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SUMMARY

Experimental values of shock shapes (angles of attack @ of 0° and 10°)
and static aerodynamic coefficients (a = -4° to 129) for sharp and spherically
blunted cones having cone half-angles of 30°, 45°, 60°, and 70° and nose-
bluntness ratios of 0, 0.25, and 0.50 are presented. Shock shapes were also
measured at O = 0° by using a flat-faced cylinder (90° cone) and a hemispher-
ically blunted cylinder (sphere). All tests were conducted in air (ratio of
specific heats Y of 7/5) at a free-stream Mach number of 5.9 and a unit free-
stream Reynolds number of 2.80 x 106 per meter. Comparisons between measured
values and predicted values were made by using several numerical and simple
engineering methods.

Present results are generally in excellent agreement with measured results
from other sources and with the predicted values from several numerical methods.
A modified Newtonian method provided consistently poor agreement with measured
axial-force coefficients and with normal-force and pitching-moment coefficients
for the 60° cone. Measured static aerodynamic coefficients for the large half-
angle cones show that the effects of nose-bluntness ratios are small, indicat-
ing the lack of importance of this parameter in the aerodynamic design of entry
probes having large half-angle cone forebodies.

INTRODUCTION

The spherically blunted cone has been used as the forebody shape of the
planetary entry probe for both the Viking Project and Pioneer Venus, and it
will be used again for the upcoming Project Galileo (Jupiter Probe). The final
aero-thermodynamic design for these planetary entry probes must be determined
by analytical techniques because the entry environment of other planets cannot
be simulated by using Earth-based experimental facilities. Experimental results
are needed, though, to validate the theoretical methods and to provide inputs
for empirical techniques or correlation procedures (ref. 1). Through proper
use of both measured and predicted results, future planetary probes can be
designed with less conservatism so that more payload can be accommodated.

Results from experimental studies conducted on sharp and spherically
blunted cones in air at supersonic and hypersonic Mach numbers are extensive.
Most of the early work (aerodynamic coefficients and pressure measurements)
was conducted on cones with small half-angles (O £ 40°) because they were
candidates for ballistic reentry into our own atmosphere. References 2 and 3
provide, respectively, summary tables and a compilation of the major body of
data on cones up through the mid-1960's. Particular examples of some of the
early experimental work are given in references 4 to 11. In later work
(refs. 12 to 19), cones with larger half-angles were studied with increasing
interest as candidate configurations for planetary entry probes and for basic
research in areas for which data were lacking.



The purpose of this report is to present a portion of the results from a
study which is designed to enrich the hypersonic data base for entry-type geom-
etries over a range of angles of attack, ratios of specific heats, and Mach
numbers. The present results (and those of ref. 20) are part of a systematic
study of aerodynamic coefficients and shock shapes at angles of attack which
are valuable for validation of prediction methods and completion of the hyper-
sonic data base. Experimental results presented herein are for sharp and
spherically blunted cones having cone half-angles of 300, 45°, 60°, and 70°
and nose-bluntness ratios of 0, 0.25, and 0.50. These configurations were
tested in the Langley 20-Inch Mach 6 Tunnel at a Mach number of 5.9. Measure-~
ments include shock shapes at o = 0° and 10° and static aerodynamic coeffi-
cients taken at 2° increments for o = -4° to 12°. Shock shapes at 0° angle
of attack for a 90° cone and for a sphere were obtained by using a flat-faced
cylinder model and a hemispherically blunted cylinder model, respectively.
Comparisons between measured values and predicted values are made by using
several numerical methods and simple engineering methods. Also, experimental
data from references 21 to 26 are compared with the present results.

SYMBOLS

Axial force

Ca axial-force coefficient,
q,S
. Pitching moment
Cm pitching-moment coefficient,
qsd
Normal force
Cn normal-force coefficient,
9,8
Cp,max Newtonian pressure coefficient
d model base diameter, cm
1 model length, cm
M, local Mach number
M, free-stream Mach number
Pt stagnation pressure, kPa
d, free-stream dynamic pressure, kPa
R free-stream Reynolds number based on d
o0, d
Iy model base radius, cm
£n model nose radius, cm



edet

nose-bluntness ratio

model base area, cm?

stagnation temperature, K

free-stream velocity, m/sec

cylindrical coordinates (fig. 1(a))

angle of attack, deg

ratio of specific heats

boundary-layer displacement thickness, cm

distance between model surface and shock wave, measured parallel
to model axis, cm (fig. 1(a})

cone half-angle, deg

minimum cone half-angle for shock detachment, deg

FACILITY AND TEST CONDITIONS

Shock shapes and static aerodynamic coefficients were obtained from flow
visualization and force and moment tests conducted in the Langley 20-Inch
Mach 6 Tunnel. Operation, flow conditions, and details of force testing in
this facility are described in reference 27. All tests were conducted at the
following flow conditions:

M, = 5.9

Pt = 276 kPa

Ty = 431 K
Ry,d = 0.142 x 10% (cones)
Rep,d = 0.107 X 106 (cylinders)

MODELS

Figure 1(a) provides a general planform view and the dimensions of the
12 cone models tested. These models were constructed from aluminum and have



base diameters of approximately 5.08 cm. Cone half-angles of 309, 459, 60°,
and 70° were examined, and the nose-bluntness ratios (0, 0.25, and 0.50) were
varied for each cone half-angle. A flat-faced cylinder .and a hemispherically
blunted cylinder, each with base diameters of 3.81 cm (fig. 1(b)), were tested
at o = 0° to provide shock shapes for a 90° cone and a sphere, respectively.
A photograph of the cone models tested is shown in figure 2. The tapered
cylindrical section extending behind the model forebody was designed to house
the strain-gage balance. These models were also used for the experimental
tests in helium described in reference. 20. : '

TEST METHODS

Flow visualization and force and moment tests were conducted simulta-
neously. Schlieren photographs were used to obtain the measured shock loca-
tions at @ = 0° and at @ = 10°. The shock locations were read manually from
photographs similar to the one shown in figure 3. The error in these measure-
ments is estimated to be *1.5 percent of Iy, which is about the indicated
thickness of the shock wave in the photograph. Shock-layer thicknesses A
were measured parallel to the model axis (see fig. 1(a)) and are presented
in table I. For values of r/ry, greater than 1.0, A was measured from an
imaginary extension of the plane defined by the base of the model.

Aerodynamic force and moment tests were performed with the models mounted
on a sting-supported, five-component strain-gage balance (no rolling-moment
component) . The straight sting was attached to the angle-of-attack mechanism
and data were obtained in 2° increments of angle of attack from -4° to 120,

The angle of .attack was set optically by using a point light source adjacent to
the test section and a small lens-prism mounted on the tapered cylindrical sec-
tion extending behind the model. The image of the source was reflected by the

prism and focused by the lens onto a board which was calibrated to indicate the
angle of attack. Data were obtained during the test runs with the model set at
discrete angles of attack. The accuracy of determining the angle of attack in

this manner is estimated to be #0.25°. All tests were conducted at a sideslip

angle of 0°, and no base pressures were measured.

The reference area for the models was the base area § and the reference
length was the base diameter d. All pitching-moment data were reduced about
the actual nose of each model. The estimated uncertainties in the measured
static aerodynamic coefficients based on a balance accuracy of 0.5 percent of
the design loads are as follows:

ACN & v o e e e e e e e e e e e e e e e e, « « o *0.020
ACA v v v i e e e e e e e e e e e e « « « o *0.010

L T

The measured static aerodynamic coefficients are presented in table II.



PREDICTION METHODS

In terms of the Mach number between the shock wave and the body M,, sev-
eral flow conditions will occur for the range of cone half-angles and nose-
bluntness ratios tested. For a = 09, the flow conditions that can occur are
illustrated in figure 4. For the sharp cone with B << 63et (fig. 4(a)), the
shock wave is attached and the local Mach number is supersonic throughout the
shock layer. If © > Bgep, there will be subsonic flow over the entire body
with the sonic line (locus of points where M; = 1.0) extending from the shock
wave to the base of the body, as shown in figure 4(b). For the sharp cone
there is a limited range of cone half-angles which causes a region of sub-
sonic flow adjacent to the surface (not illustrated). The size of this
region increases as 0 approaches O3etr but the shock wave remains attached.
For air at M_ = 6.0 this occurs between 0 = 53° and 0 = 6get = 55.4°
(ref. 28).

When the cone is spherically blunted and 6 << Bget (£ig. 4(c)), there is
subsonic flow over the nose region and supersonic flow over the conical after-
body. The sonic line extends from the shock wave to near the sphere-cone junc-~
tion of the body. If © > edet (fig. 4(d)), subsonic flow occurs over the
entire body (regardless of the nose bluntness), and the flow conditions are
similar to those of figure 4(b). The most complicated flow conditions occur
when there is subsonic flow over the nose but 0 is not small enough to allow
the flow to become completely supersonic aft of the sphere-cone junction and
not large enough to produce total subsonic flow in the shock layer (fig. 4(e)).
The sonic line can assume several shapes for values of 0 1in this range,
including the one shown in figure 4(e). For angles of attack other than 0°,
combinations of the flow conditions shown in figure 4 can occur simultaneously
in different meridional planes, depending on the combination of cone half-
angle, nose bluntness, and angle of attack.

A number of numerical methods were used to predict shock shapes and pres-
sure coefficients for the configurations studied. These methods were used pri-
marily because of their accessibility and because they covered the range of
flow conditions being studied. 1In addition to integrating the pressure coeffi-
cients to determine predicted static aerodynamic coefficients, values predicted
by Newtonian methods from reference 29 were also used for comparison. The fol-
lowing table lists the numerical methods used and indicates the local flow con-
ditions (as previously described) to which they were applied:

a all All Subsonic nose,|Subsonic nose,
Author Reference|capability |supersonic|subsonic| supersonic mixed on cone
cone
Klunker, South, and Davis 30 X X
Kumar and Graves?2 31 X X X
Zoby and Graves 32 X
Moretti and Bleich 33 X X
Sutton 34 X X X
Barnwell 35 X X
South 36 X

agolution includes the effects of viscosity.

See reference 20 for a brief description of these theoretical methods.



RESULTS AND DISCUSSIONS
Shock Shapes for 0° Angle of Attack

Sharp cones.- Measured and predicted shock shapes for sharp cones with
@ = 30° and 45° (figs. 5(a) and (b)) show the straight shock wave that is
obtained when it is attached to the body and the local Mach number is super-
sonic. Although the inviscid methods of references 28 and 30 provide excellent
agreement (within 2 percent) with measured shock—-layer thicknesses for both
cone half-angles, calculating the boundary-layer displacement thickness &%
and adding it to the original body to get an equivalent shape results in fur-
ther improvement in the agreement between measured and predicted values. An
undocumented laminar, similar boundary-layer solution written by Ralph D.
Watson of the Langley Research Center was used to calculate the displacement
thicknesses for these two cases.

For the sharp cones with 0 = 60° and 70° (figs. 5(c) and (d)), the shock
wave is detached and the local Mach number is subsonic. The method of refer-
ence 36 was used to predict the shock shapes by inputting a nose-bluntness
ratio rp/rp of 0.01, resulting in excellent agreement between measured and
predicted values for both cone half-angles.

Shock shapes for a 90° cone were measured from schlieren photographs of a
flat-faced cylinder and are compared with predicted values (refs. 35 and 36) in
figure 6. Good agreement (within 5 percent) between measured and predicted
shock-layer thicknesses is shown by both methods.

Blunt cones.- Measured and predicted shock shapes for the spherically
blunted cones at a = 0° are presented in figure 7. For O = 30° and
rn/ry = 0.25 and 0.50 (figs. 7(a) and (b)), the local flow is subsonic in the
nose region and supersonic over the conical afterbody as indicated by the pre-
dicted (ref. 34) sonic line. There is excellent agreement between measured and
predicted (refs. 31 to 34) shock locations, except that the approximate method
of reference 32 slightly underpredicts the shock shape aft of the sphere-cone
junction for rp/rp = 0.50.

Measured shock shapes for 0 = 45° and both nose-bluntness ratios
(figs. 7(c) and (d)) are in excellent agreement with predicted shock shapes
from references 31, 32, and 34. By assuming completely supersonic flow along
the conical afterbody, it was possible to use the approximate method of refer-
ence 32. The method of reference 33 was not applicable because of the presence
of subsonic flow along the conical afterbody as indicated by the sonic lines
predicted by the method of reference 34.

As shown by the sonic lines (calculated by the method of ref. 35), the
entire local flow field is subsonic for 6 = 60° and 70° and rn/ry = 0.25
and 0.50 (figs. 7(e), (f), (g), and (h)). All three methods (refs. 34 to 36)
used to calculate the shock shapes for these four cases provide excellent
agreement with measured values.

Shock shapes for a sphere were measured from schlieren photographs of the
hemispherically blunted cylinder (rp/rp = 1.00) and compared with predicted
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values (refs. 32 to 34) in figure 8. The excellent agreement between measured
and predicted shock shapes for the sphere was expected since all the previous
comparisons had shown excellent agreement in the spherically blunted nose
region for cones with 8 < Ogat.

Shock Shapes for 10° Angle of Attack

Sharp cones.- For 8 = 30° and 45° and o = 109, the shock wave is
attached and the predicted (ref. 30) flow-field solutions are completely super-
sonic for both cases. Good agreement with the measured shock shapes is shown
(figs. 9(a) and (b)), except in the downstream region where the difference is
probably due to the absence of viscous effects in the calculated results.

Because the prediction methods used in this study are not applicable for
sharp cones with detached shocks at 10° angle of attack, only the measured val-
ues are shown in figures 10(a) and (b).

Blunted cones.- Measured and predicted shock shapes for the spherically
blunted cones at o = 109 are presented in figure 11. Shock shapes predicted
with the method of reference 31 are in excellent agreement with measured values
for O = 30° and 45° and for rp/rp = 0.25 and 0.50 (figs. 11(a), (b), (c),
and (d)). In the nose region, the method of reference 33 shows excellent
agreement for the 300 cone for both nose-bluntness ratios. This method was not
applied farther downstream because of increasing difficulty in obtaining a con-
verged solution and because of the high cost of computing the complete three-
dimensional flow field. For © = 60° and 70° and both nose-bluntness ratios,
the shock shapes predicted by the method of reference 35 are in excellent
agreement with the measured shock shapes (figs. 11(e), (f), (g), and (h)).

Static Aerodynamic Coefficients

Sharp cones.- Comparisons between measured and predicted static aerodynamic
coefficients for the sharp cones are presented in figure 12. The coefficients
measured in this investigation for the 30° and 45° sharp cones are compared in
figures 12(a) and (b) with measured values from references 23 and 24 and with
predicted values based on Newtonian theory (ref. 29) and the method of lines
(ref. 30). All measurements and predictions are in good agreement except the
axial-force coefficient Cp, which is underpredicted by Newtonian theory.

For the 60° sharp cone (fig. 12(c)), the Newtonian theory shows good
agreement with measured values for the axial-force coefficient but yields large
percentage errors for the normal-force and pitching-moment coefficients. Good
agreement is also observed between measured Cp at & = 0° and the value pre-
dicted by the method of reference 36.

Measured aerodynamic coefficients from reference 21 as well as predicted
values from references 29 and 36 are compared with the present data for the 70°
sharp cone in figure 12(d). There is excellent agreement between measurement
and prediction for the normal-force and pitching-moment coefficients. However,



Newtonian theory (ref. 29) overpredicts Cp even though the values were modi-
fied by using Cp,max = 1.8094 instead of 2.0000.

Blunted cones.- Comparisons between measured and predicted static aerody-
namic coefficients for the spherically blunted cones are presented in fig-
ure 13. For O = 30° and r,/rp = 0.25 (fig. 13(a)), measured and predicted
(refs. 29, 31, and 34) aerodynamic coefficients are in good agreement except
for the overprediction of Ca by the method of reference 31 for angles of
attack in excess of 6°. This last result is not too surprising, since the
method of reference 31 was developed for small angle-of-attack applications
and becomes less and less accurate as & is increased. For 0 = 30° and
rn/rp = 0.50 (fig. 13(b)), the measured aerodynamic coefficients of refer-
ence 22 and those of the present investigation are in excellent agreement.
Again the method of reference 31 increasingly overpredicts Cp as the angle
of attack is increased. At o = 09, the prediction of Cp by the method of
reference 34 is in excellent agreement with the experimental data for both
values of rn/rh.

For 0 = 459 and rn/rp = 0.25 and 0.50 (figs. 13(c) and (d)), there is
excellent agreement between measured (present investigation and ref. 22) and
predicted normal-force and pitching-moment coefficients, but there is some dis-
crepancy for the axial-force coefficient. For rn/rp = 0.25 (fig. 13(c)),
Newtonian theory underpredicts Ca, but the methods of references 31 and 34
predict values which are in good agreement with the measured axial-force
coefficients. For rp/rp = 0.50 (fig. 13(d)), values from both Newtonian
theory and the method of reference 34 are in excellent agreement with measured
CA. The method of reference 31 again predicts the wrong trend for Cp with
@, as noted previously for 6 = 30° (figs. 13(a) and (b)).

For the 60° spherically blunted cone with rn/rp = 0.25 and 0.50
(figs. 13(e) and (f)), Newtonian theory (ref. 29) yields sizable percentage
errors for Cy and Cnps similar to those for the 60° sharp cone (fig. 12(c)).
Newtonian theory also overpredicted Ca for rp/rp = 0.50. All other measured
(refs. 22 and 25) and predicted (refs. 33 to 35) values show good to excellent
agreement with the aerodynamic coefficients measured in the present study.

Comparisons for the spherically blunted 70° cone are presented in fig-
ures 13(g) and (h). There is excellent agreement between measurements (pres-
ent investigation, refs. 25 and 26) and predictions (refs. 29, 34, 35, and 36)
except for the overprediction of CA by the Newtonian theory (ref. 29, seen
also for the sharp 70° cone) and for the measured Cp values of reference 25
for rp/ry, = 0.25. Note that three different references (refs. 21, 25, and 26)
were used to obtain other measured values for the 70° cone (one for each nose-
bluntness ratio), and that only for a nose-bluntness ratio of 0.25 do the val-
ues not agree within 2 percent with present experimental values.

The Effects of Nose Bluntness on Static Aerodynamic Coefficients

The static aerodynamic coefficients that were obtained experimentally for
0 = 30° and for all three nose-bluntness ratios are presented in figure 14.



The pitching-moment coefficient ‘is somewhat sensitive to nose bluntness,
increasing nose bluntness producing less nose-down pitch (less positive
static stability). The axial-force coefficient is somewhat insensitive to
the increase in nose-bluntness ratio from 0 to 0.25, but a nose-bluntness
ratio of 0.50 causes a significant increase at the higher angles of attack.
The normal-force coefficient is shown to decrease slightly for the most blunt
case as angle of attack was increased.

For cones with 0 = 459, 60°, and 70° (figs. 15 to 17), the axial-force
coefficient is the only parameter sensitive to the change in nose-bluntness
ratios. However, over the entire angle-of-attack range, for a given «, the
difference between the minimum and maximum values of axial-force coefficients
for these cone half-angles is less than 5 percent, which indicates that the
spherical nose bluntness is not an important parameter in the aerodynamic
design of probes having large half-angle cone forebodies.

CONCLUDING REMARKS

Shock shapes for sharp and for spherically blunted cones having half-
angles of 30°, 45°, 60°, and 70° and nose-bluntness ratios of 0, 0.25,
and 0.50 were obtained for o = 0° and 10° in air at Mach 5.9. Static
aerodynamic coefficients from a = -4° to 129 were also measured for the
family of cone models. The measured results were compared with other experi-
mental results and with values predicted from both numerical solution methods
and simple engineering methods.

The agreement between the present results and other measured static aero-
dynamic coefficients was generally excellent. There was good to excellent
agreement for all comparisons between measured and predicted shock shapes for
o = 0° and 10°. The same was true for comparisons between measured and pre-
dicted static aerodynamic coefficients, with the following exceptions. A modi-
fied Newtonian method did not consistently predict the measured values of the
axial-force coefficient and, for the 60° cone, the agreement with measured
normal-force and pitching-moment coefficients was poor. The method developed
by Kumar and Graves for small angle-of-attack applications generally predicted
the wrong trends for the axial-force coefficient for angles of attack above
about 6°.

For the 30° cone, the pitching-moment coefficient was somewhat sensitive
to nose bluntness, increasing nose bluntness producing less nose-down pitch
(less positive static stability). The axial-force coefficient was somewhat
insensitive to the increase in spherical nose-bluntness ratio from 0 to 0.25,
but a nose-bluntness ratio of 0.50 caused a significant increase at the higher
angles of attack. The normal-force coefficient decreased slightly for the most
blunt case.

The axial-force coefficient was the only parameter sensitive to changes in
nose bluntness for the 45°, 60°, and 70° half-angle cones. However, over the
entire angle-of-attack range, for a given o there was less than 5 percent
difference between the minimum and maximum values of axial-force coefficients



for these cone half-angles, which indicates that the spherical nose bluntness
is not an important parameter in the aerodynamic design of probes having large
half-angle cone forebodies.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 18,1980
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TABLE I.~ MEASURED SHOCK DETACHMENT DISTANCE

(a) a = Q°

S

Detachment distances nondimensionalized by base radius A/ry for r/r, of -
0, deg
0 0.1 0.2 0.3 | 0.4y 0.5 0.6 0.7 0.8 0.9} 1.0 | 1.1 1.2 | 1.3

In/tp = 0
30 |0 0.035{0.068{0.105{0.138/0.175/0.203{0.236{0.269{0.299/0.327{0.187{0.044[-0.096
45 10 .028; .049( .077; .098) .128| .156| .181| .209] .235| .258{ .184} .105 .033
60 .038]{ .086f .128{ .168{( .202] ,233| .263] .291] .316} .336] .357! .313} .263 .204
70 .195] .228) .256( .279] .302| .326| .344| .358| .370f{ .374! .381| .344| .298 .237
90 .527| .524; .515} .509] .497| .485| .473| .449| .428! .404| .377{ .341] .296 .249
Sphere| .146| .149{ .156| .164]| .174| .190] .214{ .239( .295| .385| .753] .670| .567 .458

rn/rp = 0.25
30 |0.037(0.042{0.079{0.149{0.200{0.217|0.238{0.256|0.280{0.305{0.340{0.191}0.047!-0.096
45 .043) .047} .073| .094| .113} .135( .161| .184{ .210] .238| .260| .184] .106 .033
60 .072| .084) .128) .166| .200| .231| .259| .287( .310{ .333| .352} .305| .261 .203
70 .213] .224| .252| .278| .306] .324| .343] .354] .361} .370| .377} .343] .296 .243

rn/tp = 0.50
30 {0.080j0.080}0.087!0.108{0.152}/0.248/0.333{0.391{0.429/0.447/0.454{0.283({0.129]/-0.030
45 .077| .079} .086| .107{ .144| .174| .190{ .208| .225| .247] .271} .196| .119 .043
60 1121 .116§ .130| .163} .200} .230| .260| .291) .316{ .340] .358| .316] .260 .202
70 .229] .236) .257| .282f .306| .326| .345| .354| .366| .373)] .377| .336| .292 .236




Si

TABLE I.- Continued

(b) @ = 10°; windward side
Detachment distances nondimensionalized by base radius A/rp for r/rp of -
0, deg
0 0.1 | 0.2 | 0.3 ] 0.4 |0.5 |06} 0.7 }0.8]0.9 1.0 { 1.1 { 1.2} 1.3
rn/tp = 0
30 |0 0.0390.076 [0.113]0.154[0.189{0.220{0.2520.28310.317 0.350(0.217|0.080}-0.067
45 |0 026! .o058| .090] .121| .155{ .188} .219| .252| .281 .311{ .240| .167] .087
60 041] .097| .138{ .176| .208| .239| .265} .287} .305 .317} .324] .266| .193| .106
70 .187| .219| .249{ .272| .290} .304} .313| .316 .318] .313| .304| .253| .187| .104
rn/tp = 0.25
30 |0.043/0.043{0.0640.126[0.1590.186}0.2130.246 0.280(0.315/0.346 {0.211{0.063}-0.069
45 .037] .043| .063] .090] .119} .152} .185] .219} .251 .279| .312} .245| .169} .090
60 083 .103] .134{ .181| .214| .244| .268| .286 .307| .316] .323| .263] .192f .103
70 213| .223| .248| .274| .293}| .308| .318| .324 .324) .320| .311} .251| .183} .101
ry/rp = 0.50
30 |0.0840.0780.079|0.097 |0.138]0.2120.272]0.300 0.320]0.341}0.359(0.212{0.072({-0.072
45 075! .074| .081| .099| .126| .158| .185] .215} .243 .275| .308| .234| .158| .075
60 1250 .130] .145| .183| .214| .240| .264| .285 .302| .314] .319| .258| .187| .102
70 226! .232] .248| .271] .291| .311| .320f .328} .331 .325) .318{ .259] .192| .109
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TABLE I.- Concluded

(¢) a = 109; leeward side

Detachment distances nondimensionalized by base radius A/rp for r/ry of -

8, deg
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
rn/Ip = 0
30 0 0.039(0.072{0.102{0.137/0.170]0.2040.241 0.27010.296]0.339|0.193|0.054|-0.091

45 |0 -024} .043] .070] .093{ .115| .139| .161| .186{ .212 «231} .151} .075{ 0
60 -041f .083} .118] .149( .180] .211| .238| .268( .296 .323| .348] .315| .278 . 241
70 <187 .219) .249) .279 .306] .332| .357| .376| .396 -410f .429} .403( .373 . 341

In/tp = 0.25

30 10.043]/0.0540.111/0.207{0.283/0.339[0.385/0.413 /0. 43¢ 0.47010.473(0.318{0.169( 0.024
45 -037| .048} .087| .119| .127{ .145] .160]| .179{ .197 .216) .243] .164| .089 .007
60 -083f .092} .119| .153) .183{ .213]| .238] .268!| .295 .323 .351| .315| .280 .244
70 -213| .232} ,260] .290| .318| .341| .366| .385| .400 <415 .429| .400{ .372 .338

In/Tp = 0.50

30 0.084]0.087{0.097{0.130 {0.1910.290{0.392 [0.472{0.544 0.60710.661]0.52910.390| 0.248
45 «075| .083| .096] .127} .172| .206| .234| .250| .263 <271} .281} .192] .111 . 026
60 <125( 127 .139| .167| .190| .215] .239| .264] .292 .316 | .343| .307| .272 .233
70 226} .240} .263( .291) .318( .339{ .362| .380] .398 -413| .429} .401} .373 «337




TABLE II.- MEASURED STATIC

AERODYNAMIC COEFFICIENTS

(a) & = 30°
s deg CN CA Cm
rn/rb =0
-4 -0.1034 0.5382 0.0828
-2 -.0460 .5383 .0354
0 .0084 .5374 -.0048
2 - 0607 .5349 -.0453
4 .1138 .5380 -.0853
6 1720 .5354 -.1319
8 .2199 .5342 -.1698
10 .2702 .5291 -.2079
12 .3197 .5368 -.2437
rn/fp = 0.25
-4 -0.1003 0.5340 0.0682
-2 -.0436 .5407 .0292
0 .0123 .5417 -.0060
2 0656 .5433 -.0430
4 1197 .5424 -.0772
6 .1770 .5392 -.1172
8 2271 .5380 -.1520
10 .2806 .5387 -.1871
12 .3303 .5438 -.2204
rn/rb = 0.50
-4 -0.0908 0.5644 0.0584
-2 -.0382 .5637 .0236
0 .0104 .5580 -.0048
2 .0595 .5625 -.0345
4 .1080 .5649 -.0633
6 . 1509 .5672 -.0867
8 .2024 .5683 -.1228
10 .2464 . 5757 -.1484
12 .2896 .5843 -.1723
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TABLE II.- Continued
(b) 6 = 45°
o, deg Cy Ca Cn
rn/rp =0
-4 -0.0673 1.0844 0.0483
-2 -.0315 1.0874 .0234
0 .0066 1.0886 ~-.0032
2 .0388 1.0851 -.0253
4 .0726 1.0803 -.0461
6 .1066 1.0747 -.0700
8 1414 1.0657 -.0934
10 .1746 1.0503 -.1154
12 .2139 1.0331 -.1458
rh/rp = 0.25
-4 ~0.0726 1.0533 0.0494
-2 -.0346 1.0538 .0246
0 .0034 1.0554 -.0009
2 .0390 1.0524 -.0240
4 .0715 1.0485 -.0423
6 .1067 1.0443 -.0633
8 .1402 1.0356 -.0852
10 .1760 1.0278 -.1077
12 .2160 1.0053 -.1357
rn/tp = 0.50
-4 -0.0749 1.0605 0.0498
-2 -.0380 1.0661 .0291
0 .0034 1.0634 .0014
2 .0365 1.0485 -.0195
4 .0691 1.0636 -.0372
6 .1039 1.0569 ~.0588
8 .1398 1.0489 -.0814
10 .1752 1.0327 -.1031
12 .2138 1.0224 -.1277
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TABLE II.- Continued

(c) 6 = 60°
a, deg Cyn Ca Cnm
rh/rp = 0

~4 -0.0137 1.4632 0.0124
-2 -.0040 1.4743 .0040
0 .0012 1.4838 .0010
2 .0078 1.4811 -.0046
4 .0151 1.4724 -.0092
6 .0191 1.4622 ~.0108
8 .0310 1.4491 -.0215
10 .0501 1.4271 -.0362
12 .0726 1.3989 -.0543

rn/rp = 0.25
-4 -0.0165 1.4697 0.0146
-2 -.0055 1.4804 .0052
0 .0005 1.4869 .0015
2 .0063 1.4868 -.0032
4 .0137 1.4796 -.0081
6 .0159 1.4716 -.0083
8 .0294 1.4674 -.0219
10 .0502 1.4281 -.0369
12 .0729 1.4108 -.0540

rp/rp = 0.50
-4 -0.0140 1.4423 0.0092
-2 -.0046 1.4573 .0039
0 .0008 1.4649 .0002
2 .0062 1.4636 -.0039
4 .0127 1.4587 -.0071
6 .0178 1.4460 -.0122
8 .0315 1.4288 -.0237
10 .0503 1.3966 -.0375
12 .0740 1.3723 -.0551
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" TABLE II.- Concluded
(dy 6 = 70°
a, deg CN CA Cm
rn/rb =0

-4 -0.0149 1.5245 0.0161
-2 -.0104 1.5232 .0100
0 -.0019 1.5226 .0011
2 . 0027 1.5286 -.0040
4 .0065 1.5194 -.0094
6 0119 1.5212 -.0159
8 .0165 1.5218 -.0198
10 .0296 1.5147 -.0321
12 .0438 1.5221 -.0467

rn/rp = 0.25
-4 -0.0116 1.5390 0.0154
-2 -.0074 1.5407 .0094
0 .0010 1.5462 .0015
2 .0049 1.5406 ~.0042
4 .0100 1.5381 -.0102
6 .0136 1.5288 -.0155
8 .0200 1.5189 -.0205
10 .0341 1.5041 -.0344
12 .0466 1.4923 -.0462

) 'rn/rb = 0.50
-4 -0.0108 1.5536 0.0133
-2 -.0044 1.5599 .0063
0 .0010 1.5622 .0003
2 .0043 1.567M -.0017
4 .0095 1.5645 -.0097
6 0140 1.5542 -.0167
8 .0200 1.5454 -.0207
10 . 0297 1.5327 -.0300
12 .0457 -.0463

1.5148
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Moment r
reference b
center
Shock/

6, deg /Ty Ty €11 L, cm

30 0 2,536 4,382

30 .25 2,529 3.759

30 .50 2,530 3.124

45 0 2,543 2.540

45 25 2.531 2,281

45 .50 2.539 2.022

60 0 2.540 1.466

60 .25 2.531 1.367

60 .50 2.543 1.275

70 0 2.537 .930

70 .25 2.545 .884

70 .50 2.544 .846

Figure 1.~ Planform view and dimensions of configurations tested.

(a) Cone models.
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Flat-faced cylinder

3.81 diameter

15.24 -

)

1,90 radius
3.81 diameter

\Hemispherically blunted cylinder

(b) Cylindrical models. (All dimensions in cm.)

Figure 1.~ Concluded.



£C

CENTIMETERS

Figure 2.- Photograph of cone models tested.
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Figure 3.- Example of schlieren photograph.
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\ Ml>1

\
\\
Sonic line
Mg >>1 % Mo>1 /M <1

(a) Sharp cone; 6 << Bget. (b) Sharp cone; 6 > 03¢

\\Ml 1 —Sonic line
AN Sonic line
D,
W
Mep>1 Me>1
(c) Blunted cone; 8 << Bget. (d) Blunted cone; 6 > Bge¢. (e) Blunted cone; 6 < Bgq¢.

Figure 4.- Examples of local flow combinations for sharp and spherically blunted cones at @ = 0°,
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(a) 9 = 300°.

Figure 5.— Measured and predicted shock shapes for sharp cones at «
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Figure 5.~ Continued.
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Figure 5.~ Concluded.
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-2 0 A 4 6

X"

Figure 6.- Measured and predicted shock shapes for a flat-faced cylinder (8 = 90°) at o = QO.
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Figure 7.- Measured

(a) 6 =309 rp/rp = 0.25.

and predicted shock shapes for spherically blunted cones at o
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1.4~
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— — References 33and 34
LOF — - Reference 32
8
/
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e
A
2
0 = A ] A |
-2 70 .2 .4 6 .8 1.0 1.2

x/r
b
(b) 6 =30% rp/rp = 0.50.

Figure 7.~ Continued.
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Figure 7.- Continued.
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Figure 7.~ Continued.
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(e) 8 =609 rp/rp = 0.25.

Figure 7.~ Continued.
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8 = 60°; rpn/rp = 0.50.

Figure 7.- Continued.
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Figure 7.~ Continued.
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Figure 7.- Concluded.
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Figure 8.- Measured and predicted shock shapes for a hemispherically
blunted cylinder (sphere) at a = 0°,
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Figure 9.~ Measured and predicted shock shapes for sharp cones at a = 100,
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Figure 9.~ Concluded. -
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L2} O
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QO Measured

(a) 8 = 60°

Figure 10.- Measured shock shapes for sharp cones at «

1.0
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Figure
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11.- Measured and predicted shock shapes for spherically

blunted cones at Q
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Figure 11.~ Continued.
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(b) 6 = rn/rp = 0.50.
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1.2

1.0 QO Measured
~ Prediction
Reference 31

Ay
(c) 0 =459 rn/rp = 0.25.

Figure 11.- Continued.
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(d) 6 =45% r,/rp = 0.50.

Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11.~- Concluded.
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Figure 12.- Measured and predicted static aerodynamic coefficients for sharp cones.
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Figure 13.- Measured and predicted static aerodynamic coefficients for spherically blunted cones.
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Figure 13.—- Continued.
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Figure 14.- Effect of nose bluntness on static aerodynamic coefficients of a 30° cone.
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Figure 15.- Effect of nose bluntness on static aerodynamic coefficients of a 45° cone.
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Figure 16.- Effect of nose bluntness on static aerodynamic coefficients of a 60° cone.
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Figure 17.- Effect of nose bluntness on static aerodynamic coefficients of a 70° cone.
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