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SUMMARY

Experimentalvaluesof shock shapes (anglesof attack e of 0O and 10°)
and static aerodynamiccoefficients(_ = -4° to 12°) for sharp and spherically
blunted cones having cone half-anglesof 30°, 45°, 60°, and 70° and nose-
bluntnessratiosof 0, 0.25, and 0.50 are presented. Shock shapes were also
measured at e = 0° by using a flat-facedcylinder (90° cone) and a hemispher-
ically bluntedcylinder (sphere). All tests were conductedin air (ratioof
specificheats y of 7/5) at a free-streamMach number of 5.9 and a unit free-
streamReynolds number of 2.80 × 106 per meter. Comparisonsbetweenmeasured
values and predictedvalueswere made by using severalnumericaland simple
engineeringmethods.

Present resultsare generallyin excellentagreementwith measured results
from other sourcesand with the predictedvalues from severalnumericalmethods.
A modifiedNewtonianmethod provided consistentlypoor agreementwith measured
axial-forcecoefficientsand with normal-forceand pitching-momentcoefficients
for the 60° cone. Measured static aerodynamiccoefficientsfor the large half-
angle cones show that the effectsof nose-bluntnessratios are small, indicat-
ing the lack of importanceof this parameterin the aerodynamicdesign of entry
probes having large half-anglecone forebodies.

INTRODUCTION

The sphericallybluntedcone has been used as the forebodyshape of the
planetaryentry probe for both the Viking Project and PioneerVenus, and it
will be used again for the upcomingProjectGalileo (JupiterProbe). The final
aero-thermodynamicdesign for these planetaryentry probes must be determined
by analyticaltechniquesbecausethe entry environmentof other planets cannot
be simulatedby using Earth-basedexperimentalfacilities. Experimentalresults
are needed,though, to validatethe theoreticalmethodsand to provide inputs
for empiricaltechniquesor correlationprocedures (ref.1). Throughproper
use of both measured and predictedresults, futureplanetaryprobes can be
designedwith less conservatismso that more payload can be accommodated.

Results from experimentalstudiesconductedon sharp and spherically
bluntedcones in air at supersonicand hypersonicMach numbersare extensive.
Most of the early work (aerodynamiccoefficientsand pressuremeasurements)
was conductedon cones with small half-angles(8 _ 40°) because they were
candidatesfor ballisticreentry into our own atmosphere. References2 and 3
provide, respectively,summary tablesand a compilationof the major body of
data on cones up throughthe mid-]960's. Particularexamplesof some of the
early experimentalwork are given in references4 to 11. In later work
(refs.12 to 19), cones with larger half-angleswere studiedwith increasing
interestas candidateconfigurationsfor planetaryentry probes and for basic
researchin areas for which data were lacking.



The purposeof this report is to present a portionof the resultsfrom a
study which is designed to enrich the hypersonicdata base for entry-typegeom-
etries over a range of angles of attack,ratios of specificheats, and Mach
numbers. The present results (andthose of ref. 20) are part of a systematic
study of aerodynamiccoefficientsand shock shapes at angles of attackwhich
are valuablefor validationof predictionmethods and completionof the hyper-
sonic data base. Experimentalresultspresentedherein are for sharp and
sphericallyblunted cones having cone half-anglesof 30°, 45°, 60°, and 70°
and nose-bluntnessratiosof 0, 0.25, and 0.50. These configurationswere
tested in the Langley 20-InchMach 6 Tunnel at a Mach number of 5.9. Measure-
ments includeshock shapes at _ = 0° and ]0° and static aerodynamiccoeffi-
cients taken at 2° incrementsfor e = -4° to ]2°. Shock shapes at 0° angle
of attack for a 90° cone and for a spherewere obtained by using a flat-faced
cylindermodel and a hemisphericallyblunted cylindermodel, respectively.
Comparisonsbetweenmeasured values and predictedvalues are made by using
severalnumericalmethods and simpleengineeringmethods. Also, experimental
data from references21 to 26 are comparedwith the present results.

SYMBOLS

Axial force
CA axial-forcecoefficient,

Pitchingmoment
Cm pitching-momentcoefficient,

qSd

Normal force
CN normal-forcecoefficient,

Cp,max Newtonianpressure coefficient

d model base diameter,cm

Z model length,cm

M z local Mach number

M_ free-streamMach number

Pt stagnationpressure,kPa

q_ free-streamdynamicpressure,kPa

Roo,d free-streamReynolds number based on d

rb model base radius,cm

rn model nose radius,cm
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rn/rb nose-bluntnessratio

S model base area, cm2

Tt stagnationtemperature,K

V_ free-streamvelocity,m/sec

x,r cylindricalcoordinates(fig.1(a))

angle of attack,deg

y ratio of specificheats

_* boundary-layerdisplacementthickness,cm

distancebetweenmodel surfaceand shock wave, measuredparallel
to model axis, cm (fig. ](a))

@ cone half-angle,deg

@det minimumcone half-anglefor shock detachment,deg

FACILITYANDTESTOONDITIONS

Shock shapes and static aerodynamiccoefficientswere obtainedfrom flow
visualizationand force and moment tests conductedin the Langley20-Inch
Mach 6 Tunnel. Operation, flow conditions,and detailsof force testingin
this facilityaredescribed in reference27. All tests were conductedat the
followingflow conditions:

M_= 5.9

Pt = 276 kPa

Tt = 431 K

R_,d = 0.]42 × ]06 (cones)

R_,d = 0.]07 x ]06 (cylinders)

MODELS

Figure 1(a) providesa generalplanformview and the dimensionsof the
]2 cone models tested. These models were constructedfrom aluminum and have
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base diametersof approximately5.08 cm. Cone half-anglesof 30°, 45°, 60°,
and 70° were examined,and the nose-bluntnessratios (0, 0.25, and 0.50) were
varied for each cone half-angle. A flat-facedcylinder and a hemispherically
blunted cylinder,each with base diametersof 3.81 cm (fig. ](b)), were tested
at _ = 0° to provide shock shapes for a 90° cone and a sphere,respectively.
A photographof the cone models tested is shown in figure 2. The tapered
cylindricalsectionextendingbehind the model forebodywasdesigned to house
the strain-gagebalance. These models were also used for the experimental
tests in helium describedin reference20.

TEST METHODS

Flow visualizationand force and moment tests were conductedsimulta-
neously. Schlierenphotographswere used to obtain the measured shock loca-
tions at _ = 0° and at _ = 10°. The shock locationswere read manually from
photographssimilarto the one shown in figure 3. The error in these measure-
ments is estimatedto be ±].5 percent of rb, which is about the indicated
thicknessof the shock wave in the photograph. Shock-layerthicknesses
were measured parallel to the model axis (seefig. ](a)) and are presented
in table I. For values of r/rb greater than ].0, A was measured from an
imaginaryextensionof the plane definedby the base of the model.

Aerodynamicforce and moment tests were performedwith the models mounted
on a sting-supported,five-componentstrain-gagebalance (no rolling-moment
component). The straightsting was attachedto the angle-of-attackmechanism
and data were obtained in 2° incrementsof angle of attack from -4° to ]2°.
The angle of attackwas set opticallyby using a point light source adjacent to
the test sectionand a small lens-prismmountedon the taperedcylindricalsec-
tion extendingbehind the model. The image of the source was reflectedby the
prism and focusedby the lens onto a board which was calibratedto indicatethe
angle of attack. Data were obtained during the test runs with the model set at
discreteangles of attack. The accuracyof determiningthe angle of attack in
this manner is estimatedto be ±0.25°. All tests were conductedat a sideslip
angle of 0°, and no base pressureswere measured.

The referencearea for the models was the base area S and the reference
lengthwas the base diameter d. All pitching-momentdata were reducedabout
the actual nose of each model. The estimateduncertaintiesin the measured
static aerodynamiccoefficientsbased on a balanceaccuracyof ±0.5 percent of
the design loads are as follows:

dCN ......................... ±0.020

dCA ......................... ±0.0]0

Acm ......................... ±o.olo

The measured static aerodynamiccoefficientsare presentedin table II.

4



PREDICTIONMETHODS

In terms of the Mach number betweenthe shock wave and the body MZ, sev-
eral flow conditionswill occur for the range of cone half-anglesand nose-
bluntnessratios tested. For u = 0°, the flow conditionsthat can occur are
illustratedin figure 4. For the sharp cone with @ << @det (fig.4(a)), the
shock wave is attachedand the local Mach number is supersonicthroughoutthe
shock layer. If @ > @det, there will be subsonicflow over the entire body
with the sonic line (locusof pointswhere Mz = 1.0) extendingfrom the shock
wave to the base of the body, as shown in figure 4(b). For the sharp cone
there is a limitedrange of cone half-angleswhich causes a region of sub-
sonic flow adjacentto the surface (notillustrated). The size of this
region increasesas @ approaches edet, but the shock wave remainsattached.
For air at M_= 6.0 this occurs between @ = 53° and 0 = @det = 55.4°
(ref.28).

When the cone is sphericallybluntedand @ << @det (fig.4(c)), there is
subsonic flow over the nose regionand supersonicflow over the conicalafter-
body. The sonic line extendsfrom the shock wave to near the sphere-conejunc-
tion of the body. If @ > 0det (fig.4(d)), subsonicflow occurs over the
entire body (regardlessof the nose bluntness),and the flow conditionsare
similarto those of figure 4(b). The most complicatedflow conditionsoccur
when there is subsonicflow over the nose but @ is not small enough to allow
the flow to become completelysupersonicaft of the sphere-conejunctionand
not large enough to producetotal subsonicflow in the shock layer (fig.4(e)).
The sonic line can assume severalshapes for values of 0 in this range,
includingthe one shown in figure 4(e). For angles of attackother than 0°,
combinationsof the flow conditionsshown in figure 4 can occur simultaneously
in differentmeridionalplanes, dependingon the combinationof cone half-
angle, nose bluntness,and angle of attack.

A number of numericalmethods were used to predict shock shapes and pres-
sure coefficientsfor the configurationsstudied. These methodswere used pri-
marily becauseof their accessibilityand becausethey coveredthe range of
flow conditionsbeing studied. In additionto integratingthe pressurecoeffi-
cients to determinepredictedstatic aerodynamiccoefficients,values predicted
by Newtonianmethods from reference29 were also used for comparison. The fol-
lowing table lists the numericalmethods used and indicatesthe local flow con-
ditions (as previouslydescribed)to which they were applied:

All All Subsonicnose,lSubsonicnose,
Author Referencecapabilitysupersonicsubsonic supersonic mixed on cone

cone

Klunker,South,and Davis 30 X X
Kumar and Gravesa 31 X X X

zoby and Graves 32 X
Morettiand Bleich 33 X X
Sutton 34 X X X
Barnwell 35 X X
South 36 X

aSolutionincludesthe effectsof viscosity.

See reference20 for a brief descriptionof these theoreticalmethods.
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RESULTSAND DISCUSSIONS

Shock Shapes for 0° Angle of Attack

Sharp cones.-Measured and predictedshock shapes for sharp cones with
8 = 30° and 45° (figs.5(a) and (b)) show the straightshock wave that is
obtainedwhen it is attached to the body and the local Mach number is super-
sonic. Although the inviscidmethodsof references28 and 30 provide excellent
agreement (within2 percent)with measured shock-layerthicknessesfor both
cone half-angles,calculatingthe boundary-layerdisplacementthickness 6"
and adding it to the originalbody to get an equivalentshape results in fur-
ther improvementin the agreementbetweenmeasured and predictedvalues. An
undocumentedlaminar,similarboundary-layersolutionwrittenby Ralph D.
Watson of the LangleyResearchCenter was used to calculatethe displacement
thicknessesfor these two cases.

For the sharp cones with @ = 60° and 70° (figs.5(c) and (d)), the shock
wave is detached and the local Mach number is subsonic. The method of refer-
ence 36 was used to predict the shock shapes by inputtinga nose-bluntness
ratio rn/rb of 0.0], resultingin excellentagreementbetweenmeasured and
predictedvalues for both cone half-angles.

Shock shapes for a 90° cone were measured from schlierenphotographsof a
flat-facedcylinderand are comparedwith predictedvalues (refs.35 and 36) in
figure 6. Good agreement (within5 percent)betweenmeasured and predicted
shock-layerthicknessesis shown by both methods.

Blunt cones.-Measured and predictedshock shapesfor the spherically
blunted cones at _ = 0° are presented in figure7. For @ = 30° and
rn/rb = 0.25 and 0.50 (figs.7(a) and (b)), the local flow is subsonic in the
nose region and supersonicover the conicalafterbodyas indicatedby the pre-
dicted (ref. 34) sonic line. There is excellentagreementbetweenmeasured and
predicted (refs.31 to 34) shock locations,except that the approximatemethod
of reference32 slightlyunderpredictsthe shock shape aft of the sphere-cone
junctionfor rn/rb = 0.50.

Measured shock shapes for 8 = 45° and both nose-bluntnessratios
(figs.7(c) and (d))are in excellentagreementwith predictedshock shapes
from references31, 32, and 34. By assumingcompletelysupersonicflow along
the conicalafterbody,it was possible to use the approximatemethod of refer-
ence 32. The method of reference33 was not applicablebecauseof the presence
of subsonic flow along the conicalafterbodyas indicatedby the sonic lines
predictedby the method of reference34.

As shown by the sonic lines (calculatedby the method of ref. 35), the
entire local flow field is subsonic for @ = 60° and 70° and rn/rb = 0.25
and 0.50 (figs.7(e), (f), (g), and (h)). All three methods (refs.34 to 36)
used to calculatethe shock shapes for these four cases provideexcellent
agreementwith measured values.

Shock shapes for a sphere were measured from schlierenphotographsof the
hemisphericallyblunted cylinder (rn/rb = ].00) and comparedwith predicted
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values (refs. 32 to 34) in figure 8. The excellent agreement between measured

and predicted shock shapes for the sphere was expected since all the previous

comparisons had shown excellent agreement in the spherically blunted nose

region for cones with @ < @det.

Shock Shapesfor 10° Angle of Attack

Shar_ cones.-For @ = 30° and 45° and e = 10°, the shock wave is
attachedand the predicted (ref. 30) flow-fieldsolutionsare completelysuper-
sonic for both cases. Good agreementwith the measured shock shapes is shown
(figs.9(a) and (b)), except in the downstreamregionwhere the differenceis
probablydue to the absenceof viscouseffects in the calculatedresults.

Because the predictionmethods used in this study are not applicablefor
sharp cones with detachedshocks at 10° angle of attack,only the measured val-
ues are shown in figures]0(a) and (b).

Blunted cones.-Measured and predictedshock shapes for the spherically
bluntedcones at _ = 10° are presentedin figure 11. Shock shapes predicted
with the method of reference31 are in excellentagreementwith measured values
for 8 = 30° and 45° and for rn/rb = 0.25 and 0.50 (figs.11(a), (b), (c),
and (d)). In the nose region,the method of reference33 shows excellent
agreementfor the 30° cone for both nose-bluntnessratios. This method was not
appliedfarther downstreambecauseof increasingdifficultyin obtaininga con-
verged solutionand becauseof the high cost of computingthe completethree-
dimensionalflow field. For % = 60° and 70° and both nose-bluntnessratios,
the shock shapes predictedby the method of reference35 are in excellent
agreementwith the measured shock shapes (figs.]1(e), (f), (g),and (h)).

StaticAerodynamicCoefficients

Sharp cones.-Comparisonsbetweenmeasured and predictedstatic aerodynamic
coefficientsfor the sharp cones are presentedin figure 12. The coefficients
measured in this investigationfor the 30° and 45° sharp cones are comparedin
figures12(a) and (b) with measured values from references23 and 24 and with
predictedvalues based on Newtonian theory (ref.29) and the method of lines
(ref. 30). All measurementsand predictionsare in good agreementexcept the
axial-forcecoefficient CA, which is underpredictedby Newtonian theory.

For the 60° sharp cone (fig. 12(c)),the Newtonian theory shows good
agreementwith measured valuesfor the axial-forcecoefficientbut yields large
percentageerrors for the normal-forceand pitching-momentcoefficients. Good
agreementis also observedbetweenmeasured CA at e = 0° and the value pre-
dicted by the method of reference36.

Measured aerodynamiccoefficientsfrom reference21 as well as predicted
values from references29 and 36 are comparedwith the present data for the 70°
sharp cone in figure 12(d). There is excellentagreementbetweenmeasurement
and predictionfor the normal-forceand pitching-momentcoefficients. However,



Newtoniantheory (ref.29) overpredicts CA even though the values were modi-
fied by using Cp,max = 1.8094 insteadof 2.0000.

Blunted cones.-Comparisonsbetweenmeasured and predictedstatic aerody-
namic coefficientsfor the sphericallybluntedcones are presentedin fig-
ure 13. For @ = 30° and rn/rb = 0.25 (fig.13(a)),measuredand predicted
(refs.29, 31, and 34) aerodynamiccoefficientsare in good agreementexcept
for the overpredictionof CA by the method of reference3] for angles of
attack in excess of 6°. This last result is not too surprising,since the
method of reference31 was developedfor small angle-of-attackapplications
and becomesless and less accurateas e is increased. For @ = 30° and

rn/rb = 0.50 (fig. 13(b)),the measured aerodynamiccoefficientsof refer-
ence 22 and those of the present investigationare in excellentagreement.
Again the method of reference31 increasinglyoverpredicts CA as the angle
of attack is increased. At e = 0°, the predictionof CA by the method of
reference34 is in excellentagreementwith the experimentaldata for both
valuesof rn/rb.

For @ = 45° and rn/rb = 0.25 and 0.50 (figs.]3(c) and (d)), there is
excellentagreementbetweenmeasured (presentinvestigationand ref. 22) and
predictednormal-forceand pitching-momentcoefficients,but there is some dis-
crepancyfor the axial-forcecoefficient. For rn/rb = 0.25 (fig.13(c)),
Newtoniantheory underpredicts CA, but the methodsof references3] and 34
predict valueswhich are in good agreementwith the measured axial-force
coefficients. For rn/rb = 0.50 (fig. 13(d)),values from both Newtonian
theory and the method of reference34 are in excellentagreementwith measured
CA. The method of reference3] again predicts the wrong trend for CA with
e, as noted previouslyfor @ = 30° (figs.]3(a) and (b)).

For the 60° sphericallybluntedcone with rn/rb = 0.25 and 0.50
(figs.]3(e) and (f)),Newtonian theory (ref.29) yields sizablepercentage
errors for CN and Cm, similarto those for the 60° sharp cone (fig.12(c)).
Newtonian theory also overpredicted CA for rn/rb = 0.50. All other measured
(refs.22 and 25) and predicted (refs.33 to 35) values show good to excellent
agreementwith the aerodynamiccoefficientsmeasured in the presentstudy.

Comparisonsfor the sphericallyblunted70° cone are presentedin fig-
ures 13(g) and (h). There is excellentagreementbetweenmeasurements(pres-
ent investigation,refs. 25 and 26) and predictions(refs.29, 34, 35, and 36)
except for the overpredictionof CA by the Newtoniantheory (ref.29, seen
also for the sharp 70° cone) and for the measured CA values of reference25
for rn/rb = 0.25. Note that three differentreferences (refs.21, 25, and 26)
were used to obtain other measured values for the 70° cone (onefor each nose-
bluntnessratio),and that only for a nose-bluntnessratio of 0.25 do the val-
ues not agree within 2 percentwith present experimentalvalues.

The Effects of Nose Bluntnesson StaticAerodynamicCoefficients

The static aerodynamiccoefficientsthat were obtainedexperimentallyfor
0 = 30° and for all three nose-bluntnessratios are presentedin figure 14.



The pitching-momentcoefficientis somewhatsensitiveto nose bluntness,
increasingnose bluntnessproducingless nose-downpitch (lesspositive
static stability). The axial-forcecoefficientis somewhatinsensitiveto
the increase in nose-bluntnessratio from 0 to 0.25, but a nose-bluntness
ratio of 0.50 causes a significantincreaseat the higher angles of attack.
The normal-forcecoefficientis shown to decrease slightlyfor the most blunt
case as angle of attackwas increased.

For cones with 8 = 45°, 60°, and 70° (figs.]5 to 17), the axial-force
coefficientis the only parametersensitiveto the change in nose-bluntness
ratios. However, over the entire angle-of-attackrange,for a given _, the
differencebetweenthe minimum and maximum values of axial-forcecoefficients
for these cone half-anglesis less than 5 percent,which indicatesthat the
sphericalnose bluntnessis not an importantparameterin the aerodynamic
design of probes having large half-anglecone forebodies.

CONCLUDINGREMARKS

Shock shapes for sharp and for sphericallyblunted cones having half-
angles of 30°, 45°, 60°, and 70° and nose-bluntnessratiosof 0, 0.25,
and 0.50 were obtainedfor e = 0° and 10° in air at Mach 5.9. Static
aerodynamiccoefficientsfrom e = -4° to ]2° were also measured for the
family of cone models. The measured resultswere comparedwith other experi-
mental resultsand with values predictedfrom both numericalsolutionmethods
and simpleengineeringmethods.

The agreementbetweenthe present resultsand other measured static aero-
dynamic coefficientswas generallyexcellent. There was good to excellent
agreementfor all comparisonsbetweenmeasured and predictedshock shapes for
e = 0° and 10°. The same was true for comparisonsbetweenmeasured and pre-
dicted static aerodynamiccoefficients,with the followingexceptions. A modi-
fiedNewtonianmethod did not consistentlypredict the measured values of the
axial-forcecoefficientand, for the 60° cone, the agreementwith measured
normal-forceand pitching-momentcoefficientswas poor. The method developed
by Kumar and Graves for small angle-of-attackapplicationsgenerallypredicted
the wrong trendsfor the axial-forcecoefficientfor angles of attack above
about 6°.

For the 30° cone, the pitching-momentcoefficientwas somewhatsensitive
to nose bluntness,increasingnose bluntnessproducingless nose-downpitch
(lesspositive static stability). The axial-forcecoefficientwas somewhat
insensitiveto the increasein sphericalnose-bluntnessratio from 0 to 0.25,
but a nose-bluntnessratio of 0.50 caused a significantincreaseat the higher
angles of attack. The normal-forcecoefficientdecreasedslightlyfor the most
blunt case.

The axial-forcecoefficientwas the only parametersensitiveto changesin
nose bluntnessfor the 45°, 60°, and 70° half-anglecones. However,over the
entire angle-of-attackrange, for a given e there was less than 5 percent
differencebetweenthe minimum and maximum values of axial-forcecoefficients



for these cone half-angles,which indicatesthat the sphericalnose bluntness
is not an importantparameter in the aerodynamicdesign of probes having large
half-anglecone forebodies.

LangleyResearchCenter
NationalAeronauticsand Space Administration
Hampton,VA 23665
March 18,1980
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TABLE I.- MEASUREDSHOCK DETACHMENTDISTANCES

(a) (x= 00

Detachmentdistancesnondimensionalizedby base radius A/rb for r/rb of -
0, deg

I I I I I°II0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ]• I.I ].2 I.3

rn/rb = 0

30 0 0.035 0.068 0.105 0.]38 0.]75 0.203 0.236 0.269 0.299 0.327 0.187 0.044 -0.096
45 0 .028 .049 .077 .098 .128 .156 .181 .209 .235 .258 .184 .105 .033
60 .038 .086 .128 .168 .202 .233 .263 .291 .316 .336 .357 .313 .263 .204
70 .195 .228 .256 .279 .302i .326 .344 .358 .370 .374 .381 .344 .298 .237
90 .527 .524 .515 .509 .497 .485 .473 .449 .428 .404 .377 .341 .296 .249

Sphere .146 .149 .156 .164 .174i .190 .214 .239 .295 .385 .753 .670 .567 .458

rn/rb = 0.25

30 0.037 0.042 0.079 0.149 0.200 0.217 0.238 0.256 0.280 0.305 0.340!0.1910.047 -0.096
45 .043 .047 .073 .094 .I]3 .135 .161 .184 .210 .238 .260 .184 .106 .033
60 .072 .084 .128 .166 .200 .231 .259 .287 .310 .333 .352 .305 .261 .203
70 .213 .224 .252 .278 .306 .324 .3431 .354 .361 .370 .377 .343 .296 .243

rn/rb = 0.50

30 0.080 0.080 0.087'0.]080.]52 0.248 0.333 0.391i0.4290.447 0.454 0.283 0.]29 -0.030
45 .077 .079 .086 .107 .144 .174 .190 .208 .225 .247 .271 .196 .1]9 .043
60 .112 .116 .130 .163 .200 .230 .260 .291 .316 .340 .358 .316 .260 .202
70 .229 .236 .257 .282 .306 .326 .345 .354 .366 .373 .377 .336 .292 .236



TABLE I.- Continued

(b) _ = 10°; windwardside

Detachmentdistancesnondimensionalizedby base radius A/rb for r/rb of -
@, deg I I I I I I I I I0 i 0.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

i

rn/rb = 0

30 0 0.039 0.076 0.113 0.154 0.189!0.2200.252 0.283 0.317 0.350I0.2170.080 -0.067
45 0 .026 .058 .090 .12l .155 .188 .219 .252 .281 .3ll .240 .167 .087
60 .041 .097 .138 .176 .208 .239 .265 .287 .305 .317 .324 .266 .193 .106
70 .187 .2]9 .249 .272 .290 .304 .313 .316 .318 .313 .304 .253 .187 .104

rn/r b = 0.25

30 0.043 0.043 0.064 0.126 0.159 0.186 0.213 0.246 0.280 0.315 0.3460.21] 0.063 -0.069
45 .037 .043 .063 .090 .I19 .152 .185 .219 .251 .279 .312 .245 .169 .090
60 .083 .I03 .144 .18l .214 .244 .268 .286 .307 .316 .323 .263 .192 .103
70 .213 .223 .248 .274 .293 .308 .318 .324 .324 .320 .311 .251 .183 .lO]

--, ....... o,

rn/rb = O.50

30 0.084 0.0780.079 0.097 0.138 0.212!0.2720.300 0.320 0.341 0.359i0.2120.072 -0.072
45 .075 .074 .081 .099 .126 .158 .185 .215 .243 .275 .308 .234 .158 .075
60 .125 .130 .145 .183 .214 .240 .264 .285 .302 .314 .319 .258 .187 .I02
70 .226 .232 .248 .271 .291 .311 .320 .328 .331 .325 .318 .259 .192 .I09

tn
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TABLE I.- Concluded

(c) _ = 10°; leewardside

Detachmentdistancesnondimensionalizedby base radius A/rb for r/rb of-
0, deg

I "°
rn/r b = 0

30 0 0.039 0.072 0.102 0.137 0.170 0.204 0.24] 0.270 0.296 0.339 0.193 0.054 -0.091
45 0 .0241 .043 .070 .093 .I]5 .139 .161 .186 .212 .23] .151 .0751 0
60 .041 .083 .]]8 .149 .]80 .211 .238 .268 .296 .323 .348 .315 .278 .241
70 .187 .219 .249 .279 .306 .332 .357 .376 .396 .410 .429 .403 .373 .341

rn/rb = 0.25

30 0.043 0.054 0.]]I 0.207 0.283 0.339 0.385 0.4]3 0.436 0.470 0.473 0.3]8 0.]69 0.024
45 .037 .048 .087 .119 .127 .145 .160 .179 .197 .216 .243 .164 .089 .007
60 .083 .092 .119 .153 .183 .213 .238 .268 .295 .323 .351 .315 .280 .244
70 .213 .232 .260 .290 .318 .341 .366 .385 .400 .415 .429 .400 .372 .338

rn/rb = 0.50

30 0.084 0.087 0.097 0.130 0.191 0.290 0.392 0.472 0.544 0.607 0.66] 0.529 0.390 0.248
45 .075 .083 .096 .]27 .172 .206 .234 .250 .263 .271 .281 .]92 .1]1 .026
60 .125 .127 .139 .]67 190 .215 .239 .264 .292 .316 .343 .307 .272 .233
70 .226 .240 .263 .291 [318 .339 .362 .380 .398 .413 .429 .401 .373 .337



TABLE II.- MEASURED STATICAERODYNAMICCOEFFICIENTS

(a) @ = 30°

deg CN CA

rn/rb = 0

-4 -0.]034 0.5382 0.0828
-2 -.0460 .5383 .0354
0 .0084 .5374 -.0048
2 .0607 .5349 -.0453
4 .]]38 .5380 -.0853
6 .]720 .5354 -.1319
8 .2199 .5342 -.]698
]0 .2702 .529] -.2079
]2 .3197 .5368 -.2437

rn/rb = 0.25

-4 -0.1003 0.5340 0.0682
-2 -.0436 .5407 .0292
0 .0]23 .54]7 -.0060
2 .0656 .5433 -.0430
4 .]]97 .5424 -.0772
6 .]770 .5392 -.]]72
8 .2271 .5380 -.]520
]0 .2806 .5387 -.1871
]2 .3303 .5438 -.2204

rn/rb = 0.50

-4 -0.0908 0.5644 0.0584
-2 -.0382 .5637 .0236
0 .0104 .5580 -.0048
2 .0595 .5625 -.0345
4 .]080 .5649 -.0633
6 .]509 .5672 -.0867
8 .2024 .5683 -.1228
I0 .2464 .5757 -.1484
]2 .2896 .5843 -.]723
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TABLE II.- Continued

(b) @ = 45°

e, deg CN CA Cm

rn/rb = 0

-4 -0.0673 ].0844 0.0483
-2 -.03]5 ].0874 .0234
0 .0066 ].0886 -.0032
2 .0388 ].085] -.0253
4 .0726 ].0803 -.046]
6 .]066 ].0747 -.0700
8 .]4]4 ].0657 -.0934
10 .]746 ].0503 -.]]54
12 .2]39 ].033] -.]458

rn/rb = 0.25

-4 -0.0726 1.0533 0.0494
-2 -.0346 ].0538 .0246
0 .0034 ].0554 -.0009
2 .0390 1.0524 -.0240
4 .07]5 ].0485 -.0423
6 .1067 ].0443 -.0633
8 .1402 ].0356 -.0852
10 .]760 1.0278 -.1077
]2 .2]60 ].0053 -.]357

rn/rb = 0.50

-4 -0.0749 ].0605 0.0498
-2 -.0380 ].066] .029]
0 .0034 ].0634 .00]4
2 .0365 ].0485 -.0]95
4 .069] ].0636 -.0372
6 .]039 1.0569 -.0588
8 .]398 ].0489 -.08]4
10 .1752 l.0327 -.1031
12 .2138 I.0224 -.1277
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TABLE II.- Continued

(c) 0 = 60°

deg CN CA Cm

rn/rb = 0

-4 -0.0]37 ].4632 0.0124
-2 -.0040 ].4743 .0040

0 .00]2 ].4838 .0010
2 .0078 1.48]] -.0046
4 .015] ].4724 -.0092
6 .0]9] 1.4622 -.0]08
8 .03]0 ].449] -.0215
]0 .050] 1.427] -.0362
12 .0726 1.3989 -.0543

rn/rb = 0.25

-4 -0.0165 ].4697 0.0]46
-2 -.0055 ].4804 .0052
0 .0005 ].4869 .0015
2 .0063 ].4868 -.0032
4 .0]37 1.4796 -.0081
6 .0159 1.47]6 -.0083
8 .0294 ].4674 -.0219

]0 .0502 ].428] -.0369
12 .0729 1.4]08 -.0540

rn/rb = 0.50

-4 -0.0140 1.4423 0.0092
-2 -.0046 1.4573 .0039
0 .0008 1.4649 .0002
2 .0062 1.4636 -.0039
4 .0127 ].4587 -.007]
6 .0178 1.4460 -.0122
8 .0315 1.4288 -.0237
]0 .0503 1.3966 -.0375
12 .0740 1.3723 -.055l
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TABLE II.- Concluded

(d) O = 70°

I
O_,deg CN i CA Cm

rn/rb = 0

-4 -0.0149 1.5245 0.0]61
•-2 -.0104 ]•5232 •0]00
0 -.0019 1.5226 .00]]
2 .0027 ]•5286 -.0040
4 .0065 ].5]94 -.0094
6 .0119 I.52]2 -.0159
8 .0165 I.5218 -.0198
]0 .0296 I.5147 -.032]
12 .0438 1.5221 -.0467

rn/rb = 0.25

-4 -0.01]6 1.5390 0.0154
-2 -.0074 ].5407 .0094
0 .0010 I.5462 .0015
2 .0049 1.5406 -.0042
4 .0100 1.538] -.0102
6 .0136 1.5288 -.0155
8 .0200 ].5189 -.0205
]0 .0341 ].5041 -.0344
12 .0466 I.4923 -.0462

rn/rb = O.50

-4 -0.0108 1.5536 0.0]33
-2 -.0044 ].5599 .0063
0 .0010 ].5622 .0003

2 .0043 1.5671 -. 001 7

4 .0095 ].5645 -.0097

6 .0]40 ].5542 -.0]67

8 :.0200 1.5454 -.0207
]0 .0297 ].5327 -.0300
12 .0457 1.5148 -.0463
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Moment rbreference

x

Shock

8, deg rn/r b rb, cm l, cm

30 0 2.536 4.382

30 .25 2.529 3.759

30 .50 2.530 3.124

45 0 2.543 2.540

45 .25 2.531 2.281

45 .50 2.539 2.022

60 0 2.540 1.466

60 .25 2.531 1.367

60 .50 2.543 1.275

70 0 2.537 .930

70 .25 2.545 .884

70 .50 2.544 .846

(a) Cone models.

Figure ].- Planformview and dimensionsof configurationstested.
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at-faced cylinder

t
3.81 diameter

I-- I15.24 _I

_dius 3.81 !iameter

_--Hemispherically blunted cylinder

(b)Cylindricalmodels. (Alldimensionsin cm.)

Figure ].- Concluded.
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7O

L-77-3744.]
Figure 2.- Photographof cone models tested.



i!i̧ i !!̧ ¸¸

L-so-124

Figure 3.- Exampleof schlierenphotograph.
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Ml >1

Sonic line

NI_>>I >I M_>>I

oniC line >i

ivI_>>t I -ivl_>>t
_>>i ---

--- (e) Bluntedcone; @ < 8det"

.......... (c)Bluntedcone; @ << 0det" (d)Bluntedcone; @ > @det" 0°

Figure 4. Exampleso£ local flow combinationsfor sharp and sphericallyblunted cones at _ "
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Figure 5.- Measured and predictedshock shapes for sharp cones at e = 0°.
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Figure 6.- Measuredand predictedshock shapesfor a flat-facedcylinder (8 : 90°) at _ : 0o.
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Figure 7.- Measured and predictedshock shapes for sphericallybluntedcones at e = 0°.
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Figure 8.- Measured and predictedshock shapes for a hemispherically
blunted cylinder (sphere) at e = 0°.
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Figure 9.- Measured and predioted shock shapes for sharp cones at u = I0o.
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Figure I0.- Measured shock shapes for sharp cones at _ = I0°.

42



1.4

O

1.2- O
O Measured

O

1.0 O

O

.8 O

O

.6 O

O

.4 O

O

.2 O

O

r/rb 0 O
O

-.2- O

O
-.4 O

O

-.6 v_ 0o
-.8 0

©

-i.o 0

0

-12 0

O

-1.4

I I { I I I I

-.6 -.4 -.2 0 .2 .4 .6

x/rb

(b) O : 70o.

Figure l0.- Concluded.

43



1.4

O

1.2 0 Measured O
Predictions

Reference31
-- -- Reference33

1.0

r/r b 0

-1.0

0

-1.2 0

0

-1.4

I I I I I I I I I I
-.2 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8

x/rb

(a) @ = 300; rn/rb = 0.25.

Figure II.-Measured and predictedshock shapes for spherically
bluntedcones at _ = 10°.
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Figure 12.- Measured and predictedstaticaerodynamiccoefficientsfor sharp cones.
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