dB).

15



The actual injected noise typically consists of noise pulses from a
controlled noise generator, such as a hot carrier diode, plus the ambient noise
related to temperature of the enclosure. The noise pulses are turned on
by the output signal of the loop and serve as the feedback mechanism to main-
tain closed-loop operating conditions. The noise signal produced by the noise
diode .s denoted by XD(t), and this function can be characterized by an

effective noise temperature T representing the actual noise temperature of

the diode. However, it may algo be characterized by an "excess' noise tem-
perature TEXCNS, which is the temperature by which the noise diode exceeds
the controlled temperature TB of the enclosure, i.e. TEXCNS = TD - TB' The
concept of the excess noise was utilized in most of the simulation programs

developed and was found to be the most convenient form.

The enclosure is maintained at a constant temperature Tg, whose value
is known to a high degree of accuracy. The noise signal XB(t) corresponding
to TB is added to the excess noise from the diode source, and the result is
applied to the directional coupler.

From the output of the directional coupler, the signal is processed with
a Dicke radiometer in the same fashion as for an open-loop radiometer. However,
the output of the postdetection filter is connected back to the noise-injection
block in order that a sufficient amount of feedback noise can be injected to
maintain a closed-loop condition. Under ideal steady-state conditions, the
sum of TA plus the feedback noise temperature is exactly equal to TB’ and
the effect of gain fluctuations is eliminated. In other words, the output
estimate is a function only of feedbiuck parameters and not of forward gain
parameters, so that steady-state fluctuations in forward gain parameters do not
contribute to error. (During transient or changing input temperature conditions,

gain fluctuations may contribute to errors in the estimate.)

The form of the deterministic model is shown in figure 4. The various
quantities on the block diagram are generally related to those in figure 3 except
that no statistical parameters are used. Instead, the mean values of the pro-
cesses are represented on a power basis. This means that some of the quantities
involved are the squares of the corresponding parameters in figure 3, which was

shown primarily in terms of linear (or voltage) quantities where appropriate.

16



A few terms that have not been previously discussed will now be defined.
The quantity KFVG represents a forward voltage gain constant for the statis-
tical model, and KFPG represents the corresponding forward power gain constant
for the deterministic model. The quantity KVTENR represents the voltage to
excess noise ratio constant appearing in the feedback loop. The quantity
KINT represents the integrator constant, and the loop filter represents any
additional transfer function used to establish the proper dynamic loop response
and data smoothing. Several different forms of loop filters have been simula-
ted thus far. Finally, it should be noted that several parameters are speci-
fied directly as power terms, which means that the square roots of these

quantities are used on the block diagram in figure 3 (but not in figure 4).

17



STATISTICAL PARAMETERS AND SENSITIVITY

In this section, a summary of the various expressions for determining
the mean-square fluctuations and sensitivity functions for several different
types of radiometers is given. These relationships were used in the statis-
tical verification of many of the simulations as is shown in the next section

of the report.

The results employed are presented here without any proof or discussion
of their origin. A separate report is currently being prepared which will
deal specifically with the detailed development of these and other similar
relationships. Certain of these relationships may be found in various parts
of the literature, but it suffices to say at this point that the developments
are so unwieldy that it would distract from the specific objectives of this

report to present more than a brief summary.

First, consider the total power radiometer. The square or the mean

value of the output estimate is given by

ao

vy = CZ[[ !Hi(f)lzdf] H2(0) (T, + Tp)? (14)

where Hi(f) is the transfer function of the predetection filter, Ho(f) is
the transfer function of the output filter and C is a constant for the
radiometer. The variance of the estimate ovﬁ due only to the noise fluctua-

tions is given by

“n = ZCZ[_/ LACIN df] [f H, (£) ]2 df] (T, + Tp)? (15)
o 0
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The ratio of ovg to (N? is

5 2 2[f |Hi(f)l" df][f |H°(f)|2 dt"]
vn  _ o )

L. _ (16)
W) [f |H, (£) |2 df]2 H2 (0)

(o]

The standard definition of the equivalen* noise bandwidth Bno as applied to
the output filter is

. 1 "2 2
B o 200 f IHo(f)I df . (17)
o] (o) ’

A definition peculiar to measurements made with square-law devices is a quantity
referred to by Bendat and Piersol (ref. 5) as the '"equivalent statistical
bandwidth,'" by Tiuri (ref. 6) as the "RF bandwidth,' and by Evans and MclLeish
(ref. 7) as the 'reception bandwidth." The term "equivalent statistical band-
width" is used in this report and is denoted as BSi as applied to the input

filter. For this filter, BSi is defined as

_ [f |1, (£) ]2 df]2

Bsi ©
f |H, ()% af

0

(18)

Ey applying the definitions of equations (17) and (18) to equation (16) and
taking the square root of both sides, the following rather simple result in

obtained for the total power radiometer:

— (19)
\' Bsi
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Assume now that gain fluctuations are present and denote the RMS voltage
gain fluctuation referred to a point after the square-law detector as AA.

If the mean value of this gain is denoted as A, the per unit RMS fluctuation

g of the outpu* estimate is simply
‘ A
_vg _ LA (20)
n A

It is reasonable to assume that the gain fluctuations and the random noise
fluctuations are statistically independent. The net variance 03 of the
output estimate is then determined for t“ total power radiometer from the

expression

o \? 2B 2

( v) - no . (AA) 21)
= B . A
' si

The form of equation (21) is most convenient for statistically verifying the

behavior of the radiometer simulations. However, the form most widely used
in the literature employs the term "'sensitivity.'" The sensitivity AT of a
radiometer is defined as the change in the input temperature which produces
a change AV in the output cstimate equal to the RMS value 9, of the net
fluctuations. For the total power radiometer, the sensitivity is determined

from the expression

2B
AT\? AA\ 2
S si

where Ts = TA + TR is the system temperature.

For the Dicke square-wave correlated radiometer, the expressions for the

variance and sensitivity are somewhat more involved. Specifically, in the
absence of gain fluctuations, the standard deviation %n due to noise fluc-

tuations only is determined from the expression

“vn =2 2Bho Tef{___
v B_. ITA - TBI

(23)
si
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where Teff is defined as the effective system temperature and is given by

1

2 21

[y e T2 e 1y T3
Tegf = 7 (24)

If gain fluctuations are present, the variance of the estimate is determined

from the expression

2 2
% 2Bno Teff AA\2 ”
(:r =45 > *\% (25)
Y si (TA - TB)

The sensitivity AT is determined from the relationship

2 2
(AT) - - 4<28n0) Tefs +(§§)2 (26)
(TA - TB) Bsi (TA - TB)2 A

This writer has not been able thus far to find a completely conclusive
development of the variance and sensitivity functions for a closed-loop
radiometer. Based on the best available information, it appears that the
expressions for the open-loop Dicke radiometer as given by equations (25)
and (26) may be adapted with modification to the closed-loop system. The
primary changes are as follows: (1) The effective system temperature of
equation (24) reduces to Teff = TB + T,. This result occurs because a suf-

R
ficient amount of noise is added to T so that the Dicke switch "sees"

A
TB + TR on both halves of a switching cycle. (2) The value of Bno is based
on the closed-loop low-pass form of the transfer function of the system. (3)
Effects of gain fluctuations may be eliminated from the appropriate expressions

for steady-state computations.

Based on the preceding assumptions, the variance and sensitivity functions

for the closed-loop feedback noise-injection radiometer have the forms
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ov _ 2Bno TB * TR
L2 g2 e (27)
V si |Ta = sl
and
28
- AT = 2 B (Ty + Tg) (28)

where Bno is determined from the low-pass parameters of the closed-loop
feedback model. Various simulations obtained thus far have produced results
reasonably ciose to the values predicted by equation (28), but not enough
data have been obtained yet to ocbtain a meaningful statistical v_rification
of the equations. These relationships will be investigated further as new

developments are obtained from work currently underway.
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STATISTICAL VERIFICATION OF MODELS

Numerous computer simulation runs were made during the development of
the various programs in order to check their validity. It would be very
unwieldy and quite unnecessary to attempt to present all or even most of the
results that were obtained. Instead, certain representative results are
presented and discussed in order to properly verify the genera. validity of
the models.

Because more attention was paid to the basic total pcwer r-dicmeter
early in the simulation development as a means of establishit - »>roper
direction, more of the data from those simulations were scrut ::.:d from a
statistical point of view. However, the same techniques have been applied
in varying degrees to all of the simulation models. Close statistical com-
parison has been achieved for the Dicke open-loop radiometer models, and,
as previously noted, trends obtained from the closed-loop models appear good

and will be pursued further as accompanying analytical work is completed.

The various data selected for this report are summarized in tabular form
in the Appendix. Each page contains a separate table, and a given table
represents a particular set of simulation runs with fixed parameters. A list
of all the table symbols is provided at the beginning of the Appendix and
should be used for checking symbols in the tables.

A number of simulations was made using a running integrator. The out-
put of a running integrator is a nonstationary process since the variance de-
creases with time. In order to provide a suitable means for determining the
statistics at u given time, the concept of ensemble averaging was employed.
This was achieved by using a number of separate simulation runs for fixed

system pzrameters, but with each run utilizing statistically independent random

generators. At a given value of time, true ensemble averaging could thus be
achieved by performing appropriate averaging on the corresponding values from
all of the separate runs. For most of the ensemble averages, either 6 or 11
runs were used. Actually, the ensemble averages were also used in some cases
in which the output filters were not running integrators and in which the proc-
esses were stationary due to the convenience of the procedures already estab-
lished.
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The first representative simulation presented is that of a total power
radiometer with TA = 100°, TR = 200°, BCIN = 1000 Hz (3-dB bandwidth and a
10-pole Butterworth filter), a running integrator at the output, no gain
fluctuations, and a sampling rate of 10 KHz (DELT = 10-“ s). This simula-
tion was performed in CSMP, and the results are summarized in table A-1. The
terminology used at the bottom of the table refers to that employed in the
actual progran and is more convenient for listing than the usual subscript
notation. For a 10-pole Butterworth filter, the equivalent noise bandwidth
was calculated to be 1.004 times the 3-dB bandwidth, while the equivalent
statistical bandwidth was calculated to be 1.057 times the 3-dB bandwidth.
The former constant is so close to unity that it was ignored in the system
constants for 10-pole calculations, but the latter corstant was utilized. The

predicted value of the standard deviation is determined fr.. the relationship

i 300
41.057 x 103T

(29)

From table A-1, the predicted standard deviation 9 values at different

times and the measured estimates sy are readily compared, and the results
are seen to be quite good in a statistical sense. The confidence ranges for
the mean and variance estimates were determined by standard statis*ical methods

provided by Bendat and Piersol (ref. 5).

Table A-2 provides similar data obtained from a CSMP simulation when the
input filter is eliminated. This means that the full sampled bandwidth (5 KHz
in this case) is applied to the square-law detector. The predicted standard

deviation in this case is

300
[e) =

T (50007

Table A-3 shows the results of a set of CSMP simulations having paramecters

(50)

similar to table A-1, but with gain fluctuations added. The reference level
of the voltage gain is A = 1, and the fluctuations were introduced after

the square-law detector. The predicted value of op in this case is



o =J————-1-—— + (0.03162)2 x 300 (31)
1.057 x 103T

Table A-4 shows the results of CSMP simulations using the parameters of

Table A-2 but with gain fluctuations added. The predicted value of O is

Y . 2
OT —JSOOOT + (0.03162)< x 300 (32)

After the programs were converted to ACSL and transferred to NASA/LaRC,
several different changes were made in the simulation models. Most signifi-
cant was tb change from a 10-pole Butterworth input filter to a 3-pole Butter-
worth input filter. This change was made in order to reduce the settling
time for proper correlation with the Dicke radiometer forms as was discussed
earlier in this report. Another change made for some of the simulations was
the use of a 3-pole Butterworth low-pass filter for the postdetection output
filter. In this case, the variance of the output estimate does not decrease
with time after the filter has completely settled. For a 3-pole Butterworth
filter, the equivalent noise bandwidth is 1.047 times the 3-dB bandwidth, and
the equivalent statistical bandwidth is 1.257 times the 3-dB bandwidth. The
first constant was incorporated in the normalized form of Boltzmann's constant,

i. . Kn = 1/(1.047 Bin), so that the temperature remains directly reading.

The results of one set of total power radiometer runs using ACSL and the
changes just noted are summarized in table A-5. In this case, the 3-dB output
bandwidth is 1 Hz so the settling time is slightly greater than 1 s. In fact,
the filter has not fully settled for the data in the first column, so those

results are not too valid. The predicted value of the standard deviation o

T
for all cases after the filter has settled is
] 2 x 1,047
1 = ¥1.257 x 1000  ~00 (33)

The next several tables of results apply to Dicke square-wave correlated
simulation runs. Table A-6 shows some results obtained from a series of six
statistically independent simulations using CSMP and parameters indicated in
the table, including the use of a three-pole output filter. The predicted value

of the standard deviation is
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o = 2 { 2 x1.047 T (34)
1.257 x 104

where

200) 2 'Y
T s ‘[(100 +_200) : (300 + 20002 _ ,., 5 (35)

Table A-7 shows the results of several Dicke simulations using ACSL and
a running integrator for the output filter. The predicted standard deviation

in this case is

1
o, = 2$—~——— T (36)
T 1.257 x 1047 °off

The results of adding gain fluctuations to the Dicke radiometer arc illus-
trated by the data shown in table A-8. 1In this case AVDEL = 0.025 and the

predicted valuc of the standard deviation 1is

( 1 N )
o, = 44 [———— VT2 + (0.025)° (200)7? (37)
T (1.257 x 10“T> eff

A case in which the gain fluctuations are so large that they almost over-

shadow the noisc fluctuations is shown in table A-9. In this case AVDEL =

0.1, and the predicted value of the standard deviation is

1
o = 44 | —————|T2__ + (0.1)2 (200)2 (38)
T N (1.257 x 10*r) eff




SUMMARY AND CONCLUSIONS

Dynamic computer simulation models for various types of microwave radi-
ometers have been developed to assist in the evolution of new radiometer
measurement systems and in evaluating the performance of existing systems.
Both CSMP and ACSL have been proved quite adaptable for this purpose provided
that the bandwidth times integration time product is normalized to a lower
value for simulation purposes. The programs are currently available for
usage, and the design of one existing system has already been extensively in-

vestigated with one of the programs.

The validity of most of the programs has been investigated using statis-
tical tests, and the results have been shown to have excellent correlation with
theoretical predictions. Refincment, improvement, and further statistical
verification will be continued as one phase of a new contract currently in

progr.ss.

27



APPENDIX
TABULATION OF REPRESENTATIVE SIMULATION DATA

Symhols used in the simulation programs vary slightly in some cases from

those used in general and analytical developments in the report due to the

basic differences in the forms.

the tables and in the section '"Statistical Verification of Models."

TA

TR

TB

TD

TEXCNS

BCIN

BCOUT

AVDEL

DELT

KFVG
KFPG
FSWTCH
KDIRCP

KINT

brightness or antenna temperature (TA) to be measured

effective receiver noise temperature (TR) referred to radiometer

input

reference comparison temperature (TB) of constant temperature

enclosure

effective noise temperature (TD) of noise-injection source
excess noise temperature of noise-injection source = TD - TB
bandwidth of wide-band input filter (usually 3-dR bandwidth)

bandwidth of narrow-band output filter (equal to equivalent noise
bandwidth for running integrator and closed-loop systems and

equal to 3-dB bandwidth in other cases)

per unit voltage gain fluctuation referred to a point at the out-

put of the square-law detector
time of integration

time increment between successive samples in the simulation =

1/sampling rute

forward voltage gain

forward power gain

Dicke switching frequency

directional coupler noise power injection constant

integrator constant

The following symbols may appear throughout
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~3|

U
02

g1

ranges for T and o

where n

estimate of mean value of temperature determined as a sample mean =

estimate of the variance of the process obta.ned as a sample variance

N
= —LZ (T. - T)Z

estimate of the standard dev’ation of the process obtained as a

sample standard deviation = /s2

T
predicted value of the standard deviation og tlhie process
estimated variance of the sampling mean = ;}
estimated standard deviation of the sampling mean = A%%

upper bound of the 90 percent confidence range for T
lower bound of the 90 percent confidence range for T
up, r bound of the 90 percent confidence range for Or

lower bound of the 90 percaent confidence range for o

Using results from Bendat and Piersol (ref. S) the 90 percent confidence

T satisfy the following relationships:

<T<T+s

T= -ST'tn,a/Z - T'tn,a/z

<2 2
an ” ns.r
< g <
X2 - T= X2
1,0/2 n, (1-a/2)

=N-1and a = 0.05. The parameters required in the above equations

are tabulated below for N = 11 and 6, which represent the most common values

used in the simulations.

N=11 N=6

t o2 1.812  2.015 .
2

X2 4/2 18.31  11.07
2

X0 (1earz) 3% 1.15
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Table A-1. Total power radiometer CSMP simulation set A. (Tabulated values
of runs are temperature estimates of TA + TR in kelvin).

.
RUN T=0.2s T = O.Q s T = 0.6 s T=08s T=1.0s

1 273.77 280.83 284.04 287.81 289.94
2 295.71 298.24 290.45 289.33 291.69
3 301.37 306.68 318.08 317.60 317.25
4 315.26 298.32 296.17 308.31 306.59
5 310.72 316.74 325.86 322.95 318.74
6 280.59 278.88 299.51 303.20 302.12
7 330.12 293.10 292.81 293.57 293.50
8 307.63 307.22 310.64 306.71 308.44
9 292.25 295.72 289.70 293.56 300.36
10 327.99 297.56 293,97 296.38 298.85
11 253.20 273.19 285.28 291.03 291.74
T 298.96 295.13 298.77 300.95 301.75
s% 542.02 172.67 186.40 138.97 101.65
St 23,28 13.14 13.65 11.79 10.08
0 20.63 14.59 11.91 10.32 9.23
s% 49.27 15.70 16.95 12.63 9.24
st 7.02 3.96 4.12 3.55 3.04
up 311.68 302.31 306.24 307.38 307.26
m 286.24 287.95 291.30 294,52 296.24
) 37.09 20.93 21.75 18.78 16.06
o1 17.21 9.71 10.09 8.71 7.45

(All quantities are expressed in their basic units.)

TA = 100, TR = 200, BCIN = 1000 (10 pole), BCOUT = 0.5/T, AVDEL = 0,
DELT = 10-%



Table A-2. Total power radiometer CSMP simulation set B. (Tabulated values
of runs are temperature estimates of TA + TR in kelvin).
RUN T=0.2s =04s T=06s T=08s T=1.0s
1 283.58 289.16 293.95 292.69 293.44
2 306.65 307.42 304.41 303.01 306.51
3 304.26 303.87 304.88 304.39 303.22
4 291.93 294.46 293.78 296.20 297.10
5 291.32 294.56 303.69 301.19 303.47
6 293.03 286.41 296.41 298.72 298.85
7 293.82 296.16 300.31 302.21 299.23
8 294.94 296.15 298.23 298.25 298.51
9 295.43 305.81 304.32 305.01 307.22
10 301.51 298.93 300.17 304.61 302.27
11 303.49 300.45 298.57 299.46 302.70
T 296.36 297.58 299.88 300.52 301.14
s2 47.44 43.28 16.89 15.09 17.07
St 6.89 6.58 4.11 3.88 4.13
o} 9.49 6.71 5.48 4.74 4.24
s%- 4,31 3.93 1.54 1.37 1.55
ST 2.08 1.98 1.24 1.17 1.25
Hp 300.13 301.17 302.13 302.64 303.41
'R} 292.59 293.99 297.63 298.40 298.88
o, 10.97 10.48 6.55 6.19 6.58
o, 5.09 4,86 3.04 2.87 1.05.
(A1l quantities are expressed in their basic units.)
TA = 100, TR = 200, BCIN = 5000 (no filter), BCOUT = 0.5/T,
DELT = 10~"

AVDEL = 0,
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Table A-3. Total power radiometer CSMP simulation set C. (Tabulated values
of runs are temperature estimates of TA + TR in Kelvin.)

RUN T = 0.2 s T=04s T=0.6s T=08s T=1.0s

1 273.60 280.66 283.86 287.63 289.76
2 306.88 309.51 301.42 300.26 302,70
3 295.74 300.95 312.13 311.66 311.32
4 311.51 294.76 292.64 304.64 302.94
5 309.12 315.11 324.18 321.29 317.10
6 281.04 279.33 300.00 303.70 302.62
7 329.03 292.13 291.84 292.60 292.53
8 293.07 292,67 295.93 292.19 293.83
9 302.50 306.10 299.87 303.86 - 310.90
10 314.68 285.48 282.04 284.35 286.73
11 263. 80 284,63 297.22 303.21 303.96
T 298,27 294 .67 298.28 300.49 301.31
s% 372.76 143.54 142.96 116.08 93,38
St 19.31 11.98 11.96 10.77 9.66
on 22.71 17.40 15.23 14.01 13.23
s%. 33.89 13.05 13 10.55 8.49
ST 5.82 3.61 3.61 3.25 2.91
bo 308.82 301,21 304.82 306.38 306.58
u 287.72 288.13 291.74 294.60 296.04
oo 30.76 19.09 19.05 17.16 15.39
o1 14.27 8.85 8.84 7.96 7.14

(A1l quantities are expressed in their basic units.)

TA = 100, TR = 200, BCIN = 1000 (10 pole), BCOUT = 0.5/T, AVDEL = 0.03162,
DELT = 10-*
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Table A-4. Total power radiometer CSMP simulation set D. (Tabulated values
of runs are temperature estimates of TA + TR in kelvin.)

RN T=0.2s T=204ss T=06s T=0.85 T=1.0s

1 283.40 288.98 293.77 292.50 293.26
2 318.24 319.03 315.91 314.45 318.09
3 298.57 298.19 299.18 298.70 297.55
4 288.45 290.94 290.28 292.67 293,56
5 289.82 293.05 302.13 299. 64 301.91
6 293.51 286.88 296.89 299.21 299,34
7 292.84 295.18 299.32 301.21 298.24
8 280.97 282.13 284.10 284.13 284,37
9 305.79 316.54 315.00 315.72 318.00
10 289.27 286.80 287.99 292.25 290.00
11 316.19 313.03 311.07 312.00 315.37
T 296.10 297.34 299.60 300.23 300.88
s% 154.59 167.18 114.46 102.52 132.33
St 12.43 12.93 10.70 10.13 11.50
o 13.42 11.62 10.95 10.61 10.39
s% 14.05 15.20 10.41 9.32 12.03
S5 3.75 3.90 3.23 3.05 3.47
o 302.90 304.41 305.45 305.76 307.17
u 289.31 290.27 293.75 294,70 294.59
0y 19.81 20.60 17.04 16.13 18.33
0y 9.19 9.56 7.91 7.48 8.50

(All quantities are expressed in their basic units.)

TA = 100, TR = 200, BCIN = 5000 (no filter;, BCOUT = 0.5/T, AA = 0.03162,
DELT = 107"
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Table A-6. Dicke square-wave correlated CSMP simulation set A,
(Tabulated values of runs are temperature estimates of
TB - TA in kelvin.)

RUON T=1.0s T=1.2 =1.4s = 1.6 s =1.8s =2.0s
1 204.12 202.00 209.02 202.81 189.04 180.60
2 205.67 199.29 206,45 206.57 211.49 204.34
3 191.48 185.35 181.01 181.39 182.73 191.20
4 179.19 177.01 190.97 205.88 205.80 202.48
5 209,93 209.86 201.81 180.74 176.24 176.11
o 188.40 192.96 201.28 208.43 212,33 199.98
T 196.47 194.41 198.42 197.64 196.94 192.45

s% 142,59 141.41 111.02 168.09 261.35 141.53

St 11.94 11.89 10.54 12.97 16.17 11.90

Or 10.64 10.64 10.64 10.64 10.64 10.64

s 23.77 23.57 18.50 28.02 43.56 23.59

ST 4.87 4.85 4.30 5.29 6.60 4.86

U2 206.28 204,18 207.08 208.30 210.24 202.24

M 186.66 184.64 189.76 186.98 183.64 182.66

o2 24.90 24.80 21.97 27.03 33.71 24.81

o1 8.03 7.99 7.08 8.71 10.86 8.00

(A1l quantities are expressed in their basic units.)
TA = 100, TB = 300, TR = 200, BCIN = 10* (3 pole), BCOUT = 1 (3 pole),
AA = 0, DELT = 1075, FSWTCH = 100
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