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COMPARISON OF SEVERAL INFLOW CONTROL DEVICES FOR FLIGHT SIMULATION
OF FAN TONE NOISE USING A JT15D-1 ENGINE

by J. G. McArdle, W, L. Jones, L. J. Heidelberg, and L. Homyak
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract

As part of a program to enable accurate simulation of in-flight fan
tone noise during ground static tests, four devices intended to reduce
inflow disturbances and turbulence were tested with a JT15D-1 turbofan
engine. These inflow control devices (ICD's) consisted of honeycomb/
screen structures mounted over the engine inlet. The ICD's ranged from
1.6 to 4 fan diameters in size, and differed in shape and fabrication
method. All the ICD's significantly reduced the BPF tone in the far-
field directivity patterns, but the smallest ICD's apparently introduced
propagating modes which could be recognized by additional lobes in the
patterns. All the ICD's had negligible transmission loss at low fan
speeds; at supersonic fan tip speed the smallest ICD's had some measur-
able loss, but the largest had no loss. The JT15D-1 engine was found to
have a tone source which generated a strong propagating mode at fan
speeds corresponding to "approach" power and higher. This mode, which
was not affected by an ICD, is associated with six structural struts be-
hind the fan, but the exact noise producing mechanism was not identified.
Two of the ICD's were tested with miniature dynamic pressure transducers
mounted on the fan blades. Data from a typical transducer showed that
the unsteady intlow distortion modes (turbulence) were eliminated or sig-
nificantly reduced when either of the ICD's was installed. However, some

steady inflow distortion modes remained; those that could result in propa-

gating acoustic modes are believed to be related to lobes observed in the
directivity patterns.

Introduction

Modern turbofan engines produce less noise in flight than in ground
static tests. A major reason for this difference is fan tone noise which
is generated by turbulence and other inlet flow distortions that are pre-
sent in static testing but not in flight. Several investigators (refs.

1 to 7) have shown that honeycomb/screen structures mounted over the test
inlet can reduce inflow disturbances and tone noise arising from the dis-
turbances. In this report, a honeycomb/screen structure is called an
"{nflow control device" (ICD).

A research program is under way at NASA Lewis Research Center (LeRC)

to better understand generation of fan tone noise, and to develop ICD's




and techniques to enable more accurate simulation of in-flight tone noise.
The program is part of a NASA inter-center "Forward Velocity Effects on
Fan Noise" program that involves static, wind-tunnel, and flight tests
using the Pratt and Whitney of Canada JT15D-1 turbofan engine.

The principle objectives of the test program at LeRC are (1) to de-
\e10p an ICD which minimizes tone nolse components which are not present
in flight; (2) to ensure that the ICD does not attenuate or redirect .
sound radiated from the engine to the far field; and (3) to provide as
much design information as possible for similar devices for other en-
gines. Further, the tests are aimed at developing an ICD which 1s small
in size (less than 2 fan diameters), lightweight, simple, and inexpensive
to build.

Some of the previous work at LeRC, including a method of judging
the acoustic transmission characteristics of ICD's, is described in ref-
erence 1. Since that report, much additional progress has been made, but
all the program objectives have not been fulfilled and more study remains
to be done. This report describes and compares significant results of
tests of four ICD's with different shapes, sizes, and fabrication tech-
niques. Some results from tests using dynamic pressure transducers
mounted on the fan blades are also included. The blade mounted trans-
ducers are a relatively new tool for acoustic invescigations, and have
been useful in evaluating the ICD performance, and in identifying some
important tone sources.

Apparatus and Procedure

Engine and Facility

The JT15D-1 engine, sketched in figure 1, is a two-spool turbofan
engine with nominal 3.3 bypass ratio. Important performance character-
istics are given in table I. The fan is 53.3 centimeters (21.0 in.) di-
ameter, and has 28 blades and 66 exit guide vanes in the bypass duct.
(The 66 vanes are herein called the "fan stator"). The centrifugal
core compressor has 16 blades. The engine used for these tests was an
early production model. All parts were standard except the fan exit
guide vanes in the core flow passage (herein called the 'core stator").
The standard assembly (33 vanes) was replaced so that fan rotor/core
stator interaction tones would be acoustically cut off. The new design
has 71 thinner vanes, which alsoc were set a little farther aft than the
standard vanes. The vanes in the new core stator are 0.63 fan blade root
chords aft of the trailing edge of the fan blade root, compared with 0.28
chords for the standard vanes.

On the JT15D-1, the core engine is supported from the outer case by
a main frame consisting of six structural struts. The struts are located
just aft of the stators, as iIndicated in figure 1.




For these tests several things were done to minimize unwanted noise
which might be generated from facility or test configuration causes:

(a) Engine centerline height was 2.9 meters (9.5 ft), or 5.4 fan
diameters above the ground. This height, measured in fan diameters,
is larger than many engine test installations. It was chosen to at-
tempt to minimize ground plane effects on the inlet flow.

, (b) The engine was covered by a smooth cowling to minimize distor-
tions in the air flowing from the rear into the engine inlet. The cowl-
ing was 107 centimeters (42 in.) in diameter, and had a circular cross-
section. It was not intended to simulate an airplane nacelle. The for-
ward part of the cowling could be changed tc mcunt the different ICD's.

(c) The engine was suspended from the facility thrust system by a
forward-facing cantiiever arm which faired smoothly into the cowling.
The engine was positioned on this arm so that the front of the inlet was
not closer than 3.4 fan diameters to any facility structure.

(d) The inlet air temperature sensor (a rod-like part on the inlet
wall) was retracted so that its wake did not make tone noise.

(e) The engine exhaust was connected to a large muffler to suppress
aft fan noise and jet noise.

The tests were performed at the LeRC Vertical Lift Facility. The
facility is an outdoor test stand sheltered by a service building which
was moved away on tracks before testing. The area beneath the engine
out to the far-field microphones was paved with concrete. A photograph
of the test setup is shown in figure 2.

ICD and Inlet Configurations

The ICD's and inlets are sketched in figure 3, and shown in the pho-
tographs of figures 2 and 4 through 6. Some of the characteristics of
ICD numbers 1 and 2 were reported in reference 1.

ICD number 1 (figs. 2 and 3(a)) was made of twelve 5-centimeter
(2-1in.) thick flexible ("Flex-Core') honeycomb panels laid over a coarse
base screen and a fine-mesh turbulence reducing screen. The honeycomb
cell length, %, to equivalent diameter, d, ratio was approximately 8.
Structural support and shaping was provided by equally spaced steel ribs
3 millimeters (0.125 in.) thick. For some tests'an additional fine-mesh
screen of 12 joined sections, each similar in shape to the honeycomb
panels, was installed inside the ICD. This screen was based on results
of tests reported in reference 6. The additional screen was held tautly
in place by several l0-centimeter (4-in.) long wires from each of the
ribs, and thus approximated the shape of the inside surface of the ICD.
This ICD was mounted over the cowling. The inlet lip was nearly semi-




circular in cross-section, and formed a bellmouth for the cylindrical
inlet duct. Because of its weight, this ICD was supported by thin rods
from an overhead facility structure. It was the only ICD tested which
needed external support.

ICD number 2 (fig. 3(b)) was made of a single flat sheet of 10-cen-
timeter (4-in.) thick honeycomb (cell #/d ~ 11). No supporting ribs
were used. The ICD was mounted in the inlet duct just behind the bell-
mouth lip. Further description is given in reference 1. Also, in that
reference this ICD was reported to cause acoustic transmission losses
and changes in far-field directivity; consequently, the acoustic data
are not discussed further in this report.

ICD number 3 (figs. 3(c) and 4) was made of four 5-centimeter
(2-in.) thick fiberglass honevcomb sections (cell £/d ~ 5). The orange-
peel shaped sections were heat formed over a mold, trimmed to size, then
epoxied together (without ribs) at the mating edges of the sections.
Thus, the mating edges were composed of randomly-cut cells, but the
epoxied joints were reasonably uniform and were made neatly (see fig.
4(b)). The ICD cross-~section contour was designed so the honeycomb cells
were aligned with flow streamlines calculated by a potential flow analy-
sis. The resulting shape was nearly hemispherjical, and was self-support-
ing. The inlet lip used with this ICD was flat at the highlight, and
faired into both the cowling and cylindrical inlet duct with circular
arcs. The installed ICD fit into the flat area ot the 1lip.

ICD number 4 (figs. 3(c) and 5) was made of eight 2.5-centimeter
(1-in.) thick flexible honeycomb sections (cell 2/d -~ 4). The orange-
peel shaped sections were formed and trimmed over a mold, then the edges
were epoxied to thin steel ribs which extended beyond the honeycomb
faces. Adjacent ribs were spot welded together, forming a self-support-
ing structure. The inside contour of the honeycomb and the inlet were
the same as for ICD number 3.

ICD number 5 (figs. 3(d) and 6) was made of six sections of 5-centi-
meter (2-in.) thick flexible honeycomb (cell 2/d ~ 8). It was fabri-~
cated with thin ribs between the sections, similar to ICD number 4. In
addition, a grid of 1.6 millimeter (0.063 in.) wires on approximately
S-centimeter (2-in.) centers was used for more support beneath the
honeycomb (see fig. 6(b)). The inlet duct for this ICD was a conical
diffuser duct rather than a cylinder as used with the other ICD's. The
1lip (taken from ref. 8) was elliptical in cross-section up to the high-
light, then faired into a conical skin, which in turn faired into the
cowling. The ICD was mounted on a machined ring in the conical section.
The ICD contour was designed so the honeycomb cells were aligsed with
flow streaml f:ies calculated by a potential flow analysis. A similar
analysis showed that this inlet would be suitable for low-speed flight.

For the acoustic transmission tests, a 1l0-centimeter (4.0-in.) long
spool piece was inserted between the front engine flange and the inlet
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duct. Forty-one equally spaced, radially directed rods were mounted in
this spool (see fig. 3(e)). Each rod was 0.5 centimeters (0.19 in.) di-
ameter and 6.4 centimeters (2.5 in.) in length. The rods and spool piece
were the same as reported in references 1 and 9.

Acoustic Instrumentation and Data Processing

Far-field nolse measurements were made with 1.3 centimeter (0.5 in.)
microphones located on the ground 27 meters (90 ft) from the engine. The
microphones were spaced at 10-degree intervals from 10 to 120 degrees
from the engine inlet axis.

The microphone data were recorded on magnetic tape and then pro-
cessed on a spectrum analyzer. The results were corrected to 30.5-meter
(100-ft) free-field radial distance, and standard-day temperature and
relative humidity (15° C (59° F) and 70 percent, respectively). The cor-
rection applied to the ground microphone data to obtain free-field levels
was -6.0 dB at all frequencies up to 20 kilohertz.

Blade Mounted Transducers

For some of the tests, dynamic pressure data were obtained with
eight miniature transducers mounted on two of the fan rotor blades. A
photograph of the instrumented blades is given in figure 7(a), and the
transducer locations on the blades are shown in figure 7(b). Six trans-
ducers were mounted approximately 4 millimeters (0.16 in.) from the
leading edge, and two were mounted approximately 9 millimeters (0.35 in.)
from the trailing edge. All measured dynamic pressures on the "pres-
sure' surface of the blade, except transducer B-4. For some of the tests
(not reportéd herein) transducers were mounted on fan stator and core
stator vanes.

The transducers were mounted as illustrated in figure 8. The mount-
ing technique enables the transducers to operate properly under large
radial acceleration loads. (For the JT15D-1, the maximum load is about
76 000 g at the fan blade tip). Fabrication details and response charac-
teristics of the installed transducers are given in reference 10.

The pressure data were telemetered from transmitters in the nosecone
to an antenna mounted in the inlet duct wall. The general arrangement of
the system is shown in figure 9. Each transducer was coupled to its own
FM transmitter. Transmitter circuitry gains were manufactured so that
the output from each transducer was 1 volt rms for a 171-dB tone (re
2x10™2 Pa) applied to the pressure-sensitive diaphragm by a close-
coupled acoustic driver. The whole system was powered by 10 lithium pri-
mary batteries.




The analog pressure signals were recorded, along with other test
data, on magnetic tape. The recorded data were analyzed on a fast-
Fourier-transform spectrum analyzer, and also digitized for further cal-
culations with a specially written program for a digital computer.

In order to conserve the batteries, a speclal switch was used to
energize system power only when data were being taken. The switch was
activated by a strobe light located in the inlet duct wall., An optical
sensor was used to indicate the passage of a designated fan blade dur-
ing each fan rotor revolution. The indication is accurate to about
1 degree of rotation; it was used as a "trigger" signal for many of the
blade mounted transducer data analyses, It was not feasible to calibrate
the system before each test run. Thus, no calibration data were taken
after installation until after the tests reported herein were completed.
By then, the system had accumulated 4.6 engine run hours and 2.6 powered
hours (including pre-test checkouts). At that time two transducer chan-
nels were not operating satisfactorily, and only two of the remaining six
could be reached with the calibration signal source with the rotor on the
engine. For those two channels, the output was within 1 dB of the ex-
pected calibration value.

Procedure

For all tests, data were obtained at three corrected fan speeds:
6750 (near idle power), 10 500 (near approach power), and 13 500 rpm
(high power, supersonic fan tip speed). In most cases (including acous-
tic transmission tests with 41 rods in the inlet) tests were performed
with, then without, an ICD on the same day to improve data quality.
From the large quantity of data taken, representative results have been
chosen to be presented at this time.

For all tests ambient wind was less than 8.7 knots (10 mph); for

the tests with blade mounted transducers reported herein the ambient
wind was nearly zero.

Results and Discussion

Effect of ICD on Engine Operation

When testing engines on outdoor stands, the fan speed usually wand-
ers more or less slowly around the desired setting even though the fuel-
flow rate and core speed are steady. The epeed fluctuations have been
observed to be associated with the wind. The same types of fluctuations
have occurred with engines having different exhaust nozzle systems and
bellmouths, and both with and without the muffler connected. It is be-
lieved that the fluctuations are caused by flow eifects in the inlet
duct, although no correlations with wind velocity have been made. How-
ever, with an ICD installed, the fan speed was always much steadier, as




shown in figure 10. Although the example given is ICD number 1, the re~
sults were the same for all ICD's tested,

The total-pressure loss for the ICD's tested is shown in figure 11.
The inside surface flow area, Aflow’ and the approximate through-flow

velocity at 10 500 rpm fan speed, V10 500° are also shown. The pressure

loss, which is a function of the flow velocity squared, is highest for
ICD number 2 (the flat, in-duct ICD), and quite low for the other ICD's,
For tests with ICD number 2, the fan exhaust nozzle area was enlarged
slightly to compensate for the inlet pressure loss. For the other
ICD's, the pressure drop was so small that the engine operating line was
not changed significantly, and no compensation was made.

Far-Field Acoustic Directivity Patterns

The discussion in this section and in following sections will use
concepts and terminology from reference 9 and generally will consider
only fan tones (i.e., no core compressor tones),

A specific acoustic mode is identified by its circumferential order,
m, and radial order, u, and commonly designated the (m,u) mode. At sub-
sonic tip speeds, modes are generated in the engine by interaction be-
tween rotating fan blades and various types of flow disturbances (e.g.,
turbulence or wakes in the incoming flow), or by rotor wakes interacting
with vanes in the exit passage. Many modes are generated by the fan, but
at each speed only some of them propagate out of the inlet into the far
field. The modes that propagate are termed 'cut-on', while those that do
not are "cut-off". Modes of higher m and u order become cut-on as
the fan speed is increased. At the fan blade passing frequency (BPF) or
one of the BPF harmonics, each propagating mode radiates acoustic energy
in its own distinctive directivity pattern. Each pattern is lobular in
shape, having one or more peaks. For modes near cut-off, the strongest
peak (called the principal lobe) tends to be directed toward sideline
angles. The principal lobe moves toward the inlet axis as the mode be-
comes fully cut-on. In the far field, the total acoustic energy at any
given location is the summation of energies arriving from all the cut-on
modes from all the sources. For the summation, the relative phasing of
the modes determines whether the energies are numerically additive (in-
phase) or subtractive (out-of-phase).

Data. - The far-field acoustic behavior was studied mainly with
narrowband (25-Hz bandwidth) spectra, because one-third octave results
often did not characterize tone behavior effectively. Typical spectra
are shown in figure 12. The broadband noise level associated with the
fan BPF is referred to frequently in the following discussion; this level
was determined from the narrcwvband spectra by drawing the broadband line
through the base of the BPF tone. Data are presented in figure 12 for
tests with and without an ICD. With the ICD installed the fan BPF was




reduced, but the broadband level was the same. The core BPF was the
same, as expected, because this tone is caused by wakes from the core
engine support struts just ahead of the centrifugal compressor. Har-
monic and other tones sometimes were changed, but no trends were estab-
lished from this test program.

Far-field directivity patterns for ICD numbers 1, 3, 4, and 5 are
shown in figures 13 through 15 for 6750, 10 500, and 13 500 rpm fan
speeds, respectively. In each of the figures data are shown for tests
with the ICD installed, and for the same inlet without the ICD. For
these plots, the fan BPF tone and broadband level were determined from
the narrowband spectra from each microphone, as described in the pre-
ceding paragraph, and have been corrected to free-field, 30.5-meter
(100-ft) radius, standard-day conditions as described in the section
"Acoustic Instrumentation and Data Processing". In general, the BPF
tone was reduced with an ICD ins*alled, but the broadband level re-
mained the same. Tone level reduction over a wide angular range is
attributed to significant reduction of interaction between the fan ro-
tor and incoming turbulence or other inflow disturbances. This is the
effect the ICD was intended to accomplish, However, additional tone
peaks often appeared near the axis and at other angles for ICD numbers
3, 4, and 5, indicating that the presence of these ICD's caused new dis-
tortions which resulted in propagating modes strong enough to influence
the directivity patterns. For ICD number 3 (and, probably, also ICD
number 4 because it is nearly the same in size, shape, and mounting
method) the new distortions are believed to be associated with honeycomb
sections and joints in the ICD structure; these will be discussed in more
detail with the blade mounted transducer data. No blade mounted trans-
ducer data are available for ICD number 5, and the reasons for the far-
field results for this ICD are not yet clear. In addition to possible
distortions from structural jeints, it is also possible that distortions
were produced in the flow along the cowling near the base of the ICD, or
in the flow around the sharper lip (see fig. 3(d)), as suggested in ref-
erence 11,

At 6750 rpm fan speed, all modes having circumferential order higher
than m = 14 are cut-off. As shown in figure 13, the BPF tone was al-
most reduced to the broadband level for ICD number 1, showing that this
ICD effectively removed the incoming flow disturbances and did not pro-
duce significant new modes at this speed. The other ICD's also reduced
the tone at most angles. For ICD numbers 3 and 4, a strong new lobe can
be seen near the axis, and a weaker lobe around 110°. As discussed in
the preceding paragraph, these lobes are presumed to represent modes
caused by these ICD's, because they did not appear with ICD number 1.

At 10 500 rpm fan speed, all modes having circumferential order
higher than m = 23 are cut-off. As shown in figure 14, the tone was
reduced throughout the far field for all ICD's (except at angles near
the axis for ICD numbers 3 and 4). This general overall reduction again
indicates that the ICD's removed the inflow distortions. For example,
when ICD number 1 was installed, the tone was reduced to broadband level




(or lower) near the axis, and at other far-field angles the tone was
sufficiently reduced to expose a strong lobe peaking near 60° (except
for ICD number 4, for which no good explanation is known). This lobe is
atrributed to an engine generated mode of circumferential order m = 22,
which becomes cut-on at about 9600 rpm fan speed. This mode is associa-
ted with interaction between the 28 fan blades and the six downstream
structural struts, and will be discussed in more detail in other sec-
tions of this paper. Results for ICD number 5 are similar to those for
ICD number 1 except for an indication of a possible new lobe peaking
near 20°. For ICD numbers 3 and 4, the ICD-related tones noted at 6750
rpm fan speed now peak nearer the axis, as expected from theory because
of the increased rotor speed.

At 13 500 rpm fan speed the rotor tip relative velocity is super-
sonic, and strong rotor-locked modes are produced in the engine and pro-
pagate toward sideline angles. As shown in figure 15, the tone level was
reduced near the axis for ICD numbers 1 and 5, but not at angles greater
than about 50° for ICD number 1. This characteristic is expected be-
cause there is no reason for the ICD to affect the tone when it is gen-
erated by a source not related to inflow distortions. With ICD numbers
3 and 4, the tone level was reduced at higher angles, suggesting some
ICD transmission loss (discussed further in the next section). Also,
some unexpected and unexplained peaks and valleys occurred. It is pcs-
sible that propagating modes were produced by interaction with distor-
tions related to flow near the base of the ICD at the inlet lip (see
ref. 11). Also, it is possible that the method of attaching these ICD's
to the bellmouth lip (see fig. 3(c)) caused a change in the effective
acoustic length of the inlet. This, in turn, may have led to changes in
strength and phasing of the energy radiated to the far-field lobes. This
idea was introduced in reference 9, where it was discussed in relation to
a test in which the inlet length was purposely changed. Again, in fig-
ure 15, the broadband level _oth with and without ICD number 5 was the
same but was shifted toward sideline angles by as much as 20° (compared
to ICD number 1; see fig. 15(d)). The same shift can be seen in the tone
directivity patterns, indicating that thic inlet affected acoustic energy
radiation to the far field in a different way than the bellmouth-like in-
lets at higher fan speeds.

For a few tests an additional turbulence-reducing screen was in-
stalled inside ICD number 1 (see fig. 3(a)). As shown figure 16, the
performance of this configuration was essentially the same as ICD num-
ber 1 without the additional screen.

Transmission Characteristics

For the acoustic transmission tests a set of 41 rods protruding
radially from the inlet wall was placed in the engine just ahead of the
fan. Wakes from these rods interacted with the fan blades to provide a
strong new source consisting of m = 13 modes (see ref. 9). The BPF
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tone from this source appcared as a dominant peaked lobe in the far~
field directivity pattern. For most tests this lobe was so strong that
it was not affected by the tone from rotor/inflow distortion interac-
tion. By comparing the pattern with and without each ICD installed, the
level near the peak of the dominant lobe indicated any transmission loss
that might have occurred as the acoustic energy passed through the ICD,
The testing technique is the same used for the tests reported in refer-
ences 1 and 9. However, the present results were evaluated using nar-
rowband rather than one-third-octave spectra as was done previously.

For ICD number 1 only, the data given in this section of the report were
obtained using the production core stator (33 vanes).

Results of the acoustic transmission tests are shown in figures 17
through 19 for 6750, 10 500, and 13 500 rpm fan speeds, respectively.
The data for the same inlet configuration, but without the 41 rods or the
ICD, are shown on each figure for comparison. In general, a dominant
lobe from the rod wake/rotor interaction source is casily seen. How-
ever, the rods somehow affected other sources in the engine, because the
tone level increased near the axis where there are no lobes from rod-
related modes. For example, in figure 17(b) the tone without the ICD
installed increased by approximately 5 dB with the rods. In additionm,
the broadband level unexpectedly increased when the rods were installed,
especially at the highest speed. The reasons for these effects are not
understood, but they do not change interpretation of the test results in
the vicinity of a dominant peak.

Results of tests at 6750 rpm fan speed are shown in figure 17. At
this speed a dominant lobe due to the (13, 0) mode peaked near 60°. Only
small changes in the lobe were measured when each ICD was installed.
These results are interpreted to mear that the ICD's caused little or no
transmission loss at this speed.

Results of tests at 10 500 rpm ian speed are shown in figure 18. At
this speed a dominant lobe peaked near 40°; this lobe is caused by the
(13, 0) mode although modes of higher radial order are also cut-on. As
with the tests at 6750 rpm the data near the dominant peak are judged to
be reasonably alike both with and without each ICD installed; therefore,
the ICD's caused little or no transmission loss at this speed.

Results of tests at 13 500 rpm fan speed are shown in figure 19. At
this speed many modes are cut-on, including the (13, 0) through (13, 4)
modes and the (28, 0) mode from the supersonic-tip-speed rotor. The
principal lobe from the (13, 0) mode peaked near 25°, as can be seen for
the test with ICD number 1 (fig. 19(a)!. For the other restz, the area
between that peak and the peak for the (28, 0) mode near 60° tended to
"fill in" with energy from other propagating modes. Absence of a domi-
nant lobe makes quantitative interpretation of the results difficult.
However, the tone levels near 25° seem to be generally lowerec when
either ICD number 3 or 4 is installed, so these ICD's are consiiered to
exhibit some transmission loss. This judgment is consistent with results
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of the directivity tests discugsed with figures 15(b) and (c) in the
preceding section. With ICD number 5, the peak may have been redirec-
ted slightly toward the sideline, but transmission losses cannot be
determined from these data.

Eviderice for m = 22 Mocde

The directivity pattern for the engine with ICD number 1 is shown
again in figure 20 for 10 500 rpm fan speed. The theoretical directiv-
ity pattern for the (22, 0) mode is also shown by a dashed line. This
is the only mode of circumferential order 22 which can propagate in the
inlet duct at this fan speed. The m s 22 mode could come from rotor
wake (28 blades) interaction with the six structural struts. The prin-
cipal lobes for the experimental and theoretical patterns peak at nearly
the same far-field angle, and have very similar shapes. Sketches of um-
plitude probability density function (PDF) plots obtained for the 20°
and 60° far-field microphones are also shown in the figure. At 20° the
PDF plot indicatesf tone amplitude variations from a mainly random
source, but at 60° the plot indicates a tone source having much periodic
content. The periodic (''steady') tone suggests a steady interaction
source in the engine, while the random source suggests residual inflow
turbulence or reduction of the tone to nearly broadband level. At 6750
rpm fan speed (not shown in fig. 20) the PDF plots showed random tone
sources at all far-field angles, as expected because the m = 22 mode
is cut-off at that speed.

Further evidence for this mode was obtained in a special test il-
lustrated in figure 21. As chown by the sketch, two dynamic pressure
transducers were mounted in the same plane in the inlet duct and spaced
1/44 of the duct circumference apart. This spacing is equivalent to
one~-half the circumferential wavelength of the m = 22 mode. The sig-
nals were filtered at the fan BPF and displayed together on an oscillo-
scope. One of the signals was used to trigger both displays. As can be
seen from the photograph of the scope screen, the signals are 180° out-
of-phase, as expected for a spinning mode having 22 equally-spaced pres-
sure lobes.

Tests with Blade Mounted Transducers

Tests with blade mounted transducers have been perfcrmed with no
ICD, with ICD number 1 (with and without :he additional screen installed;
see fig. 3(a)), and with ICD number 3. L(:less stated otherwise, in this
discuss.on the data from transdurer B-3 (near the leading edge of the
pressure surface, 2 centimeters (0.75 in.) from the tip; see fig. 7(b))
are presented for 10 S00 rpm corrected fan speed. This transducer is
outside the calculated thickness of the boundary layer on the inlet duct
wall. These results appear to be representative of results from the
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other transducers. The tests were performed when the ambient wind was
nearly zero at the test site.

A blade mounted transducer senses changing pressure on the blade
surface. The changing pressure may be an aerodynamic (flow related)
pressure, or an acoustic pressure, or a mixture of both, If the
changing pressure is aerodynamic, it is caused by a velocity perturba-
tion in the incoming airflow. The perturba*ion is here called a dis-
tortion. A distortion may be random -r spatially steady. The common
example of a random distnrtion is inflow turbulence, which can occur
at any place in the inlet; turbulence which produces significant tone
noise must exist for several fan revolutions. Examples of spatially
steady distortions are inlet strut wakes, or potential fields extending
forward from downstream obstructions such as vanes. If the changing
pressure sensed by the transducer is an acoustic pressure, it could re-
sult from being in the near field of sources on the blades generating
tone noise by interaction with a distoriion, or it could be a spinning
acoustic mode generated by rotcr wake interaction with downstream
vanes or struts. The blade transducer senses the propagating acoustic
modal pressure pattern the same as if it viere caused by spatially
steady distortions, because the modal pattern spins at a {ixed speed
relative to the rotor. Thus, from these data there is no way to dis-
tinguish between acoustic pressures and spatially steady distortions,
and at the present time it has not been determined whether the blade
mounted transducer data represent mainly aerodynamic or mainly acoustic
pressure sources. It is important ultimately to define the sources so
that the noise generating mechanisms can be identified. However, the
nature of the pressure sources 1s not critical for purposes of this re-
port because, as will be brought out in the following discussion, most
of the conclugsions are the same no matter which way the data are inter-
preted.

Signal-enhanced pressure. - Pressure variations caused by random
distortions can be remove: from the total transducer signal by conven-
tional signal enhancement t.chniques, using the optical blade sensor
described in the "Apparatus' section for the trigger. During enhance-
ment, the pressure changes from unsteady disturbances tend to cancel
cut. The enhanced pressure waveform obtained {rom an ensemble average
over 200 revolutions is shown in figure 22 for a test with ICD number 1.
This trace represents the averaged pressure changes measured by the
transiucer as it rotates arouad the inlet. As illstruted, the enhanced
pressure trace consists of three superimposed patterns: (1) a once-per-
revolution variation which indicates a flow differ.nce between the top
and bottom of the duct; (2) a six-per-revolution veriation, which is as-
sociated with the six structural struts behind the fan stator; and (3) a
66-per-revolution variation, which is associated with the 66 fan stator
vanes. (For transducer B-8, near the hub, this variation is 71-per-
revolution, which is ascs~-late’ with 71 core stator vanes.) Thus, the
transducer measured a compler pressure field which may contain acoustic
pressures as well as effects of real flow distortions, iut which never-




B e i

13

theless contains much information regarding engine-generated tone noise
sources.

Blade pressure spectrum without ICD. - The narrowband (6.25-Hz BW)
spectrum of the blade mounted transducer signal for a test without an
ICD is shown in figure 23. The spectrum consists of spikes at the shaft
rotational frequency and its harmonics all standing on a broadband base.
The base 1s 10 to 15 dB higher than the broadband level measured by a
transducer on the duct wall. Assuming that the transducer senses aero-
dynamic pressures, the spectrum represents the Fourier decomposition of
the circur _rential variations in the flow field at the fan face. On
this assumption, the second abscissa scale is given. This scale shows
the circumferential inflow distortion mode number, q. As in refer-
ence 12, q represents all the inflow distortions and their harmonic
components. The third abscissa scale is the circumferential acoustic
mode number, m, for the BPF tone. This scale defines the circumferen-
tial order of a spinning acoustic mode caused by interaction of the
qth distortion mode with 28 blades (m = NB - q, where N is 1 for the
BPF tone and B is the number of fan blades). As mentioned previously,
it cannot be determined if the spikes really represent inflow distor-
tions, or, alternatively, if tuey are due to acoustic pressures. Either
source could yield the observed spectrum, except that propagating acous-
tic modes cannot cause the spikes for q less than 5 (m greater than
23) because those modes are cut-off.

These data support the currently popular hypothesis that tone noise
is produced when the fan blades chop through distortions in the incoming
flow. Both spatially steady distortions and unsteady distortions may be
present in the inlet; the unsteady distortions are usually elongated edd-
ies originating from random atmospheric turbulence which is "stretched"
as .. accelerates through the inlet during ground tests. Any number of
eddies and steady distortions may exist at various locations in the inlet
at any given time. Each distortion affects the local flow velocity and
has an irregular profile, so appears to the fan as a distortion plus many
harmonics. Collectively, all the distortions and their harmonics are
called distortion modes; they are shaft ordered because the fan blades
cross each distortion once every revoluticn, The fan blades interact
with the distortion modes to producc tone noise on the blades in the man-
ner discussed in reference 12. The tone noise, in the form of acoustic
modes, radiates in all directions from the blades. Cut-on modes propa-
gate through the fan ducts and radiate acoustic energy to the far field.

Blade pressure spectrum with ICD number 1. - The blade pressure

spectrum for a test with ICD number 1 installed is shown in figure 24.
The most significant peaks standing above the broadband floor are at
q=1, 2, 6, 12, 66, and 71 (the last two are not shown in fig. 24).
In order to determine if these peaks are from random or steady sources,
a narrowband spectrum of the enhanced pressure trace (fig. 22) was made
and is presented in figure 25. This trace shows only the steady varia-
tions because the random variations cancel out during the enhancing
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process. Comparison of figures 24 and 25 shows that the peaks are the
same, Therefore, it is concluded that the peaks which were reduced
below the broadband level were related to random distortions. The only
known sources of random distortion in this test are inflow disturbances,
as discussed previously. It follows that this ICD effectively removed
the random inflow disturbances and, thus, the tone noise generated by
rotor/turbulence interaction at this fan speed. This result is the
same no matter how much acoustic pressure is contained in the trans-
ducer signal, and complements the analysis of the far-field acoustic
performance discussed with figure 14. However, some steady distortion
modes are still present to produce tone noise, and these will now be
examined in mecre detail.

The peaks at q = 1 and 2 changed slightly when the ICD was in-
stalled. They were expected to diminish slightly, on the assumption
that the ICD removed some random distortion at all q numbers. The
q = 1 peak is believed to be caused by a top-to-bottom flow differ-
ence in the inlet, and the q = 2 peak is probably its harmonic.

The small changes for these peaks show that this ICD (low-pressure
drop; see fig. 11) did little to improve the mean flow uniformity.
These distortions lead to modes which become cut-on near sonic tip
speed. There is no way to judge, from the data obtained in this test
program, whether these modes are strong enough to influence the far-
field noise when the tip speed is supersonic. It is interesting to
note, however, that the apparent flow non-uniformity was present in
this test setup, which was built with the engine centerline 5.4 fan
diameters above the ground and with the inlet well forward of any test
stand structure. The pressure level measured by the transducer was
greater near the bottom of the inlet (see fig. 22). This means that the
flow rate was less than the average rate near the bottom, probably an
effect of the ground plane.

The q = 6 peak was unchanged when the ICD was installed. This
peak may be caused by the transducer passing through the potential
field from the six struts supporting the core engine, or may be from
an m= 22 mode propagating forward from rotor wake interaction with
those struts. The q = 12 peak may be a harmonic of the q = 6 peak;
or, it may be a new q = 12 distortion pattern produced by ICD num-
ber 1 (made in 12 sections). The q = 66 peak (not shown in fig. 25)
may be caused by the transducer passing through the potential fields
from the 66 fan stator vanes, or may be an m = -10 mode coming from
rotor wake interaction with the vanes. The m = -10 mode is at the
sccond harmonic of the fan BPF, and is the first rotor/stator mode cut-
on at this fan speed. The q = 71 peak (not shown in fig. 25), which
measures 20 dB less than the q = 1 peak, seems to be related to the
71 core stator vanes. It is difficult to consider that this peak is
caused by real distortions because the core stator is located about
10 centimeters radially inward from this transducer. This peak prob-
ably consists mainly of acoustic pressures.
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Blade pressure spectrum with ICD number 3, - The blede preasure
spectrum for a test with ICD number 3 inatalled is shown in figure 26,
In this plot, pressure peaks stand out at the same ¢ numbera as for
ICD number 1 (see fig. 24), and observationa previcusly made regarding
those peaks are applicable here also, The strengths of these peaks, as
well as the broadband floor level, are the same as for I1GD number 1.
Howaver, new peaks also appeared. Many of the new peaks had strong
steady components, as can be seen in figure 27, which Is a narrowband
spectrum of the enhanced pressure crace. The strongest new peaks are at
q =12, 16, 20, and 24. These peaks lead to wmodes which propagate in
directions near the axis at this fan speed and which probably account
for the far-field directivity shown in figure 14(b). The source of
these peaks has not boen determined, but the fact that they are mul-
tiples of 4 suggests that the source is somehow related to the four
sections of honevcomb used to fabricate this ICD (see fig. 3(c¢)), even
though there {8 not & strong peak at q = 4. For many of the other
peaks, the atrength from random sources tended to be greater with I¢D
number 3 than with ICD number 1, {f the strengths from random and steady
sources are additive. For example, at q = 15 the strength of the
random source is 127 dB - 120 dB = 126 4B for I1CD number 3, and
124 dB - 118 dB = 123 d8 for ICD number !, This trend persiats for g
numbors higher than 4, fudicating that the residual random inflow dis-
turbances were greater with 1CD number 3 than with ICD number 1. 1t
could not be determined how much these residual disturbances influenced
the far-field tone levelsz relative to the steady distortion modes i{ntro-
duced with this 1CD,

Concluding Remarks

Acoustic tests of tour inflow control devices (I€CD's) were made
with a JTISD-1 turbofan engine. The 1CD's were honeycomb/screen struc-
tures mounted over the engine inlet. They ranged from 1.6 to 4 fan di-
ameters {n size, and ditffered {n shape and fadbrication method. The test
results were evaluated by comparing the tar-ficld BPF tone directivity
patterns with and without cach ICD {nutalled. In addition, rods were
mounted in the engine inlet for some tests to generate strong propagating
modes to Judge whother the 1CD's affecied nolse tranzmission to the far-
{icld.

All the 1CD's significantly reduced the BPF tone caused by interac-
tion between the fan rotor and {nflow disturbances and turbulence. The
largest 1CD reduced the tone from this source throughout the far field,
and did not affect noise transmiss{on.  The smallest 1CD's apparently
fntroduced propagat ing modes, which could be recognized by additional
lobes {n the divectivity patterns.  Some of these modes are believed to
be due to Inflow disturbances {rom Joints or pancls used {n the 1CD con-
structfon. The smallest ICD's had no siguificant transmission loas at
lower tan speeds, but exhibited some loss at supersonic fan tip speed.
These faults may make the smallest 1CD's (as built and attached to the
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engine for these tests) unsuitable for fan acoustic testing. An ICD of
intermediate size showed promising characteristics, but additional data 3
are needed to complete evaluation of its performance. 3

The JT15D-1 engine appears to have a strong tone sourze which gen-
erates a propagating mode at fan speeds higher than 9600 rpm. In the
far-field directivity pattern, the mode is clearly seen by a prominent
lobe near 60°. The exact source was not identified but is believed to
be either interaction between the fan blades and potential fields from
six structural struts behind the fan, or rotor wake interaction with
those struts.

Tests with minlature dynamic pressure transducers mounted on the
fan blades were made without an ICD, and with the largest and smallest
ICD's. Data from a typical blade mounted pressure transducer corrobor-
ated and clarified results of the far-field tests. In particular,
narrowband spectra of the pressure signal showed that the ICD's re-
moved unsteady inflow disturbances (turbulence) and their harmonics,
and tended to leave only steady distortions related to the test setup,
the six engine struts, and the IOD. Distortions from the test setup
(probably the ground plane) caused modes which propagate only at high
fan tip speed. Distortions from the smallest ICD caused modes which
probably account for the additional lobes measured in the directivity
pattern when it was installed. The blade mounted transducer data may
contain acoustic as well as aerodynamic pressure components, but the
presence of acoustic components should not affect the conclusions drawn
from these data.
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71 CORE STATOR VANES
Figure 1. - Cross-section sketch of JTISD-1 test contiguration.
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Figure 3. - ICD and inlet conliyui ations,
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Figure 3. - Concluded.
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(@) INSTRUMENTED BLADES.

Figure 7. - Blade mounted pressure transducers,
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‘II !-FAN SPEED 0 rpm
I 1
. - {
1 b1 min -l
{a) NO WIND.
AV M A A A A AL
NO ICD WITH ICD

(b} 3.5 m/sec (8 mph) CROSSWIND.

Figure 10, - Effect of ICD on fan speed steadiness. Fan speed approx-
imately 15 000 rpm, ICD no. 1.
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figure 11, - Pressure loss through 1CD's,
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FREE-FIELD SPL FOR 30, 5-m (100-ft) RADIUS, STANDARD DAY, dB (RE 210 pa)
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Figure 14, - Concluded,




FREE-FIELD SPL FOR 30.5 m (100-ft) RADIUS, STANDARD DAY, dB (RE 2107 Pa)
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Figure 15. - Far-field directivity patterns at 13 500 rpm fan speed.
Analyzer bandwidth 25 Hz.
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FREE-FIELD SPL FOR 30.5-m {100-ft) RADIUS, STANDARD DAY, dB (RE 210 pa)
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Figure 17. - Direclivity patterns for acoustic transmission tests,
41 Rods in inlet; corrected fan speed 6750 rpm; analyzer band-
width 2 Hz,
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Figure 18. - Directivity patterns for acoustic transmission tests,
4] Rods in inlet; corrected fan speed 10 500 rpm; analyzer
bandwidth 25 Hz,
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Figure 19. - Directivity patterns for acoustic transmission test:.
4] Rods in inlet; corrected fan speed 13 500 rpm; analyzcr
bandwidth 25 Hz.
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Figure 2. - Measured and theoretical BPF tone directivity,
10 500 rpm fan speed, 1CD no. 1.
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Figure 22. - Pressure waveform averaged over 200 rotor revolutions; trans-
ducer B-3; 10 500 rpm fan speed; ICD No. 1.
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Figure 23. - Blade pressure spectrum for transducer B-3; 10 500 rpm fan speed; n:: ICD; analyzer bandwidth 6. 25 Hz,
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Figure 24. - Blade pressure spectrum for transducer B-3; 10 500 rpm fan speed, ICD no. 1; analyzer band-

witth 6.25 Hz,
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Figure 2, - Spectrum of enhanced blade pressure signal; transducer 8-3; 10 500 rpm fan speed; ICD no, 1;
analyzer bandwidth 6. 25 Hz.
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Figure 26. - Blade pressure spectrum for tranducer B-3; 10 500 rpm fan speed; ICD no. 3; analyzer band-
width 6. 25 Hz.
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Figure ZT. - Spectrum of enhanced blade pressure signal; tranducer B-3; 10 500 rpm fan speed; ICD no. 3;

analyzer bandwidth 6. 25 Hz.
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