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STEADY STATE SOLUTIONS TO
DYNAMICALLY LOADED PERIODIC STRUCTURES

Anthony J. Kalinowski
Naval Underwater Systems Center

SUMMARY

The paper treats the general problem of solving for the steady state (time
domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic
periodic structure subject toa phase difference loading of the type encountered
in traveling wave propagation problems. Two types of structural configurations
are considered; in the first type, the structure has a repeating pattern over a
span that is Tong enough to be considered, for all practical purposes, as
infinite; in the second type, the structure has structural rotational symmetry
in the circumferential direction. Due to the periodic nature of the structure
and the traveling wave characteristics of the loading, one need only "cut out"
and subsequently model a typical periodic region of the total structure,
wherein appropriate periodic boundary conditions (i.e., unknown forces and dis-
placements are forced equal, except for unknown phase angle, for corresponding
points on both cuts) are used along the cuts. The paper presents both the
theory and a corresponding set of DMAP instructions which permits the NASTRAN
user to automatically alter the rigid format-8 sequence to solve the intended
class of problems. The new input to a standard version NASTRAN run is a set
of alter cards, PARAM cards, and direct input matrix (DMI) partitioning arrays
which are needed for the purpose of partitioning and correspondingly restruc-
turing the internal NASTRAN mass, damping and stiffness matrices. Final
results are recovered as with any ordinary rigid format-8 solution, except that
the results are only printed for the typical periodic segment of the structure.
A simple demonstration problem having a known exact solution is used to illus-
trate the implementation of the procedure.

SYMBOLS
[B] Damping matrix of nth periodic substructure
{F} Total applied force vector
i ‘[T_
¥ Diagonal unit identity matrix
I Number of degrees-of-freedom for interior nodes
[K1 Stiffness matrix of nth periodic substructure
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L Spatial period of substructure

Lp Number of degrees-of-freedom for left cut nodes
M1 Mass matrix of nth periodic substructure
R Number of degrees-of-freedom for right cut
t Time
{U} Displacement vector
X Spatial coordinate
w Angular driving frequency
B, ¥ Angle of incident wave
u Phase constant (complex form)
u* Phase constant (real part)
INTRODUCTION

A periodic structure consists of a number of identical substructures,
coupled together in identical manners to form the whole system, see for example
figure la. For such systems, under certain loading conditions, it is often
possible to treat only one representative substructure in order to obtain the
general response for the whole system. For example, if the loading is exactly
the same for all substructures, the latest (and even some earlier) versions of
NASTRAN can directly solve this class of problem for both static and steadystate
cases (i.e., rigid formats 1 and 8). In the case of steady state dynamics
problems (rigid format-8) involving traveling wave propagation type inputs,
there is a slightly more general loading condition on each periodic substruc-
ture, namely that the Toading on each substructure is identical except for a
known phase constant u. Moge specifically, the relation between the agg]ied
force vector {F} in the nth substructure and the one, {?jn+1 in the n'"' sub-

structure is given by

{Fhq = &' (FY, (1)

where u is a known phase constant. For the class of problems addressed in this
paper, the phase constant is a purely imaginary constant, i.e.,

p = 0.0+ ip* (2)
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and physically refers to the fact that there is no difference inenergy loss in
processing results from one substructure to the next.

Brillouin (ref. 1) points out that wave motion in periodic systems have
been studied for nearly 300 years, wherein physicists and electrical engineers
have worked in this field in problem areas relating to optics, crystals, elec-
trical transmission liner, etc. (Elachi, ref. 2, provides a comprehensive list
of 287 references in this field). Applications of this theory to engineering
structural analysis and solid mechanics type problems is only recent. Refer-
ences 3, 4, and 5 are typical of analytical solutions to this type problem for
simple configurations consisting of beams, grillages and plate structures.
References 6 and 7 represent a significantly more general approach to the prob-
lem wherein their application of the theory of finite elements enables one to
solve a much Targer class of problems involving rather arbitrary structures
than one could treat by purely analytical techniques. References 6 and 7
appear to restrict themselves to the problem of determining the conditions
(i.e., values of the steady state response fregency w) under which propagating
or non-propagating free wave motion will occur 1in the absence of explicit
external driving forces.

In the work presented here, periodic structures with explicit external
driving forces satisfying Equations (1) and (2) are applied to each substructure
as illustrated in Figure la.

If the loading and spatial boundary conditions on each substructure are
the same, except for the phase difference, u*, (i.e., the loading for two
typical po1nts in two neighboring substructures separated by the period length
Lp,are the same except for a multiplying factor of eTH*) it follows that the
response in each substructure is also the same except for the phase difference
v*. A simple example of such a case is a propagating pressure wave passing
across an 1nf1n1te1y Tong ribbed plate as illustrated in figure 2b (the plate is
in air and no air-structure interaction effects are considered). The propagat-
ing surface loading wave is given by the formula

i(kx + wt) (3)

thus the phase difference between any two neighboring substructures is u* = ki,,
where Lpis the spatial period of the periodic system, Po is the input loading

pressure amplitude, w is the steady state driving frequency, x is the horizontal
spatial coordinate, and k is the wave number of the loading wave.

Other examples of the phase constant relative to a particular example are
shown in figure 2. In figure 2a, we have a known pressure wave Toading propa-
gating para]]e] with the axis of the ribbed cylindrical shell; here, the phase
constant u* is analogous to the figure 2b example and needs no further explana-
tion. In figure 2c, the incident wave is incident at an ob11que angle 6 and
is incorporated into the formula for the phase constant given in the figure 1c.
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There is a special case where the ends of the structure do not extend to
infinity (i.e., the ends never meet) but instead are connected cyclically, as
in figure 3 for example. For such cyclical cases, u* must satisfy an addi-
tional constraint, namely u* = 2n/n where n =1, 2, 3,***. For example, in
the figure 3 case, n = 8, thus y* = 7/4. -

We Timit ourselves to problems having "one-dimensional periodicity",
whereby this term we imply that only two cuts are needed (we shall refer to
these as the left and right cuts, see figure 1b) to separate the typical sub-
structure from the system. The response within such a substructure can be,
however, multi-dimensional. The remainder of the paper focuses on the proce-
dure for obtaining the displacement and stress response within one typical
block of the periodic system. The typical substructure block can be made up of
various types of structural elements (including both elements with structural
damping and nodes with scalar dampers attached) contained within the NASTRAN
library of elements (e.g., CQDMEM, CQDMEM1, CBAR, CONROD ... etc.).

SOLUTION FORMULATION

The solution procedure presented here is very similar to the one in refer-
ence (6), except for the fact that here we are considering problems with expli-
cit forcing functions. The first step in the solution procedure is to "cut
out" the typical substructure from the overall periodic structure as illus-
trated in figure 1b and to subsequently replace the cut nodes with the internal

forces ({?E}n, for the Teft cut and {?ﬁ}n for the right cut) that existed at

those nodes before cutting. The displacements at the cut nodes are similarly
denoted by {Uz}n and {Ur}n where subscripts & and r denote left and right and

the subscript n denotes the nth

the results for the nth substructure, it is convenient to drop the subscript
n from here on for notational convenience,

substructure. Since we are only focusing on

The governing equations of motion for the substructure are first expressed
in the familiar finite element form

M0} + [B1T} + [KI{T} + (F) (4)

where [M], [B], [K] are the mass, damping and stiffness matrices of the nth
substructure respectively; {U} is the displacement vector of all nodes of the

nth substructure; {F} is the generalized force fector; (') = d( )/dt, and bars
above the variable denote the fact that the variables are complex and that the
iwt

harmonic time response e has not yet been suppressed thus

Ty = {upe'®t {F} = (Fleiut ' (5)
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The next major step is to partition the matrices and vectors of equation
(4) into left cut unknowns, right cut unknowns and interior unknowns (subscripts
£y r, i refer to left, right and interior respectively and L, R, I refer to the
total number of displacement component unknowns for the left, right and interior
domain respectively; note due to periodicity, L = R. Thus it follows that after
partitioning we have

MQQ' MQi' Mzr B%QI B£1| Blr
S R R
MY = | Mg | My [ My [B] =) Bip [ Byq [ By
-l <ok
Mrzl Mr]' Mrr Brll Bri' Brr
L ]
(L+R+I) x (L+R+I)
Ko | sz: Ker | Ug
KD = | Kig Ky ] Ks U= { T, (6)
Krzl Kril Krr Ur
]
(1) x (L+R+I)
= +a
Fg Fo

Note the generalized force vectors {F} has been further decomposed as the sum of
an unknown force vector, {?C}, (which denotes the yet unknown internal forces

existing at the cuts in the structure) and a known applied force vector, {Fa},

(which denotes all known forces existing within and at the cuts of the periodic
substructure).
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The full periodic structure is cut (left and right cuts), therefore it
follows that the internal nodal forces normally existing at the cuts now play
the role of external (as yet unknown) applied forces.

The special case of an externally applied force appearing at a left or
right cut requires special attention in that one component of the total force
vector is due to the externally applied force and the other component is due to
the internal force at the cut. The external force value on a cut must be
shared between the generic substructure block being analyzed and its immediate
neighbor; consequently these end type external force values are divided in half
(sei, for example, the situation in figure lc where node 1 Ties on the left
cut).

A further relation that is needed in the formulation relates to the fact
that the right end of the nth generic substructure is the beginning (left end)
of the n+t generic substructure, thus from Equation (1) it follows that

=Cyv _  _WreC
{Fr} = -g {Fz}

(7)
— _ U-—
{Ur} = e {Ug}

where the minus.sign in the first of Equation (7) accounts for the fact that
internal nodal forces acting as external forces on the right cut of generic
substructure n are opposite in sign to the internal nodal forces acting on the
left cut neighboring substructure n + 1.

The next step in the development is to substitute Equations (5) and (6)

into Equation (4); the subsequent cancellation of e1wt permits us to drop the
bar superscript notation thus arriving at a "reduced form of Equation (4)". c
At this point there are five groups of unknowns, namely {Ur}’ {Uz}’ {Ui}’ {Fr}’

{FE}O The three row partitions of the reduced Equation (4) in conjunction with
the two Equations (7), provide 3 + 2 = 5 corresponding groups of equations to
balance the five groups of unknowns. Next, we substitute Equations (7) into
the reduced form of Equation (4), and subsequently employ the third row parti-

tion of reduced Equation (4) to eliminate the {F} unknown. Doing these opera-
tions result in the following set simultaneous equations for the displacement
unknowns {Ug} and {Ui}’
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Ce Ly + |-t enn+ | ] 1T ]
iw [BLL] + | dw [BLI] + 3 I FO R
[KLL] ] [KLI]
------ L ) R ey % PRSP G
-w? [MIL] + | -w? [MII] +
iw [BIL] + | iw (BII] + {u;3 {F3)
A (S 15 R TR 15 56 (RS N A ' ]
(L+I) x (L+I) matrix (1) x (L+I) vector

where

[MLL] = [MQZ] + Cosu* [Mzr] + Cosp* [MFQ] + [Mrr]

[BLL] = [By,1 + Cosu* [Bzr] - wSinu* [Mzr] + (Sinp*/w) [K%r]

+ Cosu* [BrQ] + [B,.] + wSinp* [Mrzl - (Sinp*/w) [Krzl

[KLL] [KQQ] + Cosu* [Klr] - wSinu* [Bzr]

+ Cosu* [Krll + [K. .1 + wSinu* [B

rr rQ]
[MLI] = [Mg;] + Cosp* M1

[BLI] = [By;1 + Cosu* [B,;1 + wSinp* M1 - (Sinu*/w) [Kps]

[KLI] = [Kli] + Cosu* [Kr1] + wSinu* [Bri] (9)
[MIL] = [Miﬂ] + Cosp* [Mif]

[BIL] = [812] + Cosu* [Bir] - wSinp* [Mir] + (Sinp*/w) [Kir]

[KIL] = [KiQ] + Cosp* [Kir] - wSinu* [Bir]

[MIIT = [M,,]

[BIT] = [B4;]

[KIIT = [K;4]

At this point, the linear set of complex algebraic Equations (8) can be solved
for the unknown displacements {UQ}, {Ui}w The unknown displacement at the

right cut, {U.} can be easily computed with the second of equation (7). The
r
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size of the algebraic system is governed by the (L+I) x (L+I) coefficient
matrix (i.e., matrix multiplying the unknown displacement vector) where L+I
equals the number of Teft cut, L, plus interior, I, unknown displacement com-
ponents. Typically I>>L, therefore it is not a very big additional burden on
the equation solver to include the second of Equation (7) as part of the overall
system (actually, we add R extra unknowns, {Ur}’ and R extra equations (where

R = number of right cut unknowns). Thus in place of Equation (8), we consider
the slightly larger, but equivalent system of

[ o - B
—w? [MLL] + | -w? [MLI1+ | | ] P} +
iw [BLL] + | diw [BLI] + , [O] (u,} _
! ! TRy
[KLLY [KLIT r
______ o - - - = = = =
—w? [MIL] + | -w? [MII] + |
fw [BIL] + , i [BII]+ , [01| o { {Us}p =" Y (10
KIL] . [KII] | |
______ ! [ I - - = = = = =
jw [BRL] + | :
.01 KRRl ) (0}
R A I R | )

(L+I+R) x (L+I+R)
coefficient matrix

where [BRL] = (sinu*/w) [IY]
[KRL] = Cosu* [I']
U (11)
[KRR] = -[I7]
and [IY1 = diagonal unit identity matrix

The RI block of the displacement coefficient matrix in Equation (10) above
is identically zero, thus the bottom R rows of the system of simultaneous equa-
tions are totally independent of the solution to the top L+I rows. The length
of the solution vector L+I+R is of exactly the same length of the original sub-
structure matrix (Equations (4) and (6)), consequently the modification of the
DMAP instructions becomes simplier because of the fact that one need only
intercept the logic of the equation solver and replace the existing mass stiff-
ness and damping matrices with the modified matrices defined by the new coef-
fient matrix of Equation (10) (and associated new entry definitions from Equa-
tions (9) and (11)). Since the length of the solution vector is still the same
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as the original problem before modification, the post processing DMAP opera-
tions for displacement printout, stress recovery, etc. need not be modified.

An alternate scheme (although not yet implemented) would be to modify the
input to the complex equation solver to accept the smaller (L+I) x (L+I) coef-
fient matrix used in Equation (8) directly. After solving the smaller L+I
length displacement vector, the full vector (i.e., attaching the missing {Ur}

portion) can be formed by expanding it to length L+I+R via the second of Equa-
tion (7). Finally, stress and displacement results can be processed in the
usual way with existing DMAP operations.

RIGID FORMAT-8 DMAP MODIFICATION FOR NASTRAN

The periodic structure capability described in the previous section can be
implemented in a standard version of NASTRAN. In particular, the DMAP sequence
required to perform the necessary operations are listed in Appendix A, This
DMAP sequence was checked out on an 1108 computer, standard version of level

15.5 NASTRAN and is introduced in the EXECUTIVE CONTROL deck with the following
instructions:

ALTER 138

(see Appendix A for specific instructions)
ALTER 139,139

(replace KDD, BDD, MDD with KDDX, BDDX, MDDX

within call arguments of FFRD module level 15.5
see Appendix A for detailed instruction) impTementation
ALTER 140

(Conditional print statement, see Appendix-
A for detailed DMAP instructions)

These same level 15.5 DMAP instructions can also be applied to level 17.0
NASTRAN, the only difference being that

replace ALTER 138 with ALTER 158
replace ALTER 139,139 with ALTER 159,159
replace ALTER 140 with ALTER 160
It is pointed out, however, that the level 17.0 modifications described

above have not actually been tried although due to the similarity of the change,
the DMAP sequence is expected to work.
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It is important to note that we are modifying the standard NASTRAN unknown
displacement vector coefficient matrix just prior to the entry into the FFRD
module used for the solution to the simuTtaneous complex algebraic equations.
The implication of this statement is that the row numbering scheme for the dis-
placement vector has already accounted for the fact that single point con-
straints, multipoint constraints and omitted coordinates have already been
accounted for. Thus, for example, the length of the {UQ} vector, L, is not

simply the number of nodes on the left cut times the degrees-of-freedom per
node, but rather is less by the amount corresponding to the number of SPC's,
MPC*s and OMIT's relating to the nodes along the left cut. Similar comments
apply to the length of the {Ui} and {Ur} vectors. The understanding of the

above displacement vector length comments must be clearly understood by the
user before attempting to fill out the input data matrix partitioning vectors
CV100, CV010, CV0O1l defined later in this paper.

INPUT DATA FOR NASTRAN RUN

The BULK DATA input to a typical periodic structure run consist of two
basic parts. The first part corresponds to the usual bulk data input cards
normally required to make a NASTRAN run (e.g., GRID CARDS, ELEMENT CARDS, DAREA
CARDS, FREQ CARD, DLOAD CARD, etc.); the second part consists of special input
cards that are explained in the following text.

PARAM Cards
These cards are used to enter various matrix coefficients appearing in

Equations (9) and (11); especially the constants

Text Variable Computer Variable

Cosp* = CMST
0.0 + iw = FIPMEG

-2 = NPMEG2

-1.0 = NANE

-sinu*/w = NSMSBY (12)
-(sinu*)w = NSMSTY

*1.0 = P¢NE note: 0 = zero

sinu*/w = SMsBYf g = Tetter
(sinu*)w = SMSTY

140



are read in on standard NASTRAN PARAM cards where u* is the phase angle defined
in Equation (2) and w is the angular driving frequency in radians per second
(w = f+2m where T = driving frequency in HZ specified on the FREQ card). The

format for a typical PARAM card is:

Col's 1 -8 PARAM

Col's 9 - 16 one of the 8 computer variable names defined by
Equation (12)

Col's 17 - 24 real part of variable defined in Col's 9-16

Col's 25 - 32 1imaginary part of variable defined in Col's 9-16 (only

non zero entry is for variable FIMEG)

Comments

Strictly speaking, the real part of variable FI¢MEG should be 0.0; however,
for the NUSC Univac 1108, operating with the level 15.5 version of NASTRAN used
to implement the procedure, an arbitrary small number if entered (say 1.0x1072°%)
in order to avoid a strange system type error message that is printed when
exactly 0.0 is entered as the real part.  The FIPMEG variable is only used to
compute and subsequently print out the internal forces at the cuts after all
the main calculations for displacement are completed. The mentioned error mes-
sage probably will not appear if other NASTRAN versions and/or other computer
systems are used.

DMI Cards for Matrix Partitioning

A set of DMI direct matrix input cards are needed to provide the informa-
tion NASTRAN needs to partition the mass, damping and stiffness matrices.
Three groups of cards are needed; a column partitioning vector for the left cut
group of displacement node components, CV100; a column partitioning vector for
the interior group of displacement node components, CV010; and a column parti-
tioning vector for the right cut group of displacement node components, CVOO1.
A set of row partitioning vectors are automatically generated by the Appendix A
DMAP instructions. The column partitioning are made up of entries that are
either 1.0 or 0.0. Since all entries within NASTRAN are assumed to be zero
unless otherwise specified, the user need only enter 1.0 values in the appro-
priate slot in each of the above mentioned partitioning vectors. The rules are
simple and are as follows: ‘

J Formation of left cut partitioning vector CV100
Enter a 1.0 in each row number corresponding to each active indepen-
dent component degrees-of-freedom 1ying along the left cut. The

Tength of the CV100 vector is L+I+R and there should be L 1.0 entries
(the remaining I+R entries are automatically zero by virtue of not
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being defined). If the left cut nodal numbering pattern is sequential
and starts with the lowest node number of the whole system (e.g., node
1, 2, 3, . . .), then the first L entries of CV100 will be all 1.0
values, However, if the left cut numbering scheme does not contain
only the lowest node numbers, but instead the whole system is num-
bered at random, then the L 1.0 entries will correspondingly be dis-
tributed throughout the CV100 vector, and the "bookkeeping" involved
with defining the CV100 vector becomes messy. The user having MPC's,
SPC's or OMIT's applied to nodes along the left cut must be sure to
account for these during the process of entering the 1.0 values into
the partitioning vector CV100.

) Formation of the interior partitioning vector CV010

Enter a 1.0 in each row number corresponding to each active indepen-
dent component degree-of-freedom lying on the interior of the struc-
ture. The length of the CV010 vector is L+I+R and there should be I
1.0 entries (the remaining L+R entries are automatically zero). If
the interior nodes are numbered sequentially, (following the same
sequential pattern used in the CV100 vector), then the middle L+1,
L+2, . . . L+I entries of the CV010 vector will all be 1.0 values.
Again remember to account for SPC's, MPC's and OMIT's in the number-
ing scheme.

o Formation of the right cut partitioning vector CV001

Enter a 1.0 in each row number corresponding to each active indepen-
dent component degree-of-freedom lying on the right cut of the peri-
odic structure. The length of the CV001 vector is L+I+R and there
should be R 1.0 entries (the remaining L+I entries are automatically
zero). If the left cut, interior, and right cut nodes are all num-
bered sequentially (in the respective order mentioned), then the end-
ing L+I+1, L+I+2, . . . L+I+R entries of the CVOO1l vector will all be
1.0 values. Again remember to account for SPC's, MPC's and OMITS's
in the numbering scheme,

DMI Cards Format

The bulk data cards for the definitions of the partitioning vectors via
the standard DMI cards is as follows:

] CV100 vector cards

Col's
first header card
1-8 DMI
9-16 Cvo01
17-24 0
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Col's Entry

25-32 2

33-40 1

41-48 1

49-56 blank

57-64 integer value equal to magnitude of (L+R+I)

65-72 1
second card

1-8 DMI

9-16 CcVoo1

17-24 1

25-32 enter integer row number ,say N1, of first 1.0 entry

33-40 1.0 for entry N1

41-48 1.0 or 0.0 for entry N1+l

49-56 1.0 or 0.0 for entry N1+2

57-64 1.0 or 0.0 for entry N1+3

65-72 1.0 or 0.0 for entry N1+4

73-80 Continuation card name, say CONT1, if needed.
third continuation card (if needed)

1-8 +0NT1

9-16 1.0 or 0.0 for entry N1+ 5

17-24 . .

25-32 . .

33-40 . .

41-48 . .

49-56 . .

57-64 . .

65-72 1.0 or 0.0 for entry N1+12

73-80 Continuation card name, say CONT2, if needed.

fourth continuation card (if needed)
similar to third continuation card ... etc.

e (V010 Vector Cards

These cards are made up analogously to the CV100 vector already described
above, the only differences being that on the first two cards, replace CV100
with CV010; also, the number of the first 1.0 entry slot (N1 value in col's
25-32 of the second CV100 data card)is different.

e (V001 Vector Cards
These cards are made up analogously to the CV100 vector already described
above, the only differences being that on the first two cards, replace CV100

with CV001; also the number of the first 1.0 entry slot (N1 value in col's
25-32 of the second CV100 data card) is different.
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Finally, examples of making the partitioning cards is given later in a
demonstration problem.

DMI Cards for Merge Operations

A set of DMI direct matrix input cards are needed to define certain dummy

matrices which NASTRAN needs to successfully merge certain internal
matrices within the Appendix-A DMAP sequence. These input cards will consist
of a group of eight cards that must always be included for a run. The only
thing that changes from one NASTRAN run to another is the lengths of these
dummy arrays. These dummy null arrays are only introduced to avoid DMAP error
message printouts for Univac 1108, Tevel 15.5 NASTRAN that occurred when the
Tead matrix entry in the standard DMAP MERGE operation is not defined.

DMI Cards Format

Col's Entry
first header card

1-8 DMI

9-16 LIXLI enter characters, (does not mean multiply LI times LI)

17-24 0

25-32 2

33-40 1

41-48 1

49-.56 blank

57-64 enter integer equal to L plus I

65-72 enter integer equal to L plus I

second card

1-8 DMI
9-16 LIXLI
17-24 1
25-32 1
33-40 0.0
third card

same as first card, except

Col's 9-16 enter LIXL2
Col's 57-64 enter integer equal to L plus I
Col's 65-72 enter integer equal to L plus L
fourth card
same as second card, except

Col's 9-16 enter LIXL2
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fifth card
same as first card, except

Col's 9-16 enter L2XLI
Col's 57-64 enter integer equal to L plus L
Col's 65-72 enter integer equal to L plus I
sixth card
same as second card, except

Col's 9-16 enter L2XLI

seventh card
same as first card, except

Col's 9-16 enter L2XL2
Col's 57-64 enter integer equal to L plus L
Col's 65-72 enter integer equal to L plus L

eighth card
same as second card, except
Col's 9-16 enter L2XL2

DMI Cards for Unit Matrix Definition
Finally, a set of DMI direct matrix input cards as needed to define the

unit matrix [IY] employed in Equation (11).

DMI Cards Format

Col's Entry
first header card
1-8 DMI
9-16 UMATR
17-24 0
25-32 6
33-40 1
41-48 2
49-56 blank
57-64 enter integer equal to L plus L
64-72 enter integer equal to L plus L
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Col's Entry

second card

1-8 DMI
9-16 UMATR
17-24 1
25-32 1
33-40 1.0
third card

same as second card, except

Col's 17-24 enter 2
Col's 25-32 enter 2

fourth card
same as second card, except

Col's 17-24 enter 3
Col's 25-32 enter 3

etc.

last (L+1$t) card
same as second card, except

Col's 17-24 enter integer value equal to L
Col's 25-32 enter integer value equal to L

DEMONSTRATION PROBLEM

The use of the DMAP sequence in conjunction with the new PARAM and DMI
input cards defined in the previous section will perhaps be better understood
by including a specific example solution that has the features that (1) is a
small size problem convenient for matrix operation checking and debugging
purposes; (2) contains most of the main ingredients typical of a representa-
tive problem, thus the system has mass, stiffness, and damping; (3) the exact
solution to the problem is known for checking purposes. The problem illus-
trated in figure 4a meets all of these conditions, and corresponds to a plane
pressure wave propagating in an infinite acoustic fluid medium. Upon sampling
the pressure response along any two parallel vertical cuts (separated by the
horizontal distance Lp) it can be shown that the response (pressure and dis-
placement) is different only by the amount eil* where for this particular
problem

ur = (-‘g-mp) Cosy (13)
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where w = driving frequency (rad/sec), Lp = length (in.) between two paraliel

cuts, ¢ = compressional wave speed (in/sec); ¥ = angle of incident wave. The
solution for the pressure and motion response is sought. for the shaded region
shown in figure 4a. Only the dotted outlined region is modeled with finite
elements and is correspondingly shown in figure 4b,

In order to exercise this demonstration problem to the fullest extent, we
will use different types of boundary conditions on all four sides of the fig-
ure 4b finite element model.

Boundary Conditions

. Left and right vertical cuts

Since this problem falls within the class of problems solvable by
the phase difference type boundary condition, boundary conditions
specified by Equations (7) are enforced. Here the left and right
cut forces and displacements are taken as unknowns.

. Top face

The boundary condition for the top face is different from the Teft
and right face in that here we explicitly apply the free field pres-
sure (converted into equivalent nodal forces). The formula for the
freely propagating pressure wave is given by the expression

Plx.y,t) = pe’ (k) ot (14)
P(x,¥)
where k = w/c = wave number (1n.'1)
r = spatial coordinate normal to direction of wave propagation (in.)

Py = steady state pressure amplitude (psi)
p = pressure (psi) (spatial variation)
and r is related to the x,y coordinates by the relation
r=xcosy +y siny (15)

The y-direction force at upper face node 3 is computed by substituting
p(x,H) from Equation (14) into the expression

=L
X p/4

(3F9) = [ = p(x,H) dx (16)
Y x=0
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phe force at upper face node 4 is computed similarly by

x=3Lp/4
G = [atume (17)
y
x—Lp/4
and finally the upper face node 9 is computed similarly by
x=Lp
( F) =f-p(x,H)dx (18)
9
= 4
X 3Lp/
The demonstration problem is evaluated for the following specific input data:
P = 100, psi
¢ = 60000, in/sec
L =2.0 in,
p 1 v
H=2.0 in, (19)

£ = w/2r = 3000, Hz
v = 45°
b = mass density = .000096 1b~ sec/in’

Substituting the above Equation (19) input constant into Equations (16),
(17) and (18) results in

. o]
(4F3) = -49.8072 ' 28-6378
y
. 0
(,F) = -99.7944 ¢! 381897 (20)
1
y
s 0
(gF%) = -49.9742 ' 47-7297
y

An important point must be made regarding loading the final force array
{F} (Equation (4)) for the periodic structure problem. Observation of the
Equation (10) loading vector of the new per1od1c structure problem statement,

reveals that the left cut applied forces, {F }, are applied, as normal,
the corresponding left cut node; also, the 1nter1or applied forces, {F }, are
applied, as normal, to the corresponding interior nodes; however, the r1ght
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cut applied forces, {Fi}, are not applied to the right cut nodes, but rather,

-1l ®
are first multiplied by the complex constant e™" 1, and then applied to the
corresponding left cut node. For the demonstration problem at hand, substi-

tuting Equation (19) into Equation (13) implies that p* = 25.455849, thus

- . 0
™ (GF2) = 49,9742 £122-27387
y

(21)

therefore, in summary, at node number 3 in the y direction apply a net sum

. 0 . )
force = -49.8972 &'28:6378" 49 9747 ¢122.27387 (22)
and at node number 4 in the y direction apply a net
. 0
force = -99,7944 e98+1837 (23)

and at node number 9 in the y direction apply a net
force = 0.0 (i.e., do not apply any force).

. Bottom face

The boundary condition for the bottom face could have been selected
similar to the top face (i.e., we convert the pressure into equiva-
lent nodal forces). However, instead we use a slightly more compli-
cated boundary condition that permits us to introduce a [B] matrix
entry into the problem. More specifically, the pressure and normal
velocity along the bottom cut can be obtained from the expression

p(x,0) = eV, (24)

where Vn is the particlevelocity normal to the wavefront propagation direc-
tion. Therefore the relation between the Vy velocity component and the y
direction resisting reaction is given by

(F3) = (p(x,0)+BA) = pcah Siny v, (25)
y T ™
damping

constantsz

Thus, the bottom face boundary condition (simulating an approximate wave
absorbing boundary condition) is achieved by placing viscous dampers along
the bottom cut (see figure 4b), wherein the damper constants are defined by

Cd = pCAA Siny (26)

where AA is an appropriate area factor relating the pressure and concentrated

force (F?) . When the wave length of the incident wave is long relative to
Y
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the mesh size, one can set AA the surface element length for bottom surface
nodes off the cuts and set AA = 1/2 the surface element length for the nodes
lying on the cuts. Thus for the demonstration problem at hand, Cd = 8.14587

for the middle damper and half that amount for the end cut dampers.

o

Preparation of Demo NASTRAN Input Data
e executive control

The form of the DMAP instructions presented in Appendix A are general and
are not problem dependent. The only times the user deviates from the presented
DMAP sequence is (1) when he switches from one level of NASTRAN to another
wherein the ALTER statement numbers change; or (2) when he wishes to turn off
or turn on the intermediate matrix printout switch ISW, defined in the third
DMAP ALTER statement (ISW = +1 prints all intermediate matrix operation steps
in addition to a printout of the FORVEC vector which Tists the left cut,
interior, and right cut nodal forces; ISW = -1 no intermediate printout).

e case control

The standard CASE CONTROL deck is shown in the APPENDIX A, wherein the
only thing worth noting is the fact that a DLOAD card is used for the purpose

of superimposing the two vectors {Fg} and e'u*1 {Fi} which are both applied to

the s?me left cut nodes (in correspondence with the first partition of Equa-
tion (10)).

e bulk data'

The CDAMP2 cards are used to define the damping constants applied at the
bottom surface nodes. The CQDMEM membrane elements (and corresponding MAT2,
PQDMEM cards) are used to define the fluid media, employing the displacement
fluid element approach described in ref.8 . The collection of DLOAD, DAREA,
DPHASE, RLOAD1, TABLEDI cards are used to insert the applied forces defined by
Equations (22) and (23). The GRDSET card is employed to eliminate the non-
applicable 3, 4, 5, 6 degrees-of-freedom for the 2-D membrane elements. Stand-
ard GRID cards define node coordinates and the standard FREQ card defines fre~
quency of f = w/2w = 3000 Hz. The special nine PARAM cards defined by Equations
(12) are evaluated using the data in Equations(19). In the case of the DMI
cards for the partitioning vectors CV100, CV010, CV00l, the first thing to
establish for the problem is the sizes L, R, I for the individual partitions.
It is convenient, for bookkeeping purposes, to number the left cut sequen-
tially; and to also number the interior sequentially (with the lowest interior
node number appearing next to the highest Teft cut node number) and finally
number the right cut sequentially with the lowest right cut node appearing next
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- to the highest internal node number. Thus for the problem at handT, L=2
degrees-of-freedom/node times 3 left cut nodes = 6; I = 2 degrees-of-freedom/
node times 3 interior nodes = 6; and R = L. = 6 due to the periodicity of the
structure. The first 6 entries of CV100 are 1.0, the rest of the entries are
zero; the 7th through 12th entries of CV010 are 1.0, the rest being zero; and
finally the 13th through 18th entries of CV001 are 1.0, all other entries being
zero. The 8 merging DMI cards LIXLI e+« L2XL2 are defined according to the
instructions given earlier in the paper and need no further comment. Finally
the unit matrix DMI cards for the UMATR matrix are defined according to the
instructions given earlier in the paper.

Results of NASTRAN Demo Problem

Selected output results for the figure 4b demonstration problem are pre-
sented as NASTRAN direct printout (real and imaginary part type output format)
in APPENDIX B. The first part of the NASTRAN printout illustrates the net
input vector (e.g., results of Equations (22)) and 23)); it" is always good to
include as a checking feature of the input.

Next the stress output is printed and refers to the stress computed at the
center of the element. Note that due to the sign convention difference regard-
ing stress and pressure (opposite in sign, see ref. 8 for details), the user
must reverse the sign of stress to obtain the pressure, i.e,,

P70 T Oy
It should be noted that the NASTRAN output format headings are in error
(due to a formating bug in NASTRAN that has remained in practically all levels
of NASTRAN); the output heading should be read as follows (for each element row
of stress output): Real Pt, (Oxx)’ Real Pt, (cyy),-Rea1 Pt. (oxy), Img, Pt. (gxx),

Img. Pt. (oyy), Img. Pt, (o*y); The results shown in APPENDIX B, Table B-1,

show the NASTRAN results next to the exact solution, after converting the real
and imaginary parts into amplitude and phase data.

The exact solution is evaluated with p(x,y) from Equation (14) at distances
r that locate a Tine (drawn parallel to the wave front) which passes through the
midpoint of an element. The NASTRAN results agree quite well with the exact
solution in both phase and amplitude. It is noted that avery slight asymmetry
exists between the NASTRAN phase angle results for element 3 and element 4,
This is probably due to the fact that the boundary conditions on the top and
right cut surfaces do not result in exactly the same applied nodal forces (e.g.,
the top forces were not computed using a consistent pressure-to-force applica-
tion formula that involves the displacement shape functions). A similar com-
ment applies to the relation between the bottom surface forces and left cut

TSuppose, for illustrative purposes, node 5 had the x displacement SPC con-
strained to zero and suppose the x displacement of node 4 was forced (through
an MPC relation) to equal the x displacement of node 6. In this particular
case L= 2¢3 =6; [ =23-1-1=4; R=1L =6, ‘
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forces. When the program is run with the detailed print switch triggered

(ISW = +1), the left and right cut forces are computed from the solution dis-
placement vector and subsequently printed in condensed format (under the FORVEC
header). Inspection of these results showed that corresponding 1eftoand right
cut internal nodal forces differed by the proper amount, u* = 25.455",

CONCLUDING REMARKS

The DMAP sequence presented in APPENDIX A, permits the NASTRAN user to
solve a class steady state dynamically loaded periodic structures, wherein the
internal forces and resulting response at the perjodic ends of the typical

111%
repeating substructure are related by a known complex phase relation, eV,
The DMAP sequence is general and need not be changed from one problem to the
next. When using the methodology presented here, one should be extremely care-
ful that the CV100, CV010, CV001 partitioning vectors are prepared properly.
For large problems, a preprocessor should be written which automatically gen-
erates these vectors. One should also be careful to allow for SPC, MPC and
OMIT cards which compact the solution vector and consequently should be taken
into account in the preparation of the partitioning vectors. The user is
strongly advised to study the sample demonstration problem presented here
before undertaking anymore complicated problems.

At this point, the DMAP sequence has been checked out for a set of small
size problems, therefore comments regarding computer run time on large problems
cannot be made at this time. Some of the DMAP operations can be increased in
efficiency by employing the matrix operation ADD5 DMAP module in place of
repeatedly employing the matrix ADD DMAP module. The ADD5 routine was not:
used in the 1108, level 15.5 version of NASTRAN due to the fact that the system
did not consistently successfully add a string of 5 matrices during certain
checkout phases of the programming.

Finally, it is advised that before attempting to exercise the DMAP sequence
presented in APPENDIX A, one should run the demonstration problem as a bench
mark check in. If a Univac 1108, Tevel 15.5 version is used, it may be necessary
to increase the "max-files" to 40 in NTRAN§.
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APPENDIX-A

(NASTRAN DEMONSTRATION PROBLEM INPUT)

NASTRAN EXECUTIVE CONTROL DECK

10 NUSC PERIODIC STRUCTURE SAMpPLE
APP DISP

SOL 80

TIME 30

DIAG 2,3+8014,15

DIAG 22

ALTER 138

$ DMP P

$ ISW=+1 PRINT ... ==1 NO PRINT OF ALL KEY MATRIcES FOR PERIODIC STR.
PARAM //CoNsNOP/V N, ISH=+1 $

PARAM //CoNINOP/V,NyIMI==1 $

PARAM //CiNINOP/V,N,PURSWiz==1 $

$ DEFINE ROW PARTITIONING VECTORS WITH DUMMY ADD OPERATION

$  WHERE CV100 cvoin cv00j ARE READ IN onN DMY BUILK DAYA
ADD CV100s/RV1O0 $

ADD CV010,/RVO1C $

ADD CV001,/RVO0L §

COND MAR/ISW %

MATPRN RV100¢RVOL10/RVOO1r,// $

MATPRN CV100+sCVQO10sCVO001sy// S

LABEL MAR $

$ CONDITIONAL PRINT OF KDD/MDD, BDD BEFORE PARTITION ApPLIED (

COND KAL,ISW %
MATPRN KDDsMDD,BDD¢o// S

$ GSAVE ORIGINAL KDD MDD BDD MATRICES FOR PROCESSING FORCES AT CUTS
ADD KDD,/SAVKDD $

ADD MOD,/SAVMDD $
ADD BDD,/SAVBOD $

LABEL KALS
$ PARITION KeMyB MATRICES

$ PARTITION LL BLOCK
PARTN KDDoCVi00,RV100/902DKLL/CoN,1

PARTN MDD»CV100+RV100/99»DMLL/CeNy1
PARTN BDD»CV100,RV1IGO/»»»DBLL/CoN,1

$ PARTITION LI BLOCK
PARTN KDDsCVO10,RV1C0/ 49 eDKLI/CoNyY

PARTN MDDsCVO10,RV1N0/»e+DMLI/CoNy1
PARTN BDD»CVO10,RVINOG/» 9o DBLI/CeNy1

N RN | Re

$ PARTITION LR BLOCK
PARTN KDDeCVOOL1,sRV1ION0O/r o DKLR/CsNo 1

PARTN MDD»CV001,RV100/¢ s 9DMLR/CoN»1
PARTN BDD»CV0C01,RV100/9299DBLR/CoNsl

% PARTITION IL BLOCK
PARTN BDD,CV100,RV010/9 s +DBIL/CoNed

A A |
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PARTN  ~ KCD»CV1ic0,RVO10/9 ¢ oDKIL/CoNo 1
PARTN MDD CVILOO,RVOLO/ 99 o DMIL/CoNo 1

$ PAKTITICN 1I BLOCK
PARTN KDDeCVD10sRVO10/r v 2DKITI/CoNel

PARTN MOD2CVD10,RVOL0D/ 92 eDMII/CeNe i
PARTN BDDyCVAL0,RVOLI0/9»»DBIT/CHhNoel

R BA AN

$ PARTITION IR BLOCK
PARTN KDDyCVNOL1,RVO10/992DKIR/CoN»1

PARTN  MDD»CVAQ1,RV010/9 9 9DMIR/CyNo1
PARTN 80D, CVNOL1,RV010/9 9 sDBIR/CyNy1

Ca R R

$ PARTITION RL BLOCK
PARTN KDD» CV100+s RVOOL/»reDKRL/CoN»1

PARTN MDDe CVICO0sr RVOOL/»»sDMRL/CoN» 1
PARTN BDDy CV10Ce RVOCL/9 e eDRRL/CINs Y

H RA

$ PARTITION RI RLOCK
PAXTN KCDrCVO10,RVO01/9» »DKRI/CHN»1 S

PARTN MDD rCVOL99RVODL/r v »OMRI/CyNI1 &
PARTH BOD,CVOL1D,RYOOL/r» o DBRI/CHNI1 &

¥ PARTITICN KRR BLOCK
PARTN KDDe CVNO1le RVODL/y 9 rDKRR/CoNs 1

PARTN MDD+ CVOO1ls» RVOO1/,»»¢sDMRR/CyN»1
PARTN BDDs CVEO1s» RVQOO1/9s»DBRR/CINIT

R A B

$CONDITIONAL PRINT OF PARTITIONS
COND KALIN/ISW 3

MATPRN DKLLDMLLDBLLY»//
MATPRN DKLIDMLIDBLI//

MATPRN DKLRyDMLRyDBLRr»//
MATPRN DKILDMIL,DBILrs//

MATPRN DKIIoOMII»DBIIvs//
MATPRN DKIR¢DMIR/DBIR?4//

MATPRN DKRL +DMRL.»DBRLe¢//
MATPRN DKRI»DMRIsDBRIv//

AR BA R|A R A A

MATPRN DKRR¢UMRR¢DBRRev//
LABEL KALIN %

$ *
% FORM PARTITIONS OF ASSEMBLED MATRIX MDDX» BDDX» KDDX

$ =
$ FORM LL BLOCK

3
$ FORM AMLL

ADD DMLL,»DMLR7DIAMLL/V, Y/ PONE/V/ Y, CPST $
ADD D1AMLL DMRL/D2AMLL/VeY+PONE/VsYrCMST

ADD DZAMLL,DMRR/AMLL/V,Y»PONE/V.Y,PONE $
PURGE KDDsMDD,BDD/PURSW1 $

- PURGE D1AMLL,D2AMLL/PURSWI %
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3 FORM ABLL
ADD DBLLDBLR/D1BLL/VrY/PONE/V)YsCMST &

ADD DI1BLL,DMLR/D2BLL/VeY2PONE/V2Y  NSMSTO ¢
ADD 02BLLDKLR/D3BLL/VsYrPONE/V»Y,SMSBO %

ADD D3BLLDBRR/D4BLL/VIY'PONE/VsY,PONE &
PURGE D1ARLL»D2ABLL,D3ABLL/PURSW] §

ADD D4BLL,DMRL/DS3LL/VYePONE/V)Y,SMSTO $
ADD DSBLLDKRL/ZABLL/V Y PONE/Y,Ys NSMSBO

PURGE D4BLL»DSBLL/PURSW1 3%
$ . FORM AKLL

ADD DKLL GKLR/DIKLL/VeYePONE/V,yYoCMST §
ADD DiKLL,DBLR/D2KLL/V,Y)PONE/V,Y,NSMSTO &

ADD D2KLL,DKRL/D3KLL/VsYsPONE/VsY,CMST $
ADD D3KLL »OKRR/DHKLL/V,YrPONE/V,Y,PONE $

ADD O4KLL+»DBRL/AKLL/VIYI»PONE/V,Y¢SMSTO $

— PURGE D1KILLeD2KLL ¢ DIKLL ¢ D4KLL/PURSWL $

$ FORM LI BLOCK
%

% FORM AMLI
ADD DMLI»DMRI/AMLI/VeYsPONE/V,YICMST $

FORM ABLI
ADD OBLIDBRI/DIBLI/VeiYsPONE/V,YsCMST §

ADD D1BLI,DMRI/D2BLI/VsY»PONE/VsY,SMSTO $
ACD D2BLI,DKRI/ABLI/VsYoPONE/V,Y¢NSMSBO $

PURGE D1BLI»D2BLI/PURSW1 $
% FORM AKLI

ADD DKLIsDKRI/DIKLI/VsYsPONE/V,Y)CMST &
ADD D1kKLI,OBRI/ZAKLI/VeYsPONE/V,Y¢SMSTO $

PURGE D1KLI/PURSW1 %
$ FORM 1L BLOCK
%

$ FORM AMIL
ADD OMILDMIR/AMIL/VeYoPONE/V,YICMST $
FORM ABIL,

ADD DBIL,DBIR/DABIL/VeY9»PONE/V.YCMST ¢
ADD D1BIL,DMIR/D2BIL/V.YsPONE/V,Y,NSMSTO ¢

ADD D2BILOKIR/ABIL/VeY¢PONE/V,Y+SMSBO $
PURGE D1BIL,D2BIL/PURSW1 $

$ FORM AKIL
ADD DKIL +DKIR/DIKIL/VrYsPONE/V,YeCMST $

AGD DIKIL,OBIR/AKIL/V)Y»PONE/V,Y/NSMSTO $
PURGE DI1KIL/PURSWL &

$ FORM 1II BLOCK
$ AMI1 SAME AS DMII ABII SAME AS DMII AKII SAME AS nKII

$ FORM RL BLOCK
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ADD UMATR,/ABRL/V,Y,5M5BO %
ADD UMATR»Z/AKRL/V,Y,CMST $

% FORM RR BLOCK
ADD UMATR»/AKRR/V)»Y,NONE $

$ THE LR ¢ IR »RI BLOCKS ARE NULL
$ PRINT BLOCKS BEFORE ASSEMBLY

COND DEB!ISW $
MATPRN AMLLeABLLsAKLLY// &

MATPRN AMLI?ABLI»AKLI¢»// $
MATPRN AMIL»ABIL+AKILes// $

MATPRN ABRL+AKRLsAKRRe»// $
PRTPARM //CiNs0S

LABEL DEBS
$ *

$ NEXT ASSEMBLE BLOCKS WITH MERGE
% *

$ MERGE LL BLOCK
MERGE LIXLIro o AKLLICV100,RV100/KDOXLL/CoNs1

MERGE LIXLIv»» s AMLLYCV1O0/RVIOO/MDDXLL/CINs1
MERGE LIXLIr»reABLLICV100/RV100/8BDDXLL/CINSL

$ MERGE LI BLOCK
MERGE LIXL2/s9»AKLI»CVO10/RV100/KDDXLI/CoNS1

MERGE LIXL2vroAMLIICVO10,RVION/MDDXLI/CoNe1
MERGE LIXL2¢r¢+oABLI'CVQ10»/RV100/8DDXLI/ZCoNs Y

BAR ARG

$ FORM PARTIAL SUM
ADD KDDXLLKDOXLI/SUMK1 $

ADD MDOXLL MODXI.I/SUMM1 $
ADD BDDXLL»BDDXLI/SUMBL $

$ PURGE COMPONENTS OF PARTIALL SUM NOT NEEDED ANY MoRE
PURGE KDDXLL+KDDXLI,MODXLL »MDDXLI,BDOXLL,BDDXLI/PURSW1

$ MERGE IL BLOCK
MERGE L2XLIrr s AKIL»CVI0O/RVOLl0/KDDXIL/CoNs1 $

MERGE L2XLI»» s AMILICV100/RVO10/MDDXIL/CINeL &
) MERGE L2XLIveoABILCVIO0/RVO10/BDDXIL/CoNsL

$ CONTINUE PARTIAL SUM
ADD SUMK1.KDDXIL/SUMK2 $

ADD SUMM1,MDDXIL/SUMM2 $
ADD SUMB1,BDDXIL/SUMB2 $

COND JOHN, ISW $
MATPRN SUMK1+KDDXIL,SUMK2,SUMM1/MDDXIL//$

MATPRN sUMM2,SUMBT,8DDXIL,SUMBR2/,/7/%
LABEL JUOHN $

$ PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MORE
PURGE SUMK1+KDDXIL»SUMM1¢MDOXIL »SUMB1RDDXIL/PURSWL $

% MERGE IT BLOCK
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MERGE L2XL.2¢ ¢ +DKII+CVO10+RVO10/KDDXII/CoNs1 $
MERGE L2XL2,9+DMIT»CVO10+RVO10/MDDXIX/CrNel $

MERGE L2XL2¢9¢DBIT/CVO10/RVOL10/BOOXII/CoNI1 §
$ CONTINUE PARTIAL SUM

ADD SUMK2,KDDXII/SUMK3 $
ADD SUMM2,MDDXII/MDDX %

$ WHERE MDDX IS THE FINAL MASS MATRIX SUM
ADD SUMB2,BDDXII/SUMB3 $

COND BULL,ISW $
MDDXTT//%

MATPRN MDDX»SUMB2,BDDXII+SUMB3,//$
LABEL BULLS$

$ PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MORE

PURGE e K ¢ SUMM 14

$ MERGE RL BLOCK
RLecCVIONIRVOO1 /KDDXRL ZCaN21 $

MERGE LIXLIv»?»»ABRLsCV100»RVO01/BDDXRL/CINs1 $
$ CONTINUE PARTIAL SUM

ADD SUMK3,KDOXRL/SUMKY4 $
ADD SUME3Z,BDDXRL./BDDX $

$ WHERE BDDX IS THE FINAL MATRIX SUM
COND PILL,ISW $

MATPRN SUMK3¢KDDXRL s SUMK4» SUMB3»BDDXRL//%
MATPRN BDDXe290//%

LABEL PILLS
$ PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MORE

PURGE SUMK3+KDDXRL »SUMB3+»BDDXRL./PURSW! $
% MERGE RR BLOCK

MERGE LIXLIsvrsAKRR?CVOO01sRVOOL/KDDXRR/CoNe1 $
$ CONTINUE PARTIAL SUM

ADD SUMK4,KDDXRR/KDDX $
$ WHERE KDDX IS THE FINAL SUMMED MATRIX

COND BOOK,ISW %
MATPRN SUNMK4+KDOXRRsKDDX0p//%

LABEL BOOK $
% PURGE COMPONENWTS OF PARTIAL SUM NOT NEEDED ANY MORE

PURGE SUMK4KDDXRR/PURSW1 %
% *

3 *xk NOW ALL THE KDDX  BDDX AND MDDX MATRICES ARE FORMED
*

%
COND JACK)ISW %
MATPRN MDDXsBODXoKDDXps/7 $

LABEL JACKS
ALTER 139,139

FRRD CASEXXsUSETD,DLT+FRL,GMD,GOD,KDDX,BDDX»MDDX s e DIT/UDVF,PSF,PDF ¢ PPF/
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- CoN'DISP/Co Ny DIRECT/V N, LUSETD/V,No MPCFI/V,N,SINGLEZ7V,NoOMIT/
ViNsNONCUP/VN,FRQSET/C,Y,DECOMOPT=1 $

ALTER 140
COND ABE(ISW 3

$ PRINT THE FORCE VECTORS USEp BY THE EQUIVALENT PERTIODIC STRUCTURE
MATPRN POFsPSFIPPFee// %

$ PROCESS THE LEFT AND RIGHT PERIODIC CUT FORCES
ADD SAVMDL » SAVKDD/DSAV/VeY 1 NOMEG2/VeYsPONE $

ADD DSAV,SAVBDD/KNET/VsYrPONE/ViYsFIOMFG %
PURGE DSAV/PURSW1 $

MPYAD KNET»UDVF,/FORVEC/CHyNy8/CoNy1/C,Nen/CoN,1 &
MATPRN KNETsUDVF»FORVECer// 3

LABEL ABE &
ENDALTER

CEND

CASCF CONTROL DECK FCuyoO

TITLE = PERIODIC STRUCTURE (FIRST SAMPLE)
MAXLINES = 30000

OLOAD = 1¢
—— FREQUENCY = 1
OLOAD = ALL

STRESS. = ALL

OISPLACEMENT = ALL
BEGIN BULK
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SORTED BULK DATA ECHO

e 4L S o 2 P — L,,_“, 4 _9 - 54»_-- 6 aa l e v‘g“ v 9 ._AJD A

CDAMPz 101 4,07293 § 2
CDAMP2 106 8,14587 6 2
CDAMP2 197 4,07293 7 2
CODMEM 1 1 2 5 4 3
CQDMEM 2 1 1 6 5 2
CODMEM 3 1 4 5 8 9
CODMEM 4 1 5 6 7 8
DAREA 21 3 2 -49,8972
DAREA 21 4 2 =99,7944
DAREA 210 3 2 -49,9742
DLOAD 19 1. 1, 100 1, 101
DMI cyool1 o 2 1 1 18 1
DMI cvool 1 13 1. le 1e 1. 1. DOGS
+06S i,
DMI cVoi0 o 2 1 1 18 1
DMI cvoio 1 7 1, 1. 1e 1, 1, _P16S
+1GS 1.
DMI cvioo o 2 1 1 18 1
DMI cvior 1 1 1. 1. 1. 1, 1. CATS
+ATS 1.
DMI LIXLY o 2 1 1 12 12
OMI LIXLY 1 1 .0
DMI LIXLt2 o 2 1 1 12 12
pMI LIXe2 1 1 )
DMI L2XLI o 2 1 1 12 12
DMI Laxtr 1 1 .0
OMI L2xL2 o0 2 1 1 12 12
DMI LaxLe 1 1 L0
DMI UMATR O 6 1 2 6 6
DMI UMATR 1 1.
DMI UMATR 2 2 1.
DMI UMATR _ 3 3 1.
DMI UMATR & [n 1.
DMI UMATR 5 5 1,
DMI UMATR 6 6 1.
DPHASE 23 3 2 28,6378
DPHASE 23 4 2 38,18377
DPHASE 230 3 2 22,27387
FREQ 1 3000,
GRDSET 3456
GRID 1 .0 ] N
GRID 2 o0 1.0 o0
GRID 3 ) 2.0 .0
GRID 4 1,0 2,0 o0
GRID 5 1,0 1,0 )
GRID 6 1,0 .0 o0
GRID 7 2,0 20 20
GRID 8 2.0 1.0 «0
GRID o 2,0 2.0 o0
- MAT2 10 345600, 34858090, .0 345600, 000096
PARAM _ CMST  ,9029168,0
PARAM  FIOMEG 1,0-20" 18849,55
PARAM _ NOMEG2? =3,55348.0
PARAM NONE -1.0 .0
NSMSBRD =2 ,28=K.0
PARAM  NSMSTO =8108,830,0
PARAM _ PONE +1,0 .0
PARAM  SMSBO  +2,280~5,0
PARAM SMSTO  +8108,830,0
PQDMEM 1 10 1.0
RLOAD1 100 21 23 22
RLOAD1 1901 210 230 22
TABLED1 22 pULSY
+ULS1 0.0 1.0 100000, 1.0 ENDT
ENDDATA
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. APPENDIX B (NASTRAN DEMONSTRATION PROBLEM OUTPUT)

REQUENCY = 7 3.000000403
o e e e LLOMPLEX 1L 0aAD VEecToR
(REAL/IMAGINARY)
P0INT 1D, TYPE T1 T2 T3 Rl R2 RrR3
. - T =9,n03838+01 ) .0 .0 «0 T
_.«0 .. =U4,285621401 .0 ) .0 .0
4 6 0  =7.,8u44159+40%1 o0 o0 +0 o0
. -6.169147+01 Ny o0 o0 «0
TREQUENCY ="~ 3.000000%03 "~~~ — — "~ ‘*" - I
COMPLEX STRESSE S IN _QUADRILATERAL MFMBRANES {({CODMEM)
TIRFAC7IMASENARY.)
ELEMENT o < STRESSES IN ELEMENT COORDINATE SYSTEM w -
0.  real o NORmaray real o, real o, _mg g imag oy, “SHERmwxyimag o,
1 =9,069812+01/y» =~9,n69812+01 on /r =4.316528+401 -u.si%gze+01/. o0 -
2 ~9.808248+01/y =9,808248401_ n /1. =2,207309401 =2,207309+01/, o0
3 ~7.895863+01/, «~7,895863+01 ) /1 =6,200007401 =6:209007+01/, .0
4 =9.080797401/s =~9.080797401 .0 /s =4,3142434n03 L =U.314243401/, L0
TABLE B-1
NASTRAN-EXACT SOLUTION COMPARISON
p NASTRAN EXACT NASTRAN EXACT
element |P|spsi [p]s psi Phase of p Phase of p
1 100,53 100.00 12.683° 12,728°
2 100. 44 100.00 25.451° 25.456°
3 100,44 100,00 38.180° 38.183°
4 100,53 100,00 25,412° 25,456°
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