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A. APPLICATION AND EVALUATION OF LANDSAT TRAINING, CLASSIFICATION, AND
AREA ESTIMATION PROCEDURES FOR CROP INVENTORY

Marilyn M. Hixson*

1.	 Introduction

Accurate and timely crop production information is a critical need in

today's economy. During the past decade, satellite remote sensing has been

increasingly recognized as a means for crop identification and estimation

of crop areas.

An extensive experiment, the Large Area Crop Inventory Experiment

(LACIE), was conducted by NASA, USDA, and NOAA during 1974 through 1977 [1].

Its data analysis objective was to distinguish small grains from non-

small grains using Landsat multispectral scanner (MSS) data. Several other

investigations have shown that the potential also exists for identification

and area estimation of corn and soybeans [2,3,4.5].

This task is the second year of a specific LARS task which resulted

from a proposal in response to the Applications Notice. It is also part

of the second year of effort in a larger, multi-year, multi-organizational

effort to extend LACIE-like technology to crops other than the small grains.

The accuracy and precision of area estimates obtained from Landsat data are

affected by a combination of training, classification, and area estimation

procedures used. Several types of agricultural. scenes in the U.S. Corn Belt

are being investigated in this task to assess scene dependent differences in

optimal choices of training, classification, and area estimation procedures.

*Data analyses for Task 2A, Application and Evaluation of Landsat Training,
Classification, and Area Estimation Procedures for Crop Inventory, were
conducted by Donna Scholz, Mark Swenson, Carol Jobusch, Tsuyoshi Akiyama, and
Getulio Batista. Carol Jobusch, JeRnne Etheridge, and Joan Buis aided in
programming and system problems. Carol Jobusch and Mark Swenson conducted some
of the statistical analyses. Many thanks are also due to Dr. Marvin Bauer,
Dr. Philip Swain, Dr. Virgil Anderson, and Dr. K.C.S. Pillai who acted as
consultants and advisors to the project.
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2. Objectives

The overall objective of this study is to evaluate Landsat training,

classification, and area estimation procedures for crop inventory. Specific

objectives include:

'Assess the effect of sampling in training and classification on

area estimates.

'Compare several methods for obtaining training statistics.

'Assess the ability of several classifiers to provide acreage

estimates of corn and soybeans in several regions of the U.S.

Corn Belt.

'Assess the potential accuracy of corn and soybean estimates se a

function of growth stage, both unitemporally and multitemporally.

3. Experimental Approach

During the current contract year, four subtasks, each of which

addressed several aspects of the general classification problem, were

conducted. These subtaske were: (1) a study of the effects of sampling in

clustering and classification, (2) a study of several alternatives in the

training procedure, (3) a comparison of several classification algorithms,

and (4) an assessment of the potential accuracy of corn and soybean estimates

as a function of growth stage. The specific approach used in each of these

aubtasks will be discussed in the section addressing that objective. The

experiment design permits an integrated study of sampling, training, and

classification, allowing for interactions among the components of the procedure.

Training method, features used in classification, and classification algorithms

were varied. Effects of site location were assessed.

The data set which was used in this study was drawn from the data

acq uired in 1978 over the U.S. corn and soybean sites. The data obtained

were from 81 sample segments located in four test areas in Iowa, Illinois,

and Indiana (Figure A-1).
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LACIB-type sample segments (5 s 6 nautical miles in size) were

selected, generally two per county. Landsat data acquired included mul-

titemporally registered MSS data tapes and film writer imagery (PFC Product

1) for each acquisition and segment. Color infrared prints of aerial

photography with ground inventory overlays were obtained. Additional

reference data were obtained for some segments in the form of labels of 418

pixels located on systematic grids in a segment. Digitized wall-to-wall

inventories were obtained for some of the segments which NASAIJSC had

digitized. A summary of the currently available data set is given in Table

A-1.

To permit interchangeability of algorithms and approaches, a set of

computer -routines were written to make the LARSYS and EODLARSYS systems

compatible. Routines are included for statistics conversion between

formats and results conversion between formats. A description of these

programs and user documentation are available on request.

A second programming effort was initiated to reduce cost and data

preparation time. The objective of this effort was to program the capability

for LARSYS to read either LARSYS or UNIVERSAL format data tapes. All the

processors in LARSYS had previously been able to read only LARSYS format

data tapes, but all data were received in UNIVERSAL format, necessitating

a reformatting operation before analysis could be carried out. Now,

developmental LARSYS (LSDV370) will automatically determine the format of a

data tape (i.e., the format does not need to be user-specified) and will

read the tape using the appropriate format statements. This programming effort

was partially funded from this task.

4.	 Sampling Effects in Clustering and Cla-sification

A study was conducted to investigate the "best" subset of bands for crop

separability. Multitemporal data from four segments in this Corn Belt were

analyzed (Table A-2). Training data were fields located on a systematic

grid; labels were obtained from ground inventories. Statistics were developed

by clustering all training fields of one cover type together. The beat combina-

tion of four from the sixteen available channels (four dates) was selected
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Table A-1. Sugary of types of data available for 81 U.S. corn

and soybean segments.

Taal Loudest 6apaet lartal Cround `T	 bigitat

site 6ata 9OY01Y	 -,^ar 16:	 IYlarf_ _ Photo Inventory NiaL Ifl1MAtOQ

I IM Adano 632 x x x x x x

633 x x x x
Allan 634 x x x x

635 x x x x
Blackford 638 x x x x

639 x x x x
Delmore 640 x x x x x

"I x x x x
Koury $42 x x x x x x

643 x x x x x x
,Tar 6K x x x x

647 x x x x x
Wiese 646 x x x x x

649 x x x x x
Randolph 632 x x x x x x

633 x x x x x x
Warne 656 x x x x

630 x x x x
Vells 860 x x x x x x"I x x x x x

2 IM Beaton 636 x x x x x
637 x x x x x x

Jasper 644 x x x x

645 x x x x
lkwton M x x x x

651 x x x x x
Tippecanoe 654 x x x x x

653 x x x x x
Warren 656 x x x x x

657 x I x x x
IL Champaign 620 x x

621 x x
622 x x

Ford 623 x x
Iroauoia 624 x x x x x

623 x x x x x
626 x x x x x

Kankakee 627 x x x x x
626 x x x x x

yetsilloe 629 x x
630 x x
631 x x

3 IA Calhoun 662 x x x x x
663 x x

tact 666 x x x x x
667 x x x x x
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Table A-1. (Cont.)

Teat Landsat $@su % Aerial Ground Pixel Digital
lice statiCo—rat Nua/ar 8 •.slarS pboto v	 tory ijahvis Inv*ntory

3	 IA	 Naniltoa 666 X
869 x x x x

Naaeeek 810 x x x X z
u1 x : x X :

Nuaboldt 874 x X x x x
175 x x x x X

xossreh 878 x x z x x x
•n x x x x
119 X x x x x

Palo Alto 8U x x x x z x
IS) X x x x x

Pocabostas 88i x x x x
88s x x x x

Wabster 893 x x X x x x
8% x x X x x

Wright 896 x x x X
899 x x

i	 IA	 Crawford 8646 x x x x x x
86s x z x x x x

Narrison 872 x z
173 x x

Ida 816 1 1 x x
871 x X 1 x x x

Monona 880 x x x x x x
181 x X x x x x

Pottwatteaila 886 x z x x x
187 X x x 1 x
888 x z x x x

Ise ii9 x x
No x x x x x

Shelby 891 X X x x x x
892 x x x x x

Woodbury 895 x x x x X
896 x x x x x
097 1 x x x x
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Table A-2. Segments and acquisitions used in the wavelength band selection study.

Landsat

Segment	
Acquisition	 Growth Stage of Corn

Date

824 (Iroquois, IL) 6/12 emergence

8/5 tasseling

8/31 dent

9/28 mature

854(Tippecanoe, IN) 6/10 emergence

7/26 tasseling

8/21 dough

9/26 mature

886(Pottawattamie,IA) '6/16 emergence

7/23 tasseling

9/6 dent

9/24 mature

892(Shelby,IA) 6/16 emergence

7/23 tasseling

8/9 blister

9/24 mature
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using the separability function in LARSYS. Channel combinations are ranked

according to the average transformed divergence. A tabulation of results

is in Table A-3. The first channel (•5-.6 pa) on each date was very

rarely selected; the two near infrared bands were both selected with high

frequency on all dates. It was discovered that of the 30 bent channel com-

binations in four segments, neither two visible, nor two infrared channels from

the same date were ever selected. Thus, either channel three (.7-.8 pm)

or channel four (.8-1.1 um), but not both, should be selected.

To decide which of the two channels should be the candidate for use,

several criteria were considered. The first criterion, the channel

selected most frequently for the single best combination, found channel four

selected more often. Table A-3 illustrates that summed over segments, dates,

and the best 30 combinations, channel four was selected more often. The

final criterion was a subjective one: that channel three is in a region of

rapid change in response of green vegetation and does not seem to be as reliable.

In summary, the use of all 16 channels in crop identification and

classification does not seem to be necessary. T`, •:, visible channels or two

near infrared channels from the same measurement date were never selected.

Channels two (.6-.7 }nn) and four (.8-1.1 ym) from each date appear to give a

good subset to classify with or select another subset from.

A second analysis was then conducted to assess the effect of sampling

in clustering and classification on classification accuracy, proportion

estimates, and variance reduction factors. The sample of wavelength bands

suggested in the previous analysis was evaluated, and results using a sample

of data were compared with the use of all data. The study was based on

two principles: (1) past studies have noted a tendency for performance to

decrease as the number of wavelength bands used in classification increases

and (2) it is very expensive to cluster and classify all pixels in a segment.

Data were analyzed from three segments: 824 in Iroquois County, Illinois;

886 in Pottawattamie County, Iowa; and 892 in Shelby County, Iowa. Multi-

temporally registered data from four Landsat acquisition dates were used.
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Table A-3. Number of appearances of each individual channel in the top
30 combinations.

Corn
Segment

Growth
Stage Channel 824 854	 886 892 Total Rank

Emergence I - 2	 - 5 7 13
2 11 12	 2 16 41 7
3 18 16	 7 11 52 3
4 7 14	 21 4 46 5

Tasseling 1 - -	 6 - 6 14
2 - 4	 10 6 20 10
3 10 11	 11 10 42 6
4 11 15	 19 20 65 2

Blistering to Dent 1 - -	 4 - 4 15
2 - 8	 6 - 14 12
3 9 18	 12 12 51 4
4 21 12	 18 18 69 1

Mature	 1 3 -	 -	 -	 3 16
2 16 -	 -	 -	 16 11
3 8 6	 1	 9	 24 8
4 6 2	 3	 9	 20 9
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Three variables were investigated: sample of data used in clustering,

sample of data used in classification, and number of wavelength bands

used in clustering and classification. Eight treatments (a 23 factorial design)

were applied on each of the sample segments, with segments being the random

factor in the experiment design.

The general data analysis procedure which was used for the experiment

was the Procedure 1 software in a LACIE-like mode. Between 40 and 60

Type Al- dots were used to seed the clustering algorithm and to label the

resultant clusters. ISOCLS was used to cluster the data with a simulated

single pass. The clusters were labeled using the single nearest Type 1 dot.

Sum-of-densities classification was carried out on three cover types. The

Type 2 dots were used to estimate a confusion matrix and compute a stratified

area estimate. The variables analyzed were estimates of proportions of

corn and.soybeans; percent correct for corn, soybeans, and other; and variance

reduction factors (R.V.) for corn and soybeans.

The dashes in Table A-4 for eight bands, 62 cluster results are

indicative of a missing data problem for segment 824. This segment was

primarily corn and soybeans with very few other cover types being represented

in the scene. Using this set of parameters, it was not possible to find

any subclasses identified as other crops, so classifications were not carried

out.

Because of the missing data problem, the use of eight wavelength bands

clustering a 6% sample of data could not be recommended for use. In

addition, some significant factor interactions suggest that the use of a 6%

cluster sample with 16 bands may also lead to different results. It is indeed

possible that, although 6% vs. 100% clustering showed a significant difference,

a cluster sample of a larger percent of data would be highly acceptable.

This study did not pursue that possibility.

It appeared, however, that the sample of data classified did not

significantly alter the resulting proportion estimates. In addition, the

classification accuracy and proportion estimates using eight bands were not
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significantly different from that using all 16 bands.

5. Evaluation of Alternative Training Methods

The first investigation of training procedures was conducted using

data from the CITARS project, before 1978 corn and soybean data became available

[6]. These analyses used data from the Fayette County, Illinois, test site.

Several aspects of Procedure .1 were investigated and their effects

on estimates were assessed. Particular items investigated included: the

distance measure used in the LABEL processor, the number of pixels required

per cluster class, and the number of iterations (passes) used in ISOCLS.

A study compared use of Ll and L2 distance in the LABEL processor to

identify clusters with their nearest neighbor. No significant differences

in estimates of corn or soybeans were found.

Another experiment compared results obtained using or deleting

small cluster classes. The first method was to use all clusters large

enough not to have singular covariance matrices, and the second method was

to delete all clusters with fewer than 100 points. No significant differ-

ences in estimates of corn or soybeans were found. Slightly higher

classification accuracies were obtained for soybeans and else when small

classes were deleted, resulting in somewhat better variance reduction factors

for the crops of interest.

The final analysis using data from the Fayette County site was an

evaluation of the number of iterations (passes) used in ISOCLS. A four

date, 16 channel clustering was carried out in two ways. The first was one

iteration with no splitting of cluster classes allowed, and the second was a

twenty iteration cluster with a printout of intermediate results after

every five iterations. Forty Type 1 dots were input to serve as initial cluster

centers; therefore, the single iteration procedure had 40 clusters. However,

the twenty-pass procedure created 60 clusters, the maxiaum that was allowed

by the user-set parameter.
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The aim of the analysis was to see how well the one-pass procedure

clustered the data, compared with the twenty-pass procedure. There is a

very large increase in computer time needed for the twenty-pass procedure,

so fewer iterations are preferable if they perform adequately.

For one, five, ten, fifteen, and twenty iterations, the computer

printout contained: (1) a table of the standard deviations of each cluster

for each channel, (2) a table of means of each cluster for each channel, and

(3) a list of the number of points in each cluster.

Two questions were considered: (1) at what point (i.e., after how

many iterations) do the standard deviations of the clusters get small or

stabilize and (2) when do the cluster means stabilize.

For each channel, the three clusters with the largest standard

deviations were examined. There were no real changes after five or more

passes; there was, however, some tightening of clusters between one and five

iterations. Next, the distributions of cluster standard deviations after

one, five, and twenty iterations were examined by tabulating the number of

clusters whose standard deviations were between n and n+1 for n-1,2...11.

Graphs (such as Figure A-2) were drawn for band one (.5-.6 um) on June 10

and 29, bands two (.6-.7 um) and three (.7-.8 um) on June 29 and July 17,

and band four (.8-1.1 um) on June 29 and August 21. The general conclusion

was that the distribution of standard deviations improved very slightly with

more iterations; the graphs showed very little change.

To compare distributions of cluster means, which involves dealing with

a 16-dimensional measurement space, projections onto a two-dimensional space

were examined; scatterplots of cluster means for one visible (.6-.7 um) and

one near infrared (.8-1.1 um) channel for a given date were overlaid for one, five,

and 20 iterations. If the 20 iteration cluster defines the measurement space,

it must be concluded that the single iteration clusters cover almost all of

the space.

A second Ftudy, using test segments from the Corn Belt, examined
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procedures used in a modified supervised training approach. Four acquisitions

were analysed. These were selected one from each of four time periods

which were defined based upon corn growth stage: stage 1 was preplant to

eight leaves; stage 2 was ten leaves to tasseling; stage 3, tasseling to

beginning dent; and stage 4, dent to ms*.urity.

Training fields were selected on a systematic grid; all fields of

one cover type (corn, soybeans, else) were clustered together, using only

channels two and four from each Landsat acquisition date. Two methods

for subset selection wc.re compared. Weighted and unweighted separability

measures were used to select the best four of six or eight channels for use

in classification. The unweighted separability measures considered the

distance between all spectral subclasses in ranking the channels; the

weighted separability considered only those spectral subclasses which were

of different cover types. In the majority of the cases, the same subset was

selected. If a different subset was selected, the weighted method produced

classification results of higher accuracy.

Another aspect of the training procedure was the number of data points

used for defining each of the spectral subclasses. In general, small

clusters (less than 15-20 points) were deleted or combined with other

clusters. In one analysis, however, several small classes appeared to be

spectrally separable from all other cover types, so classification was carried

out using the amall classes. Classification accuracies were lower than

anticipated, so some additional analyses were conducted. It was discovered

that in deleting the small clusters, performance of the classifier consistently

increased. Any clusters containing few points should be carefully examined

before use in analysis.

6.	 Comparison of the Performance of Five Classification Algorithms
.P

6.1 Objectives

The overall objective of this study was to apply several currently
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available classification schemes and to evaluate their performance on

se,,er•l agricultural data sets. The data sets were selected to include

con:, soybeans, winter wheat, and spri •..ig wheat as major crops. Classifi-

cation accuracy for test fields, ease of analyst use, and computer time

required were compared for the various classtfiers and data sets.

6.2 Approach

Test sites were selected from three major data bets: Fayette

County (south central Illinois) from the CITARS data; LACIE Phase II

data from 1976 over Foster County, ND, and Grant County, Kansas; and

multicrop data from 1978 ov :r the U.S. Corn Belt: Pottawattomie (886)

and Sheiby (892) Counties is west central Iowa, Tippecanoe County (854)

in west central Indiana, and Iroquois County (824) in east central Illinois.

The nee-mu—nt4 -iimple several major crops: winter wheat in Kansas:

spring whet Ju Nor!! Dakota: and corn and soybeans in Indiana, Illinois

-and Iaw:a. Th y, Corn TkA t segments were located in two distinct regions

to samp't v.,ri.ihility Iii soils, climate, and agricultural practices. Bc,h

areas are ic:tinsively cropped, with corn and soybeans being the predominant

agricultural crops. Ground reference data and field maps as well as cloud-

free min?-ritemporally registered digital Landsat MSS data were available

over ttir: it! sites.

`-uur acquisition dales wt=re selected for analysis from the most

clo4,'•-free, least noisy, aw! test registered acquisitions which temporally

srt°,,led Ow crap c.ai.endar t.- maximize crop development differences ('Table A-5) .

Fut .T,« Cirn ! p elt s:, :`sent.	 an attempt was made to obtain a springy; acquisition

to Li t. tt-- ser, ,tr.itt w'-" :4r small ",.rains, trees and permanent pasture ! rum

row cro k.,. An acquisition after corn had tasseled was included to

scparate corn and soybeans.

Since classification costs would be too high if all 16 ban:is of data
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were used, classifications were performed using four bands selected to

maximize the average transformed divergence between pairs of spectral

subclasses. The acquisition dates and spectral bands selected are shown

in Table A-6.

Five classifiers were selected for study:

CLASSIFYPOINTSs a per point Gaussian maximum likelihood classifier.

It is a processor from LARSYS, a remote sensing data analysis system

developed at LARS [7].

'CLASSIFY is a sum--of-normal-densities maximum likelihood classifi-

cation rule which first assigns each pixel into an information

category and then a::s4ns the pixel to a spectral subclass within

that category. It is a processor from EODLARSYS, developed at NASA,

Johnson Space Center [8].

'MINIMUM DISTANCE is a linear classification rule which assigns each

pixel to the class whose mean is closest in Euclidean distance [9].

It is a processor from LARSYS.

'The LAYERED classifier is a multistage decision procedure [10]. It

utilizes decision tree logic with an optimum subset of features at

each tree node to classify each pixel, using a Gaussian maximum

likelihood decision rule. LAYERED is also a processor from LARSYS.

'ECHO (Extraction and Classification of Homogeneous Objects) utilizes

both spectral and local spatial information [11]. Statistical tests

are used to group data into homogeneous regions and each region is

then classified using a Gaussian maximum likelihood sample classifi-

cation rule. It was also developed at LARS and is part of LARSYS.

In order to insure that differences in classification accuracies were

the result of classifier differences and not training methods, the same

set of training statistics was used for all classifiers. Training fields

were selected to represent the classes of interest. These fields were

clustered to develop means and covariances defining spectral subclasses
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Table A-6. Spectral rands Used in Classification.

Test Site
Landsat

Acquisition Date
Spectral Bands

Selected

(um)

Fayette 6/10 .6-.7
6/29 None
7/17 .6-.7,	 .8-1.1
8/21 .6-.7

Pottawattamie 6/16 .8-1.1
7/23 .6-.7,	 .8-1.1
9/6 .7-.8
9/24 None

Shelby 6/16 .6-.7
7/23 .8-1.1
8/9 .8-1.1
9/24 .8-1.1

Tippecanoe 6/10 .6-.7,	 .7-.8

7/26 .8-1.1
8/21 .7-.8
9/26 None

Iroquois 6/12 .7-.8
8/15 .8-1.1
8/31 .8-1.1

9/28 .6-.7

Grant 3/13 .8-1.1
5/15 . 6-.7
6/12 .6-.7
7/8 .6-.7

Foster 5/26 .7-.8
6/30 .7-.8
7/19 .6-.7
8/24 .8-1.1



for each of the classes of interest. Since CLASSIFY was designed as part

of an automated analysis procedure without analyst intervention, a training

method using a random selection of individual pixels to define initial

cluster seeds for clustering the entire area is generally used in conjunction

with that algorithm (ISOCLS). Both training methods were used with CLASSIFY.

The Fayette County site had reference data over approximately 25%

of its area, while reference data were available for the entire area for

the other sites. These data were sampled to define training and test data.

Half of the selected fields were used for training the classifiers, and

the remaining half were set aside for testing the classification results.

Training was based on 1.6% of the area in the Fayette site, and between 3.5

and 7.5% in the other sites.

6.3 Experimental Results

The results of this study (Table A-7) were analyzed to assess the

effects of segment and classifier on classification accuracy. Segment-to-

segment variability was highly significant (p<0.01). Segment variability

was attributed to factors other than the classifier selected, including spectral

data quality and characteristics of the scene.

Several factors contributed to the lower classification accuracies

obtained in Fayette County: (1) the quality of multitemporal registration

was only marginal, (2) the acquisitions for Fayette were net as well

distributed throughout the growing season as in the other counties, and

(3) less training data were available for the Fayette site, and the training

data available were not as well distributed or representative as in the

other counties.

Pottawattamie and Tippecanoe Counties had larger field sizes, helping

to account for the relatively accurate classification. Shelby County

contained more confusion crops, including sorghum and spring oats, and had
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Table A-7. Comparison of Classifier Performance (Percent Correct Classification) by Test Site.

CLASSIFIER

C"SSIFY CLASSIFY
Using	 Using	 TEST

TEST	 MINIMM	 CLASSIFY	 ISOCL^	 LARSYJ	 SITE
SITE	 CLASS	 DISTANCE	 POINTS	 LAYERED	 ECHO	 Stats	 State	 Average

Fayette, IL

Corn 81.9 81.2 63.9 77.3 77.3 78.9 76.8
Soybeans 82.0 77.0 76.8 70.7 49.7 79.0 72.5
Other 85.5 88.6 91.3 87.8 58.8 85.6 82.9
Overall 83.5 83.0 80.5 79.5 61.1 81.6 78.2

Pottawattamie, IA

Corn 98.7 97.2 95.7 98.2 93.0 98.4 96.9
Soybeans 92.0 89.8 92.3 90.2 86.5 89.3 90.0
Other 85.3 98.0 97.5 97.1 92.1 98.4 94.7
Overall 94.9 94.7 94.7 95.4 90.6 95.3 94.3

Shelby, IA

Corn 97.1 95.1 94.5 96.1 82.8 95.9 93.6
Soybeans 89.3 92.9 98.2 95.4 98.0 98.0 95.3
Other 75.5 83.7 88.2 79.4 78.7 79.7 80.9
Overall 90.0 91.7 93.3 91.5 83.9 92.1 90.4

Tippecanoe, IN

Corn 93.7 89.9 91.5 86.4 99.4 93.1 92.3
Soybeans 97.6 98.2 94.9 98.0 95.1 98.4 97.0
Other 94.3 96.7 100.0 96.7 69.9 96.7 92.4
Overall 95.5 94.3 94.0 92.7 94.2 95.9 94.4

Iroquois, IL

Corn 88.1 79.5 91.0 79.3 89.9 92.8 85.1
Soybeans 82.8 85.2 78.1 83.6 78.8 86.3 82.5
Other 76.4 72.7 0.0 72.7 74.5 75.0 61.9
Overall 84.9 82.1 80.5 81.2 83.6 84.2 82.8

Foster, ND

Small Grains 96.1 95,4 94.6 94.8 93.6 97.3 95.3
Other 73.3 77.1 77.0 77.6 70.5 82.3 76.3
Overall 82.7 84.7 84.3 84.8 81.3 89.3 84.5

Grant, KS

Small Grains 96.9 96.7 97.6 96.5 94.6 98.7 96.8
Other 91.8 83.2 89.3 79.2 92.0 80.2 86.0
Overall 93.1 86.5 91.4 81.5 92.6 84.8 88.6

i Training method generally used with CLASSIFY. Uses a random selection of individual pixels to define initial
cluster seeds for clustering the entire area.

`Training method used vith all other classifiers. Training fields were clustered to develop scans and covariances
to define spectral subzlasses for each of the classes of interest.
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smaller field sizes than the other counties. Iroquois County had very few

confusion crops and was almost entirely corn and soybeans, making it difficult

to obtain training for cover types other than corn and soybeans.

There was no significant difference among classifiers in percent

correct classification of corn, soybeans, or other in the five Corn Belt

segments. In addition, there was no significant difference in overall

accuracy among classifiers for all seven segments. The sum-of-normal-

densities classifier using LARSYS statistics, however, have significantly

higher small grain classification accuracy (about 2% improvement).

Table A-8 shows the percent correctly classified averaged over all

segments for the different cover types. The performance of the ECHO

classifier was nut as high as anticipated, probably due to the fact that

the ECHO classifier requires the analyst to set parameters defining cell

size and homogeneity factors, and the optimal settings probably were not

used. Although difference were nonsignificant overall, the LARSYS training

method provided a consistent improvement over the ISOCLS training method

in six of the seven segments. In conclusion, given a set of training

statistics capable of producing high level classification results, the choice

of classification algorithm for differentiation of corn and soybeans from

other cover types makes relatively little difference.

Two additional features of the classification schemes were considered:

the ease of use of the classification method and the computer time required

for each classifier. The classification schemes varied considerably in

ease of use. In increasing order of complexity the classifiers were found to

be: (1) MINIMUM DISTANCE, (2) CLASSIFYPOINTS, (3) CLASSIFY, (4) ECHO, and

(5) LAYERED. The MINIMUM DISTANCE and CLASSIFYPOINTS classifiers were

almost identical in ease of use.

CLASSIFY was designed as part of a total analysis scheme in which

participation of the analyst is minimized in the clustering and definition

of training statistics, and control is provided by a predefined set of analysis

parameters. Although the classifier itself is not extremely complex, the
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training procedure typically used in this scheme involves a large number

of parameters about which little is known.

ECHO utilizes both temporal and spatial information. The complexity

of use for ECHO arises from the necessity of setting the parameters

for cell homogeneity testing and cell size. The expertise of the analyst

is essential in setting the parameters with regard to data set used. The

ECHO classifier is, however, one of the few available classifiers that

utilize spatial as well as spectral information in the classification process.

LAYERED implements a per point Gaussian maximum likelihood decision

tree logic which requires the additional step of designing the decision

tree. The decision tree is designed by obtaining class means and covariance

matrices for all classes and using a feature selection algorithm to determine

an optimal subset of features to be used at each node of the decision tree.

No feature should be deleted which is necessary to adequately discriminate

a class of interest. The decision tree is then constructed using the best

features for discriminating spectral classes. This decision tree is an

input to the LAYERED classifier. The time needed by the analyst to design

the tree using a multitemporal or multichannel data set is related to the

complexity of implementation. If many spectral classes and features are

needed to characterize the scene of interest, the decision tree can become

very complicated and awkward to use. This classifier is particularly well

suited for use with multitemporal or multitype data sets.

The computational cost is also an important variable in selecting a

classification scheme. The computer time required per square kilometer

for each segment and classifier is shown in Table A-9. In order of in-

creasing cost per square kilometer for classification, not including cost

for developing training statistics, were (1) MINIMUM `_srANCE (1.7 seconds),

(2) ECHO (2.3 seconds), (3) LAYERED (2.3 seconds), (4) CLASSIFYPOINTS (3.7

seconds), and (5) CLASSIFY using ISOCLS statistics (11.3 seconds).
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6.4 Conclusions

The results of this study show little difference in the classification

accuracies achieved by the five classification algorithms which were

considered. However, the results for the CLASSIFY algorithm using two

different training methods did show a difference. This indicates that

the major variable affecting correct ^lassification accuracy is not the

classifier, but the training method used in generating the class statistics

to be used in the classification. The most important aspect of training

is that all cover types in the scene must be adequately represented by a

sufficient number of samples in each spectral subclass.

The ISOCLS training algorithm was a method which was designed for

machine automation of a large portion of the training procedure. The

statistical sampling method used for selection of training data is theore-

tically sound, so it is possible that the lack of analyst refinement of

the training statistics is seriously limiting the performance. The clusters

produced by this method are of mixed cover types which may adversely

affect performance.

Additional variables of interest in the study were complexity of use

of the classifier and CPU cost per classification. Among the classifiers

yielding similar classification accuracies, MINIMUM DISTANCE was the

easiest for the analyst to use and costs the least per classification.

In summary, the classification performance of the five classification

algorithms was found to be very similar when the same training method was

utilized. The results suggest that development of representative training

statistics is relatively more important for obtaining accurate classifications

than selection of the classification algorithm.

7.	 Landsat Data Acquisition Study

A study of the impact of Landsat data acquisition history on classifi-

cation was initiated. Its specific objectives were:
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'Assess the accuracy of early season estimates.

'Determine a minimum number and distribution of acquisitions

necessary for accurate estimation of corn and soybean areas.

'Determine the gain or loss by using a subset of channels over all

channels in a unitemporal as well as multitemporal mode.

`Compare minimum distance, maximw., likelihood, and sum-of-densities

classifications in other band/date combinations than previously

assessed.

The data set analyzed consisted of eight sample segments, selected to

represent a broad range of conditions found in the Corn Belt. The

segments were 843 and 860 in eastern Indiana, 837 and 854 in western

Indiana, 862 and 883 in north central Iowa, and 886 and 892 in west central

Iowa.

A modified supervised training approach was used. After refinement

of the statistics was complete, the entire segment was classified using

minimum distance, maximum likelihood, and su.. .,f-normal-densities classifiers.

One acquisition from each of the four time periods previously defined was

used. Data from all possible combinations of time periods were analyzed.

One visible (.6-.7 um) and one near infrared (.8-1.1 um) band were in[tially

selected for the multidate analyses. A subset of four bands, selected

from the available six or eight bands on the basin of the maximum transformed

divergence value, was also used for classification in analyses using; three

or four acquisitions.

7.1 Early Season Estimate Accuracy

The accuracy of early season estimates is illustrated in Figure A-3.

During the first defined time period, corn and soybeans were not spectrally

separable as indicated by the low overall classification accuracy (60.0X).

In the Corn Belt, however, relatively accurate identification can be made

of corn and soybeans together at that time. Over the, same set of segmentsi,

it was found that overall identification into two classes (corn and soybeans,
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Figure A-3. Overall classification performance using cumulative
spectral information with a minimum distance classifier
and subsets of two, four, six, and eight channels.
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else) was 92.0% correct, while the three-class classification (corn,

soybeans, else) was only 60.0% correct. It is not until after the corn

has tasseled (growth stage three) that consistently high classification

accuracies are obtained. The classification accuracy does not improve by

using later season information when the crops of interest have reached

maturity.

7.2 Minimal Acquisitions Necessary

Figure A-4 illustrates the overall crop identification accuracies

of classifications using two, three, and four Landsat acquisitions. A

significant decrease in accuracy can be noted when the third period,

tasseling to early deist, is omitted from the three date analyses. The

importance of this growth stage can also be seen in examination of the two

acquisition analyses; the three combinations using the third time period

obtained higher overall accuracies then those without that growth stage

represented. The overall accuracy of the third period alone was only 85%,

illustrating that classification using the single best acquisition period

is not as accurate as can be obtained using multitemporal information.

The following combinations of acquisition periods had overall

accuracies which were not substantially different: !,2,3,4; 2,3,4;

1,2,3; 1,3,4; and 1,3. These growth stage combinations had overall

accuracies which varied by only 3%, and the next highest accuracy was

about 3% lower than the lowest of these. It seems as though the availability

of acquisitions from time periods one (about emergence) and three (after

tasseling of the corn) provides a minimal set for accurate identification

of corn and soybeans. No combination of acquisitions which does not

include stage three gives high classification performance; a stage one

tacquis,ition appears to be less critical since growth stages two, three, and

foir together produce a relatively accurate estimate. The minimum number

and distribution needed to obtain a good estimate of corn and soybean

proportions has not yet been identified due to the lack of sufficient digi-

tized inventories, but it is anticipated that the sane pattern will hold.
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i

7.3 Dimensionality Reduction

Landsat MSS channels two (. 6-.7 um) and four (.8-1.1 A) from each

acquisition (six for three dace and eight for four date analyses) were

compared with the best subset of four channels selected on the basis of

the maximum transformed divergence value: The differences in accuracy

were significant and, in general, all even channels (six or eight) gave

higher classification performances than the use of a subset of four channels

(Table A-10). Significant differences and the same trends held for

variance reduction factors also. Or the average, :differences were relatively

small (0-5X), but the loss in accuracy for a given segment with a

particular combination of acquisitions could be quite large (one value of

10.7% was observed). In a few cases, the subset of four channels performed

better. This occurrence was attributed to better defined training statistics

resulting from the dimensionality reduction of the estimation problem or

data problems in the bands not selected.

Single date classifications were conducted using two and four bands.

Single date analyses were not conducted for growth stages one and two

individually, so these two time periods were not assess -d. In growth

stage three, no significant differences in accuracy were found over all

segments (83.1% vs. 83.4.% overall accuracy). On an individual segment

basis, there was a tendency for all channels to rerforn, bette r (in six

of eight cases). In two segments, the even channels ga y.: higher accuracy,

probably due to the misregistration of a band or noisy data in one of the

wavelength bands. For growth stage four alone, the even cha,::iels gave 47.

higher overall accuracy on the average, keeping this trend for four of

the six available segments.

A second alternative exists for dimensionality reduction. Rather than

selecting a subset of wavelength bands, a dimensionality-reduction transfor-

mation is computed using information from all of the bands. Such a trans-

formation is one defined by the Tasseled Cap, using the first two components:

greenness and brightness [121. This analysis is in progress, but results are

not yet available.
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Table A-10. Overall Accuracies (percent) Obtained by the Maximum
Likelihood Classifier for all Even Channels and
a Subset of Channels.

Time Averaged Over Segments

Periods Even Maximum
Analyzed Subset Channels Difference Difference

1,2,3 91.2 93.6 2.4 5.5

1,2,4 8r,. 86.7 0.2 -2.5

1,3,4 88.2 91.6 3.4 7.6

2,3,4 85.4 90.2 4.8 10.7

1,2,3,4 89.2 92.1 1.9 9.0
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7.4 Classifiers

A comparison of the minimum distance, maximum likelihood, and sum-of-

densities classifiers is presented in Table A-11. Nonparametric statistical

tests showed that the difference in overall classification accuracies was

significant (a-.01), with the sum-of-densities classifier having the

highest accuracy and the minimum distance classifier having the lowest

accuracy. This pattern held for individual combinations of acquisition

periods in general; in three combinations (3;1 and 3;2 and 4) minimum

distance performed slightly better than maximum likelihood. Most of the

performances were within about 2% for all classifiers, so classification

costs (which increase in the same order performance was found to increase)

should probably be considered in the choice of a classifier. The pattern

of classifier performances remained fairly consistent: over segments as

well (Table A-12). Variance reduction factors for corn and soybeans were

also analyzed, and the same pattern of performances was found.

The proportions of corn and soybeans estimated b y each of the classi-

fication algorithms were compared. Averaged over dates and segments or

averaged over segments alone, there was a trend in the proportions; minimum

distance estimated the highest proportions for corn and soybeans, maximum

likelihood was second, and sum-of-densities produced the smallest estimates

of area for both cover types. The classifier producing estimates which

are closest to ground inventory proportions has not been yet determined

due to lack of sufficient digitized inventories.

S. Summary and Future Plans

This investigation has demonstrated that accurate identification and

reliable area estimates of corn and soybeans can be made using Landsat

MSS data. Some aspects of statistical sampling applied to classification

have been examined, showing that wisely selected acquisitions and wavelength

bands can lead to accuracies as high as the full season data set which is

more costly to analyze.

Five classification algorithms5 were compared and little differences in
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Table A-11. Overall Accuracies (percent) Obtained by the Minimum

Distance, Maximum Likelihood, and Sum-Of-Densities

Classifiers in Each of the Time Periods.

Time
Periods

Analyzed

Minimum

Distance

Averaged

Maximum

Likelihood

over Segments
Sum-of-

Densities Range

3 83.1 82.9 83.4 0.5

4 72.3 72.7 74.9 2.6

1,2 77.2 77.9 79.6 2.4

1,3 86.4 85.2 87.4 2.2

1,4 77.5 78.4 81.3 3.8

2,3 85.2 86.6 87.8 2.6

2,4 78.4 78.2 79.6 1.4

3,4 85.6 86.5 88.4 2.8

1,2,3 92.0 93.6 93.9 1.9

1,2,4 85.6 86.7 87.2 1.6

1,3,4 89.6 91.6 92.7 3.1

2,3,4 88.8 90.2 91.6 2.8

1,2,3,4 91.0 92.0 93.7 2.7

Average 83.4 84.1 85.6 2.2
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Table A-12. Overall Accuracies (percent) Obtained by the Minimum
Distance, Maximum Likelihood, and Sum-of-Densities
Classifiers in Each of the Time Periods.

Averaged over Time Periods*

Minimum	 Maximum	 Sum-of-
Segment	 Distance	 Likelihood	 Densities	 Range

837 85.3 85.8 90.5 5.2

843 82.0 83.0 83.1 1.1

854 92.9 91.9 92.5 1.0

860 80.7 81.4 82.6 1.9

862 86.3 88., 89.7 3.4

883 87.2 88.4 88.5 1.3

886 90.4 90.0 92.2 2.2

892 87.9 89.8 90.3 2.4

Subset of channels in three and tour time period combinations.
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performance were observed with the training method used. Several methods

for developing and refining training statistics have been examined.

Further studies need to be conducted based upon the importance of the

training step in obtaining good classification results.

This investigation will be continuing during the next contract year.

Further studies on training unit size (fixed vs. variable) and training

data selection (i.e., the use of ECHO as a training aid) will be conducted.

The use of the brightness/greenness transformation will be compared with

subset selection as a dimensionality reduction method.

A wider variety of segments across the U.S. Corn Belt and in the

Corn Belt fringe areas will be classified. Characterization of the quality

of the resulting estimates will be made based on the segment location and

scene characteristics.

A study investigating sampling unit size and separation of the functions

of sampling for training and sampling for area estimation is also planned.



-40-

9.	 References

1. MacDonald, R.B., and F.G. Hall. 1978. LACIE: An Experiment in
Global Crop Forecasting.	 Proc. Plenary Session, The LACIE Symp.,
Houston, Texas, October 23-26, pp. 17-48.

2. Bauer, Marvin E., Marilyn M. Hixson, Barbara J. Davis, and Jeanne
B. Etheridge. 1978, Area Estimation of Crops by Digital Analysis
of Landsat Data. Photogr. Engin. 44:1033-1043.

3. Bauer, Marvin E., Jan E. Cipra, Paul E. Anuta, and Jeanne B.
Etheridge. 1979. Identification and Area Estimation of Agricultural
Crops by Computer Classification of Landsat MSS Data. Remote Sensing
of Environ. 8:77-92.

4. Hanuschak, George, Richard Sigman, Michael Craig, Martin Ozga,
Raymond Luebbe, Paul Cook, David Kleweno, and Charles Miller. 1979.
Obtaining Timely Crop Area Estimates Using Ground - Gathered and
Landsat Data. U.S. Dept. of Agriculture, Economics, Statistics,
and Cooperatives Service. Technical Bulletin No. 1609.

5. Scholz, Donna, Nancy Fuhs, and Marilyn Hixson. 1979. An Evaluation
of Several Different Classification Schemes: Their Parameters and
Performance. Proc. Thirteenth Int. Symp. Remote Sens. Envir., Ann
Arbor, Michigan, April 23-27.

6. Eizzel.l, R., F. Hall, A. Feiveson, M.E. Bauer, B. Davis, W. Malila
and D. Rice. 1975. Results from the Crop Identification Technology
Assessment for Remote Sensing (CITARS) Project. Proc. Tenth Int.
Sym. Remote Sensing Envir., Ann Arbor, Michigan, October 6-10, pp.
1189-1196.

7. Phillips, T.L., ed. 1973. LARSYS User's Manual. Laboratory for
Applications of Remote Sensing, Purdue University, West Lafayette,
Indiana.

8. Stewart, J., and P.J. Aucoin. 1978. Earth Observations Division
Version of the Laboratory for Applications of Remote Sensing System
(EOD-LARSYS) User Guide for the IBM 370/148 - Volume I. System
Overview. NASA, Johnson Space Center, Houston, Texas JSC-13821.

9. Nilsson, N.J. 1965. Learning Machines: Foundations of Trainable
Pattern-Classifying Systems. McGraw-Hill Book Co., New York.

10. Swain, P.H., C.L. Wu, D.A. L;andgrebe, and H. Hauska. 1975. Layered
Classification Techniques for Remote Sensing Applications. Proc.
Earth Resources Survey Symp., Houston, Texas, June 9, Vol. I-b,
pp. 1087-1097.

t1.	 Kettig, K.L., and D.A. Landgrebe. 1976. Classification of Multispectral
Image Data by Extraction and Classification of Homogeneous Objects.
IEEE Trans. Coos. Elect. 14:19-25.



-4.1-

12. Kauth, R.J. and C.S. Thomas. 1976. The Tasselled Cap--A Graphic
Description of the Spectral-Temporal Development of Agricultural
Crops As Seen by Landsat. Proc. Symp. Machine Proc. of Remotely
Sensed Data, West Lafayette, Indiana, June 29-July 1.



-42-

B. INITIAL DEVELOPMENT OF SPECTROMET YIELD MODELS FOR CORN

C.S.T. Daughtry*

1.	 Introduction

As world demand for food continues to expand, increased pressures are

placed on our agricultural systems to supply timely and accurate crop

production information. The benefits of improved crop information include:

(1) better utilization of storage, transportation and proces:.ing facili-

ties, (2) more reliable crop production forecasts which allow decision-

makers to plan policy better, and (3) increased price stability resulting

from more accurate crop estimates.

Evea at high levels of technology currently employed by most U.S.

farmers, weather remains the most important uncontrolled variable affecting

crop production and is the major cause of season-to-season variations in

food production (Decker et al., 1976). During the past several decades

numerous studies have attempted to develop models of the complex inter-

actions between corn production, weather and technology. For simplicity,

these studies generally considered weather and technology as independent

factors in multiple-curvilinear regression models (Nelson and Dale 1978a).

While these statistical models explained much of the variability in long-

term crop production, they could not handle severe and unusual weather

conditions or pest outbreaks (Nelson and Dale 1978b). The Thompson (1969)

corn models and the wheat models of Large Area Crop Inventory Experiment

(Strommen et al., 1979) are examples of statistical models.

Several alternative approaches to crop yield estimates have been

developed which describe crop development and yield in physiological

logic. These models are designed to simulate responses of basic plant

The contributions of M.E. Bauer, D.A. Holt, C.D. Jobusch, V.J. Pollara,
H.F. Reetz, C.E. Seubert and R.A. Weismiller to Task 2B, Initial
Development of a Spectromet Yield tjodels for Corn ) are gratefully
acknowledged.
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processes and, ultimately, yields to the environment. Some of these

simulation models are too complex and detailed for large area crop

yield estimations while others appear to be applicable and are currently

being developed by Purdue University in conjunction with industry. Examples

of complex crop simulation models are SIMED (Holt et. al., 1975) and

CORN-CROPS (Reetz, 1976).

Intermediate to the classical statistical approaches and the causal

physiological approaches are several models which rely on physiological

logic to interpret the effects of weather on crop yields. These inter-

mediate models tend to be less complex than physiological simulations like

CORN-CROPS but more complex than LACIE's models. The Energy Crop Growth

model (Dale and Hodges, 1975) and Purdue Soybean Simulator (Holt et. al

1979) are examples of approaches which seek to condense the effect of

weather into a single weather index which can be related to yields.

Considerable evidence indicates that remote sensing can provide

information about crop condition and thus yield potential (Bauer, 1975).

If this spectral information about crops can be combined effectively

with meteorological and ancillary data, then potentially much better

information about crop production could be gained.

2.	 Objectives

The overall objective of this task represents a multiyear research

effort to integrate the best mix of spectral, meteorological, and

ancillary data into a crop information system for estimating crop condi-

tion and expected yield during the growing season. Specifically this task

will:

- Identify important factors in determining and predicting
corn yields.

- Determine how these factors can be observed or estimated from
alternate sources of data.

- Define long-term data requirements for continued model development.

- Select and further develop several candidate approaches for
corn yield modeling.
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- Identify and obtain data required for these yield models.

- Conduct initial calibrations and tests of models using
spectrometer and Landsat MSS data.

3. Description of Data

Two sources of spectral data were used in this task during the past

year. Initial examination of relationships between spectral and

important agronomic factors related to yield were performed using data

acquired by the Exotech 20C spectrometer at the Purdue Agronomy Farm

(Walburg, et al. 1979). Spectral and supporting agronomic data were

acquired through the growing season on the Corn Nitrogen Fertilization

Experiment of Dr. S.A. Barber. The corn in this experiment received either

0, 67, 134, or 202 kg N/hectare and had grain yields which ranged from

2910 to 8892 kg/ha (46 to 142 bushels/acre).

The other major source of spectral data was Landsat MSS data acquired

over commercial corn fields in nine 5 x 6 mile segments located in six

states (Figure B-1). Within each of these segments up 10 corn fields were

identified and periodically observed throughout the growing season by

personnel of USDA's Agricultural Stabilization and Conservation Service

(ASCS)(Table B-1). These observations consisted of notes on plant height,

percent soil cover, maturity sta,e, and recent field operations. Grain yield

in each field was either estimated by the ASCS representative or acquired

during an interview with the farmer. Grain yields ranged from 50 bushels

per acre in Ballard, KY to 158 bushels per acre in Iroquois, IL. Data on

planting dates of these fields were not obtained.

4. Results and Discussion

4.1 Factors Influencing Crop Yields and Prediction of Crop Yields

The economic end-product of crop production is often the seed which

comprises about 45 percent of the above ground dry weight of corn. This

accumulation of dry matter requires not only the availability of the
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Table B-1. Dates that Landsat MSS data were acquired over corn fields
which were periodically observed by ASCS personnel in 1978.

Segment County, No. of Julian Dates of

No. State Corn Fields Landsat Acquisitions

146 Ballard, ICY 4 180, 198, 234, 270, 306

185 Traverse, MN 9 169, 187, 196, 205, 214, 223, 232,
241, 269, 287, 296

2wi Deuel, SD 9 169, 187, 196, 205, 223, 232,
241, 269, 296

804 Marshall, IA 9 166, 220, 229, 247, 265, 274,292

824 Iroquois, IL 10 163, 217, 235, 243, 271, 297,306

854 Tippecanoe, IN 10 161, 197, 207, 216, 233, 243,251,
269, 305

883 Palo Alto, IA 8 186, 204, 213, 221, 258, 267,293,
303

886 Pottawatomie, IA 9 167, 186, 204, 212, 249, 258,267,
293

892 Shelby, IA 8 167, 204, 212, 221, 240, 249,266,
293
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proper substrates (CO2 , H2O, NH4+ and/or NOS , and other nutrients) in the

environment but also a great deal of energy which the plant derives from

sunlight.

In modeling crop yields by any method, the following four types of

factors influence yields:

1) crop factors - e.g., photosynthetic rate, stress tolerance, leaf
area index, leaf area duration, growth rate

2) soil factors - e.g., draina;e, water-holding capacity, fertility

3) management factors - e.g., planting date, weed, disease, and insect
controls, cultivar selection.

4) weather factors - e.g., solar radiation, air temperature, precipi-
tation, evaporation.

Man has exhibited varying degTeej of control over the first three of these

factors, but weather over which he has the least control remains the most

important factor influencing year to year variations in crop production.

If weather is truly the most important factor controlling crop yields,

how can the effects of weather on crop response (yield) be quantified?

Reviews of research on environmental and physiological aspects of crop yield

have identified and generally attempted to quantify optimum conditions

for assimulation processes, growth, development, and ultimately yields for

various crops (Eastin, 1969; Pierre et al. 1966). Rather than discuss how

physical measures of the environment influences crop response, the reader

is referred to any of several review on crop physiology and yields (Kramer,

1969; Hill et al., 1978; Decker et al., 1976; Eastin, 1969).

Of the various physical measurements of the environment, temperature,

moisture and solar radiation are most frequently used to estimate crop yields.

Researchers have used various experimental techniques to relate hourly,

daily, weekly or monthly means of temperature, moisture (precipitation or soil

moisture) and/or solar radiation to yields. tome have used selected weather

variables from the entire growing season (Thompson, 1969) while other have

preferred to identify physiologically important periods during which they

felt crops were most sensitive to the effects of weather (Leeper et al., 1914]
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Dale and !lodges, 1975; Nelson and Dale, 1978). While these fitted

parameters may be associated with reasonable proportions of the

variance in fitted cloo yield series, the predictive equations generally

explain disappointingly little of the crop yield variance in independent

tests.

In aedition to these yield models with empirical functions of

weather variables, crop yields have also been estimated from within season

sampling of crop dry matter and stand parameters. These methods use

the crop as an integrator of weather effects, and then measure various

plant characteristics at specific development stages which are related to

grain yields. Prior to harvest estimates of kt:ip yields by USDA-ESCS are

based on similar techniques. These methods teLa to become more accurate

as crop maturity and hArvast approaches.

4.2 Data Requirements and Sources of Data

Data requirements for crop model development vary greatly depending

on the specific type of model employed. I have chosen to limit this

discussion to those yield models which employ weather data (physical

measures of the environment) directly or indirectly w estimate other

quantities or which use remotely sensed measures of plant condition.

The most commonly recorded physical measures of the environment

are daily maximum and minimum air temperatures and daily total precipi-

tation. Less common measurements include solar radiation. evporation,

wind travel, soil temperatures and soil noisture on daily and in some

cases hourly basis. These data are frequently used in crop models either

by design or necessity since other data are available only in special instances.

Variability of precipitation patterns in time and 3race makes preci-

pitation both the most important and most error-prone in any water budget

or weather and crop yield study. The standard 8-inch precipitation gauge

of the National Weather Service stations samples only 3.2 x 16 -6 hectare

and it is commonly used to represent county-size areas. The grace-time
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variability of precipitation patterns in Illinois (Huff, 1971) probably

represent the magnitude of variability in precipitation to be expected

in other areas of the Corn Belt. Thus more than one precipitation station

in close proximity to or within each 5 x 6 mile segment is desirable.

While average rainfall is more frequently used to identify the moisture

situation in county or state corn yield studies, soil moisture in the

root zone is more meaningful for crop growth studies. Much rainfall may

run off, percolate . thxough the soil profile or otherwise become unavailable

to plant roots. This has been recognized, but the great variability of

soils and sampling problems in measurement of soil moisture make it

difficult to establish a representative and homogeneous series of soil

moisture data. Several soil moisture estimating methods have been developed.

Shaw (1963) described a method for estimating soil moisture in well drained

soils and Stuff and Dale (1978) developed a method for poorly drained soils.

Both appear to work reasonably well for their particular areas and soils.

Other commonly measured weather variables tend to be more conservative

elements (or less time-space varying) than precipitation (Dale and Hodges,

1975). Thus one station per segment or county should be adequate for air

temperature, solar radiation and pan evaporation.

In addition to these environmental measurements, information is also

needed on the crop itself for yield model development. Each model has

different requirements and one data set cannot satisfy all of them. A

minimum set of observations about the crop in each location is desirable.

This data set should include the following:

1. one time Per season

- planting date
- harvest date
- yield
- cultivar or hybrid panted
- fertility program, especially amount of N applied
- row width
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2. periodic observations at 7-14 day intervals during the growing season

- maturity stage
plant height

- field operations
- crop condition (weeds, diseas—, hail, etc.)

irrigation times and amounts

3. additional data - for more detailed studies

- soil type and drainage
- percent soil cover
- soil moisture
- harvest losses in field
- biomass
- leaf area index

Since crop response to weather may differ from year tc year, a homogeneous

series of crop and weather factors are required for continued model

development.

4.3 Approaches for Crop Yield Modeling

A conceptual framework of a large area crop information system has

evolved during this task. This framework provided overall mathematical

expressions for computing production estimates. Crop production was

separated into its components, and major tasks which must be accomplished

to arrive at a production forecast were identified. The kinds of information

that must flow to each component and the potential sources of such infor-

mation were listed.

Crop production consists of a yield component and an acreage component.

The acreage of a crop can be estimated by ground surveys or as in the Large

Area Crop Inventory Experiment (LACIE) by the use of Landsat MSS data.

Yield of a crop may be computed as the product of four general factors as

follows:

Yield A Yield Potential * Weather Factor * Episode Factor

* Management Factor
where,
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Yield Potential represents the yield that would be obtained on a
given area with its particular soil conditions if the yield were
not limited by weather, episodes of diseases and insects, or
management conditions that were peculiar to that particular year.

Weather Factor is a number between 0 and 1 representing the
limitations imposed on yield by weather conditions prevailing
during that season.

Episode Factor represents a number between 0 and 1 representing
the limitations placed upon yield by infestations of diseases or
insects or by catastrophic weather conditions, such as hail, floods,
or high winds.

Management Factor is a number representing the average impact of
management decisions made in that particular area which causes the
general level of management to differ from other years.

These four factors and acreages which when multiplied together can

provide a crop production estimate. Accurate estimates of each component

are required to achieve an accurate forecast. Obtaining an accurate

estimate of each of these components is a separate project and these

projects may serve as the basis for organizing a crop production forecasting

system. This task (Initial Development of Spectromet Corn Yield Model)

has focused on how remote sensing technology can provide information on

"yield potential" (e.g., soil productivity) and "weather factor" (e.g.,

crop development and condition).

Yield Potential

Yield potential as defined earlier in this section can be estimated

either indirectly from historical or directly from soil productivity

indicies. Indirect estimates of yield potential can be derived as follows:

Yield Potential=	
Historical Yield

Weather Factor * Episode Factor * Management Factor

This estimate of yield potential for a particular area can be expected to

remain rather constant from year to year. Long-term changes in yield

potential are expected as new technologies are adopted or as soil productivity

changes causing general trends in yields for an area. This approach to
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potential yield requires several years of data on yields, wither, manage-

ment and episodes for each area in question.

Alternatively yield potential could be estimated directly from soil

productivity indices by using existing soil surveys or potentially from

remotely sensed information. Soils differ in their inherent capability

to produce crops. Although proper management in some cases can compensate

for deficiencies in native productivity of soils, differences in crop

yields which are related to soil characteristics do occur.

Soil texture and organic matter content are important components in

assessing native soil productivity. Soil drainage classes which are indirectly

related to soil texture and organiL matter content are identifiable from

Landsat MSS data. Thus, potentially Landsat MSS data could be used to

estimate soil productivity based on soil drainage classes.

Corn yield potential was estimated for soils in Tippecanoe (segment 854)

and selected areas in Jasper Counties in Indiana by the methods of Walker

(1976). Multivariate regression analyses of these data sets using yield

potential as the dependent variable and soil spectral classes from Landsat

MSS data as the independent variables were performed. Only 17 per cent

of the variation in yield potential was associated with the spectral

classes of these soils. Inclusion if indicator variables for texture in the

regression model, along with the spectral class information, accounted for

about 68 percent of the variation in yield potential. However, correlations

of soil particle size (texture) with spectral response data has not been

very high (Montgomery et al., 1976). Further research into methods of directly

assessing yield potential with remotely sensed data is planned.

Weather Factor

Limitations imposed on crop yields by weather conditions have been

depicted with varying degrees of success by several different mathematical

models. The three basic types of models include:
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1) Simulation or causal models which describe crop performances
as a series of functions with daily solar radiation, air
temperature, and moisture. Simulation models are broadly
applicable, require short historical data bases, for development,
and can provide local detail. Examples of simulation models
are SIMD (Holt et al., 1975) and CORN-CROPS (Reetz, 1976).

2) Statistical or correlative models which are equations with
statistically-derived coefficients that represent the relationship
between weekly or monthly mean weather and crop performance.
These have been used successfully in I.ACIE. They are generally
useful for crop reporting district (CRD) or larger areas and
require long historical data bases to derive their coefficients.
(Strommen et al. 1979, Thompson, 1969).

3) Hybrid models which seek to combine some of the best features
of both simulation and statistical models by condensing the
effects of weather on crops into a single weather index which
can be related to yield (Holt et al., 1979; Nelson and Dale, 1978).

Each of these basic model types has potential to utilize spectrally-

derived information. For example, in simulation models this information

may be used as independent verification of model estimates of crop biomass,

maturity stage, and/or yields. Since statistical models require coefficients

derived from several years of homogeneous data sets (including yield, weather,

and spectral data) which may not be available, the use of spectral data as

an integral part of a statistical model is probably not possible. An example

of an alternative approach would be to estimate with spectral data one of

the variables in a statistical model and then substitute this spectrally-

derived variable (when available) into the model. Hybrid models possibly

can use both of the above approaches.

4.4 Initial Calibrations of Models

Initially these models will be calibrated and tested without the use

of spectral data to establish their baseline performance in a bootstrap

approach. The models will be calibratec' using historical county average

yields from USDA-ESCS, but will be tested using average yields in 10 corn

fields per segment in the county in 1978. This step has been delayed be-

cause of difficulties encountered in acquiring historical meteorological

data, but should proceed rapidly now that meteorological data for the first

ten segments has been received.
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After modification to include spectrally-derived information these

models will be tested, if possible. Because long term data sets exist

for corn yields and weather variables but not for spectral data, complete

sets of test data exist only for selected sites in 1978 and possibly 1979.

'Phis lack of data will hamper conventional statistical tests of these

model's performance with and without spectral data. By normalizing for

soil productivity and substituting locations for years, some inferences

about model performance possibly can be made. More years of complete data

sets (yield, spectral, meteorological, and ancillary data) are required

for adequate evaluation of these models.

A first step toward incorporating spectral data into any of these

models requires an understanding of the spectral characteristics of corn

canopies. Task IA (Experiment Design and Data Analysis) examined spectro-

meter data acquired at Purdue Agronomy Farm in 1978. These data were

analyzed to determine the basic spectral characteristics of corn and to

assess how agronomic treatments affect these spectral characteristics. An

expansion on these analyses used spectral data representing the four

Landsat MSS bands to predict leaf area index (LAI) (Figure B-2) and percent

soil cover (Figure B-3).

These two pieces of information about crop condition may be used,

for example, to calculate intercepted solar radiation for the Energy-Crop-

Growth (ECG) Model (Dale and Hodges, 1975). The solar radiation inter-

cepted by a corn canopy was estimated as a function of leaf area index

(Figure B-4A) and total solar radiation incident on a horizontal surface.

This provides a continuous LAI weighting of solar radiation within the

season. Leaf area index is estimated from Figure 13-413 which represents
seasonal values of LAI for different populations of corn plants. These

LAI values are "visually-smoothed" averages from several researchers.

Actual LAI for fields may very greatly due to different planting dates,

hybrids, stresses, and row spacings. An estimate of intercepted solar

radiation based on spectral derived LAI or soil cover percentages should

more accurately depict conditions in the field. The corn cultural practices

experiment of 1979 (see Volume 1, Task 113) should be an excellent data

.set with its three plant populations and three planting dates to test this
concept.
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LEAF AREA INDEX
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PHENOLOGICAL DAY (DAY100 - SILK DATE)
Figure B-4. The solar radiation intercepted(SRI t.) by a corn canopy was estimatcd

as a function of leaf area index	 total solar radiation(SR) received
on a horizontal surface. The average seasonal leaf area index curves

(B-4B) were visually smoothed from experimental data for 25,000, 37,000,
49,000, and 62,000 corn plants per hectare (from Dale and Hodges, 1975).
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Regardless of which crop model is employed, its spatial resolution is

limited by the distribution of weather stations. The best estimate of

yield that can be expected from any of these models is the mean of a

region. If there exists considerable variation in yields within a region

due to, for example, soil fertility then these models are not likely to

estimate yields very precisely or accurately at the local level. Spectral

data, on the other hand, is limited by the spatial resolution of the sensor

which 0.45 ha for Landsat MSS and 4 m 2 of Exotech 20C spectrometer at 10 m

above the soil.

Figure B-5 and B-6 illustrate the departures of individual plot

yields from mean yield due to nitrogen fertility and how some of this

variation about the mean is associated with two spectral variables such as

the ratio of reflectances in 0.8-1.1 and 0.6-0.7 um bands and the greenness

transformation. These relationships appear to be rather stable for 4 to

6 weeks during the tassling and grain filling periods of corn (Table B-2).

From this limited data set it appears that this period occurs at or

shortly after the time wher the maximum IR/red ratio of corn is reached

(Figure B-6). Together Figures B-5, B-6, and 3-7 represent a potential nethod,

not only to adjust yield predictions from meteorological models, but

also to identify the time interval when remotely-sensed data are most highly

correlated with corn yields.

Extension of these simple concepts developed from spectrometer data

gathered at an agricultural experiment station to Landsat MSS data

acquired over commercial fields represented quantum leaps in scene

complexity and potential sources of unaccounted for variability. Initial

examinations of the Landsat MSS data from selected corn fields indicated

that maximum Kauth Greenness occurred at or shortly after tasseling (Figures

B-8 and B-9) as expected from spectrometer data (Figure B-7).

Figures B-8 and B-9 represent typical fields of corn in Pottzwatomi

County, Iowa and Tippecanoe County, Indiana and have basically similar

shapes. The abrupt changes in greenness over a two day period are data

from consecutive day passes with Landsat MSS. The influence of the
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Table B-2. Variation in corn grain yields associated Kauth Greenness and
infrared (0.8-1.1 Um) to red (0.6-0.7 Um) ratio at several
dates during the growing season for the Corn Nitrogen Experiment
in 1978.

Date Maturity Stage JR/Red

- - - - R	 - - - -

June 28, 29 1.5 6-leaf 0.38 0.02

July 5 2.0 8-leaf .50 .47

July 6 2.0 8-leaf .21 .34

July 15 2.3 10-leaf .38 .63

July 28 3.5 14-leaf .45 .71

Aug 3 5.9 silk .28 .64

Aug 16 - blister .42 .75

Aug 20 6.3 milk .51 .80

Aug 31 7.0 dough .55 .73

Sept 15 8.0 begin dent .28 .55

Sept 23 9.0 hull dent .15 .32

1/Hanwav, J.J.	 (1966)

2/Greenness - 0.489*B50 - 0.612*B60 + 0,173*B70 + 0.595*B80
where: B50 - 0.5 - 0.6 Um wavelength band reflectance

B60 - 0.6 - 0.7 Um wavelength band reflectance
B70 - 0.7 - 0.8 um wavelength band reflectance
B80 - 0.8 -	 1.1	 Um wavelength band reflectance
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O
^
 
Sroro

NONN

c
	

.c
^
v

 a
^

• p
 
a
+
 .r

C1
0
 
^
+

.O
 tp

n
 
u

 
•

v
 
d
1

u

-
^
 
O
 
v

•
 z

o
0

.
,
	

ro

a
,

•
 r

,T
 u

v
 
y

C
 
a

<
7

 q C
 v

►
+
 
E

w
	

p
p

C
	

C
H
 
W 

-
4

v
►+

 a
 v

^
 
>
K
 
N

C
I W

 to
G
 

ro
C
 
u

ro
 tyO

C
 w

C
 
O
 
O

M
 
LL
J
 
Q
I
 
T

y
 -^

 e
vC
 
G
	

ro
r
o
 
W
 
W

O
 
r
o
 
v

v
 U

 v
y
	

C
 

►.
W

 
O

w
 
.
0
 
y
 w

►.
 
u

^
+

 O
 V

 G
O

 ^
:+

 O
v

O
 
b
 
O

i^
 ro

 L
 

s.+

ro
 ^

1+ 	
1.

C
 E

 0
 u

to
 ^

 
ro

 E
GI	

u
 
v

o
a
o

 v
 M

G	
O

J
 C

Lr
	

f
-

^
 
w

 
u

v
 
.
.
 
a

-
+

 o
M

 ^
•
 E

 3
a
	

C

R
 ►. X^=

 G

aC11.O
^



u
 
CG

O
	

d
N

0
0

O
%
	

ld	
M

 r
^
l

0
0
	

'^
	

!1
1
 ^

r

	

W
	

♦
.1 d

	

7
	

cc 1
4

L
	

b
 
U

	

n
 
^
	

tE
NE

n
 $

4
z a

	

3
	

+^cc

x
 
^
^a
 
^.c

wO
 •C

GO
 O

)
r
l
 
H
 
n

u
 

c
0
 v

1
c^

b
 
b
U
D

O
 rl (7

w
 
(
1
)
 
1
J

to
 ri fn

G
 
7
+

$4
4J

u
 . 

r4
O
	

y
 0

0
 $

4b
o

'^
	

to
 O

+
 u

C
l ^- i 

t
d

G
 
^

G
 
G
 
v

O
	

G
J ''^

'^
	

ccS
 G

O
 .$

C
H
 
1
-
i

^
	

J
J
	

r
i

	

U
1
	

c
0
 
C
l
 
^

	

0
0
	

r
 
G

m
	

G
 o

 •
^

0
0
	

IJ
	

•rq
 L

 r q

	

E
n	

c
o
 Q

)
E
n
 
3
 
m

	

u
	

w
 
u
 
m

	

•r
l
	

G
 
i
J
 
L

	

l4	
c
C

 O

	

Z	
u
 
Q
+

co

`
n
	

ed 	
o
 M

 N

	

3 	
N .- G

M
 •a

+
 u

x	
c
n
 w

 O

M
	

0
^I
P
U4l$4G0
0

W

L
7
K

W
W

Z
Z

U
X

f)(n

L
=

w
k"z2

W
V

1
1
n

m

mNN

WH
v

 d
 ^

N
 
=

NNN

00y0mm
o

—

t gmN

W0zaJ
ON

-
6
3
-

0



Y
^ 	

r
	

M
	

N
	

C
O

L'X
t4.W

Z2W
1111/f

pO
f
+
i

6co
N

C
)

N

3
	

R
	

R
	

°-
t7

u
 w

W
r2

w
vxn

^
roav

o
 
a

u
	

$w

0

o
^
^

^
a

a
 
k

6
0

V
ro

o

O
^
 
t
o

b
^,

v
q

a
,

►+	
v

p
^

Y• I	
^.1

¢
n

t
r
 
r
o

u
^o

ro
 ro

^
3

v
C

E
n
 
C

ro
c
n
 
^

x
Z

 
a

c
n

•o
4Jr
o
 
G

Ch	
•,4

'
n

N
G
 
a

r
o
 
^4

.-7
	

ro

W
 
^

O
 
bH

c
 
v

O
	

•+

1
J 	

V
'1

ro^
	

v
x

 n
o

o
	

ro
w 

r
n
 u

Gr
o
 
G
 
>
,

^
a

w

c
a

v
; G
	

7
m
 
r
o

a
	

cz
G •v 

<.
G
 
C
 
^
.
.

a 
H

v
	

O
C

1
J

Nd

v
u
 
o

 •
4

x
ro

 U
0
0

G
v

3
G

cHU
G

C
	

rn
m

ro
O

 I7
$4

r, 
x

u
; H

G
r
o
 
v

u
v
 •^

+
v

c
.^

 w
p

N
o
,

0
4vt+O
C

Ga.

gNU
^

w

O
	

a
>,

C
	

O
 •

.i

L
l

4
J

N
.
,
A

t
o
 
V
 
y

Z
F
4

a
ro

a
c
 Z

a
 a

 +
^

ro
 •^

N
w

,r
u
	

ro

-
6
4
-



-65-

atmosphere on spectral response was not considered and may account for

some of the abrupt changes in greenness over 9 to 18 day periods.

Correlations of Greenness and IR/Red ration with yields are greatest

near tasseling (Table B-3). Preliminary indications are that simple

correlations of Landsat MSS data and two transformations with departures

from mean yield for each segment will not be sufficient to explain the

variation in yields observed in individual fields (Table B-3). Additional

research is in progress to examine these relationships fully. Alter-

native approaches which will use spectral data indirectly to estimate yields

are also being pursued.



-66-

Table B-3. Correlations of corn grain yields of individual fields
with Kauth Greenness and infrared (0.8-1.1 um) to red
(0.6-0.7 um) ratio of Landsat MSS data at specific maturity
stages in 1978.

	

Yield	 Residual Yield

Maturity l/ Number of	 ,
Stage	 Fields	 Greenness? IR/Red	 Greenness IR/Red

<3 23 0.52 0.53 0.17 0.11

3-4 17 .27 .28 .29 .36

4-5 29 .34 .53 .00 -.05

5-6 26 .68 .85 .47 .54

6-7 56 .68 .66 .02 -.01

7-8 31 .44 .55 -.11 .01

8-9 15 .59 .60 .55 .38

9-11 111 .26 .19 .08 .11

>11 65 -.57 -.56 -.06 -.C3

Hanway, J. J. (1966)

Greenness = 0.283*MSS4 - 0.660*MSS5 + 0.557*MSS6 + 0.388*MSs7 + 32

where: MSS4 = Landsat MSS radiance in 0.5-0.6 um band
MSS5 = Landsat MSS radiance in 0.6-0.7 um band
MSS6 = Landsat MSS radiance in 0.7-0.8 um band
MSS7 = Landsat MSS radiance in 0.8-1.1 Um band

3/ Residual Yield is the difference between individual field yields within a
segment and the mean yield for that segment.
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