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ABSTRACT

Elliptic equations in exterior regions frequently require a boundary

condition at infinity to ensure the well-posedness of the problem. Examples

of practical applications include the Helmholtz equation and Laplace's

equation. Computational procedures based on a direct discretization of the

elliptic problem require the replacement of the condition at infinity by a

boundary condition on a finite artificial surface. Direct imposition of the

condition at infinity along the finite boundary results in large errors. A

sequence of boundary conditions is developed which provides increasingly

accurate approximations to the problem in the infinite domain. Estimates

of the error due to the finite boundary are obtained for several cases.

Computations are presented which demonstrate the increased accuracy that can

be obtained by the use of the higher order boundary conditions. The examples

are based on a finite element formulation but finite difference methods can

also be used.
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I. Introduction

Elliptic problems in exterior regions arise in many branches of physics.

For example, the flow of an incompressible irrotational fluid about a

body is described by the Laplace equation (e.g. Lamb [19])

, Au=0.

The same equation arises in the study of electrostatics exterior to given

surfaces (e.g. Stratton [30]). A different example is the exterior scattering

problem for either acoustics or electromagnetism. In this case one wishes to

solve the Helmholtz equation

hu +k2u= 0 ,

with either Dirichlet or Neumann data specified on the bodies (Bowman, et al.

[6], Muller [22]). For inhomogeneous media, k is a given function of the

position. For some applications in plasma physics, k can be a nonlinear func-

tion.

In these cases, infinity can be regarded as a separate boundary. A

condition at infinity is required to make the exterior problem well-posed.

For the Laplace equation it is sufficient to impose a condition of regularity

at infinity. In three dimensions this is

• (i.i) u = 0(I) r ._ ,

f

where r is the distance from a fixed (but arbitrary) origin (Kellogg [15]).

For the Helmholtz equation one can impose the Sommerfeld radiation condition



(Sommerfeld [30])

(1.2) _-_- iku = o( r . oo

A more exact form of (1.2) is

(1.3) lim f[i _u_-{- iku[2 dS = 0 ,
JJr+_

lyl=r

where the integral is over spherical shells centered at r = 0 (Rellich

[27], Hellwig [13]). The radiation condition ((1.2) - (1.3)) states that

the solution corresponds to outgoing waves (see Wilcox [35], [36],

for more details).

In many instances one is interested in problems with variable coefficients

that approach a constant state at infinity. An extension of the theory of

radiation conditions to problems with variable coefficients was developed by

Vainberg [33]. The techniques to be described are valid for the variable

coefficient case provided the coefficients approach constants at infinity

at a sufficiently rapid rate.

A numerical solution of an elliptic problem in an exterior region must

be able to incorporate the radiation condition at infinity within the compu-

tational procedure. Solution techniques based on eigenfunction expansions

or asymptotic methods automatically accomplish this by the proper choice of

expansion functions. When the free space Green's function which satisfies

the radiation condition is known, (e.g. constant coefficients) the difficulty

of imposing the radiation condition can be avoided by reformulating the

problem as a Fredholm integral equation. Such formulations for the Helmholtz
I

equation can be found in Chertock [9], Kleinman and Roach [16], and Burton
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and Miller [8]. Poggio and Miller [24] discuss a vector integral equation

for the reduced Maxwell equations. Bayliss [4] shows that one can greatly

increase the efficiency of the integral equation formulation by introducing

an appropriate coordinate transform along the body. Schneck [28] has

developed codes to solve the resultant integral equations for a range of ap-

plications.

The integral equation approach has several deficiencies. These methods

are generally restricted to the constant coefficient case and require the

inversion of a full matrix. This can result in storage difficulties, especially

for three dimensional problems or problems with high frequencies. In addition,

for many applications the matrix elements are expensive to compute [4]. Many

mesh points are required to resolve the singularity in the kernel even for

low frequencies.

For the Helmholtz equation, an additional difficulty with the integral

equation formulation is the possibility of interior resonances. It is well

known that for certain values of k the integral equation becomes singular

([9], [16]). These resonances are connected with eigenvalues of associated

interior problems. Various attempts have been made to overcome this diffi-

culty,but they generally increase the complexity of the integral equation

approach (Ursell [32]). It will be _hown that the proper formulation of

radiation conditions can eliminate the possibility of eigenvalues.

An alternative to the integral equation method is to couple an interior

solution with a global functional of the solution on an artificial boundary.

The global functional can be obtained by integral formulas using the free

space Green's function or by using an expansion, typically obtained from

• separation of variables, to represent the solution exterior to the artificial

boundary. Marin [21], Zienkiewicz, et al. [37] and others have studied
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methods based on an integral relation over the artificial boundary, while

Fix and Marin [i0] have used a boundary condition based on separation of

variables to solve problems in underwater acoustics.

These methods incorporate the exact radiation condition at the cost of

a non-local boundary condition. A disadvantage of these methods is that the

non-local coupling over the artificial boundary is equivalent to the full

matrix that would be obtained from the integral equation. Furthermore, for "

the Helmholtz equation, spurious eigenvalues can also occur with this formu-

lation. Goldstein [ii] has suggested extending the boundary conditions of

Engquist and Majda to the elliptic case. However, this method is restricted

to only a range of frequencies depending on the expansion parameter. No

calculations using this method have been carried out to date.

The method to be presented develops a sequence of local boundary condi-

tions that are extensions of (i.I) and (1.2). These boundary conditions are

then applied at a finite artificial boundary. As the order of accuracy of

the boundary operator increases, the order of the highest derivative appearing

in the boundary operator will also increase.

The artificial surface will generally be assumed_ for the proofs, to be

the sphere r = rI. The resulting elliptic problem is then discretized and

solved in the bounded region between the body and the artificial surface. The

proposed boundary conditions are asymptotic in i/r. Hence, for a given

accuracy one can bring the artificial boundary further in when using the

higher order boundary conditions.

In many applications the solution is required only in the vicinity of

the body. The far field solution can be calculated by a quadrature formula,

_u
such as Green's formula, once u and _nn are known along the body. For

problems in potential flow one frequently is only interested in the solution
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on the body. Because of this, we shall stress the accuracy of the boundary

conditions as rI decreases. Furthermore, the error estimates will be for

surface L2 errors. These errors are due to the imposition of the generalized

radiation conditions at a finite boundary.

These boundary conditions are related to a family of boundary conditions

• developed by Bayliss and Turkel [5] for time dependent problems. The boundary

operators are differential relations which match the solution to an expansion

in i/r which is valid in a neighborhood of infinity. The boundary conditions

generally involve derivatives of order greater than or equal to the order of

the differential equation. Hence, these boundary conditions are different

from the usual boundary conditions encountered in elliptic theory.

For the Laplace equation the resultant discretization can be solved by

fast iterative methods leading to a substanial improvement over the integral

equation methods. For Helmholtz type equations, the error will have a depen-

dence on the number of wave lengths between the body and the artificial

surface. In several test cases it has been possible to constrict the compu-

tational region as k increases. All numerical results in this study were

obtained with a finite element program based on a band Gaussian solver. This

has large storage requirements which limited the investigation of high fre-

quencies. This storage can be reduced by the use of iterative

methods. An iterative method for the Helmholtz equation based on a decay law

for a corresponding hyperbolic problem was developed by Kriegsman and Morawetz

[17]. Kriegsman and Morawetz have also implemented time dependent boundary

conditions similar to those proposed here (private communication). Brandt [7]

and Nicolaides [23] have developed iterative methods based on the multi-grid

algorithm. These methods require Gaussian elimination on a coarse grid which

provides some resolution of the solution. Hence, these methods have limited
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use for high frequencies. The scheme of Nicolaides can be combined with

the finite element method described in the appendix. Extensions of the

fast solvers based on capacitance methods are also feasible (Proskorowski

and Widlund [25]).

In section 2 we develop the extension of the standard radiation con-

ditions for both the Helmholtz and Laplace equations. Error estimates for

Laplace's equation are given in section 3 and for the Helmholtz equation in

section 4. These chapters can be skipped by those only interested in the

computational procedure. In section 5 computational results are presented

for both the Laplace equation and the Helmholtz equation. For the Helmholtz

equation both constant and variable indices of refraction are considered.

The details of the finite element procedure are given in the appendix.

II. Construction of Radiation Boundary Conditions

Let u be an outgoing solution to the three dimensional Helmholtz

equation

(2.1) Au + k2u = 0 ,

exterior to a sphere r = r0. It is known (Atkinson [2], Wilcox [34])

that u can be represented by a convergent expansion

ikr _ F.(e,i)

e j
(2.2) u = k_ j=0 (kr)j

Here 0,1 denote the angular variables of an (r,6,¢) spherical coordinate

system. The series (2.2) is uniformly and absolutely convergent and can be
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differentiated term by term any number of times (Wilcox [34]). Fj(6,1),

j >_ 1 can be obtained from the radiation pattern, F0, by the formula

1 J
Fj(6,1) = H [£(£-I)+Q]F0(6,1) ,

(2i)Jj! £=0

where Q is the Beltrami operator in the angular coordinates 6 and

i 8 (sin 6 _ i _2Q- sin6 _6 _) + 2
sin e _2

The Sommerfeld radiation condition for any such solution is

= (_) (r . _)-i k u + ur o

In fact it is clear from the expansion (2.2) that

(2.3) -iku + ur = 0(I) (r + m).
r

In numerical computations for which the exterior region is truncated at

a finite value of r, say r = rl, a possible boundary condition to impose is

I

(2.4) -iku + Url = 0

Ir= rI

However, this condition is very inaccurate and in fact it can easily be seen

that it is not exact even for the first term in the expansion (2.2).

We will develop here a sequence of linear differential operators Bm

which provide more accurate extensions of the condition (2.4) by annihilating
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the first m terms in tileexpansion (2.2). Thus the condition that at

r = rI the solution lies in the null space of the operator Bm can be

considered as a procedure to match the solution to the first m terms in

the expansion (2.2).
b

An example of such an operator is

B1u = 1Dr i k+_)u

It is easily verified that

EeikrBIL_ F(9,_ = 0 ,

for any function F(e,i). Furthermore, it can be verified that for any

function u having the expansion (2.2)

(2.5) BIU I = 0(-_)rr= rI

To develop more accurate conditions we consider the sequence of operators

m (_____ 2j__) _ 2m-i-
(2.6) Bm = _ _r ik+ - ik+-- .r (_r- r )Bm-i

j=l

A straightforward calculation verifies that

BmP = 0 ,

for any function p of the form
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eikrF (0'¢)-- _= i,... ,m

P= )_ '(kr

Furthermore, if u is any function having an expansion of the form (2.2)

• then

i

• (2.7) BmU [ H h = 0(_)

ir= rI rl

It is clear that the leading order term in h will involve only the

term of order m+ I in the expansion (2.2) and thus the boundary condition

B u = 0 will match the solution to the first m terms in the expansion
m

(2 2). For any fixed k the errors in the boundary condition B u will• m

decrease at a faster rate (in (rl)-l) as rl._. This is thus analogous to

the use of higher order difference approximations where the errors decrease

at a faster rate in a mesh size h. Thus one can expect a significant in-

crease in efficiency by applying the higher order boundary conditions. We

point that the individual terms in (2.2) are not solutions to (2.1) (unless

k = 0) however the series (2.2) provides a description of the behavior of

the solution as r. _ which is generally not the case for expansions based

on complete sets of solutions to (2.1) (see Aziz and Kellogg [3]). We fur-

ther point out that the operators Bm in (2.6) can be written as

m

(2.8) (-ik+_r) + lower order terms ,

. and thus they can be considered as generalizations of the Sommerfeld radia-

tion condition.

In the study of the Helmholtz equation we are interested in the be-

havior of the errors in different parameter ranges. Specifically,
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i. The error for fixed k and m as the position of the artificial

surface, i.e. rl, varies.

2. The error for fixed k and rI as the order of the boundary

operator m increases.

3. The error for fixed rI and m as the frequency k increases.

Case 2 is of greater importance than case 1 as it is generally more •

expensive to increase the size of the computational domain than to implement

the higher order boundary conditions. Results to be established in sections

3 and 4 demonstrate that the higher order boundary condition can lead to

significantly increased accuracy when applied at a fixed rI.

The constants involved in the order relations (2.5) and (2.7) will,

in general, depend on k. This is because for arbitrary problems the angu-

lar functions Fj(e,i) can be expected to grow with k. Thus as k increases

the errors in (2.5) and (2.7) will not, in general, be bounded uniformly in

k. However, the quantity k rI is a natural non-dimensional quantity, which

is in fact just the number of wave lengths to the artificial boundary r = rI.

The error obtained by taking only a fixed number of terms in the series (2.2)

can be expected to depend significantly on this quantity. A consequence of

this is that the radial resolution will not increase, or will increase slowly

as k increases. Numerical results illustrating this will be presented in

section 5.

We also consider the exterior Laplace equation. In this case it is

well known that the analog of (2.2) holds, i.e., solutions have the multi-

pole expansion

1 L Fj (O,i)
(2.9) u = _ j=O rj
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It then follows that the differential operators obtained by setting k = 0

in (2.6)

m

= H 2_in!.
. (2.10) Bm (_r+ r ) '

j=l

• exactly annihilate the first m terms in (2.9). Similarly for any u

with the expansion(2.9)

1
U

(2.ii) Bm = 0(_)
r

r= r 1

Both (2.6) and (2.11) are valid for equations with variable coefficients

provided the coefficients approach a constant state sufficiently rapidly

at infinity. As indicated in the introduction we will be mainly interested

in computing the solution on some surface. The solution at far fields points

can then be obtained by a quadrature based on Green's formula. In the next

two sections we prove theorems that demostrate that in some cases the expected

surface L2 errors are achieved.

For computational ease one can replace all radial derivatives beyond

the first by tangential (angular) derivatives. This is done by using the

differential equation and is especially important for finite element applica-

tions. The exact forms of B1 and B2 are given by (5.2).

The previous discussion has concentrated on the three dimensional Helm-

holtz and Laplace equations. For the two dimensional Helmnoltz equation, the

solution u has the convergent expansion (Karp [14])

(2.12) u = H0(kr) + Hl(kr) fj ,
j=0 j=o

where H0 and HI are the Hankel functions of the first kind of order 0

and i. -ii-



As this expansion is difficult to work with we use the asymptotic expansion

[6]

(2.13) u _ kr e _._ rj .
j=O

The boundary conditions based on (2.13) are

3
m _ (2j- _)

(2.14) B = _ (_ + ik)
m j=l r '

which are analogous to (2.6).

We have concentrated on the homogenous Laplace and Helmholtz equations.

The same boundary conditions can be used for the inhomogenous equation

(2.15) A u + k2u = F

i

The estimates obtained in the next two sections apply to (2.15) provided

that F decays sufficiently rapidly for large r.

Boundary conditions based on the operators B are nonstandard becausem

of the high order of the derivatives involved. The regularity of the solutions

up to the boundaries, using BmU = 0 at the artificial surface, is guaranteed

by the Agmon, Dougalis, Nirenberg theory [i]. Using the results of Lopatinskii

[20] we need only consider the half plane problem without any lower order

terms. Thus, we have reduced the problem to

Au = 0 x > 0 -_ < y, z < _ ,

(2.16)
_n u

_= 0 x= 0
_xn
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The only solution to (2.16) that decays as x . _ is u = 0. Hence,

the complimentary condition of [i] is satisifed and regularity follows

(see also [31]).

When estimates for the error are obtained it is important that the

constants in the estimation do not grow too rapidly as the artificial

• boundary approaches infinity. It is also important, especially for the

Helmholtz equation, to eliminate the possibility of spurious eigenvalues

for the resulting interior problem. Indeed we wish to obtain estimates

that are uniform in k and do not have poles at discrete values of k.

Such estimates will be obtained in the next two sections.

III. Error Bounds for Laplace's Equation

We wish to obtain estimates for the L2 surface error that occurs

when the regularity condition at infinity is replaced by the condition

B u = 0 at a finite boundary. In this section we concentrate on Laplace'sm

equation. As discussed in the introduction the main interest is in the

errors that occur in the solution and its derivative along the inner boun-

dary.

For concreteness we shall consider the Neumann problem. All results

are equally valid for the Dirichlet problem.

Figure i.



The problem that we wish to solve is

Au=O in _ ,

3u

(3.1) _-_= g on rI

u= 0(I) r._ .

We replace this by the problem

Av=O in _ ,

3Xv=
(3.2) _n g on F1 ,

B v = 0 on F2 ,m

(see figure i).

Let w be the error, w = u - v. Then w satisfies

Aw= 0 in _ ,

_W

(3.3) _n 0 on FI

B w = B u E h on F2m m

1

If F2 is the sphere r = rI then by (2.6) h = 0(--_).
r

In this section we will only consider the case thatlthe artificial

surface F2 is the sphere r = rI. We will consider two cases. In

theorem (3.1) we discuss the case that the body F1 is also a sphere. In

theorems (3.2) and (3.3) we consider general bodies, but only treat the

boundary conditions B1 and B2. This is not a major restriction since B1

and B2 are the boundary conditions of the greatest practical importance.

-14-



Since we are interested in surface errors we introduce the notation

(3.4) IIw N(2r)= f/[w(y) 12dAy

[Yl= r

Introducing spherical coordinates (r,6,1) (3.4) becomes

2_r

llwll2(r)=0_0 [w(r,O,¢)12r2sined@d*

For simplicity we assume axial symmetry so that w is independent of _.

All the results are independent of this assumption.

For the first part we assume that the body is also a sphere. The

coordinates are scaled so that the surface is the sphere r = i. We then

have

Theorem (3.1)

Let g(@) be smooth and hence satisfy

(3.5) / g2(@) sing dO < o%
0

Let w be the solution to (3.3). Then there exists a constant C, indepen-

dent of m, such that

Crm+l

(3.6a) IIw [l(r) <_ 2m+l '
rI - 1

" l<_r<r I

3w Crm
(3.6b) ]1 II <- -- 2m+l

(r) rI - 1
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Note:

(i) The boundson the derivativesare necessaryfor the Dirlchletproblem.

(2) It followsfrom (3.6a)that

IIwII(rl)=o(--_z) ,r 1

1
II_I1(1)=0(-_>

r 1

Hence, the smallest errors occur along the inner surface. This is analogous

to the Saint-Venant's principle. Lax [19] has considered decay laws for

volume norms for positive elliptic operators.

(3) Since C is independent of m the estimate shows that we can improve

the accuracy by fixing rI and increasing the order of the boundary operator.

Proof

We first consider the case that Dirichlet data is imposed, i.e., (3.1b)

is replaced by u = g on FI. By assumption (3.5) and using axial symmetry

we have that
oo

(3.7) g(O) = _ djPj(cos 0) ,
j=0

where P. are the Legendre polynomials. It then follows that
J

fo Ig2(a_lsinede = _ d 2.
j=O 3

If g(e) is sufficiently smooth it is also known that for any n (Gottlieb

and Orszag [12])
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C

(3.8) idjl < n
- (j+l)n

where Cn depends on n and g but not on j. Using separation of

variables, the solution u to (3.1) is given by
b

(X)

d.P.(cose )
° (3.9a) u(r,6) = J J

rJ+l
j=0

oo

_u _ (j+l)djPj (cos @ )(3.9b) _r (r,O) .... rJ+2
j=0

It is easy to verify, by induction, that the boundary operators B givenm

by (2.10) satisfy

m k-m k-m
(3.10) B (rk) = _ (k+%)r -=

m %=1 Ak'mr

Clearly Ak,m = 0 for -m _ k < 0.

It follows from (3.2b), (3.9) and (3.10) that

oo

(3.11) Bm(W) = Bm(U) = _ djpj (cos e )A_j,mrJ-l-m+l "j--m

By separation of variables the error w has the form

oo

(3.12) w(r,e) = qjPj (cos 8)[rj 1
rj+i ]

j=0
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The operator B is applied to (3.10) and the result is evaluatedm

at r = rI. Using the completeness of the Legendre polynomials, this

series can be equated term by term, with (3.11). We then have

IO j --0,..., m-i(3.13) qj = [A-(j+l),m 2j )-idj_A. rI - I j >_m . °
j,m

From the definition of A . it is easily verified that
-j,m

A- (j+l),m

Aj,m > 1 ,

and so

(3.14) lqjl < [do[ j >m ,
2j-i

rI - i

and

m

[dj rj 21djlr i < r < r1

lqj(rj- r_+ I) I < 2j-i < -- -- '
_i - 1 -- r_m-I - i j _>m

Since, IIw ll_r) = j_lqj(rJ-rj--_)12r2 , the result (3.6a)follows.
By differentiating the series for w (3.12), and repeating the process, (3.6b)

follows.

The proof for the case of Neumann data is similar. In this case (3.9)

and (3.12) are replaced by

co

u(r,@) = - _ -_- pj(cos e)
(j+l) rJ+l

j=O

and

-18-



co

rJ+l ]
J=0

We next consider the case where (3.1) is to be solved exterior to an

arbitrary domain rI. We restrict the proofs by only considering m = 1,2.

The proof relies on the generalized maximum principle discussed by Protter

and Weinberger [26]. To apply these methods we assume that F1 has the

property that every x E F1 lies on the boundary of a ball contained in

the exterior of FI. We first need

Lemma 3.I

Let w satisfy

Aw = 0 in _ ,

_w

(3.15) 8-_ = 0 on F1 ,

B.w = h on F2 for j = 1,2 .J

Suppose there exists functions Zl, z2 such that

A zI J 0 in _ ,

_zI <

(3.16) _T- 0 on F1 ,

BjzI >_h on F2 j = 1,2 ,

and
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Az 2 > 0 in _ ,

_z2
> 0 on FI ,3n --

Bjz 2 < h on F2 j = 1,2 ,

then °

z2 < u < zI in

We make several observations

I. The normal derivative is taken in the direction away from the origin.

_u _u
Hence, for a sphere _n Dr

2. Similar results hold when Dirichlet data is imposed on the inner body.

3. The results are valid for any uniformly elliptic equation in _.

Proof.

For j = i the lemma is a restatement of theorem 12 of [26]. When

B2 is used the result follows from the observation that the proof of

Protter and Weinberger only requires that when w has a positive maximum

on F2 then B2w is positive. This follows from the form of B2.

Based on this lemma we have

Theorem 3.2

For an arbitrary body FI and using the boundary operator BI on F2

the error satisfies

c pointwise.
(3.1s) lwl!

rI
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Furthermore, using the operator B2 on F2 the error satisfies

(3.19) Jw[ < C pointwise-- 3

rI

Proof.

, The boundary condition BlW can be expressed as

-- 2r_

C

We choose for the lemma Zl - 2 and z2 = -zI. Straightforward algebra

r1

shows that zI and z2 satisfy (3.16) and (3.17) respectively. (3.18)

then follows from the conlcusion of the lemma. For the boundary condition

C

B2 wc chnose zI = -_ and z2 = -z I and again (3.19) f']1o_,_.
rI

We note that the exact solution to the exterior probl_,m decays at

least as fast as i/r. Hence, the uniform error bounds given by (3.18) and

(3.19) express a smaller relative error at the body F1 then near the arti-

ficial surface r = rI. For some applications one wishes error bounds for

the normal derivative on FI. The bounds can be obtained by deriving a

aw
Fredholm equation of the second kind for a-_ on FI. A theorem valid for

k > 0 will be given in the next section.
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IV. Error Bounds for the Helmholtz Equation

The problem that we wish to solve is

(4.1a) A u + k2u = 0 exterior to Fl ' "

_U

(4.Ib) _n g on FI .

(4.ic) __pu_ (rDr i ku = o i) as r . m .

As before we replace condition (4.1c) by

(4.1d) B v = 0 on F2m

where v also satisfies (4.1a, 4.1b). Let w be the error, w = u - v.

Then w satisfies

(4.2a) Aw + k2w = 0 in _ ,

_w
(4.2b) _-_ = 0 on rI ,

(4.2c) Brow = BmU --h on F2

where B is given by (2.6) (see Figure i). For simplicity we only con-
m

sider the case of axial symmetry, however, all results hold for the general

three dimensional problem as well as the for the Dirichlet problem. As in

section 3 we restrict the proofs to the case that the artificial surface

is the sphere r = rI. We are interested in error estimates on surfaces

and use the surface norm given by (3.4). We then have
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Theorem 4.1.

Given equations (4.2) and m = 1 the error w has the bound

IIh l[(rl)

. (4.3) [Iw [l(rl)--< k "

Proof.

Let _ denote the complex conjugate of w. Then from Green's

theorem and (4.2) we have

f f f- w(4.4) Igradw ]2dV - k2 lw2[dV = w _rr dA .

_ F2

Using the definition of B1 we also have

f fj f.(4.5) w _ dA = ik w21dA + h dA

F2 F2 F2

We then substitute (4.5) into (4.4). Taking the imaginary part of the

resulting equation yields

(rl) = wl dA = _ h dA < k "

F2 r2

Dividing both sides by I]w[](rl) gives the estimate (4.3).
C

Since h = BlU we know that Ihl < _ where C depends only on g
r

and k. Hence, (4.3) is equivalent to

(4.7) ilWH(rl) _< kr21C
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Using the definition of BI we also have

_w 1

(4.8) []_r II(rl) _< (k+ r) Ilw[I(rl)+ IIhIl(rl)

1 ll(rl) __
< (2+ _r )IIh <__ (2+ 1 )

r

In theorem (4.1) we considered the boundary operator BI. We now

consider the operator B2 but restrict the body FI to be a sphere. We

then have

Theorem 4.2

Consider equation (4.2) with m = 2 and FI the sphere r = i.

Then the solution w satisfies the bound

IIh [l(rl)krI

(4.9) llwII(rl) < (i+-_-) k2

We note that by the construction of B2 we have

C
lhl < -_ ,

r 1

where C depends only on g and k. It follows that

C

IIhll(rl) < --_ ,
r 1 .

and (4.9) can be restated as

C I

rI rlk
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A similar result holds for the Dirichlet problem.

Proof

By separation of variables (assuming axial symmetry) the solution to

(4.2) has the expansion

Oo

(4.11) w = _ H%(kr)P£(cos 0) ,
_,=0

where Hi are the spherical Bessel function and P£ are the Legrendre

polynomials. Hence H£ satisfies the ordinary differential equation

,, + 2 _ =(4.12) H_ r Hi + (k2- )H_ 0 ; _ = £(_+i)
r

Similarly, by completeness, BmU _ h has an expansion

oo

(4.13) h = _ h%P£(cos8) .
_,=0

By orthogonality it is sufficient to only consider one term in (4.11).

We thus have reduced the problem to a one dimensional problem. Let _ = H_(r),

then

(4.14a) 4" + _r 4' + (k2. _)_ = 0 , i _< r _< rI ,
r

(4.14b) 1'(I) = 0 ,

• 4 , 2 2(4.14c) B2_ = _" + r _ + (r- k2)_ - 2ik(_'+ _) = h_ r = rI
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We note that for the Dirichlet problem (4.14b) is replaced by

i(1) = 0. For the Neumann problem we define q by q = i(1). We then

introduce a normalized variable

(4.15) _ = _/q •

It follows form (4.14) that _ is real. We then take the real and

imaginary parts of (4.14c) and replace i by _. Using (4.12) to

eliminate the second derivatives, we obtain

2 h_

(4.16a) 4' + rl _ = - _m (o--777.)=q_E _i '

and

h£

(4.16b) r

rI rI

where both equations hold at r = rI.

We need to consider two cases depending on which harmonic % was

chosen.

Case I: %----> k2 % = %(%+i)2
rI

In this case 4(1) = i, 4'(1) = 0 together with (4.12) imply that

4, _', _" are all positive in a neighborhood of r = i. This condition

must persist at least until r _ r, where 4" (r,) < 0, _'(r,) = 0

and _(r,) > 0. However, combining these conditions with (4.12) we see

that r, > rI. Since we are only interested in 1 ! r ! rI we conclude
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that _,02' are positive in the whole interval. In particular 02(rI) > 0,

_'(rI) > 0. Using (4.16) we have

. 2 2---02 _i1)!02'+ i I l!
rI 2klq I

Since @ = q02 we have

krI h£

(4.17) l_(rl)I <__-_-171 ,

which is a stronger estimate than (4.9).

We now consider

Case II: 1-- < k2
2 --

rI

We now solve (4.16) for 02(rI) and obtain

E1

(4.18) 02(ri)(__ 22 2k2) = h2 - --k

rI r 1 r 1

% k2
Since --_ we have that

rI

i1 2 2k21 > k2 +2_2 2 - 2

rI rI rI

Hence, using (4.18) and @ = q 02 we have

k2(l+ 2 ) ](rl)[ 2]h£ I (l+r_ )

r21k2 lql <-- lql
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or

(4.19) l¢(rl) l j k2 ,

which again is a stronger estimate than (4.9). We finally point out that

(4.9) and (4.16a) imply

(4.20) II_'(r1) If < + r_ (1+ -_--)J : 0(),
rI

since h = 0(i).
L)

rI

The results of Theorems 4.1 and 4.2 can be stated as

(4.21) IIwll(rl), IIWrll(rl) : O(i/rl+I) ,

for m = 1 and 2. We now extend these results from the outer surface

r = rI to the body FI. Introducing the notation

!flI2= w dA ,
Ilwll(rl) r

1

for the surface L2 norm; we then have

Theorem 4.2

For the problem (4.2) we have

where C depends only on k and FI.

Note: (i) An entirely analogous theorem holds for IIWnll(rl) when the

Dirichlet problem is considered.

-28-



(2) C is continuous in k and the result holds for k = 0.

(3) Since u = 0(_) the relative error expressed
in (4.22) is

smaller than that expressed in (4.21).

Proof

Let G(p,q) denote the free space Green's function

eikip-ql

(4.23) G(p,q) = 4_i p_q I •

Using Green's theorem applied to w in the region _ (see figure i) we

have for P E _ (making use of (4.2b)

(4.24) w(p) iqif G(p,q)Wn(q) - w(q)Gn (P,q)dA=rl q q

+/ w(q)G n (p,q) dAq

q CF I q

where the normal on FI points toward the exterior and the normal on

lql = rI is in the direction of increasing r. Upon letting p approach FI

and using the standard jump relations of potential theory ([15]) we obtain

l"

(4.25) l(w) --J (G(p,q)Wn(q) -w(q)G nq(p,q))dAq ,|ql= rI

• where I is the integral operator (see [9])

I"

l(w) = -J Gn (p,q)w(q)dA2 q

qEF I q
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It is clear that the right hand side of (4.25) satisfies (4.22). It is

shown in [9] that I(w) is invertible except for a discrete set of values

of k and this establishes (4.22) except for these interior resonances.

At the interior resonances we replace G by the modified Green's function

of Ursell ([32]) and use the same proof.

V. Numerical Results

We consider the three dimensional Helmholtz equation in spherical

coordinates with axial symmetry. Using r and 8 as coordinates the

equation becomes

D2u + 2 Du i D (sine Du-- 7 7r+ 2 De + k2u= 0(5.1)
Dr2 r sin 6

The first two radiation boundary conditions are

D__U_U- u
(5.2a) BlU = Dr iku +--r= 0 ,

and

__ 4 Du 2 _ k2u = 0
(5.2b) B2u = D2u + (7- 2ik) _r + (_ - 4ik) r -

Dr2

D2u
To eliminate 2' (5.2b) can be rewritten as

Dr

D Du

(5.2c) Du i -_(_ sin 6)D-7= -(¥- ik )u + i
2r2(_ - i k )sin 6

Q

We only consider the case that the body is a sphere, given by r = r0.

The radiation conditions are specified on the sphere r = rI. On the body

Neumann data
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_u=
(5.3) _n h on FI: r = r0

is given.

• The Helmholtz equation is solved by a finite element code using linear

elements. The radiation boundary condition is also written in weak form

following an integration by parts. Details are given in the appendix.

Richardson extrapolation in the theta direction is used for all results.

This substantially increases the accuracy of the computed solutions,

especially for the higher frequencies. The limiting factor in the method

is the storage requirements of the banded Gauss solver. The use of higher

order elements or iterative techniques would reduce the storage requirements.

We first consider acoustic scattering by a point source at a fixed

axial point q. We then have

a) Au + k2u = _(p-q) , r0 < r < oo ,

_u

(5.4) b) _r 0 , r r0 ,

I
c) - iku = o(---) , r . oo .

_r -r

Here, p denotes the dependent variable and q is the source point. (5.4)

implies that the scatterer is hard, i.e., the normal acoustic velocity is zero

on the body.

The singularity in (5.4) is eliminated by introducing v given by

• eikl P-ql
V = U

4_Ip-q I

-31-



The equations for v are then

a) Av + k2v = O,

(5.5) b) _r _r _4_lp-q[ '

r = r0

c) _v (_)_-_- ikv = o , r . _. -

To solve this system according to the previously described procedure, we

replace (5.5c) by

(5.5d) BlV = 0, r = rl,

or

(5.5e) B2v = 0, r = rI.

The "exact" solution was generated by using an integral equation code

with a fine grid. This code had been previously checked by comparisons

with analytic solutions presented in [6] to verify its accuracy.

In Table I we present the relative surface L2 errors for various k.

The data in this table was obtained with a fixed number of points (N= 5)

1

in the radial direction. For these computations the body has radius r0 = _.

The source is located on the axis at r = .6. Similar results have been

obtained for a wide range of source positions.

The results given in Table I indicate that for the problem considered

the error due to the artificial boundary decrease_ as k increases. Speci-

fically the grid in the normal direction can be chosen independent of k.
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One can also bring in the artificial surface so that it coincides with the

inner boundary. In this case only an ordinary differential equation needs

to be solved. However, this resulted in substantial errors and accurate

. solutions could not be obtained.

The results of Table I show that the first order boundary condition

(5.2a) is not good enough for many computations. Except for the lowest

of frequencies i0 percent accurate solutions could not be obtained using

(5.2a) because of storage difficulties that arise from using a large rI.

We next consider the Helmholtz equation with a variable k. We choose

k in (5.4a) as

r- r0

14(1 - --_-_-) r0 _ r j r0 + .15k

3 r0 + .15 i r.

We choose r0 = ½ and consider a sequence of outer boundary positions

rI. The "exact" solution is generated by choosing the outer boundary

sufficiently far away so that the solutions obtained by using the first or

second order boundary conditions differed by less than 3 percent. The solu-

tion obtained by using B2 at this rI was taken as the "exact" solution.

Since k is variable inside the region the Green's function is not

known. Hence, one can not use Green's formula to calculate the far field

_u _u
solution given u and _nn at r = r0. Instead u and _nn on the outer

boundary can be used to find the far field solution, since k is constant

_u
• beyond the outer boundary. The value of _nn on the outer boundary can be

calculated from u and its tangential derivatives by using the boundary

conditions (5.2a or 5.2c). The tangential derivatives can be eliminated

by integration by parts in the Green's formula.
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In figure 2 we plot the relative surface errors over the outer

surface for different values of rI. The improvement achieved by using

B2 (5.2c) rather than B1 (5.2a) is evident.

As the final example we consider Laplace's equation. The exact solu-

tions are generated by imposing Neumann data corresponding to a monopole

or dipole centered at an axial point Ps inside rI and displaced from

the origin of coordinates. The solution is

i
(5.7a) u = ,

4_IP-Psl

and

COS _Y

(5.7b) u =

lp_psl2 '

for the monopole and dipole respectively. Here 0' denotes the polar

angle in a polar coordinate system centered at Ps"

It is well known that general solutions to Laplace's equation in

exterior domains can be expressed as a superposition of surface monopoles

or surface dipoles ([15]). Hence, the model problems (5.7) are relevant

to realistic problems especially when Ps is chosen near the body surface.

In table 2 we present the surface errors, over the inner surface

(r = ½), for several different cases. The solution types M and D denote

the monopole (5.7a) or dipole (5.7b) solution respectively.

The first order condition is exact for a monopole centered at the origin

while the second order boundary condition is exact for both monopoles and

dipoles centered at the origin. When the second order condition is used for *

the displaced dipole (5.7b) it is more accurate than the first order condition
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is for a displaced monopole (5.7a). For small Ps the dipole has no i/r

contribution and the first order condition is expected to be inaccurate.

These results again confirm the substantial improvements that can be ob-

• tained by the use of (5.2c). The decay rate of the error as a function

of rl, as predicted in Theorem (3.1) has also been computationally verified.
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Second order condition[]
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Figure 2.- Errors for variable coefficient problem.



TABLE I

Relative surface L2 errors for the Helmholtz equation

kr0 rI m error

ii .645 i 18.6

ii .645 2 5.4

23.6 .575 i 31.5

23.6 .575 2 6.5
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TABLE 2

Relative surface L2 errors for the Laplace equation

Solution type Ps rl m error •

M .2 .57 1 14.7 "

M .2 .57 2 i.i

M .2 .64 i 9.4

M .2 .64 2 0.6

D .2 .57 1 65.0

D .2 .57 2 8.9

D .2 .64 1 38.3

D .2 .64 2 4.9

M .4 .60 1 25.4

M .4 .60 2 4.1

M .4 .65 1 17.7

M .4 .65 2 2.7

D .4 .6O 1 35.4

D .4 .60 2 10.5

D .4 .65 1 21.6

D .4 .65 2 7.2
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APPENDIX

In this section we consider the problem of implementing the boundary

conditions corresponding to B1 and B2. From (2.6) we see that these

j conditions have the general form

• 3u
(A.I) BlU = _rr+ Y1u = 0,

and

_2 _u

(A.2) B2u _ _r2u+ _l -_r+ ylu = O.

Here al' BI' and YI are complex functions depending only on k and r

and not on the angular variables which are given explicitly in (5.2a) and

(5.2b).

For simplicity we will consider only axially symmetric problems, so

that the Helmholtz equation

(A.3) Au + k2u = 0,

may be written as

_2u 2 _u i _ _u
(A.4)

_r 2 + r _r + r2sine _o(sine_) + k2u = O.

• _2u
The presence of the term in (A.2) is nonstandard and difficult to

_r2

, implement directly. Since the boundary will be the sphere r = rI

_2u
it is convenient to eliminate the term in (A.2) by using (A.4)

_r 2

so that only tangential second derivatives appear in the boundary condition.
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This can also be done for arbitrary shapes of the artificial boundary. The

result can be express in the form

_u 62 8

(A.5) B2u = F2 -_r + sin0 _(sinO_) + &2u = O,

where _2' B2' Y2 depend only on k and r and not on 6 and are given •

explicitly in (5.2c). The functional form of (A.5) also includes the

boundary operator B1 (with B2 = 0).

The computational problem is to solve (A.3) in a region _ exterior

to an inner boundary F1 and interior to the sphere r = rI. On r = r1

we impose (A.5) while on rI we may impose either Dirichlet or Neumann

data. For concreteness we assume that Neumann data is specified, i.e.

_U

(A.6) _-_= g(r,6) on FI.

The numerical method employed is a Galerkin finite element technique which

we now describe.

Consider the following weak formulation of the problem (A.3), (A.5),

(A.6). We seek a function u in a Hilbert space H such thatm

(A.7) B(u,v) = F(v),

for all v in H wherem

.t

ff[ _u _v d2 2 .
(A.8) B(u,v) = Vu "Vv-k2uv]r2sin8 d0 dr + [Y2 _6 26 "(2 uv]rlslne de,

J

r=r 1
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and

f

F(v) = -Ig(r,O)vd s.
,J

F1

The boundary integral terms in (A.8) come from using (A.5) and integrating

• 2
by parts in e. We note that r sin _ comes from the three dimensional

volume element, Our approximation problem is to choose a finite dimensional

h Shsubspace S h of H and then seek a u € such that
m

(A.9) B(uh,v h) = F(vh),

for all vh € Sh.

It is easy to see that if u is a sufficiently smooth solution to (A.7)

then u will be a solution to (A.3), (A.5) and (A.6). For m = 1 the

above weak formulation almost leads to a standard finite element problem,

Shonce is chosen to be some finite element space. Indeed, for m = i,

B2 = 0 and we may choose HI = Hl(r), i.e., the Sobolev space of functions

with one distributional derivative. The only complication is the appearance

of the term (r2sin 8) in the integrals. For m = 2, we need more smooth-

ness on the boundary r = rI due to the first term in the boundary integral

in (A.8). The choice H2 = HI(_) x Hl(r=rl) suffices. For either m = i

or m = 2 we may choose Sh to be the finite element space defined by

• subdividing _ into triangular elements and then restricting the function in

Sh to be continuous in _ and linear in each triangle, i.e. a piecewise

h
linear finite element space. Then we compute u in the standard manner,

sh, hi.e. we choose a (local) basis for expand u in terms of this basis,

h
and let v in (A.9) range over the basis to obtain a system of algebraic

h
equations for the nodal values of u
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Numerical experiments confirm that when both the 9 and r grids

are refined that h2 convergence rates are obtained. These convergence

rates were verified for both the first order BlU = 0 and second order

B2u = 0 boundary conditions. Hence, the second order derivatives that

appear in B2 did not cause any deterioration in the rate of convergence.

When only the e mesh was refined and the errors were measured on the

inner boundary a convergence rate of order h was observed.

The computations presented in this paper were intended to exhibit the

improvements due to increasing the order of the boundary operators. For

this reason, it was desired to minimize discretization errors due to the

finite element approximation. It has been verified that the higher order

conditions did not affect the rate of convergence of the discretization

scheme.
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