NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

IUS GUIDANCE ALGORITHM GAMMA GUIDE ASSESSMENT

(NASA-CR-161448) IUS GUIDANCE ALGORITHM
N80-24355
Gamba guide assessment (northrop Services,
Inc., Huntsville, Ala.) 54 p HC $A 04 / \mathrm{MF} \mathrm{A} 01$
CsCL 223
Unclas
G3/16 21746

Submitted To:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER

Science and Engineering Directorate
Under Contract NAS8-33197

Submitted By:
NORTHROP SERVICES, INE.
$\begin{array}{llll}\text { P. O. BOX } 1484 \text { Huntsville. Alabama } 35807 & \text { (205) } 837-0580\end{array}$

ISS GUIDANCE ALGORITHM GAMMA GUIDE ASSESSMENT

APRIL 1980
by

RE. BRAY
V.A. DAURO

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER SCIENCE AND ENGINEERING DIRECTORATE

Reviewed and approved by:

> NORTHROP SERVICES, INC.
> P.O. BOX 1484
> HUNTSVILLE, ALABAMA 35807
> (205)837-0580

FOREWORD

This technical report documents the results of work performed by Northrop Services, Inc., Huntsville, Alabama, under Contract NAS8-33197 for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center. The Contracting Officer's Representative (COR) for this study was Mr. A. W. Deaton of the Systems Analysis and Integration Laboratory, EL23.

ABSTRACT

The Inertial Upper Stage (IUS) will be guided by the Boeing Company's Gamma Guidance Algorithm. This report presents the results of an independent assessment of the algorithm's performance in satisfying the NASA missions' targeting objectives. The report includes an introduction to the algorithm, the results of a launch window analysis for a Galileo mission, and suggested improvements.

TABLE OF CONTENTS

Section Title Pate
FOREWORD ii
ABSTRACT $1 i 1$
LIST OF ILLUSTRATIONS v
LIST OF TABLES. v
LIST OF SYMBOLS vi
I Introduction 1-1
1.1 GENERAL 1-1
1.2 OBJECTIVES AND ACCOMPLISHMENTS 1-2
1.3 development code phases, stages and timeline 1-6
1.4 REPORT SECTION DESCRIPTION 1-7
II preload data. 2-1
2.1 DEVELOPMENT VERSUS ONBOARD CODE. 2-1
2.2 MSFC SIMULATION. 2-1
III PL13A GALILEO PROBE 3-1
3.1 MISSION PROFILE. 3-1
3.2 generation of preload data 3-5
3.3 INTERPOLATION FOR OTHER LAUNCH AZIMUTHS. 3-16
3.4 RETARGETING. 3-16
3.5 PRECISION OF CALCUIATIONS. 3-18
3.6 RELIABILITY AND NASA MISSIONS' OBJECTIVES. 3-19
IV SUGGESTED IMPROVEMENiS. 4-1
4.1 INTRODUCTION 4-1
4.2 MINIMUM DELTA LAMBDA TEST. 4-1
4.3 MAXIMUM ITERATION RESET OF LAMBDA. 4-1
4.4 TIMELINE CHECKING. 4-1
v PROGRAM AVAILABILITY. 5-1
5.1 LISTINGS, MAGNETIC TAPE AND CARD SOURCE. 5-1
VI SAMBO MODIFICATION'S. 6-1
6.1 MISSION PLANNING MODIFICATIONS 6-1
6.2 CONVERSION OF DATA 6-2
VII REFERENCES. 7-1
appemdix a. sample data load A-1
appendix b. use of pur tape. B-1
appendix c. gamma guide input data fkom sambo. C-1

LIST OF ILLUSTRATIONS

FiEure Title Paze
1-1 gamma guide phases, stages, and times. 1-9
1-2 GAMMA GUIDE CONTROLS 1-10
1-3 GAMMA GUIDE SIMPLIFIED FLOW. 1-11
3-1 GALILEO PROBE C3 $=65 \mathrm{KM}^{2} / \mathrm{SEC}^{2}$ 3-4
3-2 THE GUIDANCE COORDINATE SYSTEM AND THE TARGET ORBIT DEFINITION 3-7
3-3 IMPULSE DIRECTION FROM α, β 3-17
6-1 IUS PLANETARY LAUNCH GEOMETRY FOR DESCENDING LEG OPPORTUNITY. 6-3
LIST OF TABLES
Table Title Pase
basic differences input data 2-1
INPUT DATA TYPES 2-2
PREDICTED STAGE WEIGHTS AND $\Delta V 1$. 3-5
PRELOAD DATA OPPORTUNITY 1 3-8
PRELOAD DATA OPPORTUNITY 2 3-9
PRELOAD DATA OPPORTUNITY 3 3-10
revised tarcet orbital data. 3-11
REDUCED PRELOAD DATA OPPORTUNITY 1 3-13
REDUCED PRELOAD D.ATA OPPORTUNITY 2 3-14
reduced preload data opportunity 3 3-15
initial state 3-16
program files 5-1

LIST OF SYMBOLS

Symbol	Meaning
a	Semimajor axis of the target orbit
c_{3}	Twice target orbit energy
e	Target orbit eccentricity
${ }_{0}$	Earth's gravity constant
1	Target orbit inclination
$\mathrm{I}_{\text {sp }}$	Specific impulse
α	Thrust direction yaw angle
B	Thrust direction pitch angle
Δt	Impulse placement increment
Δv	Velocity change
7	Target orbit true anomaly
ω	Target orbit argument of perigee
$\omega_{\text {e }}$	Earth spin rate
Ω	Target orbit ascending node angle
Acronyms	
B-5	The onboard Gamma Guide Code
ECI	Earth centered inertial coordinates
IUS	Inertial Upper Stage
NSI	Northrop Services, Incorporated
PL13A	The NaSA Galileo Mission
RCS	Reaction Control System
SAMBO	Simplex Algorithm for Multiple Burn Optimization
SRM	Solid Rocket Motor
WT3	Weight at End of SRMI Burn
WT5	Weight at End of SRM2 Burn
WT9	Weight at End of SRM3 Burn
WTX	Weight at Beginning of SRM Burn

Section

INTRODUCTION

1.1 general

The Boeing Company is developing an onboard adaptive guidance algorithm for the Inertial Upper Stage (IUS). This algorithm is called "Gamma Guidance", and it is designed to provide real-time guidance that will satisfy all DOD and NASA mission targeting objectives. Gamma Guide employs a sophisticated iterative approach to the guidance problemyand it uses numerical onboard integration for some nonlinear differential equations and closed form approximations for other nonlinear differential equations. It supplies ignition times and thrust attitude for the main stages' solid rocket motors (SRM), and ignition time, thrust attitude and termination times for corrective translational burns of the reaction control system (RCS).

The NASA planetary missions represent a different class of IUS missions when compared to DOD Earth Orbital Missions. Planetary missions require earth escape which results in hyperbolic orbits; thus, the targeting logic and convergence properties of the algorithm will be different than for the earth orbital elliptical trajectories. Gamma Guide has provisions for solving these classes of problems. The Gamma Guide algorithm has the following salient features.

1. It solves the two point boundary problem described by
o An initial position (moving with vehicle)

- A set of selectable constraints that include targeting end conditions
o A set of selectable controls encompassing ignition, attitude, and thrust profiles
- A set of nonlinear equations to propagate the equations of motion.

2. It generates ignitions times and steering angles for the Sol'd Rocket Motors (SRM);
3. It generates ignition times, steering angles and termination times for the Reaction Control System (RCS);
4. It is a real time, iterative, baseline guidance system that can satisfactorily solve the unique problem of using fixed impulse SRM's to power missions from near-earth to interplanetary orbits.

The algorithm has been under development for several years. References 1,2 , and 3 contain a comprehensive explanation of the algorithm. The referenced expianation includes derivation, approximations, and the assumptions used by or in the algorithm. Reference 4 contains selected portions of Reference 3 to familiarize the reader with the basic concepts of the guidance algorithm. Reference 4 also contains a listing of the double precision developmental code as modified for MSFC and the results of previous tests of the algorithm for several interplanetary missions and a geosynchronous mission.

The algorithm has been designed to guide many different types of miseions. It is very flexible and the Boeing B-5 code for the onboard computer reflects this flexibility. The B-5 code, however, requires a driver code to simulate the inputs from the vehicle and the real world environment. The code is being revised as necessary and the current revision is revision I. A source program for this revision was obtained from Boeing, and was adapted to the MSFC UNIVAC 1100 computer systems by NSI.

A driver program for the B-5 code is not available, however as part of the B-5 simulation, Boeing supplied a six degree of freedom stand alone simulation (STARS) for atcitude control of the IUS, that uses Information supplied from the B-5 simulation. This code has been adapted by NSI to the MSFC UNIVAC 1100 system also.

The B-S and the STARS code were adapted to the UNIVAC 1100 system, although this task was not an original part of the contract. This was done to replace Task VIII of the contract which required data not yet available for delivery by the government. The change was agreed to by the COR.

1.2 OBJECTIVES AND ACCOMPLISHMENTS

There were nine tasks assigned to this study. These tasks were a continuation of the basic tasks previously investigated in Reference 4 , and are listed below with a brief discussion of their status.

1.2.1 Task 1. Undate Testbed Prosrams Requirement:

Make allowances for all discrete and analog inputs/outputs to/from the guidance algorithm that are required to assess the performance of the algorithm from a basic guidance standpoint in the guidance simulation program. Include the capability of simulating off-nominal variations in mainstage and RCS propulsion parameters, IUS mass properties, and initial position and velocity. Also, include the capability to simulate mainstage ignition failures. Variations in navigation parameters need not be simulated in this study; the measured position and velocity of the IUS can be set equal to the actual position and velocity.

Status:

The teatbed program has been continually updated, and includes all of the detailed items required. During the course of this study, the code was changed to single precision calculations to simulate the on board computer.

1.2.2 Task 2. Maintain Testbed Guidance Aleorithm

 Requirement:Maintain an up to date guidance algorithm consistent with the Boeing Aerospace Corporation latest changes.

Status:

NSI made one trip to Seattle to discuss with the Boeing representatives their latest changes to the algorithm. Additionally, NSI has kept in telephone communication and discussed with Boeing various suggestions for improvements to the code. The MSFC IUS team has been kept informed of the latest version. The improvements are presented in Section IV of this report.

1.2.3 Task 3. Identify Mission

Requirement:
Identify a group of off-nominal situations for each NASA IUS mission. For each situation, specify the variations in the propulsion, mafs, and initial state parameters, and specify mainstage ignition failures. Each group of offnominal situations should be representative of the anticipated three-sigma error volume. Form a covariance matri:: using these error sources for each design reference mission.

Status:

The NASA missions have been in a sate of change. The study was applied to the revised Galileo, and to the Venus Orbiter missions. Emphasis was placed on the Galileo mission as representative of the basic NASA mission objectives. As part of this task, NSI investigated the preload data needed for the three on orbit launch opportunitien for the first launch window of the Galileo mission. The results of this etudy were discussed in Section 3. The covariance matrix source program has been updated as neceseary.

1.2.4 Task 4. Generate Qusioptimum Reference Trajectories

 Requirement:Use SAMBO to generate quasioptimum reference trajectories for the nominal and off-nominal aituations identified in Task 3, for each mission in the representative set of NASA IUS missions. These reference trajectories will provide a basis for the analyses of the gama guided trajectories generated in Task 5.

Status:

SAMBO was used to generate the reference trajectories for the misaions in Task 3. Changes were made to the SAMBO code to calculate and output additional data needed for the MSFC Gaman Cuide Code. The SAMBO changes are discussed in Section VI of this report.

1.2.5 Task 5. Analyze

Requirenent:
Analyze the gama guided trajectorles from Task 3 and record the targecing accuracies, RCS propellant usages, and any abnormalities in trajectory profilea or attitude historics as compared to the SAMBO rrajectories generated In Task 4. Identify those trajectories that do not satinfy the targeting accuracy requirements, RCS propellant budgets, basic sequencing and timing requirements, or attitude-rate constiaints.

Status:
This task was modified bectuse the NASA missions do not use RCS burns for corrective action. The trajectories were in general well within the
targeting accuracies. Some problems were found in basic aequencing. These were discused with Boeing and have been rectified by the addition of a timeine checking tequence in the MSFC code.

1.2.6 Task 6. Patch and Repair as Necessary Requirement:

For each of the unsatisfactory gamm guided trajectories (1f any) 1dentified in Task 5 , define and incorporate modifications to the gama guidance logic (Fortran version) that will produce a satisfactory trajectory in the same bituation. Verify that the modifications are sufficient by using the simulator testbed (with the modified guidance logic) to generate a satisfactory trajectory.

Status:

All problems encountered were eliminated by adding appropriate coding. These shanges were discussed with Boeing for possible inclusion in their B-5 Fortran version of the on board coc.. These changes are presented also in Section IV.

1.2.7 Task 7. Document

Requirement:
Document the results of the study in a final report. In addition to a general assesmment of the Garma Guidance algorithm, document the results on a mission-by-mission basis. Inciude all suggested modifications to the guidance algorithil in a separate section of the report.

Status:

This report is in response to this task. In addition Reference 5 was used to document the results of a study of the preload date of the PLI3A Galileo probe.

1.2.8 Task 8. Modify the 6-D Protram (IUS-SIXD)

Requirement:
Modify the six degrees of freedom spin stage computer simulation program built during the first contract to include the RCS spin-up control aysem.
cha charecterietics of the hydrazine blow-down yetem, the gyro data sampling and proceseing characteristics, and the open ioop part of the spin-up after system saturation. Documentation of the moftware and program users manual shall be in compliance with FIPS Publication 38.

Status:

The six degrees of freedom spin utage simulation program SIXD of Reference 10 was modified to include the basis for an RCS spin up system. However, the data required for compleing this task was and is not available. To replece this task, the COR requested and NSI added the adaptations of the Boeing B-5 Revision I Fortran version of the on buard code to the MSPC UNIVAC 1100 computer system.

The B-5 code requires a driver code to simulate the inputs from the vehicle and the real world enviroment. The driver program is not available, however as part of the B-5 simulation, Boeing supplied a six degree of freedom stand alone simulation (STARS) for attitude control of the TUS. This simulation Whe also adapted by NSI to the MSFC UNIVAC 1100 system. Although the B-5 driver is not available, the programing can be verified by judicious use of the MSFC developmental code.

1.2.9 Task 9. Provide Mission Analysis Support

Requirement:

Provide a limited (no more than 20% of the manpower) amount of analysis to support the MSFC/JSC IUS mission planning activities as directed by the MSFC contracting officer's representative.

Status:

NSI accompanied the COR to JSC Houston. NSI delivered and discussed the latest version of the MSFC Gamma Guide Development code with JSC IUS personnel.

1.3 DEVELOPMENT CODE PHASES. STAGES AND TIMELINE

In continuing the assessment of the algorithm, the developmental code of Reference 4 was used. This duuble pre ifion code has been obtained from Boeing in 1978 and has been modified and improved by NSI. This development
code simulates the vehicle and real world input to the algorithm and is used as a test bed for changes to the algorithm. During this study, the code was changed to single precision, so that a closer simulation to the ultimate onboard versiun would be obtained.

The MSFC code has provision for six phases plus a terminal coast. Each phase consists of a coast arc followed by a burn arc for a total of 13 stages when the terminal coast is included. These are shown in Figure 1-1. Also included in Figure $1-1$ is the relation of the event timeline to the Gamma Guide controls λ which are shown in Figure 1-2. The development code is not as flexible as the B-5 code in that the timeline must reflect an RCS burn between two SRM burns. This is not fatal, however, since a zero second burn is allowed.

A simplified flow chart of the MSFC code is given in Figure 1-3. This figure also incorporates several improvements suggested in Section IV of this report.

1.4 REPORT SECTION DESCRIPTIONS

Section II of this report is a brief discussion of the type of data net ed by the MSFC Gamma Guide simulation and the differences between the data requ. ed by the MSFC and Boeing B-5 codes.

Section III is a report of the data used in the launch window analysis of the Galileo mission PL13A. A preliminary report of the analysis was contained in Reference 5. Data from References 6 and 7 were also used in the analysis.

Section IV is composed of suggested improvements to the algorithm. These have been discussed with the Boeing Company's representative involved in coding their B-5 simulation.

Section V discusses the availability of source listings and cards for the various codes used in this study.

Section VI is a report of changes to the computer code SAMBO of Reference 8. These changes were made to facilitate the generating of reference trajectories.

Section VII contains the references list.

PHASE	1		2		3		4		5		6		TERA.
STAGE	1	2	3	4	5	6	7	8	9	10	11	12	13
EVENT	COAST	SRM 1	COAST	RCS 1	COAST	SRM 2	COAST	RCS 2	COAST	SRM 3	COAST	RCS 3	COAST
IMPULSE		$\lambda_{1} \cdot \lambda_{2}, \lambda_{3}$		$\lambda_{5}, \lambda_{6}, \lambda_{7}$		$\lambda_{9}, \lambda_{10}, \lambda_{11}$		${ }^{\lambda} 13{ }^{\prime}{ }^{1} 14^{\prime \lambda} 15$		${ }^{\lambda} 17,{ }^{\prime} 18 *{ }^{\lambda} 19$		$\lambda_{21} \cdot \lambda_{22} \cdot \lambda_{23}$	
$\begin{aligned} & \text { IMPULSE } \\ & \text { TIME } \end{aligned}$		$\begin{array}{r}\lambda \\ 4 \\ \\ \hline\end{array}$		${ }^{1} 8$		12 \square		${ }^{\lambda 16}$		λ_{20} 1		${ }^{\lambda_{24}}$	
STAGE TIME		1		$3 \mathrm{~T}_{4}$		$\mathrm{T}_{5} \quad \mathrm{~T}_{6}$		$\mathrm{T}_{7} \quad \mathrm{~T}_{8}$		$T_{9} \quad T_{10}$		$T_{11} \quad T_{12}$	

[^0]Figure 1-1. GAMMA GUIDE PHASES, STAGES, AND TIMES

Figure 1-2. GAMMA GUIDE CONTROLS

Figure 1-3. GAMMA GUIDE SIMPLIFIED FLOW

Section 11

PRELOAD DATA

2.1 DEVELOPMENT VERSUS ONBOARD CODE

There are two versions of the GAMMA GUIDE algorithm code. These are: the developmental code modified for use on the Univac 1108 computer system at MSFC, and the B-5 Revision I code being developed by Boeing for the onboard computer. In general, the preload data is the same for both codes, however, certain differences in data form and usage exists. These differences are shown in Table I. The remainder of this section applies to the data input to the MSFC code.

Table 1
BASIC DIFFERENCES INPUT DATA

DATA
Δt for impulse placement

Target Conic

Real World, Gravity, Thrust, etc.

Times

Control Lambdas

MSFC CODE
Integrated from thrust table input

Inertial coordinates or conic parameter input without retargeting

Input for simulation

Referenced to program time zero

Discrete data points, referenced to inertial system at time zero. No retargeting

B-5 CODE
Calculated from input polynomial

Retargeting using polynominal input

Sensed through NAV system

Referenced to GMT and/or nominal launch time

Retargeting with polynominals referenced to nominal launch times and on-orbit delays.

2.2 MSFC SIMULATION

A complete description of the input data to the MSFC code can be found in Reference 4. Additionally Reference 5 contains a discussion of targeting preset data for the Galileo mission. Portions of References 4 and 5 are included here as an introduction. A broad overview of the preload data required
by the MSFC GAMMA GUIDE simulation program is shown in Table 2. The data is divided into 3 categories. Types I and II are the preload needed by the algorithm, while Type III simulates the real world aspects for supplying navigational data for the algorithm.

Table 2
INPUT DATA TYPES
I. NOMINAL NON-CONTROL PRELOAD

Initial position
Target orbital data
Various control flags
Predicted SRM thrust tables
SRM burn time
RCS ISP
RCS thrust equation constants
Drop weights
Stage weights
Used "as is" by the algorithm with (type II below) to predict future states.
II. NOMINAL CONTROLS (Lambda's) Impulsive delta velocities Impulse times
Modified by the algorithm and used with (type I above) to predict future states.
III. NAVIGATION DATA FOR SIMULATION

SRM thrust tables
SRM ISP's
SRM burn times
RCS ISP
RCS thrust equation constants Used by the navigation system with the computed controls of (type II above) to update the actual state.

A listing of a sample case input for the MSFC code is contained in Appendix A.

Section III

pli3a galileo probe

3.1 MISSION PROFILE

The following mission scenario and ground rules are extracted from Reference 6.

Begin Quotation:

A. Mission Scenario

Before going into the details of the launch window trajectory generation, it would be helpful to summarize the salient features of the Space Transportation System (STS) and the Galileo mission. The IUS/Galileo spanecraft will be carried to a deployment orbit by the Space Shuttle. The first two burns of the Space Shuttle Orbiter On-orbit Maneuvering System (OMS) will place the Orbiter/cargo into an $100 \times 100 \mathrm{nmi}$ orbit. After 3 to 4 revolutions in the $100 \times 100 \mathrm{nmi}$ orbit, a third OMS burn will place the Orbiter/cargo into a $100 \times 250 \mathrm{nmi}$ deployment orbit. After deployment of the IUS/SC, the IUS, which is made up of two large solid propellant motors (21,000 lbs. class) and one small spin stabilized solid propellant motor (6,000 lbs. class), will execute the lst large motor burn across perigee of the deployment orbit and thereby place the IUS/SC into a $100 \times 3200 \mathrm{nmi}$ elliptical transfer orbit. After approximately one revolution the 2nd large motor will ignite and burn to cutoff. The 3rd solid propellant motor will igriite upon completion of a 270 second coast period. The 270 second coast period will be varied to compensate for over/under performing motors. The 3rd stage is spin stabilized to 70 RPM with the Reaction Control System (RCS). The 2nd stage and RCS/avionics section is staged prior to 3 rd stage ignition for ΔV efficiency. Upon completing the 3rd stage burn, the spacecraft will despin the configuration. Approximately 10 days later the S / C will execute a $\Delta \mathrm{V}$ course correction to enable the S / C to swing-by the planet Mars on the way to the planet Jupiter. Upon arriving at Jupiter (approximately $31 / 2$ years later), the Galileo spacecraft will brake into orbit about Jupiter and encounter several of the Jovian satellites.
B. Space Shuttle Orbiter/IUS/SC Groundrules and Assumptions

The integrated Orbiter/IUS trajectories for the January 4, 1982, to January 14, 1982, Galileo mission launch period were generated under the following groundrules and assumptions for the Orbiter, IUS, and S/C:

ORBITER:

1. Approximate Midnight Launch (1/4/82-1/14/82)
2. The daily launch window should be defined as that period of time determined by the launch azimuth constraints of $85^{\circ} \leq \mathrm{AZ} \leq 95^{\circ}$.
3. No yaw steering requirements shall be imposed by the planetary targeting objectives. However, any real time launch environment or vehicle perturbation that causea a drift out of a plane will have to be corrected by Space Shuttle yaw steering.
4. The Space Shuttle flight profile shall use a two OMS burns ascent to a $100 \times 100 \mathrm{nmi}$ orbit followed by a minimum coast time of 4.5 hours prior to the third OMS burn that achieves the 100×250 nimi IUS/SC deployment orbit.
5. The minimum coast between Orbiter insertion into the $100 \times 250 \mathrm{nmi}$ deployment orbit find IUS/SC deployment shall be 3 REVS in orbit.
6. The Orbiter shail provide the IUS initialization data (time, position, velocity, and IMU alignment angles) to the IUS computer prior to deployment.
7. The Orbiter shall provide pointing during the coast phase prior to deployment consistent with the thermal conditioning requirements of the IUS/SC.
8. The Orbiter shall provide the translational ΔV for the IUS/SC separation after deployment and prior to the IUS first atage ignition.

IUS:

1. The IUS first stage propellant off-load shall be determined from the following conditions:
a. Maximum C_{3} of the launch period.
b. The third on-orbit launch opportunity.
c. 30 second on-orbit ignition delay of the first SRM.
2. Reference trajectories shall be developed for the lst day of the launch period, fifth day, and last day.
3. The tracking analysis shall be based on the reference trajectories from the fifth day, launch azimuths of $85^{\circ}, 90^{\circ}$, and 95° and the first, second, and third on-orbit aunch opportunities.
4. The guidance (steering) analysis shill be based on the minimum C_{3} launch period (energy management exurcised), and the third on-orbit 1aunch opportunity.
5. The navigation analysis shall be based on the minimum C_{3} launch period, and the 3 rd on-orbit launch opportunity.
6. The spin stage accuracy analysis shall be based on the minimum C_{3} launch period, and the 3 rd on-orbit launch opportunity.
7. The IUS/SC deployment state shall reflect the Space Shuttle ascent profile to 100×100 nmi orbit and subsequent 100×250 ni deployment orbit.

GALILEO SPACECRAFT:

1. 2060 kilogram apacecraft
2. Project Galileo Targeting Specifications (625-120 dated 9/15/78).

End Quotation.

This mission starts from low parking orbit, with an SRM burn at perigee to transfer to a higher energy elliptical orbit, coasts backs to perigee, then has a second SRM burn followed by a coast, and then the third SRM burn which injects into a hyperbolic orbit that goes to Jupiter. The mission is shown in Figure 3-1 and further described in Reference 6.

The launch azimuths for this mission are restricted to the range from 85 to 95 degrees and there are three on-orbit launch opportunities for each window. The first opportunity is a dog leg to the left maneuver, occurring approximately one orbit before the nominal in plane opportunity for the daily launch window. The third opportunity is a dog leg to the right maneuver occurring approximately one orbit after the nominal. The launch window and opportunity selected will determine the preload values needed for the simulation. Most of the data described in Section II remains fixed. The variable data include:
o The initial state (position, velocity),

- The predicted stage weights,
- The target orbital data (desired mission constraint values),
o The time at which the mission constraints are evaluated,
o The nominal controls (Lambdas) which include the impulsive delta velocity and impulse time for each SRM burn (RCS also if used).

The B-5 onboard code will have provisions for updating these as a function of launch time and on-orbit delay. The study described in Reference 5 was undertaken to test the feasibility of the retargeting procedures described In Referenc? 7.

Figure 3-1. GALILEO PROBE C3 $=65 \mathrm{KM}^{2} / \mathrm{SEC}^{2}$

3.2 GENERATION OF PREL.OAD DATA

The program SAMBO (Simplex Algorithm for Multiple Bura Optimization, Reference 8) was uned, with data from Reference 6, to generate reference trajectories for the Gilileo Mission PLi3A. Using azimuths of 85.0, 87.5. $90.0,92.5$, and 95.0 degrees, references were obtalned for the three opportunities of the first launch window. The data from these runs erce then used as trial data load for GAMMA cUIDE. These 15 cates all ran satisfactorily using at most four interations to convarge on the first (pre SRM1) solution. The converged data is shown in Tables 3, 4, 5, and 6. This data can be divided into:

- Predicted Stage Weights
- Target Conic Elements
- Control Values
o Initial State

3.2.1 Predicted Staet Weithts

These values are shown in Table 3 and are used to predict ΔV output from each SRM. The ΔV from SRMI may be input as DELV1. If not input it will be calculated internally by

$$
\Delta V 1=G o I s p_{1} \ln \left(\frac{W T 3}{W T X}\right)
$$

The values of $\Delta V 2$ and $\Delta V 3$ are obtained, in the MSFC version, from the predicted thrust tables for the SRM. In this study, it was found that the values of the predicted stage weights and $\Delta V 1$ for opportunity Z^{\prime} could be used as estimates for opportunities 1 and 3 also. Note that this implies that these values can be fixed or set as a function of the window only.

Table 3. PREDICTED STAGE WEIGHTS AND $\triangle V I$
OPPORTUNITY

	1	2	3
UVI	3390.09	3391.00	3391.89
WT3	55497.41	55485.72	55473.60
WTX	38774.55	38762.56	38750.43
WT5	36502.46	36490.47	36478.35
WT9	11347.48	11347.48	11347.48

```
3.2.2 Tarict Conic Elements
    The target conic elements are referenced to the inertial coordinate system which is established at program time zero. The e.ements are defined in Figure 3-2 and their values are given in Tables 4, 5 and 6 . They are:
- a Semimajor axis,
- Eccentricity,
- 1 Inclination,
0 \omega Argument of Porigee,
O Ascending Nodal Angle.
0 T True Anomaly,
o TIME Time.
```

It should be noted that these variables are almost all constant at anction of the azimuth. The exception is the ascending nodal angle which varies as a function of time and the earth's rotation rate. This is a result of the inertial coordinate system being fixed at time zero. The targat orbital data was therefore revised to the averages shown in Table 7.

Figure 3-2. THE GUIDANCE COORDINATE SYSTEM AND THE TARGET ORBIT DEFINITION

Table 4. PRELOAD DATA OPPORTUNITY 1

95.00

-20123306.
2.08895
28.85784
70.99561
-104.47325
93.87757
32734.073

88

8888 | 88 |
| :--- |
| 88 |
| 8 |
| 8 |
| 8 |

HLOWIZ甘 HONกY7

雲

N
RCS2
SRM3
$\underset{\sim}{9}$

Table 5．PRELOAD DATA OPPORTUNITY 2 95.00

-20123301
2.08911
28.92210
70.97851
-104.45130
93.81846
38178.755

TARGET ORBITAL ELEMENTS

 -201236382.08886
28.45868
71.11900
-94.13065
93.81559
38270.043
LAMBDAS LAMBDAS
1075.524

No | 88 |
| :--- |
| 8 |
| 8 |
| 8 |
| 0 | 88 N

0 N
800
000
0.0

 \begin{tabular}{l}
n

N

N

N

O

\hline

888

8

8

$\substack{8 \\
\hline \\
\hline}$
\end{tabular} 87.50

 888
 888

N
∞
$\frac{\infty}{2}$

36400.000 85.00

 88 | 8 |
| :--- |
| N |

 88 .000
36000.000
 す。
No
N
N -8
$\stackrel{0}{\circ}$
$\stackrel{0}{0}$ 88 88 36400.000

a e i w Ω TIME

 LAUNCH AZIMUTH
 | LAUNCH AZIMUTH | 85.00 | 87.50 | 90.00 | 92.50 |
| :---: | :---: | :---: | :---: | :---: |
| | | TARGET ORBITAL ELEMENTS | | |
| a | -20123372. | -20123559. | -20123513. | -20123510. |
| e | 2.08940 | 2.08936 | 2.08934 | 2.08950 |
| i | 28.84632 | 28.57597 | 28.53044 | 28.66552 |
| ω | 71.00761 | 71.08931 | 71.10343 | 71.06429 |
| Ω | -83.87525 | -89.17751 | -94.10520 | -99.67873 |
| η | 93.77559 | 93.77507 | 93.77322 | 93.77107 |
| TIME | 43682.289 | 43651.951 | 43716.746 | 43654.470 |
| | | LAMBDAS | | |
| SRM1 | 450.691 | 769.654 | 1037.313 | 1341.030 |
| | 3325.723 | 3267.958 | 3194.374 | 3080.447 |
| | 491.287 | 482.136 | 474.210 | 466.266 |
| | 32421.662 | 32384.079 | 32460.816 | 32392.894 |
| RCS 1 | . 000 | . 000 | . 000 | . 000 |
| | . 000 | . 000 | . 000 | . 000 |
| | . 000 | . 000 | . 000 | . 000 |
| | 32600.000 | 32600.000 | 32600.000 | 32600.000 |
| SRM2 | 2492.149 | 3200.212 | 3833.147 | 4530.155 |
| | 7830.394 | 7575.399 | 7273.460 | 6855.897 |
| | 1861.726 | 1833.705 | 1842.349 | 1861.418 |
| | 41230.032 | 41203.317 | 41264.071 | 41202.809 |
| RCS2 | . 000 | . 000 | . 000 | . 000 |
| | . 000 | . 000 | . 000 | . 000 |
| | . 000 | . 000 | . 000 | . 000 |
| | 41400.000 | 41400.000 | 41400.000 | 41400.000 |
| SRM3 | 562.646 | 1226.614 | 1855.110 | 2559.034 |
| | 7417.371 | 7337.378 | 7205.174 | 6985.342 |
| | 799.725 | 794.876 | 785.853 | 793.648 |
| | 41654.073 | 41629.673 | 41687.753 | 41627.153 |
| RCS3 | . 000 | . 000 | . 000 | . 000 |
| | . 000 | . 000 | . 000 | . 000 |
| | . 000 | . 000 | . 000 | . 000 |
| | 41800.000 | 41800.000 | 41800.000 | 41800.000 |

Table 6. PRELOAD DATA OPPORTUNITY 3

Table 7

REVISED TARGET ORBITAL DATA

Semimajor axis	a	-20123482
Eccentricity	e	2.08879
Inclination	i	28.59204
Argument of Perigee	ω	71.07624
True Anomaly	η	93.88088

ASCENDING NODE ANGLE

AZIMUTH	OPP1	OPP2	OPP3
85.0	-83.91125	-83.98913	-83.87525
87.5	-89.22364	-89.20139	-89.17751
90.0	-94.15586	-94.13065	-94.10520
92.5	-99.72639	-99.70639	-99.67873
95.0	-104.47325	-104.45130	-104.37535

3.2.3 Control Lambdas

The converged values of the control variables are shown in Tables 4,5 , and 6. The RCS values of zero are needed by the MSFC code, but are not used by the B-5 code.

The data for the SRM1 burn were then modified to reflect a uniform $\Delta V 1$ of $3391 \mathrm{ft} / \mathrm{sec}$ corresponding to the value for Opportunity 2. Uniform times for the RCS burns were also set. The reduced data are shown in Tables 8, 9, and 10.

3.2.4 Initial State

The initial state values for the MSFC simulation are as shown in Table 11. These values were used as functions of the launch azimuths.
Table 8. REDUCED PRELOAD DATA OPPORTUNITY 1
95.00

-20123482.
2.08879
28.59204
71.07624
-104.47325
93.88088
32800.000

				8
:---				
8				
8				
8				

LAUNCH AZIMUTH	Table 8.	REDUCED PRELOAD DATA OPPORTUNITY 1		
	85.00	87.50	90.00	92.50
		TARGET ORBITAL ELEMENTS		
a	-20123482.	-20123482.	-20123482.	-20123482.
e	2.08879	2.08879	2.08879	2.08879
i	28.59204	28.59204	28.59204	28.59204
ω	71.07624	71.07624	71.07624	71.07624
Ω	-83.91125	-89.22364	-94.15586	-99.72639
n	93.88088	93.88088	93.88088	93.88088
TIME	32800.000	32800.000	32800.000	32800.000
		LAMBDAS		
SRM1	507.762	815.378	1099.277	1394.472
	3323.213	3264.553	3180.358	3062.026
	444.200	420.395	419.279	422.288
	21479.999	21444.785	21519.424	21445.363
RCS 1	. 000	. 000	. 000	. 000
	. 000	. 000	. 000	. 000
	. 000	. 000	. 000	. 000
	21700.000	21700.000	21700.000	21700.000
SRM2	2503.769	3227.857	3847.976	4538.167
	7837.069	7576.312	7282.450	6871.069
	1796.095	1759.231	1753.132	1762.932
	30348.369	30316.563	30376.794	30316.119
RCS2	. 000	. 000	. 000	. 000
	. 000	. 000	. 000	. 000
	. 000	. 000	. 000	. 000
	30500.000	30500.000	30500.000	30500.000
SRM3	588.365	1272.996	1896.702	2589.285
	7424.354	7339.648	7204.901	6985.030
	711.566	694.680	682.242	691.731
	30780.728	30748.823	30807.255	30747.832
RCS3	. 000	. 000	. 000	. 000
	. 000	. 000	. 000	. 000
	. 000	. 000	. 000	. 000
	30900.000	30900.000	30900.000	30900.000

REDUCED PRELOAD DATA OPPORTUNITY 2

 $\begin{array}{lcr}50 & 90.00 & 92.50 \\ \text { TARGET ORBITAL ELEMENTS } & \end{array}$
-20123482.
2.08879
28.59204
71.07624
-99.70639
93.88088
38200.000 -20123482.
2.08879
28.59204
71.07624
-94.13065
93.88088
38200.000
 88
08
8
0
0
0

 운రిరి 36400.000

 Table 9.

H.LOWIZV HJNOV7
ocorerer
SRM1
RCS 1
SRM2
RCS2
SRM3
RCS3

Table 11. INITIAL STATE

	85.0	87.5	90.0	92.5	95.0
LAT	28.63360	28.249024	28.40993	28.33325	28.495628
LON	14.84890	11.85565	1.87490	1.28092	358.76512
ALT	617800.6	622245.4	618443.9	622255.58	626278.21
AZM	92.95830	94.02688	91.62042	93.98590	95.12122
GAMMA	.43980	.46922	.44485	.46896	.49189
VEL	25815.41	.2581035	25814.70	25810.31	25805.58

3.3 INTERPOLATION FOR OTHER LAUNCH AZIMUTHS

Linear interpolation was used on the reduced data to supply initial data load values for the launch azimuths of $86.25,88.75,91.25$ and 93.75 degrees for each of the three opportunities fur the first window. These cases ran satisfactorily with initial convergence obtained in not more than six iterations.

3.4 RETARGETING

The proposed method for resetting the GAMMA GUIDE preload data as necessary to compensate for launch, deployment and on-orbit delays is given In Section 7.1 of Reference 7. The on-board retargeting consists of four primary tasks:
o Updating the SRM impulse directions.
o Updating the SRM impulse time.

- Updating the mission constraints.
- Updating the initial state.

Only the first two of these tasks are addressed in Reference 7. The last task is assumed to be taken care of by the onboard navigation system. For the purpose of retargeting, the SRM impulse directions and times are calculated in a space centered inertial system (such as the M-50) and then converted over to the ECI system. This takes advantage of the fact that the impulse directions can be specified as a yaw angle α followed by a pitch angle B as shown in Figure 3-3. Thus if the spin axis of the two coordinate systems are aligned

Figure 3-3. IMPULSE DIRECTION FROM α, β
the transformations:

$$
\begin{aligned}
& \alpha=z^{\prime}+w^{t} \\
& \beta=\beta^{\prime}
\end{aligned}
$$

can be used to relate and β in the ECI system to α^{\prime}, β^{\prime} in the retargeting coordinate system; where t is a suitable time relating the two systems. In a oimilar manner, impulse times can be reset

```
TSRM - TSRM' + t.
```

From this preliminary study, it appears that the preload data can be implemented either in tables with linear interpolation or we can use inear equations. Although the study was accomplished in terms of launch azimuth and opportunities we note that the driving independent variable is really the time at which the Earth Centered Coordinate System, ECI, is initialized. This is particularly true for the ascending node angle Ω and the firing angle α for each burn. Note that:
o The target elements a, e, i, ω and n can be fixed.

- The target element Ω (ascending node angle) should be a function of the time at which ECI is initialized.
- The initial values of α and B for ach burn can be set to the values for opportunicy 2. These are close enough for the algorithm to correct for opportunities 1 and 3.

0 The values of $\triangle V 1$, PWT3, PWT5, PWT9 and WTX can be fixed at the values for opportunity 2 also.

- The on-board retargeting for IUS GAMMA GUIDANCE as given in Section 7.1 of Reference 7 is feasible for the Galileo Mission PL13A.

3.5 PRECISION OF CALCULATIONS

This data preioad investigation used the double precision version of the MSFC GAMMA GUIDE code. Sample cases using a single precision cude have been also run satisfactorily. In single precision, minor change in impulse times and directions were encountered and the cases ran in less computer time. The MSFC Univac 1108 uses a 36 bit computer word while the onboard computer is expected to use only 32 bits. This is only expected to affect those operations involving repeated divisions ur the square root.

3.6 RELIABILITY AND NASA MISSIONS' OBJECTIVES

Reference 4 presented the resulte of a etudy by NSI inveacigacing t'ie algorithm. The report detailed various perturbation in the input paramaters for the code. The parturbetions were at least as severe as the expected 3 sigma values. This previous study concluded that GAMM GUIDE could satisfactorily meet the MASA alesions' objectives. This conclusion has been further etrengthened by the resules of this present study utilizing the improvements in the next section.

Section IV

SUGGESTED IMPROVEMENTS

4.1 INTRODUCTION

Several improvements to the GAMMA GUIDE algorithm were previously suggested in Reference 4. These have been incorporated in the MSFC code.

4.2 MINIMUM DELTA LAMBDA TEST

When the program was changed to single precision coding, an instability sometimes occurred in the calculations of the changes in the control variables 8스 with respect to the changes in the constraints. The constraint deviations 8Y would oscillate between a negative and a positive value just out of tolerance. During this time, it was noted that $\delta \lambda \underline{\lambda}$ was extremely amali, indicating that the best possible solution in single precision had been obtained. It is suggested that a test for minimum $\delta \underline{1}$ be inserted into the algorithm. This test is shown in Figure $1-3$ and has been made by Boeing in the B-5 version.

Abstract

4.3 MAXIMUM ITERATION RESET OF LAMBDA

Whenever the maximum iteration limit is exceeded, generally the best possible solution for the control variables λ has been obtained. However, there may arise cases in which the solution may be erroncous. To eliminate this problem, it is suggested that on beginning a guidance update cycle, the control vector λ be saved and if the iteration limit is exceeded this stored value be used. This change has been made by Boeing in the B-5 version.

4.4 TIMELINE CHECKING

This problem has been previously discussed in Reference 4, in which a minimum coast test to insure that an overlap in the time of end SRM2 burn and begin SRM3 burn did not occur. This test should be extended to the coast between any two burns. Coding for these tests have been added to the MSFC program. The timeline for the MSFC code is hown in Figure 1-1.

Section V

program availability

5.2 LISTINGS, MAGNETIC TAPE AND CARD SOURCE

The programs/codes in Table 12 were used in this study and have been tortd on a single PUR tape in the MSFC Tape library. Se. Appendix 8 for thair use.

Table 12. PROGRAM FILES

UREGRAM	FILE	CARDS APPROX	
MSFC Dev.	Development of Gamma Guide	1	4000
NSI SIXD	Spin Stage 6-D	2	1200
Boeing B-5	Onboard Gamma Guide	3	5000
Boeing Stars	Stand Alone Attitude 6-D	4	4000
NSI MOB	Thrust Tables for Gamma Guide	5	400

These programs are atill under development, and are therefore changing. A copy of the latest liating can be obtained by contacting the Contracting Officer's Representative. Mr. A. W. Deaton of the System Analysis and Integration Laboratory, ELí3, Marshall Space Flight Center, Alabama.

A magnetic tape suitable for use on a Univac 1108 system or a card surfe deck $c=n$ also be supplied to authorized users.

Section VI

SAMBO MODIFICATION'S

6.1 MISSION PLANNING MODIFICATIONS

Modifications were made to the SAMBO trajectory program of Reference 8 to provide output data consistent with missios planning efforts. Usual trajectory profile data, in terms of mean orbital elements, continue to be printed in the first row. However, three additional rows of output were added. The second row gives
$R(\mathrm{~km}) \quad . .$. radius magnitude of IUS/SC
$V(\mathrm{~km} / \mathrm{s}) \quad .$. velocity magnitude
$\gamma\left({ }^{\circ}\right) \quad . . . \quad$ flight path angle with respect to the local vertical
LAT $\left({ }^{\circ}\right)$... earth geocentric latitude of IUS
LONG(${ }^{\circ}$) ... earth longitude of IUS
ALT (km) ... altitude of IUS above the earth ellipsoid.
SRR (km) ... slant range from the launch site along the earth surface to sub-satellite point.

The third row gives position and velocity vectors, in terms of the M50 Cartesian coordinate system, and the magnitude of acceleration. The M50 coordinate system is the Aries-mean-of-1950, Cartesian coordinate system with the origin at the center of the earth. The epoch is the beginning of Besselian year 1950 or Julian ephemeris date 2433282.423357. The XM50-YM50 plane (see Figure 6-1) is in the mean earth's equator of epoch and the XM50 axis is directed toward the mean vernal equinox of epoch. The ZM50 axis is directed along the earth's mean rotational axis of epoch and is positive north. The YM50 axis completes the right-handed system. The fourth row of trajectory data gives
$A Z I\left(^{\circ}\right) \quad . .$. inertial heading angle of IUS inertial velocity vector measured in the horizontal plane clockwise from north.
$E\left({ }^{\circ}\right) \quad . .$. the angle between the line from the earth's center to the sun and the IUS/SC's orbital plane.

A modification was also made to the tracking analysis sumary option in the SAMBO program. Eleven ground tracking stations and three tracking satelifes are available. Output data printed for each acquisition period has included azimuth, elevation, range and range rate of the vehicle with respect to the
atation(s) selected. To this output has been added the cone angle between the vehicle longitudinal axis and the linemof-sight to the tracking station.

6.2 CONVEREION OF DATA

A user's guide to the conversion of reference data from SAMBO to input for Gamma Guide can be found in Appendix C.

Figure 6-1. IUS PLANETARY LAUNCH GEOMETRY FOR DESCENDING LEG OPPORTUNITY

Section VII

REFERENCES

1. "IUS Guidance Algorithm (Gamma Guidance)," Boeing Aerospace Company, Seattle, Washington, 2-3941-0001-107, 7 March 1977.
2. "The IUS Guidance Algorithm," M\&S Computing, Huntsville, AL, IUS-77-046, 16 December 1977.
3. "Gamma Guidance for the Inertial Upper Stage (IUS)," Hardtla, John W., Boeing Aerospace Company, ALAA Guidance and Control Conference, 7-8 August 1978, Palo Alto, California.
4. "IUS Guidance Algorithm Gamma Guide Assessment," Dauro, V. A. and Bray, R. E., Northrop Services, Inc., Huntsville, Alabama, TR-230-1960, May 1979.
5. "Gamma Guide Preset Data for the Galileo Mission PL13A," Dauro, V. A., Northrop Services, Inc., Huntsvi11e, Alabama, M-9230-79-04, September 1979.
6. NASA Twin/Spin IUS Galileo Mission Preliminary Launch Window, Accuracy, and Tracking Analysis, EL23 (79-42), A. W. Deaton, C. D. Caryle, and H. L. Phillips, George C. Marshall Space Flight Center, Huntsville, Alabama, July 25, 1979.
7. Subsystem Design Analysis Report, Guidance Subsystem Analysis, D290-10256-1, Revision B, The Boeing Company, Seattle, Washington, June 23, 1978.
8. "SAMBO Users Manual," Williams, D. F., Northrop Services, Inc., Huntsville, Alabama, TN-240-1212, March 1974.
9. "Input Data Setup for Gamma-Guidance", Bray, R. E. and Dauro, V. A., Northrop Services, Inc., Huntsville, Alabama, M-9230-79-01, May 1979.
10. "IUS Spin Stage Six Degree of Freedom Simulation", Dauro, V. A., and Williams, B. L., Northrop Services, Inc., Huntsville, Alabama, TR-230-1954, March 1979.

W5] Engineering a Technology Center

 Appendix A

 Appendix A
 SAMPLE DATA LOAD

 TR-1995This appendix presents a short listing of a sample data load for the MSFC Gamma Guide development program. Other sample data cases are stored on the PUR Tape described in Appendix B.

MMOOOOOOOOOOOORONOOOOOOOOO MJOOOOOOOOOOOOGDNGOOOOOOOO

 ナNOOOOOOOOOOOONNNNOONOOOOO

6	」CUUE	INPUT	SCEI	R10
1	b	y	13	0
2	b	9	13	0
3	5	9	13	U
4	5	9	13	U
5	y	13	0	0
6	y	13	0	0
7	y	13	0	U
8	9	13	0	0
9	13	U	0	0
10	U	U	0	0
11	13	U	0	0
12	13	U	0	0
8	NOMINAL SRPI			
13				

MM8	$90 \sim 0$	\＃9MO
$\cdots=8$		¢nOO
－¢－	$\cdots \infty$	－${ }^{\circ}$
$\infty \pm$	MN	\＄ 5
\％90	$\bigcirc{ }^{\circ}$	80%
页页＂	N－6	¢NO

MNO	O90\％	のMO～
$\infty \boldsymbol{\infty}$	$\pm 00 \mathrm{~N}$	00 ct
	ciが	－ペか
－ 0	－ 0	12100
¢\％	$1{ }^{1} \mathrm{O}$ ¢	MロN
ก0	－	－
	8090	80\％ 0
－	－	
090	N0\％	N

Appendix B USE OF PUR TAPE OF POOR QUALITY

The programs/codes of Table 12, repeated below, have been atored on a aingle UNIVAC 1100 PUR Tape. This tape in in the program data format of the 1100 system and can be accessed by the assignment

$$
\text { @ASG,TJ_TAPE, U9S , } x X X X X x_{\wedge} .
$$

where XXXXX is a number that can be obtained from the Contracting Officer's Representative, Mr. A. W. Deaton, El23, Marshall Space Flight Center, Huntsville, Alabama.

Table 12. PROGRAM FILES

PROGRAM	USE	FILE	CARDS APPROX.
MSFC Dev.	Development of Gamma Guide	1	4000
NSI SIXD	Spin Stage 6-D	2	1200
Boeing B-5	Onboard Gamma Guide	3	5000
Boeing Stars	Stand Alone Attitude 6-D	4	4000
NSI MOB	Thrust Tables for Gamma Guide	5	400

As a user aid each file has a data element called CHECKS which will execute a sample case. As an example, the following run stream will read in and execute a sample SIXD Case.
@ASG,TJ,TAPE,U9S, „XXXX.
@REWIND, TAPE
@MOVE, TAPE, 1
@COPIN,TAPE,TPF\$
@FREE, TAPE
@ADD.CHECKS
CFIN

```
    The codes Boeing B-5 and boeing STARS both require a larger temporary
file, if changee are to be made. This can be obtained by
    MFREE.TPF$
    AASG,TATPFS,P/// 1000
Then repeating the run stream above with either
    e MOVE.TAPR,2
        (For B-5)
        Or
    @ MOVE_TAPE, 3
To obtain a listing, the MSFC utility program LISTIT can be celled by
replacing the ADD option with
    @XQT,AL_SYS$*MSFCS.LISTIT
Inserting the card
    _PUNCH ,SYMBOLICS
```

After the exQT above will punch out the source statements.

Appendix C
 gamma guide input data from sambo

Abstract

Reference 9 presented a discussion of converting reference data from trajectories gemerated uning SAMBO, to a form suicable for GAMMA CUIDE. Most of this procedure is seill valid, but NSI has extended the SAMBO capability and the impulsive solution is now used by SAMBO to create a finite burn solution. Thus the times of beginning and end of each SRM burn need not bu calculated. To further simplify the input, the time column of the Block 2 input may be set to zero and the progran will supply these times. As an additional aid, the impulse deltas for a SRM burn can be set up by using option 18 in the MSFC version. As an example, for SRMI, the namelist block input


```
XLO(1) = 3391.0, XLO(2)=0.0, XLO(3)=0.0
```

with the Option 18 input below
.... 18

will aet

$$
X L(1)=1077.7442 \quad X L(2)=3180.6942 \quad X i .(3)=469.6091
$$

30 that

$$
\begin{aligned}
\Delta V 1 & =3391.0 \\
\alpha & =71.2816 \\
B & =7.9603
\end{aligned}
$$

The notes below, with this description of input contained in Reference 4 , will assist the user in converting data from the SAMBO trajectories to input for GAMMA GUIDE.

SAMBO TO GAYPA

1) Comvert senbo chrust cables

- Punch as given into GayM Porm, Run in MOR progran with timethrust factore of 1. This converts to Inglish unite as input to MOS is in metric but its output is English.
- Select, from output, 15-20 points for Gaman Cuide and edjust thrust factor to obtain required total impulse, and ISP to obtain ase overboard.
- Extract TB1, T32, TB3, ISP1, ISP2, ISP3, DELVT1, DELT1, DELT2, DELT3

2) Sat up initial point. Sambo units are metric.

- Conversion factors

```
. }3048\textrm{m}/\textrm{ft
.45359237 kga/1b
20925662. ft Radius of Earth
32.174048 ft/sec}\mp@subsup{}{}{2}\mathrm{ Gravity
```

- Initial position

LAT - Latitude in degrees
LOA - Longitude in degrees
FOR ALTITUDE (Sanbo ALT in above ellipsoidal Earch) [MAC/.3048-20925662.

VMAC/. 3048 = Velocity
FLTPA Flight Path Angle in degrees
AZ Azimuth in degrees.
3) Set up weights

- Convert mase at beginning and end of each burn to obtain

PWII
PWT3
PWT';
DWSRM2
CWSm3
VIX

- These may be obtained from MOB run.

4) Set up Lanbdas

- XL(4) - Time burn 1 end - DELTI
$\chi(12)=$ Tine burn 2 and - DELT2
$X L(20)=$ Time burn 3 and - DELT3
- Set RCS psuedo burn tiaes

G30

- Sat up impulse deltas

$X L(1)=$ DELVT1	$X L(2)=0.0$	$X L(3)=0.0$
$X L(9)=$ DELVT2	$X L(10)=0.0$	$X L(11)=0.0$
$X L(17)=$ DELVT3	$X L(18)=0.0$	$X L(19)=0.0$

- Set burne to desired alpha, beta by using option 18 in MSFG version.

5) Set terrinal position to YanR

YBAR = XOXCE, YYYGE, Z2ZGE, XXDCE, YYDGE, ZZZDGE these are already in English Units
TMD - Fimal time

[^0]: The terminal coast may be used
 to coast cases to a common end time.

