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SUMMARY

The paper treats the general problem of solving for the steady state (time
domain) dynamic response (i.e., NASTRANrigid format-8) of a general elastic
periodic structure subject toa phase difference loading of the type encountered
in traveling wave propagation problems. Two types of structural configurations
are considered; in the first type, the structure has a repeating pattern over a
span that is long enough to be considered, for all practical purposes, as
infinite; in the second type, the structure has structural rotational symmetry
in the circumferential direction. Due to the periodic nature of the structure
and the traveling wave characteristics of the loading, one need only "cut out"
and subsequently model a typical periodic region of the total structure,
wherein appropriate periodic boundary conditions (i.e., unknown forces and dis-
placements are forced equal, except for unknown phase angle, for corresponding
points on both cuts) are used along the cuts. The paper presents both the
theory and a corresponding set of DMAPinstructions which permits the NASTRAN
user to automatically alter the rigid format-8 sequence to solve the intended
class of problems. The new input to a standard version NASTRANrun is a set
of alter cards, PARAMcards, and direct input matrix(DMl) partitioning arrays
which are needed for the purpose of partitioning and correspondingly restruc-
turing the internal NASTRANmass, damping and stiffness matrices. Final
results are recovered as with any ordinary rigid format-8 solution, except that
the results are only printed for the typical periodic segment of the structure.
A simple demonstration problem having a known exact solution is used to illus-
trate the implementation of the procedure.

SYMBOLS

[Bl Damping matrix of nth periodic substructure

{F} Total applied force vector

[I u] Diagonal unit identity matrix

I Number of degrees-of-freedom for interior nodes

[K] Stiffness matrix of nth periodic substructure
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Lp Spatial period of substructure

L Number of degrees-of-freedom for left cut nodes

[M] Mass matrix of nth periodicsubstructure

R Number of degrees-of-freedomfor right cut

t Time

{U} Displacementvector

x Spatial coordinate

Angular driving frequency

0, @ Angle of incident wave

Phase constant (complex form)

IJ* Phase constant (re_El part)

INTRODUCTION

A periodic structure consists of a number of identical substructures,
coupled together in identical manners to form the whole system, see for example
figure la. For such systems, under certain loading conditions, it is often
possible to treat only one representative substructure in order to obtain the
general response for the whole system. For example, if the loading is exactly
the same for all substructures, the latest (and even some earlier) versions of
NASTRANcan directly solve this class of problem for both static and steadystate
cases (i.e., rigid formats 1 and 8). In the case of steady state dynamics
problems (rigid format-8) involving traveling wave propagation type inputs,
there is a slightly more general loading condition on each periodic substruc-
ture, namely that the loading on each substructure is identical except for a
known phase constant _o More specifically, the relation between the a_lied
force vector {_}n in the nzn substructure and the one, {-F}n+I in the nTM sub-
structure is given by

{T}n+1 : e_ {T}n (1)

where _ is a known phase constant. For the class of problems addressed in this
paper, the phase constant is a purely imaginary constant, i.eo,

= 0.0 + i_* (2)
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and physicallyrefers to the fact that there is no differenceinenergyloss in
processingresultsfrom one substructureto the next.

Brillouin(ref. 1) points out that wave motion in periodicsystemshave
been studiedfor nearly 300 years, whereinphysicistsand electricalengineers
have worked in this field in problemareas relatingto optics,crystals,elec-
trical transmissionliner, etc. (Elachi,ref. 2, providesa comprehensivelist
of 287 referencesin this field). Applicationsof this theory to engineering
structuralanalysisand solid mechanicstype problemsis only recent. Refer-
ences 3, 4, and 5 are typicalof analyticalsolutionsto this type problemfor
simple configurationsconsistingof beams, grillagesand plate structures°
References6 and 7 representa significantlymore generalapproach to the prob-
lem whereintheir applicationof the theory of finite elementsenablesone to
solve a much larger class of problemsinvolvingrather arbitrary structures
than one could treat by purely analyticaltechniques. References6 and 7
appear to restrictthemselvesto the problemof determiningthe conditions
(i.e.,values of the steady state responsefreqencym) under which propagating
or non-propagatingfree wave motionwill occur in the absenceof explicit
externaldrivingforces.

In the work presented here, periodic structures with explicit external
driving forces satisfying Equations (I) and (2) are applied to each substructure
as illustrated in Figure la.

If the loadingand spatialboundaryconditionson each substructureare
the same, except for the phase difference, _*, (i.eo, the loading for two
typical points in two neighboring substructures separated by the period length
Lp,are the same except for a multiplying factor of ei_*) it follows that the
response in each substructure is also the same except for the phase difference
_*. A simple example of such a case is a propagating pressure wave passing
across an infinitely long ribbed plate as illustrated in figure 2b (the plate is
in air and no air-structure interaction effects are considered). The propagat-
ing surface loading wave is given by the formula

p = Poei(kx + mt) (3)

thus the phase difference between any two neighboring substructures is u* = kLp,
where Lpis the spatial period of the periodic system, Po is the input loading
pressure amplitude, m is the steady state driving frequency, x is the horizontal
spatial coordinate, and k is the wave number of the loading wave.

Other examplesof the phase constantrelativeto a particularexampleare
shown in figure 2. In figure 2a, we have a known pressurewave loadingpropa-
gating parallelwith the axis of the ribbed cylindricalshell; here, the phase
constant_* is analogousto the figure2b exampleand needs no furtherexplana-
tion. In figure 2c, the incidentwave is incidentat an obliqueangle 0 and
is incorporatedinto the formulafor the phase constantgiven in the figure lc.
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There is a specialcase where the ends of the structuredo not extendto
infinity(i.e.,the ends never meet) but insteadare connectedcyclically,as
in figure 3 for example. For such cyclicalcases, _* must satisfyan addi-
tional constraint,namely _* = 2_/n where n = I, 2, 3,..... For example,in
the figure 3 case, n = 8, thus _* = 7/4.

We limit ourselvesto problemshaving "one-dimensionalperiodicity",
wherebythis term we imply that only two cuts are needed (we shall refer to
these as the left and right cuts, see figure Ib) to separatethe typicalsub-
structurefrom the system. The responsewithin such a substructurecan be,
however,multi-dimensional.The remainderof the paper focuseson the proce-
dure for obtainingthe displacementand stress responsewithin one typical
block of the periodicsystem. The typicalsubstructureblock can be made up of
various types of structuralelements (includingboth elementswith structural
dampingand nodes with scalardampersattached)containedwithin the NASTRAN
libraryof elements(e.g., CQDMEM,CQDMEM1,CBAR, CONROD ... etc.).

SOLUTION FORMULATION

The solutionprocedurepresentedhere is very similarto the one in refer-
ence (6), except for the fact that here we are consideringproblemswith expli-
cit forcingfunctions. The first step in the solutionprocedureis to "cut
out" the typical substructurefrom the overall periodicstructureas illus-
trated in figure lb and to subsequentlyreplacethe cut nodes with the internal

forces ({_}n' for the left cut and {_Cr}n for the right cut) that existedat
those nodes beforecutting. The displacementsat the cut nodes are similarly
denotedby {_} and {U } where subscripts_ and r denote left and right and

n r n th
the subscriptn denotesthe n substructure. Since we are only focusingon

the results for the nth substructure,it is convenientto drop the subscript
n from here on for notationalconvenience°

The governingequationsof motion for the substructureare first expressed
in the familiarfinite elementform

[M]{_} + [B]{_} + [K]{O'} + {-F} (4)

where [M], [B], [K] are the mass, dampingand stiffnessmatrices of the nth
substructurerespectively;{_} is the displacementvector of all nodes of the

nth substructure;{_} is the generalizedforce fector; (') z d( )/dt, and bars
above the variabledenote the fact that the variablesare complexand that the

harmonictime responseeimt has not yet been suppressedthus

{_} : {U}ei_t {T} = {F}eimt (5)
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The next major step is to partition the matrices and vectors of equation
(4) into left cut unknowns, right cut unknowns and interior unknowns (subscripts
J_, r, i refer to left, right and interior respectively and L, R, I refer to the
total number of displacement component unknowns for the left, right and interior
domain respectively; note due to periodicity, L = R. Thus it follows that after
partitioning we have

M_I Mj_i IM_,r B_I Bj_i IBj_r

[M] = Mi_ I Mii I Mir [B] = Bij_IBii I Bir
- -F - -I .... I- - -I- o
Mrj_IMri I Mrr Brj_IBri I Brr

I I l I
(L+R+I) x (L+R+I)

-K_ IK_iIK_r _

--F --I-- I---1

[K] : Ki_ I Kii I Kir {U}= Ui (6)

Krj_I Kri l Krr Ur
I I

(1) x (L+R+I)

{_} = o + _i

gc ga
r r

m

Note the generalized force vectors {F} has been further decomposed as the sum of

an unknown force vector, {_-c}, (which denotes the yet unknown internal forces

existing at the cuts in the structure) and a known applied force vector, {T'a},
(which denotes all known forces existing within and at the cuts of the periodic
substructure).
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The full periodic structure is cut (left and right cuts), therefore it
follows that the internal nodal forces normally existing at the cuts now play
the role of external (as yet unknown) applied forces.

The special case of an externally applied force appearing at a left or
right cut requires special attention in that one component of the total force
vector is due to the externally applied force and the other component is due to
the internal force at the cut. The external force value on a cut must be
shared between the generic substructure block being analyzed and its immediate
neighbor; consequently these end type external force values are divided in half
(see, for example, the situation in figure Ic where node I lies on the left
cut)o

A further relation that is needed in the formulation relates to the fact

that the right end of the nth generic substructure is the beginning (left end)

of the n+i generic substructure, thus from Equation (I) it follows that

{-_r}= -el_{-_ }

(7)

{-Or} = e_{-_}

where the minussign in the first of Equation (7) accounts for the fact that
internal nodal forces acting as external forces on the right cut of generic
substructure n are opposite in sign to the internal nodal forces acting on the
left cut neighboring substructure n + i.

The next step in the development is to substitute Equations (5) and (6)

into Equation (4); the subsequent cancellation of eimt permits us to drop the
bar superscript notation thus arriving at a "reduced form of Equation (4)".

At this point there are five groups of unknowns, namely {Ur}, {U_}, {Ui}, {F_},
{F_}o The three row partitions of the reduced Equation (4) in conjunction with
the two Equations (7), provide 3 + 2 = 5 corresponding groups of equations to
balance the five groups of unknowns. Next, we substitute Equations (7) into
the reduced form of Equation (4), and subsequently employ the third row parti-

tion of reduced Equation (4) to eliminate the {F_} unknowno Doing these opera-
tions result in the following set simultaneous equations for the displacement

unknowns {U_} and {Ui}:
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m

-__2 [MLL]+ I -L°2[MLI]+

ioJ [BLL] + I i_o [BLI] + {U}_ + e-lJ*i{F a]
[KLL] I [KLI]

l

•, .... (8)
-co2 [MIL] + I -_°2 [MII] +

io_ [BIL] + J i_o [BII] + {Ui} {F_}
[KIL] I [KIll .

(L+I) x (L+I) matrix (I) x (L+I) vector

where

[MLL]= [Mzz] + Cos]_*[Mcr]+ Cos_* [Mrz] + [Mrr]

[BLL]= [Bzz]+ CosiJ*[B_r] -mSin_* [Mzr]+ (Sin_*/m)[K_r]

+ CosIJ*[Br_]+ [Brr]+ mSinIJ*[MrA]- (Sinp*/m)[Kr_]

[KLL] = [Kzz]+ CoslJ*[Kzr]- mSiniJ*[B_r]

+ CosIJ*[Kr;L] + [Krr] + mSin_* [Brz]

[MLI]= [Mzi]+ Cosu* [Mri]

[BLI]= [B_i]+ Cos_* [Bri]+ mSinI_*[Mri] - (SinlJ*/m)[Kri]

[KLI]= [K_i]+ Cos_* [Kri]+ _SinlJ*[Bri] (9)

[MIL]= [Mi_]+ CosiJ*[Mir]

[BIL]= [Bi_]+ CoslJ*[Bir] - _SinlJ*[Mir]+ (SinlJ*/m)[Kir]

[KIL] = [Kiz]+ Cosl_*[Kir] -mSinl_* [Bir]

[MII] = [Mii]

[BII]= [Bii]

[KII]= [Kii]

At this point, the linear set of complexalgebraicEquations(8) can be solved

for the unknowndisplacements{Uz}, {Ui}. The unknowndisplacementat the

right cut, {Ur} can be easilycomputedwith the secondof equation (7). The
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size of the algebraic system is governed by the (L+I) x (L+I) coefficient
matrix (i.eo, matrix multiplying the unknown displacement vector) where L+I
equals the number of left cut, L, plus interior, I, unknown displacement com-
ponents. Typically I>>L, therefore it is not a very big additional burden on
the equation solver to include the second of Equation (7) as part of the overall

system (actually, we add R extra unknowns, {Ur}, and R extra equations (where
R = number of right cut unknowns). Thus in place of Equation (8), we consider
the slightly larger, but equivalent system of

' _m2 [MLI] + " {F_} +__2 [MLL] + ,
I

im [BLL] + , im [BLI] + [0] {U_}

, e-_*i{F_}[KLL] , [KLI]
J J .....

__2 [MIL] + __2 [MII] +

i_ [BIL] + i_ [BII] + [0] • {Ui) = {F_} _ (10)

[KIL] [KII]
J J .....

I I

i_ [BRL] + I I

, [0] ,[KRR {Ur } {0}
[KRL] ,

(L+I+R) x (L+I+R)
coefficient matrix

where [BRL]= (sin_*/m)[Iu]

[KRL]= Cos_* [Iu]

[KRR]: -[Iu] (11)

and [Iu] z diagonalunit identitymatrix

The RI block of the displacementcoefficientmatrix in Equation (10) above
is identicallyzero, thus the bottom R rows of the systemof simultaneousequa-
tions are totally independentof the solutionto the top L+I rows° The length
of the solutionvectorL+I+R is of exactlythe same length of the originalsub-
structurematrix (Equations(4) and (6)), consequentlythe modificationof the
DMAP instructionsbecomessimplierbecauseof the fact that one need only
interceptthe logic of the equationsolver and replacethe existingmass stiff-
ness and dampingmatriceswith the modifiedmatrices definedby the new coef-
fient matrix of Equation(10) (and associatednew entry definitionsfrom Equa-
tions (9) and (11))o Since the length of the solutionvector is still the same
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as the originalproblembeforemodification,the post processingDMAP opera-
tions for displacementprintout,stress recovery,etc. need not be modified.

An alternatescheme (althoughnot yet implemented)would be to modify the
input to the complexequationsolver to accept the smaller (L+I) x (L+I) coef-
fient matrix used in Equation(8) directly. After solvingthe smallerL+I
length displacementvector,the full vector (ioeo,attachingthe missing{Ur}

portion)can be formed by expandingit to length L+I+R via the secondof Equa-
tion (7). Finally,stressand displacementresultscan be processedin the
usual way with existingDMAP operations.

RIGID FORMAT-8DMAPMODIFICATIONFORNASTRAN

The periodicstructurecapabilitydescribedin the previoussectioncan be
implementedin a standardversionof NASTRAN. In particular,the DMAP sequence
required to performthe necessaryoperationsare listed in AppendixA. This
DMAPsequence was checked out on an 1108 computer, standard version of level
15.5 NASTRANand is introduced in the EXECUTIVECONTROLdeck with the following
instructions:

ALTER 138

(see Appendix A for specific instructions)
ALTER 139,139

(replace KDD, BDD, MDDwith KDDX, BDDX, MDDX
within call arguments of FFRDmodule level 15.5
see Appendix A for detailed instruction) implementation

ALTER140

(Conditional print statement, see Appendix-
A for detailed DMAPinstructions)

These same level 15.5 DMAPinstructions can also be applied to level 17.0
NASTRAN,the only difference being that

replace ALTER 138 with ALTER 158

replace ALTER 139,139 with ALTER 159,159

replace ALTER140 with ALTER 160

It is pointed out, however, that the level 17o0 modifications described
above have not actually been tried although due to the similarity of the change,
the DMAPsequence is expected to work.
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It is important to note that we are modifying the standard NASTRANunknown
displacement vector coefficient matrix just prior to the entry into the FFRD
module used for the solution to the simultaneous complex algebraic equations.
The implication of this statement is that the row numbering scheme for the dis-
placement vector has already accounted for the fact that single point con-
straints, multipoint constraints and omitted coordinates have already been

accounted for. Thus, for example, the length of the {U_} vector, L, is not
simply the number of nodes on the left cut times the degrees-of-freedom per
node, but rather is less by the amount corresponding to the number of SPC's,
MPC_sand OMIT's relating to the nodes along the left CUto Similar comments
apply to the lengthof the {Ui} and {Ur} vectors. The understandingof the

above displacementvector lengthcommentsmust be clearly understoodby the
user before attemptingto fill out the input data matrix partitioningvectors
CVIO0, CV01O, CVO01 definedlater in this paper.

INPUT DATAFORNASTRANRUN

The BULK DATA input to a typical periodicstructurerun consistof two
basic parts. The first part correspondsto the usual bulk data input cards
normally requiredto make a NASTRANrun (e.g.,GRID CARDS, ELEMENTCARDS, DAREA
CARDS, FREQ CARD, DLOAD CARD, etc.); the second part consistsof specialinput
cards that are explainedin the followingtext.

PARAMCards

These cards are used to enter variousmatrix coefficientsappearingin
Equations(9) and (11); especiallythe constants

Text Variable ComputerVariable

Cosu* _ CMST

0.0 + i_ _ FI#VMEG

._2 _ N_MEG2

-I.0 _ N#NE

-sin_*/m _ NSMSB_ (12)

-(sin_*)m _ NSMST_

+i.0 _ P#NE note: 0 = zero

sin_*/m z SMSB_ # = letter

(sin_*)m _ SMST#
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are read in on standardNASTRANPARAM cards where IJ*is the phase angle defined
in Equation (2) and _ is the angulardrivingfrequencyin radiansper second

(m = f.2_ where f = driving frequencyin Hz specifiedon the FREQ card). The
format for a typicalPARAM card is:

Col's I - 8 PARAM

Col's 9 - 16 one of the 8 computervariablenames definedby
Equation(12)

Col's 17 - 24 real part of variabledefined in Col's 9-16

Col's 25 - 32 imaginarypart of variabledefined in Col's 9-16 (only
non zero entry is for variableFI_MEG)

Comments

Strictly speaking, the real part of variable FI_MEGshould be 0.0; however,
for the NUSCUnivac 1108, operating with the level 15.5 version of NASTRANused
to implement the procedure, an arbitrary small number if entered (say 1.0xlO -2°)
in order to avoid a strange system type error message that is printed when
exactly 0.0 is entered as the real part. The FI_MEGvariable is only used to
compute and subsequently print out the internal forces at the cuts after all
the main calculations for displacement are completed. The mentioned error mes-
sage probablywill not appear iF other NASTRANversionsand/or other computer
systemsare used.

DMI Cards for Matrix Partitioning

A set of DMI directmatrix input cards are needed to providethe informa-
tion NASTRAN needs to partitionthe mass, dampingand stiffnessmatrices.
Three groupsof cards are needed;a column partitioningvector for the left cut
group of displacementnode components,CVIO0;a column partitioningvector for
the interiorgroup of displacementnode components,CV010; and a columnparti-
tioning vector for the right cut group of displacementnode components,CVO01.
A set of row partitioningvectorsare automaticallygeneratedby the AppendixA
DMAP instructions. The column partitioningare made up of entries that are
either 1.0 or 0.0. Since all entrieswithin NASTRANare assumedto be zero

unless otherwisespecified,the user need only enter 1.0 values in the appro-
priate slot in each of the above mentionedpartitioningvectors. The rules are
simple and are as follows:

° Formationof left cut partitioningvector CVlO0

Enter a 1.0 in each row number correspondingto each active indepen-
dent componentdegrees-of-freedomlying along the left cut. The
length of the CVIO0 vector is L+I+R and there should be L 1.0 entries
(the remainingI+R entriesare automaticallyzero by virtue of not
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being defined). If the left cut nodal numbering pattern is sequential
and starts with the lowest node number of the whole system (e.g., node
I, 2, 3 .), then the first L entries of CVIO0 will be all 1.0
values.' However, if the left cut numbering scheme does not contain
only the lowest node numbers, but instead the whole system is num-
bered at random, then the L 1.0 entries will correspondingly be dis-
tributed throughout the CVIO0 vector, and the "bookkeeping" involved
with defining the CVIO0 vector becomes messy° The user having MPC's,
SPC's or OMIT's applied to nodes along the left cut must be sure to
account for these during the process of entering the 1.0 values into
the partitioning vector CVIO0.

• Formation of the interior partitioning vector CVOIO

Enter a 1.0 in each row number corresponding to each active indepen-
dent component degree-of-freedom lying on the interior of the struc-
ture. The length of the CVOIOvector is L+I+R and there should be I
1.0 entries (the remaining L+R entries are automatically zero). If
the interior nodes are numbered sequentially, (following the same
sequential pattern used in the CVIO0 vector), then the middle L+I,
L+2, . . . L+I entries of the CVOIOvector will all be 1.0 values.
Again remember to account for SPC's, MPC's and OMIT's in the number-
ing scheme.

• Formationof the right cut partitioningvector CVO01

Enter a 1.0 in each row number correspondingto each active indepen-
dent componentdegree-of-freedomlying pn the right cut of the peri-
odic structure. The length of the CVO01 vector is L+I+R and there
should be R 1.0 entries (the remainingL+I entriesare automatically
zero). If the left cut, interior,and right cut nodes are all num-
bered sequentially(in the respectiveorder mentioned),then the end-
ing L+I+I, L+I+2, . . L+I+R entriesof the CVO01 vector will all be
1.0 values. Again r_memberto accountfor SPC's, MPC's and OMITS's
in the numberingscheme.

DMI Cards Format

The bulk data cards for the definitionsof the partitioningvectorsvia
the standardDMI cards is as follows:

• CVIO0 vector cards

CoI's Ent_v
first header card

1-8 DMI
9-16 CVO01
17-24 0
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Col ' s Entry

25-32 2
33-40 I
41-48 I
49-56 blank
57-64 integer value equal to magnitude of (L+R+I)
65-72 1

second card

I-8 DMI
9-16 CVO01
17-24 I
25-32 enter integer row number ,say N1, of first 1.0 entry
33-40 1.0 for entry NI
41-48 1.0 or 0.0 for entry NI+I
49-56 1.0 or 0.0 for entry N1+2
57-64 1.0 or 0.0 for entry NI+3
65-72 1.0 or 0.0 for entry NI+4
73-80 Continuation card name, say CONT1, if needed.

third continuation card (if needed)

1-8 +ONT1
9-16 1.0 or 0,0 for entry NI+ 5
17-24 • •
25-32 • •
33-40 • •
41-48 • •
49-56 • •
57-64 • •
65-72 1.0 or 0.0 for entry N1+12
73-80 Continuation card name, say CONT2, if needed.

fourth continuation card (if needed)

similar to third continuation card ... etc.

• CV010Vector Cards

These cards are made up analogously to the CVIO0 vector already described
above, the only differences being that on the first two cards, replace CVIO0
with CVOIO; also, the number of the first 1.0 entry slot (NI value in col's
25-32 of the second CVIO0 data card) is different.

• CVO01Vector Cards

These cards are made up analogously to the CVIO0 vector already described
above, the only differences being that on the first two cards, replace CVIO0
with CVO01; also the number of the first 1.0 entry slot (NI value in col's
25-32 of the second CVIO0 data card) is different.
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Finally, examples of making the partitioning cards is given later in a
demonstration problem.

DMI Cards for Merge Operations

A set of DMI direct matrix input cards are needed to define certain dum_v
matrices which NASTRANneeds to successfully merge certain internal

matrices within the Appendix-A DMAPsequence° These input cards will consist
of a group of eight cards that must always be included for a run. The only
thing that changes from one NASTRANrun to another is the lengths of these
dummy arrays. These dummy null arrays are only introduced to avoid DMAP error
message printouts for Univac 1108, level 15.5 NASTRANthat occurred when the
lead matrix entry in the standard DMAPMERGEoperation is not defined.

DMI Cards Format

Col's Entry

first header card

1-8 DMI
9-16 LIXLI enter characters, _oes not mean multiDly LI times LI)
17-24 0
25-32 2
33-40 1
41-48 1
49-56 blank
57-64 enter integer equal to L plus I
65-72 enter integer equal to L plus I

second card

1-8 DMI
9-16 LIXLI
17-24 1
25-32 1
33-40 O. 0

third card

same as first card, except

Col's 9-16 enter LIXL2
Col's 57-64 enter integer equal to L plus I
Col's 65-72 enter integer equal to L plus L

fourth card

same as second card, except

Col's 9-16 enter LIXL2
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fifth card

same as first card, except

Col's 9-16 enter L2XLI
Col's 57-64 enter integerequal to L plus L
Col's 65-72 enter integerequal to L plus I

sixth card

same as second card, except

Col's 9-16 enter L2XLI

seventh card

same as first card, except

Col's 9-16 enter L2XL2
Col's 57-64 enter integerequal to L plus L
Col's 65-72 enter integerequal to L plus L

eighth card

same as second card, except

Col's 9-16 enter L2XL2

DMI Cards for Unit Matrix Definition

Finally, a set of DMI direct matrix input cards as needed to define the
unit matrix [I u] employed in Equation (11).

DMI Cards Format

Col's Entr____yy

first header card

I-8 DMI
9-16 UMATR
17-24 0
25-32 6
33-40 i
41-48 2
49-56 blank
57-64 enter integer equal to L plus L
64-72 enter integer equal to L plus L
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Col ' s Entry

second card

I-8 DMI
9-16 UMATR
17-24 1
25-32 1
33-40 1.0

third card

same as second card, except

Col's 17-24 enter 2
Col's 25-32 enter 2

fourth card

same as second card, except

Col's 17-24 enter 3
Col's 25-32 enter 3

etc.

last (L+I st) card

same as second card, except

Col's 17-24 enter integer value equal to L
Col's 25-32 enter integer value equal to L

DEMONSTRATIONPROBLEM

The use of the DMAPsequence in conjunction with the new PARAMand DMI
input cards defined in the previous section will perhaps be better understood
by including a specific example solution that has the features that (i) is a
small size problem convenient for matrix operation checking and debugging
purposes; (2) contains most of the main ingredients typical of a representa-
tive problem, thus the system has mass, stiffness, and damping; (3) the exact
solution to the problem is known for checking purposes. The problem illus-
trated in figure 4a meets all of these conditions, and corresponds to a plane
pressure wave propagating in an infinite acoustic fluid medium. Upon sampling
the pressure response along any two parallel vertical cuts (separated by the
horizontal distance Lp) it can be shown that the response (pressure and dis-
placement)is differentonly by the amount ei_* where for this particular
problem

M* = (_)(Lp) Cos_ (13)
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where m = driving frequency (rad/sec), Lp = length (in.) between two parallel
cuts, c = compressional wave speed (in/sec); _ = angle of incident wave. The
solution for the pressure and motion response is sought_for the shaded region
shown in figure 4ao Only the dotted outlined region is modeled with finite
elements and is correspondingly shown in figure 4bo

In order to exercise this demonstration problem to the fullest extent, we
will use different types of boundary conditions on all four sides of the fig-
ure 4b finite element model.

Boundary Conditions

• Left and right vertical cuts

Since this problem falls within the class of problems solvable by
the phase difference type boundary condition, boundary conditions
specified by Equations (7) are enforced. Here the left and right
cut forces and displacements are taken as unknowns°

• Top face

The boundary condition for the top face is different from the left
and right face in that here we explicitly apply the free field pres-
sure (converted into equivalent nodal forces). The formula for the
freely propagating pressure wave is given by the expression

i(kr) imt
p(x,y,t) = poe e (14)

where k = _/c = wave number (in. -1)

r = spatial coordinate normal to direction of wave propagation (ino)

Po = steady state pressure amplitude (psi)

i = _-1

p = pressure (psi) (spatial variation)

and r is related to the x,y coordinates by the relation

r = x cos_ + y sin_ (15)

The y-direction force at upper face node 3 is computed by substituting
p(x,H) from Equation (14) into the expression

X=Lp/4

(3F_)y =/- p(x,H) dx (16)x:O
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the force at upper face node 4 is computedsimilarlyby

x=3Lp/4

(4F_ = f-p(x,H)dx (17)

X=Lp/4

and finallythe upper face node 9 is computedsimilarlyby

X=Lp

(F_) = f-p(x,H)dx (18)9 y

x=3Lp/4

The demonstrationproblemis evaluatedfor the followingspecific input data:

Po = 100o psi

c = 60000° in/sec

Lp = 2°0 ino

H = 2°0 ino (19)

f = m/2_ = 3000° Hz

= 45o

p = mass density = °000096 Ib_sec/in 4

Substituting the above Equation (19) input constant into Equations (16),
(17) and (18) results in

i 28°6378o
(3F_}. = -49°8972 e

Y
38o1837o

(4F_). = -99°7944 ei (20)
Y

i 47.7297 o
_9F_).= -49.9742e

Y

An importantpoint must be made regardingloadingthe final force array
{_} (Equation(4)) for the periodicstructureproblem. Observationof the
Equation(10) loadingvectorof the new periodicstructureproblemstatement,

revealsthat the left cut applied forces,{F_}, are applied,as normal, to

the correspondingleft cut node; also, the interiorappliedforces, {F_},
are

applied,as normal,to the correspondinginteriornodes; however,the right

148



cut appliedforces,{F_}, are not appliedto the right cut nodes, but rather,

are first multipliedby the complexconstante"_*i, and then applied to the
corresponding,left cut node° For the demonstrationproblemat hand, substi-
tuting Equation (19) into Equation(13) impliesthat _* = 25°455840, thus

a ei22o27387 °
ei_* (9Fr) = -49°9742 (21)

Y

therefore,in summary,at node number 3 in the y directionapply a net sum

force = -49°8972e i28°6378° -49°9742 e i22°27387° (22)

and at node number4 in the y directionapply a net

force = -99°7944ei38"1837° (23)

and at node number 9 in the y directionapply a net

force = 0o0 (i.e.,do not apply any force)°

• Bottom face

The boundary condition for the bottom face could have been selected
similar to the top face (i.eo, we convert the pressure into equiva-
lent nodal forces). However, instead we use a slightly more compli-
cated boundary condition that permits us to introduce a [B] matrix
entry into the problem° More specifically,the pressureand normal
velocityalong the bottomcut can be obtainedfrom the expression

p(x,o) = _V n (24)

where Vn is the particlevelocity normal to the wavefront propagation direc-

tion. Therefore the relation between the Vy velocity component and the y
direction resisting reaction is given by

(F_) _ (p(x,o).AA)= pc_a Sin_ Vy (25)
y

damping

constant_Cd

Thus, the bottom face boundarycondition(simulatingan approximatewave
absorbingboundarycondition)is achieved by placingviscousdampersalong
the bottom cut (see figure4b), whereinthe damper constantsare definedby

Cd = pcAA Sin_ (26)

where AA is an appropriatearea factor relatingthe pressureand concentrated
force

(FI) . When the wave lengthof the incidentwave is long relativeto
Y
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the mesh size, one can set AA = the surface element length for bottom surface
nodes off the cuts and set Z_A= 1/2 the surface element length for the nodes
lying on the cuts° Thus for the demonstration problem at hand, Cd = 8.14587

for the middle damper and half that amount for the end cut dampers°

Preparation of DemoNASTRANInput Data

• executive control

The form of the DMAPinstructions presented in Appendix A are general and
are not problem dependent° The only times the user deviates from the presented
DMAPsequence is (I) when he switches from one level of NASTRANto another
wherein the ALTER Statement numbers change; or (2) when he wishes to turn off
or turn on the intermediate matrix printout switch ISW, defined in the third
DMAPALTERstatement (ISW = +I prints all intermediate matrix operation steps
in addition to a printout of the FORVECvector which lists the left cut,
interior, and right cut nodal forces; ISW = -i no intermediate printout)°

° case control

The standard CASECONTROLdeck is shown in the APPENDIXA, wherein the
only thing worth no_ing is the fact that a DLOADcard is used for the purpose

of superimposing the two vectors {F_} and e-_*i {F_} which are both applied to

the same left cut nodes (in correspondence with the first partition of Equa-
tion (10))o

• bulk data

The CDAMP2cards are used to define the damping constants applied at the
bottom surface nodes° The CQDMEMmembrane elements (and corresponding MAT2,
PQDMEMcards) are used to define the fluid media, employing the displacement
fluid element approach described in refo8. The collection of DLOAD,DAREA,
DPHASE,RLOADI, TABLEDI cards are used to insert the applied forces defined by
Equations (22) and (23). The GRDSETcard is employed to eliminate the non-
applicable 3, 4, 5, 6 degrees-of-freedom for the 2-D membraneelements° Stand-
ard GRID cards define node coordinates and the standard FREQcard defines fre-
quency of f = m/2_ = 3000 Hz. The special Dine PARAMcards defined by Equations
(12) are evaluated using the data in Equations(19)o In the case of the DMI
cards for the partitioning vectors CVIO0, CV010, CVO01, the first thing to
establish for the problem is the sizes L, R, I for the individual partitions.
It is convenient, for bookkeeping purposes, to number the left cut sequen-
tially; and to also number the interior sequentially (with the lowest interior
node number appearing next to the highest left cut node number) and finally
number the right cut sequentially with the lowest right cut node appearing next
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• to the highest internal node number° Thus for the problem at handt, L = 2
degrees-of-freedom/node times 3 left cut nodes = 6; I = 2 degrees-of-freedom/
node times 3 interior nodes = 6; and R z L = 6 due to the periodicity of the
structure° The first 6 entries of CVIO0 are 1.0, the rest of the entries are
zero; the 7th through 12th entries of CVOIOare 1o0, the rest being zero; and
finally the 13th through 18th entr_es of CVO01are 1.0, all other entries being
zero° The 8 merging DMI cards LIXLI ... L2XL2 are defined according to the
instructions given earlier in the paper and need no further comment° Finally
the unit matrix DMI cards for the UMATRmatrix are defined according to the
instructions given earlier in the paper°

Results of NASTRANDemoProblem

Selected output results for the figure 4b demonstration problem are pre-
sented as NASTRANdirect printout (real and imaginary part type output format)
in APPENDIXB. The first part of the NASTRANprintout illustrates the net
input vector (e.go,resultsof Equations_2,)and _3-));it is always good to
includeas a checkingfeatureof the input.

Next the stress output is printedand refers to the stress computedat the
center of the element. Note that due to the sign conventiondifferenceregard-
Ing-_ress and pressure (oppositein sign, see refo 8 for details),the user
must reversethe sign of stress to obtain the pressure,ioeo,

P = -_xx -Oyy

It should be noted that the NASTRANoutput format headings are in error
(due to a formating bug in NASTRANthat has remained in practically all levels
of NASTRAN);the output heading should be read as follows (for each element row

of stressoutput):Real Pto (OXX),Real Pt_-(_yy),Real Pto (axy),Imgo Pt. (_xx),

Img. Pt. (Oyy), Imgo Pto (Oxy)O The resultsshown in APPENDIXB, Table B-l,
show the NASTRAN resultsnext to the exact solution,after converting,the real
and imaginaryparts into amplitudeand phasedata.

The exact solutionis evaluatedwith p(x,y) from Equation (14) at distances
r that locatea l:ine(drawnparallelto the wave front) which passes throughthe
midpointof an element. The NASTRANresultsagree quite well with the exact
solutionin both phase and amplitude° It is noted that avery slight asymmetry
exists betweenthe NASTRAN phase angle resultsfor element3 and element4°
This is probablydue to the fact that the boundaryconditionson the%Dpand
right cut surfacesdo not result in exactlythe same appliednodal forces (eog.,
the top forceswere not computedusing a consistentpressure-to-forceapplica-
tion formulathat involvesthe displacementshape functions). A similarcom-
ment appliesto the relationbetweenthe bottom surface forcesand left cut

?Suppose,for illustrativepurposes,node 5 had the x displacementSPC con-
strainedto zero and supposethe x displacementof node 4 was forced(through
an MPC relation)to equal the x displacementof node 6. In this particular
case L = 2.3 = 6; I = 2.3-1-1 = 4; R z L = 6°
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forces° When the programis run with the detailedprint switch triggered
(ISW = +1), the left and right cut forcesare computedfrom the solutiondis-
placementvectorand subsequentlyprintedin condensedformat {underthe FORVEC
header). Inspectionof these resultsshowed that correspondingleft and right
cut internalnodalforces differedby the properamount,_* = 25.4550.

CONCLUDINGREMARKS

The DMAPsequence presented in APPENDIXA, permits the NASTRANuser to
solve a class steady state dynamically loaded periodic structures, wherein the
internal forces and resulting response at the periodic ends of the typical

repeating substructure are related by a known complex phase relation, ei_*.
The DMAPsequence is general and need not be changed from one problem to the
next. When using the methodology presented here, one should be extremely care-
ful that the CVIO0, CVOIO, CVO01partitioning vectors are prepared properly.
For large problems, a preprocessor should be written which automatically gen-
erates these vectors° One should also be careful to allow for SPC, MPCand
OMIT cards which compact the solution vector and consequently should be taken
into account in the preparation of the partitioning vectors. The user is
strongly advised to study the sample demonstration problem presented here
before undertaking anymore complicated problems.

At this point, the DMAPsequence has been checked out for a set of small
size problems, therefore comments regarding computer run time on large problems
cannot be made at this time. Someof the DMAPoperations can be increased in
efficiency by employing the matrix operation ADD5DMAPmodule in place of
repeatedly employing the matrix ADDDMAPmodule° The ADD5routine was not
used in the 1108, level 15o5 version of NASTRANdue to the fact that the system
did not consistently successfully add a string of 5 matrices during certain
checkout phases of the programming.

Finally, it is advised that before attempting to exercise the DMAPsequence
presented in APPENDIXA, one should run the demonstration problem as a bench
mark check ino If a Univac 1108, level 15.5 version is used, it may be necessary
to increase the "max-files" to 40 in NTRAN$.
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APPENDIX-A

(NASTRANDEMONSTRATIONPROBLEMINPUT)

NASTRAN EXECUTIVE cONTROL DECK

ID NUSC PERIODIC STRUCTURE SAMPLE
APP DISP

SOL 8wn
TIME 30
DIAG 2p3pBp14f15
DIAG 22
ALTER t38

$ DMPA INSTRUCTIONS FOR PERIOnIC STRU_TUn_ (_nn_n BY a.J:_ALIMnW_Kt}
$ ISW=+I PRINT ... =-I NO PRINT OF ALL KEY MATRICES FOR PERIODIC STR.

PARAM //C,N,NOP/V,N,ISW:+I $
PARAM //C,NpNOP/VIN,IMI:-I $
PARAM t/¢,NpNOPtVeNpPURSWi:-I $
$ DEFINE ROW PARTITIONING VECTORS WITH DUMMY ADD OPERATION
$ WHERE CV100 CVOI_ CVO01 ARE RFA_ IN _N DMT BUlK DATA
ADD CVIO0p/RVIO0 $
ADD CVO10p/RV010 $
ADD CVOO1,/RVO01 $
COND MAReISW $
MATPRN RVlOOpRVOlOpRVO01,p// $

MATPRN CVIO0tCVOIOpCVOOtpP// $
LABEL MAR $
$ CONDITIONAL PRINT OF KDDpMDD, BDO BEFORE PARTITION APPLIED (
COND KALpISW $
MATPRN KDDpMDDpBDDpo// S
$ SAVE.ORIGINAL KDD MDD BDD MATRICES FOR pROCESSING FORCES AT CUTS
ADD KDD_/SAVKDD $
ADD MOD,/SAVMDD $
ADO BDD,/SAVBDD $
LABEL KAL$
$ PARITION KpM,B MATRICES
$ PARTITION LL BLOCK
PARTN KDD,CVZ00,RVIQO/pptDKLL/¢pNp_ $
PARTN MDDpCVIOOoRV100/,ppDMLL/CpNpl $
PARTN BDDpCVIOOwRVIOO/ppPDBLL/CpNpl $
$ PARTITION LI BLOCK
PARTN KDDoCV01OoRV_O0/tttDKLI/CtNol $
PARTN MDDpCV010,RVlqO/pppDMLI/CtNpl $
PARTN BDDwCVOIOpRVIOO/PpPDBLI/CpNpl $
$ PARTITION LR BLOCK
PARTN KDDpCVOOlwRVIO0/pppDKLR/CwNpl $
PARTN MDDpCVO01,RV100/_DMLR/C,N*I $
PARTN BDD_CVOOI_RVI00/_*DBLR/C_N_I $
$ PARTITION IL BLOCK
PARTN BDD,CVIOOpRVOIO/,_DBIL/CeNf_ S
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l_ KDDpCVIOO,RV0101Pp_DKIL/CpN_I

PARTN MDDpCVIOOtRVOEOIwppDMIL/CpNpl $
$ PARTITION II BLOCK
PARTN _DDtCVOI0,RVO10/pPPDKII/C,Npl $
PART_ MDD,CVOIO,RVOIO/,w3DMII/C,N,I $

PARTN BDOPCVOI0,RVO10/ptpDBII/C,Npl $
$ PARTITION IR BLOCK
PARTN KDDpCVOOI_RVOI0/_p_DKIR/CpNtl $
PARTN MDO_CVOOIoRVOIO/pppDMIR/CpNpl $
PARTN BDDpCVOOI,RVOIO/PwpDBIR/C,Npl $
$ PARTITION RL BLOCK
PARTN KDDp CVIO0, RVOOI/PppDKRL/CpNpl $
PARTN MD_P CVl00t RVO01/,ppDMRLICpN,I $
PARTN BDO, CVl0Ot RVOOI/_tpDBRL/CwN,I $
$ PARTITION RI BLOCK

PARTN KCO,CVOIO,RVOOI/,,,DKRI/C,N,I
PART,_ MGD,CVOIO,RVOOI/,,,DMRI/C,N,I
PARTIJ BDDpCVOID_RVDOI/pp,DBRI/CwN,I S

PARTITION RR F_LOCK

PARTN KDDt CVO01, RVOOI/p,wDKRR/CpNpl $
PARTN MDDt CVOOIp RVOOt/,p_DMRR/CpNpl $
PARTN BDD, CVO01, RVOOI/ppPOBRR/CpN,I $
$CONDITIONAL PRINT OF PARTITIONS
COND KALIN,ISW $
MATPRN DKLLpDMLLpDBLL,P// $
MATPRN DKLItDMLIwDBLI,t// $
BATPRN DKLRPDMLRpDBLRp,// $
MATPRN DKILpDMILpDBILt_// $
MATPRN DKII,DMII_DBII_,// $

MATPRN DKIR,DMIR_DBIR_// $
NATPRN DKRL,DMRL_DBRL_,// $
MATPRN DKRI_DMRI,DBRI_// $
MATPRN DKRR,DMRR_DBRR_// $
LABEL KALIN $
$

$ FORM PARTITIONS OF ASSEMBLED MATRIX MDDX_ BDDX, KDDX

$ FORM LL BLOCK
$
$ FORM AMLL
ADD DMLL_DMLK/DIAMLL/V_Y_PONE/V_Y,CMST $
ADD DIAMLL,DMRL/D2AMLL/V_Y_PONE/V,Y_CMST $
ADD D2AMLL,DMRR/AMLL/V_Y_PONE/V_YoPONE $
PURGE KDD_MDD_BDD/PURSWt $

-- PURGE DtAMLL_D2AMLL/PURSWl $
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$ FORM ABLL

ADD DBLLPDBLR/DIBLL/VpYfPONE/VpYpCMST
ADD DIBLLIDMLR/D2BLL/VpYpPONE/V_YpNSMSTO $

ADD D2BLLpDKLR/D3BLL/VwYpPONE/V_YpSMSB 0 $.
ADD D3BLL,DBRR/D4BLL/VpYpPONE/VpYpPONE

.PURGE DIABLLpD2ABLL,O3A.BLL/PURSWl $
ADD D4BLLwDMRL/DSBLL/VpY_PONE/V_YPSMSTO

___OO DSBLLt__KRLIABLL/VtYfPONE/V,YpNSMSB_ $
PUR@E D_BLLpD5BLL/PURSWl $
$ FORM AKLL

ADD DKLLw_KLR/DIKLL/VpYPPONE/V,YpCMST $
ADD DIKLLPDBLR/D2KLL/VwYpPONE/VpY°NSMSIO 5
ADD 02KLLpDKRL/D3KLL/VpYpPONE/VpY_CMST $
ADD D3KLLpOK.RR/D4KLL/VpYpPONE/VpY,PONE $

ADD OWKLLpDBRL/AKLL/VpYwPONE/VpYwSMSTO $
PURGE DIKLLwO2KLL,D3KLLwDWKLL/PURSWl $
$ FORM LI BLOCK
$

$ FORM AMLI
ADD DMLIpDMRI/AMLI/VpYpPONE/VpYpCMST $
$ FORM ABLI

ADD DBLIpDBRI/OIBII/VpYpPONE/VpYwCMST $
ADD DIBLIwDMRI/D2BLI/VpYpPONE/VpYpSMSTO $

ADD D2BLIpDKRI/ABLI/VpYpPONE/V,YtNSMSBO $
PUR@E DIBLIpQ2BLI/PURSWl $
$ FORM AKLI

ADD DKLIpDKRI/DtKLI/V_YpPONE/VpYwCMST $
ADD DIKLItOBRI/AKLIIVoY_PONE/V,Yw_TO $
PURSE DtKLI/PURSWt $
$ FORM IL BLOCK
$

$ PORM AMIL
ADD DMIL_DMIR/AMIL/V_Y_PONE/V_Y_CM_T $

___._._$ FOR_ AOI_
ADD OBIL_DBIR/DtBIL/V_Y_PONE/V_Y_CMST $
ADD DIBIL_OMIR/D2BIL/V_Y_PONE/V_Y_NSMSTO $
ADD D_BIL,OKIRIABILIV_Y_PONE/V_Y_SMSBO $
PURSE DIBIL_O_BIL/PURSWt $
$ FOR_ AKIL
ADD DKIL,DKIR/DtKIL/V_Y_PONE/V_Y_CMST $
ADD DSKIL_OBIRIAKILIV_Y_PONE/V,Y_NSMSTO $
PUR@E DIKIL/PURSWl $
$ FORM II BLOCK

$ AMII SAME AS DMII ABII SAME AS OMII AKII SAM_ AS DKII
$ FORM RL BLOCK
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ADD UMATR_/ABRL/VpYpbMSBU $

ADD UMATR,/AKRLIVpYtCMST $
$ FOHM RR BLOCK
ADD UMATRt/AKRR/VpYtNONE $

$ THE LR w IR oRl BLOCKS ARE NULL
$ PRINT BLOCKS BEFORE ASSEMBLY
COND DEBtISW $
MATPRN AMLLpABLLpAKLLp,// $

MATPRN AMLIpABLIpAKLI_p// $
MATPRN AMILPABILpAKILPp// $

MATPRN ABRLpAKRL_AKRRp_// $
PRTPARM //CpNpO$
LABEL DEBS
$ •

$ NEXT ASSEMBLE BLOCKS WITH MERGE
$ •
$ MERGE LL BLOCK
MERGE LIXLIpPpAKLL_CVlOOtRVIOO/KDDXLL/CwNpt S
MERGE LIXLIpppAMLL_CVIOOpRVIOO/MDDXLL/CpNpt $
MERGE LIXLIpppABLLoCVtOOpRVZOO/BDDXLL/CpN_t $
$ MERGE LI BLOCK

MERGE LIXL2ppPAKLIpCVOIOtRVtOO/KDDXLI/CPNpl $
MERGE LIXL2PttAMLI_CVOIOpRVIOn/MDDXLI/CpN,t $
MERGE LIXL2ptpABLIpCVOIOpRV%OO/BDDXLI/CpNet $
$ FORM PARTIAL SUM
ADD KDDXLLpKDDXLI/SUMKI $
ADD MDOXLLwMDDXLI/SUMMI $
ADD BDDXLLpBDDXLIISUMBI $

$ PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MORE
PURGE KDDXLLtKDDXLIpMDDXLLpMDDXLIpBDDXLLoBDDXLI/PURSWl $
$ MERGE IL BLOCK
MERGE L2XLIPtPAKILpCVIOOtRVOIO/KDDXIL/CpNwt $
MERGE L2XLIpppAMILPCVIOOpRVOtO/MDDXIL/CPN_I $
MERGE _XLIwppABILpCVIOO_RVOIO/BD_XIL/C_N_I $
$ CONTINUE PARTIAL SUM
ADD SUMKI_KDDXIL/SU_K2 $
ADD SUMMt_MDDXIL/SUMM2 $
ADD SUMBI_BDDXIL/SUMB2 $
COND JOHN_ISW S
MATPRN SUMKI_KDDXIL_SUMK2_SUMMI_MDDXIL//S
MATPRN SUMM2_SU_BI_BDDXIL_SUMB2_/I$
LABEL JOHN $
$ PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MORE
PURGE SUMKt_KDDXIL_SUMMI_MDDXIL_SUMBI_DDXIL/PURSW1 $

$ MERGE II BLOCK
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MERGE L2XL2,p,DKII_CVOIOpRVOZO/KDDXII/CpN,1S

MERGE L2XL2,,,DMII,CVOIO,RVOIO/MDDXII/C,Nwl $
MERGE L2XL2,,,DBIItCVOIOpRVOIO/BDDXII/CwNpt $
S CONTINUE PARTIALSUM
ADD SUMK2,KDDXII/SUMK3 $
ADD SUMM2,MDDXII/MDDX S

$ WHERE MDDX IS THE FINAL MASS MATRIX SUM
ADD SUMB2pBPDXII/SUMB3 $
COND BULL, ISW $

MATPRN _UMK2,KOnXtI.SUMK3.SUMM_,M_n_III/_
MATPRN MDDXPSUMB2,BDDXII,SUMB3,//$
LABEL BULLS

S PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MORE
PURGE SUMK2pKDDXII,SUMM2PMDDXII,SUMB2,BDDXII/PURSWl S
$ MERGE RL BLOCK
MERGE ITXLI_poAKRL_VI_B_RVOOIIKDnWRi ICIN.I }
MERGE LIXLIpp,ABRLwCVIOOpRVOO1/BDDXRL/CpNpl $
S CONTINUE PARTIAL SUM
ADD SUMK3,KDDXRL/SUMK4 $
ADD SUMB3pBDDXRL/BDDX $
$ WHERE BDDX IS THE FINAL MATRIX SUM
COND PILL,ISW $

MATPRN SUMK3,KDDXRL,SUMK4,SUMB3,BDDXRL//$
MATPRN BDDXpppp//$
LABEL PILLS

S PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MOR_
PURGE SUMK3,_DDXRL,SUMB3,BDDXRL/PURSW1 $
$ MERGE RR BLOCK
MERGE LIXLI_epAKRRpCV00teRV001/KDDXRR/CtNP1 $
$ CONTINUE PARTIAL SUM
ADD SUMK_,KDDXRR/KDDX S
S WHERE KDDX IS THE FINAL SUMMED MATRIX
COND BOOKpISW $
MATPRN SU_KWpKDDXRRoKDDXpp//S

LABEL BOOK $
$ PURGE COMPONENTS OF PARTIAL SUM NOT NEEDED ANY MORE
PURGE SUMK_wKDDXRR/PURSW1 S
S •
S *** NOW ALL THE KDDX BDDX AND MDDX MATRICES ARE FORMED
$ •

COND JACK,ISW $
MATPRN MDDX,BODX,KDDX_t// $
LABEL JACKS
ALTER 139,139

FRRD CASEXX,USETD,DLT,FRL,GMD,GOD,KDDX_BDDX,MDDX,,DIT/UDVF,PSF,PDF,PPF/
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C,N,DISP/C,N,DIRECT/V_NtLUSETD/V_NwMPCFI/VwN_SINGLE/VwN_OMIT/
V,NpNONCUP/V,N,FRQSET/CwY,DECOMOPT=I $

ALTER I_0
COND ABE,ISW $

$ PRINT THE FORCE VECTORS USED BY THE EQUIVALENT PERIODIC STRUCTURE
MATPRN P_F,PSFtPPF,,// $

$ PROCESS THE LEFT AND RIGHT PERIODIC CUT FORCES
ADD SAVMD_,SAVKDD/OSAV/V,Y,NOMEG2/V,Y,PONE $

ADD DSAV,SAVBDD/KNET/V,YwPONE/VfY,FIOMFG $
PURGE DSAV/PURSWl $

MPYAD KNET,UDV_,/FORVEC/C,Np0/C,N,1/C,NpQ/c,N,1
MATPRN KNET,UDVF,FORVECwp// $
LABEL ABE $
ENDALTER

CEND

C A SF CONTROL DECK _ CHO

TITLE = PERIODIC STRUCTURE (FIRST sAMPLE)
MAXLINES = 30nQO
DLOAD = 10

_ FREQUENCY : 1
OLOAD = ALL

DISPLACEMENT = ALL
BE_IN _ULK
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S 0 R T E O R U _ K D A T A ..E C H O

1 ,, 2 .. 3 ,, 4 °. 5 ,, 6 .. 7 .. 8 .- 9 °. 10 •
DAMP2 161 .... _,0_293"! "2

CHAMP2 106 8.14587 6 2
CDAMP2 197 4.07293 7 2
CODMEM I t 2 5 4 3
CQDMEM 2 t 1 6 5 2
CQDMEM 3 _ 4 5 8 9
CQDMEM 4 1 5 6 7 B
DAREA 21 3 2 -W9,8972
DAREA 21 4 2 -q9,794_
DAREA 210 3 2 -_9,9742
DLOAD 10 1. 1, 100 1, 101
DMI CVOOi 0 2 % 1 _B $
DMI CVO01 1 13 t, 1. 1. 1. 1. DOGS
+OGS t,
DMI CV010 0 2 1 1 18 1
DMI CV010 1 7 1, I, 1. 1, 1. pIGS
+IGS 1,
DMI CVlO0 0 2 t 1 18 1
DMI CVlO0 1 1 1, 1, 1, 1, 1, CATS
+ATS 1,
DMI LIXLI 0 2 1 1 12 12
DMI LIXLI 1 1 ,0
DMI LIXL2 0 2 1 I 12 12
DMI LIXL2 I I .0
DMI L2XLI 0 2 1 1 12 12
DMI L2XLI i I ,0
DMI L2XL2 0 2 I 1 12 12
DMI _2X_2 1 1 °0
DMI UMATR 0 6 t 2 6 6
DMI VMATR 1 _ I,
DMI UMATR 2 2 1,
OUl UMATR 3 3 _,
DMI UMATR _ 4 1.
DMI UHATR 5 5 11
DMI UMATR 6 6 1,
DPHASE 23 3 2 26,63T8
DPHASE 23 4 2 38°18377
DPHASE 230 3 2 22,273_7
FREe 1 3000.
GRDSET 3456
GRID 1 °0 ,0 o0
GRID 2 ,0 1,0 ,0
6RID 3 ,0 2.0 ,0
GRID 4 1,0 2,0 .0
GRID 5 1,0 1,0 .g
GRID 6 1°0 .0 .o
GRID 7 2mO *0 ,0
GRID 8 2,0 1,0 ,0
GRID 9 _,0 2,0 ,0

• MAT2 10 3_5600, 345_00, .0 3_5600, .000096
PARAM CMST ,9029168,0
PARAM FIOMEG 1,0-20" 18849.55
PARAM NOMEG_ -3,553+8.0
PARAM NONE -1,0 ,0
PARAM N_MRRn -_.2Rn-_.n
PARAM NSMSTO -8108,830°0
PARAM PONE +1.0 .0
PARAM SMSBO +2,280-5°0
PARAM SMSTQ +8108.830,0
PeOMEM 1 10 1,0
RLOAnl inn _1 _ 22
RLOAD1 101 210 230 22
TABLED1 2_ PUL_I
+ULS1 0,0 1.0 lO.OnO0, 1,0 ENDT
ENDDAfA
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APPENDIX B (NASTRAN DEMONSTRATIONPROBLEMOUTPUT)
:_E_UFLNCY =.....-3_00060--O--+b3-........
............................................ =C__O_._.Nt._B._.L_E_X_I 0 a D V. Er T o R

(REAL/IMAGINARY)

• OINT ID, TYPE T1 T2 T3 RI R2 R3

........ ,0 ........... -=_?_8562__+J_L.... _n .... _ __,_E____ ,0___

.... _ G .... ,0 -7,8l_4159+01 ' ._ ,O _0 tO
,0 -6,1691_7+01 .p ,0 .0 ,0

"REQUENCY = 3, OOnO0()_-03 ............... ......

C. 0 M P L E X S T R_.E S..S E S ..... ,I...N...... _Q V._A___D_R__I_J=___T_,_A__J=_ .... M F ._ B__R__N E S ( C e D M E.M_)_
( N_ALi _;-',_.C: ,L.'.*.°Y)

" EL_EMENT .......................... - STR-_SES--_ ELEMENT COORDIN-ATE-S-Y-S-TE-M--. ......

ID, real o _'_Tn_,__. real o real ox_ _ imag _yyxx .....:,,_rz,,_.__....._Ly imag 0__ "_ _ma.g_Oxy
w 1 -9o069812+01/, -9, n69812+01 ,n /, - _ 31_65---2-_+_-01 -W,316528+O1/t ,0
c_ 2 -9,808248+01/p -9,8_82_8+01 ,0 /w "2L207309+01 "2__20.7309+01/L_ tO

3 -7", 895863+01/ ," " ---7,895863_+'01 "0 /' "6,209007+01 --6,20-9007+01_, -,0 .......
tt -9,080797+01/, .....................-9,080797+01 ,.0_ /_' "u,J 51 q.?-__q') + O_ -t.t, 31Q'__4.__0 _....

TABLE B-1

NASTRAN-EXACTSOLUTION COMPARISON

-e_plement_ NASTRAN EXACT NASTRAN EXACTIPl,psi IPI, psi Phase of p Phase of p

1 100.53 100o00 12.6830 12.728°

2 100.44 100o00 25.451° 25.456°

3 100o44 100.00 38.180° 38.183°

4 100o53 100.00 25.4120 25°456°



F}n {F}n+1 ,

..,o. n n+1 ! n+Z I

Lp _ "°"

a) Total Periodic Structure left Iright

cut llCUt

I

_--_. I 2 .--_F:_
b) nth SubstructureSign _

Convention --.w • . : ---_ _-

L .x, ,, _ _u,_

s. 3-
(IF_) = P1/2 ooo applied

c) Force Decomposition -- = : Y force at node on
At Cut left cut

,_ I_ ._ (2Fa)y = P2 °'° applied
?IZ._ force at node

_[_ offleftcut
{IF_})

Fig. 1 Periodic Structure Notation
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.x

!_ !_ll _

Cylindrica_ -- - ] -__ShelI !

!'C
_= poei( kx

._...,, ",_.,.,.:i..,.,
o I _.......I ....... (
F_- L,--_ I -[............ Ib) InfiniteRibbedPlate _--- i ........

-blL,h--
Fig.2)InfinitePeriodicStructures

c) SubmergedLayered

, Foei(O_t) Plate

Foe1(315+ mt) |

Foei(270+_t-L---_ i. !-_--- F ei(90%t)

Foei(135 + _t)

_*-- 450 Foei(180 +_ t)

F,Tg.3 Cyclic Periodic Structure
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FluidMedia

PlanePressureWave

p:Poi(kr+_t)
r=x Cos_+ySin_

a) PlanePressureWave
ThroughHomogenous
Medium

_(gF a) not an
• _ "y explicitly

+Y_ _ appliedforce

:u,,t cut(3 ,y

Typical unknown /'- "_ G/C) /.._ j-,,_, l! _" "_f Typicalunknown |
Z I ,_._' rightcut force H

left cut force_'_;: 15 8" • .,'

___41,,t .16 7.1A _

absorbers _ Lp b) FiniteElementModel
for DottedRegionof
Fig° 4a

Fig.4 DemonstrationProblem
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